MCB Accepted Manuscript Posted Online 17 February 2015 Mol. Cell. Biol. doi:10.1128/MCB.01328-14 Copyright © 2015, American Society for Microbiology. All Rights Reserved.

> 1 Title: Characterization of BRD4 during mammalian post-meiotic sperm development 2 Authors: Jessica M. Bryant^{1,2,3}, Greg Donahue¹, Xiaoshi Wang⁴, Mirella Meyer-Ficca⁵, Lacey 3 J. Luense¹, Angela H. Weller¹, Marisa S. Bartolomei¹, Gerd A. Blobel⁶, Ralph G. Meyer⁵, 4 Benjamin A. Garcia⁴, and Shelley L. Berger^{1,#} 5 6 7 ¹Epigenetics Program, Department of Cell and Developmental Biology, University of 8 Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA 9 ²Biomedical Graduate Studies, University of Pennsylvania ³Current address: Institut Pasteur, Paris, France 75724 ⁴Epigenetics Program, Department of Biochemistry and Biophysics, 10 11 University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, 12 USA ⁵Department of Animal Biology, School of Veterinary Medicine, University of 13 Pennsylvania, Pennsylvania 19104, current address: Department of Animal, Dairy and 14 Veterinary Sciences, School of Veterinary Medicine, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, 84322, USA ⁶Division of Hematology, The 15 16 Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of 17 Pennsylvania, Philadelphia, PA 19104, USA [#]Correspondence should be addressed to S.L.B. 18 (e-mail: bergers@mail.med.upenn.edu) 19 20 Running title: Characterization of BRD4 in mammalian spermiogenesis 21 22 Materials and Methods word count: 2,011 23 Introduction, Results, and Discussion word count: 4,969 24

25 ABSTRACT

26	During spermiogenesis, the post-meiotic phase of mammalian spermatogenesis, transcription is
27	progressively repressed as nuclei of haploid spermatids are compacted through a dramatic
28	chromatin reorganization involving hyper-acetylation and replacement of most histones with
29	protamines. Although BRDT functions in transcription and histone removal in spermatids, it is
30	unknown whether other BET family proteins play a role. Immunofluorescence of
31	spermatogenic cells revealed BRD4 in a ring around the nuclei of spermatids containing hyper-
32	acetylated histones. The ring lies directly adjacent to the acroplaxome, the cytoskeletal base of
33	the acrosome, previously linked to chromatin reorganization. The BRD4 ring does not form in
34	acrosomal mutant mice. ChIP sequencing in spermatids revealed enrichment of BRD4 and
35	acetylated histones at the promoters of active genes. BRD4 and BRDT show distinct and
36	synergistic binding patterns, with a pronounced enrichment of BRD4 at spermatogenesis-
37	specific genes. Direct association of BRD4 with acetylated H4 decreases in late spermatids as
38	acetylated histones are removed from the condensing nucleus in a wave following the
39	progressing acrosome. These data provide evidence for a prominent transcriptional role of
40	BRD4 and suggest a possible removal mechanism for chromatin components from the genome
41	via the progressing acrosome as transcription is repressed in response to chromatin condensation
42	during spermiogenesis.
43	
44	
45	
46	

47

48 INTRODUCTION

49 Mammalian spermatogenesis has emerged as a focus of epigenetic study, as this 50 conserved process requires vast changes in transcription and chromatin organization (1). 51 Spermatogenesis, or the formation of the mature male gamete, takes place in the seminiferous 52 tubules of the testes and begins with the stem-like spermatogonia. Diploid spermatogonia can 53 differentiate into spermatocytes, which enter meiosis to produce four genetically unique haploid 54 round spermatids (Fig. 1A). During the post-meiotic process of spermiogenesis, a spermatid 55 differentiates into a motile spermatozoon by shedding most cytoplasm, forming a flagellum, and 56 compacting the nucleus.

57 In mice, nuclear morphology changes dramatically during spermiogenesis: the nucleus is 58 initially round (in round spermatids), then elongates (in elongating spermatids), and finally 59 condenses into a small hook-like shape (in condensing/condensed spermatids) (Fig. 1A). This 60 process is necessary for the formation of fertile sperm and involves chromatin compaction and 61 consequent vast transcriptional repression (1). Nuclear compaction is accomplished via near-62 complete replacement of canonical histones, some with testes-specific histone variants; but most 63 histones are initially replaced with transition proteins and then with protamines (2). Although 64 several groups have shown that the small percentage of histones that remain associated with the 65 genome in mature sperm are specifically post-translationally modified and enriched at 66 developmentally important loci (3, 4) and gene regulatory sequences (5), recent studies have 67 provided contrasting evidence that in mouse sperm, histone retention occurs preferentially in 68 large gene-poor genomic regions (6-8). The mechanism by which almost all histones are 69 removed and degraded has yet to be elucidated, but several important factors in this process 70 have been discovered (9).

71	Chromatin reorganization during spermiogenesis begins concurrently with acrosome
72	formation and histone hyper-acetylation. The acrosome is a cap-like, membrane-bound
73	organelle derived from the Golgi apparatus that covers the apical part of the mature sperm
74	nucleus. This organelle contains digestive enzymes that are released upon contact with the egg
75	to facilitate fertilization. Acrosome biogenesis begins after meiosis is complete and is
76	accomplished via fusion of fragments of the Golgi apparatus at the acroplaxome, or the
77	cytoskeletal base of the forming acrosome (10). The acroplaxome consists of actin and keratin
78	and anchors the acrosome to the adjacent nuclear membrane of the spermatid. Recently, several
79	studies have linked acrosome biogenesis to the dramatic chromatin reorganization that takes
80	place during spermiogenesis. Mouse mutants with defective acrosome formation produce
81	abnormal, round-headed sperm that show defective nuclear compaction (11-15). Moreover,
82	histone removal in human spermatids takes place adjacent to the acroplaxome as the acrosome
83	progressively caps the nucleus (16). These studies suggest that acrosome biogenesis plays a role
84	in sperm head shaping and nuclear compaction, but the mechanisms by which this may happen
85	are unknown.
86	After meiosis is complete and acrosome formation has begun, histones become hyper-
87	acetylated in the spermatid nucleus (17-19). Histone hyper-acetylation is believed to facilitate
88	histone removal either through a direct loosening of the chromatin or via binding of
89	bromodomain-containing proteins such as PA200, the activator of the "spermatoproteasome",
90	and BRDT, the testes-specific BET (Bromo- and Extra-Terminal domain) family protein (20-
01	

23). Like all BET family members, BRDT contains two bromodomains at its N-terminus and an

92 extra-terminal (ET) domain at its C-terminus. Recently, BRDT has been shown to play a dual

93 role during spermatogenesis (24). First, BRDT plays a transcriptional role, binding to

94 acetylated histones and P-TEFb at the promoters of meiotic and post-meiotic genes that are 95 aberrantly repressed in its absence (25). In fact, Brdt knockout or treatment of male mice with 96 JQ1 – a small-molecule inhibitor of BET family proteins – results in meiotic arrest and a 97 significant decrease in fertility (25, 26). Second, BRDT may play a structural role in chromatin 98 dynamics during spermiogenesis. Mice expressing BRDT lacking the first bromodomain show 99 defects in fertility caused by abnormal nuclear compaction and chromatin organization during 100 spermiogenesis (20, 27). However, it is unclear whether these later defects are again due to 101 transcriptional de-regulation or rather to decreased binding of BRDT to hyper-acetylated 102 histones. 103 It is also unclear whether other members of the BET family are integral to the process of 104 spermatogenesis, as Brd2 and Brd4 null mouse mutants show embryonic lethality (28, 29). 105 However, these genes are expressed during spermatogenesis at the mRNA and protein level

106 (30). Interestingly, *Brd4* heterozygous null mice show defects in spermatogenesis, although

107 this phenotype has not been well characterized (29). BRD4 has been shown to bind to the

acetylated tails of histones H3 and H4 and is generally associated with active gene transcription

109 (31). However, BRD4 also plays non-transcriptional roles such as tethering the human

110 papilloma virus genome to host chromatin during mitosis (32).

In this study, we investigate BRD4 during spermiogenesis. We show that BRD4 is found in post-meiotic cells and investigate a novel BRD4 ring structure in spermatid nuclei that is closely associated with the acrosome. Moreover, we show with ChIP sequencing that BRD4 has an unanticipated prominent association with genes expressed in post-meiotic cells. Taken together, our results suggest an interesting mechanism for nuclear protein removal by linking BRD4 and transcription shutdown to acrosome formation during spermiogenesis.

117 **RESULTS**

118	BRD4 is expressed in meiotic cells and spermatids, but not in mature sperm
119	Although a transcriptional role of BRDT has been demonstrated during meiosis and
120	spermiogenesis, it is unclear if other BET family proteins play a role in spermatogenesis (25).
121	As mentioned above, Brd4 heterozygous null male mice show spermatogenic defects,
122	suggesting that BRD4 may play a role in spermatogenesis (28, 29). To investigate the
123	expression pattern of BRD4 over the course of spermatogenesis, we analyzed protein levels in
124	different cell types obtained by STA-PUT velocity sedimentation from mature mouse testes
125	(33). With this method, we collected four cell populations (see Fig. 1A): 1) a mixture of meiotic
126	cells (spermatocytes: Sc), 2) early post-meiotic spermatids (round spermatids: RSp), 3) later
127	post-meiotic spermatids (elongating and condensing spermatids: E/CSp), and 4) a mixture of
128	early and later spermatids (R/E/CSp). Mature sperm were isolated from the cauda epididymis of
129	wild-type mice.
130	In addition to microscopic verification of purity via cellular and nuclear morphology
131	[see (33) for our methods], we used western blot analysis of lysates from these cells to confirm
132	relative purity. Although H4 protein is depleted in late spermatids (E/CSp), H4K5,8,12,16ac,
133	but not H3K9ac, was relatively enriched in these elongating and condensing spermatids (Fig.
134	1B). This analysis also revealed the presence of the long isoform of BRD4 protein (indicated
135	with an asterisk Fig. 1B) in meiotic cells ("Sc"), round spermatids ("RSp"), and
136	elongating/condensing spermatids ("E/CSp"), but not in mature sperm ("Sperm"). A second
137	smaller BRD4 isoform or degradation product was also detected in later spermatids (arrow in
138	Fig. 1B, upper panel). The specificity of the BRD4 antibody for the long and shorter forms was
139	confirmed by peptide competition (second panel, Fig. 1B). The canonical BRD4 short isoform

MCE

(~723aa) was not detected in any spermatogenic cells in this analysis. In addition to BRD4,
BRDT and BRD2 are expressed over the course of spermatogenesis. While BRDT is expressed
most highly in spermatocytes, BRD2 and BRD4 protein levels increase over the course of
spermiogenesis.

144

145 BRD4 forms a ring around the nucleus of spermatids as histones become hyper-acetylated 146 To gain insight into a possible function for BRD4 during spermatogenesis, we 147 determined its subcellular localization by performing indirect immunofluorescence (IF) on 148 tissue sections from the testes of adult wild-type male mice. Using intact tissue allows for the 149 identification of specific steps of spermatogenesis within the seminiferous tubules (34). 150 Interestingly, we detected BRD4 in a distinct, complete ring around the nucleus beginning in 151 approximately stage 7-8 spermatids (Sp) (Fig. 2A). The BRD4 ring is not present in 152 spermatogonia or spermatocytes (Sc) (Fig. 2A) and appears concurrently with the post-meiotic 153 hyper-acetylation of histories in the nucleus, not seen in spermatocytes (compare Sp to Sc in Fig. 154 2B). We confirmed that the apparently distinct "ring" is not associated with the entire nuclear 155 periphery with pseudo-3D images created with z-stacked individual confocal images of early 156 and late elongating spermatid nuclei (Movies A and B, resp.). We found the BRD4 structure 157 closely changes shape along with the condensing nucleus of the spermatid: from round to 158 oblong, always at the periphery of the DAPI-stained nucleus (Fig. 2A,B and Movies A,B). This 159 ring structure is specific to BRD4, as IF analysis of a mixed population of spermatogenic cells 160 showed BRD2 and BRDT in a diffuse nuclear staining pattern in spermatocytes and round 161 spermatids (Fig. 2C,D).

162

164	To further investigate the sub-cellular location of BRD4, we performed indirect IF for
165	BRD4 and Lamin B1, a key component of the nuclear membrane. Co-detection of these
166	proteins revealed that BRD4 is located at an important transitional region of the nuclear
167	membrane in spermatids (Fig. 3A). More specifically, Lamin B1 and nuclear pores become
168	polarized to the posterior end of the spermatid nuclear membrane, clearly distinct from the
169	anterior end, which becomes closely covered by the acrosome (Fig. 3B, acrosome location
170	indicated by an asterisk in Fig. 3A) (35-37). The acrosome is partly anchored to the nuclear
171	envelope by a cytoskeletal plate called the acroplaxome, which forms a ring-like structure very
172	similar to the BRD4 ring in the region where the Lamin B1-associated nuclear envelope meets
173	the acrosome-associated nuclear envelope (Fig. 7D) (10). Therefore, we hypothesized that
174	BRD4 may be associated with the acroplaxome.
175	To determine whether the BRD4 ring is linked to the acrosome/acroplaxome, we
176	performed IF on spermatogenic cells, probing with fluorophore-conjugated peanut agglutinin
177	(PNA) to detect the acrosome, or with phalloidin to detect actin in the acroplaxome (Fig. 3C and
178	Movie C, respectively). Indeed, the BRD4 ring appears directly at the base of the acrosome
179	during capping in late round spermatids (top panel) and persists in elongating (middle panel)
180	and condensing spermatids (bottom panel) (Fig. 3C). Using a confocal microscope to create a
181	pseudo-3D image, we discovered that the BRD4 ring lies just adjacent to the actin ring of the

182 acroplaxome, but closer to the DAPI-stained nucleus (Movie C).

183 To provide additional evidence of the acrosome-associated BRD4 ring, we incubated 184 spermatogenic cells with JQ1-biotin followed by fluorophore-conjugated streptavidin. JQ1 is a 185 small molecule that binds to the bromodomains of all BET family proteins, which are expressed

186 in the nucleus of multiple spermatogenic cell types [Fig. 2C,D and (30, 38, 39)]. Thus, JQ1-187 biotin shows a diffuse nuclear staining pattern in most spermatogenic cells types (Fig. 3D, top 188 panel); however, this staining is not a random artifact of streptavidin binding (Fig. 3D, bottom 189 panel). Importantly, in addition to a diffuse nuclear staining, JO1-biotin is enriched in a ring 190 structure that overlaps with the BRD4 ring in spermatids [late round (top panel) and elongating 191 (bottom panel) spermatids in Fig. 3E]. Moreover, this JQ1-biotin enrichment is found at the 192 base of the acrosome, providing additional evidence for the existence of the BRD4 ring (Fig. 193 3F).

194 Because the BRD4 ring and the acroplaxome are remarkably similar in shape and 195 location, we hypothesized that acrosome formation is needed for BRD4 ring formation. To test 196 this hypothesis, we analyzed Hrb (also known as Agfg1) null mice, which produce infertile 197 sperm that lack acrosomes and have round, poorly compacted nuclei (11). In wild-type male 198 mice, the acrosome is formed by the fusion at the acroplaxome of proacrosomic vesicles derived from the Golgi apparatus (Fig. 4A, top panels) (40). In $Hrb^{-/-}$ male mice, the proacrosomic 199 200 vesicles begin to form in round spermatids, but they are unable to fuse properly to form a 201 mature acrosome (Fig. 4A, bottom panels). *Hrb^{-/-}* mice also show defects in nuclear elongation 202 and compaction later in condensing spermatids when the acrosome is completely absent (Fig. 203 4A, bottom right panel).

204 To determine if acrosome development is required for BRD4 ring formation, we performed indirect IF on cryosectioned testes tissue from adult $Hrb^{+/-}$ (which have normal 205 spermatogenesis) and Hrb^{-/-} mice (11). Strikingly, the BRD4 ring does not form properly in 206 Hrb^{-/-} mice (Fig. 4B, right panel). A small amount of BRD4 can be seen around spermatid 207 nuclei in $Hrb^{-/-}$ mice, but the conspicuous ring structure never develops and exists only in small 208

Molecular and Cellular

fragments, if at all, in late stage spermatids (Fig. 4B, right panel). Because the acroplaxome forms partially, although aberrantly, in $Hrb^{-/-}$ acrosomal mutant mice, it is possible that the BRD4 ring is able to form partially due to an association with certain components of the acroplaxome that may be able to assemble in $Hrb^{-/-}$ mice despite the lack of a functional acrosome (41).

214

215 BRD4 is enriched at the promoters of active genes in spermatids

216 It is possible that BRD4 is present diffusely throughout the nucleus in round spermatids, 217 undetectable by IF until it is present in a higher concentration in the ring structure in very late 218 round spermatids. To determine if BRD4 interacts with the genome in spermatids, we analyzed 219 the genome-wide enrichment of BRD4 with chromatin immunoprecipitation followed by 220 sequencing (ChIP-seq). We performed analysis in round spermatids to characterize BRD4 221 binding in the context of the distinct post-meiotic gene expression program, as a previous study 222 has done for BRDT (25). We also determined the genome-wide localization of various other 223 histone post-translational modifications (PTMs) to assess whether BRD4 shows a binding 224 preference for any of these PTMs (all of which were normalized to input). All ChIP-seq data 225 alignment information can be found in Table 1.

Upon initial examination of the ChIP-seq data, it is evident that BRD4 and H3 and H4 acetylation (H3/H4ac) are enriched in genic regions of the genome as opposed to an established heterochromatin PTM, H3K9me3, which is enriched in large intergenic regions (Fig. 5A).

Indeed, bioinformatic analysis revealed that the majority of peaks of BRD4, H3ac, and H4ac are located within promoters [1 kilobasepair (kb) upstream of the transcriptional start site (TSS)] or genes (introns or exons), unlike H3K9me3, which is located primarily in intergenic regions (Fig.

Molecular and Cellular Biology 5B). Upon closer examination, BRD4 is enriched at the TSS of active housekeeping genes such
as *Actb* and active spermatogenesis-specific genes such as *Tnp1* (Fig. 5C). Conversely, BRD4
is not found at repressed housekeeping genes such as *Myc* (Fig. 5C). BRD4 is not bound to all
active genes even though some, such as *Vps45*, may be enriched for H3 or H4 acetylation (Fig.
5C).

In addition, we did not observe significant differences in enrichment patterns among acetylation at different H3 and H4 residues. In general, H3K9ac and H4K5, 8, 12, and 16ac appear to be enriched surprisingly similarly at the TSS of active genes (Fig. 5A,C). Although BRD4 is not present at the TSS of all active genes, heat map analysis revealed that levels of BRD4, H3K9ac, and H4ac at gene promoters (green in Fig. 6A) show a strong correlation with levels of transcriptional activity of those genes in round spermatids [red in Fig. 6A, transcription data from (42, 43)].

244 We compared our BRD4 ChIP-seq data in round spermatids to previously published 245 BRDT ChIP-seq data from the same cell type (25). Although this previous study showed that 246 BRDT binds to the TSS of active genes in round spermatids, we found the majority of BRDT 247 peaks (~64%) to be present in intergenic regions of the genome and only 3% of peaks within 248 gene promoters (Fig. 5B). However, BRDT enrichment at gene promoters does correlate with 249 the transcriptional activity of those genes (Fig. 6A). These data suggest that while most BRDT 250 is found in intergenic regions, the small percentage located at gene promoters correlates well 251 with transcriptional activity.

Because both BRD4 and BRDT were found to bind to the promoters of active genes in round spermatids, we sought to investigate possible differences between the roles of these BET family proteins. We defined a list of genes bound by BRD4 based on the presence of peaks 1kb

255	upstream of the TSS. We then intersected this list with a list of approximately 1,544 genes
256	previously shown to be bound by BRDT in round spermatids (25). Thus, we generated three
257	categories of genes: BRD4-bound (approximately 2,093 genes), BRDT-bound (approximately
258	1,347 genes), and co-bound (approximately 197 genes). Genes bound only by BRD4 showed an
259	average expression level that is slightly higher than genes bound only by BRDT (Fig. 6B).
260	However, the average expression levels of BRD4- or BRDT-bound genes were approximately
261	two-fold higher than the average expression level of all genes and similar to the average
262	expression level of spermatogenesis-specific genes [$p < 2.2e^{-16}$ for BRD4- and BRDT-bound in
263	(Fig. 6B)]. Interestingly, genes that were co-bound by BRD4 and BRDT show the highest
264	average transcription level [$p < 2.2e^{-16}$ in (Fig. 6B)]. These same trends can be seen with levels
265	of H3 and H4 acetylation at genes bound by BRD4, BRDT, or both (Fig. 6C). Histone H3/H4
266	acetylation levels are higher at the promoters of genes that are only bound by BRD4, but are
267	highest at the promoters of genes that are co-bound by BRD4 and BRDT [see Table 2 for p-
268	values in (Fig. 6B,C)]. As a control, H3K9me3 enrichment is extremely low at the promoters of
269	genes bound by BRD4 and BRDT.
270	Next, we performed Gene Ontology (GO) analysis of BRD4-, BRDT-, or co-bound
271	genes to determine if BRD4 and BRDT could possibly regulate different categories of genes.
272	Categories of housekeeping genes such as "RNA processing" or "protein folding" can be found
273	in genes bound by BRD4 or BRDT only (Fig. 6D,E left two panels). However,

spermatogenesis-specific genes are enriched in the gene set bound by BRD4 only or co-bound
by BRD4 and BRDT (Fig. 6D,E left and right panels). Indeed, heatmap analysis of BRD4 and
BRDT enrichment at the TSS of all spermatogenesis-specific genes reveals a strong positioning
of BRD4 (Fig. 6F). These data suggest that BRD4 and BRDT both play a role in the activation

Molecular and Cellular

of transcription in post-meiotic spermatids, but that BRD4 may play a particularly strong role in
activation of spermatogenesis-specific genes.

The necessity of BRD4 in transcriptional activation during spermiogenesis is difficult to determine in the current absence of a conditional knockout mouse or reliable spermatogenic cell culture system. Knockdowns in the germline are extremely difficult to generate, and staged cell populations are not easily obtainable or manipulated in cell culture. Moreover, treatment of male mice with JQ1 results in a meiotic arrest, before spermiogenesis (26). Thus, currently we are unable to directly test the function of BRD4 during spermiogenesis.

286

287 BRD4 association with poly-acetylated histone H4 diminishes in late spermatids as

288 acetylated histones are removed from the condensing nucleus

289 Although our ChIP-sequencing data provides correlative evidence of BRD4 binding to 290 both acetylated histone H3 and H4, it does not demonstrate direct binding to these histone 291 PTMs. To investigate the composition of BRD4-associated chromatin, we performed 292 immunoprecipitation (IP) of BRD4 in round spermatids (Fig. 7A). Total cell lysate and BRD4-293 immunoprecipitated proteins were separated on an SDS-PAGE gel and analyzed with mass 294 spectrometry. We quantified the fraction of peptides bearing different combinations of acetyl 295 and methyl PTMs for histones H3 and H4 in total chromatin and BRD4-immunoprecipitated 296 chromatin (Table 3). When the values of immunoprecipitated peptides were normalized to the 297 values for total chromatin in round spermatids, we noticed an approximate 4- and 10-fold 298 enrichment of tri- and tetra-acetylated H4 peptide, respectively (log-transformed ratios in Fig. 299 7A bottom left panel; see Table 3 for raw values). Specifically, various combinations of tri- and 300 tetra-acetylated H4 peptides (K5, 8, 12, and 16ac) were highly enriched in immunoprecipitated

chromatin, but all these most highly enriched combinations include H4K5ac or H4K8ac (Fig.
7A right panel and Table 3). In general, H3K9ac is not enriched in BRD4-immunoprecipitated
chromatin and H3K14ac is only slightly enriched when combined with different degrees of
H3K9 methylation (Fig. 7A upper left panel). The reason for the relative absence of H3
acetylation and higher H3K9me3 is not clear.

306 We then quantified the change in total and BRD4-immunoprecipitated H4 acetylation 307 over the course of spermatogenesis (raw values in Table 4). We generated ratios of H4 308 acetylation in round spermatids versus spermatocytes and compared these to the ratio of H4 309 acetylation in elongating/condensing spermatids versus round spermatids. First, tri- and tetra-310 acetylated H4 peptide levels increase significantly in total chromatin over the course of 311 spermiogenesis (from spermatocytes to round spermatids to elongating/condensing spermatids) 312 (Fig. 7B left graph). Although levels of BRD4-immunopreceipitated mono-, tri-, and tetra-313 acetylated H4 increase from spermatocytes to round spermatids, the levels of tetra-acetylated H4 314 decrease significantly from round spermatids to elongating/condensing spermatids (Fig. 7B right 315 graph). Interestingly, the immunofluorescent signal of hyper-acetylated histories is depleted 316 from the nuclear region underlying the acrosome (Movie D), as was shown in human spermatids 317 (16), and adjacent to the BRD4 ring (Fig. 7C). Taken together, these data suggest a localization 318 of BRD4 from the genome to the ring structure followed by removal of hyper-acetylated 319 histones from the genome as the acrosome caps the nucleus (see model in Fig. 7D). 320

321 **DISCUSSION**

Mammalian spermatogenesis results in a specialized sperm cell with a highly compacted
 nucleus. A hallmark of this nuclear compaction is the removal of almost all histones from the

324	genome, with a small percentage retained at developmentally important loci (3, 4) and repetitive
325	DNA sequences (7, 8). While the mechanism of mass histone removal and degradation remains
326	unclear, it is believed that histone hyper-acetylation and thus, bromodomain-containing proteins,
327	especially BRDT, are integral to this process (2, 20, 21, 25, 27). Surprisingly little is known
328	about the involvement of the other BET family members - BRD2, BRD3, and BRD4 - during
329	spermiogenesis. A previous study used immunohistochemistry of testes tissue to show BRD4
330	expression specifically in spermatogonia (30). In this study, however, we found that BRD4 is
331	expressed during meiotic and post-meiotic phases of mouse spermatogenesis using several
332	approaches. First, we detect BRD4 gene expression in meiotic and post-meiotic cells with
333	western blotting and RT-qPCR (Fig. 1B and data not shown). Second, we immunoprecipitated
334	BRD4 from meiotic and post-meiotic cells and detect its association with expressed genes and
335	with acetylated histones [(44) and Figs. 5, 6, and 7]. Thus, BRD4 protein is present during the
336	post-meiotic phase of spermatogenesis.
337	Our characterization of BRD4 in spermatids provides evidence for an interesting
338	mechanism by which transcription is attenuated by the progressive removal of BRD4 itself and
339	acetylated histones via the acrosome. It is possible that this might be a general mechanism for
340	removal of transcriptionally relevant proteins. We initially observed BRD4 in a novel ring-like
341	structure that is closely associated, both spatially and functionally, with the
342	acrosome/acroplaxome. However, our unprecedented combination of IP/mass spectrometry and
343	ChIP-seq analysis of BRD4 with endogenous antibodies demonstrate the in vivo binding of
344	BRD4 throughout the chromatin of post-meiotic cells. Importantly, we performed these
345	analyses in round spermatids, just before the BRD4 ring first appears and an increase in histone
346	H4 acetylation can be detected by western blot, IF, and mass spectrometry (Figs. 1B, 2A,B and

MCB

347	7B). Also, in this cell type, we were able to capture the chromatin state before the initiation of
348	histone replacement, vast compaction, and transcriptional shutdown.
349	BRD4 has traditionally been associated with euchromatin, active transcription, or mitotic
350	bookmarking (45-51). Our ChIP-sequencing data suggest that BRD4 plays a similar role in
351	transcriptional activation in round spermatids. BRD4, H3K9ac, and H4K5,8,12, and 16ac are
352	present at the TSS of active genes in round spermatids, and their enrichment correlates with
353	transcription levels (Figs. 5 and 6A). While BRD4 is known to bind to poly-acetylated histone
354	H4 in vitro, our study is the first to confirm this preference for acetylated H4 (especially poly-
355	acetylated H4 modified at K5 and K8) over H3 by in vivo IP/mass spectrometry using an
356	antibody against endogenous BRD4 [Fig. 7A and (49, 52, 53)].
357	When we compared our ChIP-sequencing data to that published in a recent study of
358	BRDT in the same cell type (25), we found that BRD4 and BRDT enrichment at gene promoters
359	correlates with the transcriptional activity of those genes (Fig. 6A). BRD4 is especially
360	enriched at spermatogenesis-specific genes and shows a very robust positioning around their
361	TSS, suggesting that this BET family protein may play a strong role in their activation (Fig. 6F).
362	Interestingly, genes that were co-bound by BRD4 and BRDT showed higher average
363	transcription and histone acetylation levels than genes bound only by BRD4 or BRDT (Fig.
364	6B,C). It is unclear how BRD4, BRDT, or both would be recruited to specific subsets of genes,
365	but these data suggest that synergistic binding of these two BET family proteins could lead to
366	higher histone acetylation and expression levels via increased recruitment of the P-TEFb
367	complex, as has been shown for both BRD4 and BRDT (25, 50, 51).
368	Although BRDT binds to a considerable number of gene promoters, we found that the

369 majority of BRDT peaks occur in intergenic regions of the genome (Fig. 5B). Interestingly, a

recent study demonstrated that nucleosomes that are retained in the mature mouse sperm
genome show a ten-fold overrepresentation at promoter regions (54). Because BRDT has also
been implicated in the histone-to-protamine transition via removal of acetylated histones, we
propose that BRDT may show a binding preference for regions where histones are largely
evicted from the mature sperm genome, perhaps even as early as the round spermatid stage (20,
23, 25). In the future, it will be interesting to investigate the genome-wide binding patterns of
other BET family proteins over the course of spermatogenesis.

377 Because transcription is largely de-activated as the genome is highly compacted during 378 spermiogenesis, it is reasonable to postulate that BRD4 and other transcriptional co-activators 379 must be removed from the genome during this process. Indeed, western blot analysis shows that 380 BRDT, BRD2, and BRD4 are largely absent from mature sperm (Fig. 1B). It is currently 381 unclear, however, how histones and so many other chromatin components may be removed 382 and/or degraded during this nuclear condensation. In approximately stage 7-8 spermatids, when 383 histone hyperacetylation and nuclear elongating/compaction begin, the BRD4 ring appears just 384 adjacent to the acroplaxome (Figs. 1B, 2B, 3C and Movies A-C). At the same stage of 385 spermiogenesis, we observed by western blot a BRD4 peptide of a slightly lower molecular 386 weight than the full length BRD4 isoform (Fig. 1B). It is possible that the BRD4 ring may 387 contain a spermatid-specific isoform that binds to acetylated histones or other acetylated 388 chromatin-associated proteins in order to provide a tethering force (via the acroplaxome) for 389 chromatin compaction and reorganization. Indeed, a growing body of evidence implicates 390 BRD4 in structural roles such as tethering, insulating, and maintaining higher order chromatin 391 structure (55-58). Alternatively, because BRD4 is undetectable in mature sperm by IF and

392	western blot, this smaller BRD4 peptide may simply be a degradation product that is created
393	during the removal of BRD4 from the genome via the acroplaxome-associated ring.
394	Interestingly, the BRD4 ring does not form in acrosomal mutant mice, which show
395	nuclear compaction and fertility defects that are highly similar to human globozoospermia, a
396	condition in which the acrosome is malformed or absent, the sperm head is round, and
397	chromatin compaction is abnormal [Fig. 4 and (11-15)]. Chromatin compaction during
398	spermiogenesis may be incomplete in these mutant mice due to abnormal retention of
399	chromatin-associated proteins and histones. Future ChIP-sequencing studies in acrosomal
400	mutant mice will elucidate potential defects in the chromatin signature characteristic of
401	spermiogenesis.
402	Our observations strongly support an increasing body of evidence that acrosome
403	formation plays a key role in nuclear compaction and chromatin remodeling during
404	spermiogenesis. Our IF data in mouse (Fig. 7C and Movie D) and that of a recent study in
405	human spermatids shows that acetylated histones in the nucleus are depleted first in the region
406	directly adjacent to the acrosome, where initial DNA compaction occurs (16). Moreover,
407	various chromatin-associated proteins known to be involved in chromatin compaction, such as
408	H1T2, are found in the nucleus adjacent to the acrosome (59). Finally, it has been suggested that
409	the acroplaxome is able to provide contractile force to the compacting nucleus (10). It is unclear
410	whether histones are degraded within the nucleus or shuttled out of the nucleus first during

411 spermiogenesis; however, recent studies have shown that histone removal, while delayed, still

412 occurs in mice lacking PA200, the acetylated histone-binding activator of the spermatogenesis-

413 specific proteasome (21).

414	As histone removal followed by degradation appears to be the most supported model, the
415	acroplaxome is in an ideal location to facilitate this potential shuttling (22). It has been shown
416	that the nuclear membrane underlying the expanding acrosomal cap is devoid of any nuclear
417	pores and may be impenetrable to exiting nuclear components (37). If the acrosome is coupled
418	to the extensive removal of histones and other chromatin components from the genome, the
419	force-providing acroplaxome could act to facilitate shuttling at the base of the acrosome where
420	nuclear pores and lamins B1 and B3 are still present. Future studies, such as mass spectrometry
421	analysis, will provide critical insight into potential binding partners or post-translational
422	modifications of BRD4 that may localize this protein to the acroplaxome in spermatids.
423	Regardless, this striking BRD4 localization suggests an interesting link between a chromatin
424	component known to bind to acetylated histones and extra-nuclear spermatogenic structures.
425	Our combined approaches of immunofluorescence, biochemistry, mass spectrometry,
426	and ChIP-sequencing suggest that BRD4 may play a fundamental role in transcription of
427	spermatogenesis-specific genes and then in the transition from the transcriptionally active
428	genome of early post-meiotic spermatids to the highly compact, transcriptionally silent genome
429	of mature sperm. Importantly, our characterization of BRD4 contributes to the growing body of
430	evidence that dramatic chromatin events taking place in the nucleus during spermiogenesis may
431	be directly affected by extra-nuclear changes in cell structure and composition. Further
432	investigation should reveal other proteins that are also involved in this process and elucidate the
433	mechanism by which histones and other chromatin components are removed from the genome
434	in an apparently acrosome-dependent manner. Finally, it would be interesting to further
435	investigate how BET family proteins function during spermiogenesis to first activate
436	transcription and then to repress it by potentially removing acetylated histones from the

437 spermatid genome. The future study of various steps in this intricate process of transcriptional

- 438 repression and nuclear compaction will lead to a better understanding of chromatin dynamics
- 439 during spermatogenesis, epigenetic signatures in sperm, and mammalian fertility.

440

441 MATERIALS AND METHODS

442 Antibodies/Reagents

Application	Antibodies/Reagents
Immunofluorescence	BRD2 (Abcam ab111078), BRD4 (60), BRDT (Abcam ab5157),
minutoriuoreseenee	H3K9Ac (Active Motif AM39137), H4K5,8,12,16ac (Millipore 05-
	1355), JQ1-PEG2-biotin (39), Lamin B1 (Abcam ab16048),
	Lamin B1 (Santa Cruz sc-373918), phalloidin-488 (Invitrogen
	A12379), and PNA-488 (Invitrogen L21409)
Western blot	β-actin (Cell Signalling 4970), BRD2 (Lifespan Biosciences
	(aa524-573) IHC-plus LS-B923), BRD4 (60), BRDT (Abcam
	ab5157), Cyclin T1 (Santa Cruz H245 sc-10750), GAPDH
	(Fitzgerald 10R-G109a), H3K9Ac (Active Motif AM39137), H4
	(Abcam ab10158), H4K5ac (Millipore 07-327), H4K8Ac
	(Millipore 07-328), H4K12Ac (Millipore 07-595), H4K16Ac
	(Active Motif AM39167), H4K5,8,12,16ac (Millipore 05-1355)
Immunoprecipitation/	H3 (Abcam ab1791), H3K9ac (Active Motif AM39137), H3K9me3
ChIP	(Abcam ab8898), H4K5ac (Millipore 07-327), H4K8ac (Millipore
	07-328), H4K12ac (Millipore 07-595), H4K16ac (Active Motif
	AM39167), H4K5,8,12,16ac (Millipore 06-866), BRD4 (Bethyl
	A301-985A50)

443

444

445 Mouse Models

446 Male 12986/SvEvTac mice (Taconics, Germantown, NY) as well as *Hrb^{-/-}* gene-disrupted mice

447 (11) were maintained and humanely euthanized according to the guidelines of the University of

448 Pennsylvania Institutional Animal Care and Use Committee.

449

450 Mouse spermatogenic cell fractionation

Spermatogenic cell fractionation was performed by sedimentation of cells prepared from adult
mouse testes through a BSA gradient as previously described (33). Each fractionation
experiment used approximately 22 testes. Fractions were analyzed for purity based on cell and
nuclear morphology (via DAPI staining) and pooled. Mature spermatozoa were obtained from
epididymides of adult mice, and contaminating cell types were eliminated by incubating in
somatic cell lysis buffer (0.1% SDS, 0.5% Triton X-100 in DEPC H₂O) on ice for 20 minutes.

458 Western blot analysis

459 Cells were resuspended in buffer [20mM TrispH 7.5, 1mM MgCl₂, 1mM CaCl₂, 137mM NaCl, 460 10%Glycerol, 1% NP-40, Complete protease inhibitor EDTA-free (Roche), 300nM trichostatin 461 A (Sigma T1952)], and rotated at 4°C for one hour in the presence of 12.5 U/mL Benzonase 462 (Novagen 70746). Protein content was measured with Bradford dye and cell lysate containing 463 $25\mu g$ of protein or sperm lysate containing $5\mu g$ of protein was added to each well of a 4-12% 464 1mm Bis-Tris NuPAGE protein gel. Protein was transferred to a PVDF membrane and blocked 465 for one hour in 5% BSA-TBST. Membranes were incubated with primary antibody (in 1% 466 BSA-TBST) for one hour, washed, incubated with secondary HRP-conjugated antibody (in 1% 467 BSA-TBST) for 30 minutes, washed, and detected using enhanced chemiluminescence. For 468 peptide competition, primary antibody was incubated with 5µg/mL immunizing peptide for one 469 hour at room temperature before application to the membrane.

470

471 Immunofluorescence

472 Immunofluorescence was performed on 8μm cryosections of mouse testes from ten-week-old

473 mice or cell suspensions obtained using the spermatogenic cell separation method described

474	above (33). Testes were dissected and immediately placed in 4% PFA (in PBS) or snap frozen
475	in liquid nitrogen. The PFA-fixed testes were incubated in 15%, then 30% sucrose (in PBS) and
476	embedded in TissueTek OCT compound. Fixed or frozen tissue was cryosectioned onto
477	Superfrost Plus slides (Fisher). Cell suspensions in PBS were allowed to adhere to Superfrost
478	Plus slides for 1hr at 33°C. Snap frozen sections and cell suspensions were fixed for 15min in
479	4% paraformaldehyde at room temperature. Sections/cells were washed 3 x 5min in PBS and
480	incubated with 125mM glycine (in PBS) for one minute at room temperature. Sections/cells
481	were washed 3 x 5 min in PBS, then permeabilized with 0.1% Triton-X100 for two minutes at
482	4°C. Sections/cells were washed 3 x 5 min in PBS, then blocked with 3% donkey serum in PBS
483	for one hour at 37°C. Sections/cells were incubated with primary antibody or $40\mu M$ JQ1-biotin
484	(in 3% donkey serum in PBS) for one hour at 37°C and washed 3 x 5 min in PBS.
485	Sections/cells were incubated with $5\mu g/mL$ (in 3% donkey serum in PBS) Alexafluor secondary
486	antibody (Invitrogen) for 30min at 37°C, then washed 3 x 5min in PBS. Sections/cells were
487	then incubated with DAPI (Invitrogen, 5μ g/mL in 3% donkey serum in PBS) and embedded in
488	Prolong Gold Anti-fade reagent (Invitrogen). Sections/cells were imaged with a Leica TCS SP8
489	confocal microscope and pseudo-3D images were created using Velocity 6 software. Minimal
490	changes to immunofluorescence images (contrast and pseudo-coloring) were made using
491	ImageJ.

493 Chromatin immunoprecipitation and sequencing

494 ChIP-seq for BRD4 and histone post-translational modifications was carried out as previously 495 described with minor modifications (61). Cells were cross-linked in 1% formaldehyde in PBS 496 for 10 minutes at room temperature. The reaction was quenched with 125mM glycine in PBS

498 with a Covaris S220 sonicator (5% duty cycle, 140 watts peak incident power, 200 cycles per 499 burst). For each IP, 500µg of protein (measured with BCA assay) from the cell lysate, 30µL 500 protein G Dynabeads (Life Technologies), and 5µg-10µg of antibody or IgG (Pierce 31235) 501 were used. ChIP libraries for sequencing were prepared using 5ng DNA and the NEBNext 502 Ultra DNA library prep kit for Illumina. Size selection was performed using AMPure XP beads 503 (Beckman Coulter, Inc. #A63881). Libraries were sequenced using a NextSeq 500 machine 504 (Illumina) as per manufacturer's protocols. 505 506 ChIP-seq data analysis 507 ChIP-seq data generated using a NextSeq 500 were demultiplexed using the bcl2fastq utility 508 (02.14.01.07). Data were then aligned using bowtie 0.12.7 (parameters -m 1 --best) to mouse 509 genomic assembly mm9. 510 UCSC Genome Browser Tracks 511 Visual tracks of ChIP-seq data were generated in the following way. For each sample, the 512 aligned data file for PCR duplicated reads was filtered (i.e., any set of aligned reads with the 513 same chromosome, start, and stop coordinates was reduced to a single representative). Coverage 514 maps were then created using the BEDTools utility genomeCoverageBed. Resulting bedGraphs 515 were scaled using the RPKM coefficient, a measure of the number of billions of bases 516 sequenced per sample, to correct for sequencing efficiency biases. Finally, an input coverage 517 map was subtracted for the BRD4 and each histone PTM coverage map. The BRDT data from 518 (25) were treated similarly. 519 Genome Compartment Plot

for five minutes at room temperature. After cell lysis, lysates were sonicated for 20 minutes

521 BRD4 using SICER (peaks were called against input as the background; window, fragment, and 522 gap size parameters were fixed at 200bp; and the FDR was controlled at 0.1%). Previously 523 published peak locations from (25) were used for BRDT. Peak locations were overlapped using 524 BEDTools' intersect utility with RefSeq promoters, exons, and introns, in an exclusive way: if a 525 peak overlapped a promoter, it was removed from consideration for overlap with exons or 526 introns, and if it overlapped an exon it was removed from consideration for overlap with introns. 527 Expression versus ChIP Enrichment Heatmap 528 RefSeq transcripts were assessed for expression in round spermatids by loading two previously 529 published replicate data sets (GSM95950 and GSM95951 in GEO series GSE4193) into the 530 Partek Genomics Suite software package. Data were background-corrected with GC-RMA, 531 quantile-normalized, and median polished along with all other data sets in the GSE4193 series. 532 Promoters (1kb upstream regions) associated with these expression-scored transcripts were 533 assessed for numbers of aligned tags in each indicated ChIP. Tag counts were then normalized 534 to the number of millions of tags sequenced as well as input. Brightness for each track is scaled 535 to the maximum ChIP value in that track; tracks are sorted in order of least expressed to most 536 expressed genes in GSM95950. 537 Expression Boxplots 538 BRDT target genes are as described in (25). BRD4 target genes were those with a SICER-

The genomic compartment table was generated by first calling peaks for each histone PTM or

539 determined BRD4 peak in the promoter where the peak enrichment was in the 90th percentile of 540 all BRD4 peaks. For each of the three gene sets, expression enrichments were determined using 541 GSM95950 (data processing described above) and ChIP-seq enrichments were determined using 542 normalized tag counts at the promoter (data processing described above). Table 2 p-values and

Molecular and Cellular Biology 543 W statistics (reflecting expression distribution and promoter acetylation distribution differences
544 between genes bound by BRD4, BRDT, both, or neither) were estimated using the one-sided
545 Mann-Whitney test in R.

546 Gene Ontology Pie Charts

547 Gene Ontology enrichment analysis of BRD4 target genes, BRDT target genes, and co-bound 548 genes was done using DAVID (62). GO terms in the "Biological Process" hierarchy were 549 collapsed to a single representative term if they shared the same gene; if one GO term's 550 associated target genes were a subset of another's, that GO term was dropped in favor of the 551 other. GO terms were further combined if they shared more than 15 transcripts. GO terms are 552 represented by their overall gene "real estate." Each gene is given a vote inversely proportional 553 to the number of terms it appears in. Each term's weight is the sum of the votes of its genes. 554 Finally, pie charts were simplified by visual inspection. 555 Promoter Heatmap 556 Genes enriched in the Gene Ontology category "Spermatogenesis" (GO:0007283) were 557 associated with RefSeq transcripts using UniProt and DAVID. For each transcript, a vector 558 describing the ChIP-seq enrichment profile around the TSS (2.5kb upstream and 2.5kb 559 downstream) was assessed for BRD4 and BRDT (ChIP-seq enrichment data were normalized to 560 input, length, and number of millions of reads, as above). Profiles were sorted top-to-bottom by 561 overall BRD4 enrichment intensity. The maximum green in each plot was determined by the 562 enrichment value at the 90th percentile. 563

564 Immunoprecipitation and mass spectrometry

565	Antibody-coupled beads were prepared by incubating $30\mu L/IP$ protein G Dynabeads (Life
566	Technologies) with 10 μ g primary antibody or rabbit IgG (Pierce 31235) in 0.5% BSA-PBS for
567	six hours at 4°C with rotation. Cells were resuspended in lysis buffer (20mM Tris pH 7.5, 1mM
568	MgCl ₂ , 1mM CaCl ₂ , 137mM NaCl, 10% glycerol, 1% NP-40, Complete Protease inhibitor
569	EDTA-free (Roche), 10mM NaB, 300nM Trichostatin A), after which 12.5 U/mL Benzonase
570	was added. Lysates were incubated for one hour at 4°C with rotation and then cleared by
571	centrifugation at 14,000 rpm for 10 minutes. Supernatant was removed and protein
572	concentration was measured with Bradford dye. After incubating with antibody, beads were
573	washed three times with 1mL buffer. One mg protein from the lysate was added to the beads
574	and incubated overnight at 4°C with rotation. Beads were washed five times with 1mL buffer.
575	Beads were resuspended in 30µL sample buffer and incubated for five minutes at 90°C. Eluate
576	was separated from the beads, separated on a 4-12% 1mm Bis-Tris NuPAGE protein gel, and
577	analyzed for enriched histone modifications compared to input samples with mass spectrometry
578	(MS).
579	In-gel histone proteins were derivatized twice with a mixture of propionic anhydride and
500	

580 100 mM ammonium bicarbonate (1:1) for 15 min under vigorous vortexing and then digested 581 with 12.5 ng/ μ L of trypsin at room temperature overnight. Resultant histone peptides were 582 extracted from the gel, re-propionylated twice, and then desalted using C18-based homemade 583 stage-tips before MS analysis. Desalted peptides were separated by reverse phase nanospray 584 liquid chromatography with the Thermo Scientific Easy-nLC 1000 system and an in-house 585 packed C₁₈ resin column (15cm in length and 3µm in particle size). Buffer A is water with 0.1% 586 formic acid. Buffer B is acetonitrile with 0.1% formic acid. Histone peptides were eluted by a 587 gradient from 2% to 30% of buffer B for 35 min, 30% to 98% of buffer B for 20 min followed

588	by a wash at 98% of buffer B for 15min with a flow rate of 200 nL/min. Mass spectrometry was
589	performed on a Thermo Scientific Orbitrap Velos Pro hybrid ion trap-Orbitrap mass
590	spectrometer. Each cycle includes one full MS scan (m/z 290 to 1400, resolution of 60,000,
591	AGC target value of 1×10^6), followed by seven data-dependent MS2 scans of the most intense
592	peptide ions using CID (normalized collision energy of 35%, isolation width of 3 m/z, AGC
593	target value of 1×10^4). In the section between 23 min and 45 min, MS2 scans targeting precursor
594	ions with m/z of 528.30, 570.84, 768.95, 761.94 and 754.93 (isolation width of 1 m/z) were
595	performed for the determination of acetylation sites on histone peptides with multiple lysines.
596	Dynamic exclusion of 25 s was used to prevent repeated analysis of the same components. Ions
597	with a charge state of one or more than four and a rejection list of common contaminant ions
598	were excluded from the analysis. Histone peptides were identified based on retention times and
599	tandem MS. Abundance of histone peptides were quantified by integrating the area under each
600	peak in the MS chromatogram using Thermo Scientific Xcalibur Qual Browser. The LC-
601	MS/MS data sets were also analyzed using in-house developed software as previously described
602	(49).

604 ACKNOWLEDGEMENTS

603

We thank the members of the Berger lab, especially Dr. Parisha Shah, for all their
support and advice. We thank Dr. Jérôme Govin for his guidance. We thank Dr. Saadi
Khochbin for his advice and sharing his BRDT ChIP-seq data. We thank Dr. Jan Van Deursen
for sharing his *Hrb*^{-/-} mice. We thank Dr. James Bradner for sharing JQ1-biotin. We thank
Andrea Stout of the Cell and Developmental microscopy core for her help with the

610	immur	nofluorescence imaging. We thank Joseph Grubb and Jonathan Schug of the University of	
611	Pennsylvania Functional Genomics Core for their help with ChIP sequencing.		
612	Support to JMB was from the T32 Genetics Training Grant at the University of		
613	Pennsy	vlvania (GM008216). Support to SLB was from NIH grants GM055360 and U54-	
614	HD06	8157. BAG acknowledges funding from NIH grant GM110174 and Innovator grant	
615	(DP2C	D007447) from the Office of the Director. RGM was supported by NIH grants	
616	R01HI	D048837 and U54HD068157.	
617			
618	DISC	LOSURES	
619	The au	thors declare that they have no competing financial interests. All experiments requiring	
620	the use of laboratory mice were executed in compliance with all relevant guidelines, regulations		
621	and regulatory agencies. Mouse experiments were conducted under the guidance and approval		
622	of the University of Pennsylvania institutional animal care and use committee.		
623			
624	REFE	RENCES	
625			
626	1.	Rajender S, Avery K, Agarwal A. 2011. Epigenetics, spermatogenesis and male	
627		infertility. Mutation Research/Reviews in Mutation Research 727:62-71.	
628	2.	Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. 2004. The role of histones in	
629		chromatin remodelling during mammalian spermiogenesis. European Journal of	
630		Biochemistry 271:3459-3469.	
631	3.	Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C,	
632		Schubeler D, Stadler MB, Peters AH. 2010. Repressive and active histone methylation	

MCB

633		mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679-
634		687.
635	4.	Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. 2009.
636		Distinctive chromatin in human sperm packages genes for embryo development. Nature
637		460: 473-478.
638	5.	Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, Saida
639		M, Steger K, Tedder P, Miller D. 2009. Endonuclease-sensitive regions of human
640		spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences.
641		Genome Research 19:1338-1349.
642	6.	Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG,
643		Rando OJ. 2014. High-resolution mapping of chromatin packaging in mouse embryonic
644		stem cells and sperm. Dev Cell 30: 11-22.
645	7.	Meyer-Ficca ML, Lonchar JD, Ihara M, Bader JJ, Meyer RG. 2013. Alteration of
646		poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing
647		pericentric heterochromatin condensation. Chromosoma 122:319-335.
648	8.	Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, Wolf E, Steger
649		K, Dansranjavin T, Schagdarsurengin U. 2014. Uniformity of nucleosome
650		preservation pattern in Mammalian sperm and its connection to repetitive DNA
651		elements. Dev Cell 30: 23-35.
652	9.	Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S.
653		2010. From meiosis to postmeiotic events: The secrets of histone disappearance. FEBS
654		Journal 277: 599-604.

655	10.	Kierszenbaum AL, Tres LL. 2004. The acrosome-acroplaxome-manchette complex
656		and the shaping of the spermatid head. Arch Histol Cytol 67:271-284.
657	11.	Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM. 2001.
658		Lack of acrosome formation in Hrb-deficient mice. Science 294:1531-1533.
659	12.	Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. 2012. SPACA1-
660		deficient male mice are infertile with abnormally shaped sperm heads reminiscent of
661		globozoospermia. Development 139:3583-3589.
662	13.	Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. 2007. Loss of zona pellucida
663		binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm
664		morphogenesis. Molecular and Cellular Biology 27:6794-6805.
665	14.	Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J. 2009. PICK1
666		deficiency causes male infertility in mice by disrupting acrosome formation. J Clin
667		Invest 119: 802-812.
668	15.	Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato
669		A, Toshimori K, Noda T. 2002. Lack of acrosome formation in mice lacking a Golgi
670		protein, GOPC. Proc Natl Acad Sci U S A 99:11211-11216.
671	16.	De Vries M, Ramos L, Housein Z, De Boer P. 2012. Chromatin remodelling initiation
672		during human spermiogenesis. Biology Open 1:446-457.
673	17.	Grimes SR, Jr., Henderson N. 1984. Hyperacetylation of histone H4 in rat testis
674		spermatids. Exp Cell Res 152:91-97.
675	18.	Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD. 1992. Highly
676		acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev
677		31: 170-181.

Accepted Manuscript Posted Online

678	19.	Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, Catena R,
679		Davidson I, Garin J, Khochbin S, Caron C. 2007. Pericentric heterochromatin
680		reprogramming by new histone variants during mouse spermiogenesis. The Journal of
681		Cell Biology 176: 283-294.
682	20.	Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. 2007. The first
683		bromodomain of Brdt, a testis-specific member of the BET sub-family of double-
684		bromodomain-containing proteins, is essential for male germ cell differentiation.
685		Development 134: 3507-3515.
686	21.	Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song
687		W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S,
688		Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng
689		Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB. 2013. Acetylation-mediated
690		proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell
691		153: 1012-1024.
692	22.	Goudarzi A, Shiota H, Rousseaux S, Khochbin S. 2014. Genome-Scale Acetylation-
693		Dependent Histone Eviction during Spermatogenesis. J Mol Biol.
694	23.	Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. 2003.
695		Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific
696		Bromodomain-Containing Protein. Molecular and Cellular Biology 23:5354-5365.
697	24.	Bryant JM, Berger SL. 2012. Low-hanging fruit: targeting Brdt in the testes. EMBO J
698		31: 3788-3789.
699	25.	Gaucher J, Boussouar F, Montellier E, Curtet S, Buchou T, Bertrand S, Hery P,
700		Jounier S, Depaux A, Vitte A-L, Guardiola P, Pernet K, Debernardi A, Lopez F,

701		Holota H, Imbert J, Wolgemuth DJ, Gérard M, Rousseaux S, Khochbin S. 2012.
702		Bromodomain-dependent stage-specific male genome programming by Brdt. The
703		EMBO Journal 31: 3809-3820.
704	26.	Matzuk Martin M, McKeown Michael R, Filippakopoulos P, Li Q, Ma L, Agno
705		Julio E, Lemieux Madeleine E, Picaud S, Yu Richard N, Qi J, Knapp S, Bradner
706		James E. 2012. Small-Molecule Inhibition of BRDT for Male Contraception. Cell
707		150: 673-684.
708	27.	Berkovits BD, Wolgemuth DJ. 2011. The first bromodomain of the testis-specific
709		double bromodomain protein Brdt is required for chromocenter organization that is
710		modulated by genetic background. Developmental Biology 360:358-368.
711	28.	Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ. 2009. Double
712		bromodomain-containing gene Brd2 is essential for embryonic development in mouse.
713		Developmental Dynamics 238:908-917.
714	29.	Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington
715		RSP. 2002. Growth and Early Postimplantation Defects in Mice Deficient for the
716		Bromodomain-Containing Protein Brd4 Molecular and Cellular Biology 22:3794-3802.
717	30.	Shang E, Salazar G, Crowley TE, Wang X, Lopez RA, Wang X, Wolgemuth DJ.
718		2004. Identification of unique, differentiation stage-specific patterns of expression of the
719		bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Gene
720		Expression Patterns 4:513-519.
721	31.	Voigt P, Reinberg D. 2011. BRD4 jump-starts transcription after mitotic silencing.
722		Genome Biology 12:133.

723 32. McBride AA, Jang MK. 2013. Current understanding of the role of the Brd4 protein in 724 the papillomavirus lifecycle. Viruses 5:1374-1394. 725 33. Bryant JM, Meyer-Ficca ML, Dang VM, Berger SL, Meyer RG. 2013. Separation of 726 spermatogenic cell types using STA-PUT velocity sedimentation. J Vis Exp. 727 34. Meistrich ML, Hess RA. 2013. Assessment of spermatogenesis through staging of 728 seminiferous tubules. Methods Mol Biol 927:299-307. 729 35. Schutz W, Alsheimer M, Ollinger R, Benavente R. 2005. Nuclear envelope 730 remodeling during mouse spermiogenesis: postmeiotic expression and redistribution of 731 germline lamin B3. Exp Cell Res 307:285-291. 732 36. Vester B, Smith A, Krohne G, Benavente R. 1993. Presence of a nuclear lamina in 733 pachytene spermatocytes of the rat. J Cell Sci 104 (Pt 2):557-563. 734 37. Ho HC. 2010. Redistribution of nuclear pores during formation of the redundant nuclear 735 envelope in mouse spermatids. J Anat 216:525-532. 736 38. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, 737 Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, 738 Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, 739 French CA, Wiest O, Kung AL, Knapp S, Bradner JE. 2010. Selective inhibition of 740 BET bromodomains. Nature 468:1067-1073. 741 39. Anders L, Guenther MG, Qi J, Fan ZP, Marineau JJ, Rahl PB, Loven J, Sigova 742 AA, Smith WB, Lee TI, Bradner JE, Young RA. 2014. Genome-wide localization of 743 small molecules. Nat Biotechnol 32:92-96.

Abou-Haila A, Tulsiani DR. 2000. Mammalian sperm acrosome: formation, contents,
and function. Arch Biochem Biophys 379:173-182.

	746	41.	Kierszenbaum AL, Tres LL, Rivkin E, Kang-Decker N, van Deursen JM. 2004. The
	747		acroplaxome is the docking site of Golgi-derived myosin Va/Rab27a/b- containing
•	748		proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod
	749		70: 1400-1410.
•	750	42.	Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms
	751		M, Sun ZW, van IWF, Grootegoed JA, Baarends WM. 2010. The ubiquitin-
	752		conjugating enzyme HR6B is required for maintenance of X chromosome silencing in
	753		mouse spermatocytes and spermatids. BMC Genomics 11:367.
	754	43.	Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee
	755		JT. 2006. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660-
	756		667.
	757	44.	Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI,
	758		Young RA. 2013. Selective inhibition of tumor oncogenes by disruption of super-
	759		enhancers. Cell 153:320-334.
	760	45.	Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. 2009. Brd4 Marks Select
	761		Genes on Mitotic Chromatin and Directs Postmitotic Transcription. Molecular Biology
	762		of the Cell 20: 4899-4909.
	763	46.	Mochizuki K, Nishiyama A, Jang MK, Dey A, Ghosh A, Tamura T, Natsume H,
	764		Yao H, Ozato K. 2008. The Bromodomain Protein Brd4 Stimulates G1 Gene
	765		Transcription and Promotes Progression to S Phase. Journal of Biological Chemistry
	766		283: 9040-9048.

To Promote G1 Gene Expression and Cell Cycle Progression. Molecular and Cellular Biology 28:967-976. 48. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Oi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR. 2011. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524-528. 49. Leroy G, Chepelev I, Dimaggio PA, Blanco MA, Zee BM, Zhao K, Garcia BA. 2012. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biology 13:R68. 50. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K. 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates 779 RNA polymerase II-dependent transcription. Molecular Cell 19:523-534. 780 51. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q. 2005. Recruitment of 781 P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. 782 Molecular Cell 19:535-545. 783 52. Liu Y, Wang X, Zhang J, Huang H, Ding B, Wu J, Shi Y. 2008. Structural basis and 784 binding properties of the second bromodomain of Brd4 with acetylated histone tails. 785 Biochemistry 47:6403-6417. 786 Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. 2003. The double bromodomain 53. 787 protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl 788 Acad Sci U S A 100:8758-8763.

Yang Z, He N, Zhou Q. 2007. Brd4 Recruits P-TEFb to Chromosomes at Late Mitosis

7	789	54.	Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, van der
7	790		Vlag J, Stadler MB, Peters AH. 2013. Molecular determinants of nucleosome retention
7	791		at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868-875.
7	/92	55.	You J, Croyle JL, Nishimura A, Ozato K, Howley PM. 2004. Interaction of the
7	793		bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic
7	794		chromosomes. Cell 117:349-360.
7	795	56.	Baxter MK, McPhillips MG, Ozato K, McBride AA. 2005. The mitotic chromosome
7	96		binding activity of the papillomavirus E2 protein correlates with interaction with the
7	97		cellular chromosomal protein, Brd4. Journal of Virology 79:4806-4818.
7	798	57.	Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, Bryson BD,
7	799		Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC,
8	300		Maffa A, Del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen
8	801		CC, White FM, Bradner JE, Yaffe MB. 2013. The bromodomain protein Brd4
8	802		insulates chromatin from DNA damage signalling. Nature 498:246-250.
8	303	58.	Wang R, Li Q, Helfer CM, Jiao J, You J. 2012. Bromodomain Protein Brd4
8	304		Associated with Acetylated Chromatin Is Important for Maintenance of Higher-order
8	805		Chromatin Structure. Journal of Biological Chemistry 287:10738-10752.
8	806	59.	Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M,
8	807		Sassone-Corsi P, Davidson I. 2005. Polar nuclear localization of H1T2, a histone H1
8	808		variant, required for spermatid elongation and DNA condensation during
8	309		spermiogenesis. Proc Natl Acad Sci U S A 102:2808-2813.
8	310	60.	Lamonica JM, Deng W, Kadauke S, Campbell AE, Gamsjaeger R, Wang H, Cheng
8	811		Y, Billin AN, Hardison RC, Mackay JP, Blobel GA. 2011. Bromodomain protein

812 Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid 813 target genes. Proc Natl Acad Sci U S A 108:E159-168. 814 61. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, 815 Cruickshanks HA, Rai TS, McBryan T, Gregory BD, Adams PD, Berger SL. 2013. 816 Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression 817 and the chromatin landscape. Genes & Development 27:1787-1799. 818 62. Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis 819 of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57. 820

821 TABLES

822 Table 1: ChIP-seq data alignment information

823 Total aligned reads compared to uniquely-mapped reads for each ChIP-seq sample

ChIP	Total Reads	Aligned Reads	Unique Reads	% Aligned	% Unique	% Genome Coverage
Input	54990464	35623672	32940684	64.78	92.47	90.64
H3	71828757	37798741	30151960	52.62	79.77	82.96
H3K9me3	84339867	39799707	27591619	47.19	69.33	75.92
H3K9ac	67856707	48595679	34042406	71.62	70.05	93.67
H4K5ac	66596815	46239262	34065138	69.43	73.67	93.73
H4K8ac	79795471	48838021	29541448	61.20	60.49	81.28
H4K12ac	71252246	46341541	33485169	65.04	72.26	92.14
H4K16ac	77287145	49326598	28973938	63.82	58.74	79.72
H4ac	70049830	48662721	32799658	69.47	67.40	90.25
BRD4	84730635	47671985	24864246	56.26	52.16	68.41

824

825 Table 2: Calculation of significant differences for Figures 6B and C

Figure 6B

Comparison of BRD4-, BRDT-, or co-bound gene expression Test W Statistic p-value

BRD4 vs. All Genes	W = 2683292	p < 2.2e-16
BRDT vs. All Genes	W = 1729944	p < 2.2e-16

Molecular and Cellular Biology

Molecular and Cellular Bioloay

Sos
ot F
scri
SUU(
Mo
eo_
ept
∆co

0	
٩	
<u> </u>	~
and	
	0
	10
0	В
С	
U.	
Ð	
0	
<	
<	

KSTGGKAPR) or H4 peptide (amino acids 4 to 17, GKGGKGLGKGGAKR). Shown are
average ratios of the percentage of peptide of H3 or H4 in BRD4-immunoprecipitated chromatin

832 to total chromatin. Standard deviation is calculated for two and four biological replicates for H3

W = 378363

W = 181821

W = 127587

Histone PTM

H3K9ac

H4K5ac

H4K8ac

H4K12ac

H4K16ac

H4Kac

H3K9ac

H3K9ac

H4K5ac

H4K5ac

H4K8ac

H4K8ac

H4K12ac

H4K12ac

H4K16ac

H4K16ac

H4Kac

H4Kac

Table 3: Mass spectrometry analysis of BRD4-immunoprecipitated histones from round

Quantification of the degree of acetylation or methylation of histone H3 (amino acids 9 to 17,

Comparison of BRD4-, BRDT-, or co-bound gene promoter acetylation level

p < 2.2e-16

p = 2.6e-08

p = 6.8e-11

W Statistic

W = 1403278

W = 1484792

W = 1466692

W = 1468998

W = 1444708

W = 1479768

W = 276948.5

W = 158058

W = 273017.5

W = 162835.5

W = 277942.5

W = 162476.5

W = 272689

W = 161513.5

W = 271330.5

W = 158641.5

W = 277562

W = 162543

p-value

p < 2.2e-16

p = 7.411e-16

p < 2.2e-16

p = 2.435e-14p < 2.2e-16

p = 2.972e-16

p < 2.2e-16

p = 3.232e-14

p < 2.2e-16

p = 1.027e-13

p < 2.2e-16

p = 4.223e-16

p < 2.2e-16

833 and H4, respectively.

spermatids

Co-bound vs. All Genes

Co-bound vs. BRD4

Co-bound vs. BRDT

Figure 6C

BRD4 vs. BRDT

Co-bound vs. BRD4

Co-bound vs. BRDT

826

827

828

829

830

831

Test

Peptide	AVG IP/Total	St Dev (±)
H3 9-17		
Unmodified	1.02	0.18

	H4 4-17
	Unmodified
	H4Kac1
	H4Kac2
	H4Kac3
	H4Kac4
	Unmodified
	H4K5ac
	H4K8ac
	H4K12ac
	H4K16ac
	H4K5,8ac
	H4K5,12ac
	H4K5,16ac
	H4K8,12ac
	H4K8,16ac
	H4K12,16ac
	H4K5,8,12ac
	H4K5,8,16ac
	H4K5,12,16ac
	H4K8,12,16ac
024	H4K5,8,12,16a
834	
835	Table 4: Mass s
836	spermatogenesi
837	Quantification of
838	4 to 17, GKGGK

H3K9me1

H3K9me2	1.26	0.73
H3K9me3	4.24	1.51
H3K9ac	1.11	1.58
H3K14ac	1.09	0.08
H3K9me1K14ac	0.09	0.13
H3K9me2K14ac	1.35	1.09
H3K9me3K14ac	3.04	2.97
H3K9,14ac	0.00	0.00
H4 4-17		
Unmodified	1.14	0.20
H4Kac1	0.61	0.12
H4Kac2	0.98	0.08
H4Kac3	3.72	1.04
H4Kac4	10.07	5.17
Unmodified	1.17	0.21
H4K5ac	3.31	2.85
H4K8ac	2.67	4.89
H4K12ac	0.48	0.51
H4K16ac	0.87	0.42
H4K5,8ac	2.54	0.96
H4K5,12ac	1.36	0.87
H4K5,16ac	0.99	0.33
H4K8,12ac	0.83	0.35
H4K8,16ac	0.85	0.24
H4K12,16ac	0.80	0.13
H4K5,8,12ac	3.73	2.69
H4K5,8,16ac	4.18	1.51
H4K5,12,16ac	3.30	2.68
H4K8,12,16ac	2.82	1.54
H4K5,8,12,16ac	10.93	6.10

0.65

0.28

spectrometry analysis of BRD4-immunoprecipitated H4 during

is

- of the degree of acetylation (% total peptide) of histone H4 peptide (amino acids
- KGLGKGGAKR) in total and BRD4-immunoprecipitated chromatin from

839 spermatocytes (Sc), round spermatids (RSp) and elongating/condensing spermatids (E/CSp).

840 Standard deviation is calculated for two biological replicates.

	Avg Total	St Dev Total	Avg BRD4 IP	St Dev BRD4 IP
Sc				
Unmodified	48.75%	0.89%	53.01%	18.06%
lac	39.41%	1.37%	27.42%	2.80%
2ac	10.45%	2.52%	9.88%	8.31%
3ac	0.94%	0.15%	3.60%	2.42%
4ac	0.45%	0.10%	6.09%	4.52%
RSp				
Unmodified	30.39%	0.46%	37.40%	4.57%
lac	57.27%	1.28%	40.78%	2.51%
2ac	8.67%	1.13%	7.70%	0.49%
3ac	2.26%	0.01%	4.27%	1.52%
4ac	1.42%	0.32%	9.85%	3.08%
E/CSp				
Unmodified	35.91%	0.72%	42.74%	7.08%
lac	34.90%	3.29%	35.69%	3.77%
2ac	12.51%	0.63%	11.43%	1.50%
3ac	8.55%	0.76%	5.78%	1.22%
4ac	8.12%	1.18%	4.35%	0.59%

841

842

843 FIGURE LEGENDS

844 Figure 1: BRD4 is expressed in meiotic cells and spermatids, but not in mature sperm

- 845 (A) Schematic of the progression of spermatogenesis beginning with meiotic cells
- 846 (spermatocytes) and progressing through spermiogenesis from round to elongating to
- 847 condensing spermatids. Changes in cell (tan) and nucleus (blue) size and shape are
- 848 shown for reference in figures to follow.
- 849 (B) Western blot analysis of whole cell extracts from spermatocytes (Sc), round spermatids
 850 (RSp), elongating/condensing spermatids (E/CSp), a mixture of round, elongating, and
 851 condensing spermatids (R/E/CSp) obtained with STA-PUT velocity sedimentation, and

Cellular	
ar and	Biology
olecul	

 \leq

852	mature sperm (Sperm). Asterisks mark the full length BRD4 isoform and the arrow
853	indicates a novel shorter BRD4 peptide in spermatids. Peptide competition of BRD4
854	antibody shows specificity of the BRD4 antibody.
855	
856	Figure 2: BRD4 forms a ring around the nucleus of spermatids as histones become hyper-
857	acetylated
858	(A) Indirect immunofluorescence of cryosectioned mouse testes tissue shows that BRD4
859	(green) forms a ring around the nucleus (DAPI-stained DNA shown in blue) of early
860	(top panel) to late (bottom panel) elongating spermatids. The ring is absent in all non-
861	spermatid cell types such as spermatocytes (Sc).
862	(B) Indirect immunofluorescence of cryosectioned mouse testes tissue shows that the BRD4
863	ring (green) forms at the onset of histone H4 hyper-acetylation (red) in the nucleus
864	(DAPI in blue) of early (top panel) to late (bottom panel) elongating spermatids.
865	Stage of spermatogenesis shown in upper left hand corner of each panel. Separation of
866	spermatocytes (Sc) and spermatids (Sp) within the seminiferous tubule is indicated with a
867	grey dotted line. Inset shows 3x magnification of the spermatids outlined with a dotted
868	square.
869	(C) and (D) Indirect immunofluorescence of a mixed population of spermatogenic cells
870	shows that BRD2 and BRDT (red) are diffusely localized in the nuclei (DAPI in blue) of
871	spermatocytes (Sc) and round spermatids (RSp), but not condensing spermatids (CSp).
872	Scale bar represents 10µm.
873	
874	Figure 3: BRD4 forms a ring within the nuclear envelope at the base of the acrosome

875

876

877

878	red), and DAPI-stained DNA (blue) in a round spermatid.
879	(C) Indirect immunofluorescence of BRD4 (green), acrosome (detected with PNA in red), and
880	DAPI-stained DNA (blue) in a round spermatid (top), early elongating spermatid (middle),
881	and condensing spermatid (bottom).
882	(D) Indirect immunofluorescence of fluorophore-conjugated streptavidin (red) with (top) or
883	without (bottom) JQ1-biotin and DAPI-stained DNA (blue) in a mixed population of
884	spermatogenic cells.
885	(E) Indirect immunofluorescence of BRD4 (green), JQ1-biotin (red), and DAPI-stained DNA
886	(blue) in a late round (top panel) and elongating (bottom panel) spermatid.
887	(F) Indirect immunofluorescence of the acrosome (detected with PNA in green), JQ1-biotin
888	(red), and DAPI-stained DNA (blue) in a condensing spermatid.
889	Scale bar represents 5µm (A-C,E,F) and 10µm (D).
890	
891	Figure 4: BRD4 does not form a ring in <i>Hrb^{-/-}</i> acrosomal mutant mice
892	(A) Indirect immunofluorescence of the acrosome (detected with PNA in green) and DNA
893	(DAPI in blue) in testes tissue sections from wild-type and $Hrb^{-/-}$ mice. The stage of
894	spermatogenesis is shown in the upper left hand corner of each panel.
895	(B) Indirect immunofluorescence of BRD4 (green) and DNA (DAPI in blue) in elongating
896	spermatids of cryosectioned testes tissue from $Hrb^{+/-}$ (left) and $Hrb^{-/-}$ (right) mice.

(B) Indirect immunofluorescence of Lamin B1 (green), the acrosome (detected with PNA in

(blue) in a round spermatid. Asterisk indicates location of the acrosome.

897

898

represents 10µm.

Molecular and Cellular

899 900 Figure 5: BRD4 is enriched at the promoters of active genes in round spermatids 901 (A) ChIP sequencing of BRD4 and various histone PTMs reveals that BRD4 and histone H3 902 and H4 acetylation are associated with gene-rich regions of the genome while H3K9me3 is 903 enriched in intergenic, gene poor regions. UCSC-defined genes are shown at the bottom in 904 dark blue. Genomic location is indicated at the top. The y axis is ChIP enrichment 905 (normalized to input). The x axis is DNA sequence. 906 (B) Percentage of defined ChIP-seq peaks of BRD4, BRDT, and various histone PTMs in 907 promoter (1kb upstream of the TSS), gene (intron versus exon), or intergenic regions in 908 round spermatids. 909 (C) ChIP sequencing of BRD4 and various histone PTMs at housekeeping (Actb) and 910 spermatogenesis-specific (*Tnp1*) transcriptionally active genes and an inactive gene, *Myc*. 911 BRD4 is not present at all gene promoters that are enriched for H3/H4 acetylation (*Vps45*). 912 UCSC-defined genes are shown at the bottom in dark blue. The y axis is ChIP enrichment 913 (normalized to input). The x axis is DNA sequence. 914 915 Figure 6: BRD4 and BRDT bind to different subsets of transcriptionally active genes in 916 round spermatids 917 (A) Heat map representation of ChIP-sequencing enrichment at promoters of all genes (green) 918 compared to the level of transcription of these genes (red) in round spermatids. Brightness 919 indicates higher levels of enrichment or transcription.

Inset shows 3x magnification of the spermatids outlined with a dotted square. Scale bar

Molecular and Cellular

920

921

922

otec	923 (C) Box and whisker plot of enrichment levels of different histone PTMs at the gene promoters
Accepted	924	(1kb upstream of the TSS) bound by BRD4, BRDT, or both (presence or absence of
Ž	925	binding indicated with "+" or "-", respectively, at bottom).
	926 (1	D) Pie chart representations of GO Terms of genes enriched for BRD4 (left), BRDT (middle),
	927	or both (right) in round spermatids.
	928 (1	E) ChIP sequencing of BRD4, BRDT, and various histone PTMs at promoters of genes
	929	present in the top-most represented GO Term category from the corresponding pie chart in
	930	(D) above. UCSC-defined genes are shown at the bottom in blue. The y axis is ChIP
≽	931	enrichment (normalized to input). The x axis is DNA sequence.
Biology	932 (1	F) Heat map representation of BRD4 and BRDT enrichment around the TSS (± 2.5 kb) of
	933	spermatogenesis-specific genes in round spermatids. Brightness indicates higher levels of
	934	enrichment.
	935	
	936 F	igure 7: BRD4 association with poly-acetylated histone H4 diminishes in late spermatids
	937 a	s acetylated histones are removed from the condensing nucleus
	938 (4	A) Mass spectrometry analysis of BRD4-immunoprecipitated histones from round spermatids.
	939	Heatmap representation of enrichment of acetylation or methylation of histone H3 (amino

and all genes, as a reference.

- 940 acids 9 to 17, KSTGGKAPR) or H4 peptide (amino acids 4 to 17,
- 941 GKGGKGLGKGGAKR) in BRD4-immunoprecipitated chromatin normalized to total

(B) Box and whisker plot of transcription levels of genes that are bound by BRD4, BRDT, or

both. Overall transcription levels are shown for spermatogenesis-specific genes ("Sperm.")

44

MCB

942

943		3.
944	(B)	Comparison of degree of H4 peptide acetylation (amino acids 4 to 17,
945		GKGGKGLGKGGAKR) in total and BRD4-immunoprecipitated (IP) chromatin over the
946		course of spermatogenesis. Black and grey bars indicate changes in H4 acetylation from
947		spermatocytes (Sc) to round spermatids (RSp) and from round spermatids to
948		elongating/condensing spermatids (ECSp), respectively, via log-transformed ratio of
949		percentage acetylated H4 peptide. Raw values used to generate the graphs are found in
950		Table 4.
951	(C)	Indirect immunofluorescence of BRD4 (green), H4K5,8,12,16ac (red), and DAPI-stained
952		DNA (blue) in a condensing spermatid. Scale bar represents 5µm.
953	(D)	Model showing the locations of different cellular features associated with the spermatid
954		nucleus. BRD4 (green) forms a ring structure between the nucleus (blue) and the
955		acroplaxome (red) in a key region of the nuclear membrane where the Lamin B1- and
956		nuclear pore-enriched posterior portion meets the acrosome-associated, nuclear pore-
957		depleted anterior portion.

chromatin (log transformed). Raw values used to generate the heatmaps are found in Table

MCB

Bryant_Fig2

BRDT

DAPI

DAPI

Merge

CSp

RSp

-Sc

Molecular and Cellular Biology

BRD4/DAPI

Α

Bryant_Fig6

BRDT

2.5kb

F

A H3 H3K9me1 H3K9me2 H3K9me3 H3K9me3 H3K9me3 H3K9me3 H3K14ac H3K14ac H3K9me3K14ac H3K9me3K14ac H3K9me3K14ac H3K9me3K14ac H3K9me3K14ac H3K9,14ac H4 H4ac1 H4ac2 H4ac3 H4ac4

H4 H4K5ac H4K12ac H4K12ac H4K12ac H4K512ac H4K5,12ac H4K5,12ac H4K5,15ac H4K5,15ac H4K5,15ac H4K5,15ac H4K5,8,15ac H4K5,8,15ac H4K5,8,15ac H4K5,8,12,16ac H4K5,8,12,16ac

Bryant_Fig7

0

