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Solar radiation, slope, and aspect were calculated using ArcGIS Spatial Analyst tools.

The equations used to calculate solar radiation are based on a Hemispherical Viewshed
Algorithm. These values were overlaid with estimates of direct plus diffuse radiation to get
monthly total radiation values for each pixel in a surface raster. For the SolRad variable, these
values were then converted to an annual daily average solar radiation in Wh m™. Radiation
estimates use solar zenith angles and thus, solar radiation values will vary across sites due to
differences in latitude. The equations also use azimuth angles of the intercepting DEM surface
to calculate angles of incidence, so values can be interpreted as above-canopy solar radiation.
Aspect (degrees) was transformed into a biologically meaningful variable based on a symmetric
radiation wetness index (Roberts and Cooper, 1989).

Cos(aspect —30)/180 ) + 1)/2 (1)

2.2.4.2 Biophysical Variables

Potential evapotranspiration (mm d) was calculated using the empirical equation of
Jensen and Haise (1963) (see Appendix B), which is specifically calibrated for the arid western
United States.
pET = R / 2450 * (0.025T + 0.08) (2)
where, R is mean daily solar radiation in units of k) m? d™?, and T is mean daily air temperature
(°C). Potential evapotranspiration values from this equation are in mm d™. For sake of
consistency with other variables, pET is shown in cm d™.

Site water balance is a running sum of the difference between potential
evapotranspiration and precipitation, while not allowing any excess water to exceed the site-
specific soil water capacity. Soil water capacity for each cell is derived from the Soil Survey

Geographic Database (http://soildatamart.nrcs.usda.gov) (see Appendix C). This “bucket”
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method for calculating site water balance is very similar to Zimmermann and Roberts (2007),

which was based on the concept developed by Grier and Running (1977). This method differs by
running the water balance from January-September (the end of the growing season) without
concern for when “recharge” (e.g. precipitation exceeds evapotranspiration) occurs. It was
determined that all sites reached the maximum soil water capacity during the winter months
starting the growing season with as much water as the soil allows. Assessing the soil water
balance in September, essentially gives an index of site dryness directly after the period during

which plants need moisture the most.

2.2.5 Analysis of GIS-derived Variables

Due to the exploratory nature of the study, as opposed to strict hypothesis testing,
canonical correlation procedure of the discriminant problem was used to look for group
patterns and determine importance of variables. Canonical correlation is a general form of
multivariate discriminant analysis (Hintz, 2009). Other multivariate statistical methods were
eschewed in place of discriminant analysis (DA) for two reasons. First, the dependent variable
was collected as a categorical group variable representing dominant tree species cover.
Although very similar to logistic regression, in the regard that both require categorical groups as
the response variable, DA differs primarily by aiming to uncover the correlative structure
between the groups, whereas logistic regression emphasizes prediction (Tabachnick and Fidell,
1996). Furthermore, visualizing the correlative structure between groups is enhanced by
ordination of the data, which is better suited for the exploratory goals of the study. Secondly,
unlike most community data, our data exhibits linearity among pairs of environmental variables
within Forest Type groups. It also satisfies other test assumptions, such as homogeneous

within-group variances and multivariate normality, even though these assumptions are not
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critical unless hypothesis testing or prediction is desired (McCune and Grace, 2002). This also

justified the use of DA in lieu of non-parametric multivariate ordination approaches, such as
non-metric multi-dimensional scaling techniques.

Variables were first screened for outliers by calculating a Euclidean distance matrix from
scaled environmental variables as recommended by McCune and Grace (2002). The average
distances of a particular sample unit to all other sample units were then plotted in a frequency
histogram and all sample units that fell above three standard deviations were vetted individually
for errors and removed if found. Collinearity issues were addressed by calculating Pearson’s
correlation coefficient for all pairwise combinations of variables. Collinearity, or strong linear
dependencies amongst variables, can cause substantial differences in regression results and any
interpretation of the parameter estimates may be spurious (Zar, 1999). We used minimum
Wilk’s Lambda (multivariate equivalent to R%) as the criteria to select the optimum combination
of variables through a selection algorithm developed by Claude McHenry (1978) run in NCSS
(Hintz, 2009). McHenry’s algorithm has been shown to yield very similar results to an “all
possible combinations” selection procedure (Hintz, 2009). The squared canonical correlation
was used to assess how well the optimum combination of variables related to overall forest
distributions. The square of the canonical correlation for each variate, or component as in a
principle components analysis, in the reduced dataset explains the amount of variance
accounted for in the original dataset, and can also be seen as an equivalent to R? in multiple
regression (Hintz, 2009). Both Wilk’s Lambda and the prediction accuracy compared to a
random set of variables was used to determine the ability of the variables to distinguish
between Forest Types of aspen, conifer, and mixed. Finally, a one-way Analysis of Variance was
performed followed by Tukey-Kramer multiple comparison procedures, to test mean solar

radiation differences amongst groups, while considering unequal group sizes. This final
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procedure was performed using only solar radiation, as it proved to be the most robust

variable, in order to provide support for general site-scale topographic differences between

Forest Types.

2.3 Results

2.3.1 Forest Sampling Methods

Photointerpretation of NAIP imagery had a higher overall accuracy of 94.11% compared
to linear spectral unmixing methods with only 63.52% (Tables 2.2, 2.3). This estimate fails to
account for unbalanced group sample numbers, in which case a group with a high number of
samples that is accurately classified would drive up the overall accuracy. To avoid this, it is
important to look at the accuracy of individual groups. The low overall estimate of accuracy for
linear spectral unmixing (LSU) is primarily due to the confusion for “Other” plots as “Aspen”
plots. This indicates that the spectral signature of aspen is similar to the spectra of grasses,
shrubs, and other broadleafed trees. LSU was also fairly inaccurate in determining percent of
aspen and conifer within a pixel. The inaccuracy involved with the photointerpretation method
also primarily stemmed from classifying “Other” as “Aspen.” However, the rate was much

lower, as shown by a producer’s accuracy of “Other” equal to 88.89%.

2.3.2 Assessment of GIS-derived Variables

The GIS-derived variables selected for the optimum model do not explain very well the
differences in distributions between the Forest Types. Four variables were selected according to
their statistically assessed influence on Wilk’s Lambda, including: total annual precipitation (TP),
daily average solar radiation (SolRad), daily average air temperature (DAAT), and site water
balance (SWB) (Table 2.4). We can see that only SolRad and SWB are significantly related to

forest type groups when considered independently, however, such relationships are poorly ‘fit’
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by the model as indicated by high values of Wilk’s Lambda. The inclusion of TP and DAAT,

which are not significantly related to Forest Types on their own, indicates potential interactions
with other variables. Also in the table are R*values obtained if the particular variable were
regressed on all other variables (R-squared other X’s). The high R?values for SolRad and SWB
primarily reflect the correlation between the two, an expected result, since as solar radiation
increases evapotranspiration demands also increase, causing the site water balance to drop.
Collinearity issues with the model were avoided by removing those variables that had direct
linear dependence on other variables. The remaining variables chosen for the model do not
indicate a high degree of correlation that may affect the model results (Hintz, 2009).

Using canonical correlation as a general form of discriminant analysis we get two linear
equations representing the optimal combinations of variables so that the first discriminant
function (or canonical variate) provides the most overall discrimination between the groups,
with successively less discriminatory power in the second canonical variate (Table 2.5). An
estimate of how well the canonical variates explain the variance in the original dataset is
represented by the square of the canonical correlation (Canon Corr?). The Canon Corr? for the
first variate with the highest discriminatory power is 27% while the second variate only
partitions out 1% of the original variance in the dataset. Interpretation of variance explained is
dependent on a stratified sampling of only forest areas and the use of canonical correlation to
fit a multivariate response to multiple independent variables. Thus, we can say that within
forested areas the linear combination of variables represented by the first canonical variate can
only explain 27% of the variance in the distribution of Forest Types. It should be noted that by
only including forested areas we increase our model fit. Much like the loading matrix in a
principal components analysis we can look at the correlation between each variable and the

canonical variates in order to assess the importance of each variable and the direction of the
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relationship (Table 2.6). We can see that the first variate is primarily represented by SolRad,

SWB, and TP. By plotting the reduced space of the canonical correlation variates we can visually
interpret these relationships (Fig. 2.4). There is a high degree of overlap in the distributions of
Forest Types. However, there does seem to be separation primarily along the first variate
representing a moisture, temperature, and light gradient. Though this analysis depicts general
distribution patterns of aspen and conifer, the poor “fit” of the GIS-derived variables combined
with a high degree of overlap between the groups makes prediction from such a model difficult.
In comparing the prediction accuracy of the optimum model with that of a null model of random
variables, the prediction error is only reduced by 42%, whereas a successful model would be
expected to reduce prediction error upwards of 90% (Hintz, 2009).

Analysis of Variance with Tukey-Kramer multiple comparison procedures indicate that
despite proportionately smaller sample sizes in the “Conifer” and “Mixed” groups, mean SolRad
values for “Aspen” are significantly different from both “Conifer” and “Mixed” while “Conifer”

and “Mixed” are not significantly different (Fy, 191-7.905, p=0.0004) (Figure 2.5).

2.4 Discussion

2.4.1 Forest Sampling Methods

Photointerpretation of NAIP imagery was much more accurate in estimating forest
canopy cover than linear spectral unmixing of Landsat imagery as shown by both overall
accuracy and Kappa analysis (Tables 2.2, 2.3). Interestingly, in both methods most of the error
was due to ground-reference plots classified as “Other” being interpreted as “Aspen.” However,
the rate was much higher for linear spectral unmixing (LSU). It is not surprising that the error
rate for LSU in this category would be higher. LSU relies solely on spectral characteristics to

distinguish canopy cover between species. Reflected radiance from the leaves of many
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broadleafed species can be similar (Elvidge, 1990). In addition, the extreme variability in

canopy height, understory species and their biomass, and leaf area index for aspen stands
causes a wide range of reflectance values that may be expected to overlap with other cover
types, such as Canyon maple (Acer grandidentatum), chokecherry (Prunus virginiana), and
Gambel oak (Quercus gambelii). Principle components analysis uncovers endmembers
according to their spectral characteristics. Due to similar spectral characteristics this process did
not separate out the above mentioned species as distinct endmembers, resulting in the
inclusion of these species into the classification of aspen. Strand et al. (2009a) report success in
using LSU methods on Landsat TM to predict aspen cover, showing a significant relationship
with ground-reference cover data, (p=0.05, n=83, r’=0.52). However, only pixels pre-classified
as aspen and aspen/conifer mix were used in the analysis. The pre-classification stage of
Strand’s study yielded an overall accuracy of 72.3%, citing the error in part due to the confusion
of aspen with the mountain shrub class. Frescino et al. (2007) found that when attempting to
increase detail of classification from forest level to species-class level accuracies dropped from
94% to 63%. Considering these studies our overall accuracy and high error rate within the aspen
class using the LSU method reflects the difficulty in classifying forests at the species level. It may
be possible to further refine the aspen endmember spectra in order to breakout the unwanted
species, though ancillary data or additional hyperspectral data may be needed. At our current
accuracy of Forest Types sampled using LSU methods, and considering the already similar
distributions of aspen and conifer, any interpretation of a distribution analysis using this data
may be spurious.

As mentioned, most of the error involved in photointerpretation of NAIP imagery was
also due to ground-reference plots classified as “Other” being interpreted as “Aspen.” Three

plots in this category were incorrectly interpreted to be “Aspen” when in fact the vegetation
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was Rocky Mountain maple. While LSU methods misclassified many spectrally similar cover

types as “Aspen,” photointerpretation methods were able to use a combination of techniques to
increase accuracy, confusing only maple for aspen in certain settings where differences could
not be discerned. Photointerpretation of pseudo-color composite images easily distinguish
between conifer and broadleaf species on the basis of tone, which is also due to the same
spectral differences LSU and other classification algorithms use. However, the photo interpreter
also simultaneously considers ancillary information to distinguish between broadleaf species,
such as: canopy height and shape (by analyzing shadows), texture of canopy, and spatial
patterns of stands. Such techniques require ecological knowledge of the species and specific
knowledge of the frequency and growth forms of species occurring at the study site. Algorithms
have been devised to incorporate such ancillary information into classification. Lidar can be
used to estimate canopy heights and increase accuracies 16-20% (Bork and Su, 2007) . Texture
can be calculated based on variance of tone over a given area (Haralick et al., 1973) and object
oriented methods of classification can specify size and shape of particular cover classes.
Knowledge and rule based methods can also be incorporated to allow the analyst to use their
site-specific knowledge of cover classes (Dobson et al., 1996). However, these methods require
expert image analysts and have potentially high associated costs. On the other hand, benefits
are derived from automated workflows which increase efficiency when applied across large
extents. This is an important consideration if the project includes a large number of sample
plots from which to sample forest canopy composition, or if the goal is to produce a continuous
map of actual aspen/conifer distributions.

Our results suggest using photointerpretation of NAIP imagery to sample forest canopy
cover is a viable option for either moderate extent projects or projects lacking technical

expertise and/or funding. This recommendation is due to the accuracy of NAIP
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photointerpretation methods being much higher, at 94% overall accuracy, than linear spectral

unmixing methods based solely on multispectral Landsat data. In addition, Kappa analysis of
photointerpretation methods also indicate very high agreement with ground-reference data
(Jensen, 2004), a value that seems consistently higher than the multispectral classification
methods reviewed for this study (Walsh, 1980; Frescino et al., 2007; Lowry et al., 2007; Strand
et al., 2009a). However, while photointerpretation of NAIP imagery performed better than LSU
methods to sample plots of aspen/conifer compositions, sampling a large number of plots or
landcover mapping projects requiring aspen/conifer distribution maps continuously across
landscape scales are not practical using NAIP photointerpretation methods. However, it is
feasible to use NAIP sampling methods as ground-reference data to produce these large-extent

continuous distribution maps with the use of LSU or other multispectral classification methods.

2.4.2 GIS-derived Variables

The GIS-derived variables do not show a strong relationship to forest distributions. The
square of the canonical correlation (equivalent to R” in multiple regression) indicates only 27%
of the variance in the original dataset can be accounted for by the variables selected for the
optimum model (Table 2.5). This low percent of variance explained, however, is also
characteristic of other tree species distribution models . McKenzie et al. (2003) used similar
variables to individually model 14 conifer species using a generalized linear model approach.
The percent deviance explained (a logistic model R?) ranged from 10.7%-51.4%. Although we
did not model aspen and conifer separately, due to the high degree of overlap in their habitat
we would expect to see an estimate similar to 27% for each group.

The canonical correlation solution to discriminating between Forest Type groups shows

a high degree of overlap in environmental space (Fig. 2.4). This indicates that aspen and conifer
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share very similar habitat requirements. The high degree of overlap in environmental space is

also shown by the models inability to accurately predict Forest Types, hence the prediction error
is only reduced 42% compared to a null model with random variables. However, with that said,
there is separation in habitat between aspen and conifer-present plots primarily along the
gradient (1st canonical variate) represented by topographic position (SolRad) and soil moisture
(SWB). Unfortunately, ecological interpretation of these habitat patterns depicted by the
discriminant analysis is difficult considering the limitations imposed by the spatial uncertainties
of the site water balance variable.

Habitat patterns, indicating areas of non-overlap between aspen and conifer-present
plots, may be exaggerated due to the potential bias of the site water balance variable (SWB).
Soil water availability is difficult to quantify using indirect means (e.g. within GIS), and may
contain a high degree of uncertainty. The greatest source of error in our method stems from
the soil maps used to derive available water capacity (awc) (see Appendix C). The soil maps are
course resolution and often rely on vegetation to determine soil physical properties in remote
regions, whereas agricultural areas rely primarily on actual soil samples to determine soil
properties (U.S. Department of Agriculture, 2011). While SWB proved to be an important
variable in both predicting forest distribution and discriminating between Forest Type groups, its
potential bias makes us hesitant to interpret its influence.

On the other hand, solar radiation (SolRad) is robust, is strongly related to forest
distributions, and performs well on its own in distinguishing between aspen and conifer habitat.
SolRad is essentially a variable integrating both slope and aspect, representing topographic
position. With a resolution of 30 m?, it is relatively sensitive to microclimatic conditions
determined by subtle changes in topography. Topographic variables have been shown to be

effective local-scale surrogates for resource gradients that directly affect physiological functions
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and therefore plant performance, such as water availability, temperature, and sunlight (Stage

and Salas, 2007). In addition, variables directly generated from digital elevation models (DEMs),
such as topographic position, can be very accurate especially in mountainous terrain, and have
been successfully used in vegetation modeling (Moore et al., 1991; Guisan and Thuiller, 2005).
ANOVA results indicate that even without SWB, SolRad can significantly distinguish between the
group means, showing a general pattern in distributions of aspen and conifer-present plots
according to topographic position. This provides a more robust model which relies on more
precise variables for interpretation, while also considering unbalanced group sample numbers.
It should be noted, however, that aspen distribution is often considered to be moisture limited
(Mueggler, 1988). We may expect aspen to prefer sites at the higher range of solar radiation
values, which ameliorate evapotranspirational demands through increased soil water capacities.
Therefore variables considering soil properties, such as SWB, would be extremely important in
predictive modeling applications if issues regarding spatial uncertainties and bias could be
resolved.

We have only modeled aspen and conifer habitat within a specific study site. Over
regional scales, relationships between topography and Forest Type distributions may break
down resulting in skewed response curves that may be difficult to model. In that case, inclusion
of climatic variables in our analysis, such as total precipitation (TP) and daily average air
temperature (DAAT), which are considered to be important forces driving plant distribution
patterns, can improve a models predictive power both spatially and temporally. Resulting
models can then be applied to predict species response across large scales and to a changing
climate (Guisan and Zimmermann, 2000). However, at the scale of our study site both TP and

DAAT are highly correlated with elevation, and considering that they are only significantly
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related to forest distributions in concert with SolRad and SWB, they are most likely only

accounting for elevational differences in topographic position.

2.4.3 Conclusions

According to our results, GIS and remote sensing methodologies can effectively be used
to sample canopy cover and model habitats of aspen and conifer. Although for this study we
only sampled 250 plots within a 33,000 ha area, sampling the large number of plots needed to
sufficiently account for a species potential distribution could be accomplished with reasonable
effort using photointerpretation of NAIP imagery. Output from such methods can accurately
estimate dominant canopy cover allocated to aspen and conifer-species groups. However,
interpretation of aspen and conifer habitat models would be improved with additional data on
forest age structure and condition. For instance, this would aid in separating “Aspen” plots that
exhibit multiple cohorts (as would be expected in a persistent aspen stand existing at the site for
multiple generations) from a more singular age structure indicating a disturbance-dependent

IM

“seral” stand type.

The robust nature of SolRad, being solely derived from digital elevation models, makes it
preferable to SWB. However, though they are highly correlated they may not be
interchangeable due to heterogeneity of soils and the evapotranspirational demands of aspen.
Although SWB adds potential bias to the analysis, our results allude to a distinct aspen
environmental space occurring in habitats where particular soils have the ability to ameliorate
evapotranspirational demands during the driest part of the growing season. This indicates the
importance of sampling a metric for soil water availability in identifying an aspen niche.

However, spatial uncertainties associated with the GIS-derived soil water availability metrics,

such as SWB, need to be addressed before it can be safely interpreted.



44
While considering that we may be overlooking important microsites due to soil

properties, a robust and accessible analysis using only solar radiation indicates that there is a
general pattern in habitat between aspen and conifer at our study site, indicating the viability of
using GIS-derived topographic variables in aspen/conifer habitat modeling at the site-scale.

Further work needs to be done to see if such patterns hold up at regional scales.
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Table 2.1 Forest Type groups as classified from percent aspen and conifer canopy cover.

Forest Type Groups Description

1 Aspen > 90% aspen canopy cover.

2 Conifer > 90% conifer canopy cover. All conifer species are lumped
within this group.

3 Mixed Mixed aspen and conifer plot. Neither is greater than 90% of
the canopy.

4 Other > 90% landcover representing something other than aspen or
conifer.

Table 2.2 Error matrix derived from photointerpreting color infrared NAIP imagery.

Ground Truth Reference Data

Other Aspen Conifer Mixed Row Total
< Other 24 0 0 0 24
S Aspen 3 22 0 0 25
2 £ Conifer 0 0 15 0 15
Z S Mixed 0 1 1 19 21
£ Column Total 27 23 16 19 85

Overall Accuracy = 80/85 =94.11%

Producers Accuracy Users Accuracy

Other = 24/27 = 88.89% Other = 24/24 = 100%
Aspen =22/23 =95.65% Aspen =22/25 =88%
Conifer = 15/16 = 93.75% Conifer = 15/15 = 100%
Mixed = 19/19 = 100% Mixed = 19/21 = 90.47%

Knhat Coefficient of Agreement = 92.07%
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Table 2.3 Error matrix derived from linear spectral unmixing of Landsat TM imagery.

Ground Truth Reference Data

Other Aspen Conifer Mixed Row Total
Other 13 1 0 2 16
_» Aspen 11 18 1 5 35
© < Conifer 1 0 12 1 14
£ E  Mixed 2 4 3 11 20
2  Column Total 27 23 16 19 85

Overall Accuracy = 54/85 = 63.52%

Producers Accuracy Users Accuracy

Other = 13/27 = 48.14% Other =13/16 = 81.25%
Aspen = 18/23 =78.26% Aspen =18/35=51.42%
Conifer =12/16 = 75% Conifer=12/14 = 85.71%
Mixed = 11/19 = 57.89% Mixed = 11/20 = 55%

K.t Coefficient of Agreement = 51.05%

Table 2.4 Variable selection results for discriminant analysis. Variables were selected using
McHenry's algorithm (1978) run in NCSS (Hintz, 2009). The variables selected were: total
annual precipitation (TP), annual average solar radiation (SolRad), daily average air temperature
(DAAT), and site water balance (SWB). Selection of variables was based on an F-test using the
amount of decrease in Wilk's Lambda if the variable was removed from the model (a=0.05)
(shown in the columns labeled "Removed"). Also shown is the significance of the variables on
their own according to Wilk's Lambda (a=0.05) (shown in the columns labeled "Alone"). The
column "R-Squared Other X's" indicates the correlation with the currently selected model (all
variables up to that point) and the next proceeding variable.

Variable Removed Removed Removed Alone Alone Alone R-Squared
Lambda F-Value F-Prob Lambda  F-Value F-Prob Other X’s
TP 0.8027 23.10 0.000000 0.9943 0.55 0.5799 0.6935
SolRad 0.7890 25.12 0.000000 0.9230 7.96 0.0004 0.8295
DAAT 0.9002 10.41 0.000051 0.9930 0.67 0.5138 0.6148

SWB 0.9418 5.81 0.003567 0.9629 3.67 0.0272 0.7956
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Table 2.5 Discriminant analysis using canonical correlation to find optimum combination of
variables represented by two canonical variates. "Ind'l Pcnt" and "Total Pcnt" represent the
amount of variance explained in the reduced dataset for each variate compared to the total
explained, respectively. The significance of the variate in explaining the variance in the original
dataset is estimated by an F-test (a=0.05) of the canonical correlation (Canon Corr). The square
of the canonical correlation (Canon Corr?) is equivalent to an r® in multiple regression. Wilk's
Lambda represents the ability of the variate to seperate the Forest Type groups, whereas lower
value equals better discrimination.

Variate Eigenvalue Ind’l Total Canon Canon F- Numer Denom Prob  Wilks’

Pcnt Pcnt Corr Corr> Value DF DF Level Lambda
1 0.3791 95.2 95.2 0.5243 0.2749 8.7 8.0 376.0 0.0000 0.7114
2 0.0191 4.8 100.0 0.1371 0.0188 1.2 3.0 189.0 0.3085 0.9812

Table 2.6 Correlation between variables selected for the final model and canonical variates.
The variables represented are: total annual precipitation (TP), annual average solar radiation
(SolRad), daily average air temperature (DAAT), and site water balance (SWB).

Canonical Variate

Variable Variate 1 Variate 2
TP -0.1228 -0.0024
SolRad 0.4451 0.6533
DAAT -0.0120 0.6019

SWB -0.2445 -0.9070
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Fig. 2.1 Map of the Deseret Land and Livestock (DLL) ranch study site showing distribution of
sample plots classified into Forest Types. DLL study site is 33,100 ha and located in the Monte
Cristo range in the Northern Wasatch Mountains within the western mountainous portion of
DLL. A total of 250 sample plots were randomly distributed within the forest mask and classified
into Forest Types using photointerpretation methods on NAIP CIR imagery.
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Fig. 2.2 Forest mask overlaid on a pseudo-color NAIP CIR image of aspen forests on the Cedar
Mountain plateau. Forested areas (within black polygons) were separated from non-forested
areas using an ISODATA unsupervised classification algorithm on a June 2010 Landsat TM image
in ENVI image processing software (Research Systems Inc., 2010). An initial 20 clusters were
classified and then grouped into forest or non-forest using 1-m resolution NAIP imagery.
Clusters that represented mixed forest and non-forest pixels were included within the forest
polygons.
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Fig. 2.3 Regression of DAYMET temperature data with elevation. Elevation was resampled to 1-
km grid using average elevation value, in order to match resolution of temperature grid. Best fit
line (Y=19.58-0.007092X,) represents lapse rate across entire DLL study site and was used to
interpolate temperature values down to 30-m resolution.
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Fig. 2.4 Plot of the first two canonical variate scores. Variables with the highest loadings are
depicted next to their associated variate axes. The direction of the relationship of the variables
to their associated canonical variate is shown by the arrows.
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Fig. 2.5 One-way Analysis of Variance for the DLL dataset. Letters indicate significant
differences according to Tukey-Kramer multiple comparison procedures. Bars show individual
95% confidence intervals about the means. The number of samples in each Forest Type group
are indicated above the X axis.
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CHAPTER 3

MODELING A STABLE ASPEN NICHE WITHIN ASPEN-CONIFER FORESTS OF UTAH*

3.1 Introduction

In the Intermountain West aspen (Populus tremuloides Michx.) occurs with conifer in
mixed stands as well as in adjacent pure communities and is often assumed to be seral to
conifer species within this landscape (Baker, 1918, 1925; Bartos et al., 1983). The successional
trajectory of aspen to conifer is described as deterministic, where aspen requires disturbance or
will eventually be replaced by encroaching conifer species (Debyle et al., 1985). However, many
studies show evidence for both “seral” and “stable” aspen community types (Langenheim, 1962;
Betters and Woods, 1981; Mueggler, 1988; Romme et al., 2000), describing a “stable” aspen
community as one that persists free of conifers and is self-regenerating. Though individual
studies have documented stable aspen communities, environmental fact