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Abstract: The optimal controllers for the management of 3-axis reaction-wheel momentum of 
rigid Earth-pointing satellites are analyzed in detail using magnetorquers and/or thrusters. 
Especially, two novel, optimal combined control schemes are proposed in order to achieve rapid, 
propellant-saving reaction wheel momentum dumping control by employing magnetorquers and 
thrusters. Finally, simulation results are presented to demonstrate the superiority of these 
algorithms. These two combined algorithms could easily be applied in real-time onboard an LEO 
Earth-pointing satellite. 

I. Introduction 
Earth-pointing satellites are expected to 

maintain the local-verticalllocal-horizontal attitude in 
the presence of environmental disturbance effects. 1.3 

Generally, this requires a spacecraft reaction wheel 
system to exchange momentum continuously with the 
spacecraft body. The secular extemal disturbance 
torques, for example, the torques due to passive gravity 
gradient, aerodynamic and solar forces, and active 
control torques from thrusters and magnetorquers, will 
tend to make the wheels drift toward saturation. 
Therefore, management of three-axis reaction wheel 
momentum is required in order to counteract the 
influence of persistent extemal disturbance torques. 
Usually an extemal torque must be applied, employing 
thrusters or magnetorquers, to force the wheel speed 
back to nearly zero momentum. 

A number of relevant studies have been 
presented to cope with momentum dumping techniques. 
A cheap but slow unloading of RW momentum can be 
carried out by employing magnetorquers. 1

, 2, 3 The 
effective and rapid momentum dumping can be 
achieved by thrusters at the cost of expendable 
propellant consumption.4

• 6 For satellites with thrusters, 
the minimization of thruster propellant dissipation is 
critically important to the space mission. In order to 
implement propellant-saving as well as rapid 
momentum dumping, we will discuss several combined 

1 

control methods, simultaneously using 3-axis 
magnetorquers and thrusters to obtain a tradeoff 
between the dumping rate and propellant usage. So far 
there is no published paper addressing this application. 

The paper is organized as follows: In Section 
II, we derive the general model of Earth-pointing RW 
momentum dumping. Then in Section III and IV the 
optimal LQR and minimum control energy (MEC) 
controllers using magnetorquers and PWM thrusters are 
described separately. Subsequently, in Section V the 
optimal combined control schemes are analyzed. In 
Section VI and VII the comparison of the control 
performance for different algorithms is shown. 

II. Wheel Momentum Management Model 
of Rigid Satellites 

The dynamic model of an Earth-pointing 
satellite using 3-axis reaction wheels as intemal torque 
actuators and magnetorquers and thrusters as extemal 
torque actuators, and ignoring the small change of 
spacecraft inertia tensor due to thruster propellant 
consumption, is given by: 

lcil BY = NT +N M +Noo +ND 

- 0) BY X (10) BY + h) it 
(1) 
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where m BY' I, b, N M' NT' N D and N GG are 

respectively the inertially referenced body angular 
velocity vector, moment of inertia of spacecraft, three­
axis reaction wheel angular momentum vector, applied 
torque vector by 3-axis magnetorquers, applied torque 
vector by 3-axis thrusters, external disturbance torque 
vector including the torques due to the aerodynamic and 
solar forces, and gravity gradient torque vector. We 
assume the satellite is 3-axis stabilized in a circular 
orbit, and then 

m BY m LO + T BYLO m 0 (2) 

where ro LO is body angular rate with respect to the 

local orbital coordinates, and 

TByLO 

is the attitude matrix from local orbital to body 
coordinates, 

constant orbital angular rate vector. 
If we assume a fixed Earth-pointing attitude 

with nadir or off-nadir pointing, we have: 

T BYLO = constant attitude matrix 

N GG constant vector 

Furthermore, we defme 

Neon = -{() BY X 1m BY + NGG = constant vector (3) 

The magnetic torque vector N M can be written as the 

cross-product of the magnetic dipole moment M of the 
magnetic coils with the measured magnetic field 
strength B in body frames by 3-axis magnetometers: 

NM =MxB Q(t)M (4) 

where M is magnetic dipole control moment vector, and 

2 

(5) 

The measured magnetic field B can be given by: 

(6) 

where Bo is geomagnetic field vector in the local orbital 
coordinates. Therefore, the reaction wheel momentum 
de saturation model with a fixed Earth-pointing attitude 
in a circular orbit can be represented as (ignoring the 
weak effect of the small external disturbance torque 
N D ): 

h(t) = Wh(t) + [N T + Q(t)M + Ncon ] (7) 

with, 

W=[ WO~32 
-wo A22 

constant matrix 

Accordingly, Eq. (7) can be regarded as the general 
model for the management of three-axis reaction wheel 
momentum on Earth-pointing satellites. This model 
implies that, only if the torques generated by 3-axis 
reaction wheel are equal to the sum of the satellite 
gyroscopic torques, active torque by 3-axis 
magnetorquers, cold-gas thrusters and extemal 
disturbances, the satellite will keep the fixed required 
Earth-pointing attitude and the RW momentum can be 
managed by external torques to the expected values. 

For the perfect nadir-pointing case ( N con = 0 ), 

the RW momentum dumping model could be simplified 
by: (Steyn3) 

h(t) Wh(t) + [N T + Q(t)M] (8) 

where, 

[ 

0 0 wo
] W= 0 0 0 

-wo 0 0 

(9) 

III. Optimal Desaturation Controllers 
using Magnetorquers 

A. Linear Quadratic Controllers (LQR and 
ILQR) 

Steyn3 in his thesis has developed several 
optimal desaturation algorithms using 3-axis 
magnetorquers for the perfect nadir-pointing case in Eq. 
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(8). Here, an optimal feedback control law to regulate 
the wheel momentum vector h towards the zero vector 
for the general model in Eq. (7) is to be derived by 
minimizing the following cost function: 

I! 

J=~ f{hTFh+MTRM}dt (10) 
to 

where to, t f are the initial and fInal time, F is a non­

negative symmetric weighting 3-by-3 matrix for the 
wheel angular momentum, and R is a positive 
symmetric weighting 3-by-3 matrix for the magnetic 
coil moments. According to the Pontryagin's principle 
of optimal theory, we can get the control equation: 

M(t) -R -lQT (t)(K(t)h get)] (11) 

where K(t) is a time-dependent 3-by-3 gain matrix, and 
get) is a time-dependent 3-by-l vector. They are solved 
by the backwards integration of a two-point boundary 
value problem. The values of K(t) and get) at sampled 
intervals can then be stored in an onboard look-up table 
to be used at the corresponding orbital locations for 
desaturation control. 

As an alternative, a fairly accurate quasi-static 
LQR feedback control law can be computed by an on­
line solution of the infmite time LQR (ILQR) control 
problem at every sample time. 3 This method explores 
the slowly varying nature of the geomagnetic fIeld. This 
alternative method is computational demanding because 
the eigenvector decomposition of a six-order 
Hamiltonian matrix must be done every sample time. 
But no large look-up tables are needed compared to the 
standard LQR method. 

B. Minimum-Energy Controller (MEC) 
Another fIxed terminating time, minimum­

energy, optimal controller was presented3 by 
minimizing the cost function subject to the constraint of 
Eq. (7) withoutthe terms ofNr : 

(12) 

The optimal control can be obtained as: 

(13) 

Substitute Eq. (13) into Eq. (7) (without the tenn NT)' 
then 

3 

The variation of extremals method3 can now be used to 
solve p(to). 

The MEC optimal control moment M(t) 
depends on the solution of p(to), and this can be done 
off-line for a specifIc orbit window. Note that the MEC 
controller will completely work in open-loop as the 
solution for M(t) does not make use of any wheel 
momentum measurements. 

C. Summary 
Both the LQR and MEC controller addressed 

above can be applied to achieve optimal wheel 
momentum de saturation using three-axis 
magnetorquers. However, both these methods fmally 
have to resort to solving the two-point boundary value 
problem3 based upon the knowledge of the local 
geomagnetic fIeld and require the amplitude of the 
moment of magnetic coils to be unbounded. The 
feedback nature of the LQR controllers would be 
preferred. The LQR controllers will ensure robustness 
against modeling errors and external disturbances. If 
the geomagnetic field does not change much between 
successive orbits, an orbital LQR gain lookup table can 
be calculated off-line and then used onboard. The MEC 
controllers will consume the least amount of energy as 
expected. However, due to their open-loop nature and 
non-ideal off-line calculations when solving the 
boundary value problem, such as modeling errors (e.g. 
geomagnetic fIeld) and external torque disturbances on 
the stabilized satellite, their control accuracy is limited.3 

IV. Optimal Desaturation Controllers using 
PWM Thrusters 

The thrusters could be employed to implement 
a relatively rapid management of the wheel momentum 
compared with magnetorquers. If the thrusters are used 
in the PWM mode, they can be approximated as linear 
actuators. The model of Eq. (7) in this case can be 
simplifIed as: 

h(t):::::Wh(t)+N T +Ncon (15) 

A. Linear Quadratic Controllers (LQR and 
ILQR) 

Similarly, the optimal feedback control law to 
regulate the wheel momentum vector h towards the zero 
vector, using PWM thrusters, is derived by minimizing 
the following cost function: 
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If 

J=~ f{hTFh+N/RNT}dt (16) 
10 

Similarly, the optimal control law is given by: 

The time-dependent 3-by-3 gain matrix K(t) and 3-by-1 
vector g(t) can be saved in look-up tables to achieve on­
board optimal de saturation control using PWM 
thrusters. If the infmite time LQR (ILQR) is adapted, 
the constant gain matrix Koo and vector goo can be used. 
Due to the time invariance of the wheel momentum 
management model in Eq. (15), there is no need to build 
up the look-up gains in on-board memory or to solve 
the ILQR problem every sampling period. The gain 
matrix Koo and vector goo, due to the choice of the 
weighting matrixes R and F, will determine the fmal 
response time of the de saturation system. 

B. Minimum-Energy Controller (MEC) 
A fixed terminal time, minimum-energy 

optimal controller can be derived by minimizing the 
energy cost function subject to the constraint of Eq. 
(15): 

If 

J=~ fN/N T dt (18) 
10 

In the same way, the optimal control torque will be: 

(19) 

Similarly, the initial state vector p(to) in Eq. (19) can be 
solved off-line as in Section III. Thereby, the optimal 
minimum-energy control (MEC) torque Nit) with the 
open-loop nature using PWM thrusters is obtained. 

v. Combined Desaturation Controllers 
using Magnetorquers and PWM Thrusters 

Magnetorquers and thrusters respectively have 
their own advantages and disadvantages for 3-axis 
reaction wheel momentum management as shown in 
Table 1. 

Saving the thruster propellant is significant for 
an attitude control system equipped with thrusters. The 
authors have not found any papers that deal with the 
combined management of reaction wheel momentum 
using magnetorquers and thrusters simultaneously. 
Next, we shall present an optimal combined control 
algorithm, and a combined control algorithm using a 
cross-product law, which make full use of the 
advantages of magnetorquers and thrusters. The 
algorithms are simple and suitable for on-board real­
time applications. 

Table1 Comparison of magnetorquers and thrusters for RW momentum dumping 

Actuator Advantage Disadvantage 
Magnetorquers • Do not generate translational forces, • The produced torque is relatively small, 

therefore do not perturb the orbit thus the momentum dumping rate is slow 

• Do not consume any thruster propellant 
Thrusters • Can achieve rapid momentum dumping • Consume expendable propellant 

and remove much more momentum in a • Can generate translational forces to 
given period of time 

A. Optimal Combined Desaturation 
Controllers (OCDC) 

The optimal LQR, ILQR and MEC controllers 
for PWM control of thrusters discussed above can be 
used to obtain the dumping torque during a fixed time 
period from to to t f. If we want the torque N(k) at 

every sample time to be generated simultaneously by 
magnetorquers and PWM thrusters, we can defme: 

N(k) = N r(k) + Q(k)M(k) (20) 

4 

influence the satellite's orbit 

whereNr(k) is 3-axis PWM thruster torque, and Q(k) 

defmed in Eq. (5). Reorganize Eq. (20) as: 

N(k) = A(k)NMT(k) (21) 

where, 

[0 B,(k) -By(k) 1 0 

~l A(k)= -Bz(k) 0 Bx(k) 0 1 

B/k) -Bx(k) 0 0 0 
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In order to arrive at the fonnulation of an optimal 
combined controller, the following cost function is 
proposed: 

I 
J "2 N!'.T(k)SN MT(k) + A. T[N(k) A(k)N MT(k)] 

(22) 

where A is a 3-by-l vector of Lagrange multipliers that 
adjoin the constant equations to the scalar cost equation, 
and S is a 6-by-6 constant positive weighting matrix. 
We defme S to be a diagonal positive matrix having the 
fonn: 

S= diag(a, a, a, b, b, b) 

where a and b are positive scalars. In order to minimize 
J, we take derivatives of Eq. (22) with respect to N MT 

and A giving the two vector equations: 

N(k) A(k)N MT(k) 

NMT(k) =S-IAT(k)A 

Solving for Nw-, 

(23-a) 

(23-b) 

Eq. (24) is the optimal blending algorithm for 
magnetorquers and thrusters during wheel momentum 
management. This equation divides the required torque 
N(k) optimally into two parts. One part has to be 
generated by the magnetorquers and the other part by 
the PWM thrusters. The supporting torques produced 
by the magnetorquers could obviously reduce the 
consumption of the limited thruster propellant. 

B. Combined Desaturation Controllers 
using a Cross-Product Law 

The conventional well-known magnetorquing 
cross-product controf' 3 is given by : 

M = -k(N x B)/IIBII (25) 

where M is regarded as the most favorable 
magnetorquing vector, B is the body geomagnetic field 
vector measured by on-board magnetometers, N is the 
required control torque vector and k is a constant scalar 
gain. 

5 

The active magnetic torque N M must be in the 

plane Pa nonnal to the vector B shown in Fig. 1. We 
propose that the best torque N M is one which is the 

projection of the desired N in plane Pa. This will be the 
minimum error condition. As a result, the desired N", 
has the smallest error with respect to N. The common 
cross-product in Eq. (25) could not achieve this as it 
only ensures the correct vector direction for N M but 

the magnitude of N M will still depend on the scalar 

gain k. Therefore, if we wish to minimize the error 
between N and N M' the cross-product law could be 

revised as: 

M = -(N X B)/IIBI12 (26) 

where the correct value for the scalar gain k is inversely 
proportional to the magnetic field magnitude. 
According to the cross product law in Eq. (26), the 
active magnetic torque vector N M generated by 

magnetorquers is the projection of N in plane Pa in Fig. 
1. 

NM MxB= Nsinj3.(:Mx B) (27) 

B 

Fig. 1 The configuration of the favorable torque 
generated by magnetorquer 

where N is the amplitude of the required torque vector 
N, 1M and B are the unit vectors of M and B, and 13 is 
the angle between the vectors N and B. 

Based upon the revised cross-product law for 
magnetorquer control, the combined controller for the 
management of reaction-wheel momentum is derived 
by: 

(28) 

where N M(k) is the favorable torque by 

magnetorquers in Eq.(28). Therefore, NT (k) must be 

equal to the torque error Ne in Fig. 1, which has the 
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minimum amplitude. Additionally, the amplitudes of 
vector N(k) and NT(k) satisfies the following relation: 

N(k);:: NT(k) (29) 

Eq. (29) ensures that the PWM thrusters will minimize 
the fuel control energy during the combined 
management of the 3-axis RW momentum. 

VI. Comparison of the Controllers 
Simulations were implemented to investigate 

the performance of all the RW momentum dumping 
controllers analyzed above. The satellite UoSAT-12 is 
used as an example during these simulations. The 
proposed methods will also be suitable for satellites in 
other operating conditions. UoSAT -12 is the first low­
cost LEO mini-satellite with 3-axis earth-pointing 
capability built by Surrey Space Center and equipped 
with 3-axis reaction wheels, magnetorquers and cold­
gas thrusters. It is expected to be launched in a 650km 
sun-synchronous circular orbit by early 1999. Its orbital 
period is nearly 100 minutes. 

The Earth's magnetic field is simply defmed as 
a first dipole model during simulations. In the local 
orbital coordinates, the model for U oSA T -12 could be 
expressed as:3

,4 

_ [BOX] _ [23coscoot] 
B 0 - Boy - 2.4 J.lT 

Boz 46sincoot 

(30) 

Momentum Amplitude: ILQR -,LQA -., MEC", CCPl x 
2.5,.r--~--~-~--~--~-~ 

Tlmo (ucond) 

During the simulations we assumed that both the cold­
gas thrusters work in PWM mode with a minimum 
firing time of 50 milli-seconds each, The thruster 
torque has a constant value of ±40 milli-Nm during the 
active firing period. In addition, we assume the 
magnetic moment to be unbounded, and the sample 
time to be 10 seconds. A perfect nadir-pointing attitude 
i.e. N con = 0 in Eq. (7) is also assumed during 

simulations. 

A. Simulations of Optimal Dumping 
Controllers using Magnetorquers 

The proposed optimal controllers LQR, ILQR 
and MEC using magnetorquers are compared with a 
common cross-product law (CCPL) dumping algorithm: 

(31) 

where K m is a scalar gain. In order to evaluate the 

performance of every controller, a control energy 
function for magnetic control moment M is defmed as: I 

I t 

JM(t) =2' fMTM dt to 5ot50tf (32) 
to 

Fig. 2 shows a half-orbit (3000-second) momentum 
dumping effort using the magnetorquer ILQR, LQR, 
MEC and CCPL controllers (For clarity only, the 
momentum amplitude Ilhll is shown). We can see the 

MEC controller consumes the least energy, and the 
energy cost of CCPL is the highest. 

Control Energy: ILQA -,LOA -., MEC .. , CCPl x 

1000 

MEC 

1500 
Time (second) 

2000 2500 3000 

Fig.2 RW momentum dumping using magnetorquers only· 

Note: All the energy cost investigations shown in the figures and tables are normalized W.r.t. the maximum value 

6 
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B. Simulation of Dumping Controllers using 
Thrusters only and Combined Methods 

Similarly the energy function for PWM cold­
gas thrusters is also introduced: 

Furthermore, the accumulated fIring time of thrusters is 
investigated to asses the fuel consumption. Based upon 
the optimal controllers LQR, ILQR and MEC using 
PWM cold-gas thrusters (CT), the combined dumping 
algorithms, including the optimal combined algorithm 
(OCDC), the combined algorithms using the 
conventional cross-product law (CCCP) and revised 
cross-product law (CRCP), were simulated and 
compared to the dumping controller using thrusters only 
(DCT). 

Fig. 3 and 4 respectively show an one-tenth­
orbit (600-second) momentum dumping effort using 
thrusters only and their combined methods based upon 
the ILQR, LQR and MEC controllers. Table 2 list the 
overall results from the viewpoint of the propellant 
consumption and magnetorquer (MT) control energy 
cost for an one-tenth-orbit momentum dumping effort. 

The simulations show that the dumping 
performance of the controllers stays unchanged. When 

RW Momenlum (ILQR: OCT, ceDe, GCCP, CRCP): hx·, MY -., hz .. 

" 

ao 

70 

I eo 

0.5 hx 

hz 

-<).5 

Time (S8eOI'ld) 

; 50 
E 
,:: 
g' 40 
.~ 

u: 

7 

using thrusters only (DCT), the behavior of ILQR is 
almost the same as LQR. MEC consumes the least 
amount of control energy, but its accumulated fIring 
time is still almost similar to that of LQR. In addition, 
the combined method (CRCP) generally consumes the 
least amount of thruster propellant. The optimal 
combined controller (OCDC) in Eq. (24) tends to have 
the same effect as CRCP when the weighting matrix S 
has weight a as positively infInitesimal and weight b as 
positively infmite. This phenomenon can be explained 
by Fig. 1. For the optimal combined controller (OCDC) 
in Eq. (24), to minimize the cost function in Eq. (22), it 
requires that the weighting component a approaches 
positive infInitesimal and b positive infInite. Then the 
thruster control vector NT ( k) will tend to be vector N e 

in Fig. 1, which ensures the minimum-amplitude error 
between N and N M' Therefore, CRCP and OCDC 

could be the favored controllers for combined 
momentum dumping of magnetorquers and thrusters. 
In practice, CRCP will need less processing time. 
Furthermore, CCCP will consume the most magnetic 
control energy. OCDC could balance the magnetic 
control energy cost and thruster fuel consumption by 
changing the weighting matrix S. 

Thruster Firing TIme: OCT ~,ococ -.,CCCP ..• CRCP x 

100 200 300 

Ttme (second) 

OCT 

CCCP 
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MttQoelorquer Con1rol Energy' CCDC ',COCP ""CRCP, .. 

0.9 

0.8 

0.7 

c .j 0.6 

IL 0.5 

CRCP 

200 300 400 soo 600 
Time {second) 

Fig. 3 RW momentum dumping using thrusters only and combined methods based upon the LQR, ILQR 
controllers 

RW Momentum (MEC: OCT. OCDC, CCCp, CRCP): hx ", hy -,. hz "' 

1.5 

ny 

E nx 
~ 

§ 0.5 

~ 
a 
" 

-0.5 

., 0~="-'C:OO:---:-2oo':---30:-'::-O ---40 .... 0---5~00-----1600 

Time (ucond) 

0.9 

0.8 

0.7 

i 

.2 O.6~ 
~ ! 
u.. 0.5 ~ 

~ 
~ 0.4 

UJ 

Magnetorquer Control Energy' acoc -,CCCP ~ .• CRCP ... 

Tlme (second) 

Thruster Firing Time: OCT -,OCDC M"CCCP ".CRCP x 
100 

90 

80 
OCT 

70 

f 60 
~ 
!!. . 50 

~ 
a 40 
E 
u:: 

30 

20 

10 

Time (neond) 

ThrusterConlrol Ensfgy: ILOR", LQR ,MEC ,. 

0.9 
'LQR Ueing thrusl6fS ooly 

0.8 

Fig. 4 RW momentum dumping using thrusters only and combined methods based upon the MEC controllers 
and thruster control energy comparison for nCT 

8 
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T bl 2 Th a e f h e companson 0 t e combined controllers 
Dumping methods ILQR (0.1 orbit, 600 seconds) MEC (0.1 orbit, 600 seconds) 
Initial momentum 

(Nms) [1;2; -1] [2;-1.2;0.5] [1.2;-0.8;-2] [1' 2; -1] r2; -1.2; 0.5] [1.2;-0.8; -2] 
Starting point from 
ascending node (orbit) 0.23 0.56 0.67 0.23 0.56 0.67 

nCT 
CT flring time( sec) 98.25 87.75 95.30 93.90 88.15 89.35 

CCCP 
• CT flring time( sec) 71.25 53.75 74.35 68.70 42.65 74.80 

• Fuel-saving ( % ) 27.48 38.77 21.97 26.83 51.61 16.27 

• MT energy cost 1.00 1.00 1.00 1.00 1.00 1.00 
CRCP 

• CT flring time( sec) 31.95 52.80 56.00 39.50 31.35 50.75 

• Fuel-saving (%) 67.48 39.83 41.23 57.93 64.43 43.21 

• MT energy cost 0.39 0.88 0.45 0.61 0.69 0.42 
ocnc 

• CT flring time( sec) 36.90 53.30 57.20 43.55 34.75 60.85 

• Fuel-saving (%) 62.44 39.24 40.00 53.62 60.59 31.88 

• MT energy cost 0.33 0.63 0.37 

VII. Discussion of Results 
To summarize, combined reaction wheel 

momentum dumping algorithms were developed using 
an optimal combined controller (OCDq and a revised 
cross-product law (CRCP). The combined controllers 
OCDC and CRCP just rely on the measured 
geomagnetic fle1d B(k) and resort to a predetermined 
torque vector N(k), as calculated by the optimal LQR, 
ILQR or MEC method in Section IV. However, the 
beneflcial point is that the required control torque N(k) 
for dumping wheel momentum has been generated by 
an optimized blending of both magnetorquers and PWM 
cold-gas thrusters. This means that thruster propellant 
can be saved due to the assistance of the magnetorquers. 
Importantly, there is no need to predict off-line the local 
geomagnetic fleld vector for these combined 
controllers. The magnetic fleld is simply obtained by 
magnetometer measurements. The control blending of 
the magnetorquers and thrusters can be computed 
simply from Eq. (24) or (28). Therefore, the combined 
controllers discussed above can be adapted to 
practically achieve rapid, propellant-saving optimal 
management of the 3-axis reaction-wheel momentum 
during the expected time period from to to t f . 

However, all these theoretical analyses assume 
that the magnetorquer control value to be unbounded 
and continuous. In practice, the fIring of magnetorquers 
can not be allowed during the period of magnetometer 
measurements and the magnetorquers also have a 
saturation limit. This saturation limit for these 

9 

0.21 0.50 0.35 

combined algorithms (OCDC and CRCP) has a 
considerable effect. For UoSAT-12, the maximum 
magnetic dipole moment along every axis is nearly 40 
Am2• In order to model this saturation effect, we can 
add the following conditions to the simulation. If any 

component of M(k) =[ MAk) My(k) Mz(k)t 

calculated from Eq.(24) or (28) exceeds the limit 
value, we can compensate the thruster control logic as 
follows: 

~NT(k) Q(k)[M(k) - Mmax] (34) 

where ~N T (k) is the thruster compensated control 

vector, and Mmax is the saturation value of magnetic 

moment. The thrusters also compensate for the lack of 
available magnetic torque. 

The simulations of momentum management 
for the UoSAT -12 mission were repeated with the 
saturation constraint added, to check the feasibility and 
expected performance of the combined optimal 
controller OCDC. During the simulations we assumed 
that magnetorquers also work in PWM mode with a 
minimum flring time of 50 milli-seconds each. The 
maximum flring time period is 9 seconds per sample 
time of 10 seconds. Fig. 5 and 6 just show a 
comparison of thruster and magnetorquer activities for 
the combined method OCDC and for thruster only 
(DCT) during an one-tenth-orbit (600-second) reaction 
wheel momentum dumping effort. The momentum 
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dumping behavior is same as in Fig. 3 and 4. Table 3 
lists several representative simulation results. Due to a 
variation of the geomagnetic field in orbit at different 
start positions during simulation, the thruster firing 

saving time will be different over similar dumping 
periods. However, the simulations show that the 
combined momentum dumping method can defmitely 
save a large amount of thruster propellant. 
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Fig.5 UoSAT-12 RW momentum dumping using thrusters only and combined method OCDC based upon the 
ILQR controller 
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Fig.6 UoSAT-12 RW momentum dumping using thrusters only and combined method OCDC based upon the 
MEC controller 

Table 3 RW momentum dumping using OCDC and thruster only (OCT) for UoSAT-12 

Dumping methods ILQR (0.1 orbit, 600 seconds) MEC (0.1 orbit, 600 seconds) 
Initial momentum 

(Nrns) rt;2; -11 f2;-1.2;0.51 n .2;-0.8;-21 rt; 2; -11 f2; -1.2; 0.51 f1.2;-0.8; -21 
Starting point from 
ascending node (orbit) 0.23 0.56 0.67 0.23 0.56 0.67 

DCT 
CT firing time( sec) 98.25 87.75 95.30 93.90 88.15 89.35 

OCDC 

• CT frring time(sec) 71.45 68.55 73.00 59.90 48.15 59.40 

• Fuel-saving (%) 27.28 21.88 23.40 36.21 44.64 33.52 
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VIII. Conclusions 
The wheel momentum buildup due to secular 

disturbances must be reduced by actively applying 
compensating external torques of both 3-axis 
magnetorquers and cold-gas thrusters. The optimal 
LQR, and MEC controllers discussed in this paper can 
be applied to achieve wheel momentum desaturation 
using three-axis magnetorquers and PWM thrusters 
separately. The LQR controllers is preferred due to 
their feedback nature. These controllers will ensure 
robustness against modeling errors and external 
disturbances. The MEC controllers will consume the 
least amount of energy. However, due to their open­
loop nature and non-ideal simulation conditions', such as 
modeling errors (e.g. geomagnetic field, and the change 
of spacecraft inertia tensor due to thruster propellant 
consumption) and external torque disturbances on the 
stabilized satellite, their control accuracy is limited.7 

The optimal controllers using magnetorquers only, 
strongly depend on the geomagnetic field model. If the 
complicated IGRF model is employed, a great 
computation effort is required to solve the two-point 
boundary problem for on-board applications. 

The newly proposed combined dumping 
controllers exploit the merits of both magnetorquers and 
PWM thrusters. Based upon relatively simple thruster 
optimal algorithms, the blending methods effectively 
separate the required torques for magnetorquer and 
thruster commanding. They do not require geomagnetic 
field estimations, but employ on-line magnetometer 
measurement data. Therefore, they could be suitable in 
practice for achieving rapid, propellant-saving 3-axis 
reaction wheel momentum dumping. Simulation results 
have been given to illustrate the merits of the proposed 
combined algorithms. The expected performance of 
these controllers were obtained. 
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