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ABSTRACT 

Characterization of the Involvement of Integrins, Focal Adhesion Kinase, and 

Phospholipase C Enzymes Endogenous to the Oocyte 

in Bovine Fertilization and Oocyte Activation 

by 

Benjamin Rand Sessions, Doctor of Philosophy 

Utah State University, 2012 

 

Major Professor: Dr. Kenneth L. White 
Department: Animal, Dairy, and Veterinary Sciences 

 

The objectives of this research were to better characterize the protein signaling 

complexes that form in response to spermatozoa binding to the bovine oocyte vitelline 

membrane and to elucidate their potential involvement in oocyte activation. 

Integrins located on the vitelline membrane of bovine oocytes have been 

implicated in mediating the sperm-oocyte interaction.  Anti-integrin function blocking 

antibodies and immunofluorescence were utilized in order to reveal that the αV and β1 

integrin subunits are essential for fertilization in the bovine and could form the integrin 

heterodimer involved in the sperm-oocyte interaction. 

 Focal adhesion kinase is localized to focal adhesions and is a key component of 

signal transduction pathways mediated by integrins.   The presence of focal adhesion 

kinase in bovine oocytes was verified by real-time polymerase chain reaction and 

immunoprecipitation and the localization of focal adhesion kinase at the site of sperm 



	   iv 

binding to the oocyte plasma membrane was verified using immunohistochemistry.  The 

inhibition of focal adhesion kinase resulted in fewer cleaved embryos in addition to a 

reduction in the number of oocytes responding with calcium transients.   

Phospholipase C isoforms regulate the release of calcium from the endoplasmic 

reticulum and are known to interact with integrins and focal adhesion kinase.   The 

experiments reported in this dissertation explored the involvement of phospholipase C 

isoforms endogenous to the oocyte in mediating the calcium release associated with 

fertilization.  Reduction in phospholipase C messenger ribonucleic acid levels for the 

phospholipase C isoforms γ1 and γ2 resulted in significantly lower cleavage rates 

compared to the controls.   Interestingly, the reduction in messenger ribonucleic acid 

levels for phospholipase ζ failed to impact cleavage.  Maximizing protein levels for the 

phospholipase C isoforms ζ and γ2 resulted in a significantly higher number of oocytes 

reaching the 2-cell stage compared to all other treatment groups and not significantly 

different than the activation control.  

Together these data illustrate the involvement of the αV and β1 integrin subunits, 

focal adhesion kinase, and the potential involvement of multiple endogenous 

phospholipase C isoforms (γ1 and γ2) in bovine oocyte activation.  A more complete 

understanding of the molecular players involved in fertilization could have beneficial 

impacts for human fertility, assisted reproduction, and improved efficiency of animal 

somatic cell nuclear transfer.     

 

 
 
 

(135  pages) 



	   v 

PUBLIC ABSTRACT 
 

Characterization Of The Involvement Of Integrins, Focal Adhesion Kinase, and 

Phospholipase C Enzymes Endogenous to the Oocyte 

in Bovine Fertilization and Oocyte Activation 

Benjamin R Sessions 

 The Center for Integrated Biosystems (CIB) and Animal, Dairy, and Veterinary 

Sciences (ADVS) Department at Utah State University propose a multi-year molecular 

study of cattle gamete interactions to improve our basic understanding of fertilization.  

The CIB and ADVS will utilize existing collaborations in addition to recruiting state and 

federal funding sources to complete the extensive project.   

Various laboratory techniques will be used to discover the molecular players of 

fertilization in hopes of shedding light on a variety of human infertility issues due to 

problems at the gamete level.  A more complete understanding of fertilization could also 

lead to the development of improved contraceptives.  Another potential outcome is 

improved efficiency associated with animal cloning.  Currently cloning technology 

involves multiple non-natural techniques that could be contributing to the poor success 

rate of animal cloning.  A better understanding of fertilization at the molecular level 

could lead to a more natural way of cloning animals.  Cloning technology has a great 

potential of producing transgenic animals for biopharmaceutical production, creating 

animal models to study human diseases, rescuing endangered species, and producing 

stem cells.   Improving the efficiency of animal cloning will allow for faster 

advancements and benefits of this technology. 
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CHAPTER 1 

LITERATURE REVIEW 
 
 

Mammalian fertilization is a complex multi-step sequential process involving the 

interaction and fusion of two distinct, highly specialized gametes.  Mammalian 

spermatozoa must undergo a series of physiological and biochemical changes, known as 

capacitation, in the female genital tract before gaining the ability to fertilize an ovulated 

metaphase II arrested oocyte.  Only after capacitation is a spermatazoa able to penetrate 

the cumulus oophorus, bind to the zona pellucida of the oocyte, undergo the acrosome 

reaction, interact with membrane receptors located on the oolemma, and successfully 

fertilize the oocyte.  In response to sperm binding and entry into mammalian oocytes, 

calcium is released from intracellular stores in a series of spikes or oscillations 

considered a “hallmark of fertilization.”  These oscillations release the oocyte from its 

metaphase II arrested state and are essential to activate the oocyte and initiate embryonic 

development.   

Despite years of research and much inquiry, the molecular mechanisms of this 

complex multi-faceted process remain elusive.  Perhaps the greatest debate has been 

centered on understanding the underlying mechanism of the initiation of the cytosolic 

calcium oscillations.  Is it initiated by a sperm ligand binding to an oolemma receptor or 

by a soluble sperm factor introduced upon sperm fusion?  Only after comprehensive 

reviews of the process by which spermatazoa gain developmental competence in 

addition to identifying potential molecular players in membrane binding and fusion and 

the subsequent signaling cascades can a cohesive theory of oocyte activation be 

proposed. 
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Spermatozoa Maturation 

Sperm are highly differentiated cells with two main components, a head and a 

flagellum, joined together by a connecting piece.  The head contains the nucleus, 

acrosome, cytoskeletal structures, and a small amount of cytoplasm while the tail 

consists of a motility apparatus, an axoneme, mitochondria, and cytoskeletal structures.  

The nucleus consists of highly condensed chromatin, the acrosomal cap is an enclosed 

cytoplasmic vesicle with hydrolytic enzymes and the flagellum is further divided into the 

midpiece, principal piece, and end piece.  These specialized structures represent the 

unique functions of the spermatazoa and are critical for delivering the spermatozoa’s 

nuclear material to the cytoplasm of the oocyte.  Despite the critical role these structures 

play in transporting and fertilizing the oocyte, they are not functional until the 

modification of the spermatozoa plasma membrane during maturation in epididymal 

transport [1].  Some of these pivotal modifications to the spermatozoa plasma membrane 

during epididymal transport include modifications of surface proteins, changes in its 

lipid and protein composition, and an increased total negative charge of the extracellular 

surface [2]. 

 The lumen of the epididymis contains epididymosomes, small membranous 

vesicles that are rich in sphingomylein (SM) and arachidonic acids in addition to 

containing endoplasmin, a 70 kDA heat shock protein 5, chaperones, GPI –anchored 

proteins and other exosomes [3-9].  These epididymosomes aggregate to the sperm 

membrane during epididymal transport in order to modify and contribute to the 

formation of various membrane structures such as lipid rafts [2, 10]. 
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Capacitation of Spermatozoa 

After maturation in the epididymis and deposition in the female reproductive 

tract, mammalian spermatozoa are able swim, but are still incapable of fertilizing an 

oocyte.  After remaining in the uterus for an appropriate period of time, the spermatozoa 

undergoes capacitation, a process resulting in removal of seminal plasma proteins 

adsorbed to the head of the spermatozoa and modification of sperm plasma membrane 

proteins/glycoproteins and sterols during passage through the female genital tract [11, 

12].  Capacitation of spermatozoa in vitro can also be accomplished by exposing the 

spermatozoa to a defined media containing bovine serum albumin, energy substrates, 

and electrolytes [13].  The modification of membrane cholesterol levels results in a 

change in membrane permeability and fluidity, thus allowing entry of ions.  These ions 

activate protein kinase(s), increase protein tyrosine phosphorylation, and result in 

hyperactive spermatozoa [13-18].   

 The efflux of cholesterol/sterols from the spermatozoa plasma membrane is 

believed to be the initial step in capacitation and thought to be mediated by albumin, the 

major protein in the female reproductive tract.   This outward movement of sterols alters 

membrane potential, increases the membrane permeability and fluidity and restructures 

the phospholipid content of the asymmetrically distributed lipid leaflets of the plasma 

membrane [13].  This action allows movement of calcium (Ca2+) and bicarbonate 

(HCO3
- ) ions across the spermatozoa plasma membrane in order to increase protein 

tyrosine phosphorylation and activation of secondary messengers including cyclic 

adenosine monophosphate (cAMP) and protein kinase A (PKA).  An additional 

proposed function of the loss of cholesterol is increasing the fusogenicity of the 
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spermatozoa plasma membrane [13].     

 The flow of HCO3
- across the spermatozoa plasma membrane results in the 

activation of a non-transmembrane soluble adenylyl-cyclase (SACY).  Activated SACY 

increases the production of cAMP and ultimately results in the activation of a cAMP 

dependent protein kinase A (PKA) through the release of PKA’s inhibitory subunits [19-

23].  PKA is a ubiquitous serine-threonine kinase, consisting of four subunits, two of 

which are catalytic and the other two being regulatory.  The two regulatory subunits 

form a dimer, which is disrupted upon cAMP binding and results in the activation of the 

catalytic subunits [24].  The regulatory subunits also function to anchor PKA to its 

respective cellular activation location where it can interact with A-kinase anchor proteins 

(AKAPs) [25, 26].   AKAPs are thought to serve as scaffolding proteins that mediate the 

activation of several signaling enzymes within a cellular region including PKA, protein 

phosphatase I, calcineurin, calmodulin and protein kinase C (PKC) [21, 27-31].  

However, the intermediate kinase that is activated by PKA and initiates the process of 

protein tyrosine phosphorylation has yet to be identified.  It has been proposed that a Src 

Family kinase [21, 23, 32, 33], the serine-threonine kinase MAPK [21, 34], or c-Abl, 

another non-receptor tyrosine kinase [35, 36] might be involved.   

The protein tyrosine phosphorylation of the flagellum is believed to allow the 

spermatozoa to acquire capacitation-associated hyperactive motility [13, 37-39].  The 

epidermal growth factor receptor (EGFR) has also been show to be partially activated by 

PKA resulting in increased phospholipase D (PLD) dependent actin polymerization 

during acquisition of hyperactive motility [24, 40].  

 In addition to affecting the increase in intracellular cAMP levels via SACY, Ca2+ 
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is believed to influence capacitation through other Ca2+ binding proteins, namely 

Calcium/Calmodulin (CaM)-dependent kinase IV and Calmodulin, which undergo 

conformational changes in response to Ca2+ binding.  CaM kinase IV is located in the 

flagellum of human spermatozoa, increases in abundance during capacitation, and is 

proposed to regulate the motility of human spermatozoa during this process [13, 41]. In 

the head and flagellum regions, spermatozoa also contain high amounts of calmodulin, a 

17-kDa Ca2+-binding acidic protein [13, 42-45].  Experimental evidence indicates that 

calmodulin accelerates the early stages of spermatozoa priming in preparation for 

capacitation in addition to influencing the protein tyrosine phosphorylation events in 

response to capacitation by increasing cAMP levels via stimulation of SACY [15, 18, 

46]. 

 After capacitation in vivo, sperm move into the ampulla region of the oviduct in 

an attempt to locate the ovulated cumulus cell oocyte complex (COC).  Chemotaxis, in 

response to progesterone release by the cumulus layer, has been shown to be the method 

in which spermatozoa are able to locate the COC [47-51].  Progesterone is able to 

influence sperm through a nongenomic receptor that activates phospholipase C, elevates 

intracellular calcium levels, and regulate cellular behavior [52-56].  The cumulus 

oophorus is composed of several thousand ovarian granulosa cells that serve to nurture 

the oocyte and assist in the process of ovulation [57, 58].  The cumulus layer is not 

required for fertilization; however, an intact cumulus layer results in higher fertilization 

rates and may play a critical role in reducing polyspermy by trapping compromised 

sperm [59, 60].  Recently the cumulus layer has been suggested to promote the 

spermatozoa acrosome reaction and this “premature” activation may serve to limit the 
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number of sperm capable of binding to the zona pellucida [57, 61-64].   

 
Penetration of Cumulus Oophorus 
 

The major component of the cumulus layer is hyaluronan, an anionic, 

nonsulfated glycosaminoglycan; consequently, the current proposed theory for sperm 

penetration through the cumulus layer involves a sperm surface 

glycosylphosphatidylinositol (GPI) anchored protein, PH-20 [65-68].  PH-20 is a GPI-

anchored membrane protein initially found on guinea pig sperm [69].  PH-20 is located 

in the postacrosomal region of the sperm head as well as within the acrosome.  In 

accordance with having two areas of localization, PH-20 appears to have two distinct 

functions and two independent roles in the sperm-egg interaction.  Despite being 

originally identified by a monoclonal antibody that blocks zona pellucida binding of 

acrosome reacted guinea pig sperm [70, 71], PH-20 has been found to also demonstrate 

hyaluronidase activity [72].  PH-20 is believed to be important in degrading hyaluronic 

acid during transit through the cumulus layer [73].  Thus the PH-20 molecules located on 

the postacrosomal surface are used during cumulus penetration, while those found within 

the acrosome participate in secondary binding to the zona pellucida [74].  However, 

spermatozoa from PH-20 knockout mice are still able to fertilize oocytes despite a 

delayed penetration of the cumulus layer indicating the potential involvement of another 

spermatozoa surface protein [75].   

 
Penetration of Zona Pellucida  

 After penetrating the cumulus layer the sperm comes in contact with another 

vestment of the oocyte, the zona pellucida.  The composition of the mammalian zona 
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pellucida matrix consists of three or four glycoproteins depending on the species.  The 

mouse zona pellucida is composed of three glycoproteins designated ZP1, ZP2, and ZP3 

while the zona pellucida of pig, cow, and dog have a different set of three glycoproteins: 

ZP2, ZP3, and ZP4.  The zona pellucida of rats, hamsters, and humans are composed of 

four glycoproteins: ZP1, ZP2, ZP3, and ZP4.  All of the heavily glycosylated zona 

pellucida glycoproteins have N- and O-linked glycans which contribute to the 

spermatazoa zona pellucida interaction and induction of the acrosome reaction [76].  The 

zona pellucida is the initial binding site of sperm to the oocyte, the main barrier to 

interspecies fertilization, and is the barrier to polyspermy.  

ZP3 is the primary binding site of capacitated and acrosome-intact sperm while 

ZP2 provides a secondary attachment site by binding to the inner acrosomal membrane.  

ZP2 holds the equatorial region of the sperm while ZP3 binding initiates the acrosome 

reaction.  The acrosome reaction enables penetration of the zona pellucida by releasing 

the acrosomal contents and exposing the inner acrosomal membrane [77, 78].  

Numerous proteins located on the sperm surface have been identified as possible 

candidates in primary and secondary binding to the zona pellucida.  Proteins involved in 

primary binding to the zona pellucida will be lost from the sperm as a consequence of 

acrosomal exocytosis because they are located on the principal segment of the plasma 

membrane overlying the sperm’s acrosome [74].  Sp56, spermadhesions, and 

galactosyltransferase (GalT) have all been identified as sperm proteins involved in 

primary zona pellucida binding with GalT satisfying most of the criteria expected of a 

ZP3 receptor [79].   

Sp56 is a 56-kDa peripheral membrane protein originally identified in mouse 
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sperm because of its ability to become covalently associated with purified mouse ZP3 

[80] or with 125I-labeled ZP3 glycopeptides [81].  Studies utilizing monoclonal 

antibodies specific for sp56 have localized the protein to the dorsal region of the mouse 

sperm head.  In addition, purified sp56 binds to zona pellucida of mouse eggs, and 

inhibits sperm-egg binding in vitro [74].  Additional sequence and localization studies 

indicated sp56 is present in the acrosomal contents [82]; therefore, sp56 appeared to not 

have an appropriate cell surface localization to participate in acrosome intact sperm 

binding to the zona pellucida.   However, it was discovered that some acrosomal 

components, including sp56, are released from the acrosomal matrix and become 

associated peripherally with the spermatozoa plasma membrane where it is available to 

interact with ZP3 [83-86]. 

 Spermadhesins are a family of small (12-16kDa) sperm-associated proteins that 

bind zona pellucida glycoproteins and are characterized mainly in boar sperm.  The 

majority of spermadhesin molecules are lost from the surface of sperm during 

capacitation, but many are retained and have been shown to bind to the zona pellucida 

[74].  However, further studies have shown spermadhesins to be located in the acrosomal 

contents and/or acrosomal membrane [87], thus not having an appropriate cell surface 

location to participate in acrosome-intact sperm binding to the zona pellucida [67]. 

 β 1-4 Galactosyltransferase (GalT) was the first sperm protein reported as a 

primary zona pellucida binding candidate.  GalT is found on the dorsal, anterior aspect 

of the sperm head and behaves as an integral membrane protein.  GalT is masked by 

epididymally secreted glycoconjugates on cauda epididymal sperm.  These 

glycoconjugates are shed from the sperm surface during capacitation, thus exposing 
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GalT and making it available to bind to its ligand on the zona pellucida.  Reagents that 

block GalT or the GalT-recognition site on the zona pellucida inhibit sperm-egg binding 

and blocking or removing the GalT-binding site on the zona pellucida destroys sperm 

binding activity [79].  Gene knockout studies resulting in GalT-null sperm show 

substantially reduced binding of soluble ZP3 and no ZP3-induced acrosome reaction.  

These findings implicate GalT as an essential ZP3 binding protein, thus functioning in 

ZP3 induced signaling [67].   

Sperm must remain transiently attached to the zona pellucida before penetration 

as they undergo the acrosome reaction.  Secondary binding involves ZP2 binding to 

specific receptors that are present on the inner acrosomal membrane.  At least two 

proteins found on the sperm have been proposed as candidates and they are PH-20 and 

acrosin [74].  

Acrosin is the sperm’s trypsin-like serine protease and is found within the 

acrosome of mammalian sperm.  Due to its location, acrosin is most likely to participate 

in secondary binding following the acrosome reaction.  The zona pellucida seems to 

regulate the activation of proacrosin (acrosin’s inactive form) to the biologically active 

form of acrosin [88].  Because of its demonstrated ability to bind to the zona pellucida 

and proteolytic activities [89-91], acrosin has been believed to be active in both sperm 

binding and penetration of the zona pellucida.   

 
Spermatozoa Acrosome Reaction 

The mammalian acrosome is a sac-like (vesicle) structure covering the anterior 

portion of the spermatozoa nucleus and consists of an inner acrosomal membrane (IAM) 

and an outer acrosomal membrane (OAM).  The contents of the acrosome consist of 
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glycohydrolases, proteinases, esterases, sulfatases, phosphatases, and phospholipases C 

and A2 [13].   The binding of the spermatozoa to ZP3 results in a sustained increase of 

calcium between the plasma membrane and the OAM of capacitated spermatozoa by 

activating calcium channels and other second messengers including cAMP and IP3 [13, 

52, 92 1996, 93, 94].  The increase in cAMP production results in activation of protein 

kinases (cAMP-dependent kinase, calcium and phospholipid kinases) while the increase 

in intracellular calcium concentration initiates a series of events resulting in the fusion of 

the sperm plasma membrane with the OAM and exocytosis of the acrosomal contents 

[13].   

 It is also noteworthy that enzymes located in the acrosome, phospholipase C and 

A2, are activated by calcium and are believed to have a critical role in acrosomal 

exocytosis.  The influx of calcium activates phospholipase C and phosphatidylcholine 

(PC)-specific phospholipase C, resulting in an increase in the production of 

diacylglycerol (DAG) which activates DAG-dependent protein kinase C.   

The interaction of a spermatozoa receptor with an agonist in combination with the 

calcium influx results in the activation of phospholipase A2.  The hydrolytic product of 

phospholipase A2 serves as a precursor in the generation of other second messengers 

leading to membrane fusion [13, 95]. 

Multiple isotypes of the PLC family have been shown to play a role in acrosomal 

exocytosis.  The phospholipase C-β1 (PLC-β1) signaling cascade and a tyrosine kinase 

receptor coupled to PLC-γ have been shown to interact with a G-protein coupled 

receptor located on spermatozoa plasma membrane during zona pellucida induced 

acrosomal exocytosis [76, 96].  The spermatozoa from PLC-δ4 knockout male mice are 
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unable to initiate the acrosome reaction resulting in small liters or males being 

completely sterile [97].  Increased levels of 1-phosphatidylinositol-3 (PI3) kinase are 

seen in response to zona pellucida binding resulting in accumulation of 

phosphatidylinositol-(3,4,5)-triphosphate (PIP3), which serves as a binding site for 3-

phosphoinositide-dependent protein kinase (PDK1) and mediates the activation of its 

downstream targets, AKT (protein kinase B) and PLC-ζ.  Both AKT and PLC-ζ were 

shown to be essential for acrosome reaction in the mouse [21, 98].  In addition to 

releasing the acrosomal contents, the acrosome reaction also results in the exposure of a 

new set of antigens on the surface of the spermatozoa head. 

 
Spermatozoa-Oocyte Plasma Membrane Interactions 

Candidate Sperm Ligands 

Primakoff et al. (1987) used a library of monoclonal antibodies (MAbs) directed 

against the guinea pig sperm plasma membrane and identified a sperm surface protein 

that is potentially required for sperm-egg fusion.  The PH-30 MAb recognized 

fertilin/PH-30 and was able to inhibit fusion.  The PH-30 MAb also immunoprecipitated 

a heterodimeric protein composed of two subunits: fertilin α (ADAM1) and fertilin β 

(ADAM2) [99-101].  These two subunits were sequenced and revealed three regions of 

interest: 1) a metalloprotease domain in the fertilin α subunit, 2) a disintegrin domain in 

both subunits, and 3) an amphipathic alpha helix region in the fertilin α subunit which is 

similar of the fusion peptides of some viruses [102, 103].   

Both subunits were later identified in other mammalian species: mouse [104], 

monkey [105], rabbit [106], and cattle [100], although some species (humans) may lack 

the fertilin α subunit  [107].   Cyritestin (ADAM3) was later identified in the mouse and 
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monkey [104, 108, 109].  Many other members of this new family of proteins were 

discovered and named the ADAM (A Disintegrin and A Metalloprotease domain) family 

because of the presence of a disintegrin and a metalloprotease domain [104].   

Over 30 members of the ADAM family have been identified in vertebrates while 

being expressed in a wide range of tissues and cell types.  Proteins of the ADAM family 

have a distinct domain structure: a signal sequence, prodomain, metalloprotease domain, 

disintegrin-like domain, cysteine-rich domain, an epidermal growth factor (EGF)-like 

repeat, and a transmembrane segment with a short cytoplasmic tail.  The disintegrin-like 

domains have homology to snake venom ligands for the integrin family of cell adhesion 

molecules, which suggest these sperm proteins have a role in cell adhesion [110-112].  

Many of the snake disintegrin peptides were shown to have a putative binding site 

consisting of a short loop formed by disulfide bonds at the base and an RGD (Arg-Gly-

Asp) sequence at its tip [113] and have been shown to induce parthenogenetic 

development in the bovine system [114]. 

In addition to the work performed by Primakoff et al., 1987, several functional 

studies have provided evidence that ADAM1, ADAM2, and ADAM3 participate in the 

sperm-oocyte interaction.  Antibodies to these proteins bind to sperm and inhibit 

fertilization in IVF assays [115, 116].  Recombinant forms of ADAM1, ADAM2, and 

ADAM3 bind to the mouse oocytes plasma membrane, and inhibit sperm-oocyte binding 

resulting in a reduction of fertilization [117-122].  Peptides corresponding to the 

ADAM2 disintegrin loop reduce fertilization by inhibiting sperm binding in the mouse 

[116, 123-127], and guinea pig [128].  The fertility of ADAM1, ADAM2, and ADAM 3 

knockout mice is all dramatically reduced due to the inability of sperm to migrate 
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through the oviduct and decreased sperm binding to the zona pellucida and oocyte 

plasma membrane [129-133]. 

CRISP glycoproteins are cysteine-rich epididymal secretory proteins absorbed 

onto the surface of the spermatozoa and have been proposed to be involved in 

capacitation and sperm-oocyte binding [134, 135].   Epididymal protein DE (CRISP1) is 

localized on the posterior region of the spermatozoa head and appears to have 2 different 

affinities.  The CRISP1 population that is weakly bound to the spermatozoa head is 

removed during capacitation and is hypothesized to play a role in this process by 

regulating protein tyrosine phosphorylation [136].  The CRISP1 population that is 

strongly bound is localized on the dorsal region of non-capacitated spermatozoa head 

and is involved in sperm binding to the zona pellucida prior to capacitation.  Once zona 

pellucida mediated capacitation occurs, CRISP1 migrates to the equatorial segment 

where it mediates sperm-oocyte fusion through the interaction of its S2 motif with an 

unknown partner on the oocyte plasma membrane. CRISP1 knockout mice are fertile but 

suffer from reduced zona pellucida penetration and fusion [137] while mice immunized 

against CRISP1 have reduced fertility [138].   In addition to CRISP1 it appears that 

additional CRISP proteins could be involved in mediating fertilization. The intra-

acrosomal testes specific CRISP2 protein also has been shown to play a role in sperm-

oocyte fusion when incubation of antibodies against CRISP2 resulted in the 

accumulation of spermatozoa in the perivitelline space of mouse oocytes during in vitro 

fertilization.  Zona-free fertilization studies showed that CRISP1 and CRISP2 compete 

for binding sites on the oocyte plasma membrane, indicating either a redundant or 

cooperative role in sperm-oocyte fusion [139, 140].   
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 IZUMO is a testis specific member of the immunoglobulin superfamily cell 

adhesion molecules (CAMs) and is located on the anterior acrosome and equatorial 

regions of acrosome reacted mouse and human spermatozoa [134, 141].  CAMs are 

known for their role in the immune response and are able to bind identical or similar 

members of the immunoglobulin family [142].  Male IZUMO knockout mice are 

infertile due to the inability of their sperm to fuse with oocytes and it appears that 

IZUMO plays a similar role in human gamete fusion as well [143].   IZUMO does 

associate with itself and other non-IZUMO proteins including tetraspanins in the 

formation of homoprotein and multiprotein membrane complexes and could function to 

stabilize such complexes on the spermatozoa membrane [141].  

The postacrosomal sheath WW domain-binding protein (PAWP) is an alkaline 

extractable protein localized to the postacrosomal sheath region of the perinuclear theca 

[144].  Microinjection of recombinant PAWP into bovine, porcine, and xenopus oocytes 

resulted in meiotic resumption and pronuclear formation while co-injection of a 

competitive PAWP derived peptide inhibited these same events [144].  Microinjection of 

recombinant PAWP in xenopus oocytes resulted in calcium release from intracellular 

stores in a manner similar to sperm-induced intracellular calcium release while both 

calcium release mechanisms were prevented by co-injection of PAWP derived 

competitive peptides or antibodies [144, 145]. 

 
Candidate Oolemma Receptors 

Integrins are a large family of heterodimeric cation-dependent transmembrane 

proteins composed of non-covalently linked α and β subunits.  Each subunit contains a 

large N-terminal extracellular domain, a transmembrane domain, and a short C-terminal 
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cytoplasmic domain. There are eighteen α and eight β subunits identified and these 

subunits combine to form 23 heterodimers.  The major function of integrins is to mediate 

cell-to-cell interactions and cell-to-substratum attachment even though they may mediate 

a variety of other cellular functions [146].  Integrins associate and interact with 

cytoskeletal proteins through the cytoplasmic domain of the β subunit and aggregate as 

focal adhesion sites [147].  These focal adhesion sites also contain signaling complexes 

involving focal adhesion kinase (FAK), integrin-linked kinase (ILK), molecules of the 

MAP kinase pathway, small GTPases (ras and rho), lipid kinases (PIP 5-kinase and PI3 

kinase), PIP2, PLC-y, serine/threonine kinases, phosphatases, and activation of focal 

adhesion sites can result in changes in intracellular pH and calcium concentration [148-

151]. 

Numerous integrin subunits, including α2, α3, α4, α5, α6, αV, α8, α9, α11, αM, β1, β2, 

β3, β5, and β7 have been detected in mammalian oocytes at the protein or mRNA level 

[123, 124, 152-159].  The interaction of human and hamster sperm with zona pellucida-

free hamster and human oocytes by RGD peptides implicated the involvement of the 

RGD-binding subfamily of integrins (α5β1 α8β1 αVβ1 αVβ3 αVβ5 αVβ6 αVβ8 αIIbβ3) [160, 

161].  Even though RGD peptides do have an inhibitory effect on the binding of 

recombinant fertilin β to mouse oocytes, they do not have a substantial inhibitory effect 

on mouse sperm-oocyte interactions [123, 124].   However, cyclic RGD-containing 

peptides were found to inhibit sperm-oocyte interaction in the mouse model in addition 

to stimulating the activation of PKC and cortical granual exocytosis [162].  Also in the 

mouse model, Baessler et al., 2009 illustrated that the β1 integrin subunit is intimately 

involved with the initial adhesion of the spermatozoa to the oocyte plasma membrane in 
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addition to mediating the subsequent attachment and fusion.  The involvement of the β1 

and α9 integrin subunits in murine fertilization was also shown using RNA interference 

and function blocking antibodies [163].  Bovine sperm-oocyte interactions have been 

shown to involve integrins, in particular the αV, α5, β1 and β3 subunits and may be 

mediated through cell surface receptors that contain RGD recognition sequences [164].  

Biochemical analysis has implicated αV and β1 integrins subunits on the pig oocytes in 

the recognition of pig sperm membrane proteins [157].  RGD containing peptides have 

also been shown to inhibit or block fertilization in amphibians [165].  There is evidence 

that integrins may not be sufficient for a full oocyte activation response [162]; however, 

they cannot be excluded as playing a critical role in mediating sperm-oocyte fusion and 

binding. 

Glycosyl phosphatidylinositol (GPI)-anchored protein is a glycolipid that anchors 

proteins by their C-terminal tail to the extracellular side of the plasma membrane.  The 

O-side of a GPI associates with DAG in the membrane via DAG’s inositol residue.  

They lack a cytoplasmic tail so their extracellular domain dictates their membrane 

targeting properties.  They participate in signaling cascades but it is unclear how they are 

able to transduce signals [166].  A glycosyl phosphatidylinositol (GPI)-anchored protein 

may be required for fertilization, because removal of GPI-anchored proteins treated with 

phosphatidylinositol-specific phospholipase C (PI-PLC) results in oocytes greatly 

inhibited in their ability to support sperm adhesion and fusion [167].  GPI knockout 

female mice also resulted in highly reduced infertility further implicating GPI 

involvement in sperm-oocyte interactions [168]. 

Members of the tetraspanin superfamily have been shown to form membrane 
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complexes with adhesion receptors from the integrin family [169, 170].  Tetraspanins 

CD9, CD53, CD63, CD81, CD82, and CD151 form integrin-tetraspanin complexes with 

numerous integrins [171].  The absence of the tetraspanin protein CD9 on the oocytes of 

knockout mice resulted in sperm bound to the oocyte membrane; however, the sperm 

had lost almost all of its ability to fuse [172-174].  Zona pellucida-free oocytes treated 

with anti-CD9 MAbs were reported to have reduced number of bound sperm [175], and 

also showed reduced levels of binding of the sperm ligands, ADAM3 [119], ADAM1 

[120], and ADAM2 [122].  However, CD9 knockout mice did conceive and give birth to 

pups on rare occasions [122].  Recently it was discovered that oocytes release CD9 

exosome-like vesicles that are transferred to the spermatozoa head and assist in 

spermatozoa-oocyte fusion [51, 176-178].  CD81 was localized in the zona pellucida of 

mouse oocytes with the deletion of the CD81 gene resulting in an inability of oocytes to 

fuse with sperm [178, 179].  Ohnami et al., 2012, concluded that CD9 and CD81 are 

both involved in spermatozoa-oocyte fusion and behave independently of one another.  

Jegou et al., utilized a recently developed biophysical approach to measure the strength 

of interaction between two live cells and found that CD9 was able to generate the 

strongest adhesion sites for spermatozoa. 

 
Oocyte Activation 

Membrane fusion triggers cellular responses in the oocyte, and prevents 

additional sperm that have penetrated the zona pellucida from fusing with the oocyte 

plasma membrane. The resulting signal transduction events “activate” the eggs and 

include the initiation of intracellular calcium oscillations, resumption of meiosis, and 

cortical granule exocytosis [180, 181].  It is accepted that the majority of these activation 
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events are directly related to calcium signaling cascades and the subsequent changes in 

particular protein kinase activities [56]. 

The release of sequestered calcium in response to fertilization involves an IP3 

evoked release of calcium from the endoplasmic reticulum.  The increase in IP3 

production is believed to be a result of the activation of a member of the PLC family of 

enzymes which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) 

to produce two common secondary messengers, DAG and IP3 [182].  DAG is able to 

activate PKC while IP3 binds to an IP3R channel on the endoplasmic reticulum, 

resulting in a conformational change to the receptor and a significant release of 

intracellular calcium.  A variety of hypotheses have been proposed in attempt to explain 

the initiation of these calcium oscillations including: 1) the contact (receptor-mediated) 

hypothesis or 2) the fusion (sperm factor) hypothesis.    

The contact or receptor mediated hypothesis predicts the interaction of a sperm 

ligand with a receptor on the oocyte plasma membrane activates a PLC isoform 

endogenous to the oocyte to generate the IP3.  If an oocyte specific PLC is involved, a 

characterization of the upstream pathway would paint a clearer picture of oocyte 

activation.  In many non-mammalian species PLC-γ is activated by Src family kinases 

shortly after fertilization and appears to be required for fertilization induced calcium 

oscillations in these species [182]; however, this has not been established in mammalian 

fertilization [56].  It would be worthwhile to review the Src Family Kinases in addition 

to the PLC family of enzymes in order to get a better understanding of potential players 

in the oocyte activation signaling cascade in response to ligand-receptor binding, 

including experimental evidence supporting or refuting their specific involvement in 
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mammalian fertilization. 

 
Src Family Kinases   

SFKs are rapidly activated following integrin-ligand interactions and 

subsequently activate downstream kinases and adapters [183-185].  SFKs are able to 

bind directly to β-integrin tails in a tail and SFK specific manner [183, 186, 187] in 

addition to binding and phosphorylating FAK and FAK-binding proteins. 

 SFKs include ten non-receptor tyrosine kinases (Abl, Blk, Fgr, Fyn, Hck, Lck, 

Lyn, Src, Yes and Yrk) that are similar in structure and function.  Src, Fyn, and Yes are 

ubiquitously expressed while the others show a more restricted pattern of expression 

[183, 188-191].  SFKs have a N-terminal myristoylation signal and a modular 

architecture consisting of 5 domains: the kinase unique N-terminal domain, the SH3 and 

SH2 protein interaction domains, the catalytic domain, and the C-terminal regulatory 

domain [188].  The myristoylation signal is critical for membrane localization and the 

unique N-terminal domain is the only non-conserved region within the SFKs.  Two 

tyrosine phosphorylation sites, an autophosphorylation site at Tyr417 in the catalytic 

domain and a Tyr527 site in the C-terminal domain regulate the catalytic activities of 

SFKs positively and negatively.  The SH3 domain binds to proline rich sequences and in 

so doing contributes to substrate recruitment, while also playing a critical role in the 

regulation of kinase activity [183, 190 1993, 192-196].  The SH2 domain also assists 

with protein-protein interactions by binding phosphotyrosine-containing sequences [183, 

190]. 

 Species that fertilize externally display intense activation of SFKs immediately 

after fertilization [188, 197-199].  The specific member of oocyte SFKs involved in this 
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activity vary from species to species and include Fyn in zebrafish and sea urchins [197, 

200], and Src in sea urchins, starfish, and Xenopus [198, 201, 202].  The SFK activation 

begins at a localized site of sperm binding and indicates that gamete interactions (ligand-

receptor mediated) and cell fusion initiate the SFK activation [188].  Sperm binding and 

fusion activates oocytes SFKs that phosphorylate and activates PLC-y in echinoderms 

and ascidians [203, 204], but the involvement of SFKs in mice activation does not 

appear to be essential [205].  Injection of recombinant c-Fyn into mouse oocytes resulted 

in oocyte activation and is believed to interact with the truncated c-kit tyrosine kinase of 

sperm to activate PLC-y [206, 207].  However, it appears that this pathway is different 

than the activation pathway that occurs in mice [182].  Abl [208], Src [197, 199], and 

Yes [209] are all active in vertebrate oocytes; however, correlating activities of 

vertebrate SFKs with invertebrate SFKs has proven to be challenging because of 

sequence diversity [188]. 

 FAK is a conserved, ubiquitously expressed 125 kDa scaffold protein that 

recruits cytoskeletal and signaling molecules.  FAK contains an N-terminal FERM 

domain, a central kinase domain, proline rich regions, and a C-terminal focal-adhesion-

targeting (FAT) domain.   The FERM domain facilitates a signaling linkage from 

receptor tyrosine kinases in addition to binding to and promoting integrin and FAK 

mediated activation of non-receptor tyrosine kinases [210].  Two proline-rich regions are 

found in the C-terminal domain that serve as binding sites for Src homology (SH)3 

domain containing proteins. Also located in the C-terminal domain is the FAT region 

which promotes the colocalization of FAK with integrins at focal adhesions via binding 

of integrin associated proteins paxillin and talin.   
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 When FAK is autophosphorylated at Tyr397, a motif forms that is recognized by 

proteins with SH2 domains including SFKs, PLC-γ, and PI3K.   Of the SFKs, Src 

binding is promoted after FAK Tyr397 autophosphorylation that results in a 

conformational activation of Src and a duel activated FAK-Src signaling complex.  

Within the complex Src then phosphorylates FAK at Tyr861 resulting in additional SH3-

domain mediated binding of the adaptor protein p130Cas to the proline rich regions in 

the C-terminal domain.  Activated Src also phosphorylates FAK at Tyr925, thus creating 

an SH2 binding site for the GRB2 adapter protein, which leads to activation of Ras and 

the ERk2/MAPK signaling cascade.  However, Src mediated transphosphorylation of 

FAK within the activation loop at Tyr576 and Tyr577 results in the maximum FAK 

catalytic activation [210]. 

 FAK and closely related PYK2 are found to be rapidly phosphorylated/activated 

after fertilization in the zebrafish and could serve as targets of SFKs in perpetuating the 

activation signaling cascade [211].  Activated FAK as also been found in localized pools 

in response to fertilization in zebrafish [188]. 

 
Phospholipase C family of enzymes 

In response to activation of receptors by neurotransmitters, hormones, growth 

factors and other molecules, phosphoinositide-specific phospholipase C (PLC) 

hydrolyzes phosphatidylinositol 4,5 bisphosphate (PIP2) to generate two second 

messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG).  Both second 

messengers initiate further signal transduction cascades with IP3 activating intracellular 

calcium release while DAG activates protein kinase C (PKC) [212-216].  A variety of 

PLCs with different molecular masses, isoelectric points, and calcium dependencies 
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have been discovered in a variety of different tissues and categorized into 6 classes 

based on structure and activity: PLC-β (1-4), PLC-γ (1and 2), PLC-δ (1, 3, and 4) PLC-

ε, PLC-ζ, and PLC-η (1 and 2) [216, 217].  Each isozyme family contains conserved 

domains as well as isozyme specific domains. All PLC isozymes contain catalytic X and 

Y domains in addition to isozyme specific regulatory regions including the pleckstrin 

homology (PH) domain, the C2 domain, and the EF-hand motif.  The isotype specific 

domains allow for subtype specific regulatory mechanism including the Ras-associating 

domain and Ras-GTPase exchange factor-like domain in PLC-ε and the src homology 

(SH) domain in PLC-γ [216].  Numerous alternative splicing variants for each PLC 

isotype have been found across multiple species, indicating an extremely complex level 

of additional regulation [217]. 

The family of PLC-β isozymes consists of 4 enzymes (1-4) and is characterized 

by the presence of an elongated C-terminus that contains many of the required sequences 

for G protein interaction, membrane binding, and nuclear localization.  PLC-β isozymes 

are regulated by heterotrimeric GTP-binding proteins and have a high ability to 

stimulated GTPase.  Typically PLC-β isozymes function in the cytoplasm as effector 

enzymes for transmembrane proteins containing seven transmembrane segments.  PLC-β 

isozymes are differentially expressed in a variety of tissues with PLC-β1 being the most 

abundant.  Overexpression of PLC-β1 in mice had a large effect on sperm-induced 

calcium oscillations by greatly reducing the total amount of calcium released and even a 

modest reduction in PLC-β1 protein levels significantly reduced the amplitude of the 

calcium oscillations in mice [218].  The authors stated that they only focused on PLC-β1 

and their results could not address or exclude the involvement of other oocyte derived 
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PLCs [218]. 

Two mammalian PLC-γ isozymes (1 and 2) have been identified and are 

characterized by the presence of two tandem Src homology 2 (SH2) domains and a Src 

homology 3 (SH3) domain flanked by a split PH domain.   PLC-γ isozymes are activated 

by growth factors, immune receptors, and integrins [216, 217].   In response to growth 

factor stimulation, the SH2 domains of PLC-γ1 mediate binding to the 

autophosphorylated tyrosine regions of the intracellular region of the receptor and are 

critical for membrane recruitment and tyrosine phosphorylation of PLC-γ1.  After 

recruitment to multi-molecular signaling complexes, both PLC-γ isozymes are 

phosphorylated by non-receptor tyrosine kinases from the Src, Syk, and Tec kinase 

families.  Both PLC-γ1 and PLC-γ2 have similar expression patterns, but appear to 

perform independent functions [217].  The involvement of PLC-γ in the oocyte 

activation signaling cascade in echinoderms and ascidians in addition to potential 

implications in the mouse model was stated earlier and will not be repeated here. 

The PLC-δ isozyme family (1, 3, and 4) has the simplest structure of all of the 

PLC isotype families and contains a PH domain, EF hand motif, X and Y domains, and a 

C2 domain which could explain the high homology among the three family members.  

The PLC-δ isozyme family is the most sensitive to intracellular calcium concentrations 

suggesting its activity to be tightly regulated by intra-cellular calcium levels.  PLC- δ1 

appears to play a role in cell cycle regulation [217, 219] in addition to have anti-

oncogene activity [220], and both PLC-δ1 and PLC-δ3 are essential for proper 

trophoblast development during formation of the placenta [221, 222].  PLC-δ4 in sperm 

plays a critical role in fertilization and oocyte activation as PLC-δ4 knockout mice suffer 
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from male infertility. Spermatozoa from PLC- δ4 knockout mice result in fewer 

activated oocytes with those oocytes being activated having delayed or no calcium 

oscillations at all [97].  In addition, the sperm from PLC-δ4 mice were unable to initiate 

the acrosome reaction demonstrating that PLC- δ4 functions in the zona pellucida 

induced acrosome reaction during mammalian fertilization [223, 224].  This was further 

evidenced by the ability of solubilized mouse zona pellucida to generate a sustained 

intracellular calcium increase in wild type sperm but was only able to generate a 

minimal calcium increase in PLC-δ4 null mice sperm [225].  These data indicate PLC-δ4 

plays a pivotal role in the generation of the calcium response in the sperm during the 

zona pellucida induced acrosome reaction. 

PLC-ε is the largest PLC isozyme and contains 2 domains not found in other 

PLC isozymes.  It contains RA domains in the C-terminus and a CDC25 homology 

domain located in the N-terminus.   The RA domains mediate the GTP dependent 

interaction with Ras family small G-proteins [226, 227] and the CDC25 homology 

domain functions as a guanine nucleotide exchange factor for one of the Ras family 

small G-proteins [228].  Based on these structural features, the role of PLC-ε is believed 

to mediate the interplay between Ras-mediated and PLC-dependent pathways.  PLC-ε is 

activated by growth factors, in particular EGF and PDGF, and is recruited into the 

plasma membrane by activated RAS through the R2 domain [226].  PLC-ε plays a role 

in the development of some organs and is involved in cell proliferation and tumor 

formation [229-234]. 

Recently, two PLC-η isozymes (1 and 2) were identified in mice and humans 

[230, 235, 236] and this family contains the PH domain, four EF-Hand motifs, catalytic 
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X and Y domains, and the C2 domain.  The function(s) of both PLC-η isozymes have yet 

to be elucidated; however, both PLC-η isozymes are found in neuron enriched areas of 

the brain indicating their potential involvement in neural regulation [217]. 

PLC-ζ was identified as a sperm specific PLC as a result of analyzing EST 

sequences from human and mouse testis.  It is the smallest mammalian PLC isozyme 

with a molecular weight of 70kDa and consists of the EF-hand motif, catalytic X and Y 

domains, and the C2 domain.  PLC-ζ has a high degree of sequence homology (64%) 

with PLC-δ1 in addition to sharing catalytic residues in the X domain, which indicates 

that the catalytic activation of PLC-ζ is similar to PLC-δ1.  PLC-ζ does not contain a PH 

domain like the other PLC isozymes so it is unclear how PLC-ζ can target PIP2, its 

membrane bound substrate [217].  PLC-ζ has been proposed to be the testis-specific, 

sperm borne activating factor (SOAF) that initiates oocyte activation after gamete fusion 

in support of the fusion hypothesis [237].   

Microinjection of PLC-ζ cRNA or recombinant protein into mouse oocytes 

results in intracellular calcium oscillations, activation and development [237, 238].   

Sperm from male mice with decreased expression of PLC-ζ due to RNA interference are 

able to fuse with oocytes and initiate calcium oscillations; however, the number of 

oscillations was reduced and no transgenic offspring were born [239].  PLC-ζ was also 

shown to be defective due to reduced protein levels or mutated forms in men suffering 

infertility [240, 241]. 

For a spermatozoa protein to be a viable SOAF candidate, many criteria must be 

met: 1) Protein specific to male germ cells and more particular is only expressed in 

elongating spermatids and spermatozoa; 2) Triggers cortical granule exocytosis, 
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pronuclear development, and cleavage; 3) Ability to induce repetitive calcium 

oscillations; 4) Not species specific; 5) During the early stages of fertilization should be 

localized to the postacrosomal sheath of the spermatozoa perinuclear theca; 6) Soluble 

and released into cytoplasm of oocyte upon fusion [242, 243].  Unfortunately PLC-ζ 

fails to fulfill all of these requirements so its function as the SOAF needs to be taken into 

question. 

PLC-ζ expression has also been shown not to be testes specific, as PLC-ζ 

expression has been detected in mouse brain [244] in addition to the ovary and brain of 

the puffer fish [245].  Aarabi et al., [246] recently demonstrated that PLC-ζ is actually 

secreted by the epididymis as a component of the acrosome during mouse 

spermatogenesis. Nevertheless, a novel function of PLC-ζ might be required for 

spermatogenesis, as PLC-ζ knockout mice seem unable to complete spermatogenesis 

with spermatocytes failing to develop beyond elongation [247], although the specificity 

of these effects needs to be evaluated in more detail. 

By removing all sperm membranous and acrosomal components with the non-

ionic detergent, Triton X-100, the SOAF has been shown to be localized to the 

perinuclear theca (PT) [248-250], and actually more precisely localized to the 

postacrosomal sheath of the perinuclear theca (PAS-PT) which is the region of the PT 

that is first solubilized on sperm entry into the ooplasm [242].  Consequently the SOAF 

should be non extractable by non-ionic detergents and localized to the PT, two 

requirements that the 74 kDa catalytically active form of PLC-ζ failed to meet [242].   

PLC-ζ was originally believed to be localized to the part of the spermatozoa head 

that first enters the egg [251]; however, it was recently shown that PLC-ζ disappears 



	   	    

	  

27 

from the sperm head when it fuses with the oocyte plasma membrane and subsequent 

incorporation into the oocyte [242].  Reports also suggest that PLC-ζ undergoes dynamic 

changes in its pattern of localization in the spermatozoa of mice [252], hamster [252], 

and humans [253]. For example, it was demonstrated that PLC-ζ displays variable 

localizations in the sperm head, including the equatorial segment and the post-acrosomal 

regions, and it was suggested that these distinct localizations may reflect a different 

functional status of the sperm, i.e. capacitation and acrosome reaction, and that PLC-ζ 

may be involved in some of these physiological steps. However, to date, there is no 

supporting data to implicate PLC-ζ in these steps.  

 Microinjection of PLC-ζ cRNA into oocytes to overexpress PLC-ζ protein has 

been a common technique used to illustrate the ability of PLC-ζ to induce fertilization-

like calcium oscillations and oocyte activation.   There is an inherent flaw with this 

technique in that non-physiological amounts of protein are expressed, so how can one 

rule out the response is not non-physiological?  Igarashi et al. [218] found that 

microinjecting PLC-β1 cRNA into mouse eggs significantly altered the sperm-induced 

oscillations and the authors wondered that if PLC-ζ was the sole activating factor, how 

could an oocyte specific PLC affect the pattern.  This provides evidence that a PLC 

endogenous to the oocyte might also be involved in initiation of calcium oscillations. 

Retrospective studies involving men with globozoospermia [240, 241] concluded 

their infertility was due to reduced or defective PLC-ζ protein levels.  As stated in 

Aarabi et al. [246] many other sperm proteins are also affected or absent in these 

patients, so in this case there is no direct experimental evidence indicating the reduced 

levels or mutated forms of PLC-ζ are the actual cause of the infertility.  Association does 
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not mean causation. 

The studies that used transgenic RNAi methods to decrease the amount of PLC-ζ 

in male mice, concluded that since no transgenic offspring were found, none of the PLC-

ζ deficient sperm were able to activate oocytes [239].  In light of the recent findings that 

PLC-ζ might play a role in the acrosome reaction and is absent from the sperm head at 

fertilization, it is possible to conclude that no transgenic offspring were born because 

none of the PLC-ζ deficient sperm were able to undergo the acrosome reaction.  

 
Summary 

Much as been said regarding the molecular players involved in mediating 

spermatozoa-oocyte interactions and I believe there is yet much, much more to be said 

on the matter.  Some facts are certain, in particular, the vital role calcium plays as a 

secondary messenger in many of the numerous events of mammalian fertilization 

leading up to and culminating in the formation of a zygote.  However, it appears that for 

every experiment implicating the involvement of a spermatazoa or oocyte membrane 

protein, there is another experiment or set of experiments proving why the previously 

implicated protein is no longer “the” candidate or essential for binding or fusion or 

oocyte activation.  The same can be said regarding the proposed mechanism(s) by which 

fertilization initiates calcium oscillations and embryonic development.  Successful 

fertilization most likely includes the involvement of a multitude of protein complexes 

with multiple layers of redundancy, both on the oocyte and spermatozoa, to ensure a 

high probability of success.  Additional characterization of some of the implicated 

molecular players will add a little more clarity to the complex picture of mammalian 

fertilization in particular, gamete binding, fusion, and oocyte activation. 
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Research Goals and Possible Applications of Project 

The focus of my research included three primary objectives in characterizing the 

molecular factor(s) involved in bovine fertilization.  They are: 

1) Characterize which integrin subunits on the oocyte plasma membrane are 

involved in spermatozoa binding and fusion in the bovine model. 

2) Elucidate the involvement of FAK as a signaling molecule downstream of 

integrin signaling in bovine fertilization. 

3) Determine if any of the PLC enzymes endogenous to the bovine oocyte are 

involved in the oocyte activation signaling cascade. 

A more complete understanding of the molecular factors involved in fertilization 

could have beneficial impacts for human fertility and assisted reproduction.    

Overcoming human infertility problems due to the failure of spermatozoa-oocyte 

interactions [134] in addition to targeting the involved proteins for use in contraceptive 

therapy are highly plausible outcomes.   

Another potential outcome is improved efficiency associated with animal somatic 

cell nuclear transfer (scNT).  Currently the nuclear donor cell is fused with the oocyte 

plasma membrane via electrofusion and the resulting nuclear transfer couplet is 

subjected to chemical activation.  Both electrofusion and chemical activation are non-

physiologic events and could have long lasting negative impacts on embryo survival.  A 

better understanding of spermatozoa-oocyte fusion and the oocyte activation signaling 

cascade could lead to a more natural method of fusing the donor cell with the oocyte, in 

addition to a more natural way of inducing oocyte activation and embryonic 

development.  The technology of somatic cell nuclear transfer has a great potential of 
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producing transgenic animals for biopharmaceutical production and use as animal 

models for human disease, rescuing endangered species, and producing stem cells to 

name a few.   Improving the efficiency of scNT will allow for increased advancements 

and benefits of the technology. 
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CHAPTER 2 

 THE INVOLVEMENT OF INTEGRINS, IN PARTICULAR THE αV AND β1 

SUBUNITS, ON THE BOVINE OOCYTE VITELLINE  

MEMBRANE IN BOVINE FERTILIZATION 

 
Abstract 

Integrins are heterodimers composed of two subunits, alpha (α) and beta (β), and 

facilitate cell migration and attachment to the extra-cellular matrix, mediate cell-cell 

adhesion, and act as two-way signaling molecules. Integrins located on the vitelline 

membrane of bovine oocytes have been implicated in mediating the sperm-oocyte 

interaction [164, 254] and the identity of the specific integrin subunits present on the 

bovine oocyte has also been determined (αV, α2, α4, α5, α6, β1, and β3) [255, 256]. 

Anti-integrin function blocking antibodies and immunofluorescence were utilized to 

reveal which specific integrin subunits are involved in mediating the sperm-oocyte 

interaction during bovine fertilization. Zona-free oocytes were pre-incubated with 

function blocking antibodies specific for the integrin subunits located on the vitelline 

membrane of bovine oocytes and subsequently fertilized and cultured in vitro according 

to our standard laboratory procedures [257]. The oocytes pre-incubated with the function 

blocking antibodies for the αV and β1 subunits had significantly lower cleavage rates, 

pronuclei formation and oocytes exhibiting calcium transients (p < 0.05) compared to all 

other treatment groups.  Immunofluorescence also confirmed the recruitment of αV and 

β1 and not α2, α4, α5, α6, or β3 integrin subunits to the site of spermatozoa binding in 

bovine oocytes in response to sperm binding to the vitelline membrane.  However, 

despite the fact that the integrin α5 subunit was not shown to aggregate in the oocyte 
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plasma membrane at the site of sperm binding, it was only localized to the equatorial 

segment of acrosome reacted sperm during membrane binding.  These data are 

compelling evidence that the αV and β1 integrin subunits are essential for fertilization in 

the bovine and could form the integrin heterodimer involved in the sperm-oocyte 

interaction. 

 
Introduction 

 Fertilization is an essential step for all life and the process by which cells from 

two different parents combine to create unique offspring.  In order for fertilization to 

occur, a single sperm cell must penetrate the oocyte, their DNA must combine, and a 

cascade of intracellular reactions must occur to initiate division and growth.  The oocyte 

is surrounded by a protective structure called the zona pellucida (ZP).  The sperm first 

binds to the ZP that initiates the acrosomal reaction and as a result releases hydrolases 

and other digestive enzymes that create a channel through the ZP for the sperm to enter.  

Once the sperm enters the perivitelline space it fuses with the oocyte plasma membrane 

and is engulfed by the oocyte.   

 Fusion of the gametes is marked by the resumption of meiosis, transient calcium 

[Ca²+] oscillations, and expulsion of the second polar body.  In all species studied thus 

far transient Ca²+ release from intracellular stores is mandatory for resumption of the cell 

cycle [182].  Once these processes have occurred the oocyte is “activated” and becomes 

a developing zygote.  

   The factors responsible for fusion as well as activation of the oocyte have not 

been identified; however, several families of proteins have been implicated as possible 

players, and one such group is the integrin family.  Integrins are heterodimeric 
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transmembrane proteins composed of an alpha (α) and beta (β) subunit and are located 

on the vitelline membrane of mammalian oocytes [258].  Integrins facilitate cell-cell 

recognition and have been found to mediate oocyte activation in the bovine model [164].   

 Five α subunits (α2, α4, α5, α6, and αV) and two β subunits (β1 and β3) have 

been found on the bovine oocyte [255, 256]. It is possible that one or both subunits 

mediate the fusion and/or activation of the oocyte.  Bovine sperm-oocyte interactions 

have been shown to involve integrins, in particular the αV, α5, β1 and β3 subunits and 

may be mediated through cell surface receptors that contain RGD recognition sequences 

[164].  The deactivation of subunits through the use of functional blocking antibodies 

has been used to study the importance of integrins in other species, and this study uses a 

similar approach to demonstrate the involvement of integrins in bovine fertilization. 

 
Materials/Methods 

Oocyte Collection and In Vitro Maturation (IVM) 

 All reagents were purchased from ICN Biomedicals Inc. (Irvine, CA) unless 

otherwise stated.  All procedures were performed according to published methods 

routinely used in this laboratory [1]. Bovine oocytes were collected from a local abattoir 

(E.A. Miller, Hyrum, UT).  Oocytes from follicles 3-8 mm in size were aspirated into 

50-ml centrifuge tubes using an 18-gauge needle attached to a vacuum pump.  Oocytes 

with uniform cytoplasm and intact multiple layers of cumulus cells were selected and 

washed with PB1+ (phosphate-buffered saline with Ca2+ and Mg2+ plus 5.55 mM 

glucose, 0.32 mM sodium pyruvate, 3 mg/ml BSA).  Oocytes were transferred into 500 

µL of maturation medium, M199, containing 10% fetal bovine serum (FBS; Hyclone 

Laboratories, Logan, UT), 0.5 µg/ml FSH (Sioux Biochemicals, Sioux City, IA), 5 
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µg/ml LH (Sioux Biochemicals), 100 units/ml penicillin (Life Technologies, Grand 

Island, NY), and 100 µg/ml streptomycin (Life Technologies) in four-well culture dishes 

(Nunc, Milwaukee, WI) and cultured at 39°C in a humidified atmosphere of 5% CO2 and 

air for 18 h. After the maturation period, oocytes were vortexed for 4 min in a 15-ml 

conical centrifuge tube containing 1 ml PB1+ stock (without BSA) medium containing 

10 mg/mL hyaluronidase to completely remove cumulus cells.  After cumulus cell 

removal, zonae pellucidae were removed from the cumulus-free mature oocytes by 

incubation in 600 µL drops of 0.33% pronase (Fluka, Milwaukee, WI) in PB1+ Stock on 

a shaker at 100 RPM for 15 minutes.  Zona-free oocytes were collected from the drop, 

washed thoroughly in PB1+, and returned to 500 µL of fresh maturation medium for 6 

hours at 39ºC in a humidified atmosphere of 5% CO2 and air to recover.   

 
In Vitro Fertilization 

 Oocytes were collected and matured according to methods previously described. 

Twenty-four-hour IVM bovine oocytes were subjected to our standard in vitro 

fertilization protocol [257].  Cryopreserved bovine semen (Hoffman AI, Logan, UT) was 

thawed and live sperm were separated by centrifugation on a 45%/90% layered Percoll 

gradient. Sperm was capacitated with heparin and acrosome reacted with 

lysophosphatidylcholine according to published procedures [259].  Treatment groups 

included a 2-hour incubation prior to fertilization with no antibody, and either the α2, α4, 

α5, α6, αV, β1, and β3 function blocking antibodies at a concentration of 5 µg/ml.  Zona 

free in vitro matured oocytes were randomly separated into the treatment groups and 

fertilized in vitro for 18-20 h at 39°C in 5% CO2 and air.  After the fertilization period, 

oocytes were vortexed for 2 minutes 40 seconds in a 15-ml conical centrifuge tube 
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containing 1 ml PB1+ medium to completely remove unbound sperm. Presumptive 

embryos were co-cultured on a monolayer of bovine cumulus cells in CR1aa medium 

containing 3% FBS at 39°C in 5% CO2 and cleavage was determined 24 hours after 

removal of sperm. 

 
Analysis of Pronuclei Formation 

             Bovine oocytes were fertilized in vitro according to protocols described above 

with the appropriate inhibitor and control.  After 5 hours, unbound sperm were removed 

by vortexing vigorously for 2 minutes 40 seconds.   Embryos were rinsed well through 

drops of PB1+ and stained in a solution of PB1+ containing 1 µg/mL Hoechst 33342 for 

20 minutes at 37°C.  After staining, embryos were rinsed again through 8 drops of PB1+ 

and observed by fluorescence microscopy to evaluate pronuclear formation.  

 
Calcium Indicator Fura-2 AM Loading 

 Oocytes were loaded with Ca2+ indicator by incubation in 2 µM Fura-2 AM ester 

(Molecular Probes Inc., Eugene, OR) and 0.02% Pluronic F-127 (Molecular Probes Inc.) 

in Ca2+- and Mg2+- free phosphate buffered saline (Hyclone Laboratories) containing 

0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/ml BSA, and 100 µM EGTA at 

39°C in darkness for 45 minutes.  After loading indicator, oocytes were washed 

extensively with PB1- (phosphate-buffered saline without Ca2+ and Mg2+ plus 5.55 mM 

glucose, 0.32 mM sodium pyruvate, 3 mg/ml BSA) and maintained in this solution at 

39°C until use. 

 
Measurement of intracellular Ca2+ transients 
 
 Fura-2 indicator was loaded, as described above, and Ca2+

i levels were measured 
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after fertilization.  Sperm were prepared as described above, after which a 50-µL drop of 

Fert-talp containing PHE, heparin, and sperm was made in the center of a 35-mm dish 

(Beckton Dickinson, Franklin Lakes, NJ) and overlaid with mineral oil.  Microinjected 

oocytes were visualized in groups of 8-10.  The plate was placed in an incubator at 39ºC 

in a humidified atmosphere of 5% CO2 and air for 5 hours.  At this point the dish was 

removed from the incubator and visualized over a 2-hour period to observe Ca2+ 

transients on an a Nikon Diaphot inverted microscope, coupled with a Hamamatsu 

ORCA-ER digital camera and analyzed on Metafluor Imaging Series 7.6 software 

(Universal Imaging Corp, Downingtown, PA).  

 
Immunofluorescence 

Oocytes were placed in PBS with 4% formaldehyde (fixative) for 30 minutes at 

4°C, washed in PBS with 0.05% Tween 20 (PBST) for 30 minutes at room temperature, 

permeabilized in PBS with 1% Triton X-100 for 30 minutes at room temperature, and 

transferred to blocking buffer consisting of PBST with 1% BSA and incubated overnight 

at 4°C.  Oocytes were incubated with the appropriate primary antibodies for 3 hours at 

37°C, washed with PBST for 30 minutes at room temperature, incubated with the 

appropriate secondary antibodies for 2 hours at 37°C, washed with PBST for 30 minutes 

at room temperature, and oocytes were transferred to slides with drops of Vectashield 

Hard Set mounting medium containing DAPI and covered with a cover slip.  All samples 

were viewed on a Zeiss Axioobserver equipped with a Vivatome module and an 

Axiocam MRm camera. 
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Statistical Analysis 

Data were pooled from three replicates per group.  Chi-square analysis was used 

to determine differences in cleavage, pronuclei formation, and intracellular calcium 

release.  Unless otherwise noted, a probability of p<0.05 was considered statistically 

significant.  

 
Results  
 
Effect of Integrin Function Blocking Antibodies 
on Bovine In Vitro Fertilization 
 
 The results indicate the involvement and importance of the αV and β1 integrin 

subunits in bovine fertilization.  Compared with all other treatment groups, there was a 

significant reduction (p<0.05) in cleavage for the oocytes incubated with the αV or β1 

function blocking antibodies (Fig. 2-1).  Blocking the α4, α5, and β3 integrin subunits 

also resulted in a significant reduction in cleavage compared to the IVF control, but not 

to the extent of the αV or β1 subunits (p<0.05). 

 
Effect of Integrin Function Blocking Antibodies 
on Pronuclei Formation 
 

Oocyte incubation with αV or β1 function blocking antibodies resulted in a 

significant decrease (p<0.05) in pronuclei formation, consequently providing additional 

evidence that the αV and β1 integrin subunits are involved in the fusion of sperm and 

oocyte in bovine fertilization (Fig. 2-2).  The α5 and β3 function blocking antibodies 

also resulted in a significant decrease (p<0.05) in pronuclei formation compared to the 

IVF control, but had less of an effect than the αV or β1 function blocking antibodies. 
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FIG 2-1.  Percent cleavage of IVF embryos treated with anti-integrin antibodies and 
incubated with sperm for 18 hrs.  Values represent the mean (n=3) and unlike 
superscripts are statistically significant p<0.5. 
 
 
Effect of Integrin Function Blocking Antibodies 
on Intracellular Calcium Release in  
Bovine Oocytes 
 

Incubation of oocytes with anti-integrin αV and β1 function blocking antibodies 

during IVF also resulted in significantly lower numbers of oocytes (p<0.05) responding 

with calcium transients compared to the IVF and control (Table 2-1). 

 
 



	   	    

	  

71 

 
FIG 2-2.  Percentage of oocytes with two pronuclei after incubation with anti-integrin 
antibodies and incubated with sperm for 6 hrs.  Values represent the mean (n=3) and 
unlike superscripts are statistically significant p<0.05. 
 
 
Table 2-1. Percentage of oocytes responding with intracellular calcium transients after 
incubation with anti-integrin antibodies and incubated with sperm for 6 hrs. Values 
represent the mean (n=3) and unlike superscripts are statistically significant p<0.05. 

Treatment 
Number of oocytes responding 
with an intracellular calcium 

release 
Total number of oocytes 

IVF control 36 (72.0 %)a 50 
Alpha-2 29 (69.0%)ab 42 
Alpha-6 27 (67.5%)abc 40 
Alpha-4 20 (50.0%)bcd 40 
Alpha-5 18 (46.2%)cd 39 
Beta-3 17(41.5%)d 41 
Beta-1 7 (21.2%)e 40 
Alpha-V 8 (19.0%)e 42 
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Localization of Integrin subunits of αV and β1 
to Site of Spermatozoa Binding to Oocyte  
Vitelline Membrane 
 

The localization of αV and β1 integrin subunits on the vitelline membrane at the 

site of spermatozoa binding can be seen in Fig. 2-3A and 2-3B, respectively.  Despite the 

fact that the integrin α5 subunit was not shown to aggregate in the oocyte plasma 

membrane at the site of sperm binding, it was localized to the equatorial segment of 

acrosome reacted sperm during membrane binding (Fig. 2-3C).  All together these data 

are strong evidence that integrins are involved in bovine fertilization. 

 
FIG 2-3.  Fluorescent images of integrin subunits αV (3A) and β1 (3B) at the level of the 
vitelline membrane localized to the site of spermatozoa binding and α5 (3C) only 
localized to the equatorial segment of spermatozoa. 
 
 
Discussion 
 

Integrins are a large family of heterodimeric cation-dependent transmembrane 

proteins composed of non-covalently linked α and β subunits.  Each subunit contains a 

large N-terminal extracellular domain, a transmembrane domain, and a short C-terminal 

cytoplasmic domain. There are eighteen α and eight β subunits identified and these 

subunits combine to form 23 heterodimers.  The major function of integrins is to mediate 

cell-to-cell interactions and cell-to-substratum attachment even though they may mediate 

a variety of other cellular functions [146].  In the mouse model, Baessler et al., 

illustrated that the β1 integrin subunit is intimately involved with the initial adhesion of 

3A 3C 3B 
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the spermatozoa to the oocyte plasma membrane in addition to mediating the subsequent 

attachment and fusion [260].  The involvement of the β1 and α9 integrin subunits in 

murine fertilization was also shown using RNA interference and function blocking 

antibodies [163].  Bovine sperm-oocyte interactions have been shown to involve 

integrins, in particular the αV, α5, β1 and β3 subunits and may be mediated through cell 

surface receptors that contain RGD recognition sequences [164].  Biochemical analysis 

has implicated αV and β1 integrins subunits on the pig oocytes in the recognition of pig 

sperm membrane proteins [157]. 

Membrane fusion triggers cellular responses in the oocyte, and prevents 

additional sperm, that have penetrated the zona pellucida, from fusing with the oocyte 

plasma membrane. The resulting signal transduction events “activate” the eggs and 

include the initiation of intracellular calcium oscillations, resumption of meiosis, and 

cortical granule exocytosis [180, 181].  It is accepted that the majority of these activation 

events are directly related to calcium signaling cascades and the subsequent changes in 

particular protein kinase activities [56]. 

The release of sequestered calcium in response to fertilization involves an IP3 

evoked release of calcium from the endoplasmic reticulum. A variety of hypotheses have 

been proposed in attempt to explain the initiation of these calcium oscillations including: 

1) the contact (receptor-mediated) hypothesis or 2) the fusion (sperm factor) hypothesis.   

The contact or receptor mediated hypothesis predicts the interaction of a sperm ligand 

with a receptor on the oocyte plasma membrane activates a PLC isoform endogenous to 

the oocyte to generate the IP3.   

The incubation of oocytes with anti-integrin function blocking antibodies 



	   	    

	  

74 

decreased the ability of spermatozoa to fertilize the oocytes; however, a complete 

blockage did not occur.  A common interpretation of this result is that integrins are not 

required for bovine fertilization since some oocytes were successfully fertilized.  

However, this result could also be explained considering the concept that spermatozoa 

were able to “out-compete” the function-blocking antibody over time.   This theory is 

supported by the pronuclei data and calcium data illustrating the ability of the function 

blocking antibodies to block sperm effectively over a shorter time period.  The antibody 

could also easily be denatured over the 18-20 hour IVF period and consequently allow 

more oocytes to be fertilized.  Integrins are known to interact with other integrins in 

addition to membrane proteins including tetraspanins, Ig superfamily receptors and GPI 

anchored proteins, which also have been shown to be involved with the process of 

fertilization in a variety of species [166, 261-263].  From an evolutionary aspect, it 

would make sense to have redundancy and multiple proteins (ligands and receptors) 

involved to ensure the highest probability of success for such a critical process leading to 

propagation of the species. 

  It is clear that the αV and β1 integrin subunits located on the bovine oocyte 

vitelline membrane contribute to the spermatozoa binding/fusion process.  It appears that 

the α5 integrin subunit is localized to the equatorial region of acrosome reacted sperm, 

which confirms the findings of Thys et al., 2009.  Integrin α5 didn’t localize on the 

oocyte plasma membrane at the site of spermatozoa binding and fusion to the oolemma; 

however this doesn’t preclude a potential role of integrin α5 located on the spermatozoa 

in initiating the spermatozoa-oocyte binding events [256].  These results provide 

evidence that spermatozoa interact with integrins, known “outside-in” signaling 
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complexes, at the level of the vitelline membrane in bovine oocytes.   These events could 

serve as the initiation of signaling cascades associated with bovine oocyte activation and 

require further investigation.  
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CHAPTER 3 

EVIDENCE OF INVOLVEMENT OF FOCAL ADHESION KINASE 

 IN BOVINE FERTILIZATION 

 
Abstract 

 Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2, is 

localized to focal adhesions and is a key component of signal transduction pathways 

mediated by integrins. The clustering of integrins at focal contacts results in activation of 

FAK and the subsequent assembly of signaling complexes including SRC family 

kinases. Because integrins have been implicated in bovine fertilization and activation 

[164, 254], the investigation of the involvement of FAK is an essential step for 

elucidating the molecular mechanisms involved in bovine fertilization and activation.  

The presence of FAK at the mRNA and protein levels in bovine oocytes was verified by 

real time PCR (qPCR) and immunoprecipitation and the localization of FAK at the site 

of sperm binding to the oocyte plasma membrane was verified using 

immunohistochemistry.  Small interfering RNA (siRNA) duplexes directed against 

bovine FAK, and known FAK inhibitors FAK I and FAK II, were microinjected into 

bovine oocytes at various concentrations and the resulting effects on FAK mRNA and 

protein levels, intracellular calcium release, and embryo development were evaluated.  

FAK I inhibitor, FAK II inhibitor, all resulted in lower cleavage rates and a decrease in 

the number of oocytes responding with calcium transients.  The sham and scrambled 

FAK sequence siRNA control microinjections had no effect on fertilization while the 

microinjection of the FAK siRNA did result in significantly lower cleavage rates and the 

FAK siRNA treatment group was not significantly different than the no sperm control.  
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The microinjection of FAK siRNA resulted in lower levels of FAK mRNA transcript 

while western blot analysis indicated a decrease in the relative levels of FAK protein 

corresponding to a decrease in mRNA levels after microinjection with the FAK siRNA. 

Neither the FAK siRNA nor inhibitors acted at the level of the zona pellucida or the 

plasma membrane, as indicated by sperm-oocyte penetration rates equal to controls.  

These data are compelling evidence that FAK is involved in bovine activation and 

fertilization. 

 
Introduction 

Integrins are a large family of heterodimeric cation-dependent transmembrane 

proteins composed of non-covalently linked α and β subunits.  Each subunit contains a 

large N-terminal extracellular domain, a transmembrane domain, and a short C-terminal 

cytoplasmic domain. There are eighteen α and eight β subunits identified and these 

subunits combine to form 23 heterodimers.  The major function of integrins is to mediate 

cell-to-cell interactions and cell-to-substratum attachment even though they may mediate 

a variety of other cellular functions [146].  Integrins associate and interact with 

cytoskeletal proteins through the cytoplasmic domain of the β subunit and aggregate as 

focal adhesion sites [147].  These focal adhesion sites also contain signaling complexes 

involving focal adhesion kinase (FAK), integrin-linked kinase (ILK), molecules of the 

MAP kinase pathway, small GTPases (ras and rho), lipid kinases (PIP 5-kinase and PI3 

kinase), PIP2, PLC-γ, serine/threonine kinases, phosphatases, and activation of focal 

adhesion sites can result in changes in intracellular pH and calcium concentration [148-

151]. 

The interaction of human and hamster sperm with zona pellucida (ZP)-free 
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hamster and human oocytes by RGD peptides implicated the involvement of the RGD-

binding subfamily of integrins [160, 161].  Even though RGD peptides do have an 

inhibitory affect on the binding of recombinant fertilin β to mouse oocytes, they do not 

have a substantial inhibitory effect on mouse sperm-oocyte interactions [123, 124].   

However, cyclic RGD-containing peptides were found to inhibit sperm-oocyte 

interaction in the mouse model in addition to stimulating the activation of PKC and 

cortical granule exocytosis [162].  Also in the mouse model, Baessler et al., 2009 

illustrated that the β1 integrin subunit is intimately involved with the initial adhesion of 

the spermatozoa to the oocyte plasma membrane in addition to mediating the subsequent 

attachment and fusion [260].  The involvement of the β1 and α9 integrin subunits in 

murine fertilization was also shown using RNA interference and function blocking 

antibodies [163].  Bovine sperm-oocyte interactions have been shown to involve 

integrins and may be mediated through cell surface receptors that contain RGD 

recognition sequences [114, 164, 254].  

FAK is a conserved, ubiquitously expressed 125 kDa scaffold protein that 

recruits cytoskeletal and signaling molecules to focal adhesions at the site of integrin 

clustering [183].  FAK contains an N-terminal four-point-one, ezrin, radixin, moesin 

(FERM) domain, a central kinase domain, proline rich regions, and a C-terminal focal-

adhesion-targeting (FAT) domain.  The FERM domain facilitates a signaling linkage 

from receptor tyrosine kinases in addition to binding to and promoting integrin and FAK 

mediated activation of non-receptor tyrosine kinases including Src and 

phosphatidylinositol 3-kinase (PI3-kinase) [210].  Two proline-rich regions are found in 

the C-terminal domain that serve as binding sites for Src homology (SH)3 domain 
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containing proteins. Also located in the C-terminal domain is the FAT region which 

promotes the co-localization of FAK with integrins at focal adhesions via binding of 

integrin associated proteins paxillin and talin.  FAK and closely related PYK2 are found 

to be rapidly phosphorylated/activated after fertilization in the zebrafish and could serve 

as targets of SFKs in perpetuating the activation signaling cascade [211].  Activated 

FAK has also been found in localized pools in response to fertilization in zebrafish 

[188].    

An inquiry into the involvement of FAK in bovine fertilization is merited based 

on the evidence illustrating integrin involvement in fertilization and the previously 

characterized recruitment of FAK as a signaling molecule to the site of integrin 

clustering. 

 
Materials and Methods 

All reagents were purchased from MP Biomedicals LLC (Solon, OH) unless 

otherwise stated. 

 
Oocyte Collection and In Vitro Maturation (IVM) 

All procedures were performed according to published methods routinely used in 

this laboratory [164]. Bovine oocytes were collected from a local abattoir (E.A. Miller, 

Hyrum, UT). Oocytes from follicles 3-8 mm in size were aspirated into 50-ml centrifuge 

tubes using an 18-gauge needle attached to a vacuum pump. Oocytes with uniform 

cytoplasm and intact multiple layers of cumulus cells were selected and washed with 

PB1+ (phosphate-buffered saline with Ca2+ and Mg2+plus 5.55 mM glucose, 0.32 mM 

sodium pyruvate, 3 mg/ml BSA). Oocytes were transferred into 500 mL of maturation 
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medium, M199, containing 10% fetal bovine serum (FBS; Hyclone Laboratories, Logan, 

UT), 0.5 mg/ml FSH (Sioux Biochemicals, Sioux City, IA), 5 mg/ml LH (Sioux 

Biochemicals), 100 units/ml penicillin (Life Technologies, Grand Island, NY), and 100 

mg/ml streptomycin (Life Technologies) in four-well culture dishes (Nunc, Milwaukee, 

WI) and cultured at 39°C in a humidified atmosphere of 5% CO2 and air until use.  

Oocytes were vortexed in 1 ml PB1+ containing 10 mg/ml hyaluronidase for 4 min. to 

completely remove cumulus cells.  Oocytes of good quality were selected for use. 

 
Microinjection of FAK siRNA  

The FAK siRNA duplexes oligo ribonucleotides were designed with Invitrogen’s 

(Carlsbad, CA) BLOCK-iT™ RNAi Designer using the target sequence of different 

bovine FAK. Three siRNA duplexes were designed against separate, distinct regions of 

the bovine FAK mRNA sequence. Each duplex RNA was resuspended in DEPC treated 

water in order to make a 20-µM stock solution (10mM Tris-HCl, pH8.0, 20 mM NaCL, 

1 mM EDTA). Thin-bore borosilicate glass capillaries were pulled into microinjection 

needles using a Narishige (East Meadow, NY) PB-7 pipette puller. Holding pipettes 

were similarly pulled and crafted using a Narishige MF-9 micro forge. 

For the siRNA injections cumulus cells were removed at 14 hours post 

maturation and cumulus-free mature oocytes were randomly assigned to each treatment 

group and microinjected (using a Nikon Diaphot inverted microscope and Narishige IM 

300 microinjector) with 20 µM siRNA duplex, water (sham), FAK scramble negative 

control, or not injected.  The approximate volume of a bovine oocyte is 800 pL and the 

injection volume was calculated to be 8 pL (1% of total volume) so the working 

concentration in the oocyte of each duplex is 200nM. For the initial screening of the 
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siRNA duplexes the oocytes were subjected to our standard in vitro fertilization protocol 

[257]. 

 
Microinjection of FAK inhibitors 

For the inhibitor microinjections, cumulus cells were removed at 20 hours post 

maturation and cumulus-free mature oocytes were randomly assigned to each treatment 

group.  After a recovery period of two hours in maturation medium in the incubator, the 

oocytes were microinjected with FAKI inhibitor (EMD Millipore, Billerica, MA) 

(working concentrations of 10 nM, 100 nM, and 200 nM), FAKII inhibitor (EMD 

Millipore, Billerica, MA) (working concentrations of 40 pM, 40 nM, an 400 nM), a 

sham injection of water, or not injected.  

 
In Vitro Fertilization 

After microinjection, oocytes were returned to maturation medium and were 

either subjected to a modified version of our in vitro fertilization protocol or snap frozen 

in groups of 30 for subsequent analysis by real time PCR and Western blot. Briefly, 

cryopreserved bovine semen (Hoffman AI, Logan, UT) was thawed and live sperm were 

separated by centrifugation on a 45%/90% layered Percoll gradient. Motile spermatozoa 

obtained by this method were diluted in fert-TALP to a final concentration of 1.0 X 106 

per ml [22]. Capacitation occurred in fert-TALP containing heparin at a concentration of 

10 mg/ml. The oocytes were fertilized in vitro for 5 hours (24-29 hours post maturation 

for inhibitor studies, and 27-32 hours post maturation for siRNA studies) at 39°C in 5% 

CO2 and air. After the fertilization period, oocytes were vortexed for 2 minutes in a 15-

ml conical centrifuge tube containing 1 ml PB1+ medium to completely remove sperm. 
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Presumptive embryos were cultured in CR1aa medium containing 3% FBS at 39°C in 

5% CO2 and cleavage was determined 48 hours after removal of sperm. Each treatment 

was performed in three replicates. Data were analyzed with a chi-square analysis for 

independence in an r X 2 contingency table, where r equals the number of treatments. 

 
Immunofluorescence 

For the immunofluorescence studies the oocytes were fertilized for seven hours, 

after which they were vortexed for 2 minutes in a 15-ml conical centrifuge tube 

containing 1 ml PB1+ medium to completely remove sperm.  Oocytes were placed in 

PBS with 4% formaldehyde (fixative) for 30 minutes at 4°C, washed in PBS with 0.05% 

Tween 20 (PBST) for 30 minutes at room temperature, permeabilized in PBS with 1% 

Triton X-100 for 30 minutes at room temperature, and transferred to blocking buffer 

consisting of PBST with 1% BSA and incubated overnight at 4°C.  Oocytes were 

incubated with the anti-FAK primary antibody for 3 hours at 37°C, washed with PBST 

for 30 minutes at room temperature, incubated with the appropriate secondary antibody 

for 2 hours at 37°C, washed with PBST for 30 minutes at room temperature, and oocytes 

were transferred to slides with drops of Vectashield Hard Set mounting medium 

containing DAPI and covered with a cover slip.  All samples were viewed on a Zeiss 

Axioobserver equipped with a Vivatome module and an Axiocam MRm camera. 

 
Sperm Penetration Assay 

Microinjected oocytes were fertilized in vitro at 23 hours post maturation. After 6 

hours of incubation with sperm, embryos were rinsed through drops of PB1+ and stained 

in a solution of PB1+ containing 1 mg/mL Hoechst 33342 for 20 minutes at 37°C. After 
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staining, embryos were rinsed again through 8 drops of PB1+ and observed by 

fluorescence microscopy to evaluate pronuclear formation. Sperm penetration was 

determined by positive identification of 2 pronuclei in each embryo.   

 
Calcium Indicator Fura-2 AM Loading 

 Oocytes were loaded with Ca2+ indicator by incubation in 2 µM Fura-2 AM ester 

(Molecular Probes Inc., Eugene, OR) and 0.02% Pluronic F-127 (Molecular Probes Inc.) 

in Ca2+- and Mg2+- free phosphate buffered saline (Hyclone Laboratories) containing 

0.32 mM sodium pyruvate, 5.55 mM glucose, 3 mg/ml BSA, and 100 µM EGTA at 

39°C in darkness for 45 minutes.  After loading indicator, oocytes were washed 

extensively with PB1- (phosphate-buffered saline without Ca2+ and Mg2+ plus 5.55 mM 

glucose, 0.32 mM sodium pyruvate, 3 mg/ml BSA) and maintained in this solution at 

39°C until use. 

 
Measurement of intracellular Ca2+ transients 

 Fura-2 indicator was loaded, as described above, and Ca2+
i levels were measured 

after fertilization.  Sperm were prepared as described above, after which a 50-µL drop of 

Fert-talp containing PHE, heparin, and sperm was made in the center of a 35-mm dish 

(Beckton Dickinson, Franklin Lakes, NJ) and overlaid with mineral oil.  Microinjected 

oocytes were visualized in groups of 4-6.  The plate was placed in an incubator at 39ºC 

in a humidified atmosphere of 5% CO2 and air for 5 hours.  At this point the dish was 

removed from the incubator and visualized over a 2 hour period to observe Ca2+ 

transients on an a Nikon Diaphot inverted microscope, coupled with a Hamamatsu 

ORCA-ER digital camera and analyzed on Metafluor Imaging Series 7.6 software 
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(Universal Imaging Corp, Downingtown, PA).  

 
Reverse Transcription and Real Time PCR analysis 

Total RNA was extracted from 3 groups of 30 microinjected oocytes for each 

siRNA duplex using an RNeasy Micro Kit (Qiagen, Valencia, CA). Reverse 

transcription was performed using a SuperScript III Kit (Invitrogen, Carlsbad, CA) and 

cDNA was stored at –80 C for later use. Primers for FAK were designed used Primer3 

software [264] and qPCR were performed to verify knockdown of the FAK transcript.  

The delta-delta Ct method (ΔΔCt) was used for real-time PCR data evaluation [265]. 

Data was normalized for differing amounts of input cDNA by calculating ΔCt (Ct for the 

GAPDH housekeeping gene minus Ct for the gene of interest).  The ΔΔCt was 

calculated by subtracting the ΔCt of each sample from the ΔCt of a reference cDNA 

sample. The n-fold increase or decrease in expression levels of each treatment at each 

time point was calculated using the formula 2-ΔΔCt.   

 
Immunoprecipitation 

Total protein was extracted from 100 mature bovine oocytes by placing them in 

50 µL of lysis buffer containing 8 M urea, 4% CHAPS, 40 mM Tris, and Complete 

Protease Inhibitor Cocktail (Roche Diagnostic, Manheim, Germany).  The 

immunoprecipitation protocol provided by Upstate (Lake Placid, NY) was used.  Briefly, 

the cell lysate was diluted with PBS to roughly 1 µg/ml total cell protein before 

beginning the immunoprecipitation, after which 4 µg of monoclonal mouse IgG anti-

FAK antibody clone 2A7 (Upstate) was added and gently rocked at 4ºC overnight.  The 

immunocomplex was captured by adding 100 µl of washed Protein G agarose bead 
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slurry and gently rocked at 4ºC for 2 hours.  The agarose beads were collected by 

pulsing for 5 seconds in a microcentrifuge at 14,000 x g and draining off the supernatant.  

The beads were washed three times with ice-cold PBS and resuspended in 60 µl 2X 

Laemmli sample buffer.  The beads were boiled for 5 minutes and collected using a 

microcentrifuge pulse after which the supernatant was run on a 4-20% gradient 

polyacrylamide gel (Pierce Precise Protein Gels) while the nitrocellulose membrane and 

filters were incubated in the transfer buffer at 4ºC for 45 minutes.  A lysate of 3T3/A31 

cells (Upstate) was included as a positive control. After electrophoresis, the gel was 

washed with transfer buffer for 3 minutes and then the total protein was transferred 

electrophoretically using a semi-dry blotter (Biorad, Hercules, CA) onto the 

nitrocellulose membrane for 80 minutes at 20V. After transfer the membrane was 

washed twice with TBST for 5 minutes each time and then the membrane was blocked 

overnight at 4ºC in TBST with 5% skim milk. To detect bovine FAK the membrane was 

incubated for 1 hour with polyclonal rabbit IgG primary antibody (Upstate, Lake Placid, 

NY) washed three times in TBST for 10 minutes each, incubated for 1 hour at room 

temperature with a goat anti-rabbit HRP-labeled secondary antibody diluted 1:1000 in 

TBST, and finally processed as described below. The nitrocellulose membrane was 

washed two times with TBST, 5 minutes each time. For protein detection 3 mls of 

Luminata Classico Western HRP Substrate (Millipore, Billerica, MA) was poured onto 

the membrane. The membrane was incubated without agitation in the substrate for 3 

minutes, drained of excess substrate, wrapped in a clear plastic wrap, exposed to an x-

ray film for 30 seconds and developed.  
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Western Blot Analysis  

The Western blot analysis of bovine FAK was performed according to the 

procedures used by Sun and Fan, 2004 [266].  Briefly, 30 bovine oocytes were added to 

6.5 µL double-strength sample buffer and 5 µL ddH2O in a 0.5 ml Eppendorf tube and 

frozen at -80ºC until use. The samples were boiled for 4 minutes, placed on ice for 5 

minutes, and centrifuged at 12,000 x g for 3 minutes. The total proteins were separated 

by SDS-page on a 4-20% gradient polyacrylamide gel (Pierce Precise Protein Gels) for 

45 minutes at 110 V and 115 mA, while the nitrocellulose membrane and filters were 

incubated in the transfer buffer at 4ºC for 45 minutes.  After electrophoresis, the gel was 

washed with transfer buffer for 3 minutes and then the total protein was transferred 

electrophoretically onto the nitrocellulose membrane for 80 minutes at 20V. After 

transfer, the membrane was washed twice with TBS for 5 minutes each time and then the 

membrane was blocked overnight at 4ºC in TBST with 5% skim milk. To detect bovine 

FAK the membrane was incubated for 1 hour with a rabbit polyclonal anti-FAK 

antibody (sc-558; Santa Cruz Biotechnology, Santa Cruz, CA) diluted 1:300 in TBST, 

washed 3 times in TBST for 10 minutes each, incubated for 1 hour at room temperature 

with a goat anti-rabbit HRP-labeled secondary antibody diluted 1:1000 in TBST, and 

finally processed as described above.  

 
Statistical Analysis 

Data were pooled from three replicates per group.  Chi-square analysis was used 

to determine differences in cleavage and intracellular calcium release.  Unless otherwise 

noted, a probability of p<0.05 was considered statistically significant.  For the 

confirmation of siRNA knockdown experiments, pair-wise comparisons were performed 
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by utilizing the calculated ΔΔCt values for each treatment time point and the control 

were performed using the Student’s t-test. A probability of p<0.05 was considered 

significant. 

 
Results 

Immunoprecipitation/Western Blot 

Western blot analysis of lysate from mature bovine oocytes immunoprecipitated 

with a monoclonal anti-FAK antibody revealed that a FAK protein (~125 kDa band) is 

present in the mature bovine oocyte (Fig. 3-1).  

 

 

FIG 3-1. Western blot analysis of immunoprecipitated FAK. 

 

Effect of Anti-FAK Agents on Intracellular  
Calcium Release in Bovine Oocytes  
 
Fak Inhibitors 

  Microinjection of the FAKI inhibitor at working concentrations of 10 nM 

(p<0.01), 100 nM (p<0.0001), and 200 nM (p<0.0001) all resulted in significantly lower 

numbers of oocytes responding with calcium transients compared to the IVF and sham 

injected controls. 

Bovine FAK (125 kDA) 

130 kDa protein 
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 The microinjection of the FAKII inhibitor at the working concentration of 400 

nM resulted in significantly lower numbers of oocytes responding with calcium 

transients (p<0.001).  The lower concentrations of 40 nM and 40 pM were not 

significantly different than the sham injected oocytes. 

 
Anti-FAK siRNA Oligonucleotides 

 The anti FAK siRNA oligonucleotide microinjected into oocytes resulted in a 

significantly lower number of oocytes responding with calcium transients (p<0.001).  

The number of oocytes microinjected with the scrambled FAK siRNA control 

oligonucleotide responding with calcium transients were not significantly different than 

the IVF and sham injected controls. 

 
Effect of Anti-FAK Agents on In Vitro  
Fertilization in Bovine Oocytes  
 
Fak Inhibitors 

The injection of the FAKI inhibitor resulted in significantly lower cleavage rates 

at the working concentrations of 200 nM (p<0.0001), 100 nM (p<0.0001), and 10 nM 

(p<0.01) with the 200 nM and 100 nM concentrations not being significantly different 

than the no-sperm control. 

The injection of the FAK II inhibitor resulted in significantly lower cleavage 

rates at the working concentration of 400 nM (p<0.0001) and not significantly different 

than the no sperm control.  The concentrations of 40 nM and 40 pM were not 

significantly different than the IVF and sham injected controls. 
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TABLE 1.  Effect of anti-FAK inhibitors on the intracellular calcium release after 
incubation with sperm for 6 hrs. Values represent the mean (n=3) and unlike superscripts 
are statistically significant (p<0.05). 

Treatment 
Number of oocytes 
responding with an 

intracellular calcium release 

Total 
Number of 

Oocytes 
Non-injected 16 (72.7%)a 22 

Scrambled FAK siRNA 16 (66.7%) a 24 
Sham 16 (61.5%) a 26 

FAK II Inhibitor (40 nM) 14 (58.3%) a 24 
FAK II Inhibitor (40 pM) 16 (57.1%) a 28 
FAK I Inhibitor (10 nM) 6 (23.1%)b 26 

FAK siRNA 6 (20.0%) b 30 
FAK II Inhibitor (400 nM) 4 (14.3%) b 28 
FAK I Inhibitor (100 nM) 3 (10.7%) b 28 
FAK I Inhibitor (200 nM) 2 (7.7%) b 26 

 
 
Anti-FAK siRNA Oligonucleotide 

The anti-FAK siRNA oligonucleotide resulted in significantly lower cleavage 

rates (p<0.001) compared to the IVF and sham injected control and was not significantly 

different than the no sperm control.  The scrambled FAK siRNA control oligonucleotide 

was not significantly different than the IVF and sham injected controls. 

 
Confirmation of siRNA Knockdown  

qPCR 

The microinjection of FAK siRNA resulted in lower levels of FAK mRNA 

transcript at 6, 12 and 24 hours post injection as verified by qPCR. The FAK mRNA 

levels of the oocytes collected at all three time points for the FAK siRNA groups were 

the only treatment groups significantly different (P<0.05) than the 14 hour control (Fig. 

3-2). 
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TABLE 3-2.  Effect of anti-FAK inhibitors on the cleavage rates of bovine oocytes after 
incubation with sperm for 6 hrs. Values represent the mean (n=3) and unlike superscripts 
are statistically significant (p<0.05). 

Treatment Percent Cleavage 
Total 

Number of 
Oocytes 

FAK II Inhibitor (40 pM) 32 (72.7%)a 44 
FAK II Inhibitor (40 nM) 30 (63.8%)a 47 

Non-injected 26 (61.9%)a 42 
Sham 25 (61.0%)a 41 

Scrambled FAK siRNA 24 (51.1%)ab  47 
FAK I Inhibitor (10 nM) 22 (38.6%)bc 57 

FAK II Inhibitor (400 nM) 14 (29.8%)c 47 
FAK siRNA 12 (21.8%)cd  55 

FAK I Inhibitor (100 nM) 7 (11.7%)de 70 
No sperm control 5 (8.3%)de 60 

FAK I Inhibitor (200 nM) 1 (1.6%) e 61 
 
 

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

0#hrs# 6#hrs# 12#hrs# 24#hrs#

R
at

io
 o

f Δ
Δ

C
t V

al
ue

s 
in

 re
la

tio
n 

to
 F

A
K

  
le

ve
ls

 fo
r 1

4 
hr

 o
oc

yt
es

 

Hours post injection 

no#injec2on#

sham#

scrambled#FAK#siRNA#

FAK#siRNA#

*#

*#
*#

FIG 3-2. Relative FAK mRNA expression levels as compared to 14 hr IVM control 
oocytes.  Values represent the mean ± SEM (n = 3, *P < 0.05).   
 
 
Western Blot 

Western blot analysis demonstrated a decrease in the relative levels of FAK 

protein corresponding to a decrease in mRNA levels after microinjection with the FAK 
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siRNA.  As expected the reduction in protein levels occurred at a slower rate than the 

reduction in FAK mRNA levels with significant reduction in protein levels not occurring 

until 12 hours post injection (Fig. 3-3).   

 
FIG 3-3.  Relative FAK protein levels in relation to 14 hr IVM control oocytes.  Values 
represent the mean ± SEM (n = 3, *P < 0.05). 
 
 
Immunofluorescence 

 The results of the immunohistochemistry studies indicate a colocalization of 

FAK clusters during fertilization at the site of spermatozoa binding to the oocyte plasma 

membrane (Fig 3-4). 

 
Sperm Penetration Assay 
 

The injected inhibitors and FAK siRNA did not act at the level of the zona 

pellucida or the plasma membrane, because sperm penetrated the oocytes at levels 

equivalent to controls and inhibition therefore occurred intracellularly (data not shown). 
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FIG. 3-4.  Fluorescent images of FAK localized to the site of spermatozoa 
binding/fusion during fertilization of a bovine metaphase II arrested oocyte.  A) Sperm 
nuclei labeled with Hoecsht.  B) FAK labeled with Alexafluor 594.  C) Merged image of 
sperm nuclei and immunolabeled FAK illustrating a localization of FAK at the site of 
sperm binding/fusion. 

 
Discussion 
 

Focal adhesion kinase (FAK) is a 125 kDa ubiquitous nonreceptor protein 

tyrosine kinase that localizes to focal adhesions where it functions as a prominent 

signaling molecule.  Upon integrin activation and clustering, FAK is activated via 

tyrosine phosphorylation in order to interact with other signaling molecules recruited to 

the focal adhesion including Src and (PI3-kinase) resulting in the transduction of 

signaling cascades. These focal adhesions involve the recruitment of integrins, 

transmembrane heterodimers receptor proteins that bind to and respond to the 

extracellular matrix and consequently act as two-way signaling molecules.  FAK has 

been implicated in mediating the oocyte activation signaling cascade in non-mammalian 

oocytes following fertilization [188, 211] and integrins have been show to be involved in 

mammalian fertilization [114, 123, 124, 157, 162-165, 254]. 

The FAK specific inhibitors, FAK I and FAK II, resulted in significantly lower 
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cleavage rates and oocytes responding with calcium transients.  The sham and the 

scrambled FAK siRNA control microinjections had no effect on fertilization 

demonstrating the technique used did not negatively impact normal development.  The 

microinjection of the FAK siRNA did result in significantly lower cleavage rates and the 

FAK siRNA treatment group was not significantly different than the no sperm control.   

The microinjection of FAK siRNA resulted in significantly lower levels of FAK 

mRNA transcript at all three data points.  The FAK mRNA levels of the oocytes 

collected at 6, 12, and 24 hours post injection for the FAK siRNA groups were the only 

treatment groups significantly different than the 18 hr control (p<0.05).  The siRNA 

oligonucleotides quickly resulted in a quick reduction in the presence of FAK mRNA, 

with an almost 80% reduction in FAK mRNA levels in only a 6-hour period   

Western blot analysis demonstrated a decrease in the relative levels of FAK 

protein corresponding to a decrease in mRNA levels after microinjection with the FAK 

siRNA.  The oocytes microinjected with FAK siRNA had the lowest abundance of FAK 

protein at all three time points.  The use of siRNA technology to knockdown FAK 

protein levels only resulted in an average of a 30-35% decrease in protein levels during 

the IVF period.  Despite only a small reduction in protein levels, it still had a significant 

impact on cleavage rates and calcium oscillations.  The inability to get a greater 

reduction in protein levels is probably due to the stockpiling of proteins by the oocyte in 

preparation for fertilization.  The bovine oocyte is a challenging system to utilize protein 

knockdown studies due to the limited window of time to introduce the siRNA 

oligonucleotides and get significant decrease in protein levels between oocyte 

collection/maturation and IVF.  The beginning time period selected for IVF (27 hours 
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IVM) corresponded to an ~ 25% decrease in FAK protein levels with the end of the IVF 

period corresponded to ~40% decrease in FAK protein.  Western blots did not 

distinguish between total protein and active protein so there might actually be a greater 

reduction in active protein that would help explain the significant decrease in cleavage 

and oocytes responding with calcium transients. 

The release of sequestered calcium in response to fertilization involves an IP3 

evoked release of calcium from the endoplasmic reticulum.  The increase in IP3 

production is believed to be a result of the activation of a member of the PLC family of 

enzymes which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) 

to produce two common secondary messengers, DAG and IP3 [182].  DAG is able to 

activate PKC while IP3 binds to an IP3R channel on the endoplasmic reticulum, 

resulting in a conformational change to the receptor and a significant release of 

intracellular calcium.  Two hypotheses have been proposed in attempt to explain the 

initiation of these calcium oscillations including: 1) the contact (receptor-mediated) 

hypothesis or 2) the fusion (sperm factor) hypothesis.    

The contact or receptor mediated hypothesis predicts the interaction of a sperm 

ligand with a receptor on the oocyte plasma membrane activates a PLC isoform 

endogenous to the oocyte to generate the IP3.  If an oocyte specific PLC is involved, a 

characterization of the upstream pathway would paint a clearer picture of oocyte 

activation.  In many non-mammalian species PLC-γ is activated by Src family kinases  

(SFKs) shortly after fertilization and appear to be required for fertilization induced 

calcium oscillations in these species [182]; however, this has not been established in 

mammalian fertilization [56]. SFKs are known to be rapidly activated following 
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integrin-ligand interactions and subsequently activate downstream kinases and adapters 

[183 2006, 185].  SFKs are able to bind directly to β-integrin tails in a tail and SFK 

specific manner [183, 186, 187] in addition to binding and phosphorylating FAK and 

FAK-binding proteins.   

PLC-ζ has been proposed to be the testis-specific, sperm borne activating factor 

(SOAF) that initiates oocyte activation after gamete fusion in support of the fusion 

hypothesis [237].  Microinjection of PLC-ζ cRNA or recombinant protein into mouse 

oocytes results in intracellular calcium oscillations, activation and development [237, 

238].   Sperm from male mice with decreased expression of PLC-ζ due to RNA 

interference are able to fuse with oocytes and initiate calcium oscillations; however, the 

number of oscillations was reduced and no transgenic offspring were born [239].  PLC-ζ 

was also shown to be defective, with either reduced protein levels or mutated forms, in 

men suffering infertility [240, 241].   

If PLC-ζ is truly the oocyte activating factor, inhibiting FAK located in the 

oocyte should have no effect on bovine fertilization and oocyte activation.  This is 

obviously not the case.  Inhibiting FAK had a dramatic effect on both calcium 

oscillations and cleavage in the bovine system, indicating that a signaling pathway 

endogenous to the oocyte is indeed actively involved during fertilization and oocyte 

activation.  These data indicate the direct involvement of FAK in addition to further 

implicating the involvement of integrins in the signaling cascade related to bovine 

fertilization and oocyte activation.   
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CHAPTER 4 

THE INVOLVEMENT OF PHOSPHOLIPASE C ISOFORMS ENDOGENOUS 

TO THE OOCYTE IN BOVINE FERTILIZATION AND OOCYTE 

ACTIVATION 

 
Abstract 

 Phospholipase C (PLC) isoforms stimulate the hydrolysis of 

phosphatidylinositol (4,5)-bisphosphate (PIP2) to produce diacylglycerol (DAG) and 

1,4,5 inositol triphosphate (IP3), with IP3 regulating the release of calcium (Ca2+) from 

the endoplasmic reticulum.   This release of calcium is essential for oocyte activation 

and a sperm specific PLC isoform, PLCζ, has been proposed as the primary agent that 

initiates the activation process.  However, the oocyte contains many endogenous PLC 

isoforms (PLC β, γ, and δ) that could also be involved in regulating or initiating these 

calcium oscillations downstream of other initiating events. In order to better elucidate 

the involvement of endogenous PLC isoforms as well as the specific role of the sperm-

specific form, small interfering RNA (siRNA) directed against the specific bovine PLC 

isoforms (PLCζ, PLCγ1, PLCγ2, PLCδ1, PLCδ3, PLCδ4, PLCβ1, PLCβ3) were 

microinjected into bovine oocytes and the subsequent effects on PLC mRNA levels and 

bovine fertilization were evaluated.  Real time PCR (qPCR) was used to quantify the 

levels of PLC message present in bovine oocytes at the time of injection (15 hours post 

maturation) and 6, 10, and 14 hours post injection.  The qPCR results indicated a near 

complete knockdown of mRNA levels in bovine oocytes 10 hours post injection for the 

isotypes PLCγ1, PLCγ2, PLCδ3, PLCδ4, PLCβ1, PLCβ3, but only partial knockdown of 

PLCδ1 mRNA.  Oocytes microinjected with PLC siRNA were also fertilized and 



	   	    

	  

104 

cultured in vitro according to our standard laboratory procedures [257].  The oocytes 

microinjected with PLCζ, PLCδ1, PLCδ3, PLCδ4, PLCβ1, PLCβ3 siRNA resulted in 

cleavage rates similar to the negative control siRNA, non-injected, and sham injected 

treatment groups while bovine oocytes microinjected with PLCγ1 and PLCγ2 siRNA had 

significantly lower cleavage rates compared to the controls.  Additionally, cRNA for 

each specific PLC isoform was also microinjected into bovine oocytes to ascertain each 

isoform’s ability to induce parthenogenetic activation.  The oocytes microinjected with 

PLCζ and PLCγ2 cRNA resulted in a significantly higher number of oocytes reaching 

the 2 cell stage compared to all other treatment groups and not significantly different 

than the Ionomycin/Cycloheximide activation control (p<0.05).  These data illustrate the 

potential involvement of multiple endogenous PLC isoforms PLCγ1 and PLCγ2 and not 

just the sperm-specific PLCζ isoform in bovine oocyte activation during fertilization.   

 
Introduction 

In response to activation of receptors by neurotransmitters, hormones, growth 

factors and other molecules, phosphoinositide-specific phospholipase C (PLC) 

hydrolyzes phosphatidylinositol 4,5 bisphosphate (PIP2) to generate two second 

messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG).  Both second 

messengers initiate further signal transduction cascades with IP3 activating intracellular 

calcium release while DAG activates protein kinase C (PKC) [212-216].  A variety of 

PLCs with different molecular masses, isoelectric points, and calcium dependencies 

have been discovered in a variety of different tissues and categorized into six classes 

based on structure and activity: PLC-β (1-4), PLC-γ (1and 2), PLC-δ (1, 3, and 4) PLC-

ε, PLC-ζ, and PLC-η (1 and 2) [216, 217].  Each isozyme family contains conserved 
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domains as well as isozyme specific domains. All PLC isozymes contain catalytic X and 

Y domains in addition to isozyme specific regulatory regions including the pleckstrin 

homology (PH) domain, the C2 domain, and the EF-hand motif.  The isotype specific 

domains allow for a subtype specific regulatory mechanism including the Ras-

associating domain and Ras-GTPase exchange factor-like domain in PLC-ε and the src 

homology (SH) domain in PLC-γ [216].  Numerous alternative splicing variants for each 

PLC isotype have been found across multiple species, indicating an extremely complex 

level of additional regulation [217]. 

PLC-ζ was identified as a sperm specific PLC as a result of analyzing EST 

sequences from human and mouse testis.  It is the smallest mammalian PLC isozyme 

with a molecular weight of 70kDa and consists of the EF-hand motif, catalytic X and Y 

domains, and the C2 domain.  PLC-ζ has a high degree of sequence homology (64%) 

with PLC-δ1 in addition to sharing catalytic residues in the X domain, which indicates 

that the catalytic activation of PLC-ζ is similar to PLC-δ1.  PLC-ζ does not contain a PH 

domain like the other PLC isozymes so it is unclear how PLC-ζ can target PIP2, its 

membrane bound substrate [217].  PLC-ζ has been proposed to be the testis-specific, 

sperm-borne activating factor (SOAF) that initiates oocyte activation after gamete fusion 

[237].   

 
Materials and Methods 

Oocyte Collection and In Vitro Maturation (IVM) 

 All reagents were purchased from ICN Biomedicals Inc. (Irvine, CA) unless 

otherwise stated.  All procedures were performed according to published methods 

routinely used in this laboratory [164]. Bovine oocytes were collected from a local 
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abattoir (E.A. Miller, Hyrum, UT).  Oocytes from follicles 3-8 mm in size were aspirated 

into 50-ml centrifuge tubes using an 18-gauge needle attached to a vacuum pump.  

Oocytes with uniform cytoplasm and intact multiple layers of cumulus cells were 

selected and washed with PB1+ (phosphate-buffered saline with Ca2+ and Mg2+ plus 

5.55 mM glucose, 0.32 mM sodium pyruvate, 3 mg/ml BSA).  Oocytes were transferred 

into 500 µL of maturation medium, M199, containing 10% fetal bovine serum (FBS; 

Hyclone Laboratories, Logan, UT), 0.5 µg/ml FSH (Sioux Biochemicals, Sioux City, 

IA), 5 µg/ml LH (Sioux Biochemicals), 100 units/ml penicillin (Life Technologies, 

Grand Island, NY), and 100 µg/ml streptomycin (Life Technologies) in four-well culture 

dishes (Nunc, Milwaukee, WI) and cultured at 39°C in a humidified atmosphere of 5% 

CO2 and air for 24 hours. 

 
Microinjection of PLC siRNA 

The PLC siRNA duplexes oligoribonucleotides were designed with Invitrogen’s 

(Carlsbad, CA) BLOCK-iT™ RNAi Designer using the target sequence of different 

bovine PLC isoforms (PLCζ, gi|55669158; PLCβ3, gi|119919227, PLC γ1, gi|31342035, 

PLCδ4, gi|114051038, PLCδ1, gi|125991881; PLCβ1, gi|27807356; PLCγ2, gi| 

359075087; PLCδ3, 300795644).  Three siRNA duplexes were designed against 

separate, distinct regions of each bovine PLC mRNA.  Each duplex RNA was 

resuspended in DEPC treated water in order to make a 20-µM stock solution (10mM 

Tris-HCl, pH 8.0, 20 mM NaCL, 1 mM EDTA).  

Thin-bore borosilicate glass capillaries were pulled into microinjection needles 

using a Narishige (East Meadow, NY) PB-7 pipette puller.  Holding pipettes were 

similarly pulled and crafted using a Narishige MF-9 micro forge.  Cumulus cells were 
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removed at 17 hours post maturation and cumulus-free mature oocytes were randomly 

assigned to each treatment group and microinjected (using a Nikon Diaphot inverted 

microscope and Narishige IM 300 microinjector) with either 20 µM of each RNA 

duplex, water (sham), Stealth RNAi negative control, or not injected.  The approximate 

volume of a bovine oocyte is 800 pl and the injection volume was calculated to be 8 pL 

(1% of total volume) so the working concentration in the oocyte of each duplex was 

200nM.  

 
In Vitro Fertilization 

After microinjection oocytes were returned to maturation medium and were 

either subjected to a modified version of our in vitro fertilization protocol [257] or snap 

frozen in groups of 30 for subsequent analysis by real time PCR.  Briefly, cryopreserved 

bovine semen (Hoffman AI, Logan, UT) was thawed and live sperm were separated by 

centrifugation on a 45%/90% layered Percoll gradient.  Motile spermatozoa obtained by 

this method were diluted in fert-TALP to a final concentration of 1.0 X 106 per ml [257].  

Capacitation occurred in fert-TALP containing heparin at a concentration of 10 µg/ml.  

The oocytes were fertilized in vitro for 5 hrs (24-29 hours post maturation) at 39°C in 

5% CO2 and air.  After the fertilization period, oocytes were vortexed for 1 minute in a 

15-ml conical centrifuge tube containing 1 ml PB1+ medium to completely remove 

sperm. Presumptive embryos were cultured in CR1aa medium containing 3% FBS at 

39°C in 5% CO2 and cleavage was determined 48 hours after removal of sperm. 

Reverse Transcription and Real Time PCR 

Total RNA was extracted from 3 groups of 30 microinjected oocytes for each 
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siRNA duplex using an RNeasy Micro Kit (Qiagen, Valencia, CA).  Reverse 

transcription was performed using a SuperScript III Kit (Invitrogen, Carlsbad, CA) and 

cDNA was stored at –80 C for later use.  Primers for each PLC isoform were designed 

used Primer3 software and qPCR was performed to verify knockdown of each isoform’s 

transcript. 

 
PLC Complementary RNA (cRNA) Preparation 

 A separate vector containing the full length coding sequence of each PLC 

isoform was linearized with NotI and used as a template for the in vitro synthesis of 

capped RNA by using the T7 or SP6 mMessage mMachine High Yield Capped RNA 

Transcription Kit (Ambion, Austin, TX) depending on the promoter present in the 

plasmid.  Briefly, a 20 µL reaction was assembled adding the following in order: 4 µL 

nuclease free water, 10 µL 2X NTP/CTP, 2 µL 10X reaction buffer, 2 µL linear template 

DNA, and 2 µL enzyme mix.  The tube was flicked, centrifuged briefly, and incubated at 

37 °C for 2 hours.  A poly-A tail was subsequently added to the cRNA by utilizing the 

Poly (A) Tailing Kit (Ambion).  Briefly, the following tailing reagents were added, in 

order, to a completed 20 µL mMessage mMachine reaction: 36 µL nuclease free water, 

20 µL 5X E-PAP buffer, 10 µL 25 mM MnCl2, 10 mM ATP, and 4 µL of E-PAP.  The 

reaction was gently mixed, and incubated at 37°C for 1 hour.  The poly-A tailed cRNA 

was purified by utilizing the MEGAclear Purification Kit (Ambion).  Briefly, the volume 

of RNA samples was brought to 100 µL with Elution Solution and mixed gently.  Three 

hundred fifty microliters of Binding Solution Concentrate was added to the samples, 

followed by gently mixing.  After which 250 µL of 100% ethanol was added to the 

samples and mixed again.  The samples were applied to a filter cartridge inserted into a 
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Collection and Elution tube, centrifuged for 1 minute at 12,000 x g, and the flow through 

was discarded.  The samples were washed twice by adding 500 µL wash solution and 

centrifuged for 1 minute at 12,000 x g.  After discarding the wash solution, the filter 

cartridge was centrifuged for another 30 seconds to remove the wash solution.  The 

cRNA was eluted from the cartridge by placing the Filter Cartridge into a new 

Collection/Elution Tube, applying 50 µL of Elution Solution and incubated for 7 

minutes at 67 °C.  The eluted cRNA was recovered by centrifugation for 1 minute at 

12,000 x g at room temperature.  The cRNA was stored in single use aliquots at -80 °C 

until use. 

 
Microinjection of PLC cRNA 

 Cumulus cells were removed at 20-22 hrs post maturation and cumulus-free 

mature oocytes were randomly assigned to each treatment group and microinjected with 

the appropriate concentration of cRNA (0.1, 0.5, or 1.0 µg/ul), water (sham), or not 

injected.   

 
Microinjection of PLC siRNA and cRNA 

 Cumulus cells were removed at 14 hours post maturation and cumulus-free 

mature oocytes were randomly assigned to each treatment group and microinjected with 

the appropriate concentration of siRNA, water (sham), or not injected and placed back 

into maturation medium.  The same oocytes were microinjected at 22-24 hours post 

maturation with the correct corresponding cRNA (0.1, 0.5, or 1.0 µg/ul). 

 
Calcium Indicator Fura-2 AM Loading 

Oocytes microinjected with only cRNA of cRNA/siRNA were loaded with a 
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Ca2+ indicator by incubation in 2 µM Fura-2 AM ester (Molecular Probes Inc., Eugene, 

OR) and 0.02% Pluronic F-127 (Molecular Probes Inc.) in Ca2+- and Mg2+- free 

phosphate buffered saline (Hyclone Laboratories) containing 0.32 mM sodium pyruvate, 

5.55 mM glucose, 3 mg/ml BSA, and 100 µM EGTA (PB1-) at 39°C in darkness for 30 

min.  After loading indicator, oocytes were washed extensively with PB1- and 

maintained in this solution at 39°C until use. 

 
Intracellular Calcium Monitoring  

 The Fura-2 loaded oocytes were transferred to a 30-µL drop of PB1- medium 

containing one and covered with mineral oil.  An additional control of electroporation 

with 250 nM inositol (1,4,5)-triphosphate (IP3; Molecular Probes Inc.) was included 

with each replication to ensure that the oocytes were of good quality and capable of 

intracellular Ca2+ transients.  Intracellular Ca2+ monitoring and electroporation 

conditions performed according to published methods [267-270]. 

 
Parthenogenetic Activation 

 At either 14 hours or 20 hours after the initiation of maturation, oocytes were 

vortexed in 1 ml TL-HEPES containing 10 mg/ml hyaluronidase for 4 minutes to 

completely remove cumulus cells.  Oocytes exhibiting an extruded first polar body and 

of good quality were selected for use.  Those oocytes prepared at 14 hours post 

maturation, were microinjected with siRNA and placed back in maturation medium to be 

injected with cRNA at 22-24 hours post maturation followed by incubation in 7.5 µg/ml 

cytochalasin B for 5 hours, or not injected and exposed to 5 µM ionomycin for 5 minutes 

immediately followed by 10 µg/ml cycloheximide for 5 hours.   
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 Oocytes prepared at 20 hours post maturation were injected with only cRNA, 

injected with cRNA followed by an incubation in 7.5 µg/ml cytochalasin B for 5 hours, 

or not injected and exposed to 5 µM ionomycin for 5 minutes immediately followed by 

10 ug/ml cycloheximide for 5 hours.  After the various treatments were completed, the 

oocytes were washed in CR1aa medium plus 10% FBS and cultured in the CR2-cumulus 

cells co-culture system [257].  Cleavage was recorded on Day 2.  The treatment groups 

were compared to in vitro-fertilized oocytes according to our standard laboratory 

protocol [257].   

 
Statistical Analysis 

Data were pooled from three replicates per group.  Chi-square analysis was used 

to determine differences in cleavage, parthenogenetic activation, and intracellular 

calcium release.  Unless otherwise noted, a probability of p<0.05 was considered 

statistically significant.  For the confirmation of siRNA knockdown experiments, pair-

wise comparisons were performed by utilizing the calculated ΔΔCt values for each 

treatment time point and the control were performed using the Student’s t-test. A 

probability of p<0.05 was considered significant. 

  
Results 

Confirmation of siRNA Knockdown  

qPCR 

The qPCR results indicated a near complete knockdown of mRNA levels in bovine 

oocytes by 10 hours post injection for the isotypes PLCγ1, PLCγ2, PLCδ3, PLCδ4, 

PLCβ1, PLCβ3, but only partial knockdown of PLCδ1 mRNA (Figure 4-1). 
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FIG 4-1. Relative PLC mRNA Expression Levels as Compared to 14 hr IVM control 
oocytes.  Values represent the mean (n=3). 
 

Effect PLC siRNA on In Vitro Fertilization 
in Bovine Oocytes  
	  
  The oocytes microinjected with PLCζ, PLCδ1, PLCδ3, PLCδ4, PLCβ1, PLCβ3 

siRNA resulted in cleavage rates similar to the negative control siRNA, non-injected, 

and sham injected treatment groups while bovine oocytes microinjected with PLCγ1 and 

PLCγ2 siRNA had significantly lower cleavage rates (p<0.05) compared to the controls 

(Fig. 4-2). 

 
Effect of PLC cRNA on Parthenogenetic  
Development Rates in Bovine Oocytes 
 

The oocytes microinjected with PLCζ and PLCγ2 cRNA resulted in a 

significantly higher number of oocytes (p<0.05) reaching the 2 cell stage compared to all 
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other treatment groups and not significantly different than the Ionomycin/Cycloheximide 

activation control (Fig. 3-3).  For clarity, only the highest cleavage rate out of the three 

different concentrations of cRNA microinjected for each PLC is represented in Figure 4-

3 (0.1 µg/µl for δ1, δ4, and ζ; 0.5 µg/µl for β3 and δ3, and 1.0 µg/µl for β1, γ1, and γ2). 
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FIG. 4-2.  Effect of microinjection of PLC specific siRNA's on cleavage rates of bovine 
oocytes after incubation with sperm for 5 hours.  Values represent the mean (n=3) and 
unlike superscripts are statistically significant.  
 
 
Effect of PLC cRNA on Intracellular Calcium 
Release in Bovine Oocytes 
 

The number of oocytes responding with calcium transients after the 

microinjection of PLC-ζ (8/13) and PLC-γ2 (7/12) cRNA were at rates similar to the in 

vitro fertilized controls (7/10).  The activating effects of any of the cRNA’s were 

negligible if the oocytes were microinjected with the corresponding siRNA prior to 

microinjection with cRNA (data not shown).   These data illustrate the potential 

involvement of an endogenous PLC isoform and not just the sperm-specific PLC-ζ 
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isoform in bovine oocyte activation during fertilization. 
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FIG 4-3.  Effect of microinjection of PLC cRNA on parthenogenetic development rates 
in bovine oocytes.  Values represent the mean (n=3) and unlike superscripts are 
statistically significant (p<0.05). 
 
 
Discussion 

 Microinjection of PLC-ζ cRNA or recombinant protein into mouse oocytes 

results in intracellular calcium oscillations, activation and development [237, 238].   

Sperm from male mice with decreased expression of PLC-ζ due to RNA interference are 

able to fuse with oocytes and initiate calcium oscillations; however, the number of 

oscillations was reduced and no transgenic offspring were born [239].  PLC-ζ was also 

shown to be defective with either reduced protein levels or mutated forms in men 

suffering infertility [240, 241]. 

For a spermatozoa protein to be a viable SOAF candidate, many criteria must be 

met: 1) Protein specific to male germ cells and more particular is only expressed in 
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elongating spermatids and spermatozoa; 2) Triggers cortical granule exocytosis, 

pronuclear development, and cleavage; 3) Ability to induce repetitive calcium 

oscillations; 4) Not species specific; 5) During the early stages of fertilization should be 

localized to the postacrosomal sheath of the spermatozoa perinuclear theca; 6) Soluble 

and released into cytoplasm of oocyte upon fusion [242, 243].  Unfortunately PLC-ζ 

fails to fulfill all of these requirements so its function as the SOAF needs to be taken into 

question. 

PLC-ζ expression has been proven to not be testes specific, as PLC-ζ expression 

has been detected in mouse brain [244] in addition to the ovary and brain of the puffer 

fish [245].  Aarabi et al., [18] recently demonstrated that PLC-ζ is actually secreted by 

the epididymis as a component of the acrosome during mouse spermatogenesis. 

Nevertheless, a novel function of PLC-ζ might be required for spermatogenesis, as PLC-

ζ knockout mice seem unable to complete spermatogenesis with spermatocytes failing to 

proceed beyond elongation [247], although the specificity of these effects needs to be 

evaluated in more detail. 

By removing all sperm membranous and acrosomal components with the non-

ionic detergent, Triton X-100, the SOAF has been shown to be localized to the 

perinuclear theca (PT) [248-250], and actually more precisely localized to the PAS-PT 

which is the region of the PT that is first solubilized on sperm entry into the ooplasm 

[242].  Consequently the SOAF should be non extractable by non-ionic detergents and 

localized to the PT, two requirements that the 74 kDa catalytically active form of PLC-ζ 

failed to meet [242].   

PLC-ζ was originally believed to be localized to the part of the spermatozoa head 
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the that first enters the egg [251]; however, it was recently shown in mice and humans 

that PLC-ζ disappears from the sperm head when it fuses with the oocyte plasma 

membrane and subsequently incorporation into the oocyte [242].  Reports also suggest 

that PLC-ζ undergoes dynamic changes in its pattern of localization in the spermatozoa 

of mice [252], hamster [252], and humans [253]. For example, it was demonstrated that 

PLC-ζ displays variable localizations in the sperm head, including the equatorial 

segment and the post-acrosomal regions, and it was suggested that these distinct 

localizations may reflect a different functional status of the sperm, i.e. capacitation and 

acrosome reaction, and that PLC-ζ may be involved in some of these physiological steps. 

However, to date, there is not supporting data to incriminate PLC-ζ in these steps.  

 Microinjection of PLC-ζ cRNA into oocytes to overexpress PLC-ζ protein is a 

common technique used to illustrate the ability of PLC-ζ to induce fertilization-like 

calcium oscillations and oocyte activation.   There is an inherent flaw with this technique 

in that non-physiological amounts of protein are expressed, this makes it difficult to 

conclude that this response is physiologic.  Therefore, an active purified recombinant 

form of the protein that could be microinjected at physiologic concentrations would be 

required to ascertain whether the effect is physiologic [271].  Igarashi et al. [32] found 

that microinjecting PLC-β1 cRNA into mouse eggs significantly altered the sperm-

induced oscillations and the authors wondered that if PLC-ζ was the sole activating 

factor, how could an oocyte specific PLC affect the pattern.  In this study we found that 

the microinjection of cRNA for any of the PLC enzymes endogenous to a bovine oocyte 

resulted in some embryonic development, albeit at low rates, but the physiological 

relevance of the technique of cRNA injection might be questioned as a result.  
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Microinjection of cRNA for PLC-γ2 had similar results to the microinjection of cRNA 

for PLC-ζ, so this provides evidence that a PLC endogenous to the oocyte might also be 

involved in initiation of calcium oscillations. 

The microinjection of PLC-specific siRNA’s also implicated the involvement of 

PLC-γ2 and PLC-γ1 with both resulting in significantly lower cleavage rates compared 

to the IVF control and all of the other PLC’s.  Interestingly, siRNA specific for PLCζ 

failed to reduce cleavage when treated bovine oocytes were fertilized.  PLCζ RNA has 

been found in ejaculated spermatozoa of mice and humans, and has been proposed to 

potentially contribute to the overall pattern of intracellular calcium oscillations [271].  If 

this is also the case in the bovine model, inactivation of spermatozoa introduced PLCζ 

RNA by preloading the oocyte with PLCζ specific siRNA should have a negative impact 

on cleavage and intracellular calcium release; however, this did not occur. 

The retrospective studies involving men with globozoospermia [240, 241] 

concluded their infertility was due to reduced or defective PLC-ζ protein levels.  As 

stated in Aarabi et al. [18] many other sperm proteins are also affected or absent in these 

patients, so in this case there is no direct experimental evidence indicating the reduced 

levels or mutated forms of PLC-ζ are the actual cause of the infertility.  Association does 

not mean causation. 

Studies that used transgenic RNAi methods to decrease the amount of PLC-ζ in 

male mice, concluded that since no transgenic offspring were found, none of the PLC-ζ 

deficient sperm were able to activate oocytes [239].  In light of the recent findings that 

PLC-ζ might play a role in the acrosome reaction and is absent from the sperm head at 

fertilization, it is possible to conclude that no transgenic offspring were born because 
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none of the PLC-ζ deficient sperm were able to undergo the acrosome reaction.  

Intracytoplasmic sperm injection (ICSI) in humans has proven to be a very 

successful technology for overcoming infertility issues; however, the application of this 

technology in domestic livestock species has proven to be challenging.  The success of 

ICSI in cattle is very low and typically requires an additional chemical activation step 

for improved development [272, 273].  If spermatozoa do indeed contain the SOAF, why 

does ICSI not result in activation and embryonic development in the bovine model?  It is 

clear that ICSI and bypassing the gamete membrane interaction in the bovine model fails 

to activate the oocyte and that spermatozoa-oocyte binding and fusion is requisite for 

activation.  

  These data illustrate the potential involvement of multiple endogenous PLC 

isoforms, in particular PLCγ1 and PLCγ2, and not just the sperm-specific PLCζ isoform 

in bovine oocyte activation during fertilization.  Knocking down the mRNA levels of 

PLCγ1 and PLCγ2 had the greatest impact on reducing cleavage rates while 

overexpressing PLCζ and PLCγ2 resulted in the highest parthenogenetic activation rate.  

Embryonic development and calcium transients were observed in oocytes microinjected 

with a variety of the cRNA’s even though the knockdown of mRNA levels for these 

same PLC’s did not have an impact on fertilization.  These findings highlight the 

difficulty of interpreting the results of protein over expression experiments and whether 

the response is physiological.  That being said, however, the combined results of mRNA 

knockdown and protein overexpression of PLCγ1 and PLCγ2 reinforce each other and 

indicate the involvement of these two PLC isoforms endogenous to the oocyte in bovine 

fertilization and oocyte activation. 
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CHAPTER 5 

SUMMARY 
 
 

Mammalian fertilization is an extremely complex series of events and has 

garnered the interest of numerous diverse research groups for many years.  Much has 

been learned, but there is still much more remaining to be discovered pertaining to the 

molecules and mechanisms involved in fertilization.  There is some conservation to an 

extent in the molecules and mechanisms of fertilization, but there is an inherent danger 

in making far reaching generalizations between phyla as diverse as echinoderms and 

mammals or between species as similar as murine and bovine.  However, regardless of 

the animal system, the questions remain the same.  What are the carbohydrates and 

glycoproteins involved in zona binding and penetration?  What spermatozoa ligands are 

interacting with what receptors on the oocyte vitelline membrane during membrane 

binding and fusion?  What are the initiating event(s) and pathways involved in eliciting 

the calcium release from the oocyte’s intracellular stores resulting in embryonic 

activation?  I believe each species is unique requiring individual attention to get to the 

heart of oocyte activation. 

As I stated earlier it seems that for every experiment implicating the involvement 

of a spermatazoa or oocyte membrane protein, there is another experiment or set of 

experiments proving why the previously implicated protein is no longer “the” candidate 

or essential for binding or fusion or oocyte activation.  Why does there have to be just 

“one” essential player and why is it so far fetched that multiple proteins be involved?  

Due to the complexity of life it is practically impossible to eliminate all of the other 

confounding variables so that we can get to the basic question of whether a single 



	   	    

	  

125 

protein is involved and essential or non-essential and not involved.   

The experiments in this dissertation confirm that integrins located on the vitelline 

membrane of bovine oocytes are involved in mediating the sperm-oocyte interaction.  

Anti-integrin function blocking antibodies and immunofluorescence revealed that the αV 

and β1 integrin subunits are involved with some aspect of fertilization in the bovine 

model and could form the integrin heterodimer involved in the sperm-oocyte interaction. 

 Integrins associate and interact with cytoskeletal proteins through the 

cytoplasmic domain of the β subunit and aggregate as focal adhesion sites.  Focal 

adhesion kinase (FAK) is localized to these focal adhesions and is a key component of 

signal transduction pathways mediated by integrins.   Since integrins are involved in 

bovine fertilization, elucidating the downstream signaling molecules would be a logical 

step.  The presence of FAK in bovine oocytes was verified by real time polymerase 

chain reaction and immunoprecipitation and the localization of focal adhesion kinase at 

the site of sperm binding to the oocyte plasma membrane was verified using 

immunohistochemistry.  The inhibition of FAK resulted in fewer cleaved embryos in 

addition to a reduction in the number of oocytes responding with calcium transients; 

therefore we concluded that FAK is also involved in the intracellular signaling cascades 

resulting from sperm binding and fusion. 

Phospholipase C isoforms regulate the release of calcium from the endoplasmic 

reticulum and are known to interact with integrins and focal adhesion kinase.   The 

experiments reported in this dissertation explored the involvement of PLC isoforms 

endogenous to the oocyte in mediating the calcium release associated with fertilization.  

Reduction in PLC mRNA levels for the phospholipase C isoforms γ1 and γ2 resulted in 
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significantly lower cleavage rates compared to the controls.  Maximizing protein levels 

for the phospholipase C isoforms ζ and γ2 resulted in a significantly higher number of 

oocytes reaching the 2 cell stage compared to all other treatment groups and not 

significantly different than the activation control.  The microinjection of PLC-specific 

siRNA’s also implicated the involvement of PLC-γ2 and PLC-γ1 with both resulting in 

significantly lower cleavage rates compared to the IVF control and all of the other 

PLC’s.  Interestingly, siRNA specific for PLCζ failed to reduce cleavage when treated 

bovine oocytes were fertilized.  These data illustrate the potential involvement of an 

endogenous PLC isoform and not just the sperm-specific PLC-ζ isoform in bovine 

oocyte activation during fertilization. 

PLC-ζ has been proposed to be the testis-specific, sperm borne activating factor 

(SOAF) that initiates oocyte activation after gamete fusion; however, PLC-ζ fails to 

fulfill all of the SOAF requirements, so its primary function as the SOAF needs to be 

taken into question.  PLC-ζ expression has been proven to not be testes specific, it is not 

localized to the region of the sperm head where the SOAF candidate resides, it 

undergoes dramatic relocalization during the acrosome reaction, and recently was found 

to target intracellular stores of calcium and not those associated with the endoplasmic 

reticulum [274].  I find it fascinating that every time PLC-ζ is found to contradict the 

well established SOAF requirements, it only gains another “novel” function instead of 

being eliminated as “the” activating agent.  As the saying goes, “Two wrongs don’t 

necessarily make a right.”   

Together these data illustrate the involvement of integrins, FAK, and PLC 

isoforms endogenous to the oocyte in bovine fertilization and activation.   Further work 
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needs to be done in evaluating the other downstream signaling molecules and cascades 

involved in bovine oocyte activation. 
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