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Abstract

Using Stereo Particle Image Velocimetry to Quantify and Optimize Mixing in an Algae

Raceway Using Delta Wings

by

Blake W. Lance, Master of Science

Utah State University, 2012

Co-Major Professor: Dr. Byard Wood
Co-Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

Of the potential feedstocks for biofuels, microalgae is the most promising, and raceway

ponds are the most cost-effective method for growing mircoalgal biomass. Nevertheless,

biofuel production from algae must be more efficient to be competitive with traditional

fuels. Previous studies using arrays of airfoils, triangles, and squares at high angles of

attack show an increase in mixing in raceways and can improve productivity by up to a

factor of 2.2. Some researchers say increasing mixing increases growth due to the flashing

light effect while others claim it is the decrease in the fluid boundary layer of the cells that

increases mass transfer. Whatever the reason, increasing growth by increasing mixing is a

repeatable effect that is desirable to both reduce operation costs and increase production.

An experimental raceway is constructed to test the effect of a delta wing (DW) on

raceway hydraulics in the laboratory using fresh-water. The DW is an isosceles triangle

made of plate material that is placed at a high angle of attack in the circulating raceway

flow. Results from this investigation can be scaled to larger growth facilities use arrays of

DWs. Two vortices are found downstream of the DW when used in this way and create

significant vertical fluid circulation. Stereo particle image velocimetry (PIV) is used to
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quantify and optimize the use of delta wings as a means to increase fluid mixing. Stereo

PIV gives three components of velocity in a measurement plane at an instant. Three

studies are performed to determine the optimal paddle-wheel speed, angle of attack, and

DW spacing in the raceway based on mixing. Two new mixing quantities are defined. The

first is the Vertical Mixing Index (VMI) that is based on the vertical velocity magnitude,

and the second is the Cycle Time required for an algal cell to complete a cycle from the

bottom to the top and back again in the raceway.

The power required to circulate the flow is considered in all results. The Paddle-wheel

Speed Study shows that the VMI is not a function of streamwise velocity, which makes

it very useful for comparison. The Cycle Time decreases quickly with streamwise velocity

then levels out, revealing a practical speed for operation that is lower than typically used

and consumes only half the power. The angle of 40◦ is optimal from the results of the Angle

of Attack Study for both VMI and Cycle Time. The third study is the Vortex Dissipation

Study and is used to measure the distance downstream before the vortices dissipate. This

information is used to optimize the DW spacing for profit considering the additional costs

of adding DWs.

(118 pages)
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Public Abstract

Using Stereo Particle Image Velocimetry to Quantify and Optimize Mixing in an Algae

Raceway Using Delta Wings

by

Blake W. Lance, Master of Science

Utah State University, 2012

Co-Major Professor: Dr. Byard Wood
Co-Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

Biofuel research has been continually growing over the past six decades. Of the potential

sources for biofuels, microalgae is the most promising, and circulating (raceway) ponds

are the most cost-effective method for growing microalgae in abundance. Nevertheless,

biofuel production from algae must be more efficient to be competitive with traditional

fuels. Previous studies using several airfoils, triangles, and squares at high angles to the

flow direction (angle of attack) show an increase in mixing in raceways and can improve

productivity by up to a factor of 2.2. Researchers show that increasing growth by increasing

mixing is a repeatable effect that is desirable to both reduce operation costs and increase

production.

An experimental raceway of similar shape to commercial facilities is constructed to test

the effect of a delta wing (DW) on fluid motion in the laboratory using fresh-water. The DW

is a triangle made of plate material that is placed in the circulating flow creating significant

fluid circulation. Results from this investigation can be scaled to larger growth facilities use

arrays of DWs. Stereo particle image velocimetry (PIV) is used to measure and optimize the

use of DWs as a means to increase fluid mixing. Three studies are performed to determine
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the best fluid speed, angle of attack, and DW spacing in the raceway based on mixing. Two

new mixing quantities are defined to reduce results for optimization. These studies result in

the optimal use of DWs in raceway ponds to increase mixing and are expected to increase

growth.
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Chapter 1

Introduction

1.1 Background

Research on microalgal-based biofuels began around 1960, but little was invested until

the 1970s. This research has grown recently as crude oil prices, energy demand, and concern

about environmental issues have all increased [1]. Of the types of feedstock for biofuels,

microalgae has shown exceptional production rates for land use. To replace half of the

transport fuel in the United States with biodiesel, microalgae would need to be grown on

1-3% of the existing cropping area compared to the 846% of land required if corn were to

be used [2]. Despite the superior growth rates, Batan et al. [3] found microalgal biodiesel

requires 93% of the reclaimed energy for production compared to 19% for conventional

diesel. They also found that biodiesel has one significant advantage: its growth consumes

significant amounts of greenhouse gas whereas conventional fuels produce it.

Algae grow best when exposed to sunlight intensities that are only a portion of the

maximum intensity incident at the earth’s surface. In fact, it has been shown that growth

rates decrease when exposed to high intensities in a phenomenon termed photoinhibition.

One proposed solution for increased biomass production is to periodically shade the algae

once they have been exposed to high levels of light intensity [4]. One proposed method is

to increase the depth of raceway ponds and ensure that the algal culture is turned-over so

the cells are exposed to light then experience a period of shading.

The two common types of algal growth facilities are open raceway ponds and photo-

bioreactors. Raceway ponds have been used since the 1950s and are circulating channels

open to the atmosphere, typically around 0.3 m deep, that are built from concrete or com-

pacted earth and circulated by a paddlewheel as seen in Fig. 1.1. Photobioreactors are a

newer concept that use closed tubes or varying shape with a two-phase mixture that are



2

pumped in the circulation path or sparged with CO2 [2]. An example of one of the several

types of photobioreactors is shown in Fig. 1.2. Photobioreactors produce biomass at much

higher concentrations using less land, but these advantages come with higher cost. In 2011

Davis et al. found that production-scale biodiesel cost from a raceway is $9.84/gal while

that from photobioreactors is $20.53/gal [5].

Fig. 1.1: Sketch of an open raceway pond. Figure from [2] and used with permission.

Fig. 1.2: An example of a Photobioreactor. Figure from [6] and used with permission.
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1.2 Literature Review

Flashing Light Effect (FLE) is a term that describes exposing cells to alternating

periods of light and dark and has been shown to increase photosynthetic efficiency of algal

growth [7]. Mixing the algal growth culture is one method of introducing the FLE because

the light attenuation decays exponentially in algal cultures by what is commonly called

the Beer-Lambert Law [8]. Therefore the light penetration depths are typically between

1 − 2 inches. After completing an experimental study on the effect of the FLE on growth

rates of the common algal strain Chlorella, Phillips and Myers [9] stated in 1954,

A dense culture growing under sunlight will experience a significant increase
in growth if cells are moved in and out of the high intensity of the front surface
at such a rate as to give flash times between 0.001 and 0.1 second. It is also
clear that the culture should be thick enough or dense enough so that almost
all the light will be absorbed in the first 10% and the dark time will be about
ten times as long as the light flash. These considerations lead to the conclusion
that almost any attempt to grow algae in sunlight will experience some gain by
turbulence. The feasibility of increasing the turbulence will depend upon the
extent of the gain in growth as compared to the increased power requirement of
stirring or pumping the suspension. (p. 160)

This quote is a practical conclusion to a comprehensive work and motivates facilities with

high mixing levels if high algal density is used for increased growth rates. The research of

others shows that optimal flashing periods are between 0.1-10 s, but they do not distinguish

between flashing time and dark time [10].

Miller et al. studied the effect of mixing on the efficiency of algal photosynthesis [11].

Algae were grown in an annulus with a rotating inner cylinder. Taylor vortices in the annulus

caused a regular mixing pattern for the algal culture. They found that FLE, not increased

mass transfer, is the dominant enhancer of algal growth where regular mixing is found.

They concluded “Utilization of the flashing light effect for improvement of photosynthetic

efficiency of optically dense algal cultures requires a nonrandom mixing pattern–one in

which cells are exposed to regular sequences of light and darkness....” It can be concluded

that the relatively small scales of turbulent mixing may be less beneficial to algal growth

than large-scale, regular mixing.
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Other studies have been performed that show the improved effect of mixing on algal

growth. In an article describing a numerical study with biological, environmental, and

hydraulic considerations; Scott and Boriah [12] found that the 180◦ bends found in open

raceways are beneficial to mixing and algal growth. They observed a helical flow downstream

of the bends that invert the growth culture several times, but these effects are quickly

dissipated and so are the benefits.

Another study discussed adding mixing enhancers to the straight sections of a raceway

to promote mixing. Experiments by Laws et al. show that using the FLE can reduce

photoinhibition and increase photosynthetic efficiency by a factor of 2.2. This effect was

achieved in a raceway by arrays of airfoils, similar to those used for airplane wings, at

high angles of attack that created trailing vortices [13]. This study took advantage of the

increased, regular mixing concept from Miller et al. but with a much simpler design that

has no moving parts and should require much less energy for circulation. The pressure

differential from the top to the bottom of the airfoil creates tip vortices that are common

yet undesirable on aircraft but that can improve mixing in algal raceways. The airfoils were

arranged as shown in Fig. 1.3. The spacing regular spacing was used to reduce negative

interaction of adjacent vortices by keeping the airfoil width and spacing the same as the

water depth (D in the figure).

In addition to measuring the increased biomass after the growth period, Laws et al.

measured the fluid by a simple cylinder approximately 5 cm in diameter with eight zero-

pitch blades meant to follow the fluid rotation. The size of the device causes significant

averaging for the vortex angular velocity measurement and could cause disruption of the

flow. With today’s improved fluid measuring techniques, these problems can be alleviated

with high resolution and non-intrusive devices.

The results from the study show an optimal angle of attack of approximately 23◦,

but only three angles were tested. With a bulk velocity of 30 cm/s and water depth

of 7.5 cm they used streamwise spacing of the airfoil arrays of 1.2 m and observed vortex

structures throughout that length. Despite this spacing, the vortex rotation at the optimum
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Fig. 1.3: Arrangement of airfoils in cross section of raceway with the water depth represented
by D. Figure from [13] and used with permission.

angle of attack reduced quickly to half of that observed directly behind the airfoils within

approximately 40 cm.

Other than airfoils, flat wings have been used to increase mixing. In one study, Biswas

et al. attached them to the walls in heat exchangers to augment the heat transfer [14]. The

wings create streamwise longitudinal vortices that significantly improve both downstream

mixing and the heat transfer. They noted that adding the vortex generators increases

pressure drop, so care must be exercised to optimize the heat transfer with respect to the

increased pumping power from the addition of the wings.

In 1995 Cheng and Dugan produced one of the latest but often overlooked publications

on mixing enhancement in open channel raceways [15]. They placed arrays of triangle and

square shapes in the flow at angles of attack of 10◦ and 20◦. The velocity sensor was simply

a pressure transducer that may have been used as a rudimentary pitot probe to sense the

streamwise component of velocity. Their channel was a shallow 10 cm and had a streamwise

velocity around 0.3m/s. They took point measurements at differing depths and distances
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downstream and calculated the Turbulence Intensity. They found the 20◦ angle to be much

more effective at creating turbulence and increasing mixing than 10◦. They also studied the

spacing of the shapes in the transverse direction to the bulk flow. The square and triangle

shapes were all 100 mm on a side, and they found that spacing them 300 mm apart to

created as much turbulence as the 200 mm spacing with lower power and capital costs. The

shapes added very little added power consumption with significant mixing enhancement.

Grobbelaar found that increased mixing can nearly double algal growth in a lab envi-

ronment, but attributes the effect to be a decrease in boundary layer thickness and not the

FLE [16]. To support this, he performed growth experiments with artificial light that was

cycled at periods between 3 and 135 s. No trend was seen in the growth rate under this

large range. A second experiment was performed with the same light patterns but increased

the culture stirring speed with a significant increase in growth rates. He states:

Mixing decreases the boundary layer and thus enhances the exchange rate
for metabolites and nutrients between the cell and its environment, and as a
consequence of this, utilizes light more efficiently giving the impression that
mixing results in a better utilization of light energy, and hence growth. (p. 191)

He later suggests that researchers distinguish between the effect of light and turbulent

mixing on algal cultures. The current work does not investigate whether light effects or

a change in boundary layer thickness is the reason for significant growth increases from

mixing, just that it occurs and can be used to grow algae with increased efficiency and at

a lower cost.

1.3 Hypothesis

Increasing fluid mixing in raceway ponds should improve the growth rates that have

previously been observed in standard depth ponds and allow for deeper ponds with higher

production rates per land use as the algae will have more frequent exposure to the water

surface and will experience increased nutrient homogeneity. The increased mixing can be

realized with the addition of a Delta Wing (DW) at an angle of attack to the flow. A DW

is an isosceles triangle made from sheet material and can create vortices similar to those

on airfoils as studied by Laws et al., but is much easier to manufacture. Cheng and Dugan
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performed a study with the first publicized use of the DW to increase mixing in raceways,

but did not call it such [15]. They pointed the tip down while it is predicted that having the

tip up will produce vortices with more even spacing. The DW produces longitudinal line

vortices that should significantly increase mixing and be sustained for significant lengths

downstream. This effect is simulated by the animation (click to play) from a simple Com-

putational Fluid Dynamics (CFD) model computed with Star-CCM+ as seen in Fig. 1.4.

When used in commercial raceways, it is expected that the DW has the potential to increase

algal growth by up to a factor of two.

Fig. 1.4: Streamlines from a CFD simulation for a qualitative look at the circulating flow
from the Delta Wing


Streamlines.mp4
Media File (video/mp4)
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Chapter 2

Objectives

The objectives for the work outlined herein are:

� Design experiment using Stereo Particle Image Velocimetry (PIV) to obtain three-

component velocity data from experimental algal raceway

� Define mixing parameter to estimate level of mixing from DW using PIV data

� Determine optimal angle of attack for the DW

� Determine downstream length of enhanced mixing for wing spacing optimization

� Validate results by comparison with those of Acoustic Doppler Velocimeter for same

flow conditions
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Chapter 3

Methods

3.1 Experimental Raceway

An experimental algal raceway was built in the Sant Engineering Innovation Building

at Utah State University with transparent acrylic sides for flow visualization and measure-

ments (see Fig. 3.1). The Raceway is scaled from a 1/4 acre production raceway to fit in

the laboratory, but unlike production raceways, it contains only water. It uses a six-blade

paddle-wheel to circulate the flow that is driven by a 1 hp, 1725 RPM, three-phase elec-

tric motor through a 60:1 gear reducer. The speed is controlled by a variable frequency

drive (VFD) which can change the output continuously between no rotation to the motor’s

full speed. The VFD is an Emmerson Commander SK size B with single phase input power.

Fig. 3.1: Model Raceway constructed for fluid measurements
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The raceway is twenty feet long and three feet wide with eighteen inch wide channels.

The sides and center divider are made of half inch clear acrylic and the supporting structure

is made of Unistrut® channel. The raceway can handle water depths up to eighteen inches,

but all experiments outlined herein were performed at either eight or ten inches. The

DW is an isosceles triangle 14.5 inches on each side whose mounting rod is located at the

centroid. Flow conditioning is used, consisting of thin honeycomb material that is four

inches thick with holes of approximately 1/4 inch diameter. Tests showed that the flow

conditioning makes the flow significantly more one-directional, but does not change the

sizable recirculation zone from the 180◦ bend immediately downstream. A scaled drawing

of the raceway geometry is shown in Fig. 3.2 showing the major components in the flow.

(a)

(b)(c)

Fig. 3.2: Scaled sketch of experimental raceway with (a) paddle-wheel, (b) flow conditioning,
and (c) delta wing

3.2 Power Measurement

The electric power was measured between the VFD and the motor by the use of a hall

effect sensor, voltage divider, data acquisition device (DAQ), and computer. The hall effect

sensor was model L18P003 made by Tamura whose voltage output was proportional to the

current flowing through it. The voltage divider was made of 1% precision resistors and was

required to reduce the high voltage signal by two orders of magnitude so as to be appropriate

for the DAQ. The gain factor for the voltage divider used the measured resistance values

instead of the nominal ones. The DAQ was model NI 9215 made by National Instruments

and was a four-channel, 16 bit voltage reader with a ±10 V range.
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Electric power P in a three phase AC circuit is commonly calculated by

P = 3VφIφ cos θ (3.1)

where Vφ and Iφ are the RMS components of the phase to neutral voltage and current

respectively. The phase wire is one of the three physical wires carrying the power and is

denoted by φ. The phase delay between the voltage and current in this wire is θ and will

be between zero and ninety degrees when used with an induction motor.

The power in each phase can temporarily go negative due to the contributions of the

reactive power to the real power. The real power is the useful power that does work, is

always positive, and is the quantity that we wish to measure. Reactive power is the power

that pulsates up and down the line that does no useful work, has an average of zero, and

causes the magnitude of the phase power to go negative [17]. Even though the phase power

can be negative, the cumulative power in the three phases of a balanced circuit is a constant

with a magnitude three times the real power in each phase (see Fig. 3.3).

t(s)

Power

Pa

Pb

Pc

P3φ

Fig. 3.3: Three Phase Power, adapted from [17]

Because the cumulative power can be found as stated above, only a single phase needs

to be measured if the load is balanced. An equivalent method for measuring this power is

to take instantaneous measurements of voltage and current and take the average of their

product in the measurement interval as represented by

P = 3
∑
i

Vφ,iIφ,i/N (3.2)
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where N is the number of samples. The real power is obtained by averaging over many

wavelengths since the reactive power is removed from the data (average of zero). This second

equation is used in this work with the assumption that the three phases are balanced.

The VFD output signal is not a true sign wave but is made of relatively small amplitude

pulses at frequencies in the kilohertz range. The VFD also outputs a large-scale, low

frequency that causes the motor to see an apparent sine wave between 0 and 60 Hz. The

current and voltage sensors were capable of passing the high frequency signals and were

sampled at 50 kHz to capture the effect of the small pulses and distinguish the frequencies

present by use of a fourier transform.

Once the signals were acquired by the computer, a low-pass Butterworth filter with

cutoff frequency of 1 kHz was used for both signals. To calculate power, the filtered,

instantaneous voltage and current were multiplied then averaged over a period sufficient to

provide a converged estimate of the true power. Data were taken for a period of 10 minutes

to cause the precision uncertainty to always be less than 0.75%.

An uncertainty analysis for the power measurement was performed based on expected

results. The Taylor Series Method for Uncertainty Propagation was used on the data

reduction equation for instantaneous power

P = 3 V I (3.3)

to give the expansion of

UP =

√(
∂P

∂V

)2

U2
V +

(
∂P

∂I

)2

U2
I + P 2

P (3.4)

where UP is the overall uncertainty in power, UV is the uncertainty of the voltage, UI is

the uncertainty of the current, and PP is the precision uncertainty of power. This equation

is normalized by power as

UP
P

=

√(
UV
V

)2

+

(
UI
I

)2

+

(
PP
P

)2

(3.5)
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The uncertainty of voltage depends on the uncertainty in the gain factor of the voltage

divider. The gain factor is

V = V0

(
RH +RL

RL

)
(3.6)

where V0 is the measured voltage, RH is the high value resistor, and RL is the low value

resistor. A high accuracy multimeter, Hewlett Packard 34401A, was used measure the resis-

tance values. The uncertainty in resistance takes on that of the meter whose specifications

were found in the user manual; these uncertainty values were small compared to that in-

herent in the hall effect sensor. An uncertainty analysis for the current measurement was

performed from the information on the hall effect sensor’s data sheet with the result at

5% of the nominal magnitude expected. The current sensor’s output was checked by the

multimeter by wiring them in serial and driving a DC current through both. As seen in

Fig. 3.4, the measured error was 2.5% of reading maximum. In total, the uncertainty in

the power measurement was bounded by 5% of reading, and this value is used for all power

measurements herein.
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Fig. 3.4: Results from calibration of current sensor

The VFD has a basic, internal power sensor that is read from software; however, it

has a minimum resolution of 10 W. Since the nominal load required about 60 W, this poor

resolution motivated this additional power measurement. The VFD’s converged average
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was compared to that of this measurement with a maximum error of 5% with 2% typical.

This provided excellent validation to our measurement and was within the uncertainty of

the two methods.

3.3 Stereo PIV

An animation of the concept behind two-component PIV is shown in Fig. 3.5 (click

to play) and shows the chronological process for acquiring PIV data. First the flow must

be seeded with small particles that follow the fluid. These particles are illuminated by a

laser sheet while images are simultaneously captured by the CCD camera. The image pairs

are acquired close in time. They are analyzed in a cross-correlation computer algorithm

that determines the direction and distance groups of particles have moved with the velocity

vector field result. PIV will reveal much more about the flow than was previously found by

all researchers on this topic by giving nearly 10,000 velocity vectors in the plane.

Fig. 3.5: Particle Image Velocity principles. Figure from [18] and used with permission.


PIVAnimation.mp4
Media File (video/mp4)
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A Stereo Particle Image Velocimetry (PIV) system from LaVision, Inc. was used to

measure three components of instantaneous velocity in a plane normal to the direction

of the flow. The increased difficulty of stereo measurements over two-component PIV is

significant, but this method is necessary to resolve three components of velocity. Open

channel flows are largely three-dimensional [19]. The cameras in the system are Imager

Intense 12-bit CCD cameras made by PCO and sold by LaVision. The laser is a double

pulse, 95 mJ Nd-YAG made by New Wave Research. The seed used in the raceway is hollow

glass microspheres with an average diameter of 10 µm and density of 1.10 g/cc made by

Potters Industries LLC (product 110P8). Both the seed diameter and density are very near

that of algal cells, which allows the experiments to use clean water and apply the results to

algal cultures without significant error.

The Stereo PIV arrangement for measurements at the model raceway can be seen in

Fig. 3.6. In contrast to the two-component PIV in the animation above, Stereo PIV requires

two cameras. These cameras are pictured in blue in the upper and lower portions of the

picture while the laser pair is at the left-center of the image. The model raceway is in the

upper-right portion in the image. The seed is illuminated green by the laser.

Because the cameras view the object plane at an angle with Stereo PIV, the entire

plane can not be in focus at once with typical methods. To compensate for this, special

Scheimpflug lens mounts are used. The Scheimpflug principle and device were patented in

1904 and, when used, allow the entire plane to be in focus by aligning the image plane, lens

plane, and object plane for both cameras to intersect on a common line [20,21].

Stereo PIV requires the use of a calibration plate with known geometry. The plate

typically has two layers and two sides and is covered in marks; the geometry needs to

be precise so the software knows how the object plane is mapped onto the image plane.

LaVision, Inc. sells calibration plates for their PIV systems, but one of the proper size was

not available to fill most of the model raceway. A new calibration plate was designed and

fabricated and is seen in Fig. 3.7. The new plate was based on a commercial design but the

marks were through-holes drilled in a painted black surface instead of the laser-etched on
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Fig. 3.6: Acquiring Stereo PIV measurements at model raceway

an anodized surface.

The PIV data were acquired and processed with DaVis 7.2 software from LaVision.

All acquired images in a data set were averaged; this average was subtracted from each

image to remove the negative effects of stationary background objects on the PIV cross-

correlation. A mask was applied during the image processing to limit the resulting velocity

vectors to the fluid area. Stereo cross-correlation was used for the PIV processing starting

with 128×128 pixel interrogation regions with 50% overlap and ending with 32×32 pixel

regions with the same overlap. The typical dewarped image has a size of 2200×1400 pixels

resulting in a vector result with an approximate count of 138×88. The area inside the

mask typically consisted of 128×72 vector results. The post-processing consisted of three

steps: removing vectors if the Q ratio (the relative maximum correlation peak height to the
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Fig. 3.7: Custom Calibration Plate for Stereo PIV

second highest) was less than 1.3, removing and replacing vectors if the difference is greater

than 1.75×RMS of neighbors and less than 2.5×RMS of neighbors, and interpolating single

empty spaces. The final step in processing was to calculate the average and RMS fields of

the instantaneous data set through time.

After processing, the velocity data were exported to Tecplot® format files. These files

were read by a personal Fortran code that would reorganize the data into three new files

with the original geometry, each corresponding to one velocity component; this code is

shown in Appendix A. These new files were read into a personal Matlab code that would

calculate the Quantities of Interest and make plots in the fluid area that was not masked

(see Appendices B & C).

A traversing system was built so the PIV system can slide along the Raceway while

maintaining relative distances between the cameras, laser, and raceway; it is the metal

structure linking these components in Fig. 3.6. This structure helped in consistency and

reduced set-up time between measurement locations.
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3.4 Quantities of Interest

3.4.1 Reynolds Number for Channel Flows

The Reynolds number Re for channel flow is

Re =
w̄Rh
ν

(3.7)

where w̄ is the streamwise velocity, Rh the hydraulic radius, and ν the kinematic viscosity.

The hydraulic radius is

Rh =
Ac
p

(3.8)

where Ac is the cross-sectional area of the flow and p is the wetted perimeter [19]. The

cross-sectional area is Ac = DW where W is the raceway width (17.75 inches) and D is the

water depth (10 inches). The wetted perimeter is p = 2D+W . The kinematic viscosity for

water at 20◦C is 1.0040E−6 m2/s.

3.4.2 Standard Deviation

Several other quantities that will be useful to quantify the flow include the sample

standard deviation, turbulence kinetic energy (TKE), and turbulence intensity. The sample

standard deviation s is a measure of how far from the mean the typical value is found in a

data set or is considered a measure of the fluctuation magnitude of the sample. The sample

standard deviation of fluid velocity is

sv̄i =

√√√√ 1

N − 1

N∑
j=1

(vj − v̄i)2 (3.9)

where sv̄i is the sample standard deviation for each velocity component i, N is the number

of samples, vj is an instantaneous velocity measurement, and v̄ is the mean velocity of the

sample [22]. Because the parent population standard deviation can not known by discrete

measurements, only the sample standard deviation s will be used in discussion. Here it

must be noted that the components of velocity in the x, y, and z directions are referred to
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as u, v, and w respectively. The standard deviation for each velocity component is u′, v′,

and w′. Turbulent flows are typified by having fluctuating flow structures at many different

length scales while laminar flows do not; therefore, u′, v′, and w′ are often used to measure

flow turbulence levels.

3.4.3 Turbulence Kinetic Energy

Turbulence Kinetic Energy k̄ is another measure of flow unsteadiness [23] and is defined

as

k̄ =
1

2

(
u′u′ + v′v′ + w′w′

)
(3.10)

where u′u′ = (u′)2, v′v′ = (v′)2, and w′w′ = (w′)2. The Turbulence Kinetic Energy will

provide a single value to represent the fluctuation levels of all velocity components for each

point. Again, the PIV results yield planes of data, so the TKE can be calculated over the

entire domain.

3.4.4 Turbulence Intensity

A final method for quantifying the turbulence levels is to calculate the non-dimensional

turbulence intensity by

Tu =

√
1
3

(
u′u′ + v′v′ + w′w′

)
V̄

=

√
2
3 k̄

V̄
(3.11)

where Tu is the turbulence intensity and V̄ is the average velocity magnitude. Turbulence

intensity is often represented in percentage, with low values being around 1% and high

values around 15-20% [23].

3.4.5 Precision Uncertainty

The precision uncertainty can be calculated to bound the random portion of uncertainty

based on

Ui = t95 sv̄i/
√
N (3.12)



20

where Ui is the precision uncertainty of the mean velocity for each component i, t95 is the

confidence level factor that is set to 1.96 for large samples and a 95% confidence level, and

N is the number of valid vectors in the data set [22]. Since each velocity vector has three

components, Equation 3.12 is applied to each independently. The root-sum-squared value

of uncertainty U at each vector location is then calculated by

U =
√
U2
u + U2

v + U2
w (3.13)

where Uu, Uv, and Uw are the uncertainty of velocity in the x, y, and z directions respec-

tively.

The relative precision uncertainty Urel,i, in percentage, is calculated for each velocity

component i by

Urel,i = 100 Ui/w̄. (3.14)

The normalizing is typically not done by the component velocities vi because some are

found to be near-zero in most flows, causing the relative uncertainties to diverge. Using w̄

is common to address this issue. These component relative uncertainties are considered in

the root-sum-squared expression

Urel =
√
U2
rel,u + U2

rel,v + U2
rel,w (3.15)

to give the local relative precision uncertainty value for each vector location.

3.4.6 Vertical Mixing Index

No suitable method of quantifying mixing based on PIV data could be found in the

literature; therefore, a new quantity was defined [24]. The Vertical Mixing Index (VMI)

aims to reflect the amount of vertical mixing by considering the absolute value of the vertical

component of velocity normalized by the planar average streamwise velocity w̄ as

VMI =

∑N
i | vi | /N

w̄
. (3.16)
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The absolute value of vertical velocity is used because using v alone would result in a

value near zero–the fluid volume rising must have a corresponding amount falling for the

incompressible liquid. Fig. 3.8 shows a case with a relatively low VMI due to the absence

of a DW. Compare this to a flow with significantly higher VMI from a DW at 40◦ angle of

attack shown in Fig. 3.9. The vectors in these plots use the same scale to show the drastic

difference the DW has on in-plane velocity.
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Fig. 3.8: In plane velocity without DW

3.4.7 Cycle Time

Much of the reviewed literature stressed the importance of the FLE to increased algal

productivity, even though the ideal frequency of the light-dark cycles had a large range.

Noting that the VMI has no consideration for the time required for the algae to experience

these cycles, a new quantity was defined. Consider a basic equation for velocity v = ∆s/∆t,

or the average velocity is a change in position divided by a change in time. We can rearrange
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Fig. 3.9: In plane velocity with DW at 40◦ angle of attack

to solve for velocity and obtain the basis for the Cycle Time (∆t) definition

∆t =
2D∑N

i | vi | /N
(3.17)

where D is the water depth as shown in Fig. 3.10. The algae cells have to cycle from

the bottom to the top (or within the first 1-2 inches to absorb photons from the incident

radiation), and back down again to complete their cycle. The distance traveled is therefore

2D and the average velocity is
∑N

i | vi | /N . All Quantities of Interest are computed from

the PIV data in a Matlab code found in Appendix B.

3.5 Experimental Outline

The experiments in the experimental raceway comprise three separate studies: the

Paddle-wheel Speed Study, the Angle of Attack Study, and the Vortex Dissipation Study.

Stereo PIV and power data were acquired for all experiments. If power was neglected, it is

expected that the highest paddle-wheel speeds and highest angles of attack would produce
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Fig. 3.10: Raceway cross-section with geometric definitions

the best results, but they both come at a price. The measured power is comprised of two

parts: the first is that which is required to overcome fluid losses and maintain circulation

while the second, termed “no-load,” is that which is lost due to the inefficiencies of the

motor, gear reducer, and chain. In other words

Pmeasured = Pfluid load + Pno−load. (3.18)

To find the no-load power, the raceway was drained and power measurements were made

with the paddle-wheel turning at the speeds used in the three studies. This power could

then be subtracted from the measured power with fluid included, resulting in only the

power to circulate the fluid, herein referred to as the Fluid Load. The Fluid Load would

allow better comparison with CFD simulation results and raceways with different types of

drives and motors. Since increased paddle-wheel speed and angle of attack are expected to

increase power, this approach will normalize the higher mixing results from these cases.

Further considerations must be made to allow for direct comparison of results between

the experimental raceway and much larger commercial raceways. For instance, if the VMI

was simply normalized by the Fluid Load, the larger raceways would appear inferior due

to larger loads. Normalizing must therefore be done by a non-dimensional power quantity

that scales on size, fluid density, and streamwise velocity. The normalized power is defined

as

Pnorm =
Pfluid load
ρAcw̄3

(3.19)
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where Pfluid load is the Fluid Load power, ρ is fluid density, and Ac is flow cross-sectional

area. The normalized power term should be roughly equivalent in all expected configura-

tions. This definition holds since Pfluid load scales linearly with ρ, Ac, and w̄3.

For the Paddle-wheel Speed Study, the DW centroid was set at the center of the raceway

in the channel opposite the paddle-wheel and four inches from the bottom with a 30◦ angle

of attack and ten inches of water. The paddle-wheel turned at speeds between 2.40 and

14.38 RPM. The VMI and Cycle Time were calculated from the fluid data and normalized

by the non-dimensional power Pnorm.

For the Angle of Attack Study, the DW centroid was again set at the center of the

raceway and four inches from the bottom as shown in Fig. 3.11. The water depth remained

ten inches while the paddle-wheel rotated at 10.54 RPM. Eleven angles of attack were used

between zero and fifty degrees inclusive. Again, the VMI and Cycle Time were determined

and normalized by Pnorm.

(a)

(b)(c)

(d)

(e)

Fig. 3.11: Scaled sketch of experimental raceway with (a) paddle-wheel, (b) flow condition-
ing, (c) delta wing, (d) CCD cameras, and (e) Nd-YAG laser as configured for both the
Paddle-wheel Speed Study and the Angle of Attack Study

The goal of the Vortex Dissipation Study was to measure the downstream length of

vortex circulation. It used the results of the previous two experiments for the selection of
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paddle-wheel speed and angles of attack. The DW centroid was positioned 48 inches from

the end of the raceway and midway in water depth as seen in Fig. 3.12. Velocity data

were obtained in twelve planes spaced twelve inches apart downstream of the DW. At every

location, data without the DW and at five angles of attack were recorded. The VMI can be

plotted over the length of vortex sustainment for each angle of attack to reveal the optimal

angle. This study give the pertinent data to be used in an optimization study to determine

spacing for the DWs in production raceways based on revenue.

(a)

(b)(c)

(d)

(e)

123456789101112

Fig. 3.12: Scaled sketch of experimental raceway with (a) paddle-wheel, (b) flow-
straightener, (c) delta wing, (d) CCD cameras, and (e) Nd-YAG laser as configured for
the Vortex Dissipation Study. The twelve green lines and numbers represent the twelve
planes where data were taken as the laser and cameras were traversed along the raceway.

Data were acquired and compared with those from an Acoustic Doppler Velocimeter

(ADV) from a previous study with matched flow parameters. The results of the two mea-

suring techniques will be compared both qualitatively and quantitatively for increased data

reliability. The ADV sensor is made by SonTek and is their 16 MHz MicroADV model

that gives three component velocity measurements at a point. It was traversed through

cross-sections of the flow in a 9 × 9 grid with higher spacial resolution near the bottom.

The side and top boundaries have areas where data can not be obtained, so the PIV data

were trimmed for better comparison.
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Chapter 4

Results

4.1 Preliminary Results

Before considering the results for the VMI and Cycle Time, the input power to the

paddle-wheel should be measured to normalize these quantities. It will be shown later that

the power is a strong function of paddle-wheel speed, so the measured power and Fluid

Load power results are shown in Fig. 4.1 as a function of this speed. The trend of the data

is as expected since the paddle-wheel is similar to a centrifugal pump whose power is pro-

portional to the speed or equally the velocity cubed [25]. The near-zero value for the Fluid

Load power appears at the lowest speed due to the high-slip conditions at the paddle-wheel

and/or could be the effect of measurement error.
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Fig. 4.1: Power considerations showing Measured Power and the Fluid Load Power as a
function of paddle-wheel speed

Since paddle-wheel designs are different for each raceway, the streamwise velocities

corresponding to these speeds are given in Table 4.1. This table also shows the relation to
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the VFD frequency and paddle-wheel speed. Since the streamwise velocity is known, the

Reynolds numbers can be calculated according to Equations 3.7 & 3.8 and are shown in the

table.

Table 4.1: Paddle-wheel speed, streamwise velocity, and Reynolds number for the range of
speeds tested

Variable Frequency
Drive Speed (Hz)

Paddle-wheel Speed
(RPM)

Streamwise Velocity
(m/s)

Re

5 2.40 0.042 5640

10 4.79 0.087 11700

15 7.19 0.133 17800

20 9.58 0.180 24200

25 11.98 0.232 31100

30 14.38 0.275 36900

A convergence study was performed on the PIV data to determine how many images

are required for a good estimate of the VMI. The results of the study are shown in Fig. 4.2

and show that 200 images are sufficient. All subsequent data sets were recorded using this

number.
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Fig. 4.2: Convergence study for PIV images
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4.2 Paddle-wheel Speed Study

The Paddle-wheel Speed Study was performed with the DW at the center of the raceway

at 30◦ angle of attack and ten inches of water. The results in Fig. 4.3 show that the VMI

is independent of the paddle-wheel speed and thus the streamwise velocity. This effect ties

back to the definition of VMI given in Equation 3.16 which has streamwise velocity in the

denominator. This normalization was determined appropriate in order to make the VMI

true to the typical usage of an index by removing any units. This effect has a distinct

advantage of allowing direct comparisons between DW and other configurations without

consideration to the streamwise velocity. The VMI normalized by the non-dimensional

power is also shown in this plot. It appears that the lowest paddle-wheel speed is the best

for this consideration, but the Cycle Time also needs to be considered before choosing a

speed.
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Fig. 4.3: Absolute and power-normalized VMI as a function of paddle-wheel speed

As well as considering VMI in the Paddle-wheel Speed Study, Cycle Time estimations

were also made according to Equation 3.17. The results are shown in Fig. 4.4 and reveal that

mixing times for algal cultures should decrease with bulk velocity in a nonlinear manner.

These results also show that considering VMI alone to predict mixing is inappropriate. The

plot also shows the Mixing Time normalized by the non-dimensional power, which suggests

the highest speed to be optimal, opposite to the normalized VMI plot. Practicality must be
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used to choose the best operating speed. Considering the nonlinear decrease of the Cycle

Time allows us to choose a paddle-wheel speed that is low enough to save power (consider

again Fig. 4.1) but high enough to mix sufficiently. The speed of 7.19 RPM (corresponding

to 15 Hz on the VFD) is slightly lower than the mid-range tested and gives good mixing

without the rapidly increasing cost of higher streamwise velocity. A speed of 9.58 RPM,

which is 33% higher, requires more than double the power.
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Fig. 4.4: Absolute and power-normalized Cycle Time as a function of paddle-wheel speed

The fluid velocity plot for the Speed Study at the chosen rate of 7.19 RPM is shown

in Fig 4.5 for the entire measurement domain. The contour colors represent the velocity

magnitude while the superimposed vectors show the in-plane velocity. This plot, as well

as every remaining vector plot, has been down-sampled for easier reading. Each 4 × 4

vector group has been averaged to a single result for the in-plane velocity. Note the velocity

magnitude is higher on the right half of domain. This is a remnant of the 180◦ bend

upstream of the measurement location. The left portion experiences a sizable recirculation

zone near the bend that causes the fluid in the right to move at higher velocity. This

effect is still measured at this location ten feet downstream. The two vortices introduced

by the DW are strong and fill the raceway cross-section. The opposite rotation directions

are desirable so the velocity at their interface is flowing in the same direction instead of
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opposite in direction.
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Fig. 4.5: Flow velocity for paddle-wheel speed of 7.19 RPM

Note that these quantities change significantly across the measurement domain, so con-

sidering a single value for any of them is inappropriate. The in-plane velocity in Fig. 4.6

shows the two strong, well-formed vortices clearly. The algae cells in a culture with this mix-

ing structure would experience the desirable, nonrandom mixing structures recommended

by Miller et al. [11].

The standard deviation result in Fig. 4.7 shows relatively large values, even close to the

in-plane velocity, showing that the flow has significant fluctuations. The highest standard

deviation is found in the centers of the vortices, showing local unsteadiness. The high values

at the top center are where the fluid from each vortex meets and is highly unsteady also.

The precision uncertainty in Fig. 4.8 shows that local values change significantly over

the measurement domain and that the measurements near the vortex centers have the

highest uncertainty. The relative precision uncertainty of Fig. 4.9 gives the same result

since it is normalized by the average streamwise velocity but shows that the uncertainty is

less than 8% everywhere.
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Fig. 4.6: In-plane flow velocity for paddle-wheel speed of 7.19 RPM
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Fig. 4.8: Precision uncertainty of velocity for paddle-wheel speed of 7.19 RPM
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Fig. 4.9: Relative precision uncertainty of velocity for paddle-wheel speed of 7.19 RPM
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The turbulence kinetic energy in Fig. 4.10 is very similar to the previous two plots but

is displayed because this value is integral to the k − ω and k − ε turbulence model and is

very useful in predicting other useful quantities.
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Fig. 4.10: Turbulence kinetic energy for paddle-wheel speed of 7.19 RPM

The turbulence intensity in Fig. 4.11 shows that much of the flow area has very high

values, similar in intensity to combustion flow patterns [23]. The overall high turbulence

intensity is a desirable effect described by Phillips and Myers when they said, “These con-

siderations lead to the conclusion that almost any attempt to grow algae in sunlight will

experience some gain by turbulence” [9].

4.3 Angle of Attack Study

For the Angle of Attack Study, the paddle-wheel was circulated at an arbitrary 10.54

RPM and the DW was again placed at the center of the raceway with ten inches of water.

The DW centroid height was kept at four inches from the bottom to keep the tip from

leaving the water. The angle of attack was varied from 0-50◦ with the power and fluid

dynamics measured. The Fluid Load as a function of angle of attack is plotted in Fig. 4.12;
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Fig. 4.11: Turbulence intensity for paddle-wheel speed of 7.19 RPM

and, as stated earlier, is not a strong function of the angle. There is a significant increase

in Fluid Load at 50◦ and moderately so at 45◦ due to the blunt shape of the DW at these

higher angles.
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Fig. 4.12: Fluid power as a function of angle of attack

Even though Fluid Load is not a strong function of the angle of attack, both VMI and
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Cycle Time results are. As shown in Fig. 4.13, there exists an optimal angle of attack of

40◦, even for the power-normalized case. The angles lower than 40◦ produce vortices with

lower strength. The vortex strength of those above the optimal is diminished since the

DW is acting more as a blunt object in the flow instead of producing mixing. The optimal

angle has never been studied this thoroughly or with such high-fidelity data. Laws et al.

studied three angles, but their measurement system was comparatively rudimentary [13].

Cheng and Dugan studied only 10◦ and 20◦ angles, citing the results from 20◦ to be far

superior [15]. This study covered a huge range of angles to reveal the optimal at 40◦.
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Fig. 4.13: VMI as a function of angle of attack. The y-axis on the left is absolute VMI
where the y-axis on the right shows the power-normalized VMI. Because the Fluid Load is
a weak function of angle of attack, the two trends are similar.

The Cycle Time also has an optimal angle of attack of 40◦ as seen in Fig. 4.14 where

the lowest value is ideal. Again, one of the curves is normalized by the non-dimensional

power, but the trend is only slightly changed. Thus, by both considerations, an angle of

attack of 40◦ is optimal for the DW. The optimal Cycle Time value of around 10 s is at

the upper range of the best periods to take advantage of the FLE. But this result is still

encouraging because the DW significantly decreases the Cycle Time (compare around 22 s
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from 0◦ to the approximate 7 s from 40◦) with a device that is extremely simple to build

and use and adds very little power.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Angle of Attack (◦)

C
y
cl
e
T
im

e
(s
)

Cycle T ime (s)

0

0.5

1

1.5

2

2.5

C
y
cle

T
im

e
(s)/

P
n
o
r
m

Cycle T ime (s)/Pnorm

Fig. 4.14: Cycle Time as a function of angle of attack. The y-axis on the left is the absolute
Cycle Time where the y-axis on the right shows the power-normalized Cycle Time. Because
the Fluid Load is a weak function of angle of attack, the two trends are similar.

The Reynolds numbers in Table 4.1 show the flow is turbulent for all but the lowest

paddle-wheel speed tested, so fluctuations in the flow are expected. As stated earlier, 200

images were acquired for every set giving 200 instantaneous vector fields and subsequent

values for VMI and Cycle Time. The SDs for these quantities were calculated for each set

in the Angle of Attack Study and are shown in Fig. 4.15 & 4.16. The SD values generally

follow the trends of their nominal quantities, but have values around 20%, suggesting that

the flow is highly unsteady. Even though the Cycle Time SD follows the trend for Cycle

Time, that on the VMI plot does not. This suggests that higher angles of attack produce

the vortex structures that are steadier through time, resulting in lower dissipation rates.

The fluid velocity for the optimal angle of 40◦ is shown in Fig. 4.17 with the contour

colors representing velocity magnitude and the superimposed vectors showing the in-plane

components of velocity. Notice how the vortex centers have shifted down from those in the
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Fig. 4.15: VMI and VMI standard deviation as a function of the angle of attack
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Fig. 4.16: Cycle Time and Cycle Time standard deviation as a function of the angle of
attack

Paddle-wheel Speed Study even though the speed is the same (see Fig. 4.5). This is due to

the change in angle of attack. The angle for the Speed Study was held constant at 30◦, so

an observed lowering of the vortex centers is due to this increase in angle. Having the vortex

centers off of the mid-height line is undesirable because the circulating fluid structures are

constrained to deform with each rotation, likely increasing the viscous dissipation. Care
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was taken during the Vortex Dissipation Study to keep the DW centroid at mid-height to

bring the vortex centers higher even though its tip would be above the water surface.
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Fig. 4.17: Flow velocity for a 40◦ angle of attack

The in-plane velocity in Fig. 4.18 shows the two strong, well-formed vortices clearly.

The maximum observed in-plane velocity is nearly twice that of the Speed Study due to

the increase in angle of attack from 30◦ to 40◦ as well as inreasing the paddle-wheel speed.

The standard deviation result in Fig. 4.19 shows relatively large values, but not as high

as the in-plane velocity, while the other aspects are similar to previous findings.

The precision uncertainty in Fig. 4.20 shows similar results as before with the highest

values at the vortex centers. The relative precision uncertainty of Fig. 4.21 shows that the

uncertainty is less than 11% everywhere. This result is higher than seen in the Speed Study,

likely due to the increased unsteadiness from the higher angle of attack.

The turbulence kinetic energy in Fig. 4.22 is very similar to the previous two plots but

is approximately three times that in the earlier study.

The turbulence intensity in Fig. 4.23 shows that much of the flow area has very high

values with a maximum nearly three times the earlier study. This intensity is five times
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Fig. 4.18: In-plane flow velocity for 40◦ angle of attack
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Fig. 4.20: Precision uncertainty of velocity for 40◦ angle of attack
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Fig. 4.21: Relative precision uncertainty of velocity for 40◦ angle of attack
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Fig. 4.22: Turbulence kinetic energy for 40◦ angle of attack

greater than that measured by Cheng and Dugan with lower streamwise velocity when they

used plates at 20◦ angle of attack. When comparing their findings to the 20◦ angle from

this study, it is still only one fifth the magnitude since changing the angle does not appear

to drastically change the turbulent intensity. Since they used the DW with the tip down, it

is likely the resulting vortex spacing would be uneven and would dissipate faster. It could

also be that the PIV data, being susceptible to noise, could be over-predicting these values,

but the factor of five overestimation is unlikely.

4.4 Vortex Dissipation Study

The final study was performed with the DW near the upstream end of the raceway to

allow fluid measurements far downstream. The downstream data was used to determine

the sustained length of increased mixing from the vortices. Again, ten inches of water

were used with the DW centroid at mid-depth. The paddle-wheel speed was held constant

at 7.19 RPM due to the results of the Paddle-wheel Speed Study. Fluid measurements

were made as close to the DW as possible on the downstream side (fourteen inches) and
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Fig. 4.23: Turbulence intensity for 40◦ angle of attack

repeated every twelve inches for twelve planes with five angles of attack (10-50◦). The

Fluid Load results are shown in Fig. 4.24 and have a similar trend as those for the Angle of

Attack Study, but the magnitude is approximately half due to the lower paddle-wheel speed.
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Fig. 4.24: Fluid Load as a function of angle of attack during the Vortex Dissipation Study

The results for the VMI show significant mixing from the delta wings over a sustained
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period. As expected from the Angle of Attack Study, the angle of 40◦ is optimal for both

VMI and Cycle Time. The result that was not clear before this study is which angle would

prove best at sustained mixing downstream. The absolute VMI in Fig. 4.25 and the power-

normalized VMI in Fig. 4.26 show that the 40◦ angle is best at nearly every point for the

entire twelve feet measured. Like the Angle of Attack Study, both the 30◦ and 50◦ angles

perform similarly, but the latter requires more power. The study from Laws et al. produced

a similar plot in their study using airfoils, but only three angle were used and there was no

baseline (without the airfoils). Nevertheless, they did find that the vortex rotation reduced

to half of the initial value within about 16 inches and is expected to be unmeasurable in

40 inches. This rapid dissipation in their study is mainly due to their shallow three inch

water depth, much smaller than our ten inch depth. The smaller water volume carries less

momentum, so vortex structures would dissipate faster. The larger vortex structures in the

experimental raceway can be measured out to twelve feet for the optimal angle.

Both the absolute and power-normalized Cycle Time plots reveal the same optimum as

the VMI plot. The optimal angle is again 40◦ through the length of the area measured, with

30◦ and 50◦ equally secondary. These plots, shown in Fig. 4.27 and Fig. 4.28, appear to

have more noise from one point to another on the x-axis. With the challenging Stereo PIV

calibration attempting to compensate for significant optical refraction, calibration errors

could appear with a changes in the distance from the DW. An error in VMI could be

nullified by the normalization by streamwise velocity where Cycle Time does not have the

same advantage. Also note the point where the 40◦ and 50◦ curves cross. This point is

expected to have a bias error likely due to the optical disruption caused by the joint in

acrylic panels on the side of the raceway.
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Fig. 4.25: Absolute VMI for five angles of attack and without Delta Wing as a function of distance from Delta Wing centroid
location. The angle of 40◦ is optimal for sustained mixing up to twelve feet.



45

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Distance from Delta Wing Centroid (in)

V
M

I
/P

n
o
r
m

No Wing
10◦ Angle
20◦ Angle
30◦ Angle
40◦ Angle
50◦ Angle

Fig. 4.26: Power-normalized VMI for five angles of attack and without Delta Wing as a function of distance from Delta Wing
centroid location. Again, the angle of 40◦ is optimal for sustained mixing up to twelve feet.



46

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
0

5

10

15

20

25

30

35

40

45

50

55

Distance from Delta Wing Centroid (in)

C
y
cl
e
T
im

e
(s
)

No Wing
10◦ Angle
20◦ Angle
30◦ Angle
40◦ Angle
50◦ Angle

Fig. 4.27: Absolute Cycle Time for five angles of attack and without Delta Wing as a function of distance from Delta Wing centroid
location. The 40◦ angle is optimal for the lowest Cycle Times.
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Fig. 4.28: Power-normalized Cycle Time for five angles of attack and without Delta Wing as a function of distance from Delta Wing
centroid location. Again, the 40◦ angle is optimal for the lowest Cycle Times.
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The flow velocity for the optimal 40◦ angle at the closest measurement location to the

DW, Plane 1, is shown in Fig. 4.29. As with the equivalent plots in the previous two studies,

the contour colors show velocity magnitude and the superimposed vectors show the in-plane

velocity. Compared to the 40◦ result in the Angle of Attack Study, the vortex centers are

at mid-height since the DW centroid was raised to mid-height. Raising the DW centroid

raised the vortex centers as desired so the flow structures experience minimal deformation.
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Fig. 4.29: Flow velocity for a 40◦ angle of attack at Plane 1

The in-plane velocity in Fig. 4.30 shows the typical two vortices. The maximum ob-

served in-plane velocity is larger than in the Speed Study mainly due to the increase in

angle of attack from 30◦ to 40◦.

The Standard Deviation result in Fig. 4.31 shows relatively large values, even larger

than the in-plane velocity. The area of maximum the SD is no longer at the vortex centers

but is found in the high-velocity ring areas of the vortices. This suggests the proximity

to the 180◦ bend causes the instantaneous vortex centers to traverse in a circular pattern

around the point where their average is located.

The precision uncertainty and relative precision uncertainty in Fig. 4.32 and Fig. 4.33
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Fig. 4.30: In-plane flow velocity at Plane 1 for 40◦ angle of attack
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Fig. 4.31: Standard deviation of 200 instantaneous velocity fields at Plane 1 for 40◦ angle
of attack
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show areas of maximum values to be the same rings as above. The relative precision

uncertainty is less than 13% everywhere. This result is higher than the previous two studies,

likely due to the increased unsteadiness from the higher angle of attack and perhaps being

much closer to the 180◦ bend.
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Fig. 4.32: Precision uncertainty of velocity at Plane 1 for 40◦ angle of attack

The turbulence kinetic energy and turbulence intensity in Fig. 4.34 and Fig. 4.35 are

between the previous studies in magnitude but are relatively high since the streamwise

velocity is 26% lower. The 40◦ angle and being near the 180◦ bend give significantly unsteady

flow that is good for mixing, even with reduced streamwise velocity.

The two previous studies have shown clear optimal parameters. The Paddle-wheel

Speed Study revealed that the VMI was not a function of the streamwise velocity, but the

Cycle Time was. A choice was made to lower the speed to 7.19 RPM which is in the area

of Fig. 4.4 that was at the edge of drastic reduction to Cycle Time. The Angle of Attack

Study showed that 40◦ is optimal for both VMI and Cycle Time, both absolute and power-

normalized. The Vortex Dissipation Study confirmed the expectation that the 40◦ angle

is optimal for sustained mixing downstream. The optimal spacing from the results of this
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Fig. 4.33: Relative precision uncertainty of velocity at Plane 1 for 40◦ angle of attack
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Fig. 4.34: Turbulence kinetic energy at Plane 1 for 40◦ angle of attack
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Fig. 4.35: Turbulence intensity at Plane 1 for 40◦ angle of attack

study is not obvious. An educated guess could be made on the results, but a quantitative

study should reveal the best spacing. A more thorough study was conducted to determine

the optimal spacing.

The Optimization Study on Delta Wing Spacing is found in Appendix D and determines

the best DW spacing based on profit. The estimated value for dry algal biomass is $2.06/kg,

assuming half is oil that can be used for biodiesel and half is protein that can be used to

feed young fish. A raceway with equal dimensions to a study in [2] is used with 82 m length

and 12 m width. Based on a growth experiment performed at Utah State University, it

is thought that doubling the mixing with DWs may increase growth by 25%. This is very

conservative compared to the study by Laws et al. which more than doubled algal growth

by using airfoils, but is thought be more practical. Only the VMI from the optimal angle

minus the baseline (no DW) VMI is considered since the raceway is likely to experience

moderate VMI values without any DWs. Based on power measurements which showed

using one DW added 1.5 W power at the paddle-wheel at a low-end speed, each DW is

expected conservatively expected to add 2 W. Also, each DW with mounting hardware is
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expected to cost $20 and should last for seven years. Since a commercial raceway is expected

to have a similar depth to ours with ten inches of water, the same size of DW is expected

which allows for transverse spacing of the width W of the raceway (see Fig. 4.36) of eighteen

inches, or around 0.5 m. The raceway under consideration would have 12 DWs across each

channel at every location, so the power and capital costs were scaled appropriately. The

revenue, cost, and profit were calculated as a function of the spacing as

Profit(∆z) = Revenue(∆z)− Cost(∆z) (4.1)

and were plotted as seen in Appendix D. The maximum profit was found at a spacing of

65 inches with an estimated increase in income of $5340/yr. The increase in VMI is nearly

two-fold over the baseline, so the increase in growth and in profit could easily be 25%. This

is a significant advantage in profit by the use of DWs at their optimal angle and spacing.

W

D

W

Fig. 4.36: Delta Wing transverse spacing in commercial raceways with arrays of wings

4.5 Comparison of PIV and ADV Data

The data from the PIV and ADV measurements systems are compared herein. Both

measurement techniques are relatively new and require best practices for reliable results.

The comparison was performed to co-validate the measurements using matched flow con-

ditions. The results are very close when using the same measurement domain but differ

significantly otherwise. The ADV data were provided by another graduate student at Utah
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State University [24]. The ADV gives three components of velocity in a small measurement

volume approximately two inches below the tip of the probe. Time restrictions allowed only

for a 9x9 grid of measurements in each plane, compared to the approximately 128x72 mea-

surements for PIV. The ADV is unable to acquire data near the boundaries of the domain,

approximately one inch in from the sides due to its size limitations. and two inches from

the top since the probe must remain submersed. The PIV data were cropped to coincide

with the ADV measurement domain. This effect is represented in Fig. 4.37(a) compared

with Fig. 4.37(b) and Fig. 4.38(a) compared with Fig. 4.38(b) with the ADV and PIV data

for the same flow parameters. The plots are in-plane velocity about 18 inches downstream

of a DW at 30◦ near the center of the raceway with eight inches of water. Note the absence

of the high-velocity motion in the ADV domain which may cause it to underpredict the

VMI and other flow characteristics. Also notice the similarities in the flow characteristics

including the vortex center locations. Particle Image Velocimetry should be used over ADV

when spacial resolution and data near the boundaries are important.

Though the full sampling domains are different, the PIV data were cropped to pro-

vide good agreement in the comparison study. This study was performed with matched

parameters that are the same mentioned for the domain comparison. The results for Mean

Velocity, standard deviation, turbulence kinetic energy, and turbulence intensity are shown

in Table 4.2 & 4.3. The comparison is relatively close considering that the measurement

technologies are radically different. The mean velocities are within 3%. Note that PIV

over-predicts SD, TKE, and turbulence intensity in cases with and without the DW. This

is likely due to PIV’s susceptibility to noise that always increases SD results, and the other

two quantities depend on SD. Therefore, if turbulence parameters are of high priority, the

ADV should be chosen over PIV.

Contour plots for both PIV and ADV measurements are shown in Appendix E for

matched parameters without and with the DW.
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(a) Velocity plot without Delta Wing from ADV
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(b) Velocity plot without Delta Wing from PIV

Fig. 4.37: Plots illustrating the sample domain and spacial resolution difference between
ADV and PIV. The PIV sample domain captures nearly the entire cross-section of the flow
and has about 100x more velocity vectors. Plotted is the in-plane velocity in both images
for flow without Delta Wing. Down-sampling of the PIV data has not been performed in
this case.
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(a) Velocity plot with Delta Wing from ADV
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(b) Velocity plot with Delta Wing from PIV

Fig. 4.38: Plots illustrating the sample domain and spacial resolution difference between
ADV and PIV. The PIV sample domain captures nearly the entire cross-section of the flow
and has about 100x more velocity vectors. Plotted is the in-plane velocity in both images
for flow with Delta Wing. Down-sampling of the PIV data has not been performed in this
case.
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Table 4.2: Summary of the PIV comparison to ADV without Delta Wing
Parameter PIV ADV Difference (%)

Mean Velocity
(m/s)

0.2458 0.2380 3.22

Standard
Deviation (m/s)

0.0957 0.0887 7.59

In-plane Mean
Velocity (m/s)

0.0152 0.0132 14.08

Turbulence
Kinetic Energy

(m2/s2)
0.0046 0.0040 13.95

Turbulence
Intensity (%)

23.56 22.64 4.00

Table 4.3: Summary of the PIV comparison to ADV with Delta Wing
Parameter PIV ADV Difference (%)

Mean Velocity
(m/s)

0.2459 0.2493 1.37

Standard
Deviation (m/s)

0.0988 0.0904 8.88

In-plane Mean
Velocity (m/s)

0.0549 0.0533 2.96

Turbulence
Kinetic Energy

(m2/s2)
0.0049 0.0041 17.78

Turbulence
Intensity (%)

21.40 23.73 10.33
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

Literature on algal growth and growth enhancements by mixing has been surveyed.

Algae is a viable feedstock for biofuel production to both capture carbon from the atmo-

sphere and help offset the use of traditional fuels. Raceway ponds are the most cost-effective

means of growing algal biomass, but the process needs to be improved significantly to be-

come competitive to traditional fuels. A common finding in literature is that an increase

in the mixing of algal culture improves growth rates by up to a factor of two. Laws et al.

have used airfoils at high angles of attack to double growth in experiments [13]. Cheng and

Dugan used squares and an early form of the Delta Wing [15] and measured an increase in

turbulence intensity. Some researchers have claimed that the increase in growth is due to

the Flashing Light Effect, while others claim it is due to the decrease in the fluid bound-

ary layer around cells that increases mass transfer [7]. Whatever the reason, the general

consensus is that increased mixing in algal cultures increases growth.

These early studies used basic instruments that were limited to point measurements.

With the increased capabilities of sensors and measurement systems today, a more thorough

optimization study was performed to maximize vertical mixing by the use of DWs in an

experimental algal raceway. This raceway was built in a laboratory environment for flow

measurements using fresh-water. Power was also measured for each study since the addition

of the DW was found to increase power consumption slightly. The power losses of the

driving system were removed from consideration to isolate the power required to circulate

the flow. Stereo PIV was used to measure three components of velocity in entire cross-

sections of the flow. This method proved very effective at measuring flow conditions quickly,

but was challenging to set-up for accurate results. Existing quantities of interest were
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defined: standard deviation, turbulence kinetic energy, turbulence intensity, and precision

uncertainty. New quantities were also defined for the Vertical Mixing Index and Cycle Time.

The flow measurements were analyzed with a computer code for all quantities with contour

plots for the field results.

Three studies were performed with these methods: The Paddle-wheel Speed Study, the

Angle of Attack Study, and the Vortex Dissipation Study. The Paddle-wheel Speed Study

showed VMI is not a function of streamwise velocity. It also showed the Cycle Time is a

useful estimate of the time required for an alga cell to complete a cycle from the bottom, to

the top, and back to the bottom of the raceway. The speed was decreased from these results,

using half the power of other experiments in the same facility [24]. The Angle of Attack

study revealed a clear, optimal angle of 40◦ for both VMI and Cycle Time considerations.

From the results of these two studies, the power was found to be a strong function of

paddle-wheel speed and not a strong function of angle of attack. The Vortex Dissipation

Study revealed the length of enhanced mixing was sustained downstream of the DW for

twelve feet for five angles of attack. As with the Angle of Attack Study, the optimal angle

is 40◦; but the dissipation study confirmed it remained optimal for then entire measured

length downstream. The optimal spacing was not clear without a separate study, which

was performed and gave 65 inches as optimal for profit considering the added power and

capital costs of adding arrays of DWs to a commercial raceway.

A separate study was performed to compare results between the PIV measurement

system and those acquired by another student using an Acoustic Doppler Velocimeter with

matching flow conditions. The ADV makes point measurements, which often results is

lower spacial resolution than PIV. Also the side and top boundary cannot be measured

with this system. The results for the mean velocity were within 3% while the standard

deviation, turbulence kinetic energy, and turbulence intensity were all overestimated by

PIV with moderate levels. It is believed that PIV is better suited where mean velocity

results and spacial resolution are desired but that the ADV gives greater accuracy for

fluctuating quantities.
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5.2 Future Work

The significant factor that is missing in this work is whether these optimized parameters

will in fact increase algal growth in raceways. A recent growth experiment at Utah State

University found that adding two DWs to a small raceway at 30◦ angle of attack increased

growth by 25%, but it has not been successfully repeated. Nevertheless, growth studies will

be performed using the optimal parameters for the paddle-wheel speed, angle of attack, and

spacing.

While the optimal Angle of Attack of 40◦ and the DW spacing can be directly translated

to the commercial scale raceways with similar geometry, the optimal paddle-wheel speed

can not. Considering ways to identify the optimal speed that could scale properly is very

desirable so growers could apply all of the optimal results easily. If this could be done,

the real impact of the DW on algal growth could be seen in lower production costs and

increased growth yields.
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Appendix A

FORTRAN Code to Reorganize Data

1 PROGRAM ReadDATWriteVxVyVzProgram
2

3 ! This program will take the processed PIV data from a TecPlot .dat file, ...
arrange it into arrays

4 ! Vx, Vy, Vz and write to individual files
5 ! Revision: the program will also calculate the pixel scale and output ...

to another file
6 !
7 ! Author: Blake Lance
8 ! Date: 9 March 2012
9 ! **Some code structure was taken from TecplotReadWrite codes

10

11 IMPLICIT NONE
12

13 ! Data Dictionary
14 INTEGER :: n = 0 ! Count of Lines in Tecplot File
15 INTEGER :: NN ! Number of .dat files to tranform
16 INTEGER :: i, j, k, m ! Do−loop indeces
17 INTEGER :: sizeX ! Count Number of X vectors
18 INTEGER :: sizeY ! Count Number of Y vectors
19 INTEGER :: header = 3 ! Number of Header Lines
20 INTEGER :: x, y, comma
21 INTEGER :: error1 ! IOSTAT error for opening existing file
22 INTEGER :: error2 ! IOSTAT error for opening file
23 INTEGER :: error3 ! IOSTAT error for opening file
24 INTEGER :: error4 ! IOSTAT error for opening file
25 INTEGER :: error5 ! IOSTAT error for opening file
26 INTEGER :: readerror ! Read Error
27 CHARACTER(len=40) :: filein ! user−defined filename
28 CHARACTER(len=100) :: dummy ! dummy variable to allow data to be ...

read
29 CHARACTER(len=10) :: xdum, ydum ! mode dummies
30 CHARACTER(len=5) :: kstring ! the value of k in a string
31 REAL :: PixScale ! the pixel scale (pixels/mm)
32 REAL, DIMENSION(:,:), ALLOCATABLE :: Vx ! velocity in x−direction
33 REAL, DIMENSION(:,:), ALLOCATABLE :: Vy ! velocity in y−direction
34 REAL, DIMENSION(:,:), ALLOCATABLE :: Vz ! velocity in y−direction
35 REAL, DIMENSION(:), ALLOCATABLE :: xstore, ystore, ustore, vstore, wstore
36 !
37

38 ! Explanation to the user
39 WRITE (*,*)
40 WRITE (*,*) 'This program will take the processed PIV data from a set of ...

TecPlot .dat'
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41 WRITE (*,*) 'files, arrange them into arrays Vx, Vy, Vz and write to ...
individual files.'

42 WRITE (*,*)
43

44 ! Ask user for file
45 WRITE (*,*) 'Please enter the name of the TecPlot data folder not including ...

the subfolder DATfiles'
46 WRITE (*,*)
47 READ (*,*) filein
48 WRITE (*,*)
49

50 ! Ask user for number of files
51 WRITE (*,*) 'Please enter the number of the TecPlot data files in the batch'
52 WRITE (*,*)
53 READ (*,*) NN
54 WRITE (*,*)
55 !
56

57 ! Size the first file, and all others in the batch should have the same size.
58 OPEN(UNIT=10, file=TRIM(filein)//'\DATfiles\B00001.dat', STATUS='OLD', ...

ACTION='READ', IOSTAT=error1)
59 OPEN(UNIT=50, file=TRIM(filein)//'\DATfiles\'//TRIM(filein)//' PixScale.dat',&
60 STATUS='REPLACE', ACTION='WRITE', IOSTAT=error5)
61

62 DO ! Get File Size
63 READ(10,*,IOSTAT=readerror) dummy
64 IF ( readerror /= 0) EXIT
65 n = n + 1
66 END DO
67 REWIND(10)
68

69 n = n − header ! Subtract Header Lines
70 ALLOCATE( xstore(n), ystore(n), ustore(n), vstore(n), wstore(n) )
71

72 !
73 ! Obtain the size of the data
74 ! Info is Located on Last Line of Headers
75 ! Example: <ZONE T="Frame 0", I=116, J=137, K=1>
76

77 DO m = 1, (header−1) !Skip middle of header
78 READ(10,*) dummy
79 WRITE(*,*) dummy
80 END DO
81

82 READ(10,'(A)') dummy
83 x = INDEX(dummy,'I')
84 y = INDEX(dummy,'J')
85 xdum = dummy(x:x+10)
86 ydum = dummy(y:y+10)
87 comma = INDEX(xdum, ',')
88 xdum = xdum(3:comma−1)
89 comma = INDEX(ydum, ',')
90 IF (comma == 0) THEN
91 comma = 10
92 END IF
93 ydum = ydum(3:comma−1)
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94

95 READ(xdum,*) sizeX
96 READ(ydum,*) sizeY
97

98 ! Now that we know the size of the data, we can allocate arrays to store the ...
data

99 ALLOCATE( Vx(sizeX, sizeY) )
100 ALLOCATE( Vy(sizeX, sizeY) )
101 ALLOCATE( Vz(sizeX, sizeY) )
102

103 WRITE (*,110) sizeX, sizeY
104 110 FORMAT(1x, 'The data has ', I5, ' vectors in a row and ', I5, ' in a ...

column.')
105 WRITE (*,*)
106

107 !
108

109 DO i = 1,2 ! Read first two rows of data
110 READ(10,*, IOSTAT=readerror) xstore(i)
111 END DO
112

113 ! Calculate the pixel scale by the difference in the first two x−coordinates
114 PixScale = ABS( xstore(1) − xstore(2) )
115 WRITE(50,*) PixScale
116

117 CLOSE(10); CLOSE(50)
118

119 !
120

121 DO k = 1,NN ! Repeat for each file
122 ! Open files
123 IF (k < 10) THEN ! pad kstring with leading zeros
124 WRITE( kstring,'(I1)' ) k
125 kstring = '0000'//TRIM(kstring)
126 ELSE IF (k < 100) THEN
127 WRITE( kstring,'(I2)' ) k
128 kstring = '000'//TRIM(kstring)
129 ELSE IF (k < 1000) THEN
130 WRITE( kstring,'(I3)' ) k
131 kstring = '00'//TRIM(kstring)
132 ELSE IF (k < 10000) THEN
133 WRITE( kstring,'(I4)' ) k
134 kstring = '0'//TRIM(kstring)
135 ELSE IF (k < 100000) THEN
136 WRITE( kstring,'(I5)' ) k
137 kstring = TRIM(kstring)
138 ELSE
139 WRITE(*,*) "k > 99999"
140 END IF
141

142 WRITE(*,*) kstring
143

144 OPEN(UNIT=10, file=TRIM(filein)//'\DATfiles\B'//TRIM(kstring)//'.dat', ...
STATUS='OLD', ACTION='READ', IOSTAT=error1)

145 OPEN(UNIT=20, ...
file=TRIM(filein)//'\DATfiles\'//TRIM(filein)//' Vx '//TRIM(kstring)//'.dat',&
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146 STATUS='REPLACE', ACTION='WRITE', IOSTAT=error2)
147 OPEN(UNIT=30, ...

file=TRIM(filein)//'\DATfiles\'//TRIM(filein)//' Vy '//TRIM(kstring)//'.dat',&
148 STATUS='REPLACE', ACTION='WRITE', IOSTAT=error3)
149 OPEN(UNIT=40, ...

file=TRIM(filein)//'\DATfiles\'//TRIM(filein)//' Vz '//TRIM(kstring)//'.dat',&
150 STATUS='REPLACE', ACTION='WRITE', IOSTAT=error4)
151

152 !
153

154 IF ( error1 == 0 .AND. error2 == 0 .AND. error3 == 0 .AND. error4 == 0 ) ...
THEN ! files opened properly

155 DO m=1,header ! Skip the header
156 READ(10,*,IOSTAT=readerror) dummy
157 END DO
158

159 DO i = 1,n ! Read Data
160 READ(10,*, IOSTAT=readerror) xstore(i), dummy, dummy, ustore(i), ...

vstore(i), wstore(i)
161 END DO
162

163 ! Fill Up 2D Arrays
164 n = 1
165 DO j = 1, sizeY
166 DO i = 1, sizeX ! The Tecplot file from DaVis begins at upper left ...

writing row by row (like reading)
167 Vx(i,j) = ustore(n)
168 Vy(i,j) = vstore(n)
169 Vz(i,j) = wstore(n)
170 n = n + 1
171 END DO
172 END DO
173 !
174

175 DO j=1,sizeY
176 WRITE(20,*) Vx(:,j)
177 WRITE(30,*) Vy(:,j)
178 WRITE(40,*) Vz(:,j)
179 END DO
180

181 CLOSE (10); CLOSE (20); CLOSE (30); CLOSE (40)
182 ELSE
183 WRITE (*,*) 'An error occured opening the file(s)'
184 WRITE (*,*)
185 END IF
186 END DO
187

188 WRITE(*,*)
189 WRITE(*,*) 'The files are written for ', TRIM(filein)
190 WRITE(*,*)
191

192 END PROGRAM ReadDATWriteVxVyVzProgram
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Appendix B

Matlab Code to Analyze and Plot PIV Data

1 tic; close all; clear all; clc;
2

3 %% Raceway.m program
4 % This code will perform all the data analysis on the Raceway data sets
5 % including Average, RMS, Turbulence Kinetic Energy, Turbulence Intensity,
6 % Precision Uncertainty fields as well as the VMI and Cycle Time
7 % quantities. It will also perform plotting for the field results and
8 % uses the TrimToMask function. The Average and RMS portions of the code
9 % are modified from Ben Timmins' uncertainty check.m code.

10

11 % Author: Blake Lance
12 % Date: 30 July 2012
13

14 %% Code Parameters
15 project = 'Plane02';
16 input = '50deg'; % The input data
17 N = 200; % Number of files to read
18 Depth = 0.254; % Water depth for CycleTime calculation in meters
19 TrimType = 0; % 0 for PIV and 1 for ADV
20 Plotting = 0; % 0 for no plots and 1 for plots
21 SavePlot = 0; % 0 to not save and 1 to save plots
22 Format = '.pdf';% file format to save data
23 ReduceFactor = 4; % the factor by which in−plane velocity vectors should be
24 % reduced in each dimension (use integers, can be 1)
25 if strcmp(project,'Plane7') % Since Plane7 had only 8" of water, use ...

shorter paper
26 PaperHeight = 3.5;
27 else
28 PaperHeight = 4.5;
29 end
30

31 %% Initialize
32 Vz mean = zeros(N,1); VMI = zeros(N,1); CycleTime = zeros(N,1);
33

34 %% Adaptive trimming of masked areas using TrimToMask Function
35 temp = ...

importdata([pwd,'\',project,'\',input,'\','DATfiles','\',input,' Vx 00001.dat']);
36

37 nx = size(temp,2);
38 ny = size(temp,1);
39 [imin,imax,jmin,jmax] = TrimToMask( temp );
40

41 % Set Scales
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42 PixScale = ...
importdata([pwd,'\',project,'\',input,'\','DATfiles','\',input,' PixScale.dat']);

43 PixScale = 0.1*PixScale; %Scale from the default mm to cm
44 x = 0.:PixScale:PixScale*(nx−1.);
45 y = PixScale*(ny−1.):−PixScale:0.; % Define y and i origins to be at bottom
46

47 % Trim the boundaries
48 if TrimType == 0 % Trim to fit PIV domain
49 TrimTop = 4;
50 TrimBottom = 4;
51 TrimWidth = 4;
52 xAxisShift = 0;
53 yAxisShift = 0;
54 elseif TrimType == 1 % Trim to fit ADV domain
55 TrimTop = 15;
56 TrimBottom = 4;
57 TrimWidth = 10;
58 xAxisShift = 3;
59 yAxisShift = 0.5;
60 end
61

62 % iupper is the y index at the upper boundary (lowest index)
63 ilower = imin − TrimBottom;
64

65 % ilower is the y index at the lower boundary (highest index)
66 iupper = imax + TrimTop;
67

68 jlower = jmin + TrimWidth;
69 jupper = jmax − TrimWidth;
70

71 xlower = x(jlower);
72 xupper = x(jupper);
73 ylower = y(ilower);
74 yupper = y(iupper);
75

76 x = x − xlower + xAxisShift; % Shift to have origin at corner of plot
77 y = y − ylower + yAxisShift;
78

79 %% Allocate new 3D arrays
80 Vx(1:ny,1:nx,1:N) = NaN;
81 Vy(1:ny,1:nx,1:N) = NaN;
82 Vz(1:ny,1:nx,1:N) = NaN;
83

84 %% Run through outer loop and read in the data files
85 for k=1:N % Start outer loop at beginning
86

87 if( k < 10 )
88 istring = ['0000',int2str(k)];
89 elseif( k < 100 )
90 istring = ['000',int2str(k)];
91 elseif( k < 1000 )
92 istring = ['00',int2str(k)];
93 elseif( k < 10000 )
94 istring = ['0',int2str(k)];
95 elseif( k < 100000 )
96 istring = int2str(k);
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97 else
98 fprintf(' i > 99999');
99 end

100

101 Vx(:,:,k) = ...
importdata([pwd,'\',project,'\',input,'\','DATfiles','\',input,' Vx ',istring,'.dat']);

102 Vy(:,:,k) = ...
importdata([pwd,'\',project,'\',input,'\','DATfiles','\',input,' Vy ',istring,'.dat']);

103 Vz(:,:,k) = ...
importdata([pwd,'\',project,'\',input,'\','DATfiles','\',input,' Vz ',istring,'.dat']);

104 end
105

106 %% Compute the average velocity field
107 n(1:ny,1:nx) = 0;
108 Vx ave(1:ny,1:nx) = 0;
109 Vy ave(1:ny,1:nx) = 0;
110 Vz ave(1:ny,1:nx) = 0;
111

112 for k = 1:N
113 for j = 1:nx
114 for i = 1:ny
115 if (Vx(i,j,k) ˜= 0 && Vy(i,j,k) ˜= 0 && Vz(i,j,k) ˜= 0)
116 Vx ave(i,j) = Vx ave(i,j) + Vx(i,j,k);
117 Vy ave(i,j) = Vy ave(i,j) + Vy(i,j,k);
118 Vz ave(i,j) = Vz ave(i,j) + Vz(i,j,k);
119 n(i,j) = n(i,j) + 1; % denife n as the array of valid vectors
120 end
121 end
122 end
123 end
124 Vx ave = Vx ave./n;
125 Vy ave = Vy ave./n;
126 Vz ave = Vz ave./n;
127

128 %% Down−sample Vx ave and Vy ave if ReduceFactor > 1
129 if ReduceFactor > 1
130 TrimmedWindowsX = floor((jupper−jlower+1.)/ReduceFactor);
131 TrimmedWindowsY = floor((ilower−iupper+1.)/ReduceFactor);
132 x lim vectors = zeros(1,TrimmedWindowsX);
133 y lim vectors = zeros(1,TrimmedWindowsY);
134 Vx ave lim vectors = zeros(TrimmedWindowsY,TrimmedWindowsX);
135 Vy ave lim vectors = zeros(TrimmedWindowsY,TrimmedWindowsX);
136 for i = 1:TrimmedWindowsY
137 for j = 1:TrimmedWindowsX
138 x lim vectors(j) = ...
139 mean(x((jlower+(j−1)*ReduceFactor):(jlower+j*ReduceFactor−1)));
140 y lim vectors(i) = ...
141 mean(y((iupper+(i−1)*ReduceFactor):(iupper+i*ReduceFactor−1)));
142 Vx ave lim vectors(i,j) = ...
143 mean(mean(Vx ave((iupper+(i−1)*ReduceFactor):(iupper+i*ReduceFactor−1),...
144 (jlower+(j−1)*ReduceFactor):(jlower+j*ReduceFactor−1))));
145 Vy ave lim vectors(i,j) = ...
146 mean(mean(Vy ave((iupper+(i−1)*ReduceFactor):(iupper+i*ReduceFactor−1),...
147 (jlower+(j−1)*ReduceFactor):(jlower+j*ReduceFactor−1))));
148 end
149 end
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150 end
151

152 %% Calculate the RMS field
153 RMSx(1:ny,1:nx) = 0;
154 RMSy(1:ny,1:nx) = 0;
155 RMSz(1:ny,1:nx) = 0;
156 for k = 1:N
157 for j = 1:nx
158 for i = 1:ny
159 if (Vx(i,j,k) ˜= 0 && Vy(i,j,k) ˜= 0 && Vz(i,j,k) ˜= 0)
160 RMSx(i,j) = RMSx(i,j) + (Vx(i,j,k) − Vx ave(i,j))ˆ2;
161 RMSy(i,j) = RMSy(i,j) + (Vy(i,j,k) − Vy ave(i,j))ˆ2;
162 RMSz(i,j) = RMSz(i,j) + (Vz(i,j,k) − Vz ave(i,j))ˆ2;
163 end
164 end
165 end
166 end
167 RMSx = sqrt((RMSx./(n−1)));
168 RMSy = sqrt((RMSy./(n−1)));
169 RMSz = sqrt((RMSz./(n−1)));
170

171 %% Calculate V
172 Vxy = sqrt( Vx ave.ˆ2 + Vy ave.ˆ2 ); % 2−component in−plane velocity ...

magnitude
173 V = sqrt( Vx ave.ˆ2 + Vy ave.ˆ2 + Vz ave.ˆ2 ); % 3−component velocity magnitude
174

175 %% Calculate RMS
176 RMS = sqrt( RMSx.ˆ2 + RMSy.ˆ2 + RMSz.ˆ2);
177

178 %% Calculate the precision uncertainty
179 Ux = 1.96*RMSx./sqrt(n);
180 Uy = 1.96*RMSy./sqrt(n);
181 Uz = 1.96*RMSz./sqrt(n);
182

183 U = sqrt( Ux.ˆ2 + Uy.ˆ2 + Uz.ˆ2 );
184

185 %% Calculate the relative precision uncertainty
186 Vz ave mean = mean(mean(Vz ave(iupper:ilower,jlower:jupper)));
187

188 Urel x = Ux./Vz ave mean;
189 Urel y = Uy./Vz ave mean;
190 Urel z = Uz./Vz ave mean;
191

192 Urel = 100.*sqrt( Urel x.ˆ2 + Urel y.ˆ2 + Urel z.ˆ2 );
193

194 %% Calculate the Turbulence Kinetic Energy
195 TKE = 0.5*RMS.ˆ2;
196

197 %% Calculate Turbulence Intensity
198 Uprime = sqrt(1./3.)*RMS;
199 TurbIntens = zeros(size(V,1),size(V,2));
200 for i=1:ny % Calculate Turbulent Intensity, but don't divide by 0.
201 for j=1:nx
202 if V(i,j) >= 0.1 % Average isn't zero or near zero
203 TurbIntens(i,j) = 100.*Uprime(i,j)/V(i,j);
204 else % Average is small, normalize by small velocity
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205 TurbIntens(i,j) = 100.*Uprime(i,j)/0.1;
206 end
207 end
208 end
209

210 %% Calculate means of quantities of interest
211 Vxy mean = mean(mean(Vxy(iupper:ilower,jlower:jupper)));
212 V mean = mean(mean(V(iupper:ilower,jlower:jupper)));
213 RMS mean = mean(mean(RMS(iupper:ilower,jlower:jupper)));
214 U mean = mean(mean(U(iupper:ilower,jlower:jupper)));
215 Urel mean = mean(mean(Urel(iupper:ilower,jlower:jupper)));
216 TurbIntens mean = mean(mean(TurbIntens(iupper:ilower,jlower:jupper)));
217 TKE mean = mean(mean(TKE(iupper:ilower,jlower:jupper)));
218

219 for k=1:N
220 Vy mean = mean(mean(abs(Vy(iupper:ilower,jlower:jupper,k))));
221 Vz mean(k) = mean(mean(Vz(iupper:ilower,jlower:jupper,k)));
222 VMI(k) = Vy mean/Vz mean(k);
223 CycleTime(k) = 2.*Depth/Vy mean;
224 end
225

226 mean(VMI)
227 % std(VMI)
228 mean(CycleTime)
229 % std(CycleTime)
230

231 %% Plotting
232 if Plotting == 1 % Create new plots on average data
233

234 figure;
235 contourf(x,y,V,200,'edgecolor','none'); hold on;
236 if ReduceFactor == 1
237 quiver(x,y,Vx ave,Vy ave,2,'k');
238 elseif ReduceFactor > 1
239 quiver(x lim vectors,y lim vectors,10*Vx ave lim vectors,10*Vy ave lim vectors,0,'k');
240 end
241 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
242 yAxisShift,yupper−ylower+yAxisShift])
243 Vmax = max(max(V(iupper:ilower,jlower:jupper))); % Max value in ...

plotted domain
244 Vmin = min(min(V(iupper:ilower,jlower:jupper))); % Min value in ...

plotted domain
245 colormap(summer); h1 = colorbar('EastOutside');
246 set(get(h1,'ylabel'),'String','m/s','FontSize',13)
247 set(gca,'FontSize',13)
248 caxis([Vmin Vmax]); %shading interp
249 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
250 % title('Mean Velocity','FontSize',13)
251 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
252

253 if TrimType == 0 % Use for PIV (not trimmed)
254 set(gca,'Position',...
255 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
256 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
257 elseif TrimType ==1 % Use for ADV (trimmed)
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258 set(gca,'Position',...
259 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
260 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
261 end
262

263 if SavePlot == 1
264 saveas(gcf,[pwd,'plots\',project,'\',input,' V',Format]);
265 end
266

267 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
268 figure;
269 contourf(x,y,Vxy,200,'edgecolor','none'); hold on;
270 if ReduceFactor == 1
271 quiver(x,y,Vx ave,Vy ave,2,'k');
272 elseif ReduceFactor > 1
273 quiver(x lim vectors,y lim vectors,10*Vx ave lim vectors,10*Vy ave lim vectors,0,'k');
274 end
275 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
276 yAxisShift,yupper−ylower+yAxisShift])
277 Vxymax = max(max(Vxy(iupper:ilower,jlower:jupper))); % Max value in ...

plotted domain
278 Vxymin = min(min(Vxy(iupper:ilower,jlower:jupper))); % Min value in ...

plotted domain
279 % hcb=colorbar; set(hcb,'YTick',[0 .01 0.02 0.03 0.04])
280 colormap(summer); h0 = colorbar('EastOutside');
281 set(get(h0,'ylabel'),'String','m/s','FontSize',13)
282 set(gca,'FontSize',13)
283 caxis([Vxymin Vxymax]); %shading interp
284 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
285 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
286

287 if TrimType == 0 % Use for PIV (not trimmed)
288 set(gca,'Position',...
289 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
290 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
291 elseif TrimType ==1 % Use for ADV (trimmed)
292 set(gca,'Position',...
293 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
294 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
295 end
296

297 % set(gcf,'color','g');
298 % set(gcf, 'InvertHardCopy', 'off');
299

300 if SavePlot == 1
301 saveas(gcf,[pwd,'plots\',project,'\',input,' Vxy',Format]);
302 end
303

304 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
305 figure;
306 contourf(x,y,RMS,200,'edgecolor','none');
307 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
308 yAxisShift,yupper−ylower+yAxisShift])
309 RMSmax = max(max(RMS(iupper:ilower,jlower:jupper))); % Max value in ...

plotted domain
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310 RMSmin = min(min(RMS(iupper:ilower,jlower:jupper))); % Min value in ...
plotted domain

311 colormap(summer); h2 = colorbar('EastOutside');
312 set(get(h2,'ylabel'),'String','m/s','FontSize',13);
313 set(gca,'FontSize',13)
314 caxis([RMSmin RMSmax]);
315 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
316 % title('Root Mean Square of Velocity','FontSize',13);
317 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
318

319 if TrimType == 0 % Use for PIV (not trimmed)
320 set(gca,'Position',...
321 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
322 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
323 elseif TrimType ==1 % Use for ADV (trimmed)
324 set(gca,'Position',...
325 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
326 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
327 end
328

329 if SavePlot == 1
330 saveas(gcf,[pwd,'plots\',project,'\',input,' RMS',Format]);
331 end
332

333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334 figure;
335 contourf(x,y,U,200,'edgecolor','none')
336 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
337 yAxisShift,yupper−ylower+yAxisShift])
338 Umax = max(max(U(iupper:ilower,jlower:jupper))); % Max value in ...

plotted domain
339 Umin = min(min(U(iupper:ilower,jlower:jupper))); % Min value in ...

plotted domain
340 % hcb=colorbar; set(hcb,'YTick',[0 .01 0.02 0.03 0.04])
341 colormap(summer); h0 = colorbar('EastOutside');
342 set(get(h0,'ylabel'),'String','m/s','FontSize',13)
343 set(gca,'FontSize',13)
344 caxis([Umin Umax]); %shading interp
345 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
346 % title('Precision Uncertainty');
347 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
348

349 if TrimType == 0 % Use for PIV (not trimmed)
350 set(gca,'Position',...
351 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
352 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
353 elseif TrimType ==1 % Use for ADV (trimmed)
354 set(gca,'Position',...
355 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
356 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
357 end
358

359 if SavePlot == 1
360 saveas(gcf,[pwd,'plots\',project,'\',input,' U',Format]);
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361 end
362

363 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
364 figure;
365 contourf(x,y,Urel,200,'edgecolor','none')
366 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
367 yAxisShift,yupper−ylower+yAxisShift])
368 Urel max = max(max(Urel(iupper:ilower,jlower:jupper))); % Max value ...

in plotted domain
369 Urel min = min(min(Urel(iupper:ilower,jlower:jupper))); % Min value ...

in plotted domain
370 colormap(summer); h0 = colorbar('EastOutside');
371 set(get(h0,'ylabel'),'String','%','FontSize',13)
372 set(gca,'FontSize',13)
373 caxis([Urel min Urel max]); %shading interp
374 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
375 % title('Relative Precision Uncertainty');
376 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
377

378 if TrimType == 0 % Use for PIV (not trimmed)
379 set(gca,'Position',...
380 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
381 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
382 elseif TrimType ==1 % Use for ADV (trimmed)
383 set(gca,'Position',...
384 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
385 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
386 end
387

388 if SavePlot == 1
389 saveas(gcf,[pwd,'plots\',project,'\',input,' Urel',Format]);
390 end
391

392 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
393 figure;
394 contourf(x,y,TKE,200,'edgecolor','none')
395 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
396 yAxisShift,yupper−ylower+yAxisShift])
397 TKEmax = max(max(TKE(iupper:ilower,jlower:jupper))); % Max value in ...

plotted domain
398 TKEmin = min(min(TKE(iupper:ilower,jlower:jupper))); % Min value in ...

plotted domain
399 colormap(summer); h4 = colorbar('EastOutside');
400 set(get(h4,'ylabel'),'String','mˆ2/sˆ2','FontSize',13)
401 set(gca,'FontSize',13)
402 caxis([TKEmin TKEmax])
403 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
404 % title('Turbulence Kinetic Energy','FontSize',13)
405 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
406

407 if TrimType == 0 % Use for PIV (not trimmed)
408 set(gca,'Position',...
409 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
410 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
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411 elseif TrimType ==1 % Use for ADV (trimmed)
412 set(gca,'Position',...
413 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
414 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
415 end
416

417 if SavePlot == 1
418 saveas(gcf,[pwd,'plots\',project,'\',input,' TKE',Format]);
419 end
420

421 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
422 figure;
423 contourf(x,y,TurbIntens,200,'edgecolor','none')
424 axis equal; axis([xAxisShift,xupper−xlower+xAxisShift,...
425 yAxisShift,yupper−ylower+yAxisShift])
426 TurbIntensmax = max(max(TurbIntens(iupper:ilower,jlower:jupper))); % ...

Max value in plotted domain
427 TurbIntensmin = min(min(TurbIntens(iupper:ilower,jlower:jupper))); % ...

Min value in plotted domain
428 colormap(summer); h3 = colorbar('EastOutside');
429 set(get(h3,'ylabel'),'String','%','FontSize',13)
430 set(gca,'FontSize',13)
431 caxis([TurbIntensmin TurbIntensmax])
432 xlabel('x (cm)','FontSize',13); ylabel('y (cm)','FontSize',13)
433 % title('Turbulence Intensity','FontSize',13)
434 set(gcf,'papersize',[8,PaperHeight]); ...

set(gcf,'paperposition',[0,0,8,PaperHeight])
435

436 if TrimType == 0 % Use for PIV (not trimmed)
437 set(gca,'Position',...
438 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
439 [−1 0 1 0; 0 −1 0 1; 0 0 50 0; 0 0 0 1])
440 elseif TrimType ==1 % Use for ADV (trimmed)
441 set(gca,'Position',...
442 get(gca,'OuterPosition') − get(gca,'TightInset') * ...
443 [−1.3 0 1 0; 0 −1 0 1; 0 0 30 0; 0 0 0 1])
444 end
445

446 if SavePlot == 1
447 saveas(gcf,[pwd,'plots\',project,'\',input,' TurbIntens',Format]);
448 end
449

450 end
451

452 toc
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Appendix C

Matlab Function to Trim Masked Area

1 function [imin,imax,jmin,jmax] = TrimToMask( U )
2

3 % This subroutine takes any 2D velocity field U and finds the i and j
4 % indeces of the last zeros around the perimeter of the masked area.
5 % Remember: the i axis is aligned with x increasing to right
6 % the j axis is reverse with y increasing to bottom
7

8 % Determine left−hand mask boundary
9 jmin = zeros(1,size(U,1));

10 for i=1:size(U,1) % Run through rows
11 trigger = 0; % Reset trigger for every new row
12 for j=1:size(U,2) % Run through columns from left to right
13 if trigger == 0 % The first non−zero hasn't been found
14 if U(i,j) == 0.
15 jmin(i) = j; % x−index of last 0.
16 else
17 trigger = 1; % set trigger for first non−zero
18 end
19 end
20 end
21 end
22

23 % Determine right−hand mask boundary
24 jmax = ones(1,size(U,1))*size(U,1);
25 for i=1:size(U,1) % Run through rows
26 trigger = 0; % Reset trigger for every new row
27 for j=size(U,2):−1:1 % Run through columns from right to left
28 if trigger == 0 % The first non−zero hasn't been found
29 if U(i,j) == 0.
30 jmax(i) = j; % x−index of last 0.
31 else
32 trigger = 1; % set trigger for first non−zero
33 end
34 end
35 end
36 end
37

38 % Determine top mask boundary
39 imax = zeros(1,size(U,2));
40 for j=1:size(U,2) % Run through columns
41 trigger = 0; % Reset trigger for every new column
42 for i=1:size(U,1) % Run through rows from top to bottom
43 if trigger == 0 % The first non−zero hasn't been found
44 if U(i,j) == 0.
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45 imax(j) = i; % y−index of last 0.
46 else
47 trigger = 1; % set trigger for first non−zero
48 end
49 end
50 end
51 end
52

53 % Determine bottom mask boundary
54 imin = zeros(1,size(U,2));
55 for j=1:size(U,2) % Run through columns
56 trigger = 0; % Reset trigger for every new column
57 for i=size(U,1):−1:1 % Run through rows from bottom to top
58 if trigger == 0 % The first non−zero hasn't been found
59 if U(i,j) == 0.
60 imin(j) = i; % y−index of last 0.
61 else
62 trigger = 1; % set trigger for first non−zero
63 end
64 end
65 end
66 end
67

68 imin = max(imin);
69 imax = min(imax);
70 jmin = min(jmin);
71 jmax = max(jmax);



79

Appendix D

Optimization Study on Delta Wing Spacing



Optimization Study Performed on Delta Wing Spacing

Determine the value of algae biomass (50% is oil, 50% can be used for aquaculture)
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n 0.322 This gives the relationship that doubling the VMI gives 25% better growth

CG

G0

VMI0
n

31.484
gm

m
2

day
 Growth Constant

Curve fit from experimental data for VMI
increase over case without Delta Wing (DW)ΔVMI z( )

0.0215

m
2

z
2 0.1476

m
z 0.2676

Average VMI as a function of DW spacing

ΔVMIave Δz( )
1

Δz 0

Δz

zΔVMI Δz( )




d
0.0001 2676.0 m

2
 215.0 Δz

2
 1476.0 m Δz 

m
2



Growth Δz( ) CG ΔVMIave Δz( )
n

 Growth model as a function of VMI

Revenue Δz( ) Value Growth Δz( ) Area
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Cost for each Delta Wing

Nstreamwise Δz( )
Length

Δz
 Number of DWs

Nacross 24 There will be 24 DWs across, spaced every 0.5m.

CostPower Δz( ) 2W Nacross
¤ 0.08

kW hr






 Nstreamwise Δz( ) Each DW will likely place 2W
load on paddle-wheel

This is considering each DW
and mounting hardware 
costs $20 and will last 7
years.

CostCapital Δz( ) ¤ 2.857 Nacross
Nstreamwise Δz( )

yr


Cost Δz( ) CostPower Δz( ) CostCapital Δz( )

Revenue Optimization

Profit Δz( ) Revenue Δz( ) Cost Δz( )

0 1 2 3
0

1 10
4

2 10
4

3 10
4

4 10
4

Revenue Δz( )

Cost Δz( )

Profit Δz( )

Δz
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Solve for optimal spacing

Δz 1m Given Δz 0m

OptimalSpacing Maximize Profit Δz( ) 64.609 in This is the optimal DW spacing for
revenue.

This is an approximate gain in revenue
from using the DW.  It is a gain because
the ∆VMI curve fit was the VMI from using
the DW minus the VMI without any DW.

Profit OptimalSpacing( ) 5.342 10
3


¤

yr


What is the increase in profit?

ΔVMIave OptimalSpacing( ) 0.083 This much is added to the baseline.

VMI0 0.1 is the baseline VMI for raceways

We have nearly doubled the mixing, so the growth has increased by nearly 25% and so
should the profit.
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Appendix E

Comparison of PIV and ADV Data

This appendix contains the PIV and ADV plots for a study performed near the center

of the raceway with eight inches of water. Cases without the DW and with the DW at 30◦

angle of attack are given. Quantities that are represented include velocity, in-plane velocity,

standard deviation, turbulence kinetic energy, and turbulence intensity. The PIV data were

trimmed to match the ADV domain for direct comparison.
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E.1 Results without Delta Wing
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Fig. E.1: Contour plots of velocity magnitude with PIV on top and ADV on bottom without
Delta Wing
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Fig. E.2: Contour and vector plots of in-plane velocity magnitude with PIV on top and
ADV on bottom without Delta Wing
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Fig. E.3: Contour plots of velocity standard deviation of 200 instantaneous velocity fields.
The PIV result is on top and ADV on bottom; without Delta Wing.
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Fig. E.4: Contour plots of turbulence kinetic energy with PIV on top and ADV on bottom
without Delta Wing
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Fig. E.5: Contour plots of turbulence intensity with PIV on top and ADV on bottom
without Delta Wing
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E.2 Results with Delta Wing
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Fig. E.6: Contour plots of velocity magnitude with PIV on top and ADV on bottom with
Delta Wing
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Fig. E.7: Contour and vector plots of in-plane velocity magnitude with PIV on top and
ADV on bottom with Delta Wing
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Fig. E.8: Contour plots of velocity standard deviation of 200 instantaneous velocity fields.
The PIV result is on top and ADV on bottom; with Delta Wing.
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Fig. E.9: Contour plots of turbulence kinetic energy with PIV on top and ADV on bottom
with Delta Wing
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Fig. E.10: Contour plots of turbulence intensity with PIV on top and ADV on bottom with
Delta Wing
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Appendix F

Permission to Use Fig. 1 from Chisti [2]
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Appendix I

Permission to Use Animation from LaVision Website [18]

http://www.lavision.de/en/techniques/piv.php


Blake Lance <b.lance@aggiemail.usu.edu>

Permission to Use Animation
2 messages

Blake Lance <b.lance@aggiemail.usu.edu> Fri, Sep 7, 2012 at 3:03 PM
To: Steve Anderson <sanderson@lavisioninc.com>

Steve,

Can you give permission to use the attached animation from LaVision's website in my thesis?  It would be included as
seen with the LaVision logo intact and will not be used for commercial purposes.  Thanks for any help you can give.

--

Blake Lance
Graduate Research Assistant
Utah State University
Mechanical & Aerospace Engineering
4130 Old Main Hill
Logan UT 84322
435-797-8147

PIVAnimation.mp4
531K

Steve Anderson <sanderson@lavisioninc.com> Mon, Sep 10, 2012 at 4:44 AM
To: Blake Lance <b.lance@aggiemail.usu.edu>

Blake,

 

No problem – go ahead and use it.

 

Thanks for asking.

 

Kind regards,

 

Steve

 

From: Blake Lance [mailto:b.lance@aggiemail.usu.edu]
Sent: Friday, September 07, 2012 4:04 PM
To: Steve Anderson
Subject: Permission to Use Animation
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