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ABSTRACT 

 

 

Biodiesel Production from Mixed Culture Algae  

 

Via a Wet Lipid Extraction Procedure 

 

 

by 

 

 

Ashik Sathish, Master of Science 

 

Utah State University, 2012 

 

 

Major Professor: Dr. Ronald C. Sims 

Department: Biological Engineering 

 

 

 With world crude oil reserves decreasing and energy prices continually increasing, 

interest in developing renewable alternatives to petroleum-based liquid fuels has increased. An 

alternative that has received consideration is the growth and harvest of microalgae for the 

production of biodiesel via extraction of the microalgal oil or lipids. However, costs related to the 

growth, harvesting and dewatering, and processing of algal biomass have limited commercial 

scale production of algal biodiesel. Coupling wastewater remediation to microalgal growth can 

lower costs associated with large scale growth of microalgae. Microalgae are capable of 

assimilating inorganic nitrogen and phosphorous from wastewater into the biomass. By 

harvesting the microalgal biomass these nutrients can be removed, thus remediating the 

wastewater. Standard methods of oil extraction require drying the harvested biomass, adding 

significant energetic cost to processing the algal biomass. Extracting algal lipids from wet 

microalgal biomass using traditional methods leads to drastic reductions in extraction efficiency, 

driving up processing costs. A wet lipid extraction procedure was developed that was capable of 

extracting 79% of the transesterifiable lipids from wet algal biomass (16% solids) without the use 

of organic solvents while using relatively mild conditions (90
 
°C and ambient pressures). 

Ultimately 77% of the extracted lipids were collected for biodiesel production. Furthermore, the 



iv 
 

procedure was capable of precipitating chlorophyll, allowing for the collection of algal lipids 

independently of chlorophyll. The capability of this procedure to extract lipids from wet algal 

biomass, to reduce chlorophyll contamination of the algal oil, and to generate feedstock material 

for the production of additional bio-products provides the basis for reducing scale-up costs 

associated with the production of algal biofuels and bioproducts.  
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PUBLIC ABSTRACT 

 

 Development of renewable sources of energy has received significant interest due to the 

rising costs of energy and the environmental impact of using fossil fuels. Biodiesel production 

from renewable sources of oil has shown promise of helping to replace or reduce dependence on 

petroleum based diesel thereby reducing demand for crude oil. Microalgae have been considered 

as a strong candidate for the production of large quantities of renewable oil for biodiesel 

production.  

 Microalgae are single cell photosynthetic organisms that posses the capability to produce 

renewable oil at rates much faster than land based plants and crops. In addition, microalgae can 

be grown in non-arable land, use low quality water or wastewater, and do not require significant 

maintenance making algal biomass simpler to generate and help in avoiding the food versus fuel 

debate. However, the current cost of processing algae has prevented commercial production of 

algae biodiesel. Several hurdles exist that contribute to the production cost, some of which 

include: (1) the need to dry algal biomass prior to lipid extraction when using traditional methods 

of oil extraction, (2) large volumes of organic solvents commonly required to extract the algal 

oils, and (3) purification costs associated with generating usable biodiesel.  

 This research focused on developing a method of processing algal biomass to help 

directly address these hurdles. The wet lipid extraction procedure developed is capable of 

extracting oil from algal biomass with no drying, reduces the demand for organic solvents, and 

removes or reduces chlorophyll contamination from the produced biodiesel potentially reducing 

purification requirements. Additionally, the developed procedure produces several additional 

streams that can be utilized as feedstock material for the production of additional algae based 

bioproducts. Such advances in algal processing technology can aid in reducing the cost of 

producing renewable microalgae based biofuels and bioproducts.  
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CHAPTER 1 

INTRODUCTION AND NEED FOR STUDY 

 

 

1. Need for renewable energy 

 Energy demand worldwide continues to increase at a rapid pace with developing  

countries, such as China and India’s, energy consumption rates rising at 2 to 3 times the global  

average (Ahmad et al., 2011; U.S. Energy Information Administration, 2011a).  Crude oil  

reserves are being depleted (Abdullah et al., 2007) at a rate of approximately 85-90 million 

barrels of oil per day and predicted to increase as shown in Figure 1(U.S. Energy Information 

Administration, 2011a). With worldwide proven oil reserves estimated at 1.3 trillion barrels of oil 

(U.S. Energy Information Administration, 2011a), it is possible that crude oil will be depleted 

within the next 50 years (Abdullah et al., 2007).  

 

 

Figure 1. Projected global crude oil consumption. 

 

 The US currently consumes approximately 20% of the crude oil consumed globally (U.S. 

Energy Information Administration, 2011a) and petroleum accounts for 37% of the total energy 

flow within the US (U.S. Energy Information Administration, 2011b). Of the energy generated 
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from crude oil, or petroleum, 72% is consumed for transportation purposes (U.S. Energy 

Information Administration, 2011b). A majority of the energy used within the transportation 

sector originates from petroleum, which constitutes 94% of the energy consumed within that 

sector. Heavy dependence on petroleum based fuels, is not sustainable due to increasing fuel 

costs, diminishing crude oil reserves, and the environmental impact of fossil fuel usage (Chisti, 

2007; Pienkos and Darzins, 2009; Demirbas and Fatih Demirbas, 2011). 

 Alternative sources of energy will need to be research and developed within the next 50 

years as crude oil resources become scarce. Continued research will facilitate the development 

and implementation of renewable fuels to help lessen the US’s and world’s dependence on fossil 

fuels as petroleum based fuels become depleted.  

 

2. Microalgae as a source of renewable oil for biodiesel production 

 The US DOE supported Aquatic Species Program (1978-1996) conducted research to 

utilize microalgae as a source of oil for the production of renewable fuels with a focus on 

biodiesel (Sheehan et al., 1998). However, due to the high cost of biodiesel production from algal 

biomass and DOE budget constraints at the time, the Aquatic Species Program was terminated 

(Sheehan and others, 1998). 

 Recent increases in the price crude oil, environmental concerns, and the US’s significant 

dependence on foreign oil have revived interest in making use of microalgae to produce 

renewable liquid fuels and other bioproducts (U.S. DOE, 2010). Interest increased after the 

enactment of The Energy Independence and Security Act (EISA) of 2007 that mandated by 2022, 

36 billion gallons of renewable fuel, including cellulosic and biomass derived diesel, should be a 

portion of the transportation fuel consumed in the US (U.S. DOE, 2010).   

 Several reasons have attracted interest for the use of microalgae over other energy crops 

or animal fats including: (1) microalgae have higher growth rates than terrestrial crops; (2) can be 

grown in non-arable or marginal lands with various qualities of water; (3) require little 
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maintenance; (4) generate high concentrations of intracellular lipids; (5) provide a means to 

recycle CO2; and (6) do not require diverting food resources to energy production (Chisti, 2007; 

Gouveia and Oliveira, 2008; Azócar et al., 2010; Huang et al., 2010; Mata et al., 2010; U.S. DOE, 

2010; Wijffels et al., 2010) . Table 1 presents data illustrating the high productivity of microalgae 

compared to terrestrial oil crops. These properties and capabilities of microalgae make them an 

appealing means for the production of renewable oil for biodiesel production.  

 

Table 1. Comparison of oil productivity of various oil crops for biodiesel production (Gouveia 

and Oliveira, 2008).  

Crop Oil Yield (L ha
-1

) 

Corn 172 

Soybean 446 

Canola 1,190 

Jatropha 1,892 

Coconut 2,689 

Palm 5,950 

Microalgae 
a
 58,700 

Microalgae 
b
 136,900 

         
a 
30% oil (by wt) in biomass 

         
b 
70% oil (by wt) in biomass 

 

 

 Because of these capabilities, microalgae can be used for a variety of applications 

including wastewater remediation, carbon sequestration from flue gases (coal fired power plants), 

and removal of heavy metals from industrial wastewaters while generating biomass for biofuel 

and bioproduct production (Pokoo-Aikins et al., 2009; Harun et al., 2010; Rawat et al., 2011). 

 Although microalgae are candidates as a renewable source of oil and the concept of algal 

biodiesel production has been proven and well studied, there are currently no known commercial 

scale algal biodiesel production facilities (Lardon et al., 2009). This is due to the high cost 

associated with the production of algal biodiesel, which makes biodiesel uncompetitive with 

petroleum based diesel.  

 One of the major hurdles in reducing the cost of algal biodiesel is the need to dewater the 

algal biomass after harvesting the algae from the growth medium (Lardon et al., 2009; Levine et 
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al., 2010; Sander and Murthy, 2010). The presence of water with the harvested biomass inhibits 

organic solvent based extraction of lipids from algal biomass (U.S. DOE, 2010). Additionally, the 

direct transesterification of algal oils by in situ transesterification is also inhibited by the presence 

of water (Liu et al., 2006). Without drying the algal biomass to at least 90% solids, the efficiency 

of either solvent based lipid extraction or in situ transesterification will be reduced leading to 

higher processing costs (Lardon et al., 2009). However, drying large quantities of algal biomass 

requires a considerable amount of energy to remove water from the biomass which drives up the 

cost of algal biodiesel production (Sturm and Lamer, 2011). 

Methods are available to extract and/or convert algal lipids to biodiesel from wet algal 

biomass, but many require the use of super or sub critical fluids (Demirbas, 2006; Levine et al., 

2010; Halim et al., 2011). These processes require significant energy input and are difficult to 

scale up for the production of large amounts of biodiesel (Halim et al., 2011). Therefore, there is 

a need for the development of low cost processes for the extraction of algal oil from wet biomass 

to aid in generating economically viable production processes for algal biodiesel.  

 
3. Logan Lagoons Project 

 The city of Logan, UT Environmental Department operates and maintains a 460 acre 

open lagoon wastewater treatment plant (WWTP) to treat municipal wastewater generated within 

the city of Logan and surrounding regions. The Logan Lagoons wastewater treatment system is 

capable of primary and secondary treatment (solids, biological oxygen demand, and pathogen 

removal). However, it is not designed for tertiary treatment of the wastewater (removal of 

inorganic nutrients) (Griffiths, 2009).  

 With State regulations requiring reductions in the amount of nitrogen and phosphorous 

being discharged from the Logan lagoons WWTP, the city will be required to modify the current 

system. This is generally accomplished with the addition of a physical or chemical treatment 

system, which is a costly addition (Sturm and Lamer, 2011). Such a costly modification can be 
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avoided by utilizing microalgae that naturally grow within the Logan lagoons WWTP. 

Microalgae take up nitrogen and phosphorous as nutrients as they grow. Therefore, the 

implementation of a harvesting system for algal biomass would not only provide a means to 

sustainably remove these nutrients, but would also provide a supply of renewable feedstock for 

the production of algal biodiesel.  

 The opportunity to couple wastewater treatment with microalgal growth provides a 

means to reduce production cost due to the availability of free nutrients, sunlight, and 

atmospheric carbon dioxide. Current estimates place the algal production potential of the Logan 

Lagoons around 13,000 kg/day of dry algal biomass, with enough lipids to produce 

approximately 120,000 gallons of biodiesel per 300 day year (Griffiths, 2009). The energy 

generated from this system can be used to supplement the City of Logan Environmental 

Department’s energy needs helping to reduce their dependence on imported fuels and energy.  

 The potential cost savings from coupling wastewater remediation with algal biomass 

generation and the use of a wet lipid extraction procedure can help reduce the cost of algal 

biodiesel production. Such a system can sustainably remove nutrients by providing a means to 

capture and utilize inorganic nitrogen and phosphorous removing it from the wastewater and in 

return the biomass can be processed to generate energy via both liquid fuels and methane gas.  
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CHAPTER 2  

LARGE SCALE PRODUCTION OF MICROALGAL BIOMASS AND  

METHODS FOR THE EXTRACTION AND CONVERSION OF  

MICROALGAL OIL TO BIODIESEL 

 

 

1. Introduction 

In 2010 petroleum was the primary source of energy in the US, accounting for 37% of the 

total energy flow within the country. Additionally, 71% of the energy generated from petroleum 

was accounted for within the transportation sector, constituting 94% of the energy used in that 

sector (U.S. Energy Information Administration, 2011).  Approximately 13 million barrels per 

day of transportation fuel was consumed in 2009, including 2 million barrels a day of on highway 

diesel (U.S. Energy Information Administration, 2011). Such dependence on petroleum based 

fuels is not sustainable due to increasing fuel costs, steady depletion of world crude oil reserves, 

and the environmental consequences associated with the use of fossil fuels (Chisti, 2007; Lardon 

et al., 2009; Demirbas and Fatih Demirbas, 2011). These and other problems related to the use of 

fossil fuels have led to interest in finding alternative sources of energy. 

Considerable efforts are being made to develop commercially viable sources of 

renewable transportation fuels to lessen world dependence on crude oil. Of the various sources of 

renewable liquid fuels, production of biodiesel from biological lipids, or oil, shows potential.  

A common lipid sources is plant oils, of which soybean, rapeseed, and sunflower oils are 

the most prevalent in the US and Europe (Azócar et al., 2010). Although these types of oils are 

produced in high quantities, on the order of 88 million tons of vegetable oil in 2000 (Demirbas, 

2009), there are several constraints associated with the use of these edible oils for biodiesel 

production. One concern is that food resources and land would be diverted to energy production, 

potentially driving up food costs, considered the “food vs. fuel” debate (Schenk et al., 2008; 
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Azócar et al., 2010; Mata et al., 2010; Vyas et al., 2010). Due to this concern, attention has turned 

to lipids derived from non-edible plants such as rubber seeds, Jatropha, tobacco, and castor oils 

(Demirbas, 2009; Azócar et al., 2010). These oils are generally cheaper and do not interfere with 

food production resources (Azócar et al., 2010). 

Waste oils are another potential source of lipids for biodiesel production. Waste oils refer 

to used cooking oils as well as rendered animal fats (Kulkarni and Dalai, 2006). Lipid sources 

such as these are cheap compared to pure vegetable oils and are readily available as a feedstock 

(Kulkarni and Dalai, 2006; Canakci, 2007) . High FFA content can interfere with the reaction that 

converts lipids to biodiesel. 

Typically the conversion of oils to biodiesel is performed using a homogenous base 

catalyst. Base catalyzed reactions are quicker and require less energy compared to acid catalyzed 

processes (Freedman et al., 1986; Ma and Hanna, 1999; Fukuda et al., 2001; Meher et al., 2006). 

However, the use of base catalysts leads to soap formation when FFAs are present via the 

saponification reaction, which reduces reaction efficiency and complicates downstream 

separation and purification of the generated biodiesel (Leung et al., 2010). One alternative is to 

use acid catalysts when FFAs are present, due to its ability to catalyze the conversion of FFAs to 

alkyl esters by esterification (Canakci and Van Gerpen, 2001; Lotero et al., 2005; Van Gerpen, 

2005). These topics are discussed in more detail in Section 5. 

Although plant and animal oils can provide a source of oil for biodiesel, current land 

requirements for growth of terrestrial plant material for fuel production are substantial. For 

example, 13% and 15% of US and European farmland, respectively, would be needed to generate 

enough vegetable oil for biodiesel to displace 5% of the petroleum based diesel consumed in 

these regions (Azócar et al., 2010). Such large land requirements make replacing petroleum diesel 

with biodiesel solely from plant oil based biodiesel unfeasible and puts food production at risk.  

Another source of lipids that has shown promise is microalgae. Table 2 illustrates higher 

oil productivity of microalgae compared to typical biodiesel crops. Besides being more efficient 
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in producing oil, microalgae also possess qualities that make them viable as a source of lipids for 

large scale biodiesel production. These qualities include the fact that microalgae: (1) do not shift 

food resources to energy production,  (2) have higher growth rates than land based crops, (3) can 

be grown in non-arable land using various sources and qualities of water, (4) require little 

maintenance, (5) and can produce high concentrations of intracellular lipids (Chisti, 2007; 

Gouveia and Oliveira, 2008; Azócar et al., 2010; Huang et al., 2010; Mata et al., 2010; Wijffels et 

al., 2010). Characteristics such as these make microalgae a promising source of lipids for 

biodiesel production on an appreciable scale.  

 

Table 2. Comparison of oil yields from typical energy crops versus microalgae. Adapted from 

Mata et al. (2010). 

 

Plant Source: Oil yield                 

(L oil/ha 

yr) 

Land Use                                    

(m
2
 year/kg 

biodiesel) 

Biodiesel 

Productivity         

(kg biodiesel/ha 

yr) 

Corn/Maize (Zea mays L.) 172 66 152 

Hemp (Cannabis sativa L.) 363 31 321 

Soybean (Glycine max L.) 636 18 562 

Jatropha (Jatropha curcas L.) 741 15 656 

Camelina (Camelina sativa L.) 915 12 809 

Canola/Rapeseed (Brassica napus 

L.) 

974 12 862 

Sunflower (Helianthus annuus L.) 1,070 11 946 

Castor (Ricinus communis) 1,307 9 1,156 

Palm oil (Elaeis guineensis) 5,366 2 4,747 

Microalgae (low oil content) 58,700 0.2 51,927 

Microalgae (medium oil content) 97,800 0.1 86,515 

Microalgae (high oil content) 136,900 0.1 121,104 

 

 

2. Large-Scale Algae Growth Systems: 
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 A number of technologies exist for the growth and collection of microalgae, with a 

majority designed as either closed or open growth systems. Open systems can take a number of 

different forms such as raceway ponds, circular ponds, tanks, and shallow ponds (Molina Grima 

et al., 2003; Chisti, 2007; Harun et al., 2010). The most common forms are shallow raceway 

ponds with a source of mixing, such as a paddle wheel, to allow for light penetration, gas 

diffusion, and nutrient distribution (Christenson and Sims, 2011; Gallagher, 2011).  

 

2.1. Open systems 

Open systems are cheaper to maintain and construct due to their simple operation and 

basic design (Harun et al., 2010; Stephenson et al., 2010; Christenson and Sims, 2011; Gallagher, 

2011). However, the fact that they are open systems is their disadvantage as well. Due to open 

systems being exposed to the atmosphere, conditions within the ponds depends on the 

surrounding environment. Temperature, sunlight, pH, and evaporation may all be 

environmentally dictated. Without control over these factors shifts in species may be unavoidable, 

due to natural selection within the ponds and/or outside contamination, leading to the loss of 

single strain cultures (Chisti, 2007; Harun et al., 2010; Stephenson et al., 2010; Christenson and 

Sims, 2011).  

 

2.2. Closed systems 

 Lack of control over environmental conditions within algae growth systems has pushed 

efforts to build and design effective and economical closed systems for microalgal growth. 

Closed systems, such as tubular photobioreactors, allow for conditions to be maintained close to 

the desired set-points without significant deviation (Mata et al., 2010; Dye et al., 2011). Such 

control allows for the growth of algae with minimal shifts in species or contamination from 

external organisms, essentially the ability to grow single strains of algae (Chisti, 2007; Harun et 

al., 2010; Christenson and Sims, 2011). With the choice of which microalgal strains to culture in 

larger closed systems, it is possible to cultivate specific species that show tendencies to 
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accumulate high percentages of oil leading to higher lipid productivities (Stephenson et al., 2010). 

 Major drawbacks with closed systems include the inability to remove oxygen, which 

builds up within the system as a result of photosynthesis, difficulties in controlling temperature, 

energy costs required for mixing and maintenance of static conditions, and the capital cost 

associated with building such systems (Scott et al., 2010; Christenson and Sims, 2011).  

 

2.3. For biodiesel production and wastewater remediation 

 Specifically for biodiesel production, open systems are the most feasible due to the higher 

capital and operating costs associated with closed systems. For algae biodiesel to be a feasible 

source of fuel, a requirement is the production costs must be lower than the cost of producing 

petroleum diesel. Open systems for microalgal growth are currently the most viable option due to 

its low capital cost as well as lower operation and maintenance costs (Huang et al., 2010).  

One of the most promising processes for microalgal biomass generation is the 

combination of wastewater treatment with microalgal growth using open systems (Chinnasamy et 

al., 2010; Christenson and Sims, 2011; Pittman et al., 2011). Such systems have the ability to 

generate, not only algal biomass, but also remediate wastewater by taking up excess nutrients 

from the water. Treating wastewater using microalgae is also a method of recovering nutrients, 

such as nitrogen and phosphorous, in a sustainable manner. The nutrients present in wastewater 

replaces the need for the addition of nitrogen and phosphorous for algal growth removing the 

need for energy input into fertilizer production for algal growth (Clarens et al., 2010). 

 

3. Collection and Dewatering of Algal Biomass  

 With algal cell sizes ranging from 2 to 20 μm, coupled with the fact that they are 

generally grown in suspended form, leads to difficulties in harvesting and concentrating algal 

biomass (Lardon et al., 2009). A number of processes exist for the collection of algal biomass 

including those based on chemical, mechanical, physical, and biological methods (Molina Grima 

et al., 2003; Uduman et al., 2010; Christenson and Sims, 2011). It can be assumed that 20-30% of 
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the cost of producing algal biomass can be attributed to the harvesting step (Molina Grima et al., 

2003). In addition, Lardon et al. found that dewatering and drying of algae accounts for 

approximately 80 - 85% of the total energy used to generate biodiesel from algae (Lardon et al., 

2009). Many biodiesel producing processes require the drying of the algal biomass prior to 

extraction and conversion of the oil to biodiesel (Ehimen et al., 2010; Levine et al., 2010; Halim 

et al., 2011).  Based on this information any harvesting method used must be able to collect algal 

biomass with maximum dewatering and minimal energy usage to help reduce biodiesel 

production costs.  

 

3.1. Centrifugation 

 Centrifugation currently remains the most commonly used method for the collection of 

algae (Harun et al., 2010). Although centrifugation of algae is effective, with recoveries over 90% 

with approximately 22% solids content (Christenson and Sims, 2011), the energy consumption 

associated with its use is considered high (Lardon et al., 2009). Centrifugation can be justified if 

high value products are generated, but for production of biodiesel, more energy efficient methods 

must be used (Molina Grima et al., 2003; Pienkos and Darzins, 2009; Uduman et al., 2010).  

 

3.2. Filtration 

Several types of filtration systems exist for algae collection including dead end, 

tangential flow, pressure filtration, and microfiltration (Harun et al., 2010). In spite of filtration’s 

simplicity, there are several costly drawbacks to using filtration. Because filtration is based on the 

exclusion of particles based on size via a membrane, it suffers from continuous fouling problems 

and requires constant maintenance (Mata et al., 2010; Uduman et al., 2010). Filtration has been 

cited as being relatively slow compared to other harvesting methods, which is disadvantageous 

for large scale operations (Molina Grima et al., 2003). The regular need to replace filter 

membranes can become costly, especially when using expensive membranes (Harun et al., 2010; 
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Christenson and Sims, 2011). The most probable use of filtration will be in series with another 

dewatering system (Harun et al., 2010).  

 

3.3. Gravity sedimentation flocculation 

Gravity settling or sedimentation of algal biomass has been viewed as a low cost option 

to concentrate algal biomass (Pienkos and Darzins, 2009). However, sedimentation methods that 

only use gravity are fairly inefficient and costly due to the small cell sizes of microalgae and slow 

settling rates (Schenk et al., 2008). Sedimentation can be accelerated with the use of flocculants, 

which promote the aggregation of algal cells, forming larger particles increasing the rate of 

settling (Molina Grima et al., 2003; Mata et al., 2010). Flocculation can be induced by increasing 

the pH of the medium (Molina Grima et al., 2003), varying the environment to cause bio-

flocculation or auto-flocculation (spontaneous formation of algal floccs) (Uduman et al., 2010), 

addition of chemicals such as aluminum sulfate, or the addition of organic and/or inorganic 

polymers (Molina Grima et al., 2003; Pienkos and Darzins, 2009; Harun et al., 2010). Once 

flocculated the larger particles sediment much more rapidly increasing the collection efficiency 

(Christenson and Sims, 2011). Subsequent collection of these larger particles, or algal floccs, can 

be accomplished by centrifugation, filtration, of dissolved air flotation methods (Harun et al., 

2010; Uduman et al., 2010; Christenson and Sims, 2011). Drawbacks involve the cost associated 

with the addition of flocculants (Pienkos and Darzins, 2009). Also addition of certain compounds 

may cause downstream purification problems, especially with addition of metal salts (Molina 

Grima et al., 2003). 

 

3.4. Combined processes for dewatering 

 Each of these methods when analyzed individually have certain advantages, drawbacks, 

associated capital and operation costs, and may be ineffective used by themselves. It is possible to 

combine flocculation with centrifugation, or filtration with centrifugation, for example to help 

reduce the cost of harvesting large quantities of algal biomass. Such combinations may reduce the 
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energy demand of harvesting algae as well as increase the level of dewatering. Table 3 presents 

energy consumption of algae collection and drying methods, while Table 4 summarizes 

characteristics of some of the methods discussed. 

 

Table 3. Heat energy required to dewater algal biomass to the specified moisture content and 

generate 1 kg biodiesel. D.C.C. refers to dry cell concentration. 

 

Unit Operation(s) Used: Moisture 

Content: 

Energy: 

(MJ) 

Source: 

Filter Press and natural gas 

dryer: 

9 wt% moisture 120.31 [(Sander and Murthy, 

2010)] 

Centrifugation and natural 

gas dryer: 

9 wt% moisture 237.03 [(Sander and Murthy, 

2010)] 

Chemical Flocculation and  

belt Press: 

10 wt% 

moisture 

81.8 [(Lardon et al., 2009)] 

Flocculation and 

centrifugation: 

200 kg/m
3 

D.C.C. 

2.5 [(Stephenson et al., 

2010)] 

Flocculation, centrifugation, 

and mechanical and thermal 

dryer: 

< 15% 

moisture 

238 [(Xu et al., 2011)] 

Chemical flocculation and 

belt press: 

10 wt% 

moisture 

319 [(Razon and Tan, 2011)] 

 

 

Table 4. Comparison of mechanical harvesting methods for algal biomass. Adapted from 

Christenson et al. 

 

Method Solids Concentration  Recovery Major limitations 

Centrifugation 12-22% >90% Energy intensive, high cost 

Tangential 

Filtration 

5-27% 70-90% Membrane fouling, high cost 

Gravity 

sedimentation 

0.5-3% 10-90% Slow, unreliable 

Dissolved air 

floatation 

3-6% 50-90% Flocculants usually required 
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4. Methods of oil extraction 

 In order to produce biodiesel from algal biomass cellular lipids must be extracted from 

the cell and collected. This requires the disruption or rupture of the algal cell and can be achieved 

using a variety of methods including mechanical and chemical disruption, solvent extraction, 

supercritical fluid extraction, and combinations and/or variations of these techniques (Lee et al., 

2010; U.S. DOE, 2010; D’Oca et al., 2011; Mercer and Armenta, 2011).  

 

4.1. Mechanical disruption 

 Mechanical disruption techniques, such as mechanical pressing, bead milling, and 

homogenization have all been proven and are utilized at large scales for cell disruption and other 

purposes (Greenwell et al., 2009; Mercer and Armenta, 2011). Mechanical pressing inflicts high 

pressures on the cells being extracted, forcing the cell wall to rupture, allowing the intracellular 

lipids to be extracted and collected. Pressing is a method commonly used for extraction of oil 

from plant seeds, but can be applied to microalgae (Mercer and Armenta, 2011). Homogenization 

achieves cell wall rupture by forcing the cells through a small orifice at high pressures. When the 

cell reaches the opening the sudden drop in pressure along with strong liquid shear forces causes 

the cell to break open allowing the lipids to be extracted (Greenwell et al., 2009). Bead milling, or 

bead beating, has been used at both laboratory and industrial scales for size reduction of particles 

and the disruption of cells (Doucha and Lívanský, 2008). This technique works by agitating algal 

biomass in the presence beads. Agitation allows the beads to pulverize the algal cells, breaking 

them apart by mechanical force and providing a means to extract the lipids (Mercer and Armenta, 

2011).  

 In addition to mechanical pressing, homogenization, and bead beating methods of 

achieving algal cell disruption, algal biomass can be treated by autoclaving, exposure to 

microwaves, sonication, osmotic shock (Lee et al., 2010; U.S. DOE, 2010; Gong and Jiang, 



17 
 

 

2011). Such treatments can be used in conjunction with the mechanical disruption techniques to 

weaken algal cells and achieve higher lipid extraction efficiencies. Figure 2 illustrates the 

effectiveness of each of these methods compared to extracting lipids from non-disrupted algal 

cells. Use of microwaves was found to be the simplest and most effective for the extraction of 

algal oil by Lee et al. However, microwaves and sonication techniques may be difficult to scale 

up from laboratory scale to pilot or industrial scales (Mercer and Armenta, 2011).  

 

4.2. Solvent extraction of lipids 

 Solvent extraction techniques are widely used and effective for the extraction of lipids 

from microalgae as well as vegetable seed, such as soybeans (Russin et al., 2010). This is due to 

the high solubility of lipids in non-polar solvents such as chloroform, hexane, petroleum ether, 

and others (Ahmad et al., 2011).  A number of different standard extraction protocols exist such 

as the Folch extraction, Bligh and Dyer, and the Soxhlet or Gold-fisch techniques (Folch et al., 

1957; Bligh and Dyer, 1959; Gloria et al., 1985). These methods provide standard solvents and 

ratios of solvents to use for the extraction of lipids from biomass or specific apparatuses for 

effective lipid extraction from various forms of biomass. 

 Although the use of solvents to extract algal lipids is fairly straightforward, there are a 

number of drawbacks when applied to microalgae. Standard methods such as the Folch and Bligh 

and Dyer methods of lipid extraction have proven inefficient when applied to microalgae. Oil 

extraction requires that water be removed from the biomass prior to lipid extraction for optimum 

results. If the biomass is not dried to a certain extent, water tends to interfere in the extraction 

process by shielding lipids from the extracting solvent (Converti et al., 2009; U.S. DOE, 2010; 

Young et al., 2010; Halim et al., 2011). Drying of algal biomass requires a large input of energy 

and can account of over 70% of the energy required to generate biodiesel from microalgae 

(Lardon et al., 2009). 
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Figure 2. Evaluation of methods for microalgal lipid extraction (Lee et al., 2010). 

 

 Solvents are also biased in the class of lipids that dissolve; therefore, use of certain 

solvents does not effectively extract lipids from the algal biomass due to polarity mismatches 

(Guckert et al., 1988; Lewis et al., 2000; Mulbry et al., 2009; Samorì et al., 2010; Young et al., 

2010). Hexane, a commonly used solvent for oil extraction, has been shown to extract a fraction 

of the lipids available in algae, depending on the lipids present in the biomass (Halim et al., 

2011). Significant research efforts are being made to determine effective solvents, or 

combinations of solvents, capable of removing maximum amounts of lipids from algal biomass 

(Lewis et al., 2000; Dufreche et al., 2007; Converti et al., 2009; Mulbry et al., 2009; Russin et al., 

2010; Young et al., 2010). Many times the solvents being used, or studied, are capable of 
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effectively extracting lipids from microalgae, but are too costly or difficult to used at large scales 

(Herrero et al., 2006; Campbell et al., 2010; Russin et al., 2010).  

In many cases algal cells are resistant to solvent extraction, requiring physical or 

chemical pre-treatment in order to degrade the cells to effectively remove lipids (Molina Grima et 

al., 2003; Gouveia and Oliveira, 2008; Lee et al., 2010; Singh and Gu, 2010). Multiple studies 

have shown increases in lipid yield via solvent extraction after cell degradation (Converti et al., 

2009; Widjaja et al., 2009; Lee et al., 2010). These methods, specifically microwave or ultrasonic 

assisted extraction or transesterification, are difficult to scale up and are energy intensive and will 

add to the biodiesel production costs when used (Pienkos and Darzins, 2009; Vyas et al., 2010).  

Algal cells grown phototrophically, build up photosynthetic pigments, specifically 

chlorophylls and carotenoids (Nelson and Cox, 2005). These compounds are extracted along with 

the oil by solvents, resulting in contamination of the algal oil (Piorreck et al., 1984; Issariyakul 

and Dalai, 2010; Kanda and Li, 2011). Extracted pigments can be carried through the biodiesel 

producing process and require removal by purification processes to produce high quality biodiesel 

(U.S. DOE, 2010).   

 

4.3. Supercritical fluid extraction 

 Supercritical fluid extraction of lipids has become an intensely studied area due to its 

ability to overcome many of the shortcomings associated with organic solvent based lipid 

extractions (Carrapiso and Garcia, 2000). Super critical fluid extraction typically makes use of 

carbon dioxide that has been pushed beyond its critical point to its supercritical state, as shown in 

Figure 3. At this phase the properties of carbon dioxide change, possessing the properties of both 

a liquid and a gas, making it more diffusive with low viscosity (Herrero et al., 2006; Gong and 

Jiang, 2011). Because of these changes the carbon dioxide is able to quickly penetrate solids and 

extract the target molecule(s) of interest. Other substances can be used as supercritical fluids, but 
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CO2 is the most commonly used due to the relatively low critical temperature and pressure (31.1 

o
C and 72.9 atm) (Herrero et al., 2006; Mercer and Armenta, 2011). 

 

 

Figure 3. Phase diagram of a typical compound illustrating the conditions required to achieve the 

supercritical phase. 

 

 There are numerous advantages of using supercritical CO2 for the extraction of algal 

lipids. The most commonly discussed is that organic solvents are not required (Carrapiso and 

Garcia, 2000). Solvent extraction of lipids requires large volumes of potentially toxic and 

hazardous compounds, whereas supercritical CO2 extraction uses only carbon dioxide as the 

extracting solvent (Carrapiso and Garcia, 2000; Halim et al., 2011). Because CO2 is a gas at 

ambient conditions, once the biomass has been extracted the solvent, CO2, can be removed by 

evaporation leaving behind a pure extract with minimal to no contaminants (Mercer and Armenta, 

2011).  

 In addition, the solvent strength of CO2 can be tailored by altering the temperature and 

pressure of the extraction process, providing the means to extract compounds of various polarities 

or specific compounds (Herrero et al., 2006). Although the solvating power of CO2 can be varied, 



21 
 

 

this technique struggles with extracting polar lipids. In order to overcome this problem, the 

addition of small quantities of co-solvents (10-15% ethanol) can improve the extraction yields 

(Mercer and Armenta, 2011). Solvents however, are typically fixed in their solvent power, based 

on their polarity.  

 A significant advantage of using supercritical CO2 extraction is the ability to extract 

lipids from wet algal biomass. The use of organic solvents requires the dewatering of algal 

biomass to greater than 90% solids to avoid reductions in lipid yield (Lardon et al., 2009; U.S. 

DOE, 2010). However, supercritical CO2
 
lipid extraction can achieve higher yields using wet 

algal biomass (30 wt% solids) than dried algal biomass according to Halim et al. (2011). The 

ability to extract lipids from wet algal biomass can save a significant amount of energy and this 

capability requires further research.  

 However, it is due to the high energy demand of supercritical fluid extraction processes 

that it is not a more widely used method for extracting lipids from microalgae (Carrapiso and 

Garcia, 2000; U.S. DOE, 2010; Halim et al., 2011). With advancements in this field, it may be 

possible to bring the energy requirements and equipment costs low enough to make this highly 

effective method of lipid extraction feasible on larger scales.  

 Although supercritical fluid extraction processes are highly efficient and fast, they remain 

expensive processes to build and require significant amounts of energy to operate (U.S. DOE, 

2010; Halim et al., 2011). Mechanical methods such as pressing require large amounts of sample 

and are much slower (Singh and Gu, 2010). Therefore, solvent extraction and/or combined with 

mechanical disruption techniques remain the most commonly and widely used method to extract 

lipids from microalgal biomass due to their simplicity.  

 

5. Biodiesel production 

 Once the lipids are extracted from the biomass, they must be converted to biodiesel. 

Biodiesel production from any lipid feedstock is performed via a chemical conversion process 
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known as transesterification (esterification for FFA). Oils are converted from their original form 

as triglycerides, FFA, or other complex lipids, to alkyl esters, which closely resemble petroleum 

based diesel, both chemically and physically (Ma and Hanna, 1999; Meher et al., 2006; Vyas et 

al., 2010). This conversion can be performed using a number of methods by reacting lipids with 

an alcohol with, or without, the presence of a catalyst, depending on the method (Ma and Hanna, 

1999; Demirbas, 2006; Huang et al., 2010). Figure 4 illustrates the conversion of one mole of a 

glyceride molecule to 3 moles of fatty acid alkyl esters (FAMEs), or biodiesel, and one mole of 

glycerol in the presence of a catalyst.  

 

 

Figure 4. Conversion of lipids, or oil, to alkyl esters via transesterification (Marchetti et al., 

2007). 

 

 

 Depending on the quality and type of lipid feedstock used, the concentration of free fatty 

acids can change (Canakci and Van Gerpen, 2001; Canakc   and Van Gerpen, 2003; Meher et al., 

2006; Canakci, 2007). Free fatty acids react differently than glyceride molecules, depending on 

whether an acid or a base is used as the catalyst, as shown in Figures 5 and 6 (Marchetti et al., 

2007).  

 

 

 

 

Figure 5. Free fatty acid reacting with methanol in the presence of a strong homogenous catalyst 

to form a methyl ester via esterification (Huang et al., 2010). 
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Figure 6. Free fatty acid reacting with potassium hydroxide to form the salt of the free fatty acid 

via the saponification reaction (Huang et al., 2010). 

  

5.1. Acid Catalyzed Transesterification 

 Transesterification is generally performed using a homogeneous catalysts, which are 

catalytic compounds dissolved into the reaction medium. Homogenous acid catalysts used are 

strong acids such as hydrochloric, sulfuric, sulfonic, and phosphoric acids for example 

(Demirbas, 2009; Vyas et al., 2010). The strong acid is mixed into the alcohol, dissolved, and 

then contacted with oil allowing for the formation of the alkyl esters (Demirbas, 2009). A 

mechanistic illustration is provided in Figure 7 for acid catalyzed transesterification.  

 

 

Figure 7: Mechanism of acid catalyzed transesterification of vegetable oils (Demirbas, 2009). 

 

  Specific parameters have been studied by a number of researchers including the type of 

alcohol and catalyst used, temperature, time, and reaction pressure (Freedman et al., 1986; Al-
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Widyan and Al-Shyoukh, 2002; Meher et al., 2006; Azócar et al., 2010). In addition to these 

variables other relevant factors include the concentration of water as well as the amount of free 

fatty acids (FFAs) present in the oil (Ma et al., 1998; Kulkarni and Dalai, 2006; Canakci, 2007). 

Results from these studies and trends will be discussed.  

 Use of longer chain alcohols, such as butanol, has shown better results due to their 

ability to form a single phase with the oil. Shorter alcohols, such as methanol, are more polar and 

form two phases, which leads to slower reaction kinetics (Freedman et al., 1986; Meher et al., 

2006). This can be explained by mass transfer limitations between the alcohol and oil phases 

when a two phase reaction is formed. If the reaction is a single phase the oil, alcohol, and catalyst 

are in constant contact facilitating the reaction (Ataya et al., 2007). However, due to the 

availability of methanol and ethanol and their lower cost, these alcohols are generally used over 

other alcohols (Lotero et al., 2005).  

Focus has been placed more on hydrochloric and sulfuric acid as catalysts, and when 

compared, sulfuric acid has shown to provide higher levels of conversion and reaction rates (Al-

Widyan and Al-Shyoukh, 2002; Meher et al., 2006). Based on these results, the use of methanol 

and sulfuric acid to carry out transesterification of algal oils is preferred and is the common 

means of generating biodiesel from the lipids (Al-Widyan and Al-Shyoukh, 2002; Kulkarni and 

Dalai, 2006; Miao and Wu, 2006; Johnson and Wen, 2009; Ehimen et al., 2010; Mata et al., 

2010). 

Methanol to oil ratio is an important factor as well as the catalyst concentration. With the 

FAME generating reaction being reversible, it is necessary to push the equilibrium to the right by 

adding excess methanol. Based on the stoichiometry, a ratio of 3: 1 molar ratio of methanol to oil 

should be used, as shown in Figure 4, but since the equilibrium needs to be shifted, the ratios used 

tend to be higher (30: 1) (Ma and Hanna, 1999). Table 5 illustrates various reaction conditions 

and resulting biodiesel yields. The trends indicate higher methanol to oil ratios and higher acid 

concentrations yield better lipid conversion (Meher et al., 2006). 
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The presence of water in the oil, or reaction medium, inhibits the reaction. Inhibition is 

widely explained by three mechanisms in the literature. Water tends to shield lipids away from 

the extracting solvent or methanol and catalyst in solution (U.S. DOE, 2010). This does not allow 

the alcohol and catalyst to contact the oil, therefore no reaction can occur (Lotero et al., 2005; 

Ataya et al., 2007). Secondly, biodiesel formation is a reversible reaction, as shown in Figure 5. 

In the presence of water, biodiesel can be hydrolyzed back to free fatty acids and the alcohol, and 

the equilibrium will be shifted to the reactant side as the concentration of water in the system 

increases (Liu et al., 2006). The final mechanism is the deactivation of the catalyst. When acids 

are used, the water takes up protons out of the solution. This is due to water being a better proton 

acceptor than the lipid molecules being targeted (Liu et al., 2006).  Even 0.1 wt% water content in 

the oil can lead to a negative impact on the biodiesel yield. When the water content reaches 5 

wt% of the oil, the reaction can become totally inhibited (Canakci and Van Gerpen, 2001). When 

FFAs are present in the lipid feedstock, water is generated via the reaction shown in Figure 5, 

thereby inhibiting FAME production. This trend and others presented in Table 5 are also 

observed in numerous other studies (Freedman et al., 1986; Boocock et al., 1996; Van Gerpen, 

2005; Haas and Scott, 2006; Kulkarni and Dalai, 2006; Meher et al., 2006; Vyas et al., 2010). 

 

5.2. Alkali Catalyzed Transesterification 

 It has been well documented that alkali catalyzed transesterification is faster than acid 

catalyzed transesterification, up to 4000 times faster (Vyas et al., 2010). Higher reaction rates are 

due to the strong nucleophilic nature of the alkoxides species formed from the catalyst and 

alcohol (Lotero et al., 2005). Several catalysts can be used including sodium hydroxide, 

potassium hydroxide, and sodium methoxide (Meher et al., 2006). A mechanistic illustration of 

the base catalyzed reaction is provided in Figure 8. Quicker reaction rates allow for economically 

feasible production of biodiesel from vegetable oils on commercial scales with yields of close to 

100% of the maximum (Ma and Hanna, 1999; Vyas et al., 2010). Varying the reaction 
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Table 5. Effect of varying parameters on the conversion of oil to Methyl Esters using an acid 

catalyst. Adapted from Kulkarni et al. (Kulkarni and Dalai, 2006). 

 

Parameter Molar Ratio 

(methanol: 

Oil) 

Catalyst 

(H2SO4)  

(%) 

FFA           

(%) 

Temperature 

(
o
C) 

Time 

(hrs) 

Water 

(%) 

Conversion 

(%) 

Effect of 

Temperature: 

6 to 1 3 0 25 48 0 ~10 

45 ~55 

60 ~85 

Effect of 

Reaction Time: 

6 to 1 3 0 60 48 0 ~88 

96 ~95 

Effect of Molar 

Ratio: 

3.3 to 1 3 0 60 48 0 ~77 

3.9 to 1 ~80 

6 to 1 ~87 

20 to 1 ~95 

30 to 1 ~98 

Effect of 

Catalyst 

Concentration: 

6 to 1 1 0 60 48 0 ~72 

3 ~88 

5 ~95 

Effect of FFA: 6 to 1 3 5 60 96 0 ~90 

10 ~88 

15 ~80 

20 ~73 

33 ~60 

Effect of Water: 6 to 1 3 0 60 96 0.1 ~92 

0.5 ~90 

1 ~82 

3 ~32 

5 ~5 

 

 

parameters, such as temperature, alcohol, and catalyst concentration results in similar trends to 

when acids catalysts are used (Freedman et al., 1986; Van Gerpen, 2005; Meher et al., 2006; 

Demirbas, 2009; Azócar et al., 2010; Vyas et al., 2010).  

However, base catalysts have a number of drawbacks that make their use complicated 

based on the lipid feedstock. One of the major drawbacks is the presence of water and/or FFAs in 

the feedstock (Meher et al., 2006). Water again severely inhibits the reaction, by reducing the 

effectiveness of the catalyst due to salt formation (Meher et al., 2006).  
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Presence of water leads to the hydrolysis of the oil and subsequent neutralization of the 

resulting free fatty acids (FFAs) to soap. If FFAs are present in the oil, they are immediately 

converted to soaps, leading to a loss of catalyst, as well as to difficulties in downstream 

purification of the biodiesel. The levels of water and FFAs tolerable in the oil should be between 

0.1 – 0.3 wt% and less than 0.5 wt% respectively (Lotero et al., 2005). The effect that FFA has on 

base catalyzed transesterification is illustrated in Figure 9. These tight tolerances require low 

quality oils to be refined, or the oil feedstock to be highly pure, which leads to added costs for the 

production of biodiesel. 

For application to algal oils, base catalysts are typically not used due to the high levels of 

FFA in microalgal oils. Studies have shown that algal lipids contain some amount of FFA, which 

could lead to a loss of conversion efficiency (Meher et al., 2006; Miao and Wu, 2006). With 

certain microalgae, the levels of FFA is lower, about 0.6% by dry mass (Samorì et al., 2010), 

possibly allowing for the use of base catalysts. In cases where FFA content is high, acid catalysts 

are preferred with sulfuric acid being the most commonly used, based on its performance(Miao 

and Wu, 2006; Johnson and Wen, 2009; Vicente et al., 2009; Wahlen et al., 2011). 

 

 

Figure 8: Base catalyzed transesterification (Ma and Hanna, 1999). 
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Figure 9: Effect of FFA on base catalyzed transesterification of beef tallow (Ma et al., 1998). 

 

5.3. Enzymatic Transesterification 

 Lipases are enzymes that have the capacity to hydrolyze complex lipids, such as 

triacylglycerols, as well as catalyzing the conversion of these lipids to alkyl esters, or biodiesel, in 

the presence of an alcohol. They possess a number of advantages over standard acid or base 

catalyzed transesterification methods (Fukuda et al., 2001; Meher et al., 2006; Marchetti et al., 

2007; Demirbas, 2009; Vyas et al., 2010). 

 Because some oil feedstocks contain water, and further purification of the oil adds to the 

production cost of biodiesel, it is advantageous to use oil with moisture. Enzyme catalysts allow 

for this because of their need for water, without which, the enzymes remain inactive (Vyas et al., 

2010). When homogeneous catalysts are used, many times the catalyst is lost when neutralized or 

discarded downstream of the reaction (Marchetti et al., 2007; Demirbas, 2009). Enzyme catalyst 

can be immobilized on a substrate allowing for repeated utilization. This not only saves cost, but 

the immobilization has shown enhanced conversion of lipids over non immobilized enzymes 

(Azócar et al., 2010).  Transesterification of lipids via enzyme catalysts leads to lower 

concentrations of contaminants in the crude biodiesel, due to enzyme specificity. Therefore, the 
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risk of side reactions and unwanted byproducts is reduced, resulting in less effort for downstream 

purification of the crude biodiesel (Fukuda et al., 2001; Marchetti et al., 2007; Vyas et al., 2010).  

 Use of lipases allow for the reduction in reaction temperature by reducing the energy 

requirements of the reaction (Fukuda et al., 2001). Finally, lipases are unaffected by the presence 

of water and FFA in the oil and are able to esterify FFAs to alkyl esters. Conversion rates greater 

than 95% are achievable with enzyme catalyzed transesterification (Kulkarni and Dalai, 2006). 

Although the advantages to using enzymatic catalysts are numerous, large scale use of 

lipases for biodiesel production has not been practiced (Demirbas, 2009). Production of enzymes 

is costly and can drive up biodiesel production costs (Meher et al., 2006; Demirbas, 2009). Until 

the production costs of enzyme catalysts are reduced and the process streamlined, this method 

will continue to remain too costly to scale up (Vyas et al., 2010).  

 

5.4. Supercritical Transesterification 

 Use of supercritical solvents has been considered a potential method for the simultaneous 

extraction and conversion of oils from biomass to biodiesel and for the extraction of high value 

pigments and compounds (Herrero et al., 2006; Marchetti et al., 2007; Sharma et al., 2008; Singh 

and Gu, 2010). This method of extraction and conversion makes use of solvents, such as 

methanol or ethanol, which are beyond their critical point, as shown in Figure 3. When a 

compound reaches this phase, its physical properties change allowing them to penetrate solids and 

effectively dissolve compounds not soluble in the solvent at normal conditions. Changes in the 

solvent’s properties allow for super critical solvents to break down cell matter, dissolve oils or 

other desired products, and extract the target compounds much more efficiently and quickly 

(Demirbas, 2006; Herrero et al., 2006; Levine et al., 2010; Halim et al., 2011).  

 Supercritical transesterification can be performed without a catalyst due to the catalytic 

nature of the alcohol at the supercritical state (Vyas et al., 2010). At this state the dielectric 

constant of methanol, for example, decreases, lowering its polarity and allowing it to become 
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soluble in the oil phase (Sharma et al., 2008; Vyas et al., 2010). The alcohol and the oil form a 

single reaction phase enabling faster reaction rates (Vyas et al., 2010). At conditions below the 

critical point of methanol, methanol is not soluble in the oil, resulting in a two phase reaction 

system (Fukuda et al., 2001). With this technique, conversion levels of 95% in approximately 10 

minutes can be achieved, at specific reaction conditions (Sharma et al., 2008).  

 The extractive ability of supercritical solvents and the high conversion rates of the oil to 

biodiesel make this approach attractive. Biodiesel generated is extremely pure requiring little 

purification after the reaction (Vyas et al., 2010). Pushing the reaction to reach supercritical states 

however, requires significant amounts of energy and an apparatus able to withstand the high 

temperatures and pressures required (Fukuda et al., 2001; Ehimen et al., 2010).  

 

Table 6. Comparison of transesterification methods. (SCM – Supercritical Methanol) (Demirbas, 

2006).  

 

 Catalytic MeOH Process SCM Method 

Methylating Agent Methanol Methanol 

Catalyst Alkali None 

Reaction Temperature (K) 303-338 523-573 

Reaction Pressure (Mpa) 0.1 10-25 

Reaction Time (min) 60-360 7-15 

Methyl Ester Yield (wt%) 96 98 

Removal for purification Methanol, catalyst, glycerol, 

soaps 

Methanol 

Free fatty acids Saponified products Methyl esters, water 

Continuity easiness Discontinue Easy continuity 

 

 

 

 Ethanol, for example, requires temperatures of 573K and 20 MPa when used as a 

supercritical solvent (Sharma et al., 2008). Research has focused on reducing these harsh 
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conditions to develop a process that consumes less energy (Sharma et al., 2008). This has 

involved the addition of co-solvents and small quantities of catalyst (Vyas et al., 2010). Table 6 

Table 7. Comparison of transesterification methods (Marchetti et al., 2007).  

Variable Alkali catalysis Lipase 

catalysis 

Supercritical 

alcohol 

Acid catalysis 

Temperature (
o
C) 60-70 30-40 239-385 55-80 

Free fatty acid in 

raw material 

Saponified 

products 

Methyl 

Esters 

Esters Esters 

Water in raw 

material 

Interference 

with reaction 

No influence - Interference with 

reaction 

Yield of methyl 

esters 

Normal Higher Good Normal 

Recovery of glycerol Diffiuclt Higher - Normal 

Purification of 

methyl esters 

Repeated 

washings 

None - Repeated washing 

Production cost of 

catalyst 

Cheap Relatively 

expensive 

Medium Cheap 

 

presents a comparison of supercritical transesterification of vegetable oils versus base catalyzed 

transesterification, while Table 7 presents a comparison of all transesterification methods 

discussed thus far. With current methods and technologies the supercritical transesterification 

process is not yet scalable, but shows promise if the energy and cost requirements can be reduced. 

 

5.5. In situ Transesterification 

 In situ transesterification was originally intended as a method to accurately and quickly 

quantify the total lipid content of biomass of interest and has been used for multiple forms of 

biomass (Indarti et al., 2005; Lepage and Roy, 1986; Griffiths et al., 2010). It has become an 

intensely studied method because of its ability to simultaneously extract and convert lipids from 

whole cell biomass (Liu and Zhao, 2007; Ehimen et al., 2010; Griffiths et al., 2010; D’Oca et al., 

2011; Wahlen et al., 2011). In situ transesterification makes use of the same basic principles to 
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convert lipids to biodiesel, outlined in previous sections, but does not require the oil to be 

previously extracted from the biomass. Without the need for a separate solvent extracting step, 

processing algal biomass becomes simpler, while maintaining high biodiesel yields (Xu and Mi, 

2010).  

In situ transesterification works by contacting dried algal biomass with an alcohol and 

strong catalyst dissolved within it (Carrapiso and Garcia, 2000; Nelson, 2010). This combination 

works to degrade the algal cells and bring lipids from within the cell into solution. As this occurs, 

the complex lipids such as triglycerides, phospholipids, and other complex lipids are split by 

alcoholysis generating alkyl esters (Carrapiso and Garcia, 2000; Griffiths et al., 2010; Kargbo, 

2010).  

Alkyl esters generated are extracted from the reaction medium by liquid-liquid extraction 

using an organic solvent, one that is not miscible with the alcohol used in the reaction. The 

organic solvent is added to the reaction suspension and allowed to draw the hydrophobic FAMEs 

into the solvent phase (Dufreche et al., 2007; D’Oca et al., 2011; Wahlen et al., 2011). The 

solvent phase can be collected and analyzed for biodiesel content or purified to obtain usable 

biodiesel.  

 Multiple studies have shown the effectiveness of in situ transesterification of algal 

biomass over traditional biodiesel production methods via solvent extraction followed by 

transesterification of the extracted oil (Figure 10) (Indarti et al., 2005; Griffiths et al., 2010; 

Wahlen et al., 2011). This efficiency lies in the combination of the catalyst with the alcohol 

contacting the algal biomass, which is evidenced by studies conducted by Whalen et al, presented 

in Table 8 (Wahlen et al., 2011). Several variations of this method as well as conditions have also 

been studied, many of which have led to increased biodiesel yields from microalgae (Carrapiso 

and Garcia, 2000; Haas and Scott, 2006; Johnson and Wen, 2009; Vicente et al., 2009; Ehimen et 

al., 2010).  
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Figure 10. Comparison of in situ or direct transesterification with traditional oil extracting 

methods for Chlorella vulgaris (Griffiths et al., 2010). B&D refers to Bligh and Dyer, S&A refers 

to Smedes and Askland, F refers to Folch, and DT refers to direct transesterification. Black bars 

represent lipids collected by the method indicated. Gray bars represent remaining biomass post 

extraction.  

 

 

Table 8. Comparison of lipids extracted by solvents versus FAMEs generated by in situ 

transesterification. TAG refers to triacylglycerol. Adapted from Whalen et al. (2011). 

 

Alcohol mg TAG extracted
a
 mg FAME per sample

b
 

Methanol 3.1 35.6 

Ethanol 20.2 30.8 

1-butanol 18.9 36.9 

2-methyl-1-proponal 19.5 28.7 

3-methyl-1-butanol 19.1 36.4 

a
 100 mg biomass extracted with 1 mL of alcohol heated to 60

o
C by microwave irradiation for 10 

min with constant stirring. 
b 
100 mg of biomass was heated to 60

o
C for 100 min with 2 mL of alcohol and 1.8% (v/v) sulfuric 

acid. 

 

A major disadvantages associated with this method is the need to use dried algal biomass. 

Drying of the algal biomass can be achieved using a number of different methods, however many 

require large amounts of energy. Dewatering and drying of algal biomass is energy intensive and 

costly, but the presence of moisture severely inhibits the production of biodiesel (Liu et al., 2006; 
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Carrapiso and Garcia, 2000; Haas and Scott, 2006; Johnson and Wen, 2009; Ehimen et al., 2010; 

Griffiths et al., 2010).  

Even though there is no separate oil extraction step, pigments continue to be extracted 

into the organic solvent phase that also contains FAMEs (U.S. DOE, 2010). This necessitates 

further purification of the generated crude biodiesel. Although the presence of moisture is a 

hindrance, in situ transesterification currently shows the most promise of becoming a scale-able 

process for the production of biodiesel from microalgae. Cost savings are possible due to the 

removal of the oil extracting step, which simplifies the process and reduces the amount of 

material required to generate biodiesel from microalgae (Johnson and Wen, 2009; Nelson, 2010; 

Xu and Mi, 2010).  

 

6. Conclusions 

 Each of the major phases of algal biodiesel production has been covered in this literature 

review with each having an impact on the feasibility of producing algal biodiesel economically on 

a large scale. The first phase of the process is growth of the algal biomass. There are two classic 

options available for large scale growth of algal biomass, these being open and closed systems 

(Harun et al., 2010). Open systems have been widely recognized as the most feasible approach to 

growth of large quantities of biomass because of its low capital investment, low maintenance 

requirements, and overall ease of operation (Harun et al., 2010). For economically viable 

biodiesel production, open systems should be used, until closed systems are optimized enough for 

large scale production of algae at reasonable cost. 

 Collection of the algae grown can be performed using various methods including 

centrifugation, filtration, or sedimentation.  Each method has associated costs and drawbacks with 

centrifugation being too energy intensive (Lardon et al., 2009). Filtration methods suffer from 

operational costs and lack the speed required at large scales (Molina Grima et al., 2003). 

Sedimentation methods require the use of some form of flocculent, which may be costly 
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depending on the amount added and the type of flocculent used. In addition, removal of 

flocculent in the spent water can become complicated (Molina Grima et al., 2003). Combinations 

of these methods may be the most effective option to reduce the energy usage and cost of 

harvesting algal biomass. 

  Once the algal biomass has been grown and collected it can be processed to biodiesel 

through a number of different methods. These include oil extraction-transesterification or in situ 

transesterification processes (Mata et al., 2010). The efficiencies of both methods depend on the 

amount of moisture remaining in the biomass after harvesting (Ehimen et al., 2010). Options exist 

for the processing of algae that contains moisture; however, they typically require the use of super 

or sub critical liquids (Levine et al., 2010; Halim et al., 2011). These processes are energy 

intensive, costly to build, and therefore difficult to scale up. Solvent extraction followed by 

transesterification requires large volumes of costly solvents that are in many cases toxic (Nelson, 

2010). In addition, many solvent extraction protocols are not effective in removing lipids from the 

algal biomass. Of these methods, the in situ transesterification procedure provides the most cost 

effective method (Johnson and Wen, 2009). It allows for simultaneous extraction and 

transesterification of algal lipids. This negates the need for a separate solvent extraction step and 

reduces the amount of energy and materials needed for biodiesel production (Ehimen et al., 

2010).  

 From this review major hurdles that have been identified involve the inhibition that water 

creates in the conversion of lipids to biodiesel. Thermal dewatering of algae is costly and adds to 

the cost of biodiesel production (Lardon et al., 2009). Additional hurdles involve the presence of 

chlorophyll and other photosynthetic pigments in the biodiesel generated from algae grown under 

phototrophic conditions (U.S. DOE, 2010). Chlorophyll contamination requires further 

purification of the oil and/or biodiesel, which may be avoided if the chlorophyll contamination 

can be reduced or removed. Whichever process is used for the production of biodiesel, the overall 

production cost needs to be lowered to make it competitive with petroleum based diesel fuels. 
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Without a reduction in the cost of harvesting algal biomass from dilute suspensions, processing 

the algal biomass for lipid extraction, conversion of the extracted lipids, and production of high 

quality biodiesel producing algal based biodiesel will be limited. This is evident due to the lack of 

commercial production facilities for algal biodiesel (Lardon et al., 2009). As these hurdles are 

solved algal biodiesel will come closer to becoming a mainstream liquid fuel.  
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CHAPTER 3 

BIODIESEL PRODUCTION VIA A WET LIPID  

EXTRACTION PROCEDURE
1
 

 

 

1. Introduction 

 Dependence on petroleum based fuels is not sustainable due to increasing fuel costs, 

steady depletion of crude oil, and the environmental consequences associated with the use of 

fossil fuels (Chisti, 2007; Demirbas and Fatih Demirbas, 2011; Schenk et al., 2008). One option 

for the production of renewable liquid fuels is biodiesel from microalgae to offset usage of crude 

oil based diesel (Demirbas and Fatih Demirbas, 2011). Microalgae possess advantageous 

characteristics that warrant its consideration as a source of alternative oil for biodiesel production, 

as well as a feedstock for the production of additional biofuels and bioproducts (Christenson and 

Sims, 2011; Mata et al., 2010).  

Processes exist for the extraction and/or conversion of algal oils to biodiesel including 

organic solvent extraction, super-critical fluid extraction, and direct transesterification (Ehimen et 

al., 2010; Gong and Jiang, 2011). Solvent based lipid extraction and direct transesterification 

techniques are inhibited when performed in the presence of a water phase (Ehimen et al., 2010; 

Griffiths et al., 2010).  However, dewatering and drying algae is both costly and energy intensive 

(Molina Grima et al., 2003; Lardon et al., 2009). Traditional solvent based lipid extraction 

procedures also extract pigments such as chlorophyll. Chlorophyll and the associated magnesium 

are contaminants of algal lipid extracts and can reduce the quality of the produced biodiesel (de 

Jesus et al., 2010; Moser, 2009; U.S. DOE, 2010). Super critical fluid methods are able to process 

wet algal biomass for oil extraction and/or transesterification at high efficiencies, but are 

currently considered too costly to scale up and operate (Halim et al., 2011).  

                                                           
1
 Additional Coauthors: Ronald C. Sims 
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The aim of this study was to develop a method of lipid extraction that does not require 

drying of the harvested algal biomass and that also removes chlorophyll contamination prior to 

collection of algal lipids for conversion to biodiesel, or fatty acid methyl esters (FAMEs). 

  

2. Materials and Methods  

 

2.1. Chemicals and reagents 

 Reagents used in this study include ACS grade sulfuric acid from EMD Chemicals 

(Gibbstown, NJ), sodium hydroxide from Avantor Performance Chemicals (Center Valley, PA), 

and methanol obtained from Pharmco-AAPER (Brookfield, CT). HPLC grade hexanes was 

obtained from Fisher Chemicals (Pittsburgh, PA). Fatty acid methyl ester (FAME) standards were 

obtained from Supelco Analytical (Bellefonte, PA). All macronutrients used for media were 

laboratory or ACS grade, while micronutrients were technical or laboratory grade.  

 

2.2. Algae growth and collection 

 Microalgae used for this study were obtained from the City of Logan, Utah municipal 

lagoon wastewater treatment facility, and grown indoors in well mixed 15L bioreactors as mixed 

cultures. Chlorella and Scenedesmus sp. accounted for the majority of the species (Griffiths, 

2009). Lighting was supplied via GE Plant and Aquarium Ecolux lights with total light intensity 

of 1250 μmol m
2
 s

-1
 for a period of 14 hours per day. A slightly modified version of the SE media 

(Li et al., 2008) was used as the growth media. 

Algal biomass was harvested from the media by centrifugation and thoroughly mixed to 

account for potential variability in algal lipid content between the three reactors. From the mixed 

biomass, five samples were removed and lyophilized to determine the average moisture content 

of the harvested algal biomass, based on the mass of water removed. The lyophilized algal 

biomass was then properly stored for later testing. The remaining centrifuged algal biomass was 

immediately preserved as centrifuged at -80°C. 
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2.3. Wet lipid extraction procedure (WLEP) 

The centrifuged algal biomass was found to contain 83.88 ± 0.75 wt % moisture. This 

biomass was used for evaluating the wet lipid extraction procedure (WLEP), illustrated in Figure 

11.Six replicates of 100 mg dry mass equivalent samples of wet algal biomass were used to 

evaluate the procedure, as described in the following sections. 

 

2.3.1. Acid and base hydrolysis of algal biomass  

Acid hydrolysis was accomplished by adding wet algal biomass (100 mg dry mass 

equivalent) to separate glass tubes with 1 mL of a 1 M sulfuric acid solution. The tubes were 

sealed using PTFE lined screw caps, mixed, and heated to 90°C using a Hach DRB-200 heat 

block for 30 minutes with mixing provided at 15 minutes. These conditions allowed for the 

disruption of the algal cells in order to hydrolyze complex algal lipids to free fatty acids.  

Following acid hydrolysis, 1.0 mL of a 5 M sodium hydroxide solution was added to 

each sample. The samples were subjected to heating at 90°C for 30 minutes. The addition of 

sodium hydroxide neutralized and transformed free fatty acids to their salt forms and saponified 

any remaining complex lipids. The samples were cooled and centrifuged to pellet the residual 

algal biomass. The lipids remained in their salt form dissolved in the aqueous phase by 

maintaining a high pH during centrifugation, thereby isolating them from association with the 

digested algal biomass.  

The resulting supernatant phases were removed and collected from each sample in 

separate tubes, and the residual hydrolyzed biomass pellet was vigorously mixed with 1 mL 

deionized water. The resulting suspension was re-centrifuged and the liquid phase again removed 

and added to the corresponding tubes containing the original supernatant. The residual 

hydrolyzed algal biomass was removed as a side stream shown in Figure 11 (stream 1). 
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Figure 11. Block diagram depicting the wet lipid extraction procedure. 

 

2.3.2. Chlorophyll precipitation followed by lipid extraction  

from the precipitated solids 

 

To the supernatant phases collected in the previous step, 3.0 mL of a 0.5 M sulfuric acid 

solution was added to form a solid precipitate. The addition of the acidic solution lowered the pH 

below seven, allowing for the salts of the free fatty acids to revert back to their free fatty acid 

form. In addition, the decrease in pH produced a solid precipitate. Due to the free fatty acids’ 

insolubility in an aqueous solution, the lipids associated with the precipitating solids.  

The resulting solid-liquid suspension was centrifuged, the supernatant removed as the 

aqueous phase (stream 2) in Figure 11, and the precipitated solids were collected. To the tubes 

containing the collected solid precipitate, 5 mL of hexanes was added. The samples were sealed, 
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mixed, and heated to 90°C for 15 minutes with mixing provided every 5 minutes. Heating the 

collected precipitate in the presence of hexane allowed for the partitioning, or separation, of lipids 

from the solid phase into the solvent phase, while the chlorophyll remained within the solid 

phase.  

After heating, the samples were cooled and centrifuged. The hexane phases were 

collected and transferred to separate tubes. Gentle heating was applied to the hexane phase under 

a filtered air stream to vaporize the solvent, leaving behind the extracted lipid residue, labeled 

“Extracted Lipid Residue” in Figure 11 (stream 4). The precipitated solids were removed from 

the procedure as the “solid phase precipitate” (stream 3).   

 

2.4. Quantification of lipids in streams 1 through 4  

from the wet lipid extraction procedure 

 

 A mass balance for lipids was determined by accounting for all transesterifiable lipids 

present in streams 1 – 4. Therefore, streams 1 through 4 were collected and analyzed for lipid 

content. Quantification of transesterifiable lipids was achieved by esterification of the lipids 

associated with each stream to methyl esters for subsequent analysis by gas chromatography.  

 Streams 1 through 3 were lyophilized prior to esterification to remove residual water 

within the samples in order to achieve complete conversion of lipids to methyl esters for an 

accurate mass balance analysis. Stream 4 is solvent based and did not need to be lyophilized. 

Lipids in each stream were esterified to FAMEs by the addition of 1 mL of a 5% (v/v) sulfuric 

acid solution in methanol directly to the corresponding test tubes containing streams 1, 2, 3 or 4.  

For the reaction step, the test tubes were sealed, mixed, and heated at 90°C for 30 

minutes to complete the conversion of the lipids within the sample to FAMEs. FAMEs were 

extracted from the acidified methanol phase after the reaction by adding 5 mL of hexanes and 

heating at 90°C for an additional 15 minutes. The resulting hexane phase containing FAMEs was 

collected for analysis by gas chromatography (GC).  
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2.5. Direct transesterification of algal biomass 

 Direct transesterification is a procedure commonly cited and used in the literature to 

convert lipids within algal biomass to methyl esters for quantification, and is considered a 

candidate procedure for large scale biodiesel production from microalgae (Ehimen et al., 2010; 

Griffiths et al., 2010). Previously lyophilized algal biomass, from section 2.2, was directly 

transesterified. Results obtained from the direct transesterification of lyophilized algal biomass 

served to both quantify the lipids present in the algal biomass used in this study, and to serve as a 

positive control for comparison to the wet lipid extraction procedure. Six 100 mg samples of 

lyophilized algal biomass were directly transesterified using 1 mL of a 5% (v/v) solution of 

sulfuric acid in methanol. The reaction and FAME extraction steps were conducted as described 

in section 2.4.  

 

2.6. Gas Chromatography 

 Collected hexane phases, containing FAMEs, were analyzed using an Agilent 7890A GC 

equipped with an FID detector. A Restek Stabilwax-DA column (Bellefonte, PA) (30m x 0.32 

mm id x 0.25μm film thickness) was used to separate individual FAME compounds. Helium was 

used as the carrier gas at a constant flow rate of 2 mL/min. The oven was held at 100°C for 1 

minute then ramped to 235°C at a rate of 10°C /min and held for 10 minutes. The front inlet was 

operated in splitless mode, with an initial temperature of 100°C for 0.1 minutes and then 

increased to 235°C at a rate of 720°C /min and held for 5 minutes. Injection volume was set at 1 

μL. FID temperature was maintained at 240°C.  

Concentrations of individual FAMEs were determined by comparing sample peak areas 

with linear concentration correlations generated by the serial dilution of a C-8 to C-24 FAME 

mixture from Supelco Analytical (Bellefonte, PA). The total mass of FAMEs generated was 

based on the volume of hexane used to extract the FAMEs, after the esterification or 

transesterification reaction, and the concentration of FAMEs measured in the hexane phase.  



49 
 

 

2.7. Spectrophotometric analysis 

 Chlorophyll analysis was accomplished with a Shimadzu UV-1800 spectrophotometer 

from 300 to 900 nm. To confirm the precipitation of chlorophyll in stream 3, from Figure 11, the 

solid precipitate was collected, lyophilized, and dissolved in 5 M sodium hydroxide for analysis. 

A 5M sodium hydroxide solution was used as a blank for comparison. Freeze drying of the solid 

precipitate was performed specifically for tests involving chlorophyll detection and is not part of 

the protocol described in section 2.3.  

 Crude biodiesel phases produced from wet algal biomass, using both the direct 

transesterification and the wet lipid extraction procedure (WLEP), were also similarly analyzed 

for the presence of chlorophyll. Crude biodiesel refers to the hexane phase containing FAMEs 

extracted from the methanol reaction phase as described in section 2.4. Processing of wet algal 

biomass performed in this section is not intended for lipid quantification, but rather to illustrate 

contamination of the crude biodiesel phases by chlorophyll.  

 For the WLEP, crude biodiesel was obtained by converting lipids separated from the 

lyophilized precipitated solids to methyl esters. Direct transesterification of wet biomass (100 mg 

dry mass equivalent) provided crude biodiesel from the direct transesterification method for 

comparison. Crude biodiesel from the direct transesterification method required a 1 to 10 dilution 

due to the higher level of chlorophyll contamination, whereas the crude biodiesel generated from 

lipids extracted from the precipitated solids (stream 3) using the WLEP required no dilution. 

 

3. Results and Discussion 

 Capabilities of the WLEP to precipitate chlorophyll and to extract lipids from wet algal 

biomass were evaluated and are presented in the following sections.  

 

3.1. Removal of chlorophyll  

 To confirm that the chlorophyll was partitioned away from the liquid phase containing 

the lipids and remained associated with the solid precipitate phase (section 2.3.2), the precipitate 
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was re-dissolved in 5 M sodium hydroxide (section 2.7) and the optical density of the solution 

was measured. Absorbance peaks were found to occur at wavelengths characteristic of 

chlorophyll (Nelson and Cox, 2005), as shown in Figure 12.  

To further illustrate chlorophyll removal, or reduction, crude biodiesel generated from 

wet algae using both the direct transesterification and WLEP were analyzed using a 

spectrophotometer. Figure 13 illustrates the difference in the absorbance properties between the 

crude biodiesel phases obtained using the two methods. These results show that the extraction of 

FAMEs generated using the direct transesterification of wet algal biomass extracted chlorophyll, 

along with the FAMEs, into the hexane phase. However, the WLEP accomplished the removal of 

chlorophyll through prior precipitation, thereby eliminating or reducing chlorophyll 

contamination of the crude biodiesel.  

 

 

Figure 12. Absorbance spectrum for re-dissolved precipitate indicating the accumulation 

of chlorophyll in the solid precipitate. Absorbance peaks shown above are similar to 

photosynthetic chlorophyll (Nelson and Cox, 2005). 
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Figure 13. Comparison of the absorbance properties for crude biodiesel phases generated 

using the water based lipid extraction and direct transesterification methods for wet algal 

biomass. 

 

 

3.2. Evaluation of the efficiency of the WLEP 

To evaluate the efficiency of the WLEP to extract lipids, a mass balance on lipids was 

determined by measuring the mass of FAMEs generated from each side stream for each of the six 

replicates. Additionally, lyophilized algal biomass was transesterified using the direct 

transesterification method (section 2.5), and the FAME yield provided the maximum mass of 

FAMEs producible from the algal biomass used in this study and served as the positive control 

value.  

Results of the mass balance for FAMEs are presented in Table 9. The mass of FAMEs 

recovered from streams 1 – 4 totaled 10.35 ± 0.35 mg, compared to the positive control value of 

11.12 ± 0.26 mg FAME. These results show that essentially all transesterifiable lipids are 

accounted for in streams 1 – 4 of the WLEP.  
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Table 9. FAMEs generated from streams 1 through 4 from the WLEP (Figure 11) and from the 

positive control. All reported FAME masses are the average of six replicates. 

 

FAMEs Produced: mg FAME: % of Control: 

Direct Transesterification: (positive control) 11.12 ± 0.26 100% 

Wet Extraction (total): 10.90 ±0.35  98.0% 

From residual biomass: (1) 2.29 ±0.08 20.6% 

From water phase: (2) 0.13 ±0.00 1.1% 

From precipitate: (3) 1.89 ±0.59 17.0% 

From hexane phase: (4) 6.60 ±0.85 59.3% 

 

 

 The residual biomass removed from the WLEP as stream 1 generated 2.29 mg of FAME, 

corresponding to 20.6% of the positive control value. Therefore, the remaining lipids (79.4%) are 

outside of the biomass, or extracted from the biomass. This result indicates that 79.4% of the 

transesterifiable lipids were extracted, or removed, from the wet algal biomass during the acid 

and base hydrolysis steps of the WLEP (section 2.3.1).  

Streams 2, 3, and 4 were also evaluated for FAME production as part of the mass balance 

analysis described above. Streams 2 and 3 produced 2.02 mg of FAME or 18.1% of FAMEs 

produced by the positive control. Finally, stream 4, was found to contain enough transesterifiable 

lipids to generate 6.60 mg of FAME, corresponding to 59% of the positive control value. With 

the objective of the WLEP to extract lipids from the wet algal biomass and isolate those lipids in 

stream 4, the WLEP was found to be approximately 60% efficient. 

 

3.3. Potential reduction in organic solvent required  

for algal lipid collection  
 

Hexane is required in order to separate the free fatty acids from the precipitated solids 

through a solid liquid extraction procedure (section 2.3.2). The precipitated solid accounts for 10 

- 15% of the dry mass of the original algae used in the WLEP. Traditional solvent extraction 

techniques extract lipids from the initial total algal biomass. However, the WLEP utilizes hexane 
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to separate algal lipids that have previously been removed from the algal biomass, which results 

in a smaller mass of solids for extraction compared to the total cell biomass. Therefore, the 

WLEP may require less volume of solvent to isolate and collect algal lipids over traditional 

solvent based lipid extraction processes, further reducing algal lipid extraction costs, as the 

procedure is scaled up.   

 

3.4. Potential for bio-products from “side” streams 

 Streams 1 through 3 are considered “side” streams of the WLEP. Streams 1 and 2 can be 

used for the generation of additional bioproducts. Stream 1 consists of hydrolyzed algal biomass 

that can be used to generate acetone, butanol, and ethanol via fermentation (Ellis et al., 2012). 

Stream 2 is an aqueous phase that contains soluble cellular components such as sugars, proteins, 

and other organic compound that can be used as substrate sources for organisms to generate 

additional products of value. Utilization of the sugars, proteins, and other components of the algal 

biomass, in addition to lipids, will help improve the overall economics of algal biofuel production 

(U.S. DOE, 2010). 

 

4. Conclusions  

 The wet lipid extraction procedure (WLEP) has been demonstrated to extract 79% of the 

transesterifiable lipids contained in the wet algal biomass used (84% moisture) via acid and base 

hydrolysis. Overall, approximately 60% of the transesterifiable lipids within the algal biomass 

were isolated for conversion to biodiesel. This is achieved without drying the harvested biomass, 

while potentially helping to reduce the need for organic solvents. Additionally, chlorophyll was 

precipitated removing, or reducing, chlorophyll contamination of the algal lipid extract. The 

WLEP provides an approach to algal biomass processing to reduce material and energy costs 

associated with algal biofuels production.  
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CHAPTER 4  

EFFECT OF MOISTURE ON THE IN SITU TRANSESTERIFICATION OF  

MICROALGAE FOR BIODIESEL PRODUCTION 

 

1. Introduction 

In 2009 petroleum was the primary source of energy in the US, accounting for 37.3% of 

the total energy flow within the country. Additionally, 72% of the energy generated from 

petroleum was accounted for within the transportation sector, constituting 94% of the energy used 

in the transportation sector. 
1
 Reliance on petroleum fuels at such high rates is unsustainable due 

to increasing fuel costs, diminishing crude oil reserves, and the environmental consequences that 

stem from fossil fuel use. 
2,3,4,5

 These and other problems related to the use of fossil fuels have led 

to significant interest in finding alternative sources of energy. 

One option that has gained interest is the production of biodiesel from renewable sources 

such as plant oils, animal fats, or microalgae to offset usage of crude oil based diesel. 
2,3,4

 

Microalgae possess advantages over other potential sources of renewable oil in that they; (1) do 

not shift food resources to energy production; (2) have higher growth rates than land based crops; 

(3) can be grown in non-arable land using various sources and qualities of water; (4) require little 

maintenance; (5) can produce high concentrations of intracellular lipids; (6) and are vastly more 

efficient in converting solar energy into biomass (Table 10). 
3,6,7,8,9

  

Numerous processes currently exist for the extraction and/or conversion of oils to 

biodiesel including solvent extraction, use of super-critical solvents, sub-critical water extraction, 

and in situ transesterification. 
5,6,10

 Of these methods in situ transesterification shows promise of 

both simplifying and reducing the cost of producing biodiesel from microalgal biomass. In situ 

transesterification combines both the lipid extraction and transesterification steps into a single 

step, eliminating the need for large volumes of organic solvents for oil extraction, which are both 

costly and in many cases toxic and unstable. 
7,8,9

 Oil extraction and transesterification are 
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achieved by contacting dry algal biomass directly with an alcohol and catalyst while heating. 

Generally methanol is used, due to its availability and low cost. 
11

 Sulfuric acid is used as the 

catalyst for the transesterification of both vegetable and algal lipids. 
11,12,13

 As lipids are extracted 

from the algal cells, they are simultaneously converted to fatty acid methyl esters (FAME) or 

biodiesel. 

 

Table 10. Comparison of sources of oil for biodiesel production. 
3
 

Crop Oil Yield  

(L/ha) 

Land Area Needed  

(M ha)
a
 

Percent of Existing  

US Cropping Area
a
 

Corn 172 1540 846 

Soybean 446 594 326 

Canola 1190 223 122 

Jatropha 1892 140 77 

Coconut 2689 99 54 

Oil Palm 5950 45 24 

Microalgae
b
 136900 2 1.1 

Microalgae
c
 58700 4.5 2.5 

a 
For meeting 50% of all transport fuel needs of the United States. 

b 
70% oil (by wt) in biomass 

c 
30% oil (by wt) in biomass 

 

 

In situ transesterification, has certain drawbacks that can limit its effectiveness in 

converting lipids to FAMEs. 
8,14

 One requirement is that the algal biomass be dried before 

transesterification. Three explanations have been commonly presented to describe the inhibitory 

effect of water on the in situ transesterification process. (1) The formation of FAMEs is a 

reversible reaction, therefore, water can hydrolyze biodiesel back to methanol and free fatty acids, 

14
 (2) Water contained within the biomass has a tendency to shield lipids from the extracting 

solvent, preventing lipids from being brought into the reaction, 
15

 and (3) the acid catalyst can be 

deactivated due to water competing for available protons in the reaction. 
16
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Based on this information, it becomes important to understand and evaluate the extent of 

this inhibition. Algal biomass moisture content is more critical when considering the amount of 

energy and cost required to dry large quantities of algal biomass. Understanding how to control 

the reaction conditions may be advantageous in lessening the impact of water on biodiesel yield. 

This study examined the inhibitory effect of water on the in situ transesterification reaction, and 

determined changes in biodiesel yield that occurs when altering reaction conditions associated 

with the in situ transesterification method. 

 

2. Materials and Methods 

 

2.1. Reagents and chemicals 

 Reagents used in this study include ACS grade sulfuric acid from EMD Chemicals 

(Gibbstown, New Jersey) and methanol obtained from Pharmco-AAPER (Brookfield, CT). HPLC 

grade hexanes from Fisher Chemicals (Pittsburgh, PA), and. Fatty acid methyl ester (FAME) 

standards were obtained from Supelco Analytical (Bellfontaine, PA). All macronutrients used for 

media were laboratory or ACS grade, while micronutrients were technical or laboratory grade.  

 

2.2. Growth and collection of algal biomass 

  
 For this study algal biomass was grown in well mixed indoor 15 L bioreactors. The initial 

inoculum for each of the bioreactors originated from the Logan Lagoons municipal wastewater 

treatment plant located in Logan, Utah. Chlorella and Scenedesmus sp. accounted for a majority 

of the species present in the inoculum. 
17

 The media in the three bioreactors were mixed using air 

filtered through Whatman Polyvent 0.2 um filters via spargers, pH was monitored using Sensorex 

pH probes and maintained at 7.7 with CO2 addition and measured using Omega PHCN-201 pH 

controllers, and light was provided by GE Plant and Aquarium Ecolux lights with a total light 

intensity of approximately 1250 μmol m
2 
s

-1
 for a period of 14 hours per day. 
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Media used for the biomass was a modified form of the SE media, 
18

 which contained the 

following macronutrients in units of g/L: 0.85 NaNO3, 0.35 KH2PO4, 0.15 MgSO4∙7H2O, 0.15 

K2HPO4, 0.05 CaCl2∙2H2O, 0.05 NaCl, and 0.015 C6H8O7∙Fe∙NH3. In addition, the following 

micronutrients were added in units of mg/L: 2.86 H3BO3, 1.81 MnCl2∙4H2O, 0.22 ZnSO4∙7H2O, 

0.079 CuSO4∙5H2O, and 0.039 (NH4)6Mo7O24∙4H2O. Before inoculation, the media was adjusted 

to a pH of 7.0 using NaHCO3. 

All biomass was harvested from the media by centrifugation at 9900xg for 5 minutes. 

Once harvested, the algal biomass was thoroughly mixed to account for any variation in the 

biomass between the three reactors. Algal paste was massed into appropriate containers and 

stored at -80
o
C until they were to be used.  

 

2.3. Biomass preparation for study 

 The inhibitory effect of water on the in situ transesterification reaction was evaluated 

using two approaches. The first approach was to directly observe the impact of moisture on 

biodiesel yield by drying algal biomass to different extents and correlating moisture content to the 

biodiesel yield. The second approach was to use algal biomass of constant moisture content and 

vary the in situ transesterification reaction parameters to observe changes in biodiesel yield.  

A set of five algal samples from the harvested biomass was lyophilized to determine total 

moisture content of the algal biomass used in this study. A moisture content of 83.88 ±0.75% was 

calculated based on the mass of the algal biomass before and after freeze drying.  

 

2.4. Effect of moisture on biodiesel yield 

 Algal biomass was dried by either freeze drying or drying at elevated temperatures. For 

lyophilization, the centrifuged biomass was frozen at -80
o
C and placed in a LABCONCO 

Freezone 4.5 freeze dryer. Drying at elevated temperatures was achieved using an Omegalux 

(LMF-3550) oven. Algal biomass was subjected to oven temperatures of 65, 85, 105 
o
C for 1, 2, 
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4, 8, 20, or 32 hours. This drying process provided algal biomass with varying amounts of water. 

For each temperature and drying time the moisture content was measured on a dry weight basis.   

 

2.5. Effect of changing reaction parameters on biodiesel yield  

 Algal biomass of either constant moisture content (84 wt% water) or lyophilized biomass, 

were transesterified using the in situ transesterification method. Reaction parameters varied were 

the biomass to acidified methanol ratio (100 mg to 0.5 - 4 mL acidified methanol) and the 

concentration of sulfuric acid in methanol (1-10% v/v). Biodiesel yields were monitored as these 

reaction parameters where changed for both the lyophilized algal biomass and wet algal biomass 

providing a means to directly observe the effect of water and changing reaction parameters on 

reaction efficiency.  

 

2.6. Biodiesel production from algal biomass via In situ Transesterification.  

 Conversion of algal lipids to fatty acid methyl esters (FAMEs) was accomplished by in 

situ transesterification. For each sample 100 mg of dry, or equivalent mass of wet or partially dry 

algae, was placed in a glass test tubes and sealed using PTFE lined screw caps. To the samples 1 

mL of a solution containing 5% (v/v) sulfuric acid in methanol was added and mixed. Test tubes 

were placed in a Hach DRB 200 heat block set to 90
o
C and allowed to react for a total of 30 

minutes with mixing after 15 minutes. After 30 minutes of heating the samples were removed 

from the heat source and cooled in cold water.  

Once the reaction mixture cooled, 5 mL of hexanes was added to the tube, mixed, sealed, 

and heated to 90
o
C for 15 minutes to extract FAMEs from the methanol phase into the hexane 

phase. The tubes were removed from the heat block after 15 minutes and cooled using a cold 

water bath. Samples were then centrifuged using a bench-top centrifuge to clarify and remove cell 

debris from the hexane phase. 
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2.7. Gas chromatography.  

 FAMEs, in the collected hexane phase, were analyzed using an Agilent 7890A GC 

equipped with an FID detector. A Restek Stabilwax-DA column (Bellefonte, PA) (30m x 0.32 

mm id x 0.25μm film thickness) was used to separate individual FAME compounds. Helium was 

used as the carrier gas at a constant flow of 2 mL/min. The oven was held at 100
o
C for 1 minute 

and then ramped to 235
o
C at a rate of 10

o
C/min and held for 10 minutes. The front inlet was 

operated in splitless mode, with an initial temperature of 100
o
C for 0.1 minutes and then 

increased to 235
o
C at a rate of 720

o
C/min. Injection volume was set at 1 μL. FID temperature was 

maintained at 240
o
C.  

Generated FAMEs were quantified by comparing sample peak areas to a linear 

concentration correlation generated by the serial dilution of a C-8 to C-24 FAME standard 

mixture from Supelco Analytical. Biodiesel yield was reported as a mass percentage of the algal 

biomass used based on the total mass of FAMEs generated and the mass of dry algal biomass 

processed.  

 

3. Results and Discussion 

3.1. Effect of moisture content on biodiesel yield 

 The moisture contents of the algal biomass are presented in Table 11 for each drying 

temperature and time. Algal biomass was transesterified, and the biodiesel yield was measured by 

gas chromatography. Figure 14 illustrates biodiesel yields obtained from algal biomass for the 

various drying times used. Lyophilized algal biomass was transesterified and used as a positive 

control to provide a maximum biodiesel yield. 

 The trend shown in Figure 14 illustrated that FAME generation via the in situ 

transesterification reaction increased more rapidly as the drying temperature increased due to 

more rapid removal of water. When algal biomass was dried at 105
o
C, FAME yields reached 

values greater than 90% of the maximum after two hours of drying. At 85
o
C, FAME yields 
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reached levels greater than 90% of the maximum by 4 hours of drying, while at 65
o
C, 6 hours of 

drying was required. However, additional drying of the biomass did not increase the biodiesel 

yield.  

 

Table 11. Moisture contents of algal biomass as a function of drying temperature and time. 

Average values (dry weight basis) are presented with one standard deviation of triplicates.  

 

 105
o
C 85

o
C 65

o
C 

Wet (as centrifuged) 81.30 (±0.00%) 88.69 (± 0.00%) 73.89 (±0.00%) 

1 Hour 28.55 (±3.88%) 51.30 (±1.63%) 53.61 (±2.09%) 

2 Hours 3.81 (±0.97%) 17.25 (±0.41%) 35.84 (± 2.87%) 

4 Hours 0.43 (±0.07%) 0.53 (±0.08%) 17.52 (± 2.25%) 

8 Hours 0.23 (±0.10%) 0.19 (±0.03%) 2.72 (± 0.03%) 

20 Hours 0.06 (±0.01%) 0.05 (±0.01%) 1.77 (± 0.11%) 

32 Hours 0.01 (±0.08%) -0.03 (±0.10%) 1.59 (± 0.04%) 

Lyophilized  0.00 (± 0.09%) 0.00% (± 0.02%) 0.00% (± 0.01%) 

 

 

By correlating algal moisture content to biodiesel yield, as presented in Figure 15, results 

can be used to predict the amount of drying required to achieve the desired reaction efficiency, 

thereby minimizing energy usage when drying large quantities of algal biomass. However, 

prediction of biodiesel yields from algal biomass containing higher than 20% moisture becomes 

difficult due to the high amount of variability in biodiesel yield. Research conducted by Griffiths 

et al. 
14

 observed variability in reaction efficiency with increasing water concentration when using 

a similar method of FAME production from microalgae. These results show that water interferes 

with the in situ transesterification reaction, and has a variable impact on the reaction once a 

certain concentration of water has been reached.  

Centrifugation is a commonly used method to concentrate and dewater algal biomass. 

However, centrifugation systems typically achieve solids concentrations of 22%. 
19

 Therefore, 

centrifuge systems can harvest algal biomass with a moisture content of approximately 80%. 
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Based on the data presented in Figure 15, this moisture content would lead to a loss of substantial 

percentage of potential FAMEs. 

 

 

 
 

Figure 14. Biodiesel yields from algal biomass as a function of moisture content. A, B, and C 

refer to biomass dried at temperatures of 105, 85, and 65
o
C, respectively. Error bars represent one 

standard deviation. 

 

3.2. Effect of changing reaction parameters on biodiesel yield 

 Reaction conditions were changed to evaluate their effects on mitigating the inhibitory 

effects of water on in situ transesterification. Reaction conditions that were evaluated included, 

changing the biomass to acidified methanol volume ratio and/or the concentration of catalyst in 

C 
A 

B 

C 
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the reaction medium. The generation of FAMEs is reversible and therefore the addition of 

methanol pushes the equilibrium to the right, or towards FAME production. 
20

 Increasing the 

concentration of sulfuric acid may help overcome catalyst deactivation and improve the reaction 

efficiency.  

 

 

Figure 15. Algal biodiesel yield as a function of algal moisture content. Each data point 

presented was the average of nine values. 

 

In this study the ratio of algal biomass to acidified methanol solution was varied from 25 

to 200 mg dry, or dry mass equivalent, algal biomass per milliliter of acidified methanol solution. 

The catalyst concentration ranged from 1 to 10% (v/v) sulfuric acid in methanol.  

Algal biomass used was either lyophilized or contained 84 wt% water. Lyophilized algal 

biomass was transesterified to observe the effects of changing the specified parameters without 

the presence of water, which provided a basis for comparison when wet algal biomass was tested 

using the same conditions. Figure 16 illustrates results generated from the in situ 

transesterification of lyophilized algal biomass.  

Figure 16 shows that increasing methanol to biomass ratio and acid concentration led to 

improved biodiesel yields from the lyophilized algae. However, increases in acid concentration 
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greater than 5% did not lead to an improvement in biodiesel yield, indicating that 5% catalyst 

concentration in methanol is sufficient for complete conversion of lipids to FAMEs within the 

reaction time provided. Supplying the reaction with increasing amounts of methanol improved the 

biodiesel yield as well, most likely due to the shift in reaction equilibrium. 

 

 

Figure 16. Biodiesel yield as a function of reaction parameters for lyophilized algal biomass. 

 

 Results from the in situ transesterification of wet algal biomass are presented in Figure 

17. Varying acid concentration and the volume of methanol per 100 mg equivalents of wet algal 

biomass did have an impact on the biodiesel yield. At the most aggressive condition tested, 4 mL 

acidified methanol per 100 mg biomass and 10% sulfuric acid concentration, the biodiesel yield 

reached 8.8 wt% FAME with respect to algae dry mass. This represented 81% of the maximum 

yield observed when using lyophilized biomass.  
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Figure 17. Biodiesel yield with varying reaction parameters for wet algal biomass. 

 

 Table 12 presents a direct comparison of data from Figures 16 and 17. At each of the 

tested reaction conditions the biodiesel yield obtained from wet algal biomass is lower than 

biodiesel yields obtained from the lyophilized biomass. This difference is most pronounced when 

using a biomass to acidified methanol ratio of 200 mg biomass per mL solution. When the 

amount of methanol is increased resulting in a ratio of 25 mg biomass per mL of solution, the 

difference in biodiesel yield decreases allowing the wet biomass biodiesel yield to reach levels 

greater than 80% of the maximum. Figure 18 illustrates the differences in FAME yields between 

the wet and lyophilized biomass for two of the biomass to acidified methanol ratios tested.  

 These data indicate the potential for overcoming the inhibitory effect of water on the in 

situ transesterification reaction by changing relevant reaction parameters that include methanol to 

biomass ratio and catalyst concentration. The capability to extract and covert greater than 80% of 

the transesterifiable lipids present in biomass containing 84% moisture has been demonstrated. It 

is possible that further increases in the acid concentration and methanol volumes in the reaction 

could allow for even greater yields. 
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Table 12. Biodiesel yields for both wet (84 wt% moisture) and lyophilized algal biomass using in 

situ transesterification with varying reaction parameters. Error values represent one standard 

deviation of triplicates. 

 
  

 mg dry algal biomass/ 

 mL acidified methanol 

10.0% 5.0% 2.0% 1.0% 

200.0   (dry) 

(wet) 

92.5% ±3.61% 93.4% ±4.81% 63.5% ±5.09% 6.4% ±0.83% 

20.5% ±2.31% 13.4% ±0.56% 4.2% ±0.28% 3.7% ±0.83% 

100.0   (dry) 

(wet) 

94.1% ±4.26% 95.6% ±2.04% 90.0% ±1.30% 55.7% ±2.04% 

48.2% ±0.00% 39.5%  ±1.30% 22.0% ±5.09% 11.3% ±0.56% 

50.0   (dry) 

(wet) 

99.1% ±11.02% 94.7% ±1.57% 87.6% ±1.85% 78.6% ±2.31% 

70.6% ±1.30% 64.6% ±2.50% 47.9% ±1.02% 30.8% ±1.85% 

25.0   (dry) 

(wet) 

100.0% ±5.00% 93.3% ±3.89% 89.5% ±1.39% 80.7% ±3.15% 

81.9% ±2.78% 83.0% ±0.83 70.7% ±2.31% 44.6% ±5.74 

  

 

 

Figure 18. Differences in biodiesel yield from wet and lyophilized algal biomass. Units of 

mg/mL indicate dry equivalent mass of algal biomass per mL of acidified methanol solution. The 

difference in biodiesel yield between the dry and wet algal biomass decreases as the acidified 

methanol to biomass ratio increases (biomass to acidified methanol decreases). 

 

 Although an increase in biodiesel yield is possible by increasing methanol and/or sulfuric 

acid concentration, it requires increasing amounts of raw materials, specifically methanol and 

sulfuric acid. These additions of chemicals will lead to greater material cost associated with the 
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production of algal biodiesel. Therefore, a tradeoff is evident between the cost of drying the algal 

biomass and the cost of materials for improved biodiesel yields. Optimization of the tradeoff is 

outside the scope of this study and is a topic of further research.  

 
4. Conclusions 

 This study evaluated the effect of moisture on the in situ transesterification of algal 

biomass as well as method to overcome that effect by changing specific reaction parameters. 

Moisture has a significant effect on the efficiency of the in situ transesterification reaction. 

Significant reduction in the biodiesel yield when the moisture content exceeds 20 wt% by algae 

dry mass was observed when algal biomass was dried at three different temperatures. However, it 

was possible to partially overcome the inhibition by altering the reaction conditions. Reaction 

efficiency was improved from 40% to 80% when using algal biomass consisting of 16% solids. 

This was achieved by increasing the volume of methanol in the reaction by a factor of 4 and 

doubling the sulfuric acid concentration in the reaction medium.  

 Although the inhibition can be reduced by increasing the amount of alcohol and catalyst 

present in the reaction, the addition of these materials adds to the processing cost of producing 

biodiesel. Therefore, an optimization is required between the cost of additional raw materials, in 

methanol and sulfuric acid, versus the increase in biodiesel yield. These issues will be critical in 

evaluating and implementing larger scale biodiesel production facilities in the future.  
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CHAPTER 5 

SUMMARY 

 

 The coupling of wastewater remediation to the production of renewable fuels is a 

promising technology. However, a number hurdles have prevented the large scale production, 

harvesting, and processing of algal biomass into biofuels. Of these hurdles the requirement that 

algal biomass be dried prior to lipid extraction, for biodiesel production, has been a significant 

energetic hurdle. In addition, traditional lipid extraction and/or conversion methods applied to 

algal biomass have resulted in the biodiesel containing contaminants that can require costly 

purification processes.  

 Attempting to process wet algal biomass leads to severe decreases in the yield of 

biodiesel from algal biomass, reflected in the data presented in Figure 15. Such losses in biodiesel 

yield when using the in situ method of transesterification reduces the feasibility of economically 

processing algal biomass to biodiesel. Therefore, further research conducted leading to the 

development of the wet lipid extraction procedure (WLEP), which has been demonstrated to 

extract up to 79% of the transesterifiable lipids from wet algal biomass and isolate up to 60% of 

the total algal lipids for biodiesel production.  

 During the WLEP chlorophyll is precipitated and isolated as a solid phase, allowing for 

the isolation of algal lipids from wet algal biomass while simultaneously removing or reducing 

chlorophyll contamination. This provides a means to convert the algal lipids to biodiesel with 

removed or reduced chlorophyll contamination. This is a problem many traditional algal biodiesel 

producing processes suffer from, which the WLEP has been able to address.  

 Furthermore, as shown in Figure 11, the WLEP generates four streams that are removed 

from the procedure. These are the residual biomass, aqueous phase, solid phase precipitate, and 

extracted lipid residue streams. The extracted lipids are converted to biodiesel; however, the other 

three streams can be used for the production of additional bioproducts and biofuels. The residual 



71 
 

 

biomass stream consists of algal biomass digested with acid and base making it readily available 

for microbial digestion or fermentation processes. The aqueous phase is composed of soluble cell 

components such as sugars, proteins, glycerol (derived from the hydrolysis of complex lipids), 

and other organic compounds. The aqueous phase can be used as a liquid media for the growth of 

microbes capable of generating economically valuable bioproducts. The final solid phase 

precipitate contains chlorophyll, which may be refined to generate either purified chlorophyll or 

porphyrin products 

 Research presented in this thesis illustrates the impact of water on the in situ method of 

transesterification for production of algal biodiesel. Based on the severe impact of water on the 

conversion efficiency of lipids to biodiesel using the in situ transesterification method, a novel 

procedure was developed known as the wet lipid extraction procedure (WLEP). The WLEP is 

capable of extracting and isolating up to 60% for biodiesel production, while simultaneously 

precipitating chlorophyll providing a means to remove or reduce chlorophyll contamination of the 

resulting biodiesel. In addition, the WLEP generates side streams that can be utilized as raw 

material for the production of additional bio-products, thus aiding the overall economics of 

generating biofuels and bioproducts from algal biomass.  

 The capability of the developed WLEP to extract lipids from wet algal biomass, to 

reduce/remove chlorophyll contamination, to potentially reduce organic solvent demand, and to 

generate feedstocks for high-value bioproducts presents opportunities to reduce costs of scaling 

up algal lipid extraction for biodiesel production. These advances may make it more feasible to 

realistically scale up the production algal biomass via the remediation of wastewater and utilize 

that biomass to generate bioproducts and biofuels such as biodiesel at scale. 
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APPENDIX A 

PROVISIONAL PATENT APPLICATION: 61/551, 049 

 

METHOD OF LIPID EXTRACTION2 

TECHNICAL FIELD 

[0001] The present disclosure relates to lipid extraction, more specifically, 

to lipid extraction from algal biomass for biodiesel production. 

BACKGROUND 

[0002] The production of biodiesel from various biological feed stocks, 

such as vegetable oil, animal fats, halophytes, and algae has been explored in 

an effort to enable alternative fuel sources.  Extraction of the oil from biological 

feed stocks may be undertaken by various conventional methods depending on 

the feed stock.  However, improved methods for extracting the oil from algae are 

needed for commercial viability and/or feasibility to be established. 

SUMMARY 

[0003] Typically, algae as a biodiesel feed stock is dried prior to 

processing.  However the energy costs of harvesting and then drying algae from, 

for example, waste ponds, are substantial.  What’s more, a drying step is time 

intensive.  The processes described herein allow for lipid extraction from algal 

biomass in wet form, which can significantly reduce the overall production costs 

                                                           
2
 Adapted and formatted by Ryan Brady USU Associate General Counsel 
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of biodiesel from algae.  This method also eliminates or drastically reduces the 

pigments carried through conventional processes, which can taint the end 

product biodiesel if purification steps are not taken.   For example, the presence 

of chlorophyll and other pigments requires complicated purification steps to 

generate useable biodiesel; generally vacuum distillation.  Such additional steps 

may be avoided if the pigments are reduced. 

[0004] The present disclosure in aspects and embodiments addresses 

these various needs and problems by providing methods for extracting lipids from 

algae, the methods comprising hydrolyzing a slurry comprising algae and water 

by adding an acidic hydrolyzing agent to yield an acidic slurry, hydrolyzing the 

acidic slurry by adding a basic hydrolyzing agent to yield a basic slurry, 

separating an aqueous phase from biomass in the basic slurry, forming a 

precipitate in the aqueous phase, and extracting free fatty acids from the 

precipitate. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0005] Figure 1 illustrates an exemplary method of producing biodiesel. 

[0006] Figure 2 illustrates the precipitation of algal pigments that occurs 

using an exemplary method.  

DETAILED DESCRIPTION 

[0007] The present disclosure covers methods, compositions, reagents, 

and kits for an improved method of lipid extraction from algal biomass.  In the 
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following description, numerous specific details are provided for a thorough 

understanding of specific preferred embodiments.  However, those skilled in the 

art will recognize that embodiments can be practiced without one or more of the 

specific details, or with other methods, components, materials, etc.  In some 

cases, well-known structures, materials, or operations are not shown or 

described in detail in order to avoid obscuring aspects of the preferred 

embodiments.  Furthermore, the described features, structures, or characteristics 

may be combined in any suitable manner in a variety of alternative embodiments.  

Thus, the following more detailed description of the embodiments of the present 

invention, as illustrated in some aspects in the drawings, is not intended to limit 

the scope of the invention, but is merely representative of the various 

embodiments of the invention. 

[0008] In this specification and the claims that follow, singular forms such 

as “a,” “an,” and “the” include plural forms unless the content clearly dictates 

otherwise.  All ranges disclosed herein include, unless specifically indicated, all 

endpoints and intermediate values.  In addition, “optional” or “optionally” refer, for 

example, to instances in which subsequently described circumstance may or 

may not occur, and include instances in which the circumstance occurs and 

instances in which the circumstance does not occur.  The terms “one or more” 

and “at least one” refer, for example, to instances in which one of the 

subsequently described circumstances occurs, and to instances in which more 

than one of the subsequently described circumstances occurs. 
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[0009] In some embodiments, the methods may include the following 

steps: (1) acid hydrolysis, (2) base hydrolysis, (3) biomass and aqueous phase 

separation, (4) precipitate formation, (5) free fatty acid extraction, and optionally 

(6) biodiesel production.  Figure 1 illustrates a flow diagram of an exemplary 

method. 

[0010] Feed Stock 

[0011] As a feed stock, any suitable algae may be used.  In embodiments, 

algae that produces high lipid amounts may be preferred.  In many embodiments, 

algae produced on waste water may be used.  The algae may be lyophilized, 

dried, in a slurry, or in a paste (with for example 10-15% solid content). 

[0012] After identification of a feed stock source or sources, the algae may 

be formed into a slurry, for example, by adding water, adding dried or lyophilized 

algae, or by partially drying, so that it has a solid content of about 1-40%, such as 

about 4-25%,  about 5-15%, about 7-12%, or about 10%. 

[0013] The various steps to the process, according to some embodiments, 

is described in more detail below.  The methods described herein may be 

accomplished in batch processes or continuous processes. 

[0014] (1) Acid Hydrolysis 

[0015] To degrade the algal cells (or other cells present), to bring cellular 

components into solution, and to break down complex lipids to free fatty acids, 

the slurry of water and algae described above may be optionally heated and 
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hydrolyzed with at least one acidic hydrolyzing agent.   These complex lipids may 

include, for example, triacylglycerols (TAGs), glycolipids, etc. In addition to 

degrading algal cells and complex lipids, the acidic environment created by 

addition of the hydrolyzing agent removes the magnesium from the chlorophyll 

molecules (magnesium can otherwise be an undesirable contaminant in end-

product biodiesel).  

[0016] When heated, the slurry may reach temperatures of from about 1-

200ºC, such as about 20-100ºC, about 50-95ºC, or about 90ºC. When 

temperatures above 100ºC, or the boiling point of the solution are used, an 

apparatus capable of withstanding pressures above atmospheric pressure may 

be employed. In some embodiments, depending on the type of algae, the type 

and concentration of acid used for hydrolysis, the outside temperature conditions, 

the permissible reaction time, and the conditions of the slurry, heating may be 

omitted.  Heating may occur prior to, during, or after addition of a hydrolyzing 

agent.   

[0017] In addition, the slurry may be optionally mixed either continuously 

or intermittently.  Alternatively, a hydrolysis reaction vessel may be configured to 

mix the slurry by convection as the mixture is heated. 

[0018] Acid hydrolysis may be permitted to take place for a suitable period 

of time depending on the temperature of the slurry and the concentration of the 

hydrolyzing agent.  For example, the reaction may take place for up to 72 hours, 

such as from about 12-24 hours.  If the slurry is heated, then hydrolysis may 
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occur at a faster rate, such as from about 15-120 minutes, 30-90 minutes, or 

about 30 minutes. 

[0019] Hydrolysis of the algal cells may be achieved by adding to the 

slurry a hydrolyzing agent, such as an acid.   Any suitable hydrolyzing agent, or 

combination of agents, capable of lysing the cells and breaking down complex 

lipids may be used.  Exemplary hydrolyzing acids may include strong acids, 

mineral acids, or organic acids, such as sulfuric, hydrochloric, phosphoric, or 

nitric acid.  These acids are all capable of accomplishing the goals stated above.  

When using an acid, the pH of the slurry should be less than 7, such as from 

about 1-6, about 1.5-4, or about 2-2.5. 

[0020] In addition to strong acids this digestion may also be accomplished 

using enzymes alone or in combination with acids that can break down plant 

material.  However, any such enzymes or enzyme/acid combinations would also 

be capable of breaking down the complex lipids to free fatty acids.   

[0021] In some embodiments, the acid or enzymes, or a combination 

thereof, may be mixed with water to form a hydrolyzing solution.  However, in 

other embodiments, the hydrolyzing agent may be directly added to the slurry. 

[0022] (2) Base Hydrolysis 

[0023] After the initial hydrolysis, a secondary base hydrolysis may be 

performed to digest and break down any remaining whole algae cells; hydrolyze 
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any remaining complex lipids and bring those lipids into solution; convert all free 

fatty acids to their salt form, or soaps; and to break chlorophyll molecules apart. 

[0024] In this secondary hydrolysis, the biomass in the slurry is mixed with 

a basic hydrolyzing agent to yield a pH of greater than 7, such as about 8-14, 

about 11-13, or about 12-12.5. Any suitable base may be used to increase in pH, 

for example, sodium hydroxide, or other strong base, such as potassium 

hydroxide may be used. Temperature, time, and pH may be varied to achieve 

more efficient digestion.  

[0025] This basic slurry may be optionally heated.  When heated, the 

slurry may reach temperatures of from about 1-200ºC, such as about 20-100ºC, 

about 50-95ºC, or about 90ºC.  When temperatures above 100ºC, or the boiling 

point of the solution are used, an apparatus capable of withstanding pressures 

above atmospheric pressure may be employed. In some embodiments, 

depending on the type of algae, the type and concentration of acid used for 

hydrolysis, the outside temperature conditions, the permissible reaction time, and 

the conditions of the slurry, heating may be omitted.  Heating may occur prior to, 

during, or after addition of a hydrolyzing agent.   

[0026] In addition, the basic slurry may be optionally mixed either 

continuously or intermittently.  Alternatively, a hydrolysis reaction vessel may be 

configured to mix the slurry by convection as the mixture is heated. 

[0027] Basic hydrolysis may be permitted to take place for a suitable 

period of time depending on the temperature of the slurry and the concentration 
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of the hydrolyzing agent.  For example, the reaction may take place for up to 72 

hours, such as from about 12-24 hours.  If the slurry is heated, then hydrolysis 

may occur at a faster rate, such as from about 15-120 minutes, 30-90 minutes, or 

about 30 minutes. 

[0028] During this basic hydrolysis, chlorophyll is hydrolyzed to the 

porphyrin head and phytol side chain. 

[0029]  (3)  Biomass and Aqueous Phase Separation 

[0030] Under the condition of elevated pH, the biomass may be separated 

from the aqueous solution. This separation is performed while the pH remains 

high to keep the lipids in their soap form so that they are more soluble in water, 

thereby remaining in the water phase. Once the separation is complete, the 

water phase is kept separate and the remaining biomass may be optionally 

washed with water to help remove any residual soap molecules. This wash water 

may also be collected along with the original liquid phase. Once the biomass is 

washed it may be removed from the process. 

[0031] The liquid phase now contains the recovered lipids in soap form, 

Porphyrin salts, and any other soluble cellular components. Much of the 

hydrophobic cellular components are potentially removed with the biomass, for 

example, pigments such as carotenoids.  

[0032] Any suitable separation technique may be used to separate the 

liquid (aqueous) phase form the biomass.  For example, centrifugation, gravity 
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sedimentation, filtration, or any other form of solid/liquid separation may be 

employed. 

[0033] (4)  Precipitate Formation 

[0034] After the biomass is removed, the pH of the collected liquid may be 

neutralized/reduced to form a precipitate. This may be accomplished by the 

addition of an acid to the solution, such as at least one strong acid or mineral 

acid, for example, sulfuric, hydrochloric, phosphoric, or nitric acid.  Addition of a 

suitable acid is performed until a green precipitate is formed. The green 

precipitate may contain, or may be, the Porphyrin heads as they are converted 

from their salt forms. It may also contain proteins and other cellular components 

that are coming out of solution. 

[0035] The pH may be reduced to a pH of about 7 or less, such as about 

4-6.9.  This lower pH also converts the soap in the liquid to free fatty acids. As 

the precipitate forms the fatty acids associate with the solid phase and come out 

of solution.  Once the precipitate has formed, the solid and liquid phases may be 

separated.  Any suitable separation method may be employed, such as 

centrifugation, gravity sedimentation, filtration, or any other form of solid/liquid 

separation.  The liquid phase may be removed from the process. The collected 

solid phase may then be processed further.  Optionally, the precipitate may be 

lyophilized or dried, which may result in nearly complete extraction of the lipids 

during extraction. 

[0036] (5)  Free Fatty Extraction and solvent recycle 
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[0037] To extract the free fatty acids, an organic solvent may be added to 

the solid phase resulting from the previous step.  The solid phase may be mixed 

with the solvent and then optionally heated to facilitate fatty acid extraction from 

the solid phase. 

[0038] When heated, the mixture of solid phase and solvent may reach 

temperatures of from about 1-200ºC, such as about 20-100ºC, about 50-9 ºC, or 

about 90ºC.  When temperatures above 100ºC, or the boiling point of the solution 

are used, an apparatus capable of withstanding pressures above atmospheric 

pressure may be employed. In some embodiments, heating may be omitted.  

Heating may occur prior to, during, or after the mixture of solid phase and solvent 

is formed.  In addition, the mixture may be optionally mixed either continuously or 

intermittently.  

[0039] The extraction process may be permitted to take place for a 

suitable period of time depending on the temperature of the mixture.  For 

example, the extraction may take place for up to 72 hours, such as from about 

12-24 hours.  If the mixture is heated, then extraction may occur at a faster rate, 

such as from about 15-120 minutes, 30-90 minutes, or about 30 minutes. 

[0040] During this time the free fatty acids associated with the solid are 

extracted into the organic phase. Suitable solvents include non-polar solvents, 

such as hexane, chloroform, pentane, tetrahydrofuran, and mixtures thereof (for 

example a 1:1:1 ratio of chloroform, tetrahydrofuran, and hexane).  Other suitable 

solid-liquid extraction methods and unit operations may be used. 
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[0041] Once the free fatty acids are extracted, the solid phase may be 

removed from the process and the organic phase may be vaporized and 

recycled. What remains after the organic phase is vaporized is a residue 

consisting of mostly the free fatty acids or algal lipids/oil. This algal oil may then 

optionally be processed into biodiesel. 

[0042] (6) Biodiesel production from algal oil and collection 

[0043] The algal oil collected in the previous step may be converted to 

biodiesel by esterification. This is done by the addition of a strong acid catalyst 

and an alcohol to the oil. With the addition of heat, the alcohol and catalyst will 

work to convert the free fatty acids to alkyl esters, also known as biodiesel.  

Generally this may be done using Sulfuric acid and Methanol, resulting in fatty 

acid methyl esters or F.A.M.E.s.  Once the FAMEs are generated via the 

esterification reaction, they may be extracted from the reaction mixture using an 

organic solvent, such as Hexane, and further purified to useable biodiesel. In 

addition to this method of conversion there are a number of methods that can 

also be used. However, this method has shown the most promise in terms of 

being cost effective in conversion of lipids to biodiesel. 

[0044] In some embodiments, the steps outlined above may be further 

simplified and/or combined.  For example, in some embodiments, the algal cells 

may be lysed by any suitable method, including, but not limited to acid hydrolysis.  

Other methods may include mechanical lysing, such as smashing, shearing, 

crushing, and grinding; sonication, freezing and thawing, heating, the addition of 
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enzymes or chemically lysing agents.  After an initial lysing of the algal cells, the 

pH is raised as described above in base hydrolysis to form soap from free fatty 

acids.  The resulting aqueous phase which include the soaps in solution is 

removed, and then a precipitate containing the free fatty acids is formed by 

lowering the pH as described above in precipitate formation.  The lipids may then 

be extracted by a suitable method, such as those described above. 

[0045] The following examples are illustrative only and are not intended to 

limit the disclosure in any way. 

EXAMPLES 

[0046] Example 1: Acid Hydrolysis 

[0047] To a glass test tube 100 mg of lyophilized algal biomass was 

added. One mL of a 1 Molar Sulfuric acid solution is added to the test tube and 

the test tube was then sealed using a PTFE lined screw cap and gently mixed to 

create a homogenous slurry.  This slurry was then placed in a Hach DRB-200 

heat block pre-heated to 90oC. This slurry is allowed to digest for 30 minutes with 

mixing at the 15 minute mark.  

[0048] Example 2: Base Hydrolysis 

[0049]  Once the first 30 minute digestion period of Example 1 was 

complete, the test tube was removed from the heat source and 0.75 mL of a 5 

Molar Sodium Hydroxide solution was added to the test tube. The test tube was 
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immediately resealed and returned to the heat source for 30 minutes. Mixing at 

15 minutes was again provided. 

[0050] Example 3: Biomass Removal 

[0051]  Once the base hydrolysis step of Example 2 was complete, the 

test tube was removed from the heat source and allowed to cool in a cold water 

bath. Once cooled the test slurry was centrifuged using a Fisher Scientific 

Centrific Model 228 centrifuge. The upper aqueous phase was removed and 

collected in a separate test tube. To the remaining biomass 1 mL of deionized 

water as added and vigorously mixed. The slurry was re-centrifuged, and the 

liquid phase collected and added to the previously collected liquid phase. The 

biomass was then removed from the process.  

[0052] Example 4: Precipitate Formation 

[0053] To the collected liquid phase of Example 3, 1.5 mL of a 2 Molar 

Sulfuric Acid Solution was added, or until a green precipitate was formed. After 

mixing the liquid became a solid-liquid slurry. This mixture was centrifuged and 

the upper aqueous phase was removed from the process and the solids were 

further processed.  

[0054] Example 5: Free Fatty Acid Extraction 

[0055]  Five milliliters of Hexane was added to the collected precipitate of 

Example 4, which was sealed using a PTFE lined screw cap, and vigorously 

mixed. The test tube was then placed in the Hach DRB-200 heat block, pre-
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heated to 90oC. Extraction of the free fatty acids into the Hexane phase was 

allowed to continue at 90oC.  After a time duration of 15 minutes at 90ºC was 

completed, the test tube was centrifuged to pellet the solids and to allow for the 

collection of the solvent phase, which as transferred to another test tube. Hexane 

was allowed to vaporize via gentle heating within the test tube leaving behind the 

free fatty acid residue.  

[0056] Example 6: Fatty Acid Esterification to Biodiesel 

[0057] To the residue of Example 5, 1 mL of a 5% (v/v) solution of Sulfuric 

acid in Methanol was added. This test tube was sealed using a PTFE lined screw 

cap and the test tube was heated to 90oC for 30 minutes in a Hach DRB-200 

heat block. After 30 minutes the test tube was allowed to cool. Upon cooling 5 

mL of Hexane was added to the reaction mixture and the test tube was re-sealed 

and heated again for 15 minutes at 90oC.  FAMEs were extracted into the 

Hexane phase, which were collected and analyzed for biodiesel content using 

gas chromatography, or another analytical technique or instrument.  

[0058]  Example 7: Production Efficiency of Water-Based Lipid Extraction 

[0059] To test efficiency and the efficacy of heating, the outputs of 

biodiesel produced according to the methods described herein were tested and 

compared with a control.  Samples were prepared according to the processes 

described above in Example 1-6, with the exception of heat not being added 

during the various process steps. 
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[0060] The findings are summarized in the data table set forth below. 

 

Table A1. Data presenting proof of concept for wet lipid extraction procedure 

 mg FAME: Standard 
Deviation: (mg) 

% of Maximum: 

FAMEs from in situ TE: 11.77 0.35 100% 

Total FAME Collected: 10.95 1.75 93.02% 

FAME in Organic Phase: 3.11 0.53 26.43% 

FAME in precipitate: 5.45 1.35 46.31% 

FAME in water phase: 0.14 0.01 1.23% 

FAME in residual biomass: 2.24 0.25 19.04% 

 

[0061] “FAME(s)” is the contraction for fatty acid methyl ester(s) also 

known as biodiesel. FAMEs were quantified using gas chromatography. An 

Agilent 7890-A GC system equipped with a FID detector was used for this 

purpose.  

[0062] “In situ TE” refers to a method of transesterification (in situ 

transesterification) by which dried algal biomass is directly contacted and 

subjected to, in this case, Sulfuric acid, Methanol, and heat. This process 

simultaneously extracts and converts lipids present in the algal biomass to 

FAMEs or biodiesel. In situ Transesterification is the method favored, throughout 

the literature, to measure the biodiesel potential for various types of biomass. 

This method is considered the control and is assumed to completely convert all 

present lipids in the algal biomass to FAMEs. Each intermediate collected 

throughout the process was subjected to this method of FAME production to 
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convert lipids present and quantified by gas chromatography as previously 

stated. 

[0063] “Total FAME collected” refers to the sum of FAMEs measured from 

each intermediate step throughout the process described in this disclosure. This 

sum is based on averages of three samples, from within the same batch of algal 

biomass.  

[0064] “FAME in Organic Phase” refers to the quantity of FAME collected 

in the residue remaining after the organic solvent was vaporized. 

[0065] “FAME in precipitate” refers to the quantity of 

transesterifiable/esterifiable lipids remaining in the precipitated solid phase, 

formed in the base neutralization step, after being extracted using the organic 

solvent and heat.  

[0066] “FAME in water phase” refers to the quantity of 

transesterifiable/esterifiable lipids remaining in the aqueous phase after removing 

the precipitated solid phase.  

[0067] “FAME in residual biomass” refers to the quantity of 

transesterifiable/esterifiable lipids remaining in the residual biomass after both 

hydrolysis steps. 

[0068] Example 8: Pigment Precipitation 
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[0069] The process outlined in Examples 1-4 was performed on a sample.  

The resulting precipitate was freeze dried and then re-dissolved in 5 M sodium 

hydroxide.  The resulting solution was run through a Shimadzu UV-1800 UV 

Spectrophotometer That slide shows absorption data from a Shimadzu UV-1800 

UV Spectrophotometer, which measures the absorbance from 300 nm to 900 

nm. The results are shown in Figure 2.  The “blank,” or lower line along the 

bottom, refers to plain 5 M Sodium Hydroxide; and the “sample” refers to the re-

dissolved precipitate.  The data developed demonstrate that pigments are 

precipitating, a desirable property since pigments can be an undesirable impurity 

in biodiesel. 

[0070] It will be appreciated that various of the above-disclosed and other 

features and functions, or alternatives thereof, may be desirably combined into 

many other different systems or applications.  Also, various presently unforeseen 

or unanticipated alternatives, modifications, variations or improvements therein 

may be subsequently made by those skilled in the art, and are also intended to 

be encompassed by the following claims. 
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WHAT IS CLAIMED IS: 

1. A method of extracting lipids from wet algae, the method comprising: 

 hydrolyzing a slurry comprising algae and water by adding an acidic 

hydrolyzing agent to yield an acidic slurry, 

 hydrolyzing the acidic slurry by adding a basic hydrolyzing agent to yield a 

basic slurry, 

 separating an aqueous phase from biomass in the basic slurry, 

 forming a precipitate in the aqueous phase, and  

 extracting free fatty acids from the precipitate. 

2. The method of claim 1, wherein the slurry has a solid content of about 4-

25%. 

3. The method of claim 1, wherein the acidic hydrolyzing agent is selected 

from the group consisting of a strong acid, a mineral acid, sulfuric acid, 

hydrochloric acid, phosphoric acid, and nitric acid. 

4. The method of claim 1, wherein the acidic slurry has a pH of from about 

1.5-4. 

5. The method of claim 1, wherein the acidic hydrolyzing agent degrades the 

algae and breaks down complex lipids to free fatty acids. 
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6. The method of claim 1, wherein the acidic hydrolyzing agent removes 

magnesium from algal chlorophyll molecules. 

7. The method of claim 1, wherein the acidic slurry is heated to a 

temperature of from about 50-95 ºC. 

8. The method of claim 1, wherein the basic hydrolyzing agent is selected 

from the group consisting of a strong base, sodium hydroxide, and potassium 

hydroxide. 

9. The method of claim 1, wherein the basic slurry has a pH of from about 8-

14. 

10. The method of claim 1, wherein the basic hydrolyzing agent converts free 

fatty acids from the algae to soap. 

11. The method of claim 1, wherein the basic slurry is heated to a temperature 

of from about 50-95 ºC. 

12. The method of claim 1, wherein separating the aqueous phase from the 

biomass in the basic slurry comprises washing separated biomass. 

13. The method of claim 1, wherein forming the precipitate in the aqueous 

phase comprises lowering the pH to about 4-6.9. 

14. The method of claim 1, wherein extracting the free fatty acids from the 

precipitate comprises: 



92 
 

 

 removing a solid phase containing free fatty acids that results from 

lowering the pH of the aqueous phase; and 

 mixing the solid phase with a solvent to extract the free fatty acids from 

the solid phase. 

15. The method of claim 14, wherein the solvent is selected from the group 

consisting of non-polar solvents, hexane, chloroform, pentane, and 

tetrahydrofuran. 

16. A method of producing biodiesel from algae, the method comprising: 

 hydrolyzing a slurry comprising algae and water by adding an acidic 

hydrolyzing agent to yield an acidic slurry, 

 hydrolyzing the acidic slurry by adding a basic hydrolyzing agent to yield a 

basic slurry, 

 separating an aqueous phase from biomass in the basic slurry, 

 forming a precipitate in the aqueous phase, and  

 extracting free fatty acids from the precipitate, and 

 converting the extracted free fatty acids to biodiesel by esterification. 

17. A method of extracting lipids from algae, the method comprising: 

 lysing algal cells to form free fatty acids in an aqueous solution; 
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 transforming the free fatty acids to soap in the aqueous solution by 

increasing the pH; 

 precipitating the free fatty acids out of the aqueous solution; and 

 extracting the precipitated fatty acids. 

18. The method of claim 17, further comprising converting the extracted free 

fatty acids to biodiesel by esterification.
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ABSTRACT OF THE DISCLOSURE 

 A method of extracting lipids from wet algae, the method includes 

hydrolyzing a slurry comprising algae and water by adding an acidic hydrolyzing 

agent to yield an acidic slurry, hydrolyzing the acidic slurry by adding a basic 

hydrolyzing agent to yield a basic slurry, separating an aqueous phase from 

biomass in the basic slurry, forming a precipitate in the aqueous phase, and 

extracting free fatty acids from the precipitate.
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Figure A1. Flow diagram of wet lipid extraction procedure. 
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Figure A2. Spectra of solid phase precipitate 
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APPENDIX B 

 

LIFE CYCLE ANALYSIS REPORT 

 

1. Introduction: 

1.1. Logan Utah Open Lagoon Wastewater Treatment Facility 

 The Logan Lagoons wastewater treatment plant treats municipal wastewater generated 

from the City of Logan and surrounding areas. Wastewater entering the lagoon system undergoes 

primary and secondary treatment 
1
. However, tertiary treatment is not possible with the system’s 

current configuration. In order to meet regulations on the amount of nitrogen and phosphorous the 

current lagoons system will have to be retro-fitted to achieve tertiary treatment of the wastewater. 

Installation and operation of a mechanical or chemical treatment plant brings significant 

capital and operation costs 
2
. An alternative to implementation of a mechanical or chemical 

treatment system is to make use of naturally occurring microalgae within the Logan lagoons 

system.  

 Microalgae assimilate nitrogen and phosphorous as part of the biomass, sequestering it 

from the wastewater. By capturing or harvesting the microalgae before they leave the lagoon 

system, it is possible to remove nitrogen and phosphorous from the wastewater, achieving tertiary 

treatment of the wastewater 
1
. By harvesting and removing the microalgae, containing the excess 

nutrients, not only is the wastewater being remediated, but this allows for the collection of 

significant amounts of algal biomass that can be used for the production of biofuels and 

bioproducts.   

1.2. Rotating Algal Biofilm Reactor System versus Traditional Raceway Ponds 

Growth and harvesting of algal biomass has been considered a significant hurdle in the 

production and processing of large quantities of algal biomass 
3,4

. Two traditional methods are 

used for the growth of algal biomass, closed and open systems 
5–7

. Closed systems are based on 

enclosed bioreactors within which algal biomass is grown with tightly controlled conditions 
8
. 

The use of controlled conditions and optimized environment allows for high biomass and lipid 
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productivities 
9
. However, they are considered costly and due to their need for controlled 

environments and their construction 
10

.  

2. Scope of this Study 

This study has multiple goals and varying scopes of analysis. The first focus is to analyze 

the growth and production of algal biomass using two systems, the traditional raceway and the 

RABR growth and harvesting systems. These systems were analyzed based on their areal 

productivity per unit area (4.3 m
2
). Parameters studied were energy input to each system to 

generate 1 kg of biodiesel and the resulting generation of greenhouse gases based on the energy 

consumed.  

In addition to the energy consumption and greenhouse gas emissions generated from each 

production system, the raceway and the RABR systems’ ability to remove nutrients from 

wastewater was assessed. This assessment also considered the addition of fertilizers to the 

wastewater in order to achieve maximum nutrient removal, based on stoichiometric needs. It is 

well known that the addition of fertilizer adds significant energy demand in that the production of 

fertilizers requires large amounts of energy and generate greenhouse gases themselves 
11

. These 

considerations were also accounted for in this analysis. 

Upon producing and collecting the algal biomass it must be processed to generate the 

various biofuels discussed. Traditionally algal biomass is either dried or processed wet using a 

solvent based lipid extraction process and the residual lipid extracted algae is sent to an anaerobic 

reactor for digestion for the production of methane gas 
4,12,13

. However, algal biomass harvested 

in this study is processed using a wet lipid extraction process (WLEP). This procedure is capable 

of utilizing algal biomass harvested at 15% solids, extract lipids for biodiesel production directly 

from the wet biomass, and generate feedstock material for the production of acetone, butanol, 

ethanol, and biomethane. A life cycle analysis was performed for the WLEP and was compared to 

typical algal biofuel production analyses performed in literature.  

The final scope of this study involved the entire Logan lagoons wastewater treatment 
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facility’s capability of producing algal biomass using the RABR growth and harvesting system. A 

net energy analysis was performed on the production of algal biomass and the biofuels derived 

from the algal biomass. These biofuels included biodiesel (via WLEP), biomethane (via 

Anaerobic Digestion), acetone, butanol, and ethanol (via ABE fermentation). The net energy 

analysis took into account the energy consumed by the RABR growth and harvesting system and 

the energy generated via the biofuels, based on their heats of combustion. The difference in the 

energy consumed and generated provides an indication of the energy available to produce the 

biofuels.  

3. Nutrient Removal in Raceway and RABR systems 

3.1. Parameters used for analysis 

Removal of nutrients such as inorganic nitrogen and phosphorous from wastewater using 

microalgae is a concept that has been proposed by multiple authors 
11,14,15

. This portion of the 

analysis focused on the capability of each system to remove nutrients from the wastewater. For 

both systems a unit volume of 1 m
3
 of wastewater was used as the basis.  

In order to achieve maximum removal of nutrients the concentrations need to be balanced 

according to the stoichiometry of the algal biomass. As described in this report, the concentration 

of nitrogen and phosphorous in the wastewater reaching the algal growth systems is 

approximately 7.8 mg/L N and 4.5 mg/L. This corresponds to a 3.8 to 1 (N: P) molar ratio. 

Stoichiometry of algal biomass was based on the Redfield expression C106H263O110N16P1 
16

. Based 

on this expression it is clear the wastewater is nitrogen limited for supporting algal growth. 

Without the addition of nitrogen, phosphorous removal to the extent required is not possible. 

Therefore, the addition of nitrogen fertilizers were considered. Addition of fertilizer requires that 

the energy of the fertilizer produced be taken into account for the overall process.  

Assuming all other elements are available in excess (carbon from CO2
 
in the atmosphere 

and water and oxygen and hydrogen from water etc.), the concentrations of the nutrients are 

uniformly distributed throughout the volume of wastewater, and conditions (light, temperature, 
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etc.) are the same, the rate of nutrient assimilation from the wastewater will be a function of the 

productivity of the growth system being used. This study does not incorporate the addition of 

carbon dioxide from external sources, such as flue gas.  

Productivity of suspended systems varies widely depending on the conditions the algae 

are subjected to. Based on Sturm et al. 
2
 wastewater used for the growth of algae in suspended 

form for nutrient removal can range from 5 to 16 mg m
-2

 day
-1

. An average value of 10 mg m
-2

 

day
-1 

will be used for this study. The pilot scale RABR can achieve productivities of between 20 

to 31 mg m
-2

 day
-1

. For this study an average value of 25 mg m
-2

 day
-1 

will be used.  

3.2. Analysis of suspended system 

Based on the volume and concentration of wastewater used there is a total of 7.8 g/m3 

nitrogen and 4.5 g/m3 phosphorous available for the algal cells to assimilate. To reach final target 

concentrations of 1.5 g/m
3
 (1.5 mg/L) and 1.0 g/m

3
 phosphorous, a total of 3 g/m

3
 and 3.5 g/m

3
 

need to removed from each m
3
 of wastewater respectively. Using the parameters stated the rate of 

nutrient uptake for each element was determined and is presented in Table B1. 

 

Table B1. Rate of nutrient uptake by algae growing in suspended form.  

Element: Uptake Rate: (g/day m
3
) 

Carbon  
15.41 

Hydrogen 
3.19 

Oxygen 
21.32 

Nitrogen 
2.71 

Phosphorous 
0.38 

 

 However, because of the mismatch in the molar ratio between nitrogen and phosphorous 

in the wastewater (3.8: 1) and algal biomass (16: 1), removal of 3.0 and 3.5 g/m
3
 is not possible. 

The maximum amount of phosphorous that can be removed using the wastewater without 
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modification is 1.08 g/m
3
 phosphorous, which corresponds to a final phosphorous concentration 

of 3.42 g/m
3
, well of above the target concentrations of 1.5 g/m

3
 or 1.0 g/m

3
.  

3.2.1. Nitrogen supplementation of raceway wastewater for phosphorous removal 

To reach the target phosphorous concentrations stated, the wastewater will require 

nitrogen supplementation to balance the nutrients according to the stoichiometric needs of the 

algal biomass. This involves the addition of nitrogen fertilizers to the wastewater. A number of 

different sources of nitrogen can be used as fertilizer including sodium nitrate, ammonia, urea, 

and others. For this analysis the addition of urea will be used. Addition of ammonia and sodium 

nitrate will be discussed as comparison. The addition of ammonia leads to the potential of 

nitrogen loss by stripping or volatilizing, which would need to be considered if used.  

The first scenario (1) will involve increasing the nitrogen concentration in the wastewater 

to remove enough phosphorous to reach 1.5 g/m
3
 concentration. To reach this concentration an 

additional 21.7 g/m
3
 of nitrogen needs to be added to the wastewater. The second scenario (2), to 

reach a final phosphorous concentration of 1.0 g/m
3
, requires the addition of 25.3 g/m

3
 of 

nitrogen.  

The energy associated with the production of these fertilizers was determined based on 

the GREET model. From the GREET database it was found that the production of ammonia, urea, 

and sodium nitrate required 32.577, 21.855, and 7.681 mmBTU/ton fertilizer produced 

respectively. The GREET values account for the production process and well as feedstock related 

activities. Table B2 summarizes the amounts of nutrients added as well as the associated energy 

with the mass of fertilizer added.  
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Table  B2. Masses of fertilizer required to reach target phosphorous concentrations of 1.5 and 1.0 

g/m
3 
and energies associated with each fertilizer’s production. 

 

Nitrogen Source: 

(Scenario #) 

Mass fraction 

of nitrogen in 

fertilizer: (g/g) 

Mass of 

Fertilizer 

added: (g) 

Production 

Energy of 

Fertilizer: (KJ/g) 

Energy associated 

with Fertilizer 

Addition: 

(KJ/m
3
) 

Ammonia (1) 0.87 15.95 37.6 599.72 

Urea (1) 0.47 29.53 25.2 744.16 

Sodium Nitrate (1) 0.16 86.75 8.9 772.01 

Ammonia (2) 0.87 20.82 37.6 782.83 

Urea (2) 0.47 37.21 25.2 937.69 

Sodium Nitrate (2) 0.16 109.31 8.9 972.86 

 

With the addition of nutrients it is possible to reach the target phosphorous 

concentrations. Based on the nutrient uptakes rates presented in Table B1, target phosphorous 

concentrations can be reached within 7.9 and 9.2 days for 1.5 g/m
3
 and 1.0 g/m

3
 per nitrogen 

supplemented m
3
 wastewater respectively.  

However, the addition of fertilizer to supplement the wastewater leads to an additional 

energy burden that needs to be accounted for. Without the addition of fertilizer, removal of the 

necessary phosphorous is not possible, other than the use of chemical or mechanical methods. 

Another option is to recycle the effluent from an anaerobic digester. For the Logan lagoon system 

an anaerobic digester will be used to digest and convert residual algal biomass to methane. 

Therefore, the potential exists for taking the liquid effluent from the digester and increasing the 

nitrogen concentration of the wastewater. This option will be discussed in future sections.  

3.2. Analysis of RABR system for nutrient removal 

 The wastewater used for this analysis is the same as for the suspended system and 

because the same unit volume of 1 m
3
 is used the amounts of nitrogen and phosphorous remain 

the same. Using the productivity of the RABR the rate of nutrient uptake for each element was 

determined and is presented in Table B3. 
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Table B3. Rate of nutrient uptake by algae growing in suspended form.  

Element: Uptake Rate: (g/day m
3
) 

Carbon  38.5 

Hydrogen 8.0 

Oxygen 53.3 

Nitrogen 6.78 

Phosphorous 0.94 

 

 Due to the characteristics of the wastewater between the analysis of the raceway and 

RABR being the same, nitrogen supplementation data will be the same between the two systems. 

Therefore, amounts of nitrogen addition will remain constant for the two systems as summarized 

in Table B2. The only parameters that will change will be the rate at which the RABR system will 

achieve the target phosphorous concentrations. 

 When using the RABR the concentration of phosphorous can be reduced from 4.5 g/m3 

to 1.5 g/m
3
 or 1.0 g/m

3
 in 3.2 and 3.7 days per m

3
 wastewater respectively. This is lower than the 

raceway, which can achieve the required concentrations in 7.9 and 9.2 days per m
3
 wastewater 

respectively. The higher productivity of the RABR is the main factor in the quicker removal of 

phosphorous from the wastewater. However, an important point is that because of the higher 

nutrient uptake rate, the residence time of the wastewater within a RABR system is much lower 

than for a raceway system, thus leading to the remediation of larger volumes of wastewater in the 

same time. This can lower the land footprint of the system for equivalent levels of nutrient 

removal.  

4. Energy Analysis of Raceway and the RABR Growth and Harvesting Systems 

4.1. Introduction  

An energy balance was performed over both growth and harvesting methods discussed. 
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For each system the base unit was the area of a pilot scale RABR (4.3 m
2
). Therefore, the 

volumes of wastewater analyzed depended on the depth of the liquid for each system. Typically 

algal raceway ponds are approximately 30 cm (11.8 in) deep, while the RABR requires a liquid 

depth of 36 in. The corresponding volumes were used as the basis for this energy balance.  

The energy balance accounted for all energy inputs and outputs for each system involved 

in the growth and harvesting of algal biomass. The functional unit for this analysis was the 

production of enough algal biomass to generate 1 kg of dry algal biomass. Power to pump 

wastewater was neglected due to the Logan lagoons facility being operated by the City of Logan 

Environmental Department, which has responsibility of wastewater movement. 

4.2. Energy balance around the RABR System 

For this study a pilot scale RABR system was analyzed. Such a system has been 

described in detail by Christenson et al 
17

. Figure B1 illustrates the pilot scale RABR growth and 

harvesting system. This system is unique in that the growth and harvesting systems are combined 

into a single unit. As the RABR rotates in the wastewater, algal cells are able to attach and grow 

on the substrate. Thus, when the RABR is ready to harvest, the rope is scraped off and the 

harvested algal biomass can be further processed. 

The RABR only requires power to rotate. The harvesting mechanism uses the same 

power for rotation of the RABR. Due to the harvesting process adding a small amount of friction 

for a short amount of time, the additional energy input to harvest is considered negligible. Power 

required to rotate the RABR has been calculated as 6 Watts 
17

. Based on this value the energy 

needed to generate 1 kg of algae can be calculated as follows: 
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Figure B1. RABR growth and harvesting system 
17

. 

 

Equation B1.                 
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Equation B3.      
        

 

   

      
 

   

        
 

 
      

  

  
 

The first analysis of the RABR energy requirements involved using wastewater without 

any modifications. This will serve as a baseline scenario to compare to scenarios where the 

wastewater has been supplemented with nitrogen, as discussed in section 3.2.1. Wastewater being 

fed to the RABRs are proposed to contain nitrogen and phosphorous at concentrations of 7.8 

mg/L and 4.5 mg/L respectively. With these concentrations the algae have available to them 

30.67 g N and 17.69 g P. Assuming no other nutrient is limiting algal biomass yield is based on 

the amount of nitrogen present in the wastewater. Biomass yield was calculated based on the 

Redfield expression for algae 
16

. 

As stated the energy input into the RABR system is electrical energy for rotation of the 

system. The energy output from the RABR is the algal biomass. Energy density of algal biomass 
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has been estimated as 21.4 KJ/g dry algae 
17

. Figure B2 illustrates energy inputs and outputs for 

the RABR system. Table B4 summarizes the energy inputs and output from the RABR system for 

the generation of 1 kg of biomass. The energy associated with fertilizer will apply for future 

scenarios analyzed, but not for the baseline analysis. Table B4 presents the energy inputs and 

outputs from the baseline RABR system.  

It should be noted that although the nutrient concentrations are changing by addition of 

urea, the productivity does not change. This is due to the lack of data on the effect of nutrient 

concentration on the growth rates of algal biofilms. Therefore, in the energy balances performed 

for the different scenarios the amount of energy taken to grow 1 kg of algal biomass remains 

constant.  When in reality the energy required to grow 1 kg of algal biomass at optimum nutrient 

concentrations may be lower (higher productivity leads to lower growth times), thus giving 

motivation, from an energetic perspective, to supplement with nitrogen fertilizers. Without proper 

data though, that aspect cannot be analyzed. 

 

Table B4. Summary of energy inputs and output from the RABR system for generating algal 

biomass for 1 kg of algal biomass. This analysis is for the baseline scenario (no supplementation 

of the wastewater with fertilizer) 

 

Stream: Energy Input: KJ/kg 

dry biomass 

Energy Output: KJ/kg 

dry biomass 

Electrical energy for RABR 

rotation: 

(-4822.3) n/a 

Energy associated with urea: 0 n/a 

Energy associated with harvested 

algal biomass: 

n/a (+24,100) 

Net Energy: (+19,277.7) 

 

As discussed in section 3.2.1., the wastewater used as the growth medium needs to be 

supplemented with nitrogen containing fertilizer for the proper remediation of the wastewater 

being processed. For this analysis the energy associated with the production of the fertilizer was 

accounted, but only for the addition of urea. Urea is considered due to its lower energy 
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requirement per mass fertilizer added and also because urea does not volatilize into the 

atmosphere after its addition to water, as is the case for ammonia. To reach the target of 1.5 g/m
3
 

and 1.0 g/m
3
 approximately 46.2 and 53.8 g/m

3
 must be added. This corresponds to an energy 

equivalent of 1163.5 and 1365.5 KJ per m
3
 of wastewater supplemented respectively. 

  

Figure B2. Energy balance around the RABR. 

 

Table B5. Summary of energy inputs and output from the RABR system for generating algal 

biomass for 1 kg of algal biomass. Using a target phosphorous concentration of 1.5 g/m
3
. 

 

Stream: Energy Input: KJ/kg dry 

biomass 

Energy Output: KJ/kg 

dry biomass 

Electrical energy for RABR 

rotation: 

(-4822.3) n/a 

Energy associated with urea: Scenario 1: (-2165.6) 

Scenario 2: (-2340.0) 

n/a 

Energy associated with harvested 

algal biomass: 

n/a (+24,100) 

Net Energy: Scenario 1: (+17,112.7) 

Scenario 2: (+16,937.7) 

 

4.3. Energy balance around a raceway and harvesting system 

The raceway and harvesting system modeled in this study is similar to many studied by 

several authors 
13,18–20

. This model makes use of dissolved air flotation (DAF) and centrifugation 

for the harvesting of algal biomass from the raceway. Major energy inputs into this system 
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include mixing power for the raceway pond, energy for the DAF unit, energy for centrifugation, 

and energy for drying the algal biomass. Total algal biomass generated from each unit area (4.3 m 

2
) is based on the time required to reach the desired phosphorous concentration (section 3.2.1.) 

and the productivity. For 1.5 g/m
3
 and 1.0 g/m

3
 phosphorous concentrations, the total biomass 

generated is 443 g and 516 g respectively. For the baseline case, no nitrogen supplementation, the 

mass of algae generated within the raceway unit volume was the maximum allowable based on 

the nitrogen available for algal growth. This resulted in the growth of 159.3 g algae. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3. Illustration of growth and harvesting system for a raceway pond for algae. 

 

Drying of the algal biomass is not required for some processes, as they are able to extract 

lipids from wet algal biomass 
13,20

, but in most cases the algal biomass is dried prior to processing 

12,21
 . This issue will be discussed in future sections. Table B6 presents energy consumption data 

for each of the major inputs and provides a literature source for each value. 

 

Energy for Mixing 

Energy for nutrients 

Electrical Energy 

Electrical Energy 

Electrical Energy 

Natural Gas Energy 
Energy associated 

with Algal Biomass 

Energy Associated 

with Algal Biomass 

OR 
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Table B6. Energy consumption for major unit operations/processes.  

 

Major process Unit/Operation: Energy consumption: Source: 

Mixing (Paddlewheel) 0.2 W/ha [4] 

Dissolved Air Flotation: 0.5 KWh/m
3
 [17] 

Centrifugation: 28.8 MJ/m
3
 [13] 

Dryer: (natural gas) 3556 KJ/kg water removed [22] 

 

Energy associated with mixing is applied to an area equal to that of the RABR (4.3 m
2
). 

With an energy requirement of 0.2 W/ha or 0.86W per RABR area and an algal productivity of 10 

g m
-2

 day
-1

, the energy required to generate 1 kg of dry algal biomass can be calculated as 

follows: 

 

Equation B4:                   
 

      
     

 

   
 

Equation B5:                      
 

 
         

 

    
      

     

   
         

 

   
 

Equation B6:      
       

 

   

   
 

   

        
 

 
      

  

  
 

  

Wastewater containing the algal biomass is sent through a DAF unit and the algal 

biomass is concentrated to 4.3 wt% solids. Energy consumption to achieve this concentration is 

0.5 KWh/m
3 
liquid processed. Based on the area of water (4.3 m

2
) and a depth of 30 cm, the total 

volume processed is 1289 L or 1.29 m
3
. This volume corresponds to a total energy consumption 

of 5240 KJ/Kg and 4491 KJ/kg for phosphorous concentrations of 1.5 and 1.0 g/m
3 
respectively. 

For the baseline case, energy consumed equals 14,561 KJ/Kg.  
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Equation B8:     
     

   

          
  

           
 

        
       

  

  
  (Baseline Case) 

Equation B9:     
     

   

          
  

           
 

        
     

  

  
   (Target: 1.5 mg/L P) 

Equation B10:     
     

   

          
  

           
 

        
     

  

  
  (Target 1.0 mg/L P) 

 

The difference in energy consumption for the two scenarios is due to the varying amount 

of algal biomass generated. With the baseline case the DAF is processing a suspension containing 

0.012% solids. Therefore, production of an equivalent amount of algal biomass requires the 

processing of higher volumes of biomass. As the concentration of algal biomass increases, 0.034 

and 0.04% for target phosphorous values of 1.5 and 1.0 mg/L, the energy decreases for DAF 

operation per kg of algal biomass generated.  

The concentrated algal paste is then sent to a centrifuge to dewater further, up to a 

concentration of 20 wt% solids. A typical centrifuge consumes approximately 28.8 MJ/m
3 
(28.8 

KJ/L)
 
of material processed 

13
. Sludge generated by the DAF is 4.3 wt% solids. Sludge volumes 

for each scenario and energy for centrifugation are provided in Table B7. On a per kg dry algal 

biomass basis, the energy required is 669.8 KJ/kg and it is for all scenarios analyzed. The energy 

consumption does not vary per kg of algal biomass generated because the DAF is feeding the 

centrifuge a stream containing the same amount of solids (20%).  

 

Table B7. Energies associated with centrifugation step for suspended algae. 

Scenario: Volume of DAF Sludge: L Energy for Centrifuge: KJ Energy for Centrifuge: KJ/Kg 

Baseline: 3.71 106.7 669.8 

Scenario 1: 10.30 296.6 669.8 

Scenario 2: 12.01 346.0 669.8 
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Processes exist that utilize algal biomass at 20% solids and extract lipids for biofuels 

production 
13

. If the algal biomass is to be dried it must be dried in one of multiple types of dryers 

available 
12,18,21

. For this study it is assumed a natural gas dryer 
21

 is used that consumes 3556 

KJ/kg algae produced 
22

. Table B9 provides a summary of the energy for the dewatering process, 

from the raceway to the dried algal biomass. 

 

Table B8. Energy associated with the dewatering of algal biomass from suspended cultures. For 

each scenario based on a unit volume of 1288.8 L.  

 

Stream: Energy Required KJ: Mass of water removed: Kg 

For DAF: Baseline: 2,320 

Scenario 1: 2,320 

Scenario 2: 2,320 

Baseline: 1,285.1 

Scenario 1: 1,278.5 

Scenario 2: 1,276.8 

For Centrifuge: Baseline: 106.7 

Scenario 1: 296.6 

Scenario 2: 346.0 

Baseline: 2.64 

Scenario 1: 7.35 

Scenario 2: 8.57 

For Dryer: Baseline: 2,203.2 

Scenario 1: 8,747 

Scenario 2: 10,205 

Baseline: 0.89 

Scenario 1: 2.46 

Scenario 2: 2.87 

 

 

 

Table B9. Energy requirements in terms of KJ/Kg dry algae produced. Based on values from the 

energy values in Table B7 divided by the mass of algae generated for each scenario. 

 

Stream: Energy Required KJ/Kg: 

Algae Generated: Baseline: 159.3 g 

Scenario 1: 442.8 

Scenario 2: 516.6 

For DAF: Baseline: 14,561 

Scenario 1: 5,239 

Scenario 2: 4,491 

For Centrifuge: Baseline: 669.8 

Scenario 1: 669.8 

Scenario 2: 669.8 

For Dryer: Baseline: 19,756 

Scenario 1: 19,756 

Scenario 2: 19,756 
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 When drying of the algal biomass is not required the raceway growth and harvesting 

method can be energetically favorable, but when drying is required the energy consumed is 

higher than the energy gained from the algal biomass. The RABR system had a net energy of 

+17,113 KJ/Kg of algal biomass produced (Table B4). For the raceway system the net energy 

without thermal drying of the biomass was +12,804 KJ/Kg algae biomass produced. When 

thermal drying was required the net value was -1,024 KJ/Kg algae biomass. In either case the 

RABR system is energetically favorable compared to the raceway growth and harvesting system.  

4.4. Summary for RABR 

For the RABR the energy balance and associated CO2 emissions will be based on Figure 

B2. The first case described will be for the baseline where no nutrients are added and the energy 

and CO2 balance is for one RABR unit. 

4.3. Summary of Energy Usage for Each Harvesting Method and CO2 emissions 

Table B10. Raw Data used for calculations: 

Data For: Value or Ratio Used: Source/Comments: 

Electrical Energy Generation 30% Natural Gas 

70% Coal Fired 
[23] 

Electrical Energy CO2 

Emissions 

Coal: 1,179 g CO2/KWh 

Natural Gas: 549 g CO2/KWh  

GREET (Electricity at Wall 

Outlets) 

Energy associated with Algae: 21.4 KJ/g Christenson et al.  

Energy Associated with Urea: 21.855 mmBTU/ton Urea GREET 

CO2 Associated with Urea: 691,732 g CO2/ton Urea GREET 

Natural Gas Dryer Emissions: 
59,379 g CO2/mmBTU 

GREET Utility/Industrial 

Boiler 
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Table B11. For Baseline RABR Unit: 

Stream: Energy 

Input: KJ/kg 

Energy Output: 

KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for RABR 

rotation: 

(-4,822) - (+1,326) Emissions 

Energy associated with harvested 

algal biomass: 

- (+21,400) (-1,313) Taken by 

Algae 

Net: (+16,578) (+13) 

 

Table B12. For the RABR Scenario 1: (1.5 mg/L P) 

Stream: Energy 

Input: KJ/kg 

Energy Output: 

KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for RABR 

rotation: 

(-4822) - (+1,326) Emissions 

Energy Associated with Urea 

Addition: 

(-2,165) - (+65) Emissions 

Energy associated with harvested 

algal biomass: 

- (+21,400) (-1,313) Taken by 

Algae 

Net: (+14,412) (+78) 

 

Table B13. For the RABR Scenario 2: (1.0 mg/L P) 

Stream: Energy 

Input: KJ/kg 

Energy Output: 

KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for RABR 

rotation: 

(-4,822) - (+1,326) Emissions 

Energy Associated with Urea 

Addition: 

(-2,340) - (+71) Emissions 

Energy associated with harvested 

algal biomass: 

- (+21,400) (-1,313) Taken by 

Algae 

Net: (+14,238) (+84) 

 

4.5. Summary for Suspended Algae 

For the raceway the energy balance and associated CO2 emissions will be based on 

Figure B3. The first case described will be for the baseline where no nutrients are added and the 

energy and CO2 balance is for one RABR unit. Natural gas dryer used is based on an 

industrial/utility reboiler and does not use electricity. 
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Table B14. For Baseline Raceway Unit: 

Stream: Energy Input: 

KJ/kg 

Energy Output: 

KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for mixing: (-1,728) - (+475) Emissions 

Electrical energy for DAF: (-14,561) - (+4,004) Emissions 

Electrical energy for 

Centrifuge: 

(-670) - (+184) Emissions 

Energy associated with 

harvested algal biomass: 

- (+21,400) (-1,313) Taken by 

Algae 

NET (+4,441) (+3,350) 

Energy associated with 

drying: 

(-19,756) - (+1,126) Emissions 

Net: (-15,315) (+4476) 

 

Table B15. For Scenario 1 Raceway Unit: 

Stream: Energy Input: 

KJ/kg 

Energy Output: 

KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for mixing: (-1,728) - (+475) Emissions 

Energy for Urea Production: (-2,165) - (+65) 

Electrical energy for DAF: (-5,239) - (+1441) Emissions 

Electrical energy for 

Centrifuge: 

(-670) - (+184) Emissions 

Energy associated with 

harvested algal biomass: 

- (+21,400) (-1,313) Taken by 

Algae 

NET (+11,598) (+852) 

Energy associated with drying: (-19,756) - (+1,126) Emissions 

Net: (-8,158) (+1,860) 

 

 

Table B16. For Scenario 2 Raceway Unit: 

Stream: Energy Input: 

KJ/kg 

Energy 

Output: KJ/kg 

 

g CO2/kg biomass 

Input/Output: 

Electrical energy for mixing: (-1,728) - (+475) Emissions 

Energy for Urea Production: (-2,340) - (+71) 

Electrical energy for DAF: (-4,491) - (+1,235) Emissions 

Electrical energy for Centrifuge: (-670) - (+184) Emissions 

Energy associated with harvested 

algal biomass: 

- (+21,400) (-1,313) Taken by Algae 

NET (+12,171) (+652) 

Energy associated with drying: (-19,756) - (+1,008) Emissions 

Net: (-7,585) (+1,660) 
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4.6. Mass Balance Analysis 

An overall mass balance was performed from the influent wastewater to bio-product 

production. This was performed using a basis of generating 1 Kg of algal oil. Figure B4 illustrates 

the generic mass balance for the entire process described.  

The mass balance was performed for all three scenarios, with each one using the same 

functional unit of 1 Kg algal oil. Table B18 presents the data generated. Table B19 presents data 

for the baseline raceway scenario.  

 

 

Figure B4. Flow diagram describing the growth of algal biomass to the production of 

bioproducts. 
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Table B17. Mass balance results for three scenarios of phosphorous removal. RABR productivity 

is assumed to be 25 g/m
2
 day and each unit is 4.3 m

2
. 

 

Stream/Parameter: Units: Baseline: Scenario 1: Scenario 2: 

Influent Wastewater: m3/day 80.68 15.48 13.19 

Number of RABRs Required: Units 93.02 93.02 93.02 

Total RABR Area Required: m2 400.00 400.00 400.00 

Supplemental N: g/day 0.00 57.32 75.18 

Liquid Digestate: m3/day 0.00 0.60 0.60 

Algal Oil Collected: Kg/day 1.00 1.00 1.00 

ABE Products: Kg/day 0.44 0.44 0.44 

Carbon Dioxide: Kg/day 0.00 2.13 2.13 

Methane Gas: Kg/day 0.00 1.65 1.65 

 

Table B18. Baseline raceway scenario for mass balance assuming 10 g/m
2
 day. Area required to 

grow the algal biomass increases due to the decrease in productivity.  

 

Stream/Parameter: Units: Baseline: 

Influent Wastewater: m3/day 80.68 

Total Raceway Area Required: m2 1000.00 

Algal Oil Collected: Kg/day 1.00 

ABE Products: Kg/day 0.44 

 

Table B19. Area requirements for RABR assuming 31 g/m
2
 day. Area remains constant for all 

scenarios. 

Stream/Parameter: Units: Baseline: 

Influent Wastewater: m3/day 80.68 

Number of RABRs Required: Units 93.02 

Total RABR Area Required: m2 322 

Supplemental N: g/day 0.00 

Liquid Digestate: m3/day 0.00 

Algal Oil Collected: Kg/day 1.00 

ABE Products: Kg/day 0.44 

Carbon Dioxide: Kg/day 0.00 

Methane Gas: Kg/day 0.00 
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The baseline scenario assumes no anaerobic digester and no supplemental nitrogen. With 

this scenario the effluent phosphorous is assumed to be equal to 3.42 g/m
3
. This is the effluent 

resulting from the removal of the corresponding amount of nitrogen by the algal biomass. 

Because the lagoons influent (7.8 g/m
3
 N and 4.5 g/m

3
 P) is nitrogen limited a large volume of 

wastewater is required to achieve the 10,000 Kg of dry algal biomass to generate 1 Kg algal oil. 

Once the anaerobic digester comes online and additional nitrogen is supplied via an external 

source, the wastewater demand reduces to 15.48 and 13.19 m
3
/day for scenario 1 and 2 

respectively. However, with increasing phosphorous removal, the amount of external nitrogen 

required is higher going from 57 to 75 g/day added for scenario 1 and 2 respectively.  

4.7. Overall Energy Balance and CO2 Emissions for System 

For this section the energy requirements and the generated CO2 will be determined. For 

comparison data from Frank et al. is presented in Table B21 
20

. Following Table B10, a series of 

tables are presented containing similar data generated using the RABR and the WLEP methods. 

For all cases electricity and heat generation are based on energy produced from the combined 

heat and power (CHP) unit, which is fed methane from the anaerobic digester. The data in Tables 

22 through 25 assume the Redfield stoichiometric ratio for algal biomass
16

, while Frank et al use 

103 : 11: 1 (C: N: P). It is also assumed that the change in lipid concentration in the algae does 

not affect the amount of biogas generated and the composition of the solid digestate from the 

anaerobic reactor.  
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Table B20. Energy data as calculated by Frank et al. Originally presented as BTU/kg algal oil. 

This data is based on an algal lipid concentration of 25% by dry mass.  

 

  KWh/kg-algal oil 

Total On-Site Electricity Generation: 3.87 

On-Site Electricity Demand: 5.15 

Net Electrical Energy: -1.28 

  KWh/kg-algal oil 

Total On-Site Heat Generation: 5.00 

On-Site Heat Requirement: 3.44 

Net Heat Energy: 1.56 

  kg/kg algal-oil 

AD Residue or Fertilizer: 2.6 

  kg/kg algal-oil 

Total CO2 Emissions: 3.47 

Recovered CO2 used for Algae Growth: 3.47 

 

Table B21. Data generated using RABR and WLEP mass and energy balances.  

 

USING WLEP PROCESS WITH RABR:                                            
(10% Lipid Content & 25 g/m2 day)   

  KWh/kg-algal oil 

Total On-Site Electricity Generation: 3.68 

On-Site Electricity Demand: 14.32 

Net Electrical Energy: -10.65 

  KWh/kg-algal oil 

Total On-Site Heat Generation: 7.46 

On-Site Heat Requirement: 24.41 

Net Heat Energy: -16.95 

  kg/kg-algal oil 

AD Residue or Fertilizer: 5.73 

  kg/kg algal-oil 

Total CO2 Emissions: 21.32 

Recovered CO2 used for Algae Growth: 2.13 
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Table B22. Data generated using RABR and WLEP mass and energy balances. 

USING WLEP PROCESS WITH RABR:                                            
(25% Lipid Content & 25 g/m2 day)   

  KWh/kg-algal oil 

Total On-Site Electricity Generation: 3.68 

On-Site Electricity Demand: 13.76 

Net Electrical Energy: -10.08 

  KWh/kg-algal oil 

Total On-Site Heat Generation: 7.46 

On-Site Heat Requirement: 10.28 

Net Heat Energy: -2.82 

  kg/kg-algal oil 

AD Residue or Fertilizer: 5.73 

  kg/kg algal-oil 

Total CO2 Emissions: 17.86 

Recovered CO2 used for Algae Growth: 2.13 

 

 

Table B23. Data generated using RABR and WLEP mass and energy balances. 

USING WLEP PROCESS WITH RABR:                                            
(10% Lipid Content & 31 g/m2 day)   

  KWh/kg-algal oil 

Total On-Site Electricity Generation: 3.68 

On-Site Electricity Demand: 11.73 

Net Electrical Energy: -8.05 

  KWh/kg-algal oil 

Total On-Site Heat Generation: 7.46 

On-Site Heat Requirement: 19.53 

Net Heat Energy: -12.07 

  kg/kg-algal oil 

AD Residue or Fertilizer: 5.73 

  kg/kg algal-oil 

Total CO2 Emissions: 18.75 

Recovered CO2 used for Algae Growth: 2.13 
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Table B24. Data generated using RABR and WLEP mass and energy balances. 

USING WLEP PROCESS WITH RABR:                                            
(25% Lipid Content & 31 g/m2 day)   

  KWh/kg-algal oil 

Total On-Site Electricity Generation: 3.68 

On-Site Electricity Demand: 11.17 

Net Electrical Energy: -7.49 

  KWh/kg-algal oil 

Total On-Site Heat Generation: 7.46 

On-Site Heat Requirement: 10.28 

Net Heat Energy: -2.82 

  kg/kg-algal oil 

AD Residue or Fertilizer: 5.73 

  kg/kg algal-oil 

Total CO2 Emissions: 15.30 

Recovered CO2 used for Algae Growth: 2.13 

 

Data presented in Tables B11 through B14 shows that the RABR and WLEP methods 

combined, demand higher heat and electrical energy than the CHP unit can provide. Research by 

Frank et al. found that enough heat can be supplied. However, Frank et al. requires that electrical 

energy be imported to the site to run the required processes.  

One explanation for the high heat demand is the WLEP process. The acid and base 

hydrolysis steps require a significant amount of heat as shown in Table B26. Because this 

procedure has been recently developed, the steps have not optimized, and therefore, energy 

requirements are in excess. There is potential to reduce the energy demand for this step, thus 

lowering the overall heat requirements for the WLEP process. However, this requires further 

research and is outside the scope of this proposal/project.  
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Table B25. Energy demands for the WLEP. 

WLEP Energy For Oil: 

Heat: 

KWh 

Electricity: 

KWh 

Hydrolysis Step: 16.84 0.27 

Precipitate Collection: 0.00 0.62 

Lipid Extraction: 1.14 0.033 

Solvent Recovery: 1.55 0.00 

TOTALS: 19.53 0.93 

After Efficiency Factors: 24.41 0.93 

 

The electrical demand originates from the RABR system mainly. This value can be found 

in Section 4.5. Converting the 4822 KJ/kg algae to KWh/kg oil, results in an energy consumption 

of 13.39 KWh/kg algal oil, assuming the algal biomass is 10% lipids by dry mass. 

If drying the algal biomass is required, as some lipid extraction processes call for, an 

additional 5.49 KWh/kg algae (10 kg dry algae for 1 kg oil) is required assuming the algae is 85% 

moisture (after centrifugation). This corresponds CO2 emissions of approximately 1,100 g 

CO2/kg dry algal biomass (heat for drying originates from a natural gas boiler Table B6 Section 

4.3) 

4.8. Energy and CO2 emissions saved or energy offset from use of wastewater 

In many instances algal biomass is grown using fertilizer as the sole source of nutrients, 

such as nitrogen and phosphorous. However, due to the high energy demand in producing 

fertilizers, this becomes energetically costly. The use of wastewater has been suggested for 

reducing this energy demand by multiple authors 
2,11

. Analysis in this section will be focused on 

the energy saved by the use nutrients available in the wastewater.  

The Logan lagoons receives on average 15 MGD wastewater with influent concentrations 

of nitrogen and phosphorous at 16 mg/L and 5 mg/L respectively. However, due to nitrogen 

stripping and some loss of phosphorous, the concentration of nutrients being fed to the RABR 
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system is 7.8 mg/L nitrogen and 4.5 mg/L phosphorous. This corresponds to 7.8 g nitrogen and 

4.5 g phosphorous per m
3 
wastewater. Table B2 presents data on the energy required for the 

production of three nitrogen containing fertilizers. Table B27 summarizes the energy and CO2 

emissions saved by using wastewater and recovering nutrients from the anaerobic digester.  

 

Table B26. Energy and CO2 credits for using wastewater and recovering nutrients via the 

anaerobic digester. 

 

For the production of 1 Kg biodiesel: (10 Kg Algal Biomass) 

 Mass: (g) Equivalent 

Mass of 

Fertilizer: 

(g) 

Fertilizer: Energy to 

Produce 

Fertilizer: 

KJ 

CO2 

Emissions 

from 

Production: 

Nitrogen from 

Wastewater: 

120.75 256.91 Urea 6,474.17 195.49 

Phosphorous from 

Wastewater: 

69.66 391.74 K2HPO4 10,236.07 756.05 

      

Nitrogen Recovered 

from AD: 

452.93 963.68 Urea 24,284.62 733.27 

Phosphorous 

Recovered from AD: 

41.70 234.48 K2HPO4 6,126.86 452.54 

 

4.9 Overall Mass and Energy Balances: 

Based on the data presented a “preliminary” mass and energy balance is presented in this 

section. Figure B5 presents a summarized mass balance for Scenario 1 from Table B18.  
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Figure B5. Illustration of a mass balance performed on the whole process. This example is based  

on Scenario 1 from Table B18. 

 

Table B27. Mass flow through the process illustrated in Figure B5. (Similar to Table B9a for 

Scenario 1). 

 

Stream/Parameter: Units: Scenario 1: 

Influent Wastewater: m3/day 15.48 

Number of RABRs Required: Units 93.02 

Total RABR Area Required: m2 400.00 

Supplemental N: (Fertilizer/outside source) g/day 57.32 

Liquid Digestate: m3/day 0.60 

[Liquid Digestate] Mass of Nitrogen: g/day 453.1 

[Liquid Digestate] Mass of Phosphorous: g/day 41.7 

Algal Oil Collected: Kg/day 1.00 

ABE Products: Kg/day 0.44 

Carbon Dioxide: Kg/day 2.13 

Methane Gas: Kg/day 1.65 
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An overall energy balance was also performed over the entire system. A few things 

should be noted: (1) Energy resulting from fuels generated are based on their combustion energies 

or energy densities (2) ABE fermentation energy requirements are based on a Life Cycle Analysis 

of Corn ABE fermentation (Wu et al. Nov 2007 “Life Cycle Assessment of Corn-Based Butanol 

as a Potential Transportation Fuel”) (3) The energy balance is based on the above mass balance 

(Scenario 1). Figure B6 shows an overview of the entire energy balance, while Figure B7 

illustrates the combined process.  

 Based on the net energies stated in Figure B6, the harvesting process generates a net 

energy of +162,703 KJ/day for the production of 10 kg of dry algal biomass (1 kg biodiesel). This 

value is similar to values presented in section 4.4. This large net energy is due to the production 

of algal biomass containing 21.4 KJ/g dry algae 
17

. Conversion of algal biomass to fuels generates 

a net energy of +13,317 KJ/day based on the energy required to process the algal biomass. All 

energies associated with the fuels generated are based on their heats of combustion. Energy to 

generate biodiesel from algal oil was based on Sheehan et al.’s calculations for the 

transesterification of soybean biodiesel (only heat energy for transesterification and FAME 

purification were taken into account) 
22

.  

However, as previously discussed in section 4.7, the CHP unit does not provide enough 

energy to run both the WLEP and fuel producing processes. Based on Figure B6, there is a 

shortage of approximately 10 KWh (38,900 KJ/day). Table B11 indicates an energy shortage of 

approximately 27.6 KWh. This difference may be explained due to Figure B6 not taking into 

account losses in energy due to inefficient conversion of the energy in the biogas to electricity 

and heat. Typical CHP units are 76% efficient in converting biogas derived methane to usable 

electricity and heat. In addition other inefficiencies have not been taken into account in Figure 

B6. Therefore, Figure B6 is a theoretical energy balance and further work is required to refine the 

energy balance.  
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Figure B6. Energy balance for RABR harvesting and WLEP based lipid extraction process. Values indicated in red are energy streams entering 

the process. Energy streams in black is energy gained from the process (fuels). 
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Figure B7. An illustration depicting the coupling of wastewater remediation to algal biomass processing to generate bioproducts and biofuels. 

Only the liquid and gas biofuels are considered for the energy balance. 
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APPENDIX C  

RAW DATA FOR SELECTED CHAPTERS 

Gas chromatography calibration information: (Applicable for Chapters 3 and 4)  

 

 

Figure C1. Calibration data for C 8:0 FAME 

 

Figure C2. Calibration data for C 10:0 FAME 

 

Figure C3. Calibration data for C 12:0 FAME 
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Figure C4. Calibration data for C 14:0 FAME 

 

Figure C5. Calibration data for C 16:0 FAME 

 

Figure C6. Calibration data for C 16:1 FAME 
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Figure C7. Calibration data for C 18:0 FAME 

 

Figure C8. Calibration data for C 18:1FAME 

 

Figure C9. Calibration data for C 18:2 FAME 
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Figure C10. Calibration data for C 18:3 FAME 

 

Figure C11. Calibration data for C 20:0 FAME 

 

Figure C12. Calibration data for C 22:0 FAME 
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Figure C13. Calibration data for C 22:1 FAME 

 

Figure C14. Calibration data for C 24:0 FAME 

 

Raw data presented in Chapter 3: 

 Data used for the calculation of averages presented in Table 9 from Chapter 3: 

Table C1. Raw data for the positive control (Direct Transesterification). 

Replicate: Mass of Biomass: (mg) Mass of FAMEs: (mg) % wt FAME: 

1 100.50 11.50 11.45% 

2 100.40 11.18 11.14% 

3 100.70 10.94 10.87% 

4 100.00 10.97 10.97% 

5 99.70 10.87 10.90% 

6 99.50 11.37 11.42% 

Average:   11.12% 
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Table C2. Raw data for the wet algal biomass samples (Extracted Lipid Residue ). 

Replicate: Mass of Biomass: (mg) Mass of FAMEs: (mg) % wt FAME: 

1 98.94 6.81 6.88% 

2 99.35 7.07 7.12% 

3 99.96 7.48 7.49% 

4 100.52 5.39 5.36% 

5 100.83 7.07 7.02% 

6 99.99 5.71 5.71% 

Average:   6.60% 

 

Table C3. Raw data for the wet algal biomass samples (Water Phase/Aqueous Phase). 

Replicate: Mass of Biomass: (mg) Mass of FAMEs: (mg) % wt FAME: 

1 98.94 0.12 0.12% 

2 99.35 0.13 0.13% 

3 99.96 0.13 0.13% 

4 100.52 0.12 0.12% 

5 100.83 0.12 0.12% 

6 99.99 0.13 0.13% 

Average:   0.13% 

 

Table C4. Raw data for the wet algal biomass samples (Precipitated Solid Phase). 

Replicate: Mass of Biomass: (mg) Mass of FAMEs: (mg) % wt FAME: 

1 98.94 1.40 1.42% 

2 99.35 1.58 1.59% 

3 99.96 1.41 1.42% 

4 100.52 2.61 2.59% 

5 100.83 1.66 1.64% 

6 99.99 2.68 2.68% 

Average:   1.89% 
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Table C5. Raw data for the wet algal biomass samples (Residual Biomass). 

Replicate: Mass of Biomass: (mg) Mass of FAMEs: (mg) % wt FAME: 

1 98.94 2.17 2.19% 

2 99.35 2.39 2.41% 

3 99.96 2.22 2.22% 

4 100.52 2.36 2.35% 

5 100.83 2.31 2.29% 

6 99.99 2.26 2.26% 

Average:   2.29% 

 

Raw data presented in Chapter 4: 

 Data contained within this section relates to data presented in Chapter 4.  

Table C6: Determination of moisture content of algal biomass used in study. R refers to the 

replicate number.  

 

Sample: Mass of 

Container: 

Mass of 

wet 

algae: 

Total 

Mass: 

Post 

Drying 

Mass: 

Mass of 

Dry 

Algae: 

% Mass 

Change: 

% 

Moisture: 

105
o
C Samples 

105 WET 

R1: 

13.3218 5.2374 18.5592 18.5592 5.2374 0.00% 81.30% 

105 WET 

R2: 

13.4166 4.9700 18.3866 18.3866 4.9700 0.00% 81.30% 

105 WET 

R3: 

13.4049 5.5346 18.9395 18.9395 5.5346 0.00% 81.30% 

                

105 

LYOPH 

R1: 

13.2352 4.9524 18.1876 14.1661 0.9309 81.20% 0.09% 

105 

LYOPH 

R2: 

13.3279 5.3865 18.7144 14.3351 1.0072 81.30% 0.00% 

105 

LYOPH 

R3: 

13.5175 5.5208 19.0383 14.5451 1.0276 81.39% -0.09% 

        Average Moisture 

Content: 

81.30%   

                

105 1H 

R1: 

1.2849 5.0027 6.2876 3.6075 2.3226 53.57% 27.72% 

105 1H 

R2: 

1.2850 5.1125 6.3975 3.5268 2.2418 56.15% 25.15% 

105 1H 1.2889 5.0553 6.3442 3.8915 2.6026 48.52% 32.78% 
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R3: 

                

105 2H 

R3: 

1.2824 5.1768 6.4592 2.4332 1.1508 77.77% 3.53% 

105 2H 

r1: 

1.2868 5.0517 6.3385 2.4787 1.1919 76.41% 4.89% 

105 2H 

r3: 

1.2875 5.1630 6.4505 2.4084 1.1209 78.29% 3.01% 

                

105 4H 

R1: 

1.2831 4.9482 6.2313 2.2270 0.9439 80.92% 0.37% 

105 4H 

R2: 

1.2867 5.1014 6.3881 2.2616 0.9749 80.89% 0.41% 

105 4H 

R3: 

1.2839 4.9955 6.2794 2.2438 0.9599 80.78% 0.51% 

                

105 8H 

R1: 

1.2891 5.1610 6.4501 2.2643 0.9752 81.10% 0.19% 

105 8H 

R2: 

1.2860 5.0234 6.3094 2.2332 0.9472 81.14% 0.15% 

105 8H 

R3: 

1.2887 5.0474 6.3361 2.2500 0.9613 80.95% 0.34% 

                

105 20H 

R1: 

1.2869 5.0425 6.3294 2.2336 0.9467 81.23% 0.07% 

105 20H 

R2: 

1.2892 5.1871 6.4763 2.2615 0.9723 81.26% 0.04% 

105 20H 

R3: 

1.2827 5.0620 6.3447 2.2322 0.9495 81.24% 0.05% 

                

105 32H 

R1: 

1.2938 5.0257 6.3195 2.2354 0.9416 81.26% 0.03% 

105 32H 

R2: 

1.2869 5.0576 6.3445 2.2372 0.9503 81.21% 0.09% 

105 32H 

R3: 

1.2936 4.9911 6.2847 2.2233 0.9297 81.37% -0.08% 

85 Wet 

R1: 

6.4584 6.1940 12.6524 12.6524 6.194 0.00% 88.69% 

85 Wet 

R2: 

6.4332 5.1180 11.5512 11.5512 5.118 0.00% 88.69% 

85 Wet 

R3: 

6.4464 5.6275 12.0739 12.0739 5.6275 0.00% 88.69% 

                

85 Lyoph 

R1: 

6.4454 5.5506 11.9960 7.0717 0.6263 88.72% -0.02% 

85 Lyoph 

R2: 

6.4450 4.9597 11.4047 7.0061 0.5611 88.69% 0.01% 

85 Lyoph 6.5108 5.3282 11.8390 7.1142 0.6034 88.68% 0.02% 
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R3: 

        Average Moisture 

Content: 

88.69%   

85
o
C Samples 

85 1H R1: 1.2847 5.2760 6.5607 4.5740 3.2893 37.66% 51.04% 

85 1H r2: 1.2855 5.0323 6.3178 4.5785 3.293 34.56% 54.13% 

85 1H R3: 1.2890 5.0926 6.3816 4.3463 3.0573 39.97% 48.73% 

                

85 2H R1: 1.2928 5.1792 6.4720 2.7725 1.4797 71.43% 17.26% 

85 2H R2: 1.2930 5.1731 6.4661 2.7910 1.498 71.04% 17.65% 

85 2H R3: 1.2918 5.0368 6.3286 2.7088 1.417 71.87% 16.83% 

                

85 4H R1: 1.2801 5.0775 6.3576 1.8856 0.6055 88.07% 0.62% 

85 4H R2: 1.2803 4.9803 6.2606 1.8687 0.5884 88.19% 0.51% 

85 4H R3: 1.2788 5.0882 6.3670 1.8778 0.599 88.23% 0.47% 

                

85 8H R1: 1.2847 5.1360 6.4207 1.8736 0.5889 88.53% 0.16% 

85 8H R2: 1.2897 5.0495 6.3392 1.8719 0.5822 88.47% 0.22% 

85 8H R3: 1.2917 5.0560 6.3477 1.8736 0.5819 88.49% 0.20% 

                

85 20H 

R1: 

1.2856 5.1235 6.4091 1.8670 0.5814 88.65% 0.04% 

85 20H 

R2: 

1.2912 4.9957 6.2869 1.8591 0.5679 88.63% 0.06% 

85 20H 

R3: 

1.2743 5.0375 6.3118 1.8465 0.5722 88.64% 0.05% 

                

85 32H 

R1: 

1.2865 5.0133 6.2998 1.8457 0.55922 0.888452716 -0.15% 

85 32H 

R2: 

1.2830 4.9876 6.2706 1.8487 0.5657 0.886578715 0.04% 

85 32H 

R3: 

1.2915 5.0934 6.3849 1.8682 0.5767 0.886775042 0.02% 

                

Spare 1: 1.2817 5.0077 6.2894 4.4655 3.1838 36.42% 52.27% 

Spare 2: 1.2855 5.0323 6.3178 4.5785 3.293 34.56% 54.13% 

Spare 3: 1.2817 5.0023 6.2840 2.9462 1.6645 66.73% 21.97% 

Spare 4: 1.2928 4.9978 6.2906 2.9330 1.6402 67.18% 21.51% 

Spare 5: 1.2830 5.0544 6.3374 1.8834 0.6004 88.12% 0.57% 

Spare 6: 1.2920 5.0292 6.3212 1.8910 0.599 88.09% 0.60% 

65
o
C Samples 

65 Wet 

R1: 

13.3891 5.4138 18.8029 18.8029 5.4138 0.00% 73.89% 

65 Wet 13.3874 5.4040 18.7914 18.7914 5.4040 0.00% 73.89% 
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R2: 

65 Wet 

R3: 

13.4190 5.4306 18.8496 18.8496 5.4306 0.00% 73.89% 

                

65 Lyoph 

R1: 

13.3876 6.1129 19.5005 14.9834 1.5958 73.89% -0.01% 

65 Lyoph 

R2: 

13.3702 5.4553 18.8255 14.7945 1.4243 73.89% 0.00% 

65 Lyoph 

R3: 

13.3943 5.2423 18.6366 14.7635 1.3692 73.88% 0.01% 

        Average Moisture 

Content: 

73.89%   

                

65 1H R2: 1.2850 5.2427 6.5277 5.5744 4.2894 18.18% 55.71% 

65 1H r1: 1.2833 5.4043 6.6876 5.5907 4.3074 20.30% 53.59% 

65 1H r2: 1.2771 5.0569 6.3340 5.2034 3.9263 22.36% 51.53% 

                

65 2H r1: 1.2820 5.1712 6.4532 4.4454 3.1634 38.83% 35.06% 

65 2H r2: 1.2770 5.0131 6.2901 4.5415 3.2645 34.88% 39.01% 

65 2H R1: 1.2805 5.1579 6.4384 4.3518 3.0713 40.45% 33.43% 

                

65 4H R1: 1.2788 5.1639 6.4427 3.4693 2.1905 57.58% 16.31% 

65 4H R2: 1.2758 5.2873 6.5631 3.7200 2.4442 53.77% 20.12% 

65 4H R3: 1.2819 5.4278 6.7097 3.5754 2.2935 57.75% 16.14% 

                

65 8H R1: 1.2808 5.2325 6.5133 2.7900 1.5092 71.16% 2.73% 

65 8H R2: 1.2827 5.2873 6.5700 2.8049 1.5222 71.21% 2.68% 

65 8H R3: 1.2735 5.2424 6.5159 2.7860 1.5125 71.15% 2.74% 

                

65 20H 

R1: 

1.2871 5.4249 6.7120 2.7940 1.5069 72.22% 1.67% 

65 20H 

R2: 

1.2808 5.5383 6.8191 2.8245 1.5437 72.13% 1.76% 

65 20H 

R3: 

1.2802 5.0222 6.3024 2.6862 1.4060 72.00% 1.88% 

                

65 32H 

R1: 

1.2757 5.4460 6.7217 2.7861 1.5104 72.27% 1.62% 

65 32H 

R2: 

1.2826 5.0950 6.3776 2.6917 1.4091 72.34% 1.55% 

65 32H 

R3: 

1.2780 5.2012 6.4792 2.7192 1.4412 72.29% 1.60% 
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Table C7: FAME production for each sample. Values presented within the Table G are mass of 

FAMEs generated in terms of % cell dry mass. R refers to the replicate number as stated in Table 

C6.  

 

Sample: Replicate 1: Replicate 2: Replicate 3: Average: 

105 WET R1: 4.70% 5.26% 5.18% 5.05% 

105 WET R2: 4.96% 5.34% 2.85% 4.38% 

105 WET R3: 5.28% 3.87% 4.86% 4.67% 

105 LYOPH R1: 9.51% 9.35% 9.44% 9.43% 

105 LYOPH R2: 9.95% 10.25% 9.77% 9.99% 

105 LYOPH R3: 9.86% 9.79% 9.71% 9.79% 

105 1H R1: 4.90% 3.53% 5.09% 4.51% 

105 1H R2: 3.26% 3.18% 4.46% 3.63% 

105 1H R3: 4.52% 4.74% 4.19% 4.48% 

105 2H R3: 8.76% 9.02% 9.95% 9.24% 

105 2H r1: 8.04% 8.28% 8.34% 8.22% 

105 2H r3: 8.53% 8.57% 8.72% 8.61% 

105 4H R1: 8.66% 8.98% 9.17% 8.94% 

105 4H R2: 9.31% 8.99% 8.82% 9.04% 

105 4H R3: 8.75% 9.00% 8.86% 8.87% 

105 8H R1: 8.58% 8.79% 8.83% 8.73% 

105 8H R2: 8.79% 8.68% 8.97% 8.81% 

105 8H R3: 8.63% 8.68% 8.75% 8.69% 

105 20H R1: 8.61% 8.84% 8.91% 8.79% 

105 20H R2: 9.18% 8.61% 8.90% 8.90% 

105 20H R3: 8.44% 8.69% 8.71% 8.61% 

105 32H R1: 9.74% 8.61% 6.86% 8.40% 

105 32H R2: 7.30% 8.58% 8.57% 8.15% 

105 32H R3: 8.54% 8.01% 8.59% 8.38% 

85 Wet R1: 2.20% 3.66% 3.57% 3.14% 

85 Wet R2: 3.87% 4.31% 3.65% 3.94% 

85 Wet R3: 3.85% 3.64% 3.67% 3.72% 

85 Lyoph R1: 11.51% 11.28% 11.28% 11.36% 

85 Lyoph R2: 11.24% 11.32% 11.23% 11.26% 

85 Lyoph R3: 11.65% 11.55% 11.31% 11.50% 

85 1H R1: 3.44% 3.53% 3.54% 3.50% 

85 1H r2: 2.93% 3.30% 3.33% 3.19% 

85 1H R3: 3.41% 3.38% 3.42% 3.40% 

85 2H R1: 4.65% 5.00% 4.83% 4.83% 
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85 2H R2: 4.54% 3.96% 3.78% 4.09% 

85 2H R3: 4.38% 4.24% 4.38% 4.33% 

85 4H R1: 10.81% 11.59% 11.92% 11.44% 

85 4H r1: 10.73% 11.95% 11.16% 11.28% 

85 4H r2: 11.15% 10.97% 11.47% 11.20% 

85 8H R1: 10.09% 11.33% 11.20% 10.87% 

85 8H R2: 11.59% 11.79% 11.20% 11.53% 

85 8H R3: 11.16% 11.37% 11.22% 11.25% 

85 20H R1: 10.11% 11.46% 11.65% 11.07% 

85 20H R2: 11.45% 11.49% 11.48% 11.47% 

85 20H R3: 11.52% 11.47% 11.44% 11.48% 

85 32H R1: 10.46% 11.58% 11.35% 11.13% 

85 32H R2: 11.84% 11.56% 11.52% 11.64% 

85 32H R3: 11.33% 11.48% 11.39% 11.40% 

1H r 1 2.65% 2.99% 3.42% 3.02% 

1H r 2 2.93% 3.30% 3.33% 3.19% 

2H r1 4.55% 3.81% 4.17% 4.18% 

2H r2 4.01% 4.03% 3.74% 3.93% 

4H r1 10.73% 11.95% 11.16% 11.28% 

4H r2 11.15% 10.97% 11.47% 11.20% 

65 Wet R1: 4.99% 4.72% 4.57% 4.76% 

65 Wet R2: 4.96% 5.11% 4.88% 4.98% 

65 Wet R3: 4.82% 4.97% 4.92% 4.90% 

65 Lyoph R1: 11.42% 11.54% 11.59% 11.52% 

65 Lyoph R2: 11.37% 11.55% 11.57% 11.50% 

65 Lyoph R3: 11.30% 10.97% 11.23% 11.17% 

65 1H R2: 5.14% 5.59% 5.95% 5.56% 

65 1H r1: 5.29% 6.21% 5.49% 5.66% 

65 1H r2: 5.99% 6.12% 6.50% 6.20% 

65 2H r1: 3.39% 4.01% 3.58% 3.66% 

65 2H r2: 2.99% 3.75% 3.63% 3.46% 

65 2H R1: 3.05% 2.88% 2.83% 2.92% 

65 4H R1: 8.81% 9.13% 9.22% 9.05% 

65 4H R2: 8.48% 8.81% 8.58% 8.62% 

65 4H R3: 8.60% 8.50% 8.85% 8.65% 

65 8H R1: 10.97% 10.90% 10.94% 10.94% 

65 8H R2: 11.10% 10.91% 10.96% 10.99% 

65 8H R3: 10.78% 10.84% 10.78% 10.80% 

65 20H R1: 11.16% 11.04% 11.55% 11.25% 

65 20H R2: 10.92% 10.84% 10.71% 10.82% 

65 20H R3: 11.53% 10.76% 10.43% 10.91% 
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65 32H R1: 11.32% 10.81% 10.45% 10.86% 

65 32H R2: 11.95% 11.54% 10.89% 11.46% 

65 32H R3: 11.69% 10.71% 10.38% 10.93% 

 

Table C8: Raw data for Figure 16 within Chapter 4. D.c.m. stands for dry cell mass. mL 

methanol solution is the acidified methanol added while acid concentration is (v/v) sulfuric acid 

in methanol. 

 

Sample: mL of Methanol 

Soln: 

Acid 

Concentration: 

Mass of Algae 

(mg): 

% FAME by 

d.c.m.: 

(1%/0.5) - 1 0.5 1.00% 99.8 0.67% 

(1%/0.5) - 2 0.5 1.00% 99.9 0.60% 

(1%/0.5) - 3 0.5 1.00% 100.5 0.79% 

(1%/1.0) - 1 1 1.00% 99.6 6.10% 

(1%/1.0) - 2 1 1.00% 99.8 5.75% 

(1%/1.0) - 3 1 1.00% 99.5 6.16% 

(1%/2.0) - 1 2 1.00% 100 8.29% 

(1%/2.0) - 2 2 1.00% 99.9 8.77% 

(1%/2.0) - 3 2 1.00% 99.8 8.40% 

(1%/4.0) - 1 4 1.00% 100.4 8.80% 

(1%/4.0) - 2 4 1.00% 100.2 8.99% 

(1%/4.0) - 3 4 1.00% 99.7 8.33% 

(2%/0.5) - 1 0.5 2.00% 100.2 7.17% 

(2%/0.5) - 2 0.5 2.00% 100.4 7.19% 

(2%/0.5) - 3 0.5 2.00% 100 6.22% 

(2%/1.0) - 1 1 2.00% 100.3 9.55% 

(2%/1.0) - 2 1 2.00% 100.4 9.81% 

(2%/1.0) - 3 1 2.00% 99.8 9.78% 

(2%/2.0) - 1 2 2.00% 100.4 9.69% 

(2%/2.0) - 2 2 2.00% 99.7 9.35% 

(2%/2.0) - 3 2 2.00% 100.2 9.35% 

(2%/4.0) - 1 4 2.00% 100.3 9.50% 

(2%/4.0) - 2 4 2.00% 100.3 9.78% 

(2%/4.0) - 3 4 2.00% 100.3 9.74% 

(5%/0.5) - 1 0.5 5.00% 100.4 9.50% 

(5%/0.5) - 2 0.5 5.00% 100.3 10.43% 

(5%/0.5) - 3 0.5 5.00% 100 10.35% 

(5%/1.0) - 1 1 5.00% 100.3 10.26% 

(5%/1.0) - 2 1 5.00% 100.1 10.57% 

(5%/1.0) - 3 1 5.00% 100.3 10.14% 
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(5%/2.0) - 1 2 5.00% 100.4 10.41% 

(5%/2.0) - 2 2 5.00% 100.3 10.08% 

(5%/2.0) - 3 2 5.00% 100.3 10.19% 

(5%/4.0) - 1 4 5.00% 100.5 10.55% 

(5%/4.0) - 2 4 5.00% 100.6 9.81% 

(5%/4.0) - 3 4 5.00% 100.3 9.84% 

(5%/0.5) - 1 0.5 10.00% 100.3 10.29% 

(5%/0.5) - 2 0.5 10.00% 99.8 10.14% 

(5%/0.5) - 3 0.5 10.00% 100.2 9.56% 

(5%/1.0) - 1 1 10.00% 100.7 9.73% 

(5%/1.0) - 2 1 10.00% 100.8 10.65% 

(5%/1.0) - 3 1 10.00% 99.8 10.09% 

(5%/2.0) - 1 2 10.00% 100 9.53% 

(5%/2.0) - 2 2 10.00% 99.5 10.57% 

(5%/2.0) - 3 2 10.00% 99.6 11.95% 

(5%/4.0) - 1 4 10.00% 100.2 10.62% 

(5%/4.0) - 2 4 10.00% 99.9 11.40% 

(5%/4.0) - 3 4 10.00% 99.8 10.37% 

 

Table C9: Raw data for Figure 17 within Chapter 4. D.c.m. stands for dry cell mass. mL 

methanol solution is the acidified methanol added while acid concentration is (v/v) sulfuric acid 

in methanol. 

Sample: mL of 

Methanol 

Solution: 

Acid 

Concentration: 

Mass of Algae 

(mg): 

% FAME by 

d.c.m.: 

(1%/0.5) - 1 0.5 1.00% 101.94 0.48% 

(1%/0.5) - 2 0.5 1.00% 101.89 0.30% 

(1%/0.5) - 3 0.5 1.00% 99.49 0.43% 

(1%/1.0) - 1 1 1.00% 102.2 1.29% 

(1%/1.0) - 2 1 1.00% 103.08 1.19% 

(1%/1.0) - 3 1 1.00% 101.07 1.18% 

(1%/2.0) - 1 2 1.00% 102.43 3.22% 

(1%/2.0) - 2 2 1.00% 100.8 3.20% 

(1%/2.0) - 3 2 1.00% 99.7 3.56% 

(1%/4.0) - 1 4 1.00% 99.69 4.97% 

(1%/4.0) - 2 4 1.00% 102.2 4.14% 

(1%/4.0) - 3 4 1.00% 97.11 5.36% 

(2%/0.5) - 1 0.5 2.00% 99.33 0.42% 

(2%/0.5) - 2 0.5 2.00% 101.49 0.45% 

(2%/0.5) - 3 0.5 2.00% 102.55 0.48% 
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(2%/1.0) - 1 1 2.00% 101.94 3.01% 

(2%/1.0) - 2 1 2.00% 99.7 2.17% 

(2%/1.0) - 3 1 2.00% 100.43 1.97% 

(2%/2.0) - 1 2 2.00% 101.78 5.23% 

(2%/2.0) - 2 2 2.00% 101.12 5.04% 

(2%/2.0) - 3 2 2.00% 102.97 5.23% 

(2%/4.0) - 1 4 2.00% 99.09 7.74% 

(2%/4.0) - 2 4 2.00% 101.01 7.35% 

(2%/4.0) - 3 4 2.00% 100.15 7.80% 

(5%/0.5) - 1 0.5 5.00% 99.69 1.38% 

(5%/0.5) - 2 0.5 5.00% 102.2 1.49% 

(5%/0.5) - 3 0.5 5.00% 97.11 1.47% 

(5%/1.0) - 1 1 5.00% 101.07 4.11% 

(5%/1.0) - 2 1 5.00% 102.25 4.38% 

(5%/1.0) - 3 1 5.00% 99.98 4.31% 

(5%/2.0) - 1 2 5.00% 101.38 7.01% 

(5%/2.0) - 2 2 5.00% 101.54 6.71% 

(5%/2.0) - 3 2 5.00% 100.17 7.24% 

(5%/4.0) - 1 4 5.00% 101.38 8.90% 

(5%/4.0) - 2 4 5.00% 101.54 9.07% 

(5%/4.0) - 3 4 5.00% 100.17 8.93% 

(5%/0.5) - 1 0.5 10.00% 99.01 2.12% 

(5%/0.5) - 2 0.5 10.00% 102.78 2.01% 

(5%/0.5) - 3 0.5 10.00% 98.62 2.49% 

(5%/1.0) - 1 1 10.00% 98.65 5.19% 

(5%/1.0) - 2 1 10.00% 102.28 5.20% 

(5%/1.0) - 3 1 10.00% 99.7 5.20% 

(5%/2.0) - 1 2 10.00% 100.39 7.77% 

(5%/2.0) - 2 2 10.00% 101.64 7.57% 

(5%/2.0) - 3 2 10.00% 102.68 7.51% 

(5%/4.0) - 1 4 10.00% 101.07 8.93% 

(5%/4.0) - 2 4 10.00% 102.25 8.50% 

(5%/4.0) - 3 4 10.00% 99.98 9.08% 
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