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ABSTRACT 
 
 

Characterization of the Function and Interaction of Proteins Involved in 

Exopolysaccharide Synthesis in Streptococcus thermophilus, Streptococcus iniae, and 

Lactococcus lactis subsp. cremoris  

 
by 
 
 

Angela D. Cefalo, Doctor of Philosophy 
 

Utah State University, 2012 
 

 
Major Professor:  Dr. Dennis L. Welker 
Department:  Biology 
 
 

 Amino acid residues that are important for metal binding and catalysis in Gram-

positive phosphotyrosine phosphatases were identified in Streptococcus thermophilus 

Wzh/EpsB proteins.  The Wzh protein from S. thermophilus MR-1C was purified 

after heterologous expression and tested for phosphatase activity against synthetic 

phosphotyrosine and phosphoserine/threonine peptides.  The purified Wzh protein 

was able to remove phosphate from both phosphotyrosine peptides tested and the 

phosphatase activity of Wzh was dramatically reduced by the presence of the 

phosphotyrosine phosphatase inhibitor sodium vanadate at concentrations of 1, 5, and 

10 mM.  Purified Wzh had no activity against the synthetic phosphoserine/threonine 

peptide.  These results established that Wzh functions as a phosphotyrosine  
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phosphatase.  By using the yeast two-hybrid system, strong intraspecific protein 

interactions were detected in S. thermophilus MR-1C, Streptococcus iniae 9066, and 

Lactococcus lactis subsp. cremoris JRF1 between the putative transmembrane 

activation protein (Wzd, CpsC, and EpsA, respectively) and the putative protein 

tyrosine kinase (Wze, CpsD, and EpsB, respectively).  Weaker protein interactions 

take place forming a dimer between two identical protein tyrosine kinases and 

between the protein tyrosine kinase and phosphotyrosine phosphatase (Wzh, CpsB, 

and EpsC, respectively) in these species.  Protein-protein interactions involving a S. 

thermophilus MR-1C Wzd/Wze fusion protein and Wzd and Wze indicated that these 

proteins may form multi-protein complexes.  All combinations of the S. thermophilus 

Wzh, Wzd, Wze, Wzg (regulation), CpsE (glycosyl-1-phosphate transferase), CpsS 

(polymerization), CpsL (unknown), CpsW (regulation), and CpsU (membrane 

translocation) proteins were analyzed for protein-protein interactions but no 

additional interactions were discovered.  For each of the intraspecific interactions 

detected, interspecific interactions were also detected when one protein was from S. 

iniae and the other was from S. thermophilus.  Interactions were also observed 

between two protein tyrosine kinases when one protein was from either of the 

Streptococcus species and the other from L. lactis subsp. cremoris.  These results and 

sequence comparisons performed in this study support the conclusion that interactions 

among the components of the tyrosine kinase/phosphatase regulatory system are 

conserved in the family Streptococcaceae.  Interspecific protein-protein interactions  
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suggest that functional regulatory complexes can be formed in naturally occurring 

and genetically engineered recombinant strains. 

(228 pages) 
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PUBLIC ABSTRACT 
 
 

Characterization of the Function and Interaction of Proteins Involved in 

Exopolysaccharide Synthesis in Streptococcus thermophilus, Streptococcus iniae, and 

Lactococcus lactis subsp. cremoris  

 
by 
 
 

Angela D. Cefalo, Doctor of Philosophy 
 

Utah State University, 2012 
 

 
Major Professor:  Dr. Dennis L. Welker 
Department:  Biology 
 
 
 Many microorganisms produce capsules of repeating sugar units that surround the 

cell called exopolysaccharides.  The synthesis of these capsules is a complex process that 

involves numerous protein components.  A better understanding of the way these proteins 

function and interact with one another will benefit many industrial processes by aiding in 

the construction of bacterial strains with enhanced properties and could also lead to new 

treatment strategies against microbial pathogens in which capsule production is important 

in their ability to cause disease.  In this study, the function of one of the proteins involved 

in the regulation of capsule synthesis in the dairy starter culture Streptococcus 

thermophilus MR-1C is clearly established.  The research in this study also provides 

insight into the protein-protein interactions involved in capsule production and their 

conservation among Gram-positive bacteria in the family Streptococcaceae using the 
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dairy starter cultures S. thermophilus MR-1C and Lactococcus lactis subsp. cremoris 

JRF1, and a commensal strain of the fish pathogen Streptococcus iniae 9066.   

Experimental data obtained on the ability of the proteins involved in capsule synthesis to 

interact with counterparts from a different species suggest that the transfer of genes 

between the streptococci species and to some extent between streptococci and lactococci 

could form functional regulatory complexes.  This would be a necessary requirement for 

efficient capsule production in starter strains that have been genetically modified to 

improve their functional characteristics for industrial uses or in naturally occurring 

recombinant strains.   
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CHAPTER 1 
 

INTRODUCTION 
 

 
Many microorganisms produce capsules of repeating sugar units that surround the 

cell.  These capsules are collectively termed exopolysaccharides (EPS) and can be tightly 

associated with the cell wall as capsular polysaccharides (CPS) or liberated into the 

medium as an unattached loose slime (ropy EPS).  EPS is produced by both Gram-

negative and Gram-positive bacteria and EPS producers can be found in many different 

niches.  The size and composition of EPS polymers are very diverse and are often strain 

dependent.  Due to the unique properties of these polymers, their possible uses in 

industry, the roles they play in the disease processes of pathogens, and their ability to 

increase survival of bacteria in adverse environmental conditions, much research has 

been done in this area.  However, many aspects about the complex processes involved in 

EPS production and export remain unknown. The functions of some proteins involved in 

EPS production are unclear and little is known about how these proteins interact with one 

another to produce EPS.  A better understanding of the process involved in EPS 

production could benefit industry by allowing the genetic manipulation of EPS producing 

cultures to improve their functionality and could benefit medicine by identifying new 

targets for the design of antimicrobial drugs.  The primary research goals of this 

dissertation are as follows:  

1.  Establish that the Streptococcus thermophilus Wzh protein functions as a        

     phosphotyrosine phosphatase. 

2.  Investigate protein-protein interactions involved in EPS biosynthesis in S.   

     thermophilus MR-1C. 



2 
 

 
 

3.  Determine if the same protein-protein interactions take place during EPS       

     production in Streptococcus iniae 9066, and Lactococcus lactis subsp.  

     cremoris JRF1. 

4.  Investigate interspecific protein-protein interactions to determine if functional  

     regulatory complexes could be formed in naturally occurring and genetically    

     engineered recombinant strains. 

To achieve the first goal tyrosine phosphatase and serine/threonine phosphatase 

kits from Promega (Madison, Wisconsin, USA) were used.   These kits provided a 

convenient non-radioactive method to study phosphatase activity and have been used to 

successfully characterize similar bacterial phosphatases.   The yeast two-hybrid system is 

a well established method used to study protein-protein interactions and was used to 

accomplish the other three research goals.   

The S. thermophilus Wzh protein has been thought to function as a 

phosphotryosine phosphatase (PTP) due to its protein sequence similarity with known 

PTPs but this activity has never been demonstrated.  This is the first study to analyze the 

direct interaction of some of the proteins involved in EPS biosynthesis.  This is the first 

study to investigate whether these proteins require their cognately encoded counterparts 

in order to form protein-protein interactions or whether they can form interspecific 

protein-protein interactions.   

The literature review will detail what is presently known about bacterial 

exopolysaccharide capsules.  The first section will briefly discuss the complex and 

diverse structure of EPS.  The many diverse functions of EPS, such as in protection from 
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adverse environmental conditions, the survival of pathogens, biofilm formation, 

protection from bacteriophage infection, symbiotic relationships with plants, or energy 

storage, will be reviewed.   

The next section of the literature review will detail how EPS clusters are named 

and organized.  To provide an example of this organization in Gram-negative systems the 

Escherichia coli K-12 wca operon is presented.  The cps operons of streptococci and the 

cps and eps operons found in lactic acid bacteria (LAB) will provide examples for Gram-

positive systems.  These examples will detail important information on the organization 

of the EPS genes found in S. thermophilus, S. iniae, and L. lactis subsp. cremoris that are 

used in the experiments contained in this dissertation.  The chimeric structure of eps/cps 

gene clusters due to horizontal gene transfer events will also be discussed in this section.   

The literature review will also discuss the steps needed for EPS biosynthesis.  

EPS can be synthesized either extracellularly by transglycosylases or intracellularly by 

glycosyltransferases.  After intracellular assembly, translocation and polymerization of 

the repeat sugar units can take place through either a Wzy-dependent or a Wzy-

independent pathway.   Finally, what is known about the enzymes and mechanism 

involved in the attachment of capsules to the cell surface is discussed.   

Next, the literature review will present what is currently known about the protein 

tyrosine kinase (PTK)/PTP regulatory system that controls exopolysaccharide production.  

Protein organization of this regulatory system is different in Gram-negative and Gram-

positive bacteria.  Previous research has suggested that the effects of tyrosine 

phosphorylation of the PTK on EPS production varies from system to system; either 
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promoting high molecular mass polysaccharide synthesis or reducing it.  The current 

viewpoint is that cycling between phosphorylated and non-phosphorylated forms of the 

PTK is essential for efficient high molecular weight polysaccharide synthesis.   

The functional properties of EPS are influenced by both its chemical composition 

and its molecular mass.  Natural or genetically modified polysaccharides that can be used 

in food, medical applications, or other industries are popular research topics. The last 

section of the literature review will present uses for EPS in bioremediation, as 

cryoprotectants, and as food additives.  It will also discuss the use of EPS in the 

prevention of biofilm formation and the benefits of EPS on human health.    

The third chapter of this dissertation presents research that clearly establishes S. 

thermophilus Wzh functions as a PTP that could remove phosphate from phosphotyrosine 

residues in two test peptides and therefore is likely to have this same function with the 

PTK Wze and other proteins important in EPS biosynthesis.  Protein sequence alignments 

of S. thermophilus Wzh/EpsB (different naming schematics) proteins with known Gram-

positive PTPs identified that Wzh contained conserved amino acid residues that are 

important in metal binding and catalysis.  The wzh gene from S. thermophilus MR-1C 

was cloned into Escherichia coli BL21 (DE3) cells to allow the production of a His-

tagged fusion protein.  The Wzh fusion protein was purified and tested for PTP activity 

against synthetic phosphotyrosine peptides alone and in combination with the PTP 

inhibitor sodium vanadate.  The purified Wzh protein was functional in releasing 

phosphate from both of the synthetic phosphotyrosine peptides tested.  The activity of 

Wzh was dramatically decreased in the presence of sodium vanadate.  The purified Wzh 
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was also tested for activity against a synthetic phosphoserine/threonine peptide but no 

phosphatase activity was detected.     

 The fourth chapter of this dissertation identifies interactions that take place among 

the protein components involved in EPS biosynthesis in S. thermophilus MR-1C using 

the yeast two-hybrid system.  These protein-protein interactions are important to the 

efficient synthesis of high molecular weight EPS.  This research demonstrated that there 

is a strong interaction between the PTK Wze and the transmembrane activation protein 

Wzd, a weaker interaction between two identical PTK Wze proteins, and a weaker 

interaction between the PTK Wze and the PTP Wzh.  A Wzd/Wze fusion protein was 

created and protein-protein interactions of this fusion protein with Wzd and Wze may 

indicate that these proteins form multi-protein complexes.  All other combinations of 

Wzh, Wzd, Wze, Wzg (regulation), CpsE (glycosyl-1-phosphate transferase), CpsS 

(polymerization), CpsL (unknown), CpsW (regulation), and CpsU (membrane 

translocation) failed to identify any other protein-protein interactions.   

 The fifth chapter of this dissertation uses the yeast two-hybrid system to identify 

the intraspecific and interspecific protein interactions in S. thermophilus, S. iniae and L. 

lactis subsp. cremoris that would indicate that the protein-protein interactions of the 

PTK/PTP regulatory system are conserved in family Streptococcaceae and that 

intraspecific gene exchanges have the potential to form functional recombinants.  As was 

found in S. thermophilus, a strong protein-protein interaction was detected between the 

PTK and the transmembrane protein, between two identical PTK proteins, and between 

the PTK and the PTP in S. iniae and L. lactis subsp. cremoris.  Interspecific interactions 
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were detected for each of the intraspecific interactions when when one protein was from 

S. iniae and the other was from S. thermophilus.  Interspecific interactions were also 

observed between two PTKs when one protein was from either of the Streptococcus 

species and the other from L. lactis subsp. cremoris.   

 The last chapter of this dissertation will address limitations of this research and 

suggest a direction for future research on the biosynthesis of EPS.  Taken together the 

results of the experiments contained in this dissertation have increased the understanding 

of the protein functions and interactions important in the biosynthesis of EPS production.  

These results also suggest that functional regulatory complexes could be created in 

genetically engineered recombinants aiding in the construction of strains with enhanced 

properties.   
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CHAPTER 2 
 

LITERATURE REVIEW 
 

BACTERIAL EXOPOLYSACCHARIDE CAPSULES: FUNCTIONS, SYNTHESIS,  
 

REGULATION, AND APPLICATIONS 
 

 
1.  Structure of exopolysaccharides 
 

Exopolysaccharides (EPS) are highly hydrated and complex structures that consist 

of repeating units of monosaccharides joined by glycosidic linkages.  EPS come in a wide 

variety of compositions and configurations due to the diversity of the sugar components 

and the variety of linkages between the sugars (Roberts 1996).  The molecular mass, 

structure, and yield of EPS vary greatly even between bacterial strains of the same 

species (De Vuyst et al. 2001).  Streptococcus pneumoniae strains produce over 90 

distinct capsular types that vary in sugar composition and complexity of the glycosidic 

linkages (Yother 2011).  More than 80 distinct extracellular polysaccharides have been 

found in different strains of Escherichia coli (Whitfield and Roberts 1999).   EPS can be 

classified as either homopolysaccharides or heteropolysaccharides.  The 

homopolysaccharides contain repeating units of only one type of monosaccharide and 

include cellulose, dextrans, mutan, alternan, pullulan, levan and curdlan (Monsan et al.  

2001). The heteropolysaccharides contain repeated subunits of different 

monosaccharides, derivatives of monosaccharides, or substituted monosaccharides (De 

Vuyst et al. 2001).  A common feature among the capsules of S. pneumoniae and many 

other species is that the capsules are mostly negatively charged due to the presence of 



8 
 

 
 

acidic sugars, phosphate, or pyruvate.  The remainder of the capsules are usually neutral 

in their charge (Kamerling 2000).    

 
2.  Functions of EPS  
 
2.1.  EPS protects bacteria in adverse environmental conditions 
 

EPS protects bacteria from adverse conditions in the surrounding environment.  

Bacteria that produce EPS have the advantage of binding water in low moisture 

environments and protecting themselves from desiccation (Grilli-Caiola et al. 1993, 1996; 

Ophir and Gutnick 1994; Potts 1999; Obadia et al. 2007).  Mucoid strains of many 

pathogens, such as E. coli and Pantoea stewartii, are more resistant to drying than 

isogenic non-mucoid strains.  In fact, it has been found that exposure to desiccation 

conditions actually increases the expression of genes that encode the biosynthetic 

enzymes needed for the production of the EPS colanic acid (CA) in E. coli (Ophir and 

Gutnick 1994).  Obadia et al. (2007) found that cells of E. coli K-12 with increased 

expression of the wzb gene encoding a phosphotyrosine phosphatase produced more CA 

than wild type cells and were more resistant to desiccation.  A strain that was deficient in 

the expression of the protein tyrosine kinase Wzcca and unable to produce CA was more 

susceptible to desiccation than wild type cells.  This resistance was influenced by the size 

of the EPS polymer produced.  Wild type cells that produced CA with a wide distribution 

of sizes were more resistant to desiccation than strains expressing the non-phosphorylated 

form of Wzcca, which produced a polymer mix with a narrow size distribution.  It was 

determined that a polymer mix ranging from 600 kDa to 2,000 kDa conferred the best 

resistance against desiccation.  The specific mechanism involved in this resistance is not 
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well understood, but several possibilities have been investigated.  The hydrophilic nature 

of EPS allows a layer of water to be retained around the cell protecting the integrity of 

macromolecules and preventing damage to the cell wall due to the cellular shrinking 

normally associated with desiccation (Grilli-Caiola et al. 1993, 1996).  External 

protective compounds that aid in the survival of desiccated cells such as water stress 

proteins can be retained by EPS (Potts 1999).  In conditions where water is limited, the 

production of damaging reactive oxygen species can be increased.  The EPS from 

Burkholderia cenocepacia and Pseudomonas aeruginosa can scavenge and neutralize 

these reactive oxygen species preventing cellular damage (Pasquier et al. 1997; Bylund et 

al.  2006). 

 EPS can protect many different bacterial cells from heat, acid, and osmotic stress.  

For example, E. coli O157:H7 cells that were unable to produce CA, a type of EPS, due 

to insertional mutagenesis of the wca (Fig. 2.1) operon were less tolerant to acid and heat 

stress than the isogenic wild-type cells.  The growth of wild-type cells was not markedly 

affected at pH 4.5, but the growth of the mutant cells was completely inhibited at the 

same pH (Mao et al. 2001).  The strong negative charge of CA may neutralize protons 

and act as a buffer at the cell surface to prevent the accumulation of positively charged 

chemical groups on the cell envelope or the penetration of ions into the cells.  Without 

the protective CA layer, it is believed that the penetration of protons and change in 

intracellular pH impaired cell metabolism and caused cell death.  D-values are defined as 

the time at a specific temperature that is required to inactivate one log of the bacterial 
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population.  The CA deficient mutants had significantly lower D-values than the wild 

type cells at 55 and 60 oC (Mao et al. 2001).   

The influence of several heat shock proteins on the regulation of CA induction 

suggests a role for CA in the heat shock response.  For example, it has been found that 

overexpression of the DjlA co-chaperone of E. coli triggers the synthesis of CA. The 

interaction of DjlA with the molecular chaperone DnaK is necessary for the activation of 

the wca operon.  The induction of wca (Fig. 2.1) may occur by modulation of the activity 

of the RcsB/RcsC phosphotransferase signaling pathway by the interaction of DjlA and 

DnaK (Kelly and Georgopoulos 1997; Genevaux et al. 2001).  The CA deficient mutants 

were also more susceptible to osmotic and oxidative stresses (Chen et al. 2004).   

 

Fig. 2.1.  Organization of the wca operon in Escherichia coli K-12.  The ORFs and 
direction of transcription are indicated by the arrows.  Proposed function of the genes is 
indicated by the color of the arrow.    

 

EPS protects microorganisms in cold environments by forming and maintaining 

microhabitats around the cells (Decho 1990).  The research of Kim and Yim (2007) 

demonstrated the cryoprotective abilities of EPS produced by the Antarctic bacterium 

Pseudoalteromonas arctica.  When the EPS from this organism was used as a 

cryoprotectant for E. coli cells, it was found that the survival ratio increased to more than 
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90% as compared to a survival ratio of around 43% for cells prepared with 20% (v/v) 

glycerol.   

Capsular and ropy EPS has been shown to sequester cations, including Fe2+, Zn2+, 

Cu2+ and Co2+, thereby concentrating helpful metal ions in the microenvironment around 

the cells.  The negatively charged groups in EPS can bind cations and protect the 

bacterial cell against toxic metals (Ordax et al. 2010).  Proteinaceous particles have been 

shown to adhere to EPS causing them to be concentrated around the cell.  This would 

allow efficient proteolytic digestion of the particles and facilitate the absorption of the 

resulting amino acids into the cells (Qin et al. 2007).  Bacterial EPS have been shown to 

be powerful emulsifiers that improve the solubility of substrates in the environment 

making them more bioavailable (Martínez-Checa et al. 2002, 2007; Iyer et al. 2006; Ta- 

Chen et al. 2008).  An interesting new function in enzyme stabilization for EPS was 

investigated by Qin et al. (2007).  They determined that the EPS from the deep-sea 

organism Pseudoalteromonas sp. SM9913 stabilized the protease produced by this 

bacterium and effectively prevented it from auto-digesting.  This would enhance 

digestion of proteinaceous particles.   

 
2.2.  EPS are important for the survival of pathogens 
 

Mutations that negatively affect capsule synthesis in pathogenic organisms 

usually result in a decreased ability to cause invasive infections and attenuation of 

pathogenicity (Watson and Musher 1990; Morona et al. 2004, 2006; Locke et al. 2007; 

Nelson et al. 2007; Brunner et al. 2010).  The EPS capsules of many human and plant 

pathogens are important for the initial attachment of the bacterial cells to host tissue.  
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Bacteria can regulate capsule biosynthesis to allow for varying degrees of capsule 

production under different environmental conditions or stages of growth.  For example, in 

S. pneumoniae cells that produce a smaller amount of capsule the adhesive molecules are 

more exposed.  This promotes colonization by strengthening the contact with epithelial 

cells and allowing uptake of the pathogen.  However, a larger capsule would be beneficial 

in survival and evasion of the host immune system allowing systematic dissemination of 

the pathogen (Hammerschmidt et al. 2005).  

The mechanisms by which production of EPS helps pathogenic bacteria evade the 

immune system are not completely understood, but several possibilities have been 

investigated.  The negative surface charge of the capsule may be important.  A study 

done by Nelson et al. (2007) indicates that the capsule of S. pneumoniae is essential for 

escaping the lumenal mucus and permitting the bacteria access to the host cellular 

receptors on the epithelial surface of the nasal mucosa, thereby allowing colonization.  As 

the bacteria escape the lumenal mucus, they evade clearance by mucocilliary flow.  The 

mechanism behind this may involve electrostatic repulsion between the highly negatively 

charged muco-polysaccharides and the negatively charged EPS of the bacterial capsule 

(Nelson et al. 2007).  Miller and Neely (2005) and Locke et al. (2007) have shown that 

capsule production in Streptococcus iniae prevents phagocytosis by macrophages.  

Mutants deficient in capsule production were bound and internalized much more 

efficiently by macrophages than capsular wild type cells.  The wild type cells had a 76% 

survival rate from phagocytosis, but the capsule deficient mutants had only a 13-29% 

survival rate.  Interestingly, cells with mutations causing overproduction of the capsule 
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were even more resistant to phagocytosis than their wild type counterparts.  It has been 

determined that monocytes adhere significantly less to cells with negative surface 

charges.  The greater the negative charge of the EPS, the greater the resistance to the 

phagocytic cells of the immune system (Swiatlo et al. 2002).  In a similar manner, EPS 

may protect soil bacteria from ingestion by amoebas and flagellated soil protozoa 

(Moxon and Kroll 1990).  Research in plants, indicates that polyanionic EPS may 

suppress response to pathogens by binding available calcium ions that function as a 

second messenger in pathogen perception.  Chelation by the EPS would stop the calcium 

influx from the apoplast to the cytosol that is necessary to the hypersensitive response.  It 

is unknown whether the chelation of calcium ions by polyanionic EPS would suppress 

vertebrate innate immunity (Grant et al. 2000; Lecourieux et al. 2006; Aslam et al. 2008). 

EPS can function in evasion of the immune system by the molecular mimicry of 

host cells.  The sialic acid containing capsular polysaccharide (CPS) of Neisseria 

meningitidis can protect the bacteria from non-specific host defense mechanisms in the 

absence of a specific antibody.  The sialic acid capsule mimics the sialic acid found 

decorating host cells.  This mimicry allows the capsule to interfere with complement-

mediated killing by preventing the activation of complement via the alternative pathway 

and inhibiting opsonophagocytosis (Jarvis and Vedros 1987; Jarvis 1994; Vogel et al. 

1997; Kahler et al. 1998).  Klebsiella pneumoniae uses molecular mimicry to evade 

macrophages by incorporating the immunologically inert sugar fucose in CPS (Wu et al. 

2007).  The structural similarities between capsule and host tissue polysaccharides can 
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cause poor antibody responses to such capsules by the immune system (Kahler et al. 

1998; Wu et al. 2007).   

EPS may help cells elude the immune system by acting as a physical barrier or by 

hiding opsonins bound to the bacterial cell wall, preventing their recognition by 

phagocytic cells (Musher 1992). The ability of EPS producing cells to circumvent 

phagocytosis by macrophages could be explained by the masking of host cell binding 

sites (Locke et al. 2007).  In Streptococcus pyogenes, the hyaluronic capsule blocks the 

binding of specific antibodies to the GRAB protein on the surface of bacterial cells, 

possibly through steric or electrostatic hindrance (Kahler et al. 1998; Dinkla et al. 2007).  

Anti-lipoteichoic acid antibodies present in normal human serum cannot recognize 

encapsulated Enterococcus faecalis cells but will readily bind to non-encapsulated strains 

(Hufnagel et al. 2005; Thurlow et al. 2009).  Melin et al. (2009) found that certain 

capsular serotypes of S. pneumoniae were able to inhibit complement associated cell lysis 

and opsonophagocytosis by decreasing the deposition of human complement C3.  

Capsules can protect bacteria from becoming caught in neutrophil extracellular traps 

where they would be killed by antimicrobial peptides (Wartha et al. 2007).  The capsules 

of many pathogens are necessary for intracellular survival in human phagocytic and non-

phagocytic cells.  The mechanism behind intracellular survival involves increased 

resistance to cationic antimicrobial peptides (CAMPs) present in the phagocytic cells.  

The capsule may interfere with the interaction of CAMPs with the surface of the bacterial 

cells (Campos et al. 2004; Spinosa et al. 2007).  Recently, it was demonstrated that non-

capsular mutants of Porphyromonas gingivalis increased the production of interleukin 
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(IL)-1b, IL-6, and IL-8 in human gingival fibroblasts compared to wild type capsular 

cells.  The induction of these proinflammatory cytokines could explain why non-capsular 

cells are contained in localized abscesses by the immune system whereas wild type cells 

evade this defense mechanism and cause spreading phlegmonous infections that lead to 

destructive periodontal diseases.  The CPS of P. gingivalis may prevent the recognition 

of immune inducing agents on the surface of the bacterial cell by Toll-like receptors on 

the fibroblasts or it may lower the expression of inflammatory cytokines by actively 

modulating the immune responses of the fibroblasts (Brunner et al. 2010).  Calcium ions 

are essential for the differentiation and proper functioning of the cellular components of 

the human immune system.  The chelation of calcium ions by polyanionic EPS could 

suppress immune system responses allowing for better survival of pathogens (Grant et al. 

2000; Lecourieux et al. 2006; Aslam et al. 2008; Oh-hora and Rao 2008). 

 
2.3.  EPS are important in biofilm formation 
 

The EPS capsules of many human and plant pathogens are important for the 

initial attachment of the bacterial cells to host tissue and in the formation of biofilms.  

Boddicker et al. (2006) found that biofilm formation was significantly reduced, flat, and 

unstructured in a strain of K. pneumoniae with a mutation in the capsule synthesis locus.  

Biofilms are in part created through lectin-ligand interactions that involve cell-surface 

polysaccharide molecules (Jenkinson 1994; Mora et al. 2008).  This ability to form 

biofilms allows bacteria to colonize many different ecological niches while protecting 

them from harmful substances or organisms.  Biofilms can form on various surfaces 

including silicon, latex, polycarbonate, stainless steel, glass, polyvinyl chloride (PVC), 
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and plant materials (Beuchat 2002; Lehner et al. 2005).  Biofilm formation is an 

important step in the formation of dental carries by allowing adherence of Streptococcus 

mutans to the surface of teeth (Cerning 1990; Whitfield and Keenleyside 1995).  Bacteria 

in biofilms are resistant to many antimicrobial compounds including antibiotics.  

Pseudomonas species can form an alginate rich biofilm in the lungs of cystic fibrosis 

patients that provides a physical barrier to antibiotics (Worlitzsch et al. 2002).  Hill et al. 

(2005) tested clinical isolates of P. aeruginosa from the lungs of cystic fibrosis patients 

for the antibiotic susceptibility of cells grown in a biofilm verses cells grown in a 

planktonic state.  All 10 antibiotics tested were less effective against the cells grown in a 

biofilm than on cells grown in an aerobic planktonic state.  Hill et al. (2005) also showed 

that cells growing in a biofilm were less susceptible to two or more antibiotics used in 

combination than cells grown in aerobic planktonic cultures.  Biofilms can cause 

nosocomial infections by colonization of indwelling medical devices such as catheters 

and endotracheal tubing (Boddicker et al. 2006).  Fouling of industrial pipes and 

equipment by biofilms causes economic losses and can result in the spread of food borne 

illnesses (Rättö et al. 2006; Skandamis et al. 2009). 

 
2.4.  EPS and bacteriophage infection 
 
 EPS may protect some bacteria from lytic phage infection.  Moineau et al. (1996) 

found that 27 distinct lactococcal phages were unable to propagate on six different EPS 

producing strains of Lactococcus lactis.  EPS tightly associated with the cell surface may 

mask phage receptor sites on the surface of the bacterial cell.  EPS production in 

Sinorhizobium meliloti has been shown to inhibit phage absorption (Defives et al. 1996).  
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However, Broadbent et al. (2003) and Rodríguez et al. (2008) found no relationship 

between CPS and phage attack in Streptococcus thermophilus.  In fact, CPS may be 

directly involved in phage-host interactions in some cases.  Specific phages have been 

isolated that only infect strains of E. coli and Vibro cholerae that posses an EPS capsule 

(Albert et al. 1996; Scholl et al. 2001). 

 
2.5.  EPS are important in establishing symbiotic relationships with plants 
 

EPS are important in the interaction of bacteria with plants.  The research 

conducted by Jones et al. (2008) demonstrated the importance of the EPS succinoglycan 

in the establishment of the symbiotic relationship of S. meliloti with plants.  Mutants that 

lack the ability to produce succinoglycan cannot form mature root nodules.  An increase 

in expression of ribosomal components, translational factors, and protein degradation 

machinery was seen in Medicago truncatula (alfalfa) roots inoculated with succinoglycan 

producing wild type cells of S. meliloti.  This increase was not seen when the roots where 

inoculated with a succinoglycan deficient mutant.   However, the roots inoculated with 

this mutant did express a large number of plant defense genes that would most likely 

cause a termination of the colonization of the plant by S. meliloti.  These results suggest 

that plants make profound metabolic adjustments to prepare their roots for invasion by S. 

meliloti when succinoglycan is sensed early on in the infection process.  Acidic 

polysaccharides have been shown to be important for a number of other rhizobia to 

establish symbiosis (Djordjevic et al. 1987; Laus et al. 2005). 
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2.6.  EPS in energy storage 
 

Most bacteria are unable to catabolize the sugar polymers in EPS, and therefore it 

cannot function in energy storage (Cerning 1990; De Vuyst and Degeest 1999).  

However, S. mutans is not only able to breakdown dextran, a class of exopolysaccharides 

produced by lactic acid bacteria (LAB); it can then use the oligosaccharides that are 

produced (Colby and Russel 1997).  

 
3.  EPS gene clusters 
 
3.1.  Nomenclature 
 

At the present time, sequence comparisons and functional studies of eps genes 

and gene clusters can be difficult due to the confusion incurred by the lack of a unified 

system for genetic nomenclature in EPS producing bacteria.  For example, the terms CPS 

and EPS are often used interchangeably to designate a capsular EPS and the genes for 

EPS synthesis have been designated eps, cps, cap, exo, gum, or named after the species.  

In the bacterial polysaccharide gene nomenclature system proposed by Reeves et al. 

(1996), homologous genes are assigned the same symbol without regard to species or 

strain differences.  In this system, most genes are given names in the form of w*** with 

the genes in a cluster having the first three characters in common.  If the function of a 

gene is the same as that of a gene located in another cluster, then the same name is used 

for both even if it means that genes with different three letter designations will exist in 

one cluster.  This system proposes that all genes of any block defined by the same first 

two letters are of the same general type.  Genes for homologous proteins involved in 

saccharide processing are given names in the form of wz* and genes involved in the 
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synthesis of saccharide precursors have names related to the pathway (Reeves et al. 

1996).  For example, in this approach the S. thermophilus regulatory genes epsA-D, 

which are present in all S. thermophilus eps gene clusters, are designated as wzg, wzh, 

wzd, and wze, respectively.  The homologues to the S. thermophilus NCFB 2393 cpsE 

and cpsF genes that encode glycosyltransferases would be designated as wchA and wchF, 

respectively.  The S. thermophilus Sfi6 epsM, MR-1C cpsU, and Sfi39 epsJ genes show 

homology to the conserved flippase gene, wzx.  The S. thermophilus Sfi6 epsJ, MR-1C 

cpsS, and Sfi39 epsF genes have significant homology to the conserved EPS polymerase 

gene wzy (Broadbent et al. 2003).  The advantages of this system are that each distinctive 

gene will have a unique name, but that name will identify it as a bacterial surface 

polysaccharide gene, genes with the same function will have the same name, all genes in 

a pathway will have names that relate to the pathway, and families of saccharide 

processing genes will have distinctive names.  The use of this system should diminish the 

confusion created by the use of the same name for genes of different functions and giving 

genes of the same function different names.  This would make it easier for researchers to 

identify homologous genes in different species or strains and would facilitate analysis of 

those genes.  One of the disadvantages of this method is that not all genes in a cluster will 

have the same three-letter symbol making identification of genes that belong in the same 

cluster somewhat more difficult.  Difficulties may occur as the old names are replaced by 

new names (Reeves et al. 1996).  This dissertation uses names associated with the protein 

and nucleotide files deposited in GenBank and associated with the literature to avoid 

confusion by the renaming of established proteins or genes.   
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3.2.  General organization 
 

In both Gram-positive and Gram-negative bacteria, the enzymes needed for the 

synthesis and transportation of EPS are encoded by genes clustered in large operons 

(Whitfield and Roberts 1999).  However, more genes are required for EPS synthesis than 

are generally found in EPS gene clusters.  For example, some of the nucleotide sugar 

precursors are produced by enzymes encoded by genes that have functions other than in 

EPS synthesis.  Mutation of these genes located outside the EPS gene clusters may still 

result in EPS-deficient phenotypes (Whitfield and Keenleyside 1995).    

In general, the beginning of each EPS gene cluster encodes proteins involved in 

membrane translocation and regulation (Stevenson et al. 1996; Stingele et al. 1996; De 

Vuyst and Degeest 1999; Iannelli et al. 1999; De Vuyst et al. 2001; Jolly and Stingele 

2001).  Many bacteria have a tyrosine kinase/phosphatase regulatory system located in 

the first portion of the EPS gene cluster.  This system also functions in the determination 

of polymer chain length (Vincent et al. 1999; Morona et al. 2000a; Bender and Yother 

2001; Wugeditsch et al. 2001; Bender et al. 2003; Ferreira et al. 2007).  This region is 

followed by a central portion containing genes for glycosyltransferases.  The genes 

needed for sugar nucleotide precursor synthesis can be located in this central region or at 

the end of the cluster.  Downstream of the central region are genes that encode proteins 

responsible for polymerization and export of the repeat unit (Stevenson et al. 1996; 

Stingele et al. 1996; De Vuyst and Degeest 1999; Iannelli et al. 1999; De Vuyst et al. 

2001; Jolly and Stingele 2001).  
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3.3.  The wca operon of E. coli K-12 
 
 One of the most studied operons of this type in Gram-negative cells is associated 

with the production of CA in E. coli K-12.  The genes on this operon all have the same 

transcriptional orientation and appear to be part of a single large transcriptional unit.  The 

wca operon consists of 20 different genes, which either have known functions or 

predicted functions based on homology studies (Fig. 2.2) (Stevenson et al. 1996; 

Whitfield 2006).  The wza gene encodes an outer membrane (OM) lipoprotein that is 

essential for the formation of high molecular weight CPS on the surface of the cells 

(Drummelsmith and Whitfield 2000; Nesper et al. 2003; Beis et al. 2004a, 2004b).   The  

 wzb gene encodes an acid phosphatase and the wzc a protein tyrosine kinase (PTK) 

(Vincent et al. 1999, 2000; Wugeditsch et al. 2001; Doublet et al. 2002; Grangeasse et al. 

2002; Paiment et al. 2002; Obadia et al. 2007).  The manB, manC, gmd, fcl, and gmm 

genes encode enzymes needed for nucleotide precursor synthesis.  The first sugar added 

to the CA polymer is glucose and the initiating glucose-1-phosphate transferase is 

encoded by wcaJ.  The remaining glycosyltransferases are encoded by the wcaA, wcaC, 

wcaE, wcaL, and wcaI genes.  The wcaB and wcaF genes encode acetyltransferases that 

are responsible for the addition of acetyl groups to the final polymer.  It appears that the 

wzy gene encodes a polymerase that functions in the polymerization of the repeat units.  

The wzx gene product is thought to function in the export of the polymer outside the cell.  

The functions of the wcaK and wcaM gene products are not known (Stevenson et al. 

1996; Whitfield 2006). 
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Fig. 2.2.  Organization of the EPS gene clusters in E. coli K-12, Streptococcus 
pneumoniae D39, and Streptococcus thermophilus MR-1C.  The ORFs and direction of 
transcription are indicated by the arrows.  Proposed function of the genes is indicated by 
the color of the arrow.    
 
 
3.4.  The cps operon of the streptococci 
 

One of the best-studied EPS operons in Gram-positive bacteria is involved in the 

production of the type 2 capsule in S. pneumoniae D39.  This operon consists of 18 open 

reading frames, 17 of which have the same direction of transcription.  These 17 genes are 

thought to be transcribed as a single unit due to the location of the upstream promoter and 

the location of a transcriptional terminator downstream of the last gene.  The 

transcriptional orientation of orf1 is opposite that of the rest of the genes in the cluster 

(Fig. 2.2).  The orf1 gene product shows homology to several transposases and is 

probably part of an insertion sequence (Iannelli et al. 1999).  The cpsA, cpsB, cpsC, cpsD, 

and cpsE genes are highly conserved among different species of streptococci and insight 

into their functions can be gained by analyzing the mutational studies performed in 
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Group B streptococci.  In general, CpsA proteins in these systems are thought to be 

important in regulating EPS synthesis.  The cpsIaA gene product of S. agalactiae 

functions in the regulation of capsule production as an activator of gene transcription.  

The inactivation of cpsIaA resulted in reduced amounts of polysaccharide production and 

reduced expression of the type Ia gene cluster (Cieslewicz et al. 2001).   The deletion of 

cps2A in S. pneumoniae did not observably alter the level of Cps2D, but a decrease in 

Cps2D phosphorylation and a reduction in encapsulation occurred.  This suggests that 

Cps2A could have functions other than or in addition to transcriptional control (Bender et 

al. 2003).  The cps2B gene encodes a novel manganese-dependent phosphatase (Bender 

and Yother 2001).  When the cpsIaB of S. agalactiae was inactivated, only very small 

amounts of cell-associated capsule were produced (Cieslewicz et al. 2001).  The gene 

products of cps2C and cps2D are part of a tyrosine kinase system that functions in 

determination of polymer chain length and regulation (Bender and Yother 2001; Morona 

et al. 2000a, 2002; Bender et al. 2003).  Mutations in the S. agalactiae cpsIaC and 

cpsIaD genes resulted in fewer polysaccharides on the cell surface and a reduction in 

polysaccharide chain length (Cieslewicz et al. 2001).  The glucose-1-phosphate 

transferase is encoded by cps2E (Iannelli et al. 1999).  Disruption of the cpsIaE gene of 

S. agalactiae resulted in a non-capsular phenotype (Cieslewicz et al. 2001).  The 

remaining glycosyltransferases are encoded by cps2T, cps2F, cps2G, and cps2I.  The 

cps2H gene appears to encode a polysaccharide polymerase and the cps2J gene a repeat 

unit transporter.  The last six genes of the cluster, cps2K, cps2P, cps2L, cps2M, cps2N, 

and cps2O, function in nucleotide sugar precursor biosynthesis (Iannelli et al. 1999).   
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3.5.  Genetics of EPS production in lactic acid bacteria 
 

A better understanding of capsule production by LAB could be greatly beneficial 

to the dairy industry.  Unlike those found in E. coli and S. pneumoniae, the EPS gene 

clusters of the LAB S. thermophilus and Lactococcus lactis have no orf’s with homology 

to genes required for the synthesis of nucleotide sugar precursors.  All the enzymes 

needed for precursor synthesis are located elsewhere in the genome (Stingele et al. 1996; 

van Kranenburg et al. 1997; Broadbent et al. 2001, 2003).  For example, capsule 

production in S. thermophilus MR-1C may involve at least 19 different genes distributed 

over a 44 kb region of the chromosome (Broadbent et al. 2001).  Not all of the S. 

thermophilus genes are in the same transcriptional orientation.  The direction of cpsW, orf 

14.9, cpsU (wzx), and cpsV are in the opposite orientation of the other open reading 

frames (Fig. 2.2).  Functions for the S. thermophilus MR-1C genes are based on 

homology to those of known functions in other organisms (Broadbent et al. 2001, 2003).  

The wzg, wzh, wzd, and wze genes are highly conserved among S. thermophilus strains 

and are homologous to S. pneumoniae cps2A, cps2B, cps2C and cps2D respectively.  The 

Wzg and CpsW proteins of MR-1C are predicted to function in the regulation of capsule 

biosynthesis.  The wzd and wze genes likely encode a tyrosine kinase system that 

functions in regulation and the determination of polymer chain length.  The wzh gene 

may encode the cognate tyrosine phosphatase.  The cpsE, cpsF, cpsN, cpsP, cpsQ, cpsR, 

cpsT, and cpsV genes are predicted to encode glycosyltransferases that function in 

assembly of the repeating sugar units (Stingele et al. 1996; Bourgoin et al. 1999; 

Broadbent et al. 2001, 2003).  The cpsE gene encodes a galactosyltransferase that 
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catalyzes the first step in the synthesis of the repeat unit by transferring galactose-1-

phosphate to the carrier lipid (Stingele et al. 1996; Almiron-Roig et al. 2000).  

Inactivation of cpsE in MR-1C resulted in a non-capsular phenotype, similar to what was 

observed in S. agalactiae (Low et al. 1998; Cieslewicz et al. 2001).  The cpsU (wzx) and 

cpsX genes encode proteins that are predicted to function in the transport of the repeating 

units across the cell membrane.  CpsS (Wzy) is predicted to function in polymerization of 

the repeating sugar units to form the final EPS polymer.  The genes cpsL and orf14.9 

encode proteins with unknown functions (Stingele et al. 1996; Bourgoin et al. 1999; 

Broadbent et al. 2001, 2003).  Structurally similar eps gene clusters are found in other 

EPS producing S. thermophilus strains but the glycosyltransferase genes typically differ.  

These vary in the number of genes and their arrangement within the gene cluster 

(Broadbent et al. 2003).  Homologues of some of the eps genes are present in EPS- strains 

of S. thermophilus such as TA061 (Welker and Broadbent 2002a, 2002b, 2002c; Welker, 

Broadbent, and Cefalo unpublished results). 

In many mesophilic LAB, such as L. lactis, the eps gene cluster is plasmid-

encoded, which may explain the high rate of conversion to an EPS- phenotype seen in this 

species.  This conversion in starter strains is problematic for the dairy industry (van 

Kranenburg et al. 1997, 1999).  The eps gene clusters in thermophilic LAB, such as S. 

thermophilus, are all chromosomally encoded and located adjacent to the deoB and deoD 

genes in the genome (Stingele et al. 1996; Almiron-Roig et al. 2000; Broadbent et al. 

2001; Germond et al. 2001).  The fact that the eps gene cluster is chromosomally encoded 

in S. thermophilus makes it more stable than the eps gene cluster in L. lactis (Broadbent 
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et al. 2001).  Phenotypic instability of the S. thermophilus eps gene cluster has been 

associated with insertion elements that are located within or adjacent to the genes 

responsible for EPS production (Bourgoin et al. 1999).  In S. thermophilus Sfi39, a 

spontaneous, non-ropy mutant was produced by IS905 transposition into the epsF gene of 

this strain (Germond et al. 2001).  The loss of EPS producing ability of S. thermophilus 

has also been attributed to general genomic instability (Bourgoin et al. 1999).  Recent 

results obtained from comparative genetic analysis of S. thermophilus CNRZ368 and 

MR-1C indicate that point mutations rather than integration of IS elements appear to be 

responsible for inactivation of the eps genes in CNRZ368 (Bourgoin et al. 1999; 

Broadbent et al. 2001; Welker and Broadbent 2002c; Welker, Broadbent, and Cefalo 

unpublished results).   

 
3.6.  Horizontal gene transfer 

 The chimeric structure found in many of the eps/cps gene clusters of pathogenic 

as well as non-pathogenic bacteria has likely resulted from horizontal gene transfer 

events (Bourgoin et al. 1996, 1999; Coffey et al. 1998; Pluvinet et al. 2004; Hols et al. 

2005; Tyvaert et al. 2006; Delorme et al. 2007; Rasmussen et al. 2008; Liu et al. 2009; 

Eng et al. 2011).  Different studies have found evidence suggesting lateral gene transfer 

of gene sized or sub-gene regions in the eps gene clusters of S. thermophilus.  This 

evidence supports the belief that S. thermophilus eps gene clusters evolved partly through 

DNA exchanges with other species of Streptococcus as well as with LAB, such as L. 

lactis, during co-culture in milk (Guédon et al. 1995; Bourgoin et al. 1996, 1999; Pluvinet 

et al. 2004; Hols et al. 2005; Tyvaert et al. 2006; Rasmussen et al. 2008; Liu et al. 2009; 
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Eng et al. 2011).   In S. thermophilus all 3 gene transfer mechanisms (i.e. conjugation, 

transduction, and natural competence) have been shown to be active resulting in gene 

content that is 20% variable with 8% likely to be derived from recent horizontal gene 

transfers (Burrus et al. 2002; Bolotin et al. 2004; Hols et al. 2005; Blomqvist et al. 2006; 

Ammann et al. 2008; Rasmussen et al. 2008; Fontaine et al. 2010; Eng et al. 2011).  A 

prominent feature of the Streptococcus eps/cps gene clusters, including those of S. 

thermophilus and S. iniae, are insertion sequence elements (IS981, IS1191, and ISS1) 

which could facilitate genetic exchange of genes or partial genes between species 

(Guédon et al. 1995; Bourgoin et al. 1996, 1999; Pluvinet et al. 2004; Hols et al. 2005; 

Tyvaert et al. 2006; Lowe et al. 2007; Rasmussen et al. 2008; Eng et al. 2011).  The 

insertion sequence elements that are found in both the genomes of S. thermophilus and L. 

lactis share a high degree of nucleotide sequence identity (at least 98%) suggesting that 

horizontal transfer has recently occurred between these LAB during co-culture in milk 

during yogurt or cheese manufacture.  Research has identified horizontal gene transfers 

of eps/cps genes between Lactococcus and Streptococcus involving genes or sub-gene 

regions for glycosyltransferases whose function may not rely on protein-protein 

interactions rather than of the wzh, wzd or wze genes (Guédon et al. 1995; Bourgoin et al. 

1996, 1999; Broadbent et al. 2003; Pluvinet et al. 2004; Tyvaert et al. 2006; Rasmussen 

et al. 2008; Liu et al. 2009; Eng et al. 2011).   
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4.  Biosynthesis of EPS  
 
4.1.  Extracellular synthesis of EPS 
 

Only a few polysaccharides such as dextran, levan, and alternan are synthesized 

extracellularly by transglycosylases.  For example, the homopolysaccharide dextran 

produced by Leuconostoc mesenteroides is made by dextransucrase (a type of 

glucansucrase).  This enzyme splits sucrose by cleaving the glycosidic bond, liberating 

fructose and glucose.  Dextransucrase then transfers the glucose residue to the reducing 

end of a dextran chain.  The energy needed to form the new glycosidic bonds in the 

dextran chain is derived from the enzymatic splitting of sucrose.  Glucansucrases are 

generally located extracellularly, but they can also be detected in a cell-associated form.  

The expression of some glucansucrases requires induction by sucrose, while others are 

expressed constitutively (Cerning 1990; Janeček et al. 2000; Monsan et al. 2001; van 

Hijum et al. 2006; Kumar et al. 2007).   

 
4.2.  Intracellular synthesis of repeating sugar units 
 
 Heteropolysaccharides are made intracellularly and then exported.  In the model 

for intracellular synthesis of EPS, the repeating sugar units are assembled by sugar 

specific glycosyltransferases (Cerning 1990, 1995; Stingele et al. 1996, 1999; De Vuyst 

and Degeest 1999; Jolly and Stingele 2001; Kumar et al. 2007; Guo et al. 2008).  The 

assembly of the repeating unit takes place on the inner face of the cytoplasmic membrane 

from intracellular precursors by sequential transfer of sugar nucleotide diphospho-

precursors to a carrier lipid, which in many cases is undecaprenyl phosphate.  The first 

step in the assembly of the repeating sugar unit is catalyzed by a glycosyl-1-phosphate 
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transferase that transfers a sugar-1-phosphate to the lipid carrier.  The subsequent 

glycosyltransferases catalyze the addition of sugar residues by glycosidic linkage 

formation (Fig. 2.3) (Johnson and Wilson 1977; Cerning 1990, 1995; Whitfield and 

Valvano 1993; Stingele et al. 1996, 1999; De Vuyst and Degeest, 1999; Whitfield and 

Roberts 1999; Jolly and Stingele 2001; Cartee et al. 2005; Kumar et al. 2007).  

 In the Wzy-dependent pathway for translocation and polymerization of EPS, the 

repeating sugar units are translocated across the membrane and polymerized on the 

outside of the cell to produce high molecular weight polysaccharides (Cerning 1990, 

1995; Stingele et al. 1996, 1999; De Vuyst and Degeest 1999; Jolly and Stingele 2001; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3.  Model for the assembly of the EPS basic repeat unit.  UDP stands for uridine 
diphosphate and UMP stands for uridine monophosphate.  C55 represents the carrier lipid 
undecaprenyl phosphate.  Adapted from Stingele et al. (1996, 1999), De Vuyst and 
Degeest (1999), and Broadbent et al. (2003). 
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Guo et al. 2008; Yother 2011).  In the Wzy-dependent pathway used in the assembly of 

E. coli CA, group 1, and group 4 capsules; it is thought that the putative flippase (Wzx) 

flips the lipid-linked repeat units to the periplasmic face of the inner membrane.  Then the 

putative polymerase (Wzy) generates a long-chain polymer by successive transfer of the 

growing chain linked to the carrier lipid to the reducing end of a single repeat unit in the 

periplasm (Liu et al. 1996; Drummelsmith and Whitfield 1999; Feldman et al. 1999; 

Valvano 2003; Whitfield 2006).  The terminal stages of capsule assembly involve the 

OM lipoprotein Wza.  Wza is a multimeric complex composed of eight subunits arranged 

in a tetramer of dimers that forms a ring-like structure in the membrane.  This structure is 

thought to form a pore through which the CPS may cross from the periplasm through the 

OM (Drummelsmith and Whitfield 2000; Nesper et al. 2003; Beis et al. 2004a, 2004b; 

Collins et al. 2007).  The periplasmic region of Wza interacts with the periplasmic 

domain of the autophosphorylating PTK Wzc (Figure 2.4).  This interaction causes 

significant conformation changes to both proteins at the junction (Collins et al. 2006, 

2007).  In both the electron microscope (EM) and x-ray structure of the Wza octamer 

alone, the central cavity is open to the extracellular environment, but closed to the 

periplasm (Beis et al. 2004b; Dong et al. 2006).  The EM structure of the Wza octamer 

when interacting with the Wzc tetramer shows the Wza channel in its open configuration 

forming a pore that leads into the large central cavity from the periplasm.  Therefore, the 

interaction of Wzc oligomers and Wza is critical to the export regulation of CPS (Collins 

et al. 2007).  In mutants that lack a wza gene, no detectable capsule is produced; but there 

is also no intracellular polymer production.  This evidence supports a type of feedback 
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Fig. 2.4.  The arrangement of the outer membrane channel Wza, the protein tyrosine 
kinase Wzc, and the phosphotyrosine phosphatase Wzb in Escherichia coli.  Wzc first 
undergoes autophosphorylation and then the phosphorylated Wzc causes 
transphosphorylation of another Wzc protein in the oligomer.  Wzc is then 
dephosphorylated by Wzb.  The cycling between phosphorylation and dephosphorylation 
forms of Wzc is essential for high-level polymerization.  The polymer is exported 
through the outer membrane by the multimeric Wza complex in its open form.  Modified 
from Nesper et al. (2003) and Dong et al. (2006). 
 

mechanism that couples polymer synthesis and export (Drummelsmith and Whitfield 

2000; Nesper et al. 2003).  Although Wza is essential for the formation of high molecular 

weight CPS on the surface of E. coli cells, evidence suggests that this OM channel does 

not recognize the specific type of EPS polymer being transported and that it is highly 

conserved between strains (Reid and Whitfield 2005).  For example, an essentially 

identical Wza protein is employed by E. coli and K. pneumoniae even though the EPS 

that they produce is of a different chemical composition and structure (Rahn et al. 1999).  

It is thought that water acts to ensure that the polar protein side chains and sugar hydroxyl 

groups make hydrogen bonds in Wza’s large polar cavity, therefore negating the need for 

specific recognition between the Wza protein and the carbohydrates in EPS (Dong et al. 
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2006).  Most of the heteropolysaccahride capsules of the streptococci, including S. 

thermophilus, are thought to be produced in a manner similar to E. coli group 1 and 4 

capsules.  These Gram-positive bacteria would of course lack the machinery needed to 

export CPS though an OM (Whitfield and Roberts 1999; Broadbent et al. 2003; Yother 

2011).    

The biosynthesis of group 2 and 3 capsules in E. coli occurs by a different 

mechanism that is independent of Wzx and Wzy.  For these capsules, initiation occurs on 

an unknown endogenous acceptor with extension occurring by the action of progressive 

glycosyltransferases.  The polymer is then exported by an ABC transporter (Whitfield 

2006).  In the production of the S. pneumoniae type 3 simple disaccharide capsule, a 

single enzyme is responsible for forming all the glycosidic linkages and for 

polymerization.  This enzyme alternates adding the different sugars to the non-reducing 

end of a polysaccharide chain.  Exactly how termination and size determination is 

achieved is not known (Dillard et al. 1995; Arrecubieta et al. 1996; Cartee et al. 2000; 

Whitfield 2006; Yother 2011).   

 
4.3.  Attachment of the capsule to the cell surface 
 

Little is known about the enzymes and mechanisms involved in the attachment of 

capsules to bacterial surfaces.  In Gram-negative cells, CPS is believed to be anchored to 

the cellular surface by a covalent attachment to phospholipid or lipid-A molecules (Kuo 

et al. 1985; Whitfield and Valvano 1993).  However, Fresno et al. (2006) found that the 

association of the K. pneumoniae capsule to the cell surface is through ionic interactions 

with the lipopolysaccharide (LPS).  They suggest a possible mechanism where divalent 
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ions such as Mg2+ or Ca2+ could play a role in the ionic interaction between glucuronic 

acid in the CPS and the negatively charged carboxyl groups of the galacturonic acid 

residues in the oligosaccharide core.  In support of this, the presence of galacturonic acid 

in the core oligosaccharide was needed to attach the capsule to the cell surface.  The OM 

protein Wzi of E. coli K30 is thought to be involved at some level in linking group 1 CPS 

to the cell surface, because in the absence of this protein CPS is still made and exported 

but much of it is secreted into the surrounding medium (Rahn et al. 2003).  The capsules 

of the Gram-positive staphylococci and streptococci are usually covalently linked to the 

cell wall peptidoglycan but the enzymes involved in this process are unknown (Yeung 

and Mattingly 1983; Fournier et al. 1984; Sorensen et al. 1990; Deng et al. 2000).  Ropy 

EPS is released onto the cell surface and then into the medium because of the lack of 

attachment to the cellular surface (Roberts 1996).  

 
5.  Regulation of EPS synthesis by tyrosine phosphorylation 
  
5.1.  Tyrosine phosphorylation in Gram-negative systems 
 

Although once considered rare, tyrosine phosphorylation is recognized today as a 

key regulatory device in prokaryotic systems that functions in virulence, stress response, 

and DNA metabolism (Chow et al. 1994; Jagtap and Ray 1999; Petranovic et al. 2007).  

Bacterial protein tyrosine kinases (PTKs) have been found to be involved in EPS 

synthesis where they regulate both the length and the amount of polymer produced. 

Advances in genome sequencing have allowed the identification of this type of protein-

modifying enzyme in a wide variety of Gram-negative bacteria including E. coli, K. 

pneumoniae, Acinetobacter johnsonii, and Burkholderia cepacia (Duclos et al. 1996; 
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Grangeasse et al. 1998; Vincent et al. 1999, 2000; Wugeditsch et al. 2001; Preneta et al. 

2002; Nakar and Gutnick 2003; Ferreira et al. 2007; Obadia et al. 2007).  One of the best-

studied regulatory systems of this type is the Wzc PTK and the Wzb phosphotyrosine 

phosphatase (PTP) of E. coli K-12.  Wzc and Wzb function in the transport of the 

extracellular polysaccharide CA out of the cell and into the medium (Vincent et al. 1999, 

2000; Wugeditsch et al. 2001; Doublet et al. 2002; Grangeasse et al. 2002; Paiment et al. 

2002; Obadia et al. 2007).  The typical Gram-negative PTK is expressed as a single 

protein and consists of two main domains.  These domains are organized in the cell as a 

periplasmic N-terminal domain flanked on both sides by a transmembrane α-helix, and a 

C-terminal cytoplasmic domain.  The C-terminal cytoplasmic domain harbors the ATP-

binding sites in the form of Walker A (GXXGXGK[T/S], where X is any amino acid) and 

Walker B (hhhhD, where h is a hydrophobic residue) motifs, and the tyrosine 

phosphorylation sites (Walker et al. 1982; Doublet et al. 2002; Obadia et al. 2007).  The 

N-terminal domain of Wzc is similar in topology to Wzz, a protein that influences LPS O 

antigen chain length (Morona et al. 2000b).  Wzcca contains six different sites for 

phosphorylation; five of these are located in a tyrosine cluster, between residues 708 and 

715, at the very end of the C-terminal portion of the molecule.  The last phosphorylation 

site is located upstream at Y569 (Vincent et al. 2000; Doublet et al. 2002; Grangeasse et 

al. 2002).  A model for tyrosine phosphorylation has been proposed that consists of a 

two-step cooperative mechanism in which Wzcca is phosphorylated by both 

intramolecular and intermolecular events.  In the first step, an unknown effector molecule 

triggers the phosphorylation of Y569.  Phosphorylation of Y569 causes a significant 
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increase in the protein kinase activity and promotes the intermolecular phosphorylation of 

the five tyrosine residues at the C-terminal end of another Wzcca molecule (Grangeasse et 

al. 2002).  It has been suggested that this could be due to a rotational change in the 

tyrosine side chain upon becoming cis-phosphorylated that would make the catalytic site 

accessible to the tyrosine cluster or other substrates for transphosphorylation (Lee et al. 

2008).  The tyrosine residues are phosphorylated at the expense of ATP molecules that 

bind to the Walker A and B motifs at the C-terminal domain of Wzcca (Grangeasse et al. 

2002). The C-terminal tyrosine cluster is necessary for CA synthesis.  Obadia et al. 

(2007) found that little or no CA was produced if the tyrosine cluster was deleted or if the 

residues were changed to glutamic acid to mimic phosphorylation.   

 Both the phosphorylated and dephosphorylated forms of Wzcca are essential for 

the production of CA.  The dephosphorylated form of Wzcca promotes the synthesis of 

CA.  When Wzcca becomes phosphorylated, the production of CA is blocked and the 

transportation of the polymer across the membrane is promoted (Vincent et al. 2000; 

Collins et al. 2006; Obadia et al. 2007). Upon dephosphorylation of Wzcca by the PTP 

Wzb, the production of CA is restored (Vincent et al. 1999, 2000).  Obadia et al. (2007) 

found that strains modified to overproduce Wzb synthesized a larger amount of the CA 

polymer that had the same size distribution as the wild type cells.  Wzb is a small 

cytoplasmic protein of the low-molecular-weight acid phosphotyrosine protein 

phosphatase (LMW-PTP) family (Vincent et al. 1999; Obadia et al. 2007).  The 

phosphate-binding loop of PTPs contain the conserved active motif, C(X)5RS.  Located 

further downstream is an essential aspartate residue that acts as a general acid (Kennelly 
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and Potts 1999).  Hagelueken et al. (2009) produced crystal structures of Wzb that 

indicate the active site is marked by a reactive cysteine residue (Cys13).  The importance 

of Cys13 is demonstrated by the fact that if this residue is mutated to serine Wzb 

phosphatase activity is eliminated (Wugeditsch et al. 2001).  In the proposed mechanism 

for Wzb, the phosphate is positioned such that the phosphorus oxygen bond is in line with 

the S atom of Cys13 in the active site.   This is the correct orientation for bimolecular 

nucleophilic substitution, which is the mechanism Wzb uses to remove phosphate from 

phosphotyrosine containing substrates.  The binding of phosphate to the active site leads 

to an ordering not only of the residues that are directly bound to the phosphate but also of 

the nucleophilic Cys13 and Tyr117, which are adjacent to phosphate ligands and believed 

to be important for substrate binding (Hagelueken et al. 2009).   

Wzb can very rapidly dephosphorylate the tyrosine residues at the C-terminus of 

Wzcca, but it may lack the ability to dephosphorylate Y569.  If Wzb does remove the 

phosphate from Y569, it does so at a much slower rate.  It is therefore possible, that 

another PTP could be involved in removing phosphate from Y569 (Grangeasse et al. 

2003).  The PTP from K. pneumoniae is able to dephosphorylate Wzc from E. coli, 

suggesting that the action of the phosphatase is not specific to its proximally encoded 

kinase (Preneta et al. 2002).  In fact, several different Wzb proteins have been shown to 

dephosphorylate substrates other than Wzc.  It is conceivable that the Wzb protein is 

involved in the dephosphorylation of enzymes involved in nucleotide sugar precursor 

synthesis or glycosyltransferases (Bugert and Geider 1997; Grangeasse et al. 1998; 

Vincent et al. 1999; Nakar and Gutnick 2003).  
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This mechanism implies that Wzcca  subunits interact to undergo intermolecular 

phosphorylation.  To support this hypothesis it has been demonstrated that E. coli Wzc 

has the ability to form oligomers.  In E. coli K30, Wzc forms tetramers in the inner 

membrane of the cell.  In a structure that has been described to look like an extracted 

molar tooth, four periplasmic domains of different Wzc molecules interact to form a 

“crown” with the cytoplasmic tyrosine autokinase domains forming the “roots”.  No 

interaction between the cytoplasmic tyrosine autokinase domains was observed, but such 

an interaction is predicted from the protein’s transphosphorylation ability (Doublet et al. 

2002; Collins et al. 2006).  Mutant proteins of Wzcca that cannot undergo phosphorylation 

still have the ability to form oligomers similar to the wild-type protein.  This implies that 

the phosphorylation state of Wzcca is not essential for oligomerization.  The periplasmic 

domain of Wzc is involved in a protein-protein interaction with the OM lipoprotein Wza 

forming a complex that spans the periplasmic space.  The interaction of Wzcca and Wzaca 

is needed for CA synthesis, therefore Wzcca could have functions interacting with the 

biosynthetic machinery and coupled to the export pathway (Nesper et al. 2003; Reid and 

Whitfield 2005; Collins et al. 2007).  The phosphorylated form of Wzcca influences the 

size of the CA polymer.  Obadia et al. (2007) identified a proline rich region in the 

periplasmic domain of Wzcca that is crucial for determining the extent of polymerization 

and the amount of polymer produced.  Although a direct interaction between Wzc and 

Wzy has not been reported to date, it is possible that the PTK could affect the way the 

Wzy polymerase functions; and thereby influence the amount and size of the produced 

polymer (Whitfield and Larue 2008).   



38 
 

 
 

There is some evidence that phosphorylation of Wzcca Y569 stimulates the 

phosphorylation of UDP-glucose dehydrogenase (Ugd).  The tyrosine phosphorylation of 

Ugd would then lead to elevated synthesis of UDP-glucuronic acid, one of the building 

blocks of CA synthesis.  In support of this, when the Y71 in Ugd is changed to 

phenylalanine Ugd can no longer be phosphorylated by Wzcca and there is a reduction in 

the synthesis of CA (Grangrasse et al. 2003; Lacour et al. 2008).  Wzc may also be 

involved in the phosphorylation of the glycosyltransferase, WcaJ.  A tyrosine residue that 

undergoes phosphorylation and seems to be important for proper protein function has 

been identified in WcaJ from K. pneumoniae.  K. pneumoniae cells that contain a gene 

mutation that results in the replacement of Y5 with phenylalanine in the WcaJ protein 

produce about 50% less CPS than wild type cells.  The loss of Y5 in WcaJ increased the 

LD50 by 200 fold in a mouse peritonitis model compared with wild type cells.  It is 

conceivable that other glycosyltransferases are phosphorylated by Wzcca during CA 

synthesis (Obadia et al. 2007; Lin et al. 2009).   

Finally, it has been demonstrated that Wzcca has ATPase activity and that the 

ATPase activity is enhanced by the intramolecular phosphorylation of Wzcca.  It is 

possible that the energy produced from the hydrolysis of ATP by Wzcca could be used for 

CA synthesis and that both the kinase and ATPase activity of this protein are necessary to 

control the biosynthesis and/or export of polysaccharides (Obadia et al. 2007; Soulat et 

al. 2007).  Recently, phosphorylation of K. pneumoniae Wzc was also observed on a 

serine residue located in the Walker A motif and on a serine and a threonine residue 

located in the periplasmic loop.  The role of phosphorylation at these residues is not clear 
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but it may affect kinase activity, ATP binding, K antigen chain length, or signal 

transduction (Lin et al. 2009).   

 
5.2.  Tyrosine phosphorylation in Gram-positive systems 
 
 The best-classified system of tyrosine phosphorylation in Gram-positive bacteria 

involves the CpsB, CpsC, and CpsD proteins that function in CPS production in S. 

pneumoniae (Morona et al. 2000a, 2002; Bender and Yother 2001; Bender et al. 2003; 

Yother 2011).  It has been postulated that the CpsB-CpsC-CpsD-ATP complex may 

affect capsular synthesis by indirect or direct enhancement of the activity of the 

polymerase, allowing efficient synthesis of the polysaccharide repeat units (Bender and 

Yother 2001; Morona et al. 2003, 2004).    

 CpsB is a novel manganese-dependent PTP belonging to the polymerase 

histidinol phosphatase family that regulates capsule production by removal of the 

phosphates from the PTK CpsD and by inhibiting the phosphorylation of tyrosine 

residues (Morona et al. 2000a, 2002; Bender and Yother 2001).  High-resolution crystal 

structures of the phosphate-complexed and the ligand free but metal bound form of 

Cps4B from S. pneumoniae TIGR4 indicate that this PTP has three metal ions (M1, M2, 

and M3) bound to the active site that are coordinated by conserved amino acids and water 

molecules (W1, W2, and W3) (Hagelueken et al. 2009; Kim et al. 2011).  Contradictory 

results have been presented on which metal ion occupies each of the three sites.  

Hagelueken et al. (2009) modeled the three metal sites as manganese although the weaker 

electron density peak of M3 suggested that it might be a different ion from M1 and M2.  

However, Kim et al. (2011) found that their samples of Cps4B contained mostly Fe and 
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Mg ions and they assigned M1 and M2 as Fe ions and M3 as a Mg ion.  As these ions 

were not intentionally added to the buffer solutions for purification and crystallization it 

is thought that they are picked up by the recombinant enzymes in the expression medium.  

A unique chemical mechanism for the metal-dependent PTPs from Gram-positive 

bacteria has been proposed which employs a metal-bound water molecule or hydroxyl ion 

as a nucleophile (Wilcox 1996; Hagelueken et al. 2009; Kim et al. 2011).  In this 

mechanism, the incoming phosphotyrosine binds to the active site of Cps4B via arginine 

residues, M2, and M3.  A strong ionic interaction of the phosphate group with arginine in 

the active site helps align the phosphorous atom directly over the nucleophile and 

displaces the negative charge on the phosphorous atom allowing for the subsequent 

nucleophilic attack.  W1 serves as a ligand for both M1 and M2 and most likely 

represents a shared hydroxyl ion that is deprotonated and acts as the nucleophile.  The 

positively charged arginine residues and metal ions surrounding the active site stabilize 

the developing negative charges during the SN2 displacement.  The positive potential 

around the active site would also stabilize the tyrosinate that results from cleavage of the 

phosphodiester bond (Gerrantana et al. 2001; Hagelueken et al. 2009; Kim et al. 2011).  

When the phosphate ion binds to the active site it replaces all three metal-bound water 

molecules.  The chemistry of this proposed mechanism is similar to that of the 

phosphotriesterases (Benning et al. 2001; Elias et al. 2008; Hagelueken et al. 2009; Kim 

et al. 2011).   

 In typical Gram-positive EPS systems, the transmembrane activation domain 

(CpsC) and the nucleotide-binding domain (CpsD) are separate proteins, in contrast to 
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being contained in one protein as in E. coli (Morona et al. 2000a; Doublet et al. 2002; 

Yother 2011).  The nucleotide binding domain contains the Walker A and B motifs and 

the phosphorylation sites but the autophosphorylation of CpsD needs the presence of 

CpsC (Morona et al. 2000a, 2003; Bender and Yother 2001; Doublet et al. 2002).  A 

model has been proposed in which the phosphorylation of tyrosine on CpsD acts to 

negatively regulate CPS production.  It is thought that the dephosphorylated form of 

CpsD interacts with CpsC and ATP, possibly facilitating a conformational change in 

CpsC that results in the promotion of CPS synthesis.  In this state, interactions between 

CpsC and other proteins may be promoted, allowing polymerization and biosynthesis to 

proceed at the maximal level.  When CpsD autophosphorylates tyrosine residues at the 

expense of the bound ATP, it causes a dissociation from CpsC that decreases the amount 

of CPS production to a minimal level and promotes the transfer of the CPS polymer to an 

undefined cell wall-CPS ligase (Morona et al. 2000a, 2003, 2004).  The phosphorylation 

event may take place through a cooperative mechanism involving the 

transphosphorylation between the tyrosine residues in the (YGX)4 repeat domain of CpsD 

(Morona et al. 2003).   

It was thought that mutations that changed the tyrosine residues of the (YGX)4 

repeat domain to phenylalanine residues would result in an increase in capsule 

production.  The introduced mutations actually resulted in a decrease in cell wall 

associated capsule production, but an altered more mucoid phenotype in which the 

polysaccharides had a lower molecular weight.  Morona et al. (2003) proposes that these 

mutations increase the dephosphorylated form of CpsD and could affect its role in 



42 
 

 
 

polymerization thereby resulting in the lower molecular weight polysaccharides.  It is 

also possible the mutations to the (YGX)4 repeat domain altered the structural 

conformation or the protein-protein interactions of CpsD.  For CpsD to function there is a 

minimum requirement of two of these YGX domains.  These results imply that switching 

between phosphorylated and dephosphorylated forms of CpsD is required in this system 

for efficient, high molecular weight polysaccharide synthesis.  The dephosphorylated 

form of CpsD promotes polysaccharide polymerization and the phosphorylated form 

promotes transfer of the polymer to the cell wall ligase (Morona et al. 2000a, 2003, 

2004).  Cieslewicz et al. (2001) proved the importance of the autophosphorylating PTK 

CpsIaD on capsule function in group B streptococci.  Cells containing a cpsIaD deletion 

mutation had a 91% reduction in the amount of cell associated polysaccharide as 

measured by immunoassay.  The average chain length of the polysaccharide produced by 

the allelic replacement of cpsIaD was about one-half of that produced by the wild-type 

cells.  The deletion of the cpsD gene in S. iniae by allelic exchange mutagenesis 

abolished capsule production, increased the length of coccus chains, and caused an over 

100-fold attenuation in pathogenicity as compared to that of the wild type parental strain 

(Locke et al. 2007).  S. pneumoniae cells with a mutation that caused the inactivation of 

cpsD were able to adhere more strongly to cells in the nasopharynx, possibly due to the 

increased exposure of important pneumococcal surface structures such as adhesins.  

However, these mutants had decreased ability to persist in the nasopharynx and were 

more susceptible to early clearance by the immune system.  They also appeared to be 

deficient in the ability to migrate from the lungs to the blood stream and to cause 
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systemic disease (Morona et al. 2004).  Cells with mutations in the cpsC gene of S. 

pneumoniae D39 attached only about half as much CPS to the cell wall as the wild type 

cells.  This suggests a role for CpsC in the cell wall attachment of CPS, possibly through 

interactions with other proteins involved in CPS biosynthesis such as the cell wall CPS 

ligase.  The cpsC mutants were unable to enter the bloodstream, indicating the 

importance of CPS attachment to the cell wall in the ability of this organism to cause 

invasive disease (Morona et al. 2006).   

In S. pneumoniae D39, the loss of Cps2B resulted in increased tyrosine 

phosphorylation of Cps2D and an increase in capsule production.  Although the display 

and function of the capsule in these mutants was apparently normal, the activity of Cps2B 

was critical for the survival of D39 during colonization and systemic infections.  The 

regulation of the capsule or other factors controlled though CpsB activity might be 

altered in these mutants in the animal environment.  It is possible that other 

phosphorylated proteins may be subject to Cps2B control (Bender et al. 2003).  However, 

Bender et al. (2003) only measured the cell wall associated CPS produced by their 

mutants.  A clearer view of this mutation is suggested by Morona et al. (2006).  They 

found that in the absence of CpsB there was a decrease in CPS biosynthesis but an 

increase in the in the proportion of total CPS produced that is attached to the cell wall 

compared to the wild type cells.  The loss of CpsB increased the amount of 

phosphorylated CpsD, causing a reduction in the biosynthesis of CPS and an increase in 

the attachment of the polymer to the cell wall.  Mutation of CpsB negatively affected the 
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ability of S. pneumoniae to cause invasive disease (Bender et al. 2003; Morona et al. 

2004, 2006).   

There is evidence for the ability of Gram-positive PTKs to induce 

phosphorylation of other proteins.  For example, the Bacillus subtilis PTK YwqD is able 

to phosphorylate Ugd, but only in the presence of the transmembrane protein YwqC.  

This suggests that interaction between the proteins containing the nucleotide binding 

domain and the transmembrane domain may influence the phosphorylation of other 

important proteins involved in EPS production in Gram-positive bacteria (Mijakovic et 

al. 2003).  Olivares-Illana et al. (2008) created a chimeric protein that united the 

cytoplasmic domain of the transmembrane activator protein (CapA) with the PTK (CapB) 

from S. aureus.  They proposed a novel mechanism for the regulation of polysaccharide 

synthesis and export by PTKs.  Their results suggest that the kinase domains associate 

into an octameric ring when unphosphorylated, with each tyrosine tail interacting with 

the active site of the neighboring subunit.  This octameric ring structure would extend to 

the transmembrane domains and constrain their action.  Upon phosphorylation the kinase 

domains dissociate and the constraint on the transmembrane domains is released causing 

a conformational change.  The kinase domains are then free to phosphorylate additional 

endogenous substrates.  This switch in conformation, affects the interactions of the 

transmembrane domain with other proteins such as the polysaccharide unit polymerase, 

the flippase, or the lipid sugar transferase.  It is possible that the affinity of the machinery 

to the polysaccharide is altered.  In this way, the cycling between phosphorylated and 

non-phosphorylated forms regulates the switch between polymerization and export of 
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polysaccharides.  This could be a general model for the regulation of polysaccharide 

synthesis due to the high conservation among polysaccharide co-polymerases (Olivares-

Illana et al. 2008).     

Minic et al. (2007) produced cells with mutations in the epsB, epsC, epsD, or 

epsE genes in Streptococcus thermophilus CNRZ1066.  They observed that the cells that 

had mutations in epsC, epsD, or epsE produced no detectable capsule.  As was seen in the 

S. pneumoniae system, the EpsC protein of S. thermophilus was needed for EpsD 

phosphorylation to occur.  Experimental results from these mutants suggest that the 

glycosyltransferase activity of EpsE requires EpsC and EpsD, but is negatively affected 

by EpsB.  The possibility of protein interactions between EpsC, EpsD, and EpsE was 

evident.  It is possible that EpsE is regulated by the phosphorylation of one of its tyrosine 

residues by the PTK EpsD in conjunction with EpsC.  In support of this, Y200 has been 

shown to be necessary for the glycosyltransferase activity of EpsE.  EpsE could then be 

subject to dephosphorylation by the PTP EpsB (Morona et al. 2000a; Minic et al. 2007).  

 
5.3.  PTK activity varies from system to system 
 

The biological function and molecular mechanism of PTK activity appear to vary 

from strain to strain.  PTK autophosphorylation has been found to either reduce or 

promote high molecular mass polysaccharide production.  It is the dephosphorylated form 

of Wzcca that promotes CA synthesis in E. coli K-12 (Vincent et al. 2000).  It has been 

shown that the phosphorylation of Wzccps is essential for the assembly of group I CPS in 

E. coli K30.   However, in this system the phosphorylated form of Wzc appears to 

promote the synthesis of the group I CPS (Wugeditsch et al. 2001).  Divergent results on 
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the effect of the autophosphorylation state of S. pneumoniae CpsD have been observed.  

In strain RX1, the dephosphorylated form of CpsD seems to promote CPS synthesis, 

whereas the opposite situation is found in strain D39 (Bender et al. 2003; Morona et al. 

2003).  The current view is that the autophosphorylation of bacterial PTKs does not 

function in an on/off switch type mechanism, but that the cycling between 

phosphorylated and unphosphorylated forms is necessary for polysaccharide synthesis 

(Bechet et al. 2009).  The two-step mechanism for Wzcca phosphorylation in E. coli K12 

involves the phosphorylation of Y569 (Grangeasse et al. 2002).  A similar reaction is not 

present in Gram-positive bacteria or in some Gram-negative bacteria.  For example, in E. 

coli K30 the phosphorylation of Wzccps on Y569 is not necessary for the production of 

group 1 capsules (Paiment et al. 2002).  The Wzcca of E. coli K-12 has been shown to be 

structurally independent due to its PTK ability (Doublet et al. 2002).  However, the 

Wzccps of E. coli K-30 is unable to autophosphorylate at the C-terminal end and requires 

the presence of the N-terminal domain to be phosphorylated (Wugeditsch et al. 2001).  In 

some Gram-positive bacteria, such as S. pneumoniae, interaction with the membrane 

peptide CpsC is needed for the PTK CpsD to become phosphorylated, but in B. subtilis 

the PTK YwqD alone is able to autophosphorylate (Morona et al. 2000a; Mijakovic et al. 

2003). 

 
6.  Industrial uses of EPS 

 
6.1.  EPS and bioremediation 
 
 EPS can be used in bioremediation.  The EPS of cyanobacteria have been shown 

to bind several toxic metals and can be used to remove these contaminates from the 
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environment (De Philippis et al. 2007; Sharma et al. 2008).  One of the problems 

encountered in the bioremediation of hydrocarbons is the bioavailability of these poorly 

soluble compounds.  EPS can act as an emulsifier to solubilize hydrocarbons allowing 

them to be more readily degraded.  For example, the sulfate and uronic acid containing 

EPS from Halomonas eurihalina has the ability to emulsify a variety of hydrocarbons 

including n-tetradecane, n-hexadecane, n-octane, xylene, light and heavy mineral oils, 

petrol, and crude oil.   In fact, the EPS from this organism was more efficient at 

emulsification of crude oil than the chemical surfactants Tween 20, Tween 80, and Triton 

X-100 (Martínez-Checa et al. 2002, 2007).   A marine isolate of Enterobacter cloacae 

that produces EPS containing high amounts of uronic acid, fucose, and sulfate can 

emulsify a variety of hydrocarbons, vegetable oils, and mineral oils (Iyer et al. 2006).  

The EPS of Gordonia alkanivorans was able to enhance the cell floating of four non-

floating strains used in diesel bioremediation. The floating cell behavior enhances the cell 

contact with the substrate resulting in the more efficient utilization of diesel.  Addition of 

the EPS from this organism enhanced the biodegradation of diesel by 40-45% and has an 

emulsification index of over 63%.  This EPS could be used as a powerful biostimulant to 

help improve the degradation efficiency of the existing oil-utilizing bacteria in polluted 

environments (Ta-Chen et al. 2008). 

 
6.2.  EPS as a cryoprotectant 
 

The EPS of the Antarctic bacterium P. arctica could have industrial uses as a 

powerful cryoprotectant (Kim and Yim 2007).  The ability of a capsule to protect bacteria 

from the damage incurred by freezing has been demonstrated in frozen dairy desserts.  
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Hong and Marshall et al. (2001) demonstrated that encapsulated S. thermophilus survived 

longer in reduced fat ice cream stored at -29 ºC than their non-encapsulated mutants.  The 

enhanced survival of lactose hydrolyzing S. thermophilus in the ice cream could be 

beneficial to individuals who are lactose intolerant.  S. thermophilus cultures produce β-

galactosidase, which hydrolyzes lactose to the absorbable monosaccharides glucose and 

galactose.   If this enzymatic activity is retained in the intestinal tract it could provide 

lactose deficient individuals with sufficient enzyme to assist in digestion of lactose.    

 
6.3.  Uses of EPS as food additives  
 

The use of EPS producing starter stains such as Weissella cibaria and 

Lactobacillus plantarum can improve the rheological properties of sourdough bread.  

When compared to bread made by EPS- strains the glucans produced by these organisms 

increased dough viscosity, increased bread volume, and reduced the firmness of the final 

product.  The production of EPS by LAB used in the production of sourdough could be 

used to replace the current additives used for improving the textural qualities and the 

shelf life of baked goods (Cagno et al. 2006; Katina et al. 2009; Galle et al., 2010). 

EPS producing cultures have a wide variety of uses in the dairy industry. The 

water binding properties of EPS help control syneresis and improve the stabilizing and 

viscosifying properties of fermented dairy products (Cerning 1990, 1995; De Vuyst and 

Degeest 1999).  The use of EPS producing cultures could reduce the need for the addition 

of other stabilizers such as gelatin, modified starch, or carrageenan.  EPS producing 

cultures have been used in yogurt, sour cream, Mozzarella cheese, soft cheese, and 

whipped toppings to improve rheological properties (Perry et al. 1998; Hassan et al. 
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1996, 2004; Broadbent et al. 2003).  Low-fat cheese and yogurt produced with EPS+ 

starter cultures have a better taste, texture, and mouth-feel than those manufactured with 

starter strains that lack the ability to produce EPS (Broadbent et al. 2001; Duboc and 

Mollet 2001).  Even though EPS have no taste of their own, they increase the time the 

milk product spends in the mouth, causing an enhanced perception of taste (Duboc and 

Mollet 2001).  Milk fat plays an important role in moisture retention of cheese by 

entrapping and binding water in serum channels (McMahon et al. 1993; Oberg et al. 

1993; McMahon and Oberg 1998).  Low-fat cheeses have fewer fat globules to break up 

the protein matrix, resulting in less space for water retention.  This causes low-fat cheese 

to have a rubbery-like texture, poor melt properties, and to become less pliable upon 

cooking (McMahon et al. 1993; Low et al. 1998; McMahon and Oberg 1998; Broadbent 

et al. 2001).  Polysaccharides can perform a similar function as fat molecules by breaking 

up the protein matrix forming a serum cavity (Perry et al. 1997).  The formation of these 

cavities allows the entrapment of water molecules and their distribution throughout the 

curd matrix resulting in a softer body (Perry et al. 1997).  Significantly higher moisture 

content is seen in low-fat cheese that has been manufactured using an EPS+ S. 

thermophilus starter culture than in low-fat cheese manufactured using an EPS- 

commercial strain (Perry et al. 1997, 1998; Low et al. 1998; Petersen et al. 2000).  The 

results obtained by Low et al. (1998) established that the increase in moisture retention 

observed in low-fat cheeses in their experiments was due exclusively to S. thermophilus 

MR-1C EPS production.  Curd yield was significantly higher in cheese made with the 

EPS producing strains MR-1C or MTC360 when compared to cheese manufactured using 
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the EPS- strains TA061 or DM10 (Petersen et al. 2000).  Low-fat cheese manufactured 

using S. thermophilus strains such as MR-1C that produce a capsular type of EPS had 

similar melting and shredding properties as that manufactured with an EPS- strain.  A 

major concern in the cheese industry is that the incorporation of EPS producing starter 

cultures will increase the whey viscosity and have detrimental effects on the recovery of 

whey products.  The viscosity of whey manufactured with the ropy MTC360 strain was 

significantly higher and required longer ultrafiltration times than cheese manufactured 

with EPS- starter strains.  The ultrafiltration times and whey viscosity of cheese 

manufactured with the MR-1C strain were comparable to that of cheese manufactured 

with EPS- strains.  The ropy EPS+ strains of S. thermophilus, such as MTC360, increased 

the moisture content of the cheese by nearly 7% when compared to cheese made with the 

EPS- strain TAO61.  An increase in moisture content of this magnitude caused the cheese 

to be sticky, to shred poorly, and to expel serum during the melt test (Peterson et al. 

2000).  Incorporation of the capsular EPS+ starter culture MR-1C increased the moisture 

content by 1.5%, which significantly increased the cheese yield without adversely 

affecting the melting or shredding properties or affecting whey viscosity (Perry et al. 

1997, 1998; Low et al. 1998; Peterson et al. 2000; Broadbent et al. 2001).  These results 

suggest that the use of capsular but not ropy EPS+ S. thermophilus starter cultures, like 

MR-1C, could improve the quality of low-fat cheese.  However, a fast acid producing 

strain is needed for Mozzarella cheese production and S. thermophilus MR-1C lacks this 

ability (Broadbent et al. 2001).  Zisu and Shah (2004) used a capsular S. thermophilus 

culture to make low-fat Mozzarella cheese.  Although the increase in moisture in this 
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cheese was only 1.25%, it was sufficient to reduce hardness, chewiness, and springiness 

and to improve the meltability of the low-fat cheese.  Recently, the ropy strain L. lactis 

subsp. cremoris JFR1 was used to produce low-fat Cheddar cheese that had similar 

texture, melting characteristics, and viscoelastic properties to full fat Cheddar cheese 

(Awad et al. 2005; Hassan et al. 2005).  The changes in porosity of these cheeses were 

less pronounced than those of other low-fat cheeses that underwent major changes in the 

size and distribution of pores during ripening.  In full fat cheese, the large pores 

contained fat globules and in the JFR1 reduced fat cheese they contained either fat or 

EPS (Hassan and Awad 2005).  The EPS molecules form filaments that can interact with 

milk proteins and aid in the formation of protein aggregates altering the texture and 

viscosity of fermented dairy products (Ayala-Hernandez et al. 2008).  The reduced fat 

cheese made with an EPS+ culture contained more continuous protein filaments than the 

cheese without EPS.  In full fat cheese, the protein filaments provide resistance during 

heating, causing a more uniform melting.  The layered structure of the protein filaments 

in the low-fat cheese made without EPS is probably responsible for the rubbery texture 

typical of most low-fat cheeses (Hassan and Awad 2005).  Ropy EPS improves the rennet 

coagulation properties, reduces the cheese making time, and increases moisture, thereby 

increasing the efficiency of low fat cheddar cheese making (Rynne et al. 2007). 

 
6.4.  Use of EPS to prevent biofilm formation  
 

The treatment of abiotic surfaces with EPS significantly inhibits mature biofilm 

development by a broad range of bacteria and has a long lasting effect (Valle et al. 2006).  

For example, the EPS produced by Lactobacillus acidophilus A4 has the ability to 
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prevent biofilm formation by pathogenic E. coli O157:H7.  Polystyrene wells and PVC 

surfaces that contained 1mg/ml of released EPS from L. acidophilus had an 87% 

reduction in biofilm formation by E. coli O157:H7.  Under similar conditions, biofilm 

formation was decreased by 94% on PVC surfaces.  The biofilm formation of several 

other Gram-negative and Gram-positive pathogens, such as Salmonella enteritidis, 

Salmonella typhimurium, Yersina enterocolitica, P. aeruginosa, Listeria monocytogenes, 

and Bacillus cereus, was significantly decreased on both polysterene and PVC treated 

with EPS from Lb. acidophilus. The EPS from this organism would be a food-grade 

material, so it may have applications for biofilm prevention in food processing plants 

(Kim et al. 2009).      

 
6.5.  EPS and human health 
 

The EPS from food grade LAB may help prevent chronic gastritis.  The 

administration of the non-steroidal anti-inflammatory drug acetyl-salicyclic acid (ASA) 

can have negative effects on the gastrointestinal system including dyspepsia, abdominal 

pain, and the formation of gastric ulcers.  Researchers found that if mice were 

preventively treated with fermented milk containing the EPS producing S. thermophilus 

strain  CRL 1190 they did not develop chronic gastritis when administered ASA.  The 

treated mice had reduced levels of cells that secrete the proinflammatory cytokine 

interferon (INF)-γ and increased numbers of cells that secrete the regulatory cytokine IL-

10.  IL-10 is known to inhibit the production of INF-γ.  The same effect was seen if 

purified EPS suspended in autoclaved milk was administered, but not if the EPS was 

suspended in water or if the milk was administered alone.  This suggests that EPS-milk 
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protein interactions may be responsible for the gastroprotective effect (Rodríguez et al. 

2009).  EPS significantly attenuated experimental colitis in rats, which could make it a 

promising therapeutic for the treatment of inflammatory bowel disease (Şengül et al. 

2005).  EPS has been shown to have cholesterol-lowering activities (Nakajima et al. 

1992).  The EPS from certain bifidobacteria, lactobacilli, and streptococci have been 

reported to be beneficial in preventing ulcers.  Bacterial cell wall polysaccharides had a 

similar effect especially if the rhamnose concentration was greater than 60%, suggesting 

that rhamnose may be involved in the anti-ulcer effect (Nagaoka et al. 1994).  

EPS have been shown to have anticarcinogenic properties. Mutagenic 

heterocyclic amines are found in foods such as cooked beef and fried hamburger.  Up to 

89% reduction of the mutagenicity of the heterocyclic amine 3-amino-1,4-dimethyl-5H-

pyrido-[4,3-b]indole was observed in the presence of an EPS from Bifidobacterium 

longum.  The antimutagenicity of the EPS was dose dependent and may relate to the 

ability of this EPS to bind the mutagens.  The acidic moieties in many EPS may interact 

with the high alkalinity of most mutagens, forming stable complexes that prevent the 

conversion of promutagen to ultimate mutagen in the intestinal tract (Sreekumar and 

Hosono 1998).  Kitazawa et al. (1991) found that the growth of Sarcoma-180 tumors 

could be inhibited by the intraperitoneal injection of lyophilized L. lactis subsp. cremoris 

KVS 20 cells in mice.  This same strain was not effective against the Sarcoma-180 tumor 

in vitro suggesting that the ability of this strain to prevent tumor proliferation was 

mediated through immune activity.  Kitazawa et al. (1991) postulated that the slime 

material produced by this strain may be the principal component in the antitumoral effect.  
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A later study showed that the EPS from L. lactis subsp. cremoris KVS 20 induced B-cell 

dependent mitogenic activity (Kitazawa et al. 1992).  An EPS producing strain of Lb. 

delbrueckii subsp. bulgaricus used in yogurt manufacture has been shown to induce host-

mediated antitumor activity.  After fractionation of the EPS into neutral and acidic 

components, it was determined that the acidic fraction was a phosphopolysaccharide that 

had mitogenic activity for murine B-lymphocytes.  It was determined that the phosphate 

groups act as a trigger for the mitogenic induction by EPS (Kitazawa et al. 1998).  Most 

of the studies on antitumor activity of EPS have been done with intraperitoneal injection, 

but Zubillaga et al. (2001) was able to demonstrate that the water-soluble EPS from kefir 

grains had antitumoral properties when administered orally.  It is thought that the immune 

enhancement by the orally administered EPS involves the participation of T-cells and not 

B-cells.   

EPS have been shown to enhance proliferation of T-lymphocytes, stimulate 

macrophage activation, and to induce production of the cytokines (Forsén et al. 1987; 

Kitazawa et al. 1998).  The EPS from a strain of Bacillus licheniformis and Geobacillus 

thermodenitrificans seem to improve immune surveillance of peripheral blood 

mononuclear cells toward Herpes simplex virus-2.  The EPS from these organisms causes 

a proinflammatory response that  is believed to hinder the replication of the virus in 

human peripheral blood mononuclear cells by stimulating the production cytokines, such 

as INF- γ, INF-α, tumor necrosis factor (TNF)-α, IL-12, and IL-18 by T-helper type 1 

cells (Arena et al. 2006, 2009).   The EPS of L. lactis subsp. cremoris SBT 0495 was able 
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to enhance the production of specific antibodies in mice when administered 

intraperitoneally, suggesting that it may act as an adjuvant (Nakajima et al. 1995).   

Sulphated polysaccharides can interfere with the absorption and penetration of 

enveloped viruses such as herpes simplex virus, human cytomegalovirus, and human 

immunodeficiency virus into host cells as well as inhibit various retroviral reverse 

transcriptases (Baba et al. 1988; Hayashi et al. 1996; Matsuda et al. 1999; Zhu et al. 

2004).   

Low molecular weight dextrans from L. mesenteroides are widely used in the 

pharmaceutical industry as blood plasma extenders and blood flow improvers (Cerning 

1990).   The deep-sea hydrothermal vent organism Altermonas infernus produces an EPS 

with anticoagulant properties (Colliec et al. 2001).   

 
7.  Conclusions 
 

 EPS help bacteria to survive in unique ecological niches and to evade host 

immune response.  The production of EPS is a complex process that is not fully 

understood and likely involves many protein interactions and regulatory mechanisms.  

Tyrosine phosphorylation, a mechanism that at one time was unheard of in bacterial 

systems, plays a prominent role in the production and export of EPS.  The 

phosphorylation of PTKs and their dephosphorylation by PTPs is important for efficient 

high molecular weight EPS synthesis and for regulating the polymer length and quantity 

of EPS produced.  Due to roles in pathogenesis, possible health benefits, and industrial 

applications of EPS, it is expected that copious amounts of new research in this area will 

be done in the future and many new EPS gene clusters will be characterized.   The 
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research contained in this dissertation adds new insight into the complex process of EPS 

biosynthesis by establishing that the S. thermophilus Wzh protein functions as a 

phosphotyrosine phosphatase, investigating protein-protein interactions in S. 

thermophilus MR-1C, determining if the same protein-protein interactions take in 

Streptococcus iniae 9066, and Lactococcus lactis subsp. cremoris JRF1, and 

investigating interspecific protein-protein interactions to determine if functional 

regulatory complexes can be formed in naturally occurring and genetically engineered 

recombinant strains. 
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CHAPTER 3 
 

STREPTOCOCCUS THERMOPHILUS WZH FUNCTIONS AS A  
 

PHOSPHOTYROSINE PHOSPHATASE 
 
 

Abstract 
 
 Amino acid residues that are important for metal binding and catalysis in Gram-

positive phosphotyrosine phosphatases were identified in the Streptococcus thermophilus 

MR-1C Wzh protein using sequence comparisons.  His-tagged fusion Wzh proteins were 

purified from Escherichia coli cultures and tested for phosphatase activity against 

synthetic phosphotyrosine and phosphoserine/threonine peptides.  Purified Wzh released 

2316.5 ± 138.7 pmol PO4 min-1 μg-1 from phosphotyrosine peptide-1 and 2345.7 ± 135.2 

pmol PO4 min-1 μg-1 from phosphotyrosine peptide-2.  The presence of the 

phosphotyrosine phosphatase inhibitor sodium vanadate decreased purified Wzh activity 

by 45-50% at 1 mM, 74-84% at 5 mM, and by at least 88% at 10 mM.  Purified Wzh had 

no detectable activity against the phosphoserine/threonine peptide.  These results clearly 

establish that S. thermophilus MR-1C Wzh functions as a phosphotyrosine phosphatase 

that could function to remove phosphate groups from proteins involved in 

exopolysaccharide biosynthesis including the protein tyrosine kinase Wze and priming 

glycosyltransferase.     
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1.  Introduction 
 
 Although once considered rare, tyrosine phosphorylation is recognized today as a 

key regulatory device in prokaryotic organisms that functions in exopolysaccharide 

production, virulence, stress response, and DNA metabolism (Chow et al. 1994; Jagtap 

and Ray 1999; Petranovic et al. 2007).  The phosphorylation and dephosphorylation of 

bacterial protein tyrosine kinases (PTKs) is necessary for exopolysaccharide biosynthesis 

and assembly in a wide variety of Gram-positive and Gram-negative bacteria including 

Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae, Acinetobacter 

johnsonii, Burkholderia cepacia, and Staphylococcus aureus (Duclos et al. 1996; 

Grangeasse et al. 1998; Vincent et al. 1999, 2000; Morona et al. 2000; Bender and Yother 

2001; Wugeditsch et al. 2001; Preneta et al. 2002; Soulat et al. 2007; Ferreira et al. 2007).  

The dephosphorylation of PTKs is accomplished by phosphotyrosine phosphatases 

(PTPs), many of which are well-characterized (Grangeasse et al. 1998; Vincent et al. 

1999; Bender and Yother 2001; Morona et al. 2002; Preneta et al. 2002; Ferreira et al. 

2007; LaPointe et al. 2008; Hagelueken et al. 2009; Kim et al. 2011).  The best-

characterized Gram-positive PTP is the CpsB protein of S. pneumoniae.  CpsB is a novel 

metal-dependent PTP that belongs to the polymerase histidinol phosphatase family and 

regulates capsule production by the removal of the phosphates from the 

transmembrane/periplasmic kinase complex CpsCD and by inhibiting phosphorylation of 

tyrosine residues (Morona et al. 2002; Bender and Yother 2001; Hagelueken et al. 2009; 

Kim et al. 2011).  Bender et al. (2003) created a deletion mutation in Cps2B of S. 

pneumoniae D39 that resulted in the increased phosphorylation of the tyrosine residues 
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on the PTK Cps2D and increased capsule production.  However, Bender et al. (2003) 

only measured the cell wall associated CPS produced by their mutants.  Morona et al. 

(2006) found that in the absence of CpsB there was a decrease in CPS biosynthesis but an 

increase in the proportion of total CPS produced that is attached to the cell wall compared 

to the wild type cells.  The loss of CpsB increased the amount of phosphorylated CpsD, 

causing a reduction in the biosynthesis of CPS and an increase in the attachment of the 

polymer to the cell wall.  In both the above cases, the mutation of CpsB negatively 

affected the ability of S. pneumoniae to colonize and cause invasive disease in mice.  

These results suggest that switching between phosphorylated and non-phosphorylated 

forms of the PTK is needed for efficient, high molecular weight polysaccharide synthesis 

(Bender et al. 2003; Morona et al. 2003, 2004, 2006).   

 It is possible that other phosphorylated proteins will be subject to Cps2B control.  

Experimental research done on Streptococcus thermophilus CNRZ1066 by Minic et al. 

(2007) demonstrated that the hypothetical PTP EpsB negatively affects the 

glycosyltransferase activity of EpsE.  Their results indicate that EpsE may be regulated 

by the phosphorylation of one of its tyrosine residues by the PTK EpsD in conjunction 

with EpsC.  In support of this, they identified a tyrosine residue (Y200) that is necessary 

for the glycosyltransferase activity of EpsE and could perhaps be subject to 

phosphorylation by EpsD and subsequently to dephosphorylation by EpsB.  It is feasible 

that other glycosyltransferases or proteins involved in EPS biosynthesis may be regulated 

by the phosphorylation and dephosphorylation of tyrosine (Mijakovic et al. 2003; Minic 

et al. 2007).    
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 Recently, high-resolution crystal structures of both the phosphate-complexed and 

the ligand free but metal bound form of Cps4B from S. pneumoniae TIGR4 have been 

determined.  The data from structural studies and site-directed mutagenesis have provided 

insights into the active site and possible conformational changes of Cps4B.  Cps4B has 

three metal ions (M1, M2, and M3) bound to the active site that are coordinated by 

conserved amino acids and water molecules (W1, W2, and W3) (Hagelueken et al. 2009; 

Kim et al. 2011).  It is unknown, which metal ions occupy the M1, M2, and M3 sites in 

Cps4B as contradictory results have been presented.  Hagelueken et al. (2009) found that 

the addition of Cu2+, Co2+ and Mn2+ ions to reactions containing Cps4B increased the 

activity by more than 10-fold whereas Fe2+, Ni2+ and Zn2+ lead to a much lower 

activation of the enzyme.  The three metal ions were modeled as manganese although the 

weaker electron density peak of M3 suggested that it might be a different ion from M1 

and M2.  However, Kim et al. (2011) found that their samples of Cps4B contained mostly 

Fe and Mg ions, but not other metal ions such as Ni2+, Cu2+, Zn2+, Mn2+, and Co2+.  They 

assigned M1 and M2 as Fe ions and M3 as a Mg ion.  As these ions were not 

intentionally added to the buffer solutions for purification and crystallization it is thought 

that they are picked up by the recombinant enzymes in the expression medium.  This may 

have a profound effect on metal loading in purified enzymes.    

 A unique chemical mechanism for the metal-dependent PTPs from Gram-positive 

bacteria has been proposed which employs a metal-bound water molecule or hydroxyl ion 

as a nucleophile (Wilcox 1996; Hagelueken et al. 2009; Kim et al. 2011).  In this 

mechanism, the incoming phosphotyrosine binds to the active site of Cps4B via arginine 
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residues, M2, and M3.  A strong ionic interaction of the phosphate group with arginine in 

the active site helps align the phosphorous atom directly over the nucleophile and 

displaces the negative charge on the phosphorous atom allowing for the subsequent 

nucleophilic attack.  W1 serves as a ligand for both M1 and M2 and most likely 

represents a shared hydroxyl ion that is deprotonated and acts as the nucleophile.  The 

positively charged arginine residues and metal ions surrounding the active site stabilize 

the developing negative charges during the SN2 displacement.  The positive potential 

around the active site would also stabilize the tyrosinate that results from cleavage of the 

phosphodiester bond (Gerrantana et al. 2001; Hagelueken et al. 2009; Kim et al. 2011).  

When the phosphate ion binds to the active site it replaces all three metal-bound water 

molecules.  The chemistry of this proposed mechanism is similar to that of the 

phosphotriesterases (Benning et al. 2001; Elias et al. 2008; Hagelueken et al. 2009; Kim 

et al. 2011).   

 The S. thermophilus Wzh/EpsB protein is homologous to known PTPs and  

believed to function in removing the phosphate groups from the PTK Wze/EpsD as well 

as from the priming glycosyltransferase and possibly other proteins (Broadbent et al. 

2003; Minic et al. 2007).  However, the PTP activity of the Wzh/EpsB protein in S. 

thermophilus has never been directly demonstrated or verified.   In this study, several S. 

thermophilus Wzh/EpsB protein sequences were analyzed to verify that they contain the 

conserved amino acids identified by Hagelueken et al. (2009) and Kim et al. (2011) that 

are thought to be necessary to the function of the Gram-positive metal-dependent PTPs.  

The Wzh protein from S. thermophilus MR-1C was purified after heterologous 
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expression in E. coli and analyzed for tyrosine phosphatase activity and for serine/ 

threonine phosphatase activity using synthetic phosphopeptides.  The activity of Wzh was 

tested in the presence of the PTP inhibitor sodium vanadate.   

 
2.  Materials and methods 
 
2.1.  Computational analysis of protein sequences 

 Protein sequences were obtained for the PTPs of several Gram-positive bacteria 

including several strains of S. thermophilus (Table 3.1).  Alignments were performed 

using the program ClustalW2 (Larkin et al. 2007) that is located at the website 

http://www.ebi.ac.uk/Tools/clustalw2/index.html.  S. pneumoniae TIGR4 Cps4B used by 

Hagelueken et al. (2009) and Kim et al. (2011) was included in the alignment and the 

amino acids and motifs that were identified as being important for metal binding and 

catalysis in this species were labeled.  The conservation of these important amino acids 

and motifs in other Gram-positive species was analyzed.   

 
2.2.  Bacterial strains, media, and growth conditions 
 
 S. thermophilus MR-1C was cultured in M17 broth containing 0.5% lactose and 

incubated at 37 oC without aeration (Terzaghi and Sandine 1975).  Escherichia coli 

DH5α (Invitrogen, Carlsbad, California, USA) and BL21(DE3) (Novagen, Madison, 

Wisconsin, USA) were grown at 37 oC in Luria-Bertani (LB) broth with shaking.  LB 

agar plates containing ampicillin at a concentration of 50 µg/ml was used for the 

selection of E. coli transformants.  Bacterial strains were stored at -80 °C in 20% 

glycerol.   
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Table 3.1.  GenBank accession numbers of the organisms used for computational 
analysis of protein sequences.   
 
Organism Phosphotyrosine 

Phosphatase  
GenBank Accession Number 

Streptococcus pneumoniae TIGR4 Cps4B NC_003028.3 
Streptococcus pneumoniae D39 Cps2B NC_008533.1 
Streptococcus pneumoniae CDC1873-00 CpsB NZ_ABFS01000001.1 
Streptococcus thermophilus MR-1C Wzh AF448249.1 
Streptococcus thermophilus MR-2C Wzh AY061649.1 
Streptococcus thermophilus MTC360 Wzh AF434993.1 
Streptococcus thermophilus MTC330 EpsB AF430847.1 
Streptococcus thermophilus CNRZ1066 EpsB NC_006449.1 
Streptococcus oralis SK610 CpsB AJKQ01000025.1 
Streptococcus sanguinis ATCC 49296 CpsB NZ_AEPO01000010.1 
Streptococcus macedonicus ACA-DC 198 CpsB NC_016749.1 
Streptococcus iniae 9066 CpsB HQ698911.1 
Streptococcus bovis ATCC 700338 CpsB NZ_AEEL01000013.1 
Streptococcus salivarius CCHSS3 CpsB NC_015760.1 
Streptococcus infantis SK1302 CpsB NZ_AEDY01000066.1 
Streptococcus agalactiae A909 CpsB NC_007432.1 
Streptococcus gordonii str. Challis substr. CH1 Wzh CP000725.1 
Staphylococcus aureus 5C Cap5C U81973.1 
Lactococcus lactis subsp. cremoris JRF1 EpsC HQ665557 
Lactobacillus rhamnosus ATCC 9595 Wzb AY659976 
Bacillus subtilis 168 YwqE NP_391505 

 
 
2.3.  Plasmid construction 
  
 The wzh gene of S. thermophilus MR-1C (accession number AF448249.1) was 

amplified using PCR and sequence specific primers that contained restriction sites for 

cloning.  The forward primer had the sequence 5’ TCTAGAAAAAGAAGGAGGAAAA 

TAAGTGATTGACGTTCAC  3’ and the reverse primer had the sequence 5’ GTCGACT 

AAATATTGATTTTCTAGTAATG 3’.  The PCR product containing the wzh gene was 

ligated into pGEM5Z (Promega, Madison, Wisconsin, USA) using a pGEM®-T Vector 

System according to the manufacturer's instructions (Promega, Madison, Wisconsin, 

USA) after which the ligation mixture was electroporated (2500 V, 200 Ω, 25 µF) into E. 

coli DH5α cells using a Gene Pulser® II Electroporation System (Bio Rad, Hercules, 

California, USA), transformants carrying the wzh gene identified, and the cloned gene in 

selected transformants sequenced to identify exact matches to the wzh gene.  The gene 
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inserts were removed from the pGEM5Z vector and ligated into the pET-22b vector 

(Novagen, Madison, Wisconsin, USA) using the XbaI site created by the forward primer 

and the SalI site created by the reverse primer to allow the production of His-tagged 

fusion proteins.  The pET-22b plasmid containing the wzh insert (pET-22b/wzh) was first 

built in DH5α cells and then recovered.  The construct was then electroporated into E. 

coli BL21(DE3) cells to allow high level induced protein expression.  The pET-22b/wzh 

plasmid was recovered from BL21(DE3) cells and sequenced to confirm the accuracy of 

the wzh expression construct.      

 
2.4.  DNA sequencing 
 
 All DNA sequencing reactions were done at the Utah State University Center for 

Integrated BioSystems using an ABI prism 3730 DNA analyzer and Taq FS terminator 

chemistry.  To sequence inserts in pGEM5Z the universal T7 and Sp6 primers as well as 

the wzh specific primers listed above were used.   To sequence inserts in pET-22b the 

universal T7 promoter and T7 terminator primers were used.   

 
2.5.  Wzh fusion protein production, purification, and quantification 
 
 For protein induction, 300 ml of LB broth containing ampicillin at a concentration 

of 50 µg/ml was inoculated with E. coli BL21(DE3) cells containing the pET-22b/wzh 

plasmid to an OD600 0.1 from an overnight culture.  The culture was grown at 37 oC with 

shaking until the OD600 reached 0.5–1.0 and then protein production was induced by 

adding IPTG to a final concentration of 1mM for 3 hours (pET System Manuel, Novagen, 
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Madison, Wisconsin, USA).  Aliquots of the uninduced and induced cells were taken for 

analysis of protein induction by SDS-PAGE electrophoresis.    

 The Wzh protein was purified using the PrepEase® histidine-tagged protein 

purification mini kit-high specificity (USB, Santa Clara, California, USA).  The 

instructions for purification of His-tagged proteins from E. coli under native conditions 

provided with the kit were modified to allow for the recovery of S. thermophilus Wzh in 

a phosphate free buffer.  Bacterial cells were harvested by centrifugation at 6,000 x g for 

15 min at 4 °C and the pellet was resuspended in 3 ml equilibration buffer (10 mM Tris 

pH 8.0 and 300 mM NaCl).  Lysozyme was added to a final concentration of 1 mg/ml 

and the solution was left on ice for 30 min.  The suspension was then sonicated using a 

cell disruptor (model W-220 F; Heat Systems-Ultrasonics, Inc., Farmingdale, New York, 

USA) on ice using setting 2 for 5 x 10 second bursts with a 15 second cooling period 

between each burst.  DNase I was added to the lysate at a concentration of 5 μg/ml and it 

was left on ice for 15 minutes.  To remove cellular debris, the lysate was centrifuged at 

10,000 x g for 30 minutes at 4 °C and then the supernatant was transferred to a clean 

tube.  A PrepEase® Ni-TED column was equilibrated by adding 320 μl of equilibration 

buffer.  The clarified lysate was then added to the column and allowed to drain by gravity 

flow.  The column was washed three times with 320 μl of equilibration buffer and then 

the protein was eluted by adding 600 μl of elution buffer (10 mM Tris pH 8.0, 300 mM 

NaCl, 20% glycerol, and 250 mM imidazole) 100 μl at a time and collecting the fractions.  

The protein content in eluted fractions was quantified by using a NanoDrop™ 8000 

system (Thermo Scientific, Wilmington, Delaware, USA).  The fraction containing the 
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greatest concentration of His-tagged S. thermophilus Wzh protein was analyzed using 

SDS-PAGE electrophoresis and then stored at -80 °C. 

  
2.6.  Assay of the phosphatase activity of S. thermophilus MR-1C Wzh 
  
 The activity of the purified Wzh protein from S. thermophilus MR-1C was 

quantified using the Promega (Madison, Wisconsin, USA) tyrosine phosphatase and 

serine/threonine phosphatase assay systems according to the manufacturer’s instructions.  

Both systems measure the release of phosphate from phosphorylated peptide substrates.    

 The tyrosine phosphatase assays were performed at 37 oC for 10 minutes in the 

presence of synthetic phosphotyrosine peptides (Phosphotyrosine peptide-1:  

END(pY)INASL or Phosphotyrosine peptide-2: DADE(pY)LIPQQG.   Sodium vanadate 

solution was added to the reactions in concentrations of 1, 5, and 10 mM to test the 

activity of Wzh in the presence of a PTP inhibitor (LaPointe et al. 2008).  A 0.1 M 

activated sodium vanadate solution was prepared by adding 0.64 g of sodium 

orthovanadate to 35 ml of ultrapure water while stirring until completely dissolved.  The 

pH of the solution was adjusted to 10 with 1 N HCl or 1 N NaOH and then boiled until it 

became colorless and remained colorless upon cooling.  The phosphate released from 0.1 

μg of purified Wzh from the synthetic phosphotyrosine peptides was calculated from 

absorbance measurements (A600) of three separate trials taken after adding the molybdate 

dye additive that complexes with free phosphate to form a green color.   The absorbance 

measurements where then compared to a calibration curve determined with known 

concentrations of free phosphate (Fig. 3.1).  Using this information, the activity of Wzh  
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Fig. 3.1. Phosphate calibration curve.  A phosphate standard (1 mM) was diluted so that 
samples contained 200, 400, 600, 800, 1000, 1400, 1800, 2000, 2400, and 2600 pmol of 
PO4.  The molybdate dye additive was added and the OD600 was taken.  This curve was 
used to determine the pmol of PO4 released from synthetic phosphopeptides by the PTP 
Wzh from Streptococcus thermophilus.   
 

alone and in the presence of activated sodium vanadate was expressed in released pmol 

PO4 min-1 μg-1.   

 The serine/threonine phosphatase assays were performed at 37 oC for 10-30 

minutes in the presence of the synthetic phosphopeptide RRA(pT)VA.  Purified Wzh was 

added to the reactions in concentrations ranging from 0.1-2 μg and activity was 

determined as described for the tyrosine phosphatase assays.  

 The sodium vanadate solution (at 1, 5, and 10 mM) and elution buffer did show 

any background absorbance above that of the dye additive itself.    Reactions that 

contained all components including the synthetic phosphopeptides but lacking Wzh and 

reactions that contained all the components including Wzh but lacking synthetic 

phosphopeptides were set up as negative controls.  Reactions that contained all 

components plus phosphotyrosine peptide-1 without Wzh had a background OD600 of 

0.34, reactions that contained all components plus phosphotyrosine peptide -2 without 

Wzh had a background OD600 of 0.14, and reactions that contained all components plus 

the phosphoserine/threonine peptide without Wzh had a background OD600 of 0.18.   
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These values where subtracted from the reactions containing these peptides and Wzh to 

correct for background absorbance.   The reaction that contained all reaction components 

plus Wzh without either of the phosphotyrosine peptides did not have background 

absorbance above that of the dye additive itself.  Reactions that contained the S. 

thermophilus MR-1C Wze (PTK) that was cloned and purified by the same method as 

Wzh were also tested.  Purified Wze was added to reactions with all synthetic 

phosphopeptides at a concentration of 1 μg to confirm that any activity seen was not due 

to any contaminating E. coli proteins from the purification procedure.   

 
3. Results 
 
3.1.  Computational analysis of protein sequences 

 Recent research has identified conserved amino acid residues that are necessary 

for the proper function of Gram-positive PTPs (Shi 2004; LaPointe et al. 2008; 

Hagelueken et al. 2009; Kim et al. 2011).  To confirm if these conserved amino acids are 

present in the Wzh proteins of S. thermophilus, the predicted Wzh/EpsB proteins from 

strains MR-1C, MR-2C, MTC330, MTC360, and CNRZ1066 were aligned with several 

PTPs from other species of streptococci including the well-studied S. pneumoniae.  Also 

included in the alignment are other Gram-positive PTP’s, including those from 

Staphylococcus aureus 5C,  Lactococcus lactis subsp. cremoris, Lactobacillus rhamnosus 

ATCC 9595, and Bacillus subtilis 168, to illustrate any amino acids that may be 

conserved not just among the streptococci but among all Gram-positive PTP’s (Fig. 3.2).   

 Four motifs that contain several conserved amino acids including histidine, 

aspartate, and glutamate residues that are important in binding divalent cations and in 
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coordination of the catalytic site have been identified in PTPs (Aravind and Koonin 1998; 

Shi 2004; LaPointe et al. 2008; Hagelueken et al. 2009; Kim et al. 2011).  These motifs 

are labeled with the conserved amino acid residues indicated in bold type (Fig. 3.2).  

High-resolution crystal structures of S. pneumoniae TIGR4 Cps4B have more clearly 

identified amino acid residues that are responsible for coordination of metal and 

phosphate ions, therefore making them essential to the catalytic mechanism of Gram-

positive PTPs (Hagelueken et al. 2009; Kim et al. 2011).  M1 in Cps4B is coordinated by 

two axial ligands (Glu80 and Asp199) and three equatorial ligands (His5, His7, and W1) 

(Hagelueken et al. 2009).   Glu80, Asp199, His5, and His7 are highly conserved in all 

compared PTPs, including S. thermophilus, and are shadowed in light grey (Fig. 3.2).   

M2 is coordinated by the amino acids Glu80, Glu108, and His136 and by W1 and W2.  

Glu80 and W1 serve as bidentate ligands for M1 and M2 (Hagelueken et al. 2009).  The 

amino acid residues Glu80, Glu108, and His136 that are needed to coordinate M2 are 

conserved in all the compared PTPs and are shadowed in light grey (Fig. 3.2).  M3 is 

coordinated by His42, Asp14, His201, and W3 (Hagelueken et al. 2009).  The amino acid 

residues that coordinate M3 are conserved in all the compared PTPs and are shadowed in 

light grey (Fig. 3.2).  The phosphate ion is bound to the active site of Cps4B by 

interactions involving the metal ions as it replaces all three metal-bound solvent 

molecules as well as with the amino acid residues Arg139 and Arg206  (Hagelueken et al. 

2009).  Asp139 and Arg206 are conserved in all of the compared PTP’s and are 

shadowed in light grey (Fig. 3.2). 
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 Kim et al. (2011) identified two active site loops in both Cps4B from S. 

pneumoniae TIGR4 and YwqE from B. subtilis that are important in the catalytic 

mechanism of PTPs from Gram-positive organisms.  The first loop encompasses Arg44-

Pro51 of Cps4B (Asn44-Glu51of YwqE) and contains the sequence motif [(G/P)x(Y/F) 

with x being any amino acid].  The sequence in this loop, RKGMFETP, is highly 

conserved for all of the PTPs from streptococci species and is labeled and shadowed in 

dark grey.  The PTPs from Staph. aureus 5C, L. lactis subsp. cremoris JRF1, Lb. 

rhamnosus ATCC 9595, and B. subtilis subsp. subtilis str. 168 vary in the sequence in 

this loop but still contain the motif [(G/P)x(Y/F)] (Fig. 3.2).  Loop II extends from 

Leu168-Arg176 in CpsB (Ala168-Lys173 of YwqE) and contains the sequence motif 

[(G/P)x1-2FGx0-1(K/R)] (Kim et al. 2011).  The sequence in this loop is more 

variable between compared PTPs than that of loop I and is labeled and shadowed in dark 

grey.  The sequence motif [(G/P)x1-2FGx0-1(K/R)] is not conserved in all of the 

compared PTPs, although it is present in all of the S. thermophilus proteins (Fig. 3.2).    

 3.2.  Purification and determination of the phosphatase activity of  
S. thermophilus MR-1C Wzh 
 
 IPTG-induced E. coli BL21 (DE3) cultures containing the pET-22b/wzh 

plasmid overproduced a 28 kDa protein (Fig. 3.3) corresponding to the predicted size of 

the S. thermophilus MR-1C Wzh protein (Broadbent et al. 2003).  The purified Wzh 

protein was eluted in the highest concentration in fraction 2 and formed a single band of 

the same molecular mass as that in the IPTG-induced culture (Fig. 3.3).    

                 The purified S. thermophilus Wzh protein released phosphate equally from  
 
both synthetic phosphotyrosine peptides with 2316.5 ± 138.7 pmol PO4 min-1 μg-1 being                           
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Fig. 3.2.  Alignment of the PTPs from various Gram-positive bacteria.  Included in this 
alignment are the PTPs from Streptococcus pneumoniae TIGR4 (Cps4B, SP TIGR4), 
Streptococcus pneumoniae D39 (Cps2B, SP D39), Streptococcus pneumoniae CDC1873-
00 (CpsB, SP CDC1873-00), Streptococcus thermophilus MR-1C (Wzh, ST MR-1C), 
Streptococcus thermophilus MR-2C (Wzh, ST MR-2C), Streptococcus thermophilus 
MTC360 (Wzh, ST MTC360), Streptococcus thermophilus MTC330 (EpsB, MTC330), 
Streptococcus thermophilus CNRZ1066 (EpsB, ST CNRZ1066), Streptococcus oralis 
SK610 (CpsB, SO SK610), Streptococcus sanguinis ATCC 49296 (CpsB, SSan 
ATCC49296), Streptococcus macedonicus ACA-DC 198 (CpsB, SM ACA-DC198), 
Streptococcus iniae 9066 (CpsB, SIni 9066), Streptococcus bovis ATCC 700338 (CpsB, 
SBATCC 700338), Streptococcus salivarius CCHSS3 (CpsB, SSal CCHSS3), 
Streptococcus infantis SK1302 (CpsB, SInf SK1302), Streptococcus agalactiae A909 
(CpsB, SA A909), Streptococcus gordonii str. Challis substr. CH1 (Wzh, SG CH1), 
Staphylococcus aureus 5C (Cap5C, SAur 5C), Lactococcus lactis subsp. cremoris JRF1 
(EpsC, LL JRF1), Lactobacillus rhamnosus ATCC 9595 (Wzb, LR ATCC9595), and 
Bacillus subtilis 168 (YwqE, BS 168).  The four PTP motifs are labeled with the 
conserved histidine, aspartate, and glutamate residues indicated in bold type.  The 
conserved amino acids Glu80, Asp199, His5, His7, Glu108, His136, His42, Asp14, 
His201, Asp139, and Asp206 involved in binding metal and phosphate ions as identified 
by Hagelueken et al. (2009) are shadowed in light grey.  The conserved loops identified 
by Kim et al. (2001) are shadowed in dark grey.  Loop I contains the conserved motif 
[(G/P)x(Y/F)] and loop II has the conserved motif  [(G/P)x1-2FGx0-1(K/R)].  Amino 
acids that are identical in all sequences of the alignment are indicted by an asterisk, 
conserved substitutions are indicated by two dots, and semi-conserved substitutions are 
indicated by one dot. 
 
 
                                             Motif I____                 Motif II_____Loop I 
SP TIGR4         MIDIHSHIVFDVDDGPKSREESKALLAESYRQGVRTIVSTSHRRKGMFETPEEKIAENFL 60 
SP D39           MIDVHSHIVFDVDDGPKSREESKALLAESYRQGVRTIVSTSHRRKGMFETPEEKIAENFL 60 
SP CDC1873-00    MIDIHSHIVFDVDDGPKSREESKALLAEAYRQGVRTIVSTSHRRKGMFETPEEKIAENFL 60 
ST MR1C          MIDVHSHIVFDVDDGPKTLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFS 60 
ST MR2C          MIDVHSHIVFDVDDGPETLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFK 60 
ST MTC360        MIDVHSHIVFDVDDGPETLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFK 60 
ST MTC330        MIDVHSHIVFDVDDGPETLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFK 60 
ST CNRZ1066      MIDVHSHIVFDVDDGPETLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFK 60 
SO SK610         MIDIHSHIVFDVDDGPKSIEESKKLLREAYSQGVRTIVSTSHRRKGMFETPEEKIATNFL 60 
SSan ATCC49296   MIDIHSHIVFDVDDGPKSIEESKKLLREAYSQGVRTIVSTSHRRKGMFETPEEKIATNFL 60 
SM ACA-DC198     MIDIHSHIVFDVDDGPTTIEESLALVGESYRQGVRTIVSTSHRRKGMFETPEDKIFANFS 60 
SIni 9066        MIDIHSHIVFDVDDGPLTIDDSLALIGESYRQGVRTIVSTSHRRKGMFETPEDDIYNKFL 60 
SB ATCC700338    MIDIHSHIVFDVDDGPKTIEESLDLIGESYRQGVRTIVSTSHRRKGMFETPEDKIFANFS 60 
SSal CCHSS3      MIDVHSHIVFDVDDGPKTLEESLDLIGESFAQGVRTIVSTSHRRKGMFETPEDKIFANFK 60 
SInf SK1302      MIDIHSHIVFDVDDGPKDKAESIALLEEAYAQGVRTIVSTSHRRKGMFETPEEDIARNFK 60 
SA A909          MIDIHSHIVFDVDDGPKTLEESLSLIEESYRQGVRIIVSTSHRRKGMFETPEDIIFKNFS 60 
SG CH1           MIDIHSHIVFDVDDGPKTIEDSRALLEESYRQGVRTIISTSHRRKGMFETPEAKIEENFK 60 
SAur 5C          MIDIHNHILPNIDDGPTNETEMMDLLKQATTQGVTEIIVTSHHLHPRYTTPIEKVKSCLN 60 
LL JRF1          MIDIHCHILPGIDDGAKTSGDTLTMLKSAIDEGITTITATPHHN-PQFNNESPLILKKVK 59 
LR ATCC9595      MIDVHCHMLPGIDDGSKDLTTSLELAQAAVADGITHALMTPHHMNGRYTNHATDVIRMTD 60 
BS 168           MIDIHCHILPAMDDGAGDSADSIEMARAAVRQGIRTIIATPHHNNGVYKNEPAAVREAAD 60 
                 ***:* *::  :***.        :   :  :*:     *.*:    : .    :      
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SP TIGR4         QVREIAKEVASDLVIAYGAEIYYTPDVLDKLEKKRIPTLN-DSRYALIEFSMNTPYRDIH 119 
SP D39           QVREIAKEVADDLVIAYGAEIYYTPDVLDKLGKKRIPTLN-DSRYALIEFSMNTPYRDIH 119 
SP CDC1873-00    QVREIAKEVASDLVIAYGAEIYYTPDVLDKLGKKRIPTLN-DSRYALIEFSMNTPYRDIH 119 
ST MR1C          KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
ST MR2C          KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
ST MTC360        KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
ST MTC330        KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
ST CNRZ1066      KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
SO SK610         KVREMAKEVADDLIIAYGAEIYYTPDVVEKLEKKLIPTLN-DSRYALIEFSMNTPYRDMH 119 
SSan ATCC49296   KVREMAKEVANDLIIAYGAEIYYTPDVVEKLEKKLIPTIN-DSRYALIEFSMNTPYRDIH 119 
SM ACA-DC198     QVKEAAEAKYEGLEILYGGELYYSSDILERLEQRQVPRMN-DTRFALIEFSMTTPWKEIH 119 
SIni 9066        HLKREAEKEYEGLTILYGGELYYTEDILDKLAQNLIPRMN-DTRFALIEFSMNTPWRDIH 119 
SB ATCC700338    QVKEAAEAKYEGLEILYGGELYYSSDILEKLERGQVPKMN-NTRFALIEFSMTTSWKDIH 119 
SSal CCHSS3      KVKEEAEALYPDLTIFYGGELYYTSDIVEKLEKNLIPRMH-NTQFALIEFSARTSWKEIH 119 
SInf SK1302      VVKELAKEIAPDFTILYGAEIYYSSDALNKLENQQIPQLN-GTRYALIEFSMNTPYREIH 119 
SA A909          IVKHEAEKRFEHLQILYGGELYYTSDMLEKLKLKQIPTLN-NTKFALIEFSMQTSWKDIH 119 
SG CH1           QVQELAKEIADDLTILYGAEIYYTSDILDKLEQEKIPRLA-GSQYALIEFSMITPYKEIH 119 
SAur 5C          HIESLEEVQALNLKFYYGQEIRITDQILNDIDR-KVINGINDSRYLLIEFPSNEVPHYTD 119 
LL JRF1          EVQNIIDEHQLPIEVLPGQEVRIYGDLLKEFSEGKLLKAAGTSSYILIEFPSNHVPAYAK 119 
LR ATCC9595      EFQDELDRRNIPLTVFPCQEVRINGQLLEAIDHNDILTCDVSGHYVLIEFPSDDVPLYTQ 120 
BS 168           QLNKRLIKEDIPLHVLPGQEIRIYGEVEQDLAKRQLLSLN-DTKYILIEFPFDHVPRYAE 119 
                  ..         : .    *:    :  . :    :        : ****.         
                    ______Motif III_______                        Loop II 
SP TIGR4         SALSKILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQVNSSHVLKPKLFGERYKF 179 
SP D39           SALSKILMSGITPVIAHIERYDALGNNEKRVRELIDMGCYTQVNSSHVLKPKLFGERYKF 179 
SP CDC1873-00    SALNKILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQVNSSHVLKPRLFGERYKF 179 
ST MR1C          SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
ST MR2C          SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
ST MTC360        SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
ST MTC330        SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
ST CNRZ1066      SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
SO SK610         KGLSNILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQVNSSHVLKPKLFGETYKF 179 
SSan ATCC49296   KGLSNILMLGITPVIAHIERYDALENNEKRVRELIDMGCYTQVNSSHVLKPKLFGETYKF 179 
SM ACA-DC198     TALSNVIMLGITPVVAHIERYNALEFNEERVKELINMGGYTQINSSHVLKPKLFGDKYHQ 179 
SIni 9066        TALSQVIMLGITPIIAHIERYDALALNAKRVQELINMGCYTQVNSSHVLKAKLFGDSLKV 179 
SB ATCC700338    TALSNVIMLGITPVVAHIERYNVLEFNEERVKELINMGCYTQINSSHVLKPKLFGDKYRQ 179 
SSal CCHSS3      TGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
SInf SK1302      NALTNVLMLGITPVIAHIERYDALENNEKRVRDLINMGCYTQINSSSILKPKLFGDTYKF 179 
SA A909          TALSNVLMLGITPVVAHIERYNALENQKERVKEIINMGCYTQINSSHILKQKLFNDKHKR 179 
SG CH1           TALSNVLRLGVTPVVAHIERYHCLENDEKKVRDLINMGCYTQINSSSVLKPKLFGDTYKF 179 
SAur 5C          QLFFELQSKGFVPIIAHPERNKAISQNLDILYDLINKGALSQVTTA-----SLAGISGKK 174 
LL JRF1          ELFYNIKLEGLQPILVHPERNSGIIENPDILFDFIEQGVLSQITAS-----SVTGHFGKK 174 
LR ATCC9595      NMLFEVMQRGMIPVIVHPERNTRLMKHPGLLYQMVERGAFAQVTAS-----SYVGTFGKK 175 
BS 168           QLFYDLQLKGYIPVIAHPERNREIRENPSLLYHLVEKGAASQITSG-----SLAGIFGKQ 174 
                   : .:   *  *::.* **   :  .   : .::: *  :*:.:.        .   :          
                        _____Motif IV__________ 
SP TIGR4         MKKRAQYFLEQDLVHVIASDMHNLDGRPPHMAEAYDLVTQKYGEAKAQELFIDNPRKIVM 239 
SP D39           MKKRAQYFLEQDLVHVIASDMHNLDGRPPHMAEAYDLVTQKYGEAKAQELFIDNPRKIVM 239 
SP CDC1873-00    MKKRAQYFLEQDLVYVIASDMHNLDGRPPHMAEAYDLVTQKYGEAKAQELFIDNPRKIVM 239 
ST MR1C          RKKRVRYFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGPKRAKNLFIENPKTLLE 239 
ST MR2C          RKKRVRFFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGSKRAKNLFIENPKTLLE 239 
ST MTC360        RKKRVRFFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGSKRAKNLFIENPKTLLE 239 
ST MTC330        RKKRVRFFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGSKRAKNLFIENPKTLLE 239 
ST CNRZ1066      RKKRVRFFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGSKRAKNLFIENPKTLLE 239 
SO SK610         MKKRAQYFLERDLVHVIASDMHNLDHRPPHMEEAYDIIAQKYSEDKAKELFKDNPRKIIM 239 
SSan ATCC49296   MKKRAQYFLERDLVHVIASDMHNLDHRPPHMEEAYDIIAKKYSGDKAKELFKDNPRKIIM 239 
SM ACA-DC198     FKKRARYFLEKNLVHCVASDMHNLGPRPPFMDKAREIVTKDFGPNRAYALFEENPQTLLE 239 
SIni 9066        FKKRAKFFLDENLVHCIASDMHNLKKRPPFMQEAYQHVTKHYGRKRARELFITNPQTLIE 239 
SB ATCC700338    FKKRARYFLEKNLVHCVASDMHNLGPRPPFMDEAREIITKDFGTKRADALFEGNPQTLLE 239 
SSal CCHSS3      RKKRVRFFLEKNLVHMVASDMHNLGLRPPFMKDAYEIVKKNYGPKRAKNLFIENPKTLLE 239 
SInf SK1302      MKKRARYFLERDLVHIVASDMHNLDGRPPYMREAYEIVSKRYGRDKARELFVENPEKVIK 239 
SA A909          FKKRARYFLEENLVHFVASDMHNLDVRPPFLAEAYKIICRDFGKERANQLFIENAQSILK 239 
SG CH1           MKKRAQFFLEKDLVHFVASDMHNLDPRPPYMQEAYQIISKKYGEPHAEQLFRKNQELLLR 239 
SAur 5C          IRKLAIQMIENNLTHFIGSDAHNTEIRPFLMKDLFNDKKLRDYYE-DMNGFISNAKLVVD 233 
LL JRF1          IQKLSFKMIENHLTHFVASDAHNVTSRAFKMKEAFEIIEDSYGSG-VSRMLQNNADSVIL 233 
LR ATCC9595      VQQFSEDIIDAGLAHVFASDAHHLPGRSYEMSAAFKRLTRKRGEK-KARIFEENARALVN 234 
BS 168           LKAFSLRLVEANLIHFVASDAHNVKTRNFHTQEALYVLEKEFGSE-LPYMLTENAELLLR 233 
                  :     :::  * : ..** *:   *                       :  *   ::  
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SP TIGR4         DQLI------------------ 243 
SP D39           DQLI------------------ 243 
SP CDC1873-00    DQLI------------------ 243 
ST MR1C          NQYL------------------ 243 
ST MR2C          NQYL------------------ 243 
ST MTC360        NQYL------------------ 243 
ST MTC330        NQYL------------------ 243 
ST CNRZ1066      NQYL------------------ 243 
SO SK610         DQLI------------------ 243 
SSan ATCC49296   DQLI------------------ 243 
SM ACA-DC198     NKDL------------------ 243 
SIni 9066        NDYL------------------ 243 
SB ATCC700338    NKDL------------------ 243 
SSal CCHSS3      NQYL------------------ 243 
SInf SK1302      DQII------------------ 243 
SA A909          NHYI------------------ 243 
SG CH1           SEYI------------------ 243 
SAur 5C          DKKIPKRMPQQDYKQKRWFGL- 254 
LL JRF1          NESFYQEEPIK-IKTKKFLGLF 254 
LR ATCC9595      GDPLVRFNERK-VEKR-LLSRY 254 
BS 168           NQTIFRQPPQP-VKRRKLFGFF 254 
                 .. :                   

        
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3.3.  SDS-PAGE of purified histidine-tagged Streptococcus thermophilus MR-1C 
Wzh protein.  Wzh was purified using the PrepEase® histidine-tagged protein 
purification mini kit-high specificity (USB, Santa Clara, California, USA).  Lane 1: 
Uninduced culture lysate of E. coli BL21 cells containing the pET-22b/wzh vector; Lane 
2: IPTG-induced culture lysate of E. coli BL21 cells containing the pET-22b/wzh vector; 
Lane 3: Fraction 2 from the elution step containing purified Wzh; Lane 4: BenchMark 
Protein Ladder (Invitogen, Carlsbad, California, USA).  
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released from phosphotyrosine peptide-1 and 2345.7 ± 135.2 pmol PO4 min-1 μg-1 being 

released from phosphotyrosine peptide-2 (Fig. 3.4).  When 1 mM of the PTP inhibitor 

sodium vanadate was added to reactions the ability of Wzh to release phosphate from 

both phosphopeptides was reduced by 45-50% (1135.9 ± 132.2 and  1249.3 ± 87.5  pmol 

PO4 min-1 μg-1 for phosphotyrosine peptide-1 and 2, respectively) when compared to 

reactions that contained purified Wzh alone (Fig. 3.4).  To further investigate the effect of 

sodium vanadate on Wzh, it was added to reactions in concentrations of 5 and 10 mM.  In 

the presence of 5 mM sodium vanadate the ability of Wzh to release phosphate from both 

phosphotyrosine peptides was reduced by 78-84% (497.0 ± 68.2 and 378.9 ± 78.8 pmol 

PO4 min-1 μg-1 for phosphotyrosine peptide-1 and 2, respectively) (Fig. 3.4).  When 10 

mM of sodium vanadate was added to reactions of Wzh and either phosphotyrosine 

peptide only about 12% (282.5 ± 59.3 and 259.4 ± 62.3 pmol PO4 min-1 μg-1 for 

phosphotyrosine peptide-1 and 2, respectively) of the original activity of the enzyme 

remained (Fig. 3.4).  Reactions that contained 2 μg purified Wzh and the synthetic 

phosphoserine/threonine peptide that had an OD600 that was comparable to that seen in 

 

 

 

 

 

 
 
Fig. 3.4.  Graphic representation of the PTP activity of Streptococcus thermophilus MR-
1C Wzh alone and in the presence of the PTP inhibitor sodium vanadate.  
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reactions containing only the dye additive.  These results indicated that Wzh has no 

detectable activity against the synthetic phosphoserine/threonine peptide.    

 
4.  Discussion 

 The S. thermophilus MR-1C Wzh protein was established to have 

phosphotyrosine phosphatase activity.   The PTP inhibitor sodium vanadate had a 

dramatic effect on purified Wzh, reducing the enzymatic activity by around 45-50%  at 1 

mM, 74-84% at 5 mM, and at least 88% at 10 mM when compared to the activity of 

purified Wzh alone.  Using similar methodologies, LaPointe et al. (2008) observed a 55% 

decrease in the activity of the PTP from Lb. rhamnosus when in the presence of 1 mM 

sodium vanadate.  Purified Wzh had no detectable activity against the 

phosphoserine/threonine peptide in reactions that contained 20 times the concentration of 

Wzh and were incubated for three times as long as the phosphotyrosine phosphatase 

reactions.  This indicates that this enzyme is unlikely to be responsible for removing 

phosphate groups from serine and threonine.  Recently, phosphorylation on serine and 

threonine residues was observed in the PTK from Klebisella pneumoniae but the role of 

phosphorylation of these sites is not clear (Lin et al. 2009).  It is unknown if the S. 

thermophilus MR-1C PTK would also be phosphorylated at serine or threonine residues 

but if it does occur a separate phosphatase would be necessary to remove phosphate from 

these residues.   

 Results from protein sequence comparison of the S. thermophilus MR-1C Wzh 

protein to the well studied PTP Cps4B from S. pneumoniae suggests that Wzh is likely to 

use a comparable mechanism to remove phosphate groups from phosphotyrosine 
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containing substrates.  The mutation of amino acids in the active site or those interacting 

with metal ligands in the PTPs from S. pneumoniae and Lb. rhamnosus decreased the 

activity by at least 80%, reaffirming that these residues are important for the function of 

the enzyme and the stability of the metal cluster (Morona et al. 2002; Mijakovic et al. 

2005; LaPointe et al. 2008; Hagelueken et al. 2009).  For example, Cps4B mutants in 

which Arg139 was changed to alanine had only 5% of the wild type enzymatic activity, 

identifying Arg139 as a catalytic key player in Cps4B activity (Hagelueken et al. 2009).  

Replacement of the histidine residues at positions 5, 7, or 42 by alanine in the Lb. 

rhamnosus PTP lead to drastic reductions of up to 99% of the enzymatic activity 

(LaPointe et al. 2008).  All of these amino acids are highly conserved in all the Gram-

positive PTPs compared, including that from S. thermophilus MR-1C.    

 Active site loop I plays a role in controlling the access of phosphotyrosine 

containing substrates to the catalytic site (Kim et al. 2011).  The sequence of this region 

is identical in all streptococcal PTPs and the [(G/P)x(Y/F)] motif is present in all the 

PTPs compared.  The amino acid sequence of loop II is more variable between the 

species of PTPs compared.  This sequence is highly similar when comparing the species 

of streptococci to each other but different when comparing the species of streptococci to 

S. aureus, L. lactis subsp. cremoris, Lb. rhamnosus, and B. subtilis.  The sequence motif 

[(G/P)x1-2FGx0-1(K/R)] is not strictly conserved, although it is present in all strains of 

S. thermophilus.  The phenylalanine residue located in the middle of this motif is 

conserved in all species except Staph. aureus 5C.  It has been suggested that this 

phenylalanine residue functions as a gatekeeper to control the access of phosphotyrosine 
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into the active site while conserved glycine or proline residues on both sides of 

phenylalanine allow sharp turns in loop II and confer conformational flexibility.  Many of 

the amino acids in Loop I and II are positively charged and hydrophobic residues that line 

a deep active-site pocket that can accommodate the bulky aromatic ring of 

phosphotyrosine (Kim et al. 2011). 

 It is interesting to note that the overall structure of the PTPs is conserved but the 

PTPs fall into 2 clear structural groups consisting of the streptococci proteins in one 

group and the PTPs from Staph. aureus 5C, L. lactis subsp. cremoris JRF1, Lb. 

rhamnosus ATCC 9595, and B. subtilis subsp. subtilis str. 168 in the other group.  The 

groups have sequence differences within the conserved motifs and the carboxyl termini of 

the proteins.  However, all the amino acids identified by Hagelueken et al. (2009) 

necessary for the coordination of metal and phosphate ions are conserved in S. 

thermophilus MR-1C Wzh indicating that the active site is similar in arrangement to that 

of S. pneumoniae Cps4B.  The amino acids that are thought to be important for catalysis 

in loop I and II as identified by Kim et al. (2011) in Cps4B from S. pneumoniae are also 

well conserved in S. thermophilus MR-1C Wzh.  

 Taken together these results prove that the S. thermophilus MR-1C Wzh protein 

functions as a PTP that could be responsible for removing phosphate from the PTK Wze.  

However, the ability of S. thermophilus Wzh to remove the phosphate groups from Wze 

still needs to be directly confirmed by other research methods.     
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CHAPTER 4 

PROTEIN-PROTEIN INTERACTIONS AMONG THE COMPONENTS OF THE 

BIOSYNTHETIC MACHINERY RESPONSIBLE FOR EXOPOLYSACCHARIDE 

PRODUCTION IN STREPTOCOCCUS THERMOPHILUS MR-1C1 

 
Abstract 
 
Aim:  Identify protein-protein interactions among the biosynthetic machinery responsible 

for exopolysaccharide production in Streptococcus thermophilus MR-1C. 

Methods and Results:  Protein-protein interactions were investigated using the yeast 

two-hybrid system.  A strong protein-protein interaction was detected between the 

transmembrane activation protein Wzd and the protein tyrosine kinase Wze.  Weaker 

protein-protein interactions were detected between two duplicate Wze proteins and 

between Wze and the phosphotyrosine phosphatase Wzh.  Protein-protein interactions 

involving a Wzd/Wze fusion protein and Wzd and Wze may indicate that these proteins 

form multi-protein complexes. All combinations of the Wzh, Wzd, Wze, Wzg 

(regulation), CpsE (glycosyl-1-phosphate transferase), CpsS (polymerization), CpsL 

(unknown), CpsW (regulation), and CpsU (membrane translocation) proteins were 

analyzed for protein-protein interactions but no additional interactions were discovered 

using the yeast two-hybrid system.   

Conclusions: Interactions among the phosphotyrosine phosphatase, tyrosine kinase, and 

transmembrane activation protein are important in the regulation of capsule biosynthesis 

in Strep. thermophilus MR-1C.  

                                                 
1 Coauthored by Angela D. Cefalo, Jeffery R. Broadbent, and Dennis L. Welker (2011) J. Appl. Microbiol. 
110 (3): 801-812. 
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Significance and Impact of Study:  This study provides some valuable insight into the 

organization and interactions between the many proteins involved in exopolysaccharide 

production.  A better understanding of this process may facilitate the genetic 

manipulation of capsule production to impart desirable properties to dairy starter cultures.  

  
1.  Introduction 
 

The exopolysaccharide (EPS) producing lactic acid bacteria have been used in 

fermented dairy products, such as yogurt and cheese, to improve rheological properties 

and to replace stabilizers such as gelatin, modified starch, or carrageenan (Perry et al. 

1997; Low et al. 1998; Petersen et al. 2000; Hassan et al. 2003; Ramchandran and Shah 

2009).  The EPS from these organisms may have beneficial effects on human health 

including preventing chronic gastritis, reducing the symptoms of colitis, lowering 

cholesterol, preventing ulcers, acting as anticarcinogens, preventing tumor formation, and 

stimulating the immune system (Forsén et al. 1987; Kitazawa et al. 1991, 1992, 1998; 

Nakajima et al. 1992, 1995; Nagaoka et al. 1994; Sreekumar and Hosono 1998; Zubillaga 

et al. 2001; Şengül et al. 2005; Rodríguez et al. 2009).  The beneficial properties of these 

organisms both in dairy foods and as probiotics could be enhanced if a thorough 

understanding of the molecular processes involved in EPS production could be gained.   

In the mechanism for intracellular assembly of EPS, repeating sugar units are 

assembled on the inner face of the cytoplasmic membrane by the sequential transfer of 

sugar nucleotide diphospho-precursors to a carrier lipid, which may be undecaprenyl 

phosphate, and then exported (Johnson and Wilson 1977; De Vuyst et al. 2001; Cartee et 

al. 2005; Whitfield 2006).  The first step in this process is catalyzed by a glycosyl-1-
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phosphate transferase that transfers a sugar-1-phosphate to the lipid carrier.  In 

Streptococcus thermophilus MR-1C, the glycosyl-1-phosphate transferase is encoded by 

the fifth gene in the cluster, cpsE.  The cpsF, cpsN, cpsP, cpsQ, cpsR, cpsT, and cpsV 

genes are likely to encode the remaining glycosyltransferases that sequentially transfer 

the remaining sugar residues to the repeat unit (Stingele et al. 1996, 1999; Almiron-Roig 

et al. 2000; De Vuyst et al. 2001; Jolly and Stingele 2001; Broadbent et al. 2003; Cartee 

et al. 2005).   

The Strep. thermophilus MR-1C cpsU and cpsS genes are homologous to 

Escherichia coli wzx and wzy, respectively (Broadbent et al. 2003).  In the synthesis of E. 

coli colanic acid (CA), group 1, and group 4 capsules, Wzx is thought to be the flippase 

which translocates the repeating sugar units through the membrane and Wzy is believed 

to be a polymerase involved in production of long chain polymers by successive transfer 

of the growing lipid-linked chain to the reducing end of a single repeat unit (Liu et al. 

1996; Drummelsmith and Whitfield 1999; Feldman et al. 1999; Valvano 2003; Whitfield 

2006).    

The first four genes in the Strep. thermophilus MR-1C EPS gene cluster, wzg, 

wzh, wzd, and wze, are highly conserved among different species of EPS producing 

streptococci (Broadbent et al. 2003).  The Streptococcus pneumoniae Wzg homologue, 

Cps2A, functions in the regulation of capsule production as an activator of gene 

transcription.  The deletion of cps2A not only reduced encapsulation but also caused a 

reduction in the phosphorylation of Cps2D (Wze), suggesting that Cps2A could have 
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functions other than or in addition to transcriptional control (Cieslewicz et al. 2001; 

Bender et al. 2003). 

The wzh, wzd, and wze genes of Strep. thermophilus MR-1C are homologous to 

genes that encode a tyrosine kinase/phosphatase regulatory system in other bacteria 

(Grangeasse et al. 1998, 2002; Vincent et al. 1999; Morona et al. 2000, 2002; Bender and 

Yother 2001; Wugeditsch et al. 2001; Preneta et al. 2002; Broadbent et al. 2003; Soulat 

et al. 2006; Ferreira et al. 2007).  In most Gram-positive bacteria, the transmembrane 

activation domain and the nucleotide binding domain that contains the tyrosine 

phosphorylation sites are separate proteins as opposed to being contained in a single 

protein in the typical Gram-negative system (Vincent et al. 1999; Morona et al. 2000; 

Cieslewicz et al. 2001; Doublet et al. 2002; Broadbent et al. 2003; Olivares-Illana et al. 

2008).  In the proposed mechanism for Strep. pneumoniae (Morona et al. 2000), the 

dephosphorylated form of the protein tyrosine kinase (PTK) CpsD (Wze) interacts with 

the transmembrane activation domain CpsC (Wzd) and ATP, possibly causing a 

conformational change in CpsC that would promote interactions with other proteins 

allowing capsular polysaccharide (CPS) polymerization and biosynthesis to proceed at 

the maximal level.  The autophosphorylation of tyrosine residues on CpsD promotes 

transfer of the polymer to the undefined cell wall-CPS ligase (Morona et al. 2000, 2003, 

2004; Bender et al. 2003).  CpsD is dephosphorylated by the phosphotyrosine 

phosphatase (PTP), CpsB (Wzh) (Bender and Yother 2001; Morona et al. 2002).  Results 

obtained by Morona et al. (2003) imply that the switching between phosphorylated and 
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non-phosphorylated forms of CpsD is needed for efficient, high molecular weight 

polysaccharide synthesis.   

Olivares-Illana et al. (2008) proposed a general model for the regulation of 

polysaccharide synthesis based on experimental results from Staphylococcus aureus.  In 

this model, the unphosphorylated tyrosine kinase domains associate into an octameric 

ring structure that would extend to the transmembrane domains and constrain their action.  

Each tyrosine tail would interact with the active site of the neighboring subunit.  Upon 

phosphorylation, the kinase domains would disassociate releasing the constraint on the 

transmembrane domains causing a switch in conformation that may affect interactions 

with other proteins or alter the affinity of the machinery to the polysaccharide.  The 

kinase domains may then be free to phosphorylate other substrates.  Cycling between 

phosphorylated and non-phosphorylated forms regulates the switch between 

polymerization and export of polysaccharides.    

Recent research suggests that these proteins may have more than one functional 

role in exopolysaccharide synthesis.  In both Gram-negative and Gram-positive systems, 

there is evidence that PTKs can phosphorylate other proteins.  Wzcca from E. coli K-12 

and YwqD from Bacillus subtilis seem to activate by phosphorylation the UDP-glucose 

dehydrogenases that are needed to synthesize building blocks for EPS synthesis 

(Grangeasse et al. 2003; Mijakovic et al. 2003; Lacour et al. 2008).  In Gram-negative 

organisms, Wzcca may be involved in the phosphorylation of glycosyltransferases, 

including WcaJ.  In support of this, a tyrosine residue that undergoes phosphorylation and 

seems to be important for proper function has been identified in WcaJ from Klebsiella 
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pneumoniae (Obadia et al. 2007; Lin et al. 2009).  Similarly, the Strep. thermophilus 

CNRZ1066 PTK EpsD (Wze) in conjunction with EpsC (Wzd) may regulate the 

glycosyltransferase EpsE by the phosphorylation of one of its tyrosine residues (Minic et 

al. 2007).   Wzc from E. coli has been demonstrated to have ATPase activity.  It is 

possible that the energy produced from the hydrolysis of ATP by Wzcca could be used for 

CA synthesis (Obadia et al. 2007; Soulat et al. 2007).  Wzc is involved in a protein-

protein interaction with the outer membrane lipoprotein Wza; therefore Wzc could have 

functions interacting with biosynthetic machinery and coupling to the export pathway in 

E. coli (Nesper et al. 2003; Reid and Whitfield 2005; Collins et al. 2007).  CpsC (Wzd) 

from Strep. pneumoniae seems to be involved in the cell wall attachment of CPS, 

possibly by interacting with other proteins such as the cell wall capsular polysaccharide 

ligase (Morona et al. 2006).  The Gram-negative PTP Wzb has been shown to 

dephosphorylate substrates other than Wzc.  Wzb may function in the dephosphorylation 

of enzymes involved in nucleotide sugar precursor synthesis or glycosyltransferases 

(Bugert and Geider 1997; Grangeasse et al. 1998; Vincent et al. 1999; Preneta et al. 

2002; Nakar and Gutnick 2003).   

Relatively little is known about how the proteins involved in EPS biosynthesis 

assemble and interact with one another.  This study used the yeast two-hybrid system to 

detect protein-protein interactions among the Strep. thermophilus MR-1C Wzg, Wzh, 

Wze, Wzd, CpsE, CpsP, CpsQ, CpsS, CpsL, CpsU, and CpsW proteins that are involved 

in EPS production in this organism.  The yeast two-hybrid system has never been used to 

study protein interactions in EPS biosynthesis and this is the first study to analyze the 
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direct interaction of some of these proteins.   Minic et al. (2007) isolated protein 

complexes from Strep. thermophilus CNRZ1066 that had a molecular size that suggested 

protein interactions between the transmembrane activation domain, the PTK, and the 

glycosyl-1-phosphate transferase.  Protein interactions between the transmembrane 

activation domain and the PTK were also suggested by the analysis of the crystalline 

structure of a chimeric protein containing these two domains in Staph. aureus (Olivares-

Illana et al. 2008).  This study demonstrates the direct protein-protein interaction between 

the putative PTK Wze (CpsD) and the transmembrane activator protein Wzd (CpsC).  It 

also demonstrates that these proteins have the ability to form multi-protein complexes.  

Protein-protein interactions were also detected between two identical PTK Wze proteins 

and between the PTK Wze and the PTP Wzh.  No other protein interactions were 

detected among Wzg, Wzh, Wze, Wzd, CpsE, CpsP, CpsQ, CpsS, CpsL, and CpsW. 

 
2.  Materials and methods 
 
2.1.  Construction of plasmids 

The wzg, wzh, wzd, wze, cpsE, cpsP, cpsQ, cpsS, cpsL, cpsW, and cpsU genes that 

are involved in EPS production in S. thermophilus MR-1C (GenBank accession number 

AF448249.1) were amplified using PCR and sequence specific primers (Table 4.1).  The 

PCR products were ligated into the E. coli vectors pGEM4Z, pGEM5Z, or pGEM7Z, E. 

coli DH5α cells were transformed with the constructs, and sequenced to identify exact 

matches to S. thermophilus MR-1C genes.  The gene inserts were recovered from the 

vectors using restriction enzymes to create BamHI, EcoRI or SalI sites on the 5’ end of 

the insert and SalI or PstI sites on the 3’ end of the insert.  The inserts were then cloned 
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into the yeast vectors pGAD424 and pGBT9 using the above restriction sites allowing 

synthesis of corresponding fusion proteins with the Gal4 activation domain (AD) and the 

Gal4 DNA binding domain (BD), respectively (Fields and Song 1989; Chien et al. 1991).  

The resulting yeast vectors with gene inserts were checked for sequence accuracy and 

proper frame alignment of the start codon before yeast cells were transformed with the 

constructs (Table 4.1).   

 
Table 4.1.  Streptococcus thermophilus MR-1C, pGAD424, and pGBT9 oligonucleotides 
used in this study.   
 
Gene or 
Vector 

Primer Sequence 5’ to 3’ Location RS Use 

wzg 864 
 
 
865 
 
 
AR 

AAAAGGATCCGTCGACAAGGAGC
AATTTATATGAGTTCGCGT 
 
AAAACTGCAGCTTATTTTTCCTCC
ATCAATTTTTTG 
 
AATACCTGCGTGGGTTAA 

6395-6419 
 
 
7863-7838 
 
 
7286-7269 

BamHI 
 
 
PstI 
 
 
None 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
PCR confirmation of yeast 
clones 

wzh 425 
 
 
426 

CCCGGGTCTAGAGAATTCGTGATT
GACGTTCACTCAC 
 
CCCGGGGTCGACGGATCCTCTTGA
TTCATAATATCTCC 

7863-7881 
 
 
8613-8594 

EcoRI 
 
 
SalI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

wzd 394 
 
 
 
396 
 
 
506 

CCCGGGTCTAGAGAATTCATAGGA
GATATTATGAATCAAG 
 
 
CCCGGGTCGACGGATCCAAAGGC
ATTTCTTCTCCTT 
 
CCCGGGATCCGGTCTCAAATTTTA
TCTGTATCCGGAA 

8591-8612 
 
 
 
9318-9300 
 
 
9299-9279 

EcoRI 
 
 
 
SalI 
 
 
Eco31I 

Gene insert amplification; 
construction of Wzd/Wze 
fusion; PCR confirmation of 
yeast clones; sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Construction of Wzd/Wze 
fusion; PCR confirmation of 
yeast clones; sequencing 

wze 395 
 
 
397 
 
 
 
500 
 
507 
 
 

CCCGGGTCTAGAGAATTCGAAGGA
GAAGAAATGCCTTTATT 
 
CCCGGGTCGACGGATCCTTAAAAC
ACACTAACGCGTT 
 
 
AAAACACACTAACGCGTT 
 
CCCGGGAATTCGGTCTCCAATTAT
GCCTTTATTAAAGTTAGTT 

9300-9321 
 
 
10079-10059 
 
 
 
10076-10059 
 
9311-9331 

EcoRI 
 
 
SalI 
 
 
 
None 
 
Eco31I 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; 
construction of Wzd/Wze 
fusion; PCR confirmation of 
yeast clones; sequencing 
PCR confirmation of yeast 
clones; sequencing 
Construction of Wzd/Wze 
fusion; PCR confirmation of 
yeast clones; sequencing 

cpsE 492 
 
 
493 

GGGGGTCGACCAAGTGGAGGAAA
TGAGATG   
 
CCCCTGCAGTAATTTTTGTTTCATC
AG 

10097-10116 
 
 
10817-10800 

SalI  
 
 
PstI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
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sequencing 
cpsP 571 

 
 
572 

CCCCGTCGACGGATAAGGAATAAT
CGATGAAG 
 
CCCGGGATCCGGTCTCCTGCAGCT
ATTCCACTCAGT 

14051-14072 
 
 
14918-14905 

SalI 
 
 
PstI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

cpsQ 563 
 
 
564 

CCCCGTCGACTGGAGGATATATTA
CACATGG 
 
CCCCCTGCAGAATCATTCACCAAC
CTTTCCC 

14989-15009 
 
 
15847-15827 

SalI 
 
 
PstI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

cpsS 22 
 
23 
 
826 
 
 
827 

CTCCTGCATCTCGTAATACCAATC
AC 
 
GATCTTCTTAAGCAAGGTTCAC 
 
GGGGGATCCGTCGACAAGGTTGG
GGGAATGATTATGGTTGCATTAG 
 
GGGCTGCAGATCATCTCCTTCCTA
TCAC 

16666-16641 
 
16523-16544 
 
15840-15860 
 
 
17129-17111 

None 
 
None 
 
BamHI 
 
 
PstI 

PCR confirmation of yeast 
clones 
PCR confirmation of yeast 
clones 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

cpsL 828 
 
 
829 

GGGGGATCCGTCGACATATTTTGG
AGGAAAAA 
 
GGGCTGCAGTTTATTTCATCACAA
TATAATC 

22714-22730 
 
 
23622-23601 

BamHI 
 
 
PstI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

cpsW 830 
 
 
831b 

GGGGGATCCGTCGACATGTATATG
GAGATACC 
 
AAAACTGCAGTTTATTTTAGAGAT
TTTTCAAAAAGGG 

24565-24549 
 
 
23645-23671 

BamHI 
 
 
PstI 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 

cpsU 832 
 
 
833b 
 
 
UR 

GGGGGATCCGTCGACTTTCGGGAG
GGTTATTA 
 
AAAACTGCAGTCTATTTATTCATA
ATAAACTTTAGCTTATT 
 
AGGGTCATTGGATTCTGT 

31992-31976 
 
 
30559-30589 
 
 
31292-31275 

BamHI 
 
 
PstI 
 
 
None 

Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
Gene insert amplification; PCR 
confirmation of yeast clones; 
sequencing 
PCR confirmation of yeast 
clones 

pGAD424 496 
 
497 

ATTCGATGATGAAGATAC 
 
TTTCAGTATCTACGATTC 

790-807 
 
886-869 

None 
 
None 

PCR confirmation of yeast 
clones; sequencing 
PCR confirmation of yeast 
clones; sequencing 

pGBT9 883 
 
498 
 
499 

GAGACAGCATAGAATAAG 
 
GTCAAAGACAGTTGACTG 
 
AAATTCGCCCGGAATTAG 

799-816 
 
852-869 
 
911-928 

None 
 
None 
 
None 

PCR confirmation of yeast 
clones; sequencing 
PCR confirmation of yeast 
clones; sequencing 
PCR confirmation of yeast 
clones; sequencing 

Oligonucleotide primers were derived from the genome sequence of Streptococcus thermophilus MR-1C (GenBank accession number 
AF448249.1) and from the vector sequences of pGAD424 (GenBank accession number U07647.1) and pGBT9 (GenBank accession 
number U07646.1).  In some cases additional nucleotides were added to create the restriction sites (RS) used for cloning gene inserts. 
Parts of nucleotide sequences that have been altered or that are not included in the original gene or vector sequence are underlined. 
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2.2.  Construction of a Wzd/Wze fusion protein 

A fusion protein containing the membrane spanning protein Wzd and the putative 

PTK Wze was created in an attempt to mimic the organization of Gram-negative PTKs.  

The wzd gene was amplified by PCR using forward primer 394 and reverse primer 506.  

The wze gene was amplified by PCR using forward primer 507 and reverse primer 397.  

The wzd and wze fragments were then cloned separately into pGEMT and sequenced to 

identify exact matches to Strep. thermophilus MR-1C genes.  Using the restriction 

endonucleases SphI (pGEMT) and Eco31I (506 primer) the wzd insert was cut from the 

pGEMT vector.  The wze insert was cut out of pGEMT using the restriction 

endonucleases Eco31I (507 primer) and ApaI (pGEMT).  The inserts were then cloned 

together by ligating the two insert fragments into pGEM5Z that had been cut at its SphI 

and ApaI sites.  After the sequence was checked for accuracy, the wzd/wze fusion was 

then excised from this vector using restriction endonucleases EcoRI (394 primer) and 

SalI (397 primer) and cloned into the yeast vectors pGAD424 and pGBT9 (Table 4.1).  

The yeast vectors were checked for sequence accuracy and proper frame alignment of the 

start codon before yeast cells were transformed with the constructs.  The fusion protein 

was constructed so that the last codon upstream of the stop codon of wzd is immediately 

before the start codon of wze (sequence of junction is ATTATG).  

 
2.3.  DNA sequencing 
 

DNA sequencing reactions were carried out by the Center for Integrated 

BioSystems at Utah State University using an ABI prism 3730 DNA analyzer (Applied 

Biosystems, Carlsbad, CA) and Taq FS terminator chemistry.  The universal primers T7 
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and SP6 as well as gene specific primers (Table 4.1) were used to obtain the sequence of 

inserts in pGEM4Z, pGEM5Z, and pGEM7Z.  Sequencing of inserts in pGAD424 was 

accomplished using the vector primers 496 and 497 (Table 4.1).  Sequencing of inserts in 

pGBT9 was accomplished using vector primers 883, 498, and 499 (Table 4.1).  The use 

of vector primers allowed the sequences to be analyzed for proper alignment of the start 

codon.  Sequences were analyzed for exact matches to the Strep. thermophilus MR-1C 

EPS gene cluster by using the BLASTN program (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

  
2.4.  Yeast transformation 

 Saccharomyces cerevisiae strain HF7C that contains the reporter genes lacZ and 

HIS3 was used for expression of the yeast/Strep. thermophilus MR-1C fusion proteins.  

The pGAD424 and pGBT9 plasmids containing the Strep. thermophilus MR-1C genes 

were cotransformed into Saccharomyces cerevisiae HF7C according to procedures 

described in the Matchmaker two-hybrid protocols (Clontech, Mountain View, CA).  The 

transformants were plated on SD minimal medium supplemented with the appropriate 

dropout solution and selected using the markers LEU2 (pGAD424) and TRP1 (pGBT9).  

The transformed cells were maintained on SD minimal agar or frozen in SD minimal 

broth without tryptophan and leucine to ensure that the plasmids were retained.  Three 

clones from at least two separate transformations were selected for each of the gene 

combinations and tested for protein-protein interactions.  Yeast clones that contain the 

same combination of genes but in different plasmids were also tested.  Yeast clones that 

contain the same gene in the two different plasmids were analyzed for same protein 

dimerization.  Yeast clones that contained pGAD424 with a gene insert and an empty 
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pGBT9 and vice versa were tested to verify that the genes do not activate transcription 

alone.   

 
2.5.  Yeast clone PCR 
 
 Selected yeast clones were verified to contain the appropriate Strep. thermophilus 

MR-1C genes using PCR.  Yeast cells were prepared by suspending a 2-3 day old colony 

in TE buffer (10 mM Tris, 1 mM EDTA, pH 7.5) in a microcentrifuge tube.  The tubes 

were then submerged in liquid nitrogen until the cells were completely frozen and then 

allowed to thaw.  This freeze/thaw cycle was repeated three times.  The PCR reactions 

consisted of 2-3 µl of the prepared cells, 1-2 µl of each gene specific primer or vector 

primer (100 µM stocks) (Table 4.1), 8 μl 2.5x master PCR mix (5 Prime), 1-2 μl MgCl2 

(25 mM), and enough distilled H2O to make a total volume of 20 μl.   

 
2.6.  Yeast two-hybrid -galactosidase filter assay 
 

Protein-protein interactions were detected by the filter assay method using X-gal 

as a substrate to test for -galactosidase production.  Three day old colonies grown on SD 

minimal agar without tryptophan and leucine were transferred to a sterile Whatman #5 

filter.  The filter was then transferred to a pool of liquid nitrogen and completely 

submerged for 10 seconds to permeabilize the cells.  After thawing, the filters were 

placed on top a Whatman #5 filter that had been pre-soaked with 3 ml of a Z-buffer/X-gal 

solution that contains 100 ml Z-buffer (16.1 g of Na2HPO4 
.
 7H20, 5.50 g of  

NaH2PO4.H2O, 0.75 g of  KCl, and 0.246 g of MgSO4.7H2O per L), 0.27 ml -

mercaptoethanol, and 1.67 ml X-gal stock solution (20 mg/ml in N,N-
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dimethylformamide) in a petri-dish.  The filters were then incubated at 30 oC and checked 

periodically over an 8 hour time period for the appearance of blue colonies indicating the 

production of -galactosidase. 

 
2.7.  Yeast two-hybrid histidine prototrophy 
 

The transformants were also tested for protein-protein interactions using the 

reporter gene HIS3.  In this method, if there is a protein-protein interaction the yeast 

becomes prototrophic for histidine.  The transformants were plated on SD minimal media 

lacking tryptophan, leucine, and histidine.  This media also contained 25 mM 3-

aminotriazole to inhibit the low level of residual HIS3 expression in the GAL1-HIS3 

fusion and to ensure histidine auxotrophy without interaction of the binding domain and 

activation domain (Durfee et al. 1993).  The plates were incubated at 30 oC and growth of 

the transformants was observed over an 8 day period.  

 
3.  Results   

3.1.  Protein-protein interactions involving Wzg, Wzh, Wzd, Wze,  
        CpsE, CpsL, CpsS (Wzy), CpsU (Wzx), and CpsW  
 
 Table 4.2 lists the putative functions of the Strep. thermophilus MR-1C proteins 

encoded by the eps gene cluster.  The Wzh (CpsB), Wzd (CpsC), and Wze (CpsD) 

proteins of Strep. thermophilus MR-1C that are predicted to function as a PTP, 

transmembrane activation protein, and a PTK respectively, were tested for protein-protein 

interactions among different components of the system and for dimerization of the same 

protein.  The results of these experiments indicate a strong interaction between the 

transmembrane activation protein Wzd and the PTK Wze, as evidenced by the formation  
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Table 4.2.  Streptococcus thermophilus MR-1C postulated protein functions and 
properties for the eps gene cluster.  
 
Gene Location (NT) Putative Protein Functions Size (AA) Mass (kDa) pI 
wzg 6408-7862 Regulation 

 
484 53.2 8.87 

wzh 7863-8594 Phosphotyrosine phosphatase 
 

243 28.0 8.42 

wzd 8603-9301 Transmembrane activation protein, chain length 
determination 
 

232 25.8 5.38 

wze 9311-10060 Protein tyrosine kinase, membrane translocation 
 

249 27.3 9.37 

cpsE 10114-10797 Phosphogalactosyltransferase 
 

227 25.8 9.20 

cpsF 10800-11921 Branching galactosyltransferase 
 

373 42.6 8.67 

cpsN 12556-13440 Glycosyltransferase 
 

294 33.9 9.03 

cpsP 14067-14909 Rhamnosyltransferase 
 

280 32.6 8.36 

cpsQ 15006-15845 Glycosyltransferase 
 

279 32.0 6.61 

cpsS 15848-17128 Polymerization 
 

426 50.2 9.40 

cpsR 17135-18277 Glycosyltransferase 
 

380 42.8 8.25 

cpsT 18277-19209 Glycosyltransferase 
 

310 37.3 7.94 

cpsL 22731-23621 Unknown 
 

296 32.7 8.40 

cpsW 23646-24548 Regulation 
 

300 33.9 9.56 

orf 14.9 26655-27224 Unknown 
 

570 49.1 5.07 

cpsU 30560-31975 Membrane translocation 
 

471 53.5 9.60 

cpsV 32872-33837 Glycosyltransferase 
 

321 37.8 9.36 

cpsX 38688-39824 Membrane translocation 378 42.0 9.25 
Gene locations are based on the Genbank file for Streptococcus thermophilus MR-1C (accession number AF448249.1).  Protein  
functions are predicated from homologous proteins found in other bacteria (Broadbent et al., 2003).   

 
 
of dark blue colonies indicating β-galactosidase production (Appendix A) and quick  
 
(within 2 days), abundant growth on plates lacking histidine by yeast clones that 

contained vectors with these genes (Table 4.3).  Yeast clones that contained identical wze 

genes in both vectors yielded light blue colonies in the β-galactosidase assay (Appendix 

A) indicating a weaker protein-protein interaction between two PTKs.  Consistent with 

this result, growth of these yeast clones in the absence of histidine was slight and slow to 

develop (Table 4.3).  Light blue colonies after the β-galactosidase assay (Appendix A) 
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Table 4.3.  Protein-protein interactions detected between Wzh, Wzd, and Wze.   
 
Gene Insert 
in pGAD424 

Gene  Insert 
in pGBT9 

Interaction Tested β-Galactosidase 
Assay 

Growth on Plates 
Lacking Histidine 

wzd wze Transmembrane activation protein/PTK 
 

Dark blue +++ 

wze wzd PTK/transmembrane activation protein 
 

Dark blue +++ 

wze wze PTK/PTK 
 

Light blue + 

wzh wze PTP/PTK 
 

Light blue + 

wze wzh PTK/PTP Light blue + 
PTP, phosphotyrosine phosphatase.  PTK, protein tyrosine kinase.  β-Galactosidase production is indicated by the formation of 
blue colonies.  On plates lacking histidine, + indicates a slight amount of growth, ++ indicates moderate growth, and +++  
indicates abundant growth.    

 

and slow, weak growth on plates lacking histidine were also detected for yeast clones 

containing combinations of wzh with wze (Table 4.3), indicating a protein-protein 

interaction between the PTP and the PTK.  No protein-protein interactions were detected 

between two identical PTPs, two identical transmembrane activation proteins, or the PTP 

and the transmembrane activation protein (data not shown). 

The Wzh, Wzd, and Wze proteins may be involved in regulatory interactions with 

other proteins involved in EPS production.  To determine if such protein-protein 

interactions take place Wzh, Wzd, and Wze were tested in combination with the proteins 

Wzg (regulation), CpsE (glycosyl-1-phosphate transferase), CpsL (unknown), CpsS 

(polymerization), CpsU (membrane translocation), and CpsW (regulation).  All yeast 

clones containing wzh, wzd, or wze in combination with wzg, cpsE, cpsL, cpsS, cpsU, or 

cpsW did not produce β-galactosidase as was shown by a white colony color during the 

assay and were unable to grow on plates lacking histidine.  Therefore, no additional 

protein-protein interactions were detected involving Wzh, Wzd, or Wze (data not shown). 

 All possible combinations of Wzg, CpsE, CpsL, CpsS, CpsU, and CpsW were 

tested for protein-protein interactions.  None of the yeast clones containing any 
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combination of wzg, cpsE, cpsL, cpsS, cpsU, and cpsW produced β-galactosidase or were 

able to grow on plates lacking histidine, therefore no interactions were detected among 

these proteins (data not shown).    

Controls that contained one vector with a wzg, wzh, wzd, wze, cpsE, cpsL, cpsS, 

cpsU, or cpsW insert and the corresponding vector without inserts did not produce β-

galactosidase or grow on plates lacking histidine indicating that none of these genes alone 

can activate transcription of the reporter genes (data not shown).   

 
3.2.  Protein-protein interactions between the glycosyltransferases  
        CpsE, CpsP, and CpsQ 
 
 Protein-Protein interactions among the Strep. thermophilus MR-1C 

glycosyltransferases were tested for by creating yeast clones that contained combinations 

of the priming glycosyl-1-phosphate transferase, CpsE, and those that are thought to 

function in the addition of the next sugar residues to the repeat unit, CpsP and CpsQ.  

Yeast clones that contained any combination of these genes did not produce β-

galactosidase or grow on plates lacking histidine; therefore, no protein-protein 

interactions between CpsE, CpsP, and CpsQ were detected (data not shown).  Controls 

that contained one vector with a cpsP or cpsE insert and the corresponding vector without 

any inserts did not produce β-galactosidase or grow on plates lacking histidine ensuring 

that these genes do not activate reporter gene transcription alone (data not show).  A faint 

blue color was detected in the control clones containing one vector with a cpsQ insert and 

the corresponding vector without any inserts, indicating that CpsQ has the ability to 

activate reporter gene transcription alone.  This was considered the background level for 
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this set of experiments and any yeast colonies that contained cpsQ and did not produce a 

level of β-galactosidase greater than this were scored as negative for protein interactions.  

The cpsQ control clone did not grow on plates lacking histidine (data not shown).  

  
3.3.  Protein-protein interactions between a Wzd/Wze  
        fusion protein and Wzh, Wzd, Wze, and CpsE 
 
 A strong interaction was detected between the Strep. thermophilus MR-1C Wzd 

and Wze proteins and this interaction may facilitate protein-protein interactions involving 

Wzh, Wzd, Wze, and CpsE.  In other species, homologous proteins have been shown to 

interact to form multi-protein complexes (Doublet et al. 2002; Collins et al. 2006; 

Olivares-Illana et al. 2008).  To test for the formation of multi-protein complexes, a 

Wzd/Wze fusion protein was tested for further interactions with Wzd and Wze.  Yeast 

colonies that contained the wzd/wze fusion in pGAD424 and either wzd or wze in pGBT9 

were able grow on plates lacking histidine, however these clones had a white colony 

color in the β-galactosidase assay.  In the reverse orientation with either wzd or wze in 

pGAD424 and the wzd/wze fusion in pGBT9, no growth was detected on plates lacking 

histidine and again no β-galactosidase was produced.  Yeast clones that contained the 

wzd/wze fusion in both plasmids were also negative for β-galactosidase production and 

growth on plates lacking histidine (Table 4.4).  These results indicate there is likely a 

problem with the protein conformation in some constructs but still suggest the formation 

of multi-protein complexes involving Wze and Wzd.  The Wzd/Wze fusion protein was 

also tested for interactions with the PTP Wzh and the glycosyl-1-phosphate transferase 

CpsE.  The yeast clones that contained these combination of genes were unable to grow  
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Table 4.4.  Protein-protein interactions detected between the Wzd/Wze fusion protein 
and Wzd and Wze.   
 
Gene  
Insert in pGAD424 

Gene   
Insert in 
pGBT9 

Interaction Tested  β-Galactosidase 
Assay 

Growth on 
Plates Lacking 
Histidine 

wzd:wze wzd Transmembrane activation PTK fusion protein 
/transmembrane activation protein 
 

White ++ 

wzd:wze wze Transmembrane activation PTK fusion protein 
/PTK 

White ++ 

β-Galactosidase production is indicated by the formation of blue colonies.  On plates lacking histidine, + indicates a slight amount 
of growth, ++ indicates moderate growth, and +++ indicates abundant growth.   

 

on plates lacking histidine or produce β-galactosidase (data not shown).  The wzd/wze 

fusion controls that contained one plasmid with the insert and one plasmid without an 

insert did not produce β-galactosidase or grow on plates lacking histidine.  Control 

experiments for the other gene vector combinations again showed that none of these 

genes alone can activate transcription of the reporter genes (data not shown).  

 
4.  Discussion 
 

This study demonstrated that the MR-1C transmembrane activation protein Wzd 

and the PTK Wze directly interact with one other and may form multi-protein complexes 

to regulate capsule synthesis in Strep. thermophilus.  Research done by Olivares-Illana et 

al.  (2008) suggests that multi-protein complexes are also formed by the transmembrane 

activator protein (CapA) and the PTK (CapB) in Staph. aureus and work done with Wzc 

in E. coli establishes its ability to form protein complexes in the inner membrane of the 

cell (Doublet et al. 2002; Collins et al. 2006).   

This study also detected an interaction between two identical Strep. thermophilus 

MR-1C Wze proteins that is consistent with this protein having transphosphorylation 

abilities.  In the model for E. coli, an interaction between the cytoplasmic PTK domains 
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in different Wzc subunits has been predicted by this protein’s transphosphorylation 

ability, but has not been observed to date (Collins et al. 2006).   

The present study detected no protein-protein interactions between the Strep. 

thermophilus MR-1C PTK Wze and the Wzg, CpsE, CpsL, CpsS, CpsW, or CpsU 

proteins.  However, evidence suggests that bacterial PTKs may induce phosphorylation 

of other proteins such as UDP-glucose dehydrogenases or glycosyltransferases 

(Grangeasse et al. 2003; Mijakovic et al. 2003; Obadia et al. 2007; Lacour et al. 2008; 

Lin et al. 2009).  The sizes of protein complexes identified by Minic et al. (2007) suggest 

the possibility of protein-protein interactions between the transmembrane activation 

domain (EpsC/Wzd), the PTK (EpsD/Wze), and the glycosyl-1-phosphate transferase 

(EpsE) in Strep. thermophilus CNRZ1066.   A tyrosine residue in EpsE has been shown 

to be necessary for the glycosyltransferase activity of this protein.  When combined, these 

data suggest that EpsE may be regulated by phosphorylation of this tyrosine residue, 

possibly due to the action of EpsD in conjunction with EpsC.  The contrasting results of 

this study and those acquired by Minic et al. (2007) could be the result of different 

methodologies and may imply that the interaction between the PTK and the glycosyl-1-

phosphate transferase is not strong enough to be detected by the yeast two-hybrid system.  

In E. coli, the Wzc protein that contains both the transmembrane activation 

domain and the PTK has been shown to be involved in a protein-protein interaction with 

the outer membrane lipoprotein, Wza.  The interaction of Wza and Wzc is needed for 

synthesis of CA.  Therefore, Wzc may not only interact with the biosynthetic machinery 

but also have functions coupled to the export pathway (Nesper et al. 2003; Reid and 
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Whitfield 2005; Collins et al. 2007).  In this study, no protein-protein interactions were 

detected between the Strep. thermophilus MR-1C transmembrane activation protein 

(Wzd) or the PTK (Wze) and a protein thought to be involved in membrane translocation 

(CpsU).   

Although a direct interaction has not been observed to date, it has been postulated 

that the E. coli PTK Wzc could affect the way that the polymerase (Wzy) functions; 

thereby influencing the amount and size of the polymer produced (Whitfield and Larue 

2008).  In this study, no protein-protein interactions were detected between the Strep. 

thermophilus MR-1C transmembrane activation protein (Wzd) or the PTK (Wze) and the 

putative polymerase (CpsS). 

It has been suggested that the E. coli PTP Wzb could be involved in the 

dephosphorylation of other proteins involved in EPS synthesis such as 

glycosyltransferases (Bugert and Geider 1997; Grangeasse et al. 1998; Vincent et al. 

1999; Preneta et al. 2002; Nakar and Gutnick 2003).  Other than the interaction with 

Wze, this study detected no protein-protein interactions between the Strep. thermophilus 

MR-1C PTP Wzh and other EPS proteins.  It is possible that the phosphorylation state of 

the glycosyltransferases and other proteins would be important in interactions with Wzh 

or that the dephosphorylation of other proteins by Wzh may not require a close 

interaction.   

A Wzd/Wze (transmembrane activation domain/PTK) fusion protein was created 

to investigate the possibility that these two proteins in combination would promote 

protein-protein interactions with other Strep. thermophilus MR-1C proteins involved in 
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EPS biosynthesis.  Some of the yeast clones that contained the Wzd/Wze fusion protein 

in combination with either Wzd or Wze had the ability to grow abundantly on media 

lacking histidine but did not produce β-galactosidase.  These results suggest the 

formation of multi-protein complexes of Wzd and Wze in Strep. thermophilus MR-1C.  It 

was thought that the presence of Wzd in the Wzd/Wze fusion protein might affect the 

phosphorylation state of Wze, thereby strengthening the protein-protein interaction with 

the PTP Wzh or the glycosyl-1-phosphate transferase CpsE.  However, no interaction was 

detected between the Wzd/Wze fusion protein and Wzh or CpsE.  

The yeast two-hybrid system did not detect any protein-protein interactions 

between the Strep. thermophilus MR-1C glycosyl-1-phosphate transferase (CpsE) and the 

glycosyltransferases CpsP and CpsQ that are thought to add the next sugar precursors to 

the carrier lipid.  The model for the intracellular assembly of EPS by multiple 

glycosyltransferases suggests that interactions between these proteins are a possibility 

(Stingele et al. 1996, 1999; De Vuyst et al. 2001; Jolly and Stingele 2001; Broadbent et 

al. 2003).  The phosphorylation state of CpsE or the binding of sugar polymers to the 

protein may be important in the interaction with other glycosyltransferases.  Alternately, 

the glycosyltransferases may interact only with the phosphorylated form of Wze in 

complex with Wzd and not directly with each other.  

The yeast two-hybrid system failed to detect any other protein interactions 

between the Strep. thermophilus MR-1C Wze, Wzd, Wzh, Wzg, CpsE, CpsL, CpsS, 

CpsU, or CpsW proteins in this study.  The phosphorylation state of proteins such as Wze 

or CpsE is unknown in the yeast system and may affect the interactions between these 
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proteins and others involved in EPS biosynthesis.  Other protein-protein interactions may 

have to take place or other protein components may be necessary for the interaction of 

these proteins.  It is also possible that no direct interactions between some of the proteins 

required for the synthesis, polymerization, membrane translocation, and regulation of 

EPS exist.  

 Manipulation of EPS producing genes could greatly benefit many industrial 

processes.  A more detailed understanding of how the different EPS proteins interact and 

function will aid construction of strains with enhanced properties.   This work provides 

new insights into the protein-protein interactions that take place in the biosynthetic 

machinery involved in EPS production in Strep. thermophilus MR-1C.  Further studies 

will be required to determine how the proteins of this complex system assemble and 

function in EPS synthesis.    
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CHAPTER 5 

INTRASPECIFIC AND INTERSPECIFIC INTERACTIONS AMONG PROTEINS 

REGULATING EXOPOLYSACCHARIDE SYNTHESIS IN STREPTOCOCCUS 

THERMOPHILUS, STREPTOCOCCUS INIAE, AND LACTOCOCCUS LACTIS SUBSP. 

CREMORIS AND THE ASSESSMENT OF POTENTIAL LATERAL GENE 

TRANSFER2 

 
 

Abstract 
 
 Using the yeast two-hybrid system intraspecific protein interactions were detected 

in Streptococcus iniae and Lactococcus lactis subsp. cremoris between the 

transmembrane activation protein (CpsC and EpsA, respectively) and the protein tyrosine 

kinase (CpsD and EpsB, respectively), between two protein tyrosine kinases, and 

between the protein tyrosine kinase and the phosphotyrosine phosphatase (CpsB and 

EpsC, respectively).   For each of these intraspecific interactions, interspecific 

interactions were also detected when one protein was from S. iniae and the other was 

from Streptococcus thermophilus.  Interactions were also observed between two protein 

tyrosine kinases when one protein was from either of the Streptococcus species and the 

other from L. lactis subsp. cremoris.  The results and sequence comparisons performed in 

this study support the conclusion that interactions among the components of the tyrosine 

kinase/phosphatase regulatory system are conserved in the order Lactobacillales and 

interspecific genetic exchanges of the genes that encode these proteins have the potential 

                                                 
2 Coauthored by Angela D. Cefalo, Jeffery R. Broadbent, and Dennis L. Welker (2011) Can. J. Microbiol. 
57(12): 1002-15. 
 



148 
 

 
 

to form functional recombinants.  A better understanding of intraspecific and interspecific 

protein interactions involved in regulating exopolysaccharide biosynthesis may facilitate 

construction of improved strains for industrial uses as well as identification of factors 

needed to form functional regulatory complexes in naturally occurring recombinants. 

 
1.  Introduction 
 
 Bacterial exopolysaccharide (EPS) or capsular polysaccharide (CPS) biosynthesis 

is typically controlled by a protein tyrosine kinase (PTK)/phosphotyrosine phosphatase 

(PTP) regulatory system.  In Gram-negative bacteria the PTK consists of a 

transmembrane activation domain that functions as a polysaccharide co-polymerase that 

determines polymer chain length and a nucleotide-binding domain that contains the 

phosphorylation sites (Vincent et al. 1999; Wugeditsch et al. 2001; Doublet et al. 2002; 

Grangeasse et al. 2002; Preneta et al. 2002; Bender et al. 2003; Obadia et al. 2007; Tocilj 

et al. 2008).  In most Gram-positive systems, the PTK and the transmembrane activation 

domain are separate proteins that function together with the PTP to regulate EPS/CPS 

production (Morona et al. 2000; Bender and Yother 2001; Cieslewicz et al. 2001; Bender 

et al. 2003; Broadbent et al. 2003; Morona et al. 2003, 2004; Soulat et al. 2006; Olivares-

Illana et al. 2008).  The PTP reverses tyrosine phosphorylation allowing the switching 

between phosphorylated and non-phosphorylated forms of the PTK that is required for 

efficient, high molecular weight polysaccharide synthesis (Grangeasse et al. 1998; 

Vincent et al. 1999; Bender and Yother 2001; Morona et al. 2002, 2003; Preneta et al. 

2002; LaPointe et al. 2008; Bechet et al. 2009).  Based on their work on the Gram-

positive bacterium Staphylococcus aureus, Olivares-Illana et al. (2008) suggested that 
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multiple unphosphorylated PTK subunits associate such that their active sites can 

efficiently transphosphorylate neighboring subunits.  Upon phosphorylation, dissociation 

of the PTKs may allow them to phosphorylate other endogenous substrates, such as the 

polysaccharide unit polymerase, the flippase, or the lipid sugar transferase.  On 

phosphorylation the affinity of these proteins to the polysaccharide units could be altered 

and the polymerization and export of EPS controlled (Olivares-Illana et al. 2008).   

 In a prior study, the yeast two-hybrid system was utilized to study protein 

interactions among the transmembrane activation protein, the PTK, the PTP, and the 

glycosyl-1-phosphate transferase of Streptococcus thermophilus MR-1C (see chapter 4).  

Protein-protein interactions were identified between the transmembrane activation protein 

and the PTK, two identical PTKs, and between the PTK and the PTP but not between the 

glycosyl-1-phosphate transferase and the PTK or the PTP.  To determine the generality 

and specificity of these protein-protein interactions, the transmembrane activation protein 

, the PTK, the PTP and the glycosyl-1-phosphate transferase from S. thermophilus MR-

1C (Wzd, Wze, Wzh, and CpsE, respectively), Streptococcus iniae 9066 (CpsC, CpsD, 

CpsB, and CpsE, respectively), and Lactococcus lactis subsp. cremoris JRF1(EpsA, 

EpsB, EpsC, and EpsD, respectively) were tested for their ability to interact with proteins 

from the same or the other two bacterial systems.  This is the first study to investigate 

whether these regulatory proteins require their cognately encoded counterparts in order to 

form protein-protein interactions or whether they can form interspecific protein-protein 

interactions.  The eps/cps gene clusters of several pathogenic as well as non-pathogenic 

bacteria including S. thermophilus have been shown to have a chimeric structure that 
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results from horizontal gene transfer events (Bourgoin et al. 1996, 1999; Coffey et al. 

1998; Pluvinet et al. 2004; Hols et al. 2005; Tyvaert et al. 2006; Delorme et al. 2007; 

Rasmussen et al. 2008; Liu et al. 2009; Eng et al. 2011).  It is thought that the evolution 

of the S. thermophilus eps gene cluster involved DNA exchanges with other species of 

Streptococcus as well as with lactic acid bacteria, such as L. lactis, during co-culture in 

milk (Guédon et al. 1995; Bourgoin et al. 1996, 1999; Pluvinet et al. 2004; Tyvaert et al. 

2006; Rasmussen et al. 2008; Liu et al. 2009; Eng et al. 2011).  Therefore, it is important 

to investigate the ability of proteins from different species to interact to form functional 

regulatory complexes since such interactions are expected to be required in naturally 

occurring and in genetically engineered recombinants.   

 
2.  Materials and methods 

2.1.  Bacterial strains, media, and growth conditions 

 S. thermophilus MR-1C is a capsule producing, Gram-positive, lactic acid 

bacterium with properties useful in the dairy industry as a cheese starter culture (Perry et 

al. 1997; Low et al. 1998).  L. lactis subsp. cremoris JRF1 is a dairy fermentation strain 

that produces ropy EPS and was obtained from Dr. Ashraf N. Hassan (Dairy Science 

Department, South Dakota State University, Brookings, South Dakota).  It was originally 

isolated from retail cultured buttermilk (Hassan et al. 2003).  S. iniae 9066 is a 

commensal strain of a fish pathogen that was isolated from swabbing a healthy fish 

(Fuller et al. 2001; Lowe et al. 2007).  S. iniae 9066 was obtained from Dr. Melody N. 

Neely (Department of Immunology and Microbiology, Wayne State University School of 

Medicine, Detroit, Michigan). 
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 S. thermophilus MR-1C and L. lactis subsp. cremoris JRF1 were cultured in M17 

broth containing 0.5% lactose (Terzaghi and Sandine 1975) and incubated at 37 oC 

without aeration.  S. iniae 9066 was cultured in Todd-Hewitt medium supplemented with 

2% yeast extract and 2% proteose peptone and incubated at 37 oC without aeration.   

 Escherichia coli DH5α (Invitrogen, Carlsbad, California, USA) was grown at 37 

oC in Luria-Bertani broth with shaking or on Luria-Bertani agar plates containing 

ampicillin at a concentration of 50 µg/ml for plasmid selection.  Saccharomyces 

cerevisiae HF7C (Clontech, Mountain View, California, USA) was grown at 30 oC on 

Yeast Peptone Dextrose (YPD) agar plates or YPD broth with shaking.  SD minimal 

medium containing the needed dropout solution (Clontech) was used to select for S. 

cerevisiae HF7C transformants containing the appropriate plasmids. 

 
2.2.  Construction of plasmids 

 The wzh, wzd, wze, and cpsE genes of S. thermophilus MR-1C (GenBank 

accession number AF448249.1) were cloned into the yeast two hybrid vectors pGAD424 

and pGBT9 as described previously (see chapter 4).  The cpsB, cpsC, cpsD, and cpsE 

genes of S. iniae 9066 (GenBank accession number HQ698911) and the epsA, epsB, 

epsC, and epsD genes of L. lactis subsp. cremoris JRF1 (GenBank accession number 

HQ665557) were amplified using PCR and sequence specific primers that contained 

appropriate restriction sites for cloning (Table 5.1).  The S. iniae 9066 cpsB, cpsC, cpsD, 

and cpsE genes and the L. lactis subsp. cremoris JRF1 epsA, epsC, and epsD genes were 

ligated into pGEM4Z (Promega, Madison, Wisconsin, USA) using the restriction sites 

BamHI (5’) and PstI (3’).  The L. lactis subsp. cremoris JRF1 epsB gene was ligated into 
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Table 5.1.  Streptococcus iniae 9066, Lactococcus lactis subsp. cremoris JRF1, 
pGAD424, and pGBT9 oligonucleotides used in this study. 
 
Bacterial Strain 
or Vector 

Primer  Location RS Sequence (5’-3’) 

S. iniae 9066 836* cpsB 5’ BamHI GGGGGATCCGTCGACTGGGAGGAAAGAAAATGAT
TGACATCCATTCC 
 

 837* cpsB 3’ PstI GGGCTGCAGCCTATAAATAATCATTTTC 
 

 838* cpsC 5’ BamHI GGGGGATCCGTCGACTTATAGGAGAAAAGATGA 
AC 
 

 839* cpsC 3’ PstI GGGCTGCAGCTTACATTTTATTTGTGTTTGG 
 

 840* cpsD 5’ BamHI GGGGGATCCGTCGACGTAAGAGGTTAAGGATGTC
AC 
 

 841* cpsD 3’ PstI GGGCTGCAGTTCACTTTCTGGAATGTTTTTTAC 
 

 842* cpsE 5’ BamHI GGGGGATCCCTCGAGTGAAAGAAAAAAAGATGAA
AAGAAGTCAA 
 

 843* cpsE 3’ PstI GGGCTGCAGCTTACTCCTGTTTAGCGTC 
 

L. lactis subsp. 
cremoris JFR1 

856* epsA 5’ BamHI AAAAGGATCCGTCGACTAAATATTGGAGAAGAA 
ATGCAG  
 

 857* epsA 3’ PstI AAAACTGCAGCTATCTTTTATTCCTTTTTGATGATC
TATT 
 

 858* epsB 5’ BamHI AAAAGGATCCGTCGACAAAGAGGGGAGTTCAGGA
TGGCTAAA 
 

 859* epsB 3’ HindIII AAAAAAGCTTAGATCTTTACTCTACTCCGTAGTAG
TAATAC 
  

 860* epsC 5’ BamHI AAAAGGATCCGTCGACGTAGAAGAGGAGAGCAAA
TG 
 

 861* epsC 3’ PstI AAAACTGCAGTTAAAATAATCCCAAAAATTTCTTT
G  
 

 862* epsD 5’ BamHI AAAAGGATCCGTCGACAAATGGAGGGGATAATGG
AAGTTTTTGAGGCATC  
 

 863* epsD 3’ PstI AAAACTGCAGTTAATAAGCATCCGATCCATGTAG 
 

pGAD424 496† Cloning site 5’ None ATTCGATGATGAAGATAC 
 

 497† Cloning site 3’ None TTTCAGTATCTACGATTC 
 

pGBT9 883† Cloning site 5’ None GAGACAGCATAGAATAAG 
 

 498† Cloning site 5’ None GTCAAAGACAGTTGACTG 
 

 499† Cloning site 3’ None AAATTCGCCCGGAATTAG 

Note:  Oligonucleotide primers were derived from the genome sequences of Streptococcus iniae 9066 (GenBank accession number  
HQ698911) and Lactococcus lactis subsp. cremoris JFR1 (GenBank accession number HQ665557) and from the vector sequence of  
pGAD424 (GenBank accession number U07647.1) and pGBT9 (GenBank accession number U07646.1).  Similar  
oligonucleotide primers for cloning the Streptococcus thermophilus MR-1C genes are described in Cefalo et al. 2011. 
* Primer used for gene insert amplification; PCR confirmation of yeast clones, and sequencing. 
† Primer used for PCR confirmation of yeast clones and sequencing. 
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pGEM7Z (Promega) using the restriction sites BamHI (5’) and HindIII (3’).  The 

pGEM4Z and pGEM7Z vectors with gene inserts were electroporated (2500 V, 200 Ω, 

25 µF) into E. coli DH5α cells using a Gene Pulser® II Electroporation System (Bio Rad, 

Hercules, California, USA) and sequenced to identify exact matches to the S. iniae 9066 

and L. lactis subsp. cremoris JRF1 genes.  The gene inserts were removed from the 

pGEM4Z vector by restriction digests and then cloned into the yeast vectors pGAD424 

and pGBT9 (Clontech) using the same restriction sites.  The epsB gene of L. lactis subsp. 

cremoris JRF1 was cut out of the pGEM7Z vector using the restriction enzymes BamHI 

(5’) and XhoI (3’) to create ends that would be compatible for ligation into the yeast 

vectors pGAD424 and pGBT9 via BamHI and SalI restriction sites.  The resulting yeast 

vectors with gene inserts were transformed into E. coli DH5α cells, analyzed for 

sequence accuracy and proper frame alignment of the start codon, and then electroporated 

into S. cerevisiae HF7C (Matchmaker two-hybrid protocols, Clontech). 

 
2.3.  DNA sequencing 

 All DNA sequencing reactions were done using an ABI prism 3730 DNA 

analyzer and Taq FS terminator chemistry at the Utah State University Center for 

Integrated BioSystems. Nucleotide sequences of S. iniae 9066 and L. lactis subsp. 

cremoris JRF1 genes were determined by the primer walking technique using gene 

specific primers based on the sequence of related strains.  To sequence inserts in 

pGEM4Z and pGEM7Z the universal primers T7 and SP6 as well as gene specific 

primers (Table 5.1) were used.  Gene inserts in pGAD424 and pGBT9 were sequenced 

using vector primers located on the 5’ and 3’ end of the cloning site to allow sequences to 
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be analyzed for accuracy of the insert genes and proper frame alignment of the start 

codon. 

 
2.4.  Yeast transformation 

The cloning of genes into the pGAD424 and pGBT9 vectors allowed the synthesis 

of corresponding fusion proteins with the Gal4 activation domain (AD) and the Gal4 

DNA binding domain (BD), respectively (Fields and Song 1989; Chien et al. 1991).   For 

the expression of the yeast/S. thermophilus MR-1C, S. iniae 9066, or L. lactis subsp. 

cremoris JRF1 fusion proteins the S. cerevisiae strain HF7C (LacZ and HIS3) was used.  

The pGAD424 and pGBT9 plasmids containing the S. thermophilus MR-1C, S. iniae 

9066, and L. lactis subsp. cremoris JRF1 genes were cotransformed into S. cerevisiae 

HF7C according to procedures described in the Matchmaker two-hybrid protocols 

(Clontech).  Electroporated cells were plated on SD minimal medium (Matchmaker two-

hybrid protocols, Clontech) and transformants were selected using the markers LEU2 and 

TRP1 in the pGAD424 and pGBT9 vectors, respectively.  To ensure plasmid retention, 

yeast clones were maintained on SD minimal agar or frozen in SD minimal broth without 

tryptophan and leucine.  For each gene combination, three clones from at least two 

separate transformation experiments were tested for protein-protein interactions.  To test 

for protein dimerization, yeast clones were created that had an identical copy of the same 

gene in both pGAD424 and pGTB9.  To test that the genes do not activate transcription 

alone, yeast clones were created that contained pGAD424 with a gene insert plus pGBT9 

alone and vice versa. 
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2.5.  Yeast clone PCR 

 Yeast clones were verified to contain the appropriate S. thermophilus MR-1C, S. 

iniae 9066, and L. lactis subsp. cremoris JRF1 genes using PCR.  For each yeast clone, a 

2-3 day old colony was suspended in TE buffer (10 mM Tris, 1 mM EDTA, pH 7.5) in a 

microcentrifuge tube.  The cell suspensions were then frozen in liquid nitrogen a total of 

three times allowing the cells to completely thaw between each of the freezing cycles.  

Each 20 μl PCR reaction contained 2-3 µl of the cellular suspension, 1-2 µl of each gene 

specific primer or vector primer (100 µM stocks) (Table 5.1), 8 μl 2.5X master PCR mix 

(5 Prime), 1-2 μl MgCl2 (25 mM), and 3-7 μl distilled H2O.   After an initialization step 

of 95 oC for 5 minutes, PCR consisted of 50 cycles at a denaturation temperature of 95 oC 

for 45 seconds, an annealing temperature that was optimized for the individual primers 

for 45 seconds, and then an extension temperature of 72 oC for 1-3 minutes.  

 
2.6.  Yeast two-hybrid -galactosidase filter assay 

 In the yeast two-hybrid system protein-protein interactions are indicated by the 

production of -galactosidase in the yeast clones.  -galactosidase production was 

detected using the filter assay method with bromo-chloro-indolyl-galactopyranoside (X-

gal) as the enzymatic substrate.  For each combination of genes, three yeast clones from 

at least two separate transformation experiments were inoculated onto SD minimal agar 

without tryptophan and leucine and then grown at 30 oC for 3 days.  The colonies were 

then transferred to a sterile Whatman #5 filter and submerged in a pool of liquid nitrogen 

for 10 seconds to permeabilize the cells.  The filters were allowed to thaw and then 

placed on top a Whatman #5 filter in a Petri dish that had been pre-soaked with 3 ml of a 
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Z-buffer/X-gal solution containing 100 ml Z-buffer (16.1 g of Na2HPO4 
.
 7H20, 5.50 g of  

NaH2PO4.H2O, 0.75 g of  KCl, and 0.246 g of MgSO4.7H2O per L), 0.27 ml -

mercaptoethanol, and 1.67 ml X-gal stock solution (20 mg/ml in N,N-

dimethylformamide).  The Petri dishes containing the filters were incubated at 30 oC and 

checked periodically during an 8 hour time period for the appearance of blue colonies 

indicating -galactosidase production. 

 
2.7.  Yeast two-hybrid histidine prototrophy 

 Protein-protein interactions in the yeast two-hybrid system are also indicated by 

histidine prototrophy due to the reporter gene HIS3.  To test for histidine prototrophy 

three yeast clones from at least two separate transformation experiments for each 

combination of genes were plated on SD minimal media that did not contain tryptophan, 

leucine, or histidine.  To inhibit low level HIS3 expression in the GAL1-HIS3 fusion, and 

to ensure histidine auxotrophy without interaction of the binding domain and activation 

domain, 25 mM 3-aminotriazole was added to the SD minimal agar plates (Durfee et al. 

1993).  Agar plates were incubated at 30 oC and observed for growth of the yeast clones 

over an 8 day period. 

  
2.8.  Computational analysis of protein and nucleotide sequences 

Alignments were performed using the program ClustalW2 (Larkin et al. 2007) 

located at http://www.ebi.ac.uk/Tools/clustalw2/index.html.  Gene sequence information 

from S. thermophilus MR-1C (accession number AF448249.1), S. iniae 9066 (accession 

number HQ698911), L. lactis subsp. cremoris JRF1 (accession number HQ665557), 
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Streptococcus oralis ATCC 35037 (accession number ADMV01000012.1), 

Streptococcus gordonii str. Challis substr. CH1 (accession number CP000725.1), 

Streptococcus pneumoniae D39 (accession number CP000410.1), Staph. aureus 5C 

(accession number U81973.1) and Lactobacillus rhamnosus ATCC 9595 (accession 

number AY659976), was translated into protein sequences using the translate tool on the 

Swiss Institute of Bioinformatics website (http://expasy.org/tools).  Blast searches on the 

genes were conducted to identify potential horizontal gene transfer events and protein and 

nucleotide identities and similarities (positives) were calculated using the default settings 

for the Needleman-Wunsch Global Sequence Alignment Tool at 

http://blast.ncbi.nlm.nih.gov/.  The Lb. rhamnosus ATCC 9595 data was included since 

its phosphatase has been recently studied (LaPointe et al. 2008) and this species is also 

used in dairy fermentations.  

 
3.  Results   
 
3.1.  Analysis of intraspecific protein-protein interactions between the PTP, the trans- 
        membrane activation protein, the PTK, and the glycosyl-1-phosphate transferase 
 
 Proteins proposed to function as a PTP, a transmembrane activation protein, a 

PTK, and a glycosyl-1-phosphate transferase were tested in combination with each other 

to identify interactions between proteins from S. iniae 9066 (CpsB, CpsC, CpsD, and 

CpsE, respectively) and from L. lactis subsp. cremoris JRF1 (EpsC, EpsA, EpsB, and 

EpsD, respectively), as was described previously for the S. thermophilus MR-1C proteins 

(Wzh, Wzd, Wze, and CpsE, respectively) by Cefalo et al. (see chapter 4).  Strong 

intraspecific protein-protein interactions were detected between the transmembrane 
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activation protein and the PTK in all three bacterial systems.  Yeast clones containing the 

transmembrane activation protein in combination with the PTK produced β-galactosidase 

(Appendix A) and had the ability to grow abundantly on plates lacking histidine (Table 

5.2).  A weak interaction was detected between two identical PTKs in all three bacterial 

systems, as yeast clones that contained the gene encoding the PTK in both plasmids were 

light blue in the β-galactosidase assay (Appendix A) and were able to grow weakly on 

plates lacking histidine after an extended incubation (6 days) (Table 5.2).  Another weak 

interaction was detected between the PTP and the PTK in all three bacterial systems 

(Appendix A).  No protein-protein interactions were detected between the PTP and the 

 
Table 5.2.  Intraspecific protein-protein interactions detected between the PTP, the 
transmembrane activation protein, the PTK, and the glycosyl-1-phosphate transferase. 
 
Bacterial 
Strain 

Gene Insert 
in pGAD424 

Gene Insert 
in pGBT9 

Interaction Tested Colony Color 
after β-Gal Assay  

Growth on 
Plates Lacking 
Histidine 

Streptococcus 
iniae 9066* 

cpsC cpsD Transmembrane activation 
protein/PTK 
 

Dark blue +++ 

 cpsD cpsC PTK/transmembrane activation 
protein 
 

Dark blue +++ 

 cpsD cpsD PTK/PTK 
 

Light blue + 

 cpsB cpsD PTP/PTK 
 

Light blue + 

 cpsD cpsB PTK/PTP 
 

Light blue + 

Lactococcus 
lactis subsp. 
cremoris JRF1 

epsA  epsB Transmembrane activation 
protein/PTK 
 

Blue ++ 

 epsB epsA PTK/transmembrane activation 
protein 
 

Dark blue +++ 

 epsB epsB PTK/PTK 
 

Light blue + 

 epsC epsB PTP/PTK 
 

Light blue + 

 epsB epsC PTK/PTP Light blue + 
 β-Galactosidase (β-Gal) production is indicated by the formation of blue colonies.  On plates lacking histidine, + indicates a slight 
amount of growth, ++ indicates moderate growth, and +++ indicates abundant growth.  Protein-protein interactions were not  
detected between the glucosyl-1-phosphate transferase and the PTK, PTP, or transmembrane activation protein in either Streptococcus 
iniae 9066 or Lactococcus lactis subsp. cremoris JRF1.  Yeast clones that contained any of the genes above inserted into pGAD424 
and pGBT9 with no gene inserts and vice versa did not produce β-galactosidase or grow on plates lacking histidine assuring that no 
gene could activate transcription of the reporter genes alone.   
* Results seen for the interactions of Streptococcus thermophilus MR-1C proteins (see chapter 4) were equivalent to those seen for the 
interactions of the homologous proteins from S. iniae 9066. 
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transmembrane activation protein, the PTP and the glycosyl-1-phosphate transferase, the 

transmembrane activation protein and the glycosyl-1-phosphate transferase, or the PTK 

and the glycosyl-1-phosphate transferase in any of the three bacterial systems.  Yeast 

clones that contained these combinations of proteins produced no detectable β-

galactosidase and were unable to grow on plates lacking histidine (data not shown).  

Yeast clones that contained two identical inserts of the PTP, the transmembrane 

activation protein, or the glycosyl-1-phosphate transferase in both plasmids did not 

produce β-galactosidase or grow on plates lacking histidine; therefore no dimerization of 

these proteins was detected by the yeast-two hybrid system for any of the bacterial 

systems tested (data not shown). 

 
3.2.  Interspecific protein-protein interactions between the transmembrane activation  
        protein and the PTK, two PTKs, and the PTK and PTP from different bacterial  
       species 
 
   To investigate if the transmembrane activation proteins were restricted to 

recognize only their own cognately-encoded PTK or were more functionally flexible, the 

transmembrane activation protein from each species was tested for the ability to interact 

with the PTK from the two other species.  Yeast clones that contained the S. thermophilus 

MR-1C transmembrane activation protein (Wzd) in combination with the S. iniae 9066 

PTK (EpsD) produced β-galactosidase (Appendix A) and were able to grow abundantly 

on plates lacking histidine (Table 5.3).  Yeast clones that contained the S. iniae 9066 

transmembrane activation protein (CpsC) in combination with the S. thermophilus MR-

1C PTK (Wze) also produced β-galactosidase (Appendix A) and were able to grow 

abundantly on plates lacking histidine (Table 5.3).  These results indicate that the S. 
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thermophilus MR-1C transmembrane activation protein has the ability to interact with the 

S. iniae 9066 PTK and vice versa.  Yeast clones that contained the transmembrane 

activation protein from either S. thermophilus MR-1C (Wzd) or S. iniae 9066 (CpsC) and 

the PTK from L. lactis subsp. cremoris JRF1 (EpsB) did not produce β-galactosidase or 

grow on plates lacking histidine (Table 5.3).  Yeast clones that contained the L. lactis 

subsp. cremoris JRF1 transmembrane activation protein (EpsA) and the PTK from either 

S. thermophilus MR-1C (Wze) or S. iniae 9066 (CpsD) did not produce β-galactosidase 

or grow on plates lacking histidine (Table 5.3).  These results indicate that the L. lactis 

subsp. cremoris JRF1 transmembrane activation protein or PTK cannot interact with the 

PTK or transmembrane activation protein, respectively, from S. thermophilus MR-1C or 

S. iniae 9066.   

 This study (Table 5.2) and Cefalo et al. (2011) identified a weak intraspecific 

protein-protein interaction between two identical PTKs in S. thermophilus MR-1C, S. 

iniae 9066, and L. lactis subsp. cremoris JRF1.  To investigate the specificity of this 

interaction, the PTK from each species was tested for protein interactions with the PTKs 

of the other two species.  Yeast clones that contained any combination of S. thermophilus 

MR-1C Wze, S. iniae 9066 CpsD, or L. lactis subsp. cremoris JRF1 EpsB produced β-

galactosidase (Appendix A) and were able to grow weakly on plates lacking histidine 

after a prolonged incubation (6 days) (Table 5.3).  These results indicate that the PTK 

from one species has the ability to interact with the PTKs from either of the other two 

species. 
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Similarly, a weak intraspecific protein-protein interaction between the PTP and 

the PTK in S. thermophilus MR-1C, S. iniae 9066, and L. lactis subsp. cremoris JRF1 

was indicated by results from this study (Table 5.2) and our prior work (Cefalo et al. 

2011).  The PTP from each species was therefore tested for protein interactions with the 

PTKs of the other two species.  All yeast clones that contained the S. thermophilus MR-

1C PTK (Wze) in combination with the S. iniae 9066 PTP (CpsB) or the S. iniae 9066 

PTK (CpsD) in combination with the S. thermophilus MR-1C PTP (Wzh) produced β-

galactosidase (Appendix A) and were able to weakly grow on plates lacking histidine 

after a prolonged incubation (6 days) (Table 5.3).   These results indicate that the S. 

thermophilus MR-1C PTK can interact with the S. iniae 9066 PTP and vice versa.  In 

contrast, yeast clones that contained the L. lactis subsp. cremoris JRF1 PTK (EpsB) in 

combination with either the S. iniae 9066 PTP (CpsB) or the S. thermophilus MR-1C PTP 

(Wzh) did not produce β-galactosidase or grow on plates lacking histidine (Table 5.3).  

All yeast clones that contained the L. lactis subsp. cremoris JRF1 PTP (EpsC) in 

combination with either the S. iniae 9066 PTK (CpsD) or the S. thermophilus MR-1C 

PTK (Wze) did not produce β-galactosidase or grow on plates lacking histidine (Table 

5.3).  Thus, the PTP or PTK from L. lactis subsp. cremoris JRF1 is apparently not able to  

interact with the PTK or PTP, respectively from either S. thermophilus MR-1C or S. iniae  
 
9066.   
 
 
3.3.  Computational analysis of protein sequences 

 Positive or negative interspecific interactions among these proteins might be  
 
related to the similarity and divergence of these proteins.  To investigate this relationship 
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Table 5.3.  Interspecific protein-protein interactions between the transmembrane 
activation protein and the PTK, two PTKs, and the PTK and PTP from different bacterial 
species. 
 
Interaction Gene Insert in pGAD424 

and  Protein Function 
Gene Insert in pGBT9 and 
Protein Function 

Colony Color 
after β-Gal 
Assay* 

Growth on 
Plates Lacking 
Histidine† 

transmembrane 
activation protein/ 
PTK 

MR-1C wzd; transmembrane 
activation protein 

9066 epsD; PTK Dark blue +++ 

 MR-1C wzd; transmembrane 
activation protein 
 

JRF1 epsB; PTK White No growth 

 MR-1C wze; PTK 
 

9066 epsC, transmembrane 
activation protein 

Dark blue 
 
 

+++ 
 
 

 MR-1C wze; PTK JRF1 epsA; transmembrane 
activation protein 
 

White 
 

No growth 
 

 9066 epsC; transmembrane 
activation protein 
 

MR-1C wze; PTK Dark blue 
 

+++ 
 

 9066 epsC; transmembrane 
activation protein 
 

JRF1 epsB; PTK White 
 

No growth 
 

 9066 epsD; PTK MR-1C wzd; transmembrane 
activation protein 
 

Dark blue 
 

+++ 
 

 9066 epsD; PTK JRF1 epsA; transmembrane 
activation protein 
 

White No growth 

 JRF1 epsA; transmembrane 
activation protein 
 

MR-1C wze; PTK 
 

White 
 

no growth 
 

 JRF1 epsA; transmembrane 
activation protein 
 

9066 epsD; PTK White 
 
 

No growth 
 
 

 JRF1 epsB; PTK MR-1C wzd; transmembrane 
activation protein 
 

White 
 

no growth 
 

 JRF1 epsB; PTK 
 

9066 epsC; transmembrane 
activation protein 

White 
 

No growth 
 

PTK/PTK MR-1C wze; PTK 
 

9066 cpsD; PTK Light blue + 

 MR-1C wze; PTK 
 

JRF1 epsB; PTK Light blue 
 

+ 
 

 9066 cpsD; PTK 
 

MR-1C wze; PTK Light blue 
 

+ 
 

 9066 cpsD; PTK 
 

JRF1 epsB; PTK Light blue 
 

+ 
 

 JRF1 epsB; PTK 
 

MR-1C wze; PTK Light blue + 

 JRF1 epsB; PTK 
 

9066 cpsD; PTK Light blue + 

PTK/PTP MR-1C wze; PTK 
 

9066 epsB; PTP Light blue + 

 MR-1C wze; PTK 
 

JRF1 epsC; PTP White 
 

No growth 
 

 MR-1C wzh; PTP 
 

9066 epsD; PTK Light blue + 

 MR-1C wzh; PTP 
 
 

JRF1 epsB; PTK White 
 

No growth 
 

 9066 cpsD; PTK JRF1 epsC; PTP White No growth 
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 9066 epsB; PTP 
 

MR-1C wze; PTK Light blue  + 
 

 9066 epsB; PTP 
 

JRF1 epsB; PTK White No growth 

 JRF1 epsB; PTK 
 

MR-1C wzh; PTP White  
 

No growth 
 

 JRF1 epsB; PTK 
 

9066 epsB; PTP White  
 

No growth 
 

 JRF1 epsC; PTP MR-1C wze; PTK White  
 

No growth 
 

 JRF1 epsC; PTP 9066 cpsD; PTK White  
 

No growth 
 

MR-1C indicates Streptococcus thermophilus strain MR-1C, 9066 indicates Streptococcus iniae strain 9066, and JRF1 indicates 
Lactococcus lactis subsp. cremoris JRF1.   
*β-Galactosidase (β-Gal) production is indicated by the formation of blue colonies.   
† On plates lacking histidine, + indicates a slight amount of growth, ++ indicates moderate growth, and +++ indicates abundant 
growth.  
Yeast clones that contained any of the genes above inserted into pGAD424 and pGBT9 with no gene inserts and vice versa did 
 not produce β-galactosidase or grow on plates lacking histidine assuring that no gene could activate transcription of the reporter  
genes alone.   

 
 

the predicted PTPs from S. thermophilus MR-1C (Wzh), S. iniae 9066 (CpsB), and L. 

lactis subsp. cremoris JRF1 (EpsC) were aligned along with those from two other well-

studied pathogenic species S. pneumoniae D39 (CpsB) and Staph. aureus 5C (Cap5C) 

and another lactic acid bacteria used in dairy fermentations Lb. rhamnosus ATCC 9595 

(Wzb) (Fig. 5.1).  S. oralis ATCC 35037 (CpsB) and S. gordonii str. Challis substr. CH1 

(Wzh) were included in the alignment because of the nucleotide homology of the PTP 

genes to those of S. iniae and S. thermophilus, respectively.  The four PTP motifs 

containing conserved histidine, aspartate, and glutamate residues that are believed to be 

important in binding divalent cations and in coordination of the catalytic site are labeled 

(Aravind and Koonin 1998; Shi 2004; LaPointe et al. 2008).  As shown in Fig. 5.1, the 

overall structure of the eight proteins is conserved but the PTPs fall into two clear 

structural groups composed, respectively, of the five Streptococcus proteins and of the 

three other proteins, with each group being composed of proteins from both pathogenic 

and dairy fermentation species.  These groups contain sequence differences within the 

conserved motifs and in the carboxyl termini of the proteins.  At the amino acid level, S. 
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               Motif I____                 Motif II_____ 
StWzh     MIDVHSHIVFDVDDGPKTLEESLDLIGESYAQGVRKIVSTSHRRKGMFETPEDKIFANFS 60 
SiCpsB    MIDIHSHIVFDVDDGPLTIDDSLALIGESYRQGVRTIVSTSHRRKGMFETPEDDIYNKFL 60 
SoCpsB    MIDIHSHIVFDVDDGPKSIEDSKKLLREAYSQGVRTIVSTSHRRKGMFETPEEKIATNFL 60 
SgCWzh    MIDIHSHIVFDVDDGPKTIEDSRALLEESYRQGVRTIISTSHRRKGMFETPEAKIEENFK 60 
SpCpsB    MIDVHSHIVFDVDDGPKSREESKALLAESYRQGVRTIVSTSHRRKGMFETPEEKIAENFL 60 
LlcEpsC   MIDIHCHILPGIDDGAKTSGDTLTMLKSAIDEGITTITATPHH-NPQFNNESPLILKKVK 59 
LrWzb     MIDVHCHMLPGIDDGSKDLTTSLELAQAAVADGITHALMTPHHMNGRYTNHATDVIRMTD 60 
SaCap5C   MIDIHNHILPNIDDGPTNETEMMDLLKQATTQGVTEIIVTSHHLHPRYTTPIEKVKSCLN 60 
          ***:* *:: .:***.        :   :  :*:     *.*: :  : .    :      
StWzh     KVKAEAEALYPDLTIYYGGELYYTSDIVEKLEK-NLIPRMHNTQFALIEFSARTSWKEIH 119 
SiCpsB    HLKREAEKEYEGLTILYGGELYYTEDILDKLAQ-NLIPRMNDTRFALIEFSMNTPWRDIH 119 
SoCpsB    KVREMAKEVADDLIIAYGAEIYYTPDVVEKLEK-KLIPTLNDSRYALIEFSMNTAYRDIH 119 
SgCWzh    QVQELAKEIADDLTILYGAEIYYTSDILDKLEQ-EKIPRLAGSQYALIEFSMITPYKEIH 119 
SpCpsB    QVREIAKEVADDLVIAYGAEIYYTPDVLDKLGK-KRIPTLNDSRYALIEFSMNTPYRDIH 119 
LlcEpsC   EVQNIIDEHQLPIEVLPGQEVRIYGDLLKEFSEGKLLKAAGTSSYILIEFPSNHVPAYAK 119 
LrWzb     EFQDELDRRNIPLTVFPCQEVRINGQLLEAIDHNDILTCDVSGHYVLIEFPSDDVPLYTQ 120 
SaCap5C   HIESLEEVQALNLKFYYGQEIRITDQILNDIDR-KVINGINDSRYLLIEFPSNEVPHYTD 119 
          ...   .     : .    *:    :::. : . . :       : ****.        . 
             ______Motif III_______ 
StWzh     SGLSNVLRAGVTPIVAHIERYDALEENADRVREIINMGCYTQVNSSHVLKPKLFGDKDKV 179 
SiCpsB    TALSQVIMLGITPIIAHIERYDALALNAKRVQELINMGCYTQVNSSHVLKAKLFGDSLKV 179 
SoCpsB    KGLSNILMLGITPVIAHIERYDALENNENRVRELIDMGCYTQINSSHVLKPKLFGETYKF 179 
SgCWzh    TALSNVLRLGVTPVVAHIERYHCLENDEKKVRDLINMGCYTQINSSSVLKPKLFGDTYKF 179 
SpCpsB    SALSKILMSGITPVIAHIERYDALGNNEKRVRELIDMGCYTQVNSSHVLKPKLFGERYKF 179 
LlcEpsC   ELFYNIKLEGLQPILVHPERNSGIIENPDILFDFIEQGVLSQITAS-----SVTGHFGKK 174 
LrWzb     NMLFEVMQRGMIPVIVHPERNTRLMKHPGLLYQMVERGAFAQVTAS-----SYVGTFGKK 175 
SaCap5C   QLFFELQSKGFVPIIAHPERNKAISQNLDILYDLINKGALSQVTTA-----SLAGISGKK 174 
            : ::   *. *::.* **   :  .   : :::: *  :*:.::     .  *   *  
                 _____Motif IV__________ 
StWzh     RKKRVRYFLEKNLVHMVASDMHNLGPRPPFMKDAYEIVKKNYGPKRAKNLFIENPKTLLE 239 
SiCpsB    FKKRAKFFLDENLVHCIASDMHNLKKRPPFMQEAYQHVTKHYGRKRARELFITNPQTLIE 239 
SoCpsB    MKKRAQYFLERDLVHVIASDMHNLDHRPPHMEEAYDIIAKKYSEDKAKELFKDNPRKIIM 239 
SgCWzh    MKKRAQFFLEKDLVHFVASDMHNLDPRPPYMQEAYQIISKKYGEPHAEQLFRKNQELLLR 239 
SpCpsB    MKKRAQYFLEQDLVHVIASDMHNLDGRPPHMAEAYDLVTQKYGEAKAQELFIDNPRKIVM 239 
LlcEpsC   IQKLSFKMIENHLTHFVASDAHNVTSRAFKMKEAFEIIEDSYGS-GVSRMLQNNADSVIL 233 
LrWzb     VQQFSEDIIDAGLAHVFASDAHHLPGRSYEMSAAFKRLTRKRGE-KKARIFEENARALVN 234 
SaCap5C   IRKLAIQMIENNLTHFIGSDAHNTEIRPFLMKDLFNDKKLRDYY-EDMNGFISNAKLVVD 233 
           ::    :::  *.* ..** *:   *.  *   :.            . :  *   ::  
StWzh     NQYL------------------ 243 
SiCpsB    NDYL------------------ 243 
SoCpsB    DQLI------------------ 243 
SgCWzh    SEYI------------------ 243 
SpCpsB    DQLI------------------ 243 
LlcEpsC   NESFYQ-EEPIKIKTKKFLGLF 254 
LrWzb     GDPLVR-FNERKVE-KRLLSRY 254 
SaCap5C   DKKIPKRMPQQDYKQKRWFGL- 254 
          .. :    

             

Fig. 5.1.  Alignment of the PTPs from Streptococcus thermophilus MR-1C (Wzh, 
StWzh), Streptococcus iniae 9066 (CpsB, SiCpsB), Streptococcus oralis ATCC 35037 
(CpsB, SoCpsB), Streptococcus gordonii str. Challis substr. CH1 (Wzh, SgCWzh), 
Streptococcus pneumoniae D39 (CpsB, SpCpsB), Lactococcus lactis subsp. cremoris 
JRF1 (EpsC, LlcEpsC), Lactobacillus rhamnosus ATCC 9595 (Wzb, LrWzb), and 
Staphylococcus aureus (Cap5C, SaCap5C).  The four PTP motifs are labeled with the 
conserved histidine, aspartate, and glutamate residues indicated in bold type.  Amino 
acids that are identical in all sequences of the alignment are indicted by an asterisk, 
conserved substitutions are indicated by two dots, and semi-conserved substitutions are 
indicated by one dot. 
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thermophilus MR-1C Wzh and S. iniae 9066 CpsB are 69% identical and 83% similar.   

L. lactis subsp. cremoris JRF1 EpsC is 25% identical and 44% similar to S. thermophilus 

MR-1C Wzh and 24% identical and 43% similar to S. iniae 9066 CpsB (Table 5.4).   

 The transmembrane activation proteins from S. thermophilus MR-1C (Wzd), S. 

iniae 9066 (CpsC), and L. lactis subsp. cremoris JRF1 (EpsA) along with those from S. 

pneumoniae D39 (CpsC), Staph. aureus 5C (Cap5A), S. oralis ATCC 35037 (CpsC), S. 

gordonii str. Challis substr. CH1 (Wzd), and Lb. rhamnosus ATCC 9595 (Wzd) were 

also aligned (Fig. 5.2).  The predicted positions of two motifs that are found in 

polysaccharide co-polymerase proteins involved in chain length determination are 

indicated (Becker et al. 1995; Tocilj et al. 2008).  At the amino acid level, S. 

thermophilus MR-1C Wzd and S. iniae 9066 CpsC are 56% identical and 78% similar.  L. 

 
Table 5.4.  Amino acid identities and similarities between the PTPs, transmembrane 
activation domains, and PTKs of Streptococcus thermophilus MR-1C, Streptococcus 
iniae 9066, and Lactococcus lactis subsp. cremoris JRF1. 
 
Putative Protein 
Function 

Organism and Protein Name Organism and Protein Name Identity Similarity 

PTP Streptococcus thermophilus  
MR-1C Wzh 
 

Streptococcus iniae 9066 CpsB 69% 83% 

 Streptococcus iniae 9066 CpsB Lactococcus lactis subsp.  
cremoris JRF1 EpsC 
 

24% 43% 

 Lactococcus lactis subsp. 
 cremoris JRF1 EpsC 

Streptococcus thermophilus  
MR-1C Wzh 
 

25% 44% 

Transmembrane 
activation protein  

Streptococcus thermophilus        
MR-1C Wzd 

Streptococcus iniae 9066 CpsC 56% 78% 

 Streptococcus iniae 9066 CpsC Lactococcus lactis subsp.  
cremoris JRF1 EpsA 
 

24% 45% 

 Lactococcus lactis subsp.      
cremoris JRF1 EpsA 

Streptococcus thermophilus  
MR-1C Wzd  
 

24% 44% 

PTK Streptococcus thermophilus        
MR-1C Wze 

Streptococcus iniae 9066 CpsD 
 

59% 75% 

 Streptococcus iniae 9066 CpsD Lactococcus lactis subsp. 
 cremoris JRF1 EpsB 
 

33% 50% 

 Lactococcus lactis subsp.      
cremoris JRF1 EpsB 

 Streptococcus thermophilus       
MR-1C Wze 

31% 47% 
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lactis subsp. cremoris JRF1 EpsA is 24% identical and 44% similar to S. thermophilus 

MR-1C Wzh and 24% identical and 45% similar to S. iniae 9066 CpsB (Table 5.4). The 

amino acid sequences in Motif I of S. thermophilus MR-1C and S. iniae 9066 are highly 

similar to each other, while the L. lactis subsp. cremoris JRF1 sequences was very 

divergent. 

 The PTKs from S. thermophilus MR-1C (Wze), S. iniae 9066 (CpsD), and L. 

lactis subsp. cremoris JRF1 (EpsB) along with those from S. pneumoniae D39 (CpsD), 

Staph. aureus 5C (Cap5B), S. oralis ATCC 35037 (CpsD), S. gordonii str. Challis substr. 

CH1 (Wze), and Lb. rhamnosus ATCC 9595 (Wze) were aligned (Fig. 5.3).  These 

proteins contain amino acid sequences that resemble the conserved Walker A, A’ and B 

motifs found in other bacterial PTKs (Walker et al. 1982; Soulat et al. 2007; Jadeau et al. 

2008; Bechet et al. 2009).  The C-terminal end of bacterial PTKs contain up to seven 

tyrosine residues that are all potentially phosphorylatable (Grangeasse et al. 2002; 

Paiment et al. 2002; Morona et al. 2003; Jadeau et al. 2008).  At the amino acid level, S. 

thermophilus MR-1C Wze and S. iniae 9066 CpsD are 59% identical and 75% similar.  L. 

lactis subsp. cremoris JRF1 EpsB is 33% identical and 50% similar to S. iniae 9066 

CpsD and 31% identical and 47% similar to S. thermophilus MR-1C Wze (Table 5.4).  

The important amino acids in the Walker A, A’ and B motifs are conserved in all of these 

proteins but the positioning of the tyrosine residues was only shared between the 

Streptococcus species. 
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                          Motif I___ 
StWzd     MNQDNTKTKSVEIDILALLHKLWTKKLLILFIAFYFAAFSFLGTYFFIQPTYTSTTRIYVVNQA 64 
SiCpsC    MN--TSENTSIEIDILSLLKRIWQKKVVILFVTLLAGFLALVASMFLIKPSYTSTTRLYVINRQ 62 
SoCpsC    ----MKEQNMMEIDVFHLLKILWKRKLLIALVAFVTGIVAFAYSSFIVKPEFTSTTRIYVVNRN 60 
SgCWzd    ---MNKENQLVEIDVLSLIKTVWKRKFIILLTALVAAVLALGYSLFIAKPSYQSTTRIYVVNRQ 61 
SpCpsC    ----MKEQNTIEIDVFQLFKTLWKRKLMILLVALVTGAGAFAYSTFIVKPEYTSTTRIYVVNRN 60 
LlcEpsA   ----MQETQEQTIDLRGIFKIIRKRLGLILFSALIVTILGSIYTFFIASPVYTASTQLVVKLPN 60 
LrWzd     --------MNEQIDLARLWNVFKHSFIVMILLGLLGMFIAYFGAKTFIAPKYSASTSMLVNRKQ 56 
SaCap5A   --------MESTLELTKIKEVLQKNLKILIILPLLFLIISAIVTFFVLSPKYQANTQILVNQTK 56 
                      :::  : . .     :: :  :     .   :  .  * : :.* : * 
StWzd     TD-NNNLSAQDLQAGTYLVNDYKEIITSNDVLSEVIKDEKL----------------------- 104 
SiCpsC    Q--SDNLTATDLQAGGYLVNDYKEIITSRDVMHDVIAKENV----------------------- 101 
SoCpsC    QGDKPGLTNQDLQAGSYLVKDYREIILSQDVLEKVATDLKL----------------------- 101 
SgCWzd    QTDNNTLTNQDLQAGSYLVKDYKEIILSQDVLSTVISELKL----------------------- 102 
SpCpsC    QGDKSGLTNQDLQAGSYLVKDYREIILSQDALEKVATNLKL----------------------- 101 
LlcEpsA   SD-NSAAYAGEVTGNIQMANTINQVIVSPVILDKVQSNLN------------------------ 99 
LrWzd     DN-NPNMQLNAQQADIQIINTYKDIITRPVILREVADDLTSPRRVKVKKAQKAVYGTRYNAATG 119 
SaCap5A   GD-NPQFMAQEVQSNIQLVNTYKEIVKSPRILDEVSKDLND----------------------- 96 
             .         ..  : :  .:::     :  *  . .                 
StWzd     -----------------------NLSEAELAKMISVNIPTDTRLISISVNAKTGQDAQTLANKV 145 
SiCpsC    -----------------------SMSPEELSQMITVTVPADTRVISISVNNHEPQKAKDLANAV 142 
SoCpsC    -----------------------ELPPKGLASKIKVTVPVDTRIVSISVTDRAPEEASRIANSL 142 
SgCWzd    -----------------------PGTTAEISKSVSVSVPTDTRIVSITVKNSDPNQASRIANTL 143 
SpCpsC    -----------------------DMPAKTLASKVQVTVPTDTRIVSISVKDKQPEEASRIANSL 142 
LlcEpsA   ------------------------LSDDSFQKQVTAANQTNSQVIMLTVKYSNPYIAKKIADET 139 
LrWzd     VRERYVVKEEQPAKYKLKPAKYANISEDDLDKMISVSNAQNSQVFTVNVRDTDPVRAKDVANEI 183 
SaCap5A   -----------------------KYSPSKLSSMLTITNQENTQLINIQVKSGHKQDSEKIANSF 137 
                                   .   : . :      ::::. : *       :. :*:    
                                            Motif II___                    
StWzd     RKVASEKIKKVTKVEDVTTLEEAKLPESPSSPNIKRNVLLGAILGGFVAIVAVLVREVLDDRVR 209 
SiCpsC    REVASEKIKDVTKVQDVTALEKAQLPTKPSSPNSKRNAVMGLLVGAVLSIFAVILKEVLDDRVK 206 
SoCpsC    REVAAQKIISVTRVSDVTTLEEARPATSPSSPNIRRNTMVGFLAGAVVMVVTVLLVELLDTRVK 206 
SgCWzd    REVAAEKIIAVTKVSDVTTLEEAEVPKSPSSPNIRRNVMLSFFAGVIVMVIIVVFVEVLDDRVK 207 
SpCpsC    REVAVEKIVAVTRVSDVTTLEEARPATTPSSPNVRRNSLFGFLGGAVVTVIAVLLIELFDTRVK 206 
LlcEpsA   AKIFSSDAAKLLNVTNVNILSKAKAQTTPISPKPKLYLAISVIAGLVLGLAIALLKELFDNKIN 203 
LrWzd     AKVFKAKIASIMSVSNVSIVSRATADPTPVTPNLKIASLIGLILGMVLAFTVGLIRELTDQTIK 247 
SaCap5A   AKVTSKQIPKIMSVDNVSILSKADGTAVKVAPKTVVNLIGAFFLGLVVALIYIFFKVIFDKRIK 201 
           ::   .   :  * :*. :..*       :*:       . : * .: .   ..  : *  :. 
StWzd     RPEDVEDVLGMTLLGIIP--DTDKI---------------------------------- 232 
SiCpsC    SPEDVEDVLGMTLLGMVP--NTNKM---------------------------------- 229 
SoCpsC    RPEDIEDVMQIALLGVVP--NLDKLK--------------------------------- 230 
SgCWzd    KPEDIEEVMGLSLLGVVP--DMRKLK--------------------------------- 231 
SpCpsC    RPEDIEDVLQIPLLGLVP--DLDKMK--------------------------------- 230 
LlcEpsA   KEEDIE-ALGLTVLGVTSYDQMSDFNKNTNKNGTQSGTKSSPPSDHEVNRSSKRNKR-- 259 
LrWzd     SIDFITNDLGLVNLGLVN--YVQRMNDMDEAIARSKNKIIDSEAEPETTGFPQRSRRRV 304 
SaCap5A   DEEDVEKELGLPVLGS-----IQKFN--------------------------------- 222 
            : :   : :  **         :                    

  
  

Fig. 5.2.  Alignment of the transmembrane activation proteins from Streptococcus 
thermophilus MR-1C (Wzd, StWzd), Streptococcus iniae 9066 (CpsC, SiCpsC), 
Streptococcus oralis ATCC 35037 (CpsC, SoCpsC), Streptococcus gordonii str. Challis 
substr. CH1 (Wzd, SgCWzd), Streptococcus pneumoniae D39 (CpsC, SpCpsC), 
Lactococcus lactis subsp. cremoris JRF1 (EpsA, LlcEpsA), Lactobacillus rhamnosus 
ATCC 9595 (Wzd, LrWzd), and Staphylococcus aureus (Cap5A, SaCap5A).  Two  
motifs are labeled which are  similar to the consensus sequences [E/Q][I/L]D[L/I] 
X3L[I/F]XXLWX[A/G]K and SPKX11GX3G (with X being any amino acid and 
alternative residues enclosed in brackets) that are found in  transmembrane activation 
proteins in Escherichia coli, Salmonella enterica, and Rhizobium meliloti (Becker et al. 
1995; Tocilj et al. 2008).  Conserved amino acids similar to those in these consensus 
sequences are labeled in bold type. Amino acids that are identical in all sequences of the 
alignment are indicted by an asterisk, conserved substitutions are indicated by two dots, 
and semi-conserved substitutions are indicated by one dot. 
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StWze     ------------------MPLLKLVKSKVDFAKKTEEYYNTIRTNIQFS---GAQMKVIA 39 
SiCpsD    ------------------MSQLNLVRSKREHYQHAEEYYNSIRTNIQFS---GRDYKAIV 39 
SoCpsD    ------------------MPTLEIAQKKLDLARKAEEYYNALRTNIQLS---GNNLKVIA 39 
SgCWze    ------------------MPILELSNNKKQSIQKTEEYYNALRTNIQLS---GEDIKIVA 39 
SpCpsD    ------------------MPTLEISQAKLDFVKKAEEYYNSLCTNLQLS---GDGLKVFS 39 
LlcEpsB   -----------MAKNKRSIDNNHYIITSVNPQSPISEQYRTIRTTIDFK-MADQGIKSFL 48 
LrWze     MNFSLEKILHRHKEDQETQKNGVMLVTFAEPKHVVSEQFRTVRTNIEFAGAALDQCQVVM 60 
SaCap5B   -----------MSKKENTTTT---LFVYEKPKSTISEKFRGIRSNIMFS-KANGEVKRLL 45 
                                       .     .* :. : :.: :        : .  
             Walker A                 Walker A’ 
StWze     ISSVEAREGKSTTSVNLAISFASVGLRTLLIDADTRNSVLSGTFKSNEPYKGLSNFLSGN 99 
SiCpsD    LTSVQPGEGKSTTSINLAISFAKAGFKTLLIDADVRNSVMSGAFKSDDRYEGLSSYLSGN 99 
SoCpsD    ITSVKPGEGKSTTSTNIAWAFARAGYKTLLIDADIRNSVMSGVFKSREKITGLTEFLSGT 99 
SgCWze    VTSVQPNEGKSTTSTNLAIAFARAGYTTLLIDADIRNSIMSGVFKSKEKITGLTDYLVGK 99 
SpCpsD    ITSVKLGEGKSTTSTNIAWAFARAGYKTLLIDGDIRNSVMLGVFKARDKITGLTEFLSGT 99 
LlcEpsB   VTSSETDEGKTTVSANIAVAFAQQGKKVLLIDGDLRKPTVNITFKVQN-RVGLTNILMHQ 107 
LrWze     FTSSAMSEGKSTVSANVAVTWAQAGKKVLLIDADLRRPTVHATFRTLN-LDGVTTVLTGK 119 
SaCap5B   VTSEKPGAGKSTVVSNVAITYAQAGYKTLVIDGDMRKPTQNYIFNEQN-NNGLSSLIIGR 104 
          .:*     **:*.  *:* ::*  *  .*:**.* *..     *.  :   *::  :  
                                                            Walker B 
StWze     ADLNETICQT-DISGLDVIASGPIPPNPTSLLQNDNFRHLMEVARSRYDYVIIDTPPIGM 158 
SiCpsD    AELSSVISRT-DVPNLMLIPSGQVPPNPTTLLQNSNFNFMIDTVKELFDYIIIDTPPIGL 158 
SoCpsD    TDLSQGLCET-NVENLFVIQAGSVSPNPTALLQSENFATMIDTLRKYFDYIVVDTAPIGV 158 
SgCWze    NDLSQGLCET-DVPNLFVIESGQSSPNPTALLQSKNFDEMMNILRRHYDYIIVDTPPIGL 158 
SpCpsD    TDLSQGLCDT-NIENLFVIQAGSVSPNPTALLQRKNFSTMLETLRKYFDYIIVDTAPVGV 158 
LlcEpsB   SSIEDAIQGTRLSENLTIITSGPIPPNPSELLASSAMKNLIDSVSDFFDVVLIDIPPLSA 167 
LrWze     EKPDDVVEET-FVDNMSIITSGPVPPNPSELLNSKRMAGLLEWAREKYDIIVLDAPPVLA 178 
SaCap5B   TTMSEAITST-EIENLDLLTAGPVPPNPSELIGSERFKELVDLFNKRYDIIIVDTPPVNT 163 
             .. :  *    .: :: :*  .***: *:  . :  :::     :* :::* .*:   
StWze     FIDAAIIAHQADASLLVTAAGKIKRRFVTKAVEQLEQSGSQFLGVVLNKVDMTVDKYGSY 218 
SiCpsD    VIDSAIIAQKADATILVTEAGSIKRRFVQKAKEQMEQSGAQFLGVILNKVDQ---QLGSY 215 
SoCpsD    VIDAAIITQKCDASVLVTAAGETNRRDVQKAKEQLEQTGKPFLGIVLNKLNTSVEKYGSY 218 
SgCWze    VIDAAIISQKCDASILVAEAGSVKRKALQKSKEQLEQTGTPFLGVVLNKYDVSGDRYGVY 218 
SpCpsD    VIDAAIITRKCDASILVTEAGEINRRDIQKAKEQLEHTGKPFLGVVLNKFDTSVDKYGSY 218 
LlcEpsB   VTDAQILSSYVGGVVLVVRAYETKKESLAKTKKKLEQVNANILGVVLHGVDSSDSPSYYY 227 
LrWze     VSDVQVLVPKTDGVVVVANMGKTLKGDLKRTVEVLKLANAKILGSVERVKAKHGDRGYGY 238 
SaCap5B   VTDAQLYARAIKDSLLVIDSEKNDKNEVKKAKALMEKAGSNILGVILNKTKVDKSSSYYH 223 
          . *  :        ::*    .  :  : ::   ::  .  :** : .           : 
StWze     GSYGSYGEYGKKSNQKEGHSRAHRRRKVGWN 249 
SiCpsD    GAYGSYGDYGKT--KKSSKSKKHSRK----- 239 
SoCpsD    GAYGNYGNYGKK------------------- 230 
SgCWze    GAYGNYGAYGKKH------------------ 231 
SpCpsD    GDYGKN----KK------------------- 226 
LlcEpsB   -----YGVE---------------------- 231 
LrWze     GYGYGYGNESNK------------------- 250 
SaCap5B   ----YYGDE---------------------- 228 

 

Fig. 5.3.  Alignment of the PTKs from Streptococcus thermophilus MR-1C (Wze, 
StWze), Streptococcus iniae 9066 (CpsD, SiCpsD), Streptococcus oralis ATCC 35037 
(CpsD, SoCpsD), Streptococcus gordonii str. Challis substr. CH1 (Wze, SgCWze), 
Streptococcus pneumoniae D39 (CpsD, SpCpsD), Lactococcus lactis subsp. cremoris 
JRF1 (EpsB, LlcEpsB), Lactobacillus rhamnosus ATCC 9595 (Wze, LrWze), and 
Staphylococcus aureus (Cap5B, SaCap5B).  The typical Walker A motif is 
GXXGXGK[T/S] but only GK[S/T] is well conserved in bacterial PTKs, the Walker A’ 
motif has the consensus sequence ILVFM(3)DXDXR, and the Walker B motif of 
bacterial PTKs is extended to ILVFM (3)DXXP (with (3) in the Walker A’ and B motifs 
indicating that the consensus sequence contains any 3 of the previous amino acids) 
(Walker et al. 1982; Jadeau et al. 2008; Bechet et al. 2009). The residues in the Walker A, 
A’ and B motifs and the tyrosine residues in the carboxyl terminal end are in bold. Amino 
acids that are identical in all sequences of the alignment are indicted by an asterisk, 
conserved substitutions are indicated by two dots, and semi-conserved substitutions are 
indicated by one dot.  
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3.4.  Computational analysis of nucleotide sequences to identify potential horizontal gene  
        transfer events 
  
 Potential horizontal gene transfer events specifically involving the sequences 

found in the MR-1C wzh, wzd and wze genes were investigated using blast searches. We 

found that the first 165 nucleotides encoding the N-terminal 55 amino acids of the 

Wzh/CpsB proteins are 79% identical in S. thermophilus MR-1C and Streptococcus 

gordonii str. Challis substr. CH1. However, blast alignments of the remaining portion of 

the wzh genes and of the wzd and wze genes from these two species showed no significant 

similarities (data not shown).  Similarly, the 605 nucleotides encoding the N-terminal end 

of the Wzh/CpsB protein are 71% identical in S. iniae 9066 and Streptococcus oralis 

ATCC 35037, but no significant similarity was found between the cpsC and cpsD genes 

of these species (data not shown).  

Investigation of potential horizontal gene transfer events involving the genes 

encoding the priming glycosyltransferase revealed that 370 nucleotides encoding amino 

acids near the C-terminal end of the L. lactis subsp. cremoris JRF1 EpsD protein are 90% 

identical to the glucose-1-phosphate transferase gene found in S. thermophilus ND03.  

However, blast alignments of the epsC, epsA, and epsB genes from L. lactis subsp. 

cremoris JRF1, respectively, with the wzh, wzd and wze genes from S. thermophilus 

ND03 revealed no significant similarities (data not shown).  The L. lactis subsp. cremoris 

JRF1 eps gene cluster also contains 261 base pairs that are 85% identical to a pseudogene 

in the eps gene cluster of S. thermophilus MTC310, but blast alignments of the epsC, 

epsA, and epsB genes from L. lactis subsp. cremoris JRF1, respectively, with the wzh, 
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wzd and wze genes from S. thermophilus MTC310 also revealed no significant 

similarities (data not shown). 

  
4.  Discussion 

The results of this study suggest that intraspecific interactions between the 

transmembrane activator protein and the PTK, between two PTK subunits, and between 

the PTK and PTP are conserved in the order Lactobacillales.  The results of interspecific 

protein interaction experiments and the nucleotide sequence comparisons contained in 

this work support previous studies on the evolution of S. thermophilus eps/cps gene 

clusters by lateral gene transfer events involving either transfer of complete genes 

(Pluvinet et al. 2004; Hols et al. 2005; Rasmussen et al. 2008; Eng et al. 2011) or of gene 

fragments (Guédon et al. 1995; Bourgoin et al. 1996, 1999; Pluvinet et al. 2004; Tyvaert 

et al. 2006). 

Interactions of the Wzh (CpsB), Wzd (CpsC) and Wze (CpsD) proteins play 

critical roles in the regulation of capsule synthesis by Gram-positive organisms.  A strong 

intraspecific protein-protein interaction takes place between the transmembrane 

activation protein and the PTK of S. iniae 9066 and of L. lactis subsp. cremoris JRF1.  

These interactions are similar to that previously observed between the transmembrane 

activation protein and the PTK of S. thermophilus MR-1C using the yeast two- hybrid 

system (see chapter 4) and are also consistent with results from S. thermophilus 

CNRZ1066 and Staph. aureus serotype 5 that were derived using alternative research 

methodologies (Minic et al. 2007; Olivares-Illana et al. 2008).  An intraspecific protein-

protein interaction between two identical PTKs was observed in S. iniae 9066 and in L. 
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lactis subsp. cremoris JRF1 that was again similar to that seen with the PTK from S. 

thermophilus MR-1C (see chapter 4).  These results are consistent with the PTKs from 

these organisms having transphosphorylation abilities similar to that of the PTK Wzc of 

E. coli (Collins et al. 2006).  In addition, an intraspecific protein-protein interaction was 

detected between the PTK and the PTP from S. iniae 9066 and from L. lactis subsp. 

cremoris JRF1 which is consistent with the interaction between these proteins seen in S. 

thermophilus MR-1C (see chapter 4) and with the results of Bender and Yother (2001) 

who used ELISA’s to demonstrate that the PTP (CpsB) was able to interact with both the 

phosphorylated and dephosphorylated forms of the PTK (CpsD) in S. pneumoniae.    

 One potential additional target for tyrosine phosphorylation is the 

glycosyltransferase that starts synthesis of the polysaccharide units used in EPS 

biosynthesis (Minic et al. 2007; Obadia et al. 2007; Lin et al. 2009).  In particular, the 

size of protein complexes isolated by Minic et al. (2007) suggest that protein interactions 

occur between the transmembrane activation protein (EpsC), the PTK (EpsD), and a 

glycosyltransferase (EpsE) from S. thermophilus CNRZ1066.  In support of this, the 

glycosyltransferase activity of EpsE required EpsC and EpsD and a tyrosine residue that 

is necessary for the glycosyltransferase activity of EpsE was identified.  The 

glycosyltransferase activity of EpsE is negatively affected by the PTP EpsB suggesting 

that this protein might be responsible for the dephosphorylation of EpsE (Minic et al. 

2007).  However, as was found by Cefalo et al. (see chapter 4) for the S. thermophilus 

MR-1C proteins, no protein interactions were detected between the glycosyl-1-phosphate 

transferase and the transmembrane activator domain, the PTK, or the PTP in S. iniae 



172 
 

 
 

9066, or L. lactis subsp. cremoris JRF1 using the yeast two-hybrid system.  It may be that 

the transmembrane activation protein and the PTK must first form multi-protein 

complexes, that other protein components are needed, or that the glycosyl-1-phosphate 

transferase must first bind sugar polymers in order for these protein interactions to occur.  

The phosphorylation state of the glycosyl-1-phosphate transferase and the PTK is 

unknown in the yeast system and may play a role in some interactions involving these 

proteins.   

In this study, the transmembrane activation protein of S. thermophilus MR-1C 

was able to interact with the PTK of S. iniae 9066 and vice versa.  The transmembrane 

activation protein and the PTK from these two species are homologous having 56% 

identity and 78% similarity and 59% identity and 75% similarity, respectively.  The L. 

lactis subsp. cremoris JRF1 transmembrane activation protein was unable to interact with 

the PTK from either S. thermophilus MR-1C or S. iniae 9066.  The L. lactis subsp. 

cremoris JRF1 PTK also could not interact with the transmembrane activation protein 

from either S. thermophilus MR-1C or S. iniae 9066.  The L. lactis subsp. cremoris JRF1 

transmembrane activation protein has 24% identity and less than 45% similarity and the 

PTK has less than 33% identity and less than 50% similarity with the corresponding 

protein in either S. thermophilus MR-1C or S. iniae 9066. This divergence may explain 

the inability to form interspecific interactions in these studies.  In particular, it has been 

postulated that a conserved motif (labeled Motif I in Fig. 5.2) found in the N-terminal 

cytoplasmic region of polysaccharide co-polymerases from E. coli and Salmonella 

enterica could be involved in the interaction of this protein with other proteins of the 
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system (Tocilj et al. 2008).  The amino acid sequence of this region is highly similar 

when comparing S. thermophilus MR-1C and S. iniae 9066 and greatly dissimilar when 

comparing L. lactis subsp. cremoris JRF1 and S. thermophilus MR-1C or S. iniae 9066 

(Fig. 5.2).  

The PTKs from S. thermophilus MR-1C, S. iniae 9066, and L. lactis subsp. 

cremoris JRF1 also had the ability to form interspecific protein-protein interactions with 

each other.  The PTK of S. thermophilus is 59% identical and 75% similar to the PTK of 

S. iniae 9066, but the PTK of L. lactis subsp. cremoris JRF1 is 33% or less identical and 

50% or less similar to the PTKs of either S. thermophilus MR-1C or S. iniae 9066 (Fig. 

5.3).  However, the important amino acids within the Walker A, A’ and B motifs were 

highly conserved in these proteins. These results suggest that the ability of the PTKs to 

form protein complexes may be dependent on relatively few conserved amino acids that 

may also be important in facilitating phosphorylation of other proteins by the PTK.  

It has been suggested that the PTP involved in EPS production may recognize a 

cognate PTK, but little research exists to support this viewpoint (Bender and Yother 

2001; Morona et al. 2002; LaPointe et al. 2008).  In this study, the PTP/PTK protein 

interaction was preserved if one protein was from S. thermophilus MR-1C and the other 

was from S. iniae 9066.  This could be due to the degree of homology between the PTPs 

(69% identical and 83% similar) and the PTKs (59% identical and 75% similar) from 

these two species.  This finding is consistent with the work of Preneta et al. (2002) who 

demonstrated that the PTP from Klebsiella pneumoniae was able to dephosphorylate the 

PTK from E. coli, suggesting that the action of the PTP is not specific to its cognately-
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encoded kinase.  The PTKs and PTPs of E. coli and K. pneumoniae are approximately 

51% identical and 71% similar and 54% identical and 69% similar, respectively.   The 

PTK or PTP from L. lactis subsp. cremoris JRF1 was unable to interact with the PTP or 

the PTK, respectively, from either S. thermophilus MR-1C or S. iniae 9066.  The L. lactis 

subsp. cremoris JRF1 PTP is less than 25% identical and less than 44% similar and the 

PTK is less than 33% identical and less than 50% similar to the corresponding proteins of 

either S. thermophilus MR-1C or S. iniae 9066.  The S. thermophilus MR-1C and S. iniae 

9066 PTPs are similar to one another within the four conserved PTP motifs as well as in 

the sequence of the carboxyl termini but different in these features from the  PTP of L. 

lactis subsp. cremoris JRF1 (Fig. 5.1).  PTKs can vary greatly in the arrangement and 

position of phosphorylated tyrosine residues, suggesting that the substrate recognition site 

of the PTP must vary accordingly (LaPointe et al. 2008).  The arrangement of the 

phosphorylated tyrosine residues is highly similar in the S. thermophilus MR-1C and S. 

iniae 9066 PTKs and less conserved in the PTK of L. lactis subsp. cremoris JRF1.  

Together these differences in the structures of the PTPs and PTKs may explain the 

inability of the L. lactis subsp. cremoris JRF1 PTK or PTP to interact with the opposing 

protein from either S. thermophilus MR-1C or S. iniae 9066.  

  All three bacterial gene transfer mechanisms (i.e. conjugation, transduction, and 

natural competence) have been shown to be active in S. thermophilus resulting in gene 

content that is 20% variable with 8% likely to be derived from recent horizontal gene 

transfers (Burrus et al. 2002; Bolotin et al. 2004; Hols et al. 2005; Blomqvist et al. 2006; 

Ammann et al. 2008; Rasmussen et al. 2008; Fontaine et al. 2010; Eng et al. 2011).  
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Eps/cps gene clusters are prone to horizontal gene transfers in many bacterial species, 

causing these clusters to have a mosaic structure.  Different studies have found evidence 

suggesting lateral transfer of gene-sized (Pluvinet et al. 2004; Hols et al. 2005; 

Rasmussen et al. 2008; Eng et al. 2011) or sub-gene regions (Guédon et al. 1995; 

Bourgoin et al. 1996, 1999; Pluvinet et al. 2004; Tyvaert et al. 2006) of the eps gene 

cluster in S. thermophilus.  

The 79% identical match between the first 165 nucleotides of the PTP genes from 

S. thermophilus MR-1C and Streptococcus gordonii str. Challis substr. CH1 overlaps the 

conserved Motifs I and II (Fig. 5.1).  However, blast alignments of the wzd and wze genes 

from these two species showed no significant similarities.  This suggests lateral gene 

transfer of a functional sub-gene region between S. thermophilus and S. gordonii or to 

both these species from a third species. 

 The 71% identical nucleotide match between the PTP genes of S. iniae 9066 and 

Streptococcus oralis ATCC 35037 covers the first 201 amino acids in the proteins and 

includes the conserved Motifs I, II and III (Fig. 5.1) but no significant similarity was 

found between the cpsC and cpsD genes of these strains.  Interestingly, the cpsB, cpsC, or 

cpsD genes of S. iniae 9066 also share no significant nucleotide similarity as determined 

by the Needleman-Wunsch Global Sequence Alignment Tool with the wzh, wzd, or wze 

genes respectively, of S. thermophilus MR-1C, although as noted above the proteins 

share a high degree of similarity.   

Insertion sequence elements (IS981, IS1191, and ISS1) are a prominent feature of 

Streptococcus eps/cps gene clusters including those of S. thermophilus and S. iniae and 
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could facilitate genetic exchange of genes or partial genes between species (Guédon et al. 

1995; Bourgoin et al. 1996, 1999; Pluvinet et al. 2004; Hols et al. 2005; Tyvaert et al. 

2006; Lowe et al. 2007;  Rasmussen et al. 2008; Eng et al. 2011).  The high degree of 

identity (at least 98%) of these insertion sequence elements that are found in both the 

genomes of S. thermophilus and L. lactis suggests that horizontal transfer has recently 

occurred between these lactic acid bacteria during coculture in milk.  The identified 

horizontal transfers of eps/cps genes between Lactococcus and Streptococcus involve 

genes or sub-gene regions for glycosyltransferases whose function may not rely on 

protein-protein interactions rather than of the wzh, wzd or wze genes (Guédon et al. 1995; 

Bourgoin et al. 1996, 1999; Broadbent et al. 2003; Pluvinet et al. 2004; Tyvaert et al. 

2006; Rasmussen et al. 2008; Liu et al. 2009; Eng et al. 2011).  For example, this study 

found evidence supporting the horizontal gene transfer of part of the glucose-1-phosphate 

transferase gene between L. lactis subsp. cremoris JRF1 and S. thermophilus ND03 and a 

pseudogene between L. lactis subsp. cremoris JRF1 and S. thermophilus MTC310.  The 

glucose-1-phosphate gene in S. thermophilus ND03 and the pseudogene in S. 

thermophilus MTC310 are flanked by genes associated with various IS elements that 

could facilitate horizontal gene transfer between species.  In this study with the exception 

of the Wze/EpsB interactions, the proteins from the two Streptococcus species were 

unable to interact with their counterparts from L. lactis subsp. cremoris JRF1.  We note 

that the gene order of the wzh, wzd and wze genes in the eps gene cluster is different in L. 

lactis than in the streptococcal species and that the greater divergence of these genes 

between L. lactis and the streptococcal species may decrease the likelihood of successful 
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lateral transfer of functional genes or sub-gene regions, such as we identified with the S. 

thermophilus MR-1C and S. iniae 9066 wzh/cpsB genes. 

A better understanding of the protein-protein interactions involved in EPS 

production will benefit many industrial processes by aiding in the construction of strains 

with enhanced properties.  This study suggests that functional regulatory complexes can 

be formed in naturally occurring or genetically engineered recombinant strains.  A better 

understanding of the protein interactions that take place in EPS/CPS production could 

also lead to new treatment strategies for microbial pathogens in which capsule production 

is important for virulence.  This study provides insight into the protein-protein 

interactions involved in EPS production and their conservation among Gram-positive 

bacteria in the order Lactobacillale.  Further research should include the confirmation of 

protein-protein interactions by a different method and the determination of the biological 

significance of interspecific interactions by gene replacement and its effects on capsule 

synthesis.  Investigation of the specific regions responsible for the interactions between 

the proteins would also enhance understanding of the mechanisms underlying regulation 

of EPS biosynthesis. 
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CHAPTER 6 

CONCLUSIONS 
 

  
 Exopolysaccharide (EPS) biosynthesis is a complex process that involves many 

protein components that must function together to form high molecular weight 

polysaccharides.  Present day research has greatly added to our understanding but much 

still remains unknown about how the proteins involved in EPS biosynthesis function and 

interact.  The research contained in this dissertation contributes new information by 

establishing the function of one of the proteins involved in regulating EPS synthesis and 

identifying protein-protein interactions among regulatory proteins that take place during 

EPS biosynthesis in Gram-positive organisms.   

 Due to its homology to known phosphotyrosine phosphatases (PTPs), it had been 

hypothesized that Streptococcus thermophilus Wzh/EpsB functioned to remove 

phosphate groups from the PTK and other proteins involved in EPS biosynthesis such as 

the priming glycosyltransferase.  However, the phosphatase activity of S. thermophilus 

Wzh/CpsB had never been directly demonstrated.  The research in this dissertation was 

designed to establish the PTP activity of S. thermophilus Wzh by testing the purified 

protein’s ability to release phosphate from synthetic phosphotyrosine peptides and by 

sequence comparisons to known PTPs.  The S. thermophilus MR-1C Wzh protein 

contained all the conserved aspartate, glutamate, histidine, and arginine resides that were 

identified as being important for metal binding and catalysis in the well studied PTP 

Cps4B Streptococcus pneumoniae TIGR4 (Fig. 6.1).  Two loops thought to function in  
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Fig. 6.1.  Protein sequence comparison of the PTPs from Streptococcus pneumoniae 
TIGR4 (Cps4B), Streptococcus thermophilus MR-1C (Wzh), Streptococcus iniae 9066 
(CpsB), and Lactococcus lactis subsp. cremoris (EpsC).  Amino acid residues important 
in binding metal ions (M1, M2, and M3) are in red and those important in binding 
phosphate ions (P) are in blue.  The two conserved loops important in controlling access 
of phosphotyrosine contains substrates to the active site are indicated in yellow.  Amino 
acids that are identical in all sequences of the alignment are indicted by an asterisk, 
conserved substitutions are indicated by two dots, and semi-conserved substitutions are 
indicated by one dot. 
 
 
controlling access of phosphotyrosine containing substrates to the active site in S. 

pneumoniae Cps4B were also conserved in S. thermophilus Wzh (Fig. 6.1).   

Purified S. thermophilus MR-1C Wzh was able to release phosphate from both 

phosphotyrosine peptides tested and the activity of Wzh was dramatically decreased by 

the presence of 1, 5, and 10 mM of the PTP inhibitor sodium vanadate.  Purified Wzh 

was also tested for activity against a synthetic phosphoserine/threonine peptide but no 

phosphatase activity was detected.  These results confirm that Wzh functions as a PTP 
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that could remove phosphate groups from the protein tyrosine kinase (PTK), priming 

glycosyltransferase, or other proteins involved in EPS biosynthesis.  The role for Wzh as 

the PTP that removes phosphate from the PTK Wze is supported by research contained in 

this dissertation that identifies that a protein-protein interaction does take place between 

Wzh and Wze that would allow phosphate removal to proceed by the mechanism 

described in S. pneumoniae.  However, the ability of S. thermophilus Wzh to remove 

phosphate from Wze still needs to be directly demonstrated in order to more conclusively 

establish its role in the regulation of EPS biosynthesis.   

 The research in this dissertation is the first to investigate the direct interaction of 

many of the proteins that are involved in Gram-positive EPS biosynthesis and the first to 

employ the yeast two-hybrid system to do so.  It was determined that a strong protein-

protein interaction takes place between the PTK and the transmembrane activation 

protein in the organisms S. thermophilus MR-1C, Streptococcus iniae 9066, and 

Lactococcus lactis subsp. cremoris JRF1.  A weaker protein-protein interaction was 

detected between two identical PTKs in S. thermophilus MR-1C, S. iniae 9066, and L. 

lactis subsp. cremoris JRF1 that would be consistent with these PTKs having 

transphosphorylation ability as was seen for the PTK of Escherichia coli.  A weaker 

protein-protein interaction was also detected between the PTK and the PTP in S. 

thermophilus MR-1C, S. iniae 9066, and L. lactis subsp. cremoris JRF1.  The protein-

protein interactions above were present in all three species tested and may represent a 

conserved organization for the EPS biosynthetic machinery in the family 
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Streptococcaceae.  Further research is required to investigate the possibility of these 

protein interactions being conserved in other Gram-positive bacteria.  

 A S. thermophilus MR-1C PTK/transmembrane activation fusion protein was 

created and interactions were detected between the fusion protein and the PTK or 

transmembrane activation protein.  This suggests that the PTK and transmembrane 

activation protein of S. thermophilus may form multi-protein complexes as has been 

found for these proteins in other organisms.  It was thought that the presence of the PTK 

in the PTK/transmembrane activation fusion protein might affect the phosphorylation 

state of the PTK, thereby strengthening the protein-protein interaction with the PTP or the 

glycosyl-1-phosphate transferase.  However, no interaction was detected between the 

PTK/transmembrane activation fusion protein and the PTP or priming 

glycosyltransferase.  The results did indicate that there is likely a problem with the 

protein conformation in some constructs and therefore, the formation of multi-protein 

complexes and the lack of interaction with the PTP or priming glycosyltransferase need 

to be confirmed by other research methodologies.   

Research has suggested that an interaction between the PTK and the priming 

glycosyltransferase, between the PTP and priming glycosyltransferase, between one 

glycosyltransferase and the next, between the PTK and the membrane translocation 

protein, or between the PTK and the polymerase could take place.  All combinations of 

the S. thermophilus MR-1C Wzh (PTP), Wzd (transmembrane activation protein), Wze 

(PTK), Wzg (regulation), CpsE (glycosyl-1-phosphate transferase), CpsS 

(polymerization), CpsL (unknown), CpsW (regulation), and CpsU (membrane 
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translocation) proteins were analyzed for protein-protein interactions but no additional 

interactions were discovered using the yeast two-hybrid system.  No protein-protein 

interactions were detected when the S. iniae 9066 or L. lactis subsp. cremoris JRF1 

glycosyl-1-phosphate transferase was combined with the transmembrane activator 

domain, the PTK, or the PTP using the yeast two-hybrid system.  The priming 

glycosyltransferase of S. thermophilus MR-1C was tested for protein-protein interactions 

with the glycosyltransferases (CpsP and CpsQ) thought to add the next sugar precursors 

to the carrier lipid and no interactions were detected.  It is possible that the PTK and the 

transmembrane activation protein could form multi-protein complexes that would provide 

scaffolding for other protein-protein interactions to take place or that other undiscovered 

protein interactions must first take place before these interactions can occur.  The 

phosphorylation states of protein such as the PTK or priming glycosyltransferase are also 

unknown in the yeast system and may play an important role in the interactions of these 

proteins.  The priming glycosyltransferase may require the binding of sugar polymers to 

the protein in order to interact with other glycosyltransferases or may only interact with 

the phosphorylated form of Wze in complex with Wzd and not directly with each other. It 

is also possible that no direct interactions between some of the proteins required for the 

synthesis, polymerization, membrane translocation, and regulation of EPS exist. Further 

research is needed to clarify the presence or absence of these protein-protein interactions.   

 To determine the generality and specificity of the protein-protein interactions 

identified by the yeast two-hybrid system the PTK, transmembrane activation protein, 

PTP, and the glycosyl-1-phosphate transferase from S. thermophilus MR-1C, S. iniae 
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9066, and L. lactis subsp. cremoris JRF1 were tested for their ability to interact with the 

other two systems.  The research contained in this dissertation is the first to investigate 

whether these regulatory proteins require their cognately encoded counterparts in order to 

form protein-protein interactions or whether they can form interspecific interactions that 

would be required in naturally occurring and in genetically engineered recombinants.  

Using the yeast two-hybrid system, it was determined that the transmembrane activation 

protein of S. thermophilus MR-1C was able to interact with the PTK of S. iniae 9066 and 

vice versa, probably due to the fact that transmembrane activation protein and the PTK 

from these two species are highly homologous.  However, the L. lactis subsp. cremoris 

JRF1 transmembrane activation protein was unable to interact with the PTKs from either 

S. thermophilus MR-1C or S. iniae 9066.  The L. lactis subsp. cremoris JRF1 PTK also 

could not interact with the transmembrane activation protein from either S. thermophilus 

MR-1C or S. iniae 9066.  This is probably due to the lower degree of homology shared 

between the PTK and transmembrane domain of L. lactis subsp. cremoris JRF1and the 

corresponding protein in either of the Streptococcus species.  In particular, it is thought 

that a conserved motif in the N-terminal cytoplasmic region of the transmembrane 

activation protein is important in interactions with other proteins in the system.  The 

sequence in this motif is highly similar when comparing the species of streptococci but 

quite different when comparing L. lactis subsp. cremoris to either species of streptococci 

(Fig. 6.2).  
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Fig 6.2.  Protein sequence comparison of a motif in the N-terminal cytoplasmic region of 
the transmembrane activation domain in Streptococcus thermophilus MR-1C, 
Streptococcus iniae 9066, and Lactococcus lactis subsp. cremoris JRF1.  This motif is 
thought to be important in the interactions of the transmembrane activation domain with 
other proteins of the system.  The conserved amino acids of the motif are indicated in red.   
 

 The PTKs from S. thermophilus MR-1C, S. iniae 9066, and L. lactis subsp. 

cremoris JRF1 had the ability to form interspecific protein-protein interactions with each 

other.  The PTK from L. lactis subsp. cremoris JRF1is not highly homologous to the 

PTKs of S. thermophilus MR-1C or S. iniae 9066 and this suggests that the ability of the 

PTKs to form protein complexes may be dependent on relatively few conserved amino 

acids that may also be important in facilitating phosphorylation of other proteins by the 

PTK.   In support of this the amino acids within the Walker A, A’ and B motifs that are 

important in the binding and catalysis of ATP were highly conserved in these proteins 

(Fig. 6.3).  

 It has been suggested that the PTP involved in EPS production may recognize a 

cognate PTK, but little research exists to support this viewpoint.  The PTK from S. 

thermophilus MR-1C was able to interact with the PTP from S. iniae 9066 and vice versa 

which is consistent with the viewpoint that the action of the PTP is not specific to its 

cognately-encoded kinase.  However, the PTPs and the PTKs of the two species of 

streptococci are highly homologous and the PTP/PTK interaction is not conserved when 

the more dissimilar L. lactis subsp. cremoris proteins and the S. thermophilus MR-1C or 

the S. iniae 9066 proteins were combined.  The PTPs from S. thermophilus MR-1C, S.  
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Fig. 6.3.  Protein sequence comparisons of the Walker A, A’ and B motifs of 
Streptococcus thermophilus MR1C, Streptococcus iniae 9066, and Lactococcus lactis 
subsp. cremoris.   These motifs are important in the binding and catalysis of ATP.  The 
conserved amino acids of the motifs are indicated in red.   
 

iniae 9066, and L. lactis subsp. cremoris JRF1 all contained the aspartate, glutamate, 

histidine, and arginine residues that were identified to be important in the binding of 

metal and phosphate ions in S. pneumoniae TIGR4 Cps4B.  However, the sequence of the 

L. lactis subsp. cremoris PTP differed greatly from either of the species of streptococcal 

PTPs in loops I and II (Fig. 6.1).  These loops are involved in controlling the access of 

phosphotyrosine containing substrates to the active site and therefore would be important 

in protein interactions of the PTP with its substrates, such as the PTK.  The carboxyl 

terminus of the PTP from L. lactis subsp. cremoris also had a different arrangement from 

the streptococcal PTPs and could affect the ability of the L. lactis subsp. cremoris PTP to 

interact with the PTK from the streptococcal species (Fig. 6.1.).  The arrangement of the 

phosphorylated tyrosine residues is highly similar in the S. thermophilus MR-1C and S. 

iniae 9066 PTKs and less conserved in the PTK of L. lactis subsp. cremoris JRF1 (Fig 

6.4).  The differences in the arrangement of phosphorylated tyrosine residues may require  
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Fig. 6.4.  Protein sequence comparison of the arrangement of phosphorylated tyrosine 
residues in the PTKs of Streptococcus thermophilus MR-1C (Wze), Streptococcus iniae 
9066 (CpsD), and Lactococcus lactis subsp. cremoris (EpsB).  The phosphorylated 
tyrosine residues are indicated in red.  
 
 
the active sites of the PTP to differ accordingly.  This could alter the ability of the L. 

lactis subsp. cremoris PTP to interact with the streptococcal PTKs and vice versa.  More 

research is needed to verify the importance of these structural differences in the 

interaction of the PTK and PTP and in the catalytic mechanism of the PTP.  These results 

suggest that functional regulatory complexes can be formed in naturally occurring or 

genetically engineered recombinant strains but the determination of the biological 

significance of interspecific interactions by gene replacement and its effects on capsule 

synthesis needs to be analyzed.   

  Eps/cps gene clusters are prone to horizontal gene transfers in many bacterial 

species, causing these clusters to have a mosaic structure.  The research contained in this 

dissertation investigated the possible transfer of gene or subgene regions in S. 

thermophilus MR-1C, S. iniae 9066, and L. lactis subsp. cremoris JRF1.  The first 165 

nucleotides of the PTP genes from S. thermophilus MR-1C and Streptococcus gordonii 

str. Challis substr. CH1, which overlap the conserved Motifs I and II, are highly 

homologous but the PTK and transmembrane activation protein of these two species 

showed no significant similarities.  Similarly, the nucleotides in the PTP genes of S. iniae 

9066 and Streptococcus oralis ATCC 35037 which cover the first 201 amino acids in the 
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protein and include the conserved Motifs I, II and III are highly homologous but the PTK 

and transmembrane activation protein of these two species showed no significant 

similarities.  Evidence was also found that supports the horizontal gene transfer of part of 

the glucose-1-phosphate transferase gene between L. lactis subsp. cremoris JRF1 and S. 

thermophilus ND03 and a pseudogene between L. lactis subsp. cremoris JRF1 and S. 

thermophilus MTC310.  The glucose-1-phosphate gene in S. thermophilus ND03 and the 

pseudogene in S. thermophilus MTC310 are flanked by genes associated with various IS 

elements that could facilitate horizontal gene transfer between these species.  The 

identified horizontal transfers of eps/cps genes between Lactococcus and Streptococcus 

involve genes or sub-gene regions for glycosyltransferases whose function may not rely 

on protein-protein interactions rather than of the wzh, wzd or wze genes.  The gene order 

of the wzh, wzd and wze genes in the eps gene cluster is different in L. lactis than in the 

streptococcal species and the greater divergence of these genes between L. lactis and the 

streptococcal species may decrease the likelihood of successful lateral transfer of 

functional genes or sub-gene regions, such as was identified with the S. thermophilus 

MR-1C and S. iniae 9066 wzh/cpsB genes.  These results support the horizontal transfer 

of genes between species of streptococci and between Streptococci and lactococci.    

 A better understanding of the functions and interactions of the proteins involved 

in EPS production will benefit many industrial processes by aiding in the construction of 

strains with enhanced properties and could also lead to new treatment strategies for 

microbial pathogens in which capsule production is important for virulence.  The 

research in this dissertation has established that S. thermophilus Wzh acts as a PTP as 
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well as providing insight into the protein-protein interactions involved in EPS production 

and their conservation among Gram-positive bacteria in the family Streptococcaceae.  It 

provides evidence for lateral gene transfer between streptococci species and streptococci 

and lactococci and suggests that functional regulatory complexes can be formed in 

naturally occurring or genetically engineered recombinant strains.   Further research 

should include the confirmation of protein-protein interactions by a different method, 

determination of the biological significance of interspecific interactions by gene 

replacement and analyzing its effects on capsule synthesis, investigation of the specific 

regions responsible for the interactions between the proteins, and the confirmation of the 

hypothetical function of EPS proteins. 
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