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Abstract

Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using

Block-Based Adaptive Body Biasing Algorithm

by

Satyajit Desai, Master of Science

Utah State University, 2012

Major Professor: Dr. Sanghamitra Roy
Department: Electrical and Computer Engineering

Large dense structures like DRAMs (Dynamic Random Access Memory) are particu-

larly susceptible to process variation, which can lead to variable latencies in different mem-

ory arrays. However, very little work exists on variation studies in DRAMs. This is due to

the fact that DRAMs were traditionally placed off-chip and their latency changes due to pro-

cess variation did not impact the overall processor performance. However, emerging technol-

ogy trends like three-dimensional integration, use of sophisticated memory controllers, and

continued scaling of technology node, substantially reduce DRAM access latency. Hence,

future technology nodes will see widespread adoption of embedded DRAMs. This makes

process variation a critical upcoming challenge in DRAMs that must be addressed in cur-

rent and forthcoming technology generations. In this paper, techniques for modeling the

effect of random, as well as spatial variation, in large DRAM array structures are presented.

Sensitivity-based gate level process variation models combined with statistical timing anal-

ysis are used to estimate the impact of process variation on the DRAM performance and

leakage power. A simulated annealing-based Vth assignment algorithm using adaptive body

biasing is proposed in this thesis to improve the yield of DRAM structures. By applying
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the algorithm on a 1GB DRAM array, an average of 14.66% improvement in the DRAM

yield is obtained.

(58 pages)
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Public Abstract

Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using

Block-Based Adaptive Body Biasing Algorithm

by

Satyajit Desai, Master of Science

Utah State University, 2012

Major Professor: Dr. Sanghamitra Roy
Department: Electrical and Computer Engineering

Process variation can be defined as the deviation of process parameters from its nominal

specifications. Variation is induced by several fundamental effects resulting from inaccu-

racies in the manufacturing equipment. It is a combination of systematic effects (e.g.,

lithographic lens aberrations) and random effects (e.g., dopant density fluctuations). The

effect of process variation becomes particularly important at smaller process nodes, where

the variation accounts for a major percentage of nominal length or width of the device.

Process variations translate to a wide range in performance metrics of current designs. As

technology scales, these die variations are getting larger, significantly affecting performance

and compromising circuit reliability. The variation effect of length, width, and oxide thick-

ness variation on the overall delay values of DRAM circuit is evaluated in this thesis. In

this work, a novel method to mitigate the effect of process variation on DRAM circuit

is proposed. The timing and leakage parameter which determine the performance of the

circuit are sensitive to the base voltage of the transistor. A technique which modifies the

base voltage of the transistor to try and mitigate the effect of process variation is used in

this work. The circuit is first divided into arbitrary blocks. The base voltage of transis-

tors in these blocks are then modified to achieve nominal timing and leakage values for the
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DRAM. Simulated annealing-based algorithm is used in order to determine the amount of

base voltage required to be applied to each of these blocks.
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Chapter 1

Introduction

CMOS (Complementary Metal Oxide Semiconductor) scaling has been the catalyst

for steady progress in the semiconductor industry for the past three decades. However,

steady miniaturization of transistors in the nanometer scale continues to exacerbate the

effects of process variation in integrated circuits. These process variations translate to

a wide range in performance metrics of current designs. The nature of semiconductor

manufacturing process gives rise to both intra- die variations (i.e., device features on one chip

can be different) and inter-die variations (i.e., device features across chips can be different).

The most severe effects of manufacturing process variation is the uncertainty produced

in circuit performance, leakage power, and reliability. These uncertainties substantially

complicate circuit design and its optimization; it also and degrades the manufacturing yield

of integrated circuits.

Large dense structures like DRAMs (Dynamic Random Access Memory) are particu-

larly susceptible to process variation, which can lead to variable latencies in different mem-

ory arrays [1]. Although the design of variation tolerant on-chip SRAM (Static Random

Access Memory) caches has received significant attention in the research community [2–7],

very little work exists in DRAM variation. This is due to the fact that DRAMs were tra-

ditionally placed off-chip and their latency changes due to process variation did not have a

significant impact on the overall performance of the system.

However, emerging technology trends like three-dimensional integration (3D stacking),

use of sophisticated memory controllers and continued scaling of technology nodes, substan-

tially reduces DRAM access latency [1]. Hence, future technology nodes will see widespread

adoption of embedded DRAMs [8]. The main advantages of on-chip ram, also know as em-

bedded DRAMs, are higher memory bandwidth, customized memory sizes, lower power
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consumption, and higher system integration. However, embedded DRAM can present con-

siderable challenges in technology and fabrication, performance, testing, design methodolo-

gies, and business models [8]. As memory designer look to increase the density of the chip

and move to lower technology nodes, designers will face the major roadblock of process

variation. This makes process variation a critical upcoming challenge in DRAMs that must

be addressed in current and forthcoming technology generations.

In this work, techniques for modeling the effect of random as well as spatial variation

in large DRAM array structures are presented. Use of sensitivity-based gate level process

variation models combined with statistical timing analysis is made to estimate the impact

of process variation on the DRAM performance and leakage power. This thesis also intro-

duces a simulated annealing based Vth assignment algorithm using adaptive body biasing

to improve the yield of the DRAM device.

This thesis makes several contributions in the area of robust DRAM design [9].

• This thesis incorporates the effects of random as well as spatial variation in DRAM

components (Chapter 4).

• This thesis proposes a sensitivity-based delay model for incorporating the effects of

process variation at gate level (Chapter 5).

• This thesis also proposes a Vth assignment algorithm for optimizing the yield of large

DRAM arrays (Chapter 6).

• Finally, the results of applying the proposed algorithm on a 1GB DRAM array are

reported (Chapter 9).

• On an average, the proposed technique shows a 14.66% improvement in the DRAM

yield using the Vth assignment algorithm.
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Chapter 2

Background and Related Work

Inter die [10] and intra die [11] process variation have significant impact on both timing

and power consumption of a chip. Figure 2.1 gives us the amount of variation in delay for

an CMOS device in 32nm technology node for variance in length of the device. The figure

shows that with slight amount of variation in gate length there is significant impact on

delay values of the device. Moreover, the impact of process variation increases as the

technology scales down. As a result, future technology nodes will see a severe impact on

device performance. Process variation could potentially wipe out advancement provided

by one technology generation [12]. The impact of process variation on memory has been

analyzed in many previous works [4,13–16]. Work has been done on process variation aware

design for both SRAM and DRAM devices.

Agarwal et al. proposed a variation aware SRAM architecture for high performance

applications [4]. SRAM cell failures under process variation is analyzed in his work and the

proposed architecture adaptively resizes the cache to avoid faulty cells, thereby improving

the yield. Process variation tolerant architectures for SRAM have also been discussed by

Agarwal et al. [5,6]. A new SRAM cell design to mitigate the effects of variation is proposed

by Liang et al. [7]. The proposed architectural change is able to reduce the path stability

issue displayed by current generation cell architecture due to process variation. Sasan et al.

discussed an variation aware SRAM cache based on voltage frequency scaling [17]. However,

the technique requires a cache error map that must be updated whenever there is a change

in the operating condition. Mukhopadhyay et al. [18,19] propose a process variation tolerant

self repairing SRAM based on body bias technique. Mukhopadhayay et al. [20] propose a

statistical sizing methodology to reduce the SRAM cell failures. However, it is a design

level technique which ignores the operating condition and the inter-die variation.
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Fig. 2.1: Variation of delay (normalized to 1) for an CMOS device in an 32nm technology
node.

Process variation in DRAM has received far less attention in literature as compared

to process variation in case of SRAM. Conventionally, errors due to process variation were

avoided by providing redundant rows and columns in the design [21, 22]. However, with

increasing technology generations, the density of DRAMs is increasing and also the amount

of errors due to process variation is on the rise. This type of redundancy technique also has

a performance overhead or a resource limitation due to the maximum number of redundant

rows and columns that can be included in the design. Thus, use of redundancy-based

technique alone will not suffice to avoid process variation in future generation DRAMs.

Ohsawa et al. [16] propose a custom hardware support for DRAM chips. The custom

hardware is used to refresh different cells at different refresh rates and thereby exploits

retention-time variation among memory cells. Kim and Papaefthymiou [15, 23] propose a

block-based multiperiod refresh approach, where a custom refresh period is selected for each

block. An algorithm to calculate the optimal number of blocks in the system is also provided

in their work. Liu et al. [24] also propose a similar approach albeit with a reduction in the

area overhead of the system. Venkatesan et al. [25] propose a novel software approach

that can exploit off the shelf DRAMs to reduce the refresh power to levels approaching
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that of non-volatile memory. When allocating DRAM pages the proposed software prefers

longer retention pages as opposed to shorter retention pages which helps to improve power

and performance of the device. Mutyam and Narayanan [26] propose the distribution of

blocks of cache set over multiple sets, this minimizes the number of sets being affected by

process variation. Error correction codes (ECC), which are used for soft error [27,28], can

potentially be used for correcting error due to process variation. However, ECC is able to

handle only single error, and there is an overhead involved in terms of power consumption,

area, and complexity of the design.

All these proposed techniques try to improve the performance of the DRAM device by

exploiting the variation in timing parameters or by modifying the behavior of the device

through software. The proposed technique is able to reduce the amount of timing variation

by use of adaptive base biasing, effectively mitigating the effects of process variation. Thus,

resulting in an improvement in performance, yield, and leakage power of the DRAM chip.

In order to mitigate the effect of process variation in DRAM chips, bidirectional base

biasing is used. Reverse body biasing techniques have been employed in recent years for

reducing the leakage power [29–31]. Reverse body biasing involves lowering the body voltage

of a transistor relative to the ground resulting in an improvement in leakage power and a

degradation of performance. Forward body bias has also been used in a similar manner to

increase the operating frequency of a particular design [32, 33]. By combining both these

techniques, and controlling the threshold voltages through body bias, the number of dies

that meet both frequency and leakage constrains can be maximized. The technique for

combining both forward body biasing and reverse body biasing is known as bidirectional

body bias [34,35].
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Chapter 3

DRAM Architectural Model

In this chapter, the basic architectural design of the DRAM model that is used for anal-

ysis and the reason for selecting DRAM as an viable option for future memory technology

is discussed.

Memory technology, such as PCM (Phase Change Memory) which has superior scal-

ability and power efficiency as compared to DRAM, has also shown considerable promise

in case of future memory devices. But, before PCM can be used as an effective alternative

to DRAM the significant disadvantages that it introduces as compared to DRAM needs

to be eliminated. Writes in case of PCM require a high amount of energy and are slow

as compared to DRAM. They require the use of current injection which results in thermal

expansion and contraction in the storage cell. Because of this phenomenon PCM has reli-

ability disadvantage restricting the device to hundreds of millions of writes per bit [36,37].

DRAM memory is relatively large, relatively fast, and relatively cheap as compared to other

memory technology in the current process node [38]. Moreover, DRAM has been a proven

reliable technology which has been employed in modern computer systems since early 1970s.

Hence, DRAM is expected to be used in case of embedded memory in near future.

Figure 3.1 gives an overview of the simple architectural structure used in the proposed

model. The row decoder circuit, the column decoder circuit, and the DRAM array are

present in this model. The DRAM array consists of 1T1C storage cells.

A pre-decoder circuit is incorporated in the design of the decoding circuitry, resulting

in multiple levels of hierarchy. Use of the pre-decoder circuit helps to reduce the overall

number of gates required for decoding the entire address space.

The DRAM array consists of 1T1C storage cells. Open bitline DRAM array structure

is used in the design. Figure 3.2 shows an abstract layout of the open bitline DRAM array
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Fig. 3.1: Basic organization of the DRAM.

structure. In the open bitline array structure, bitline pairs used for each sense amplifier

come from different array segments [38]. Open bitline array structures are not currently

used in modern DRAM devices. However, as process technology advances, open bitline

structures promise potentially better scalability for the DRAM cell size in the long run [38].

The core DRAM architecture has remained more or less the same over many technol-

ogy generations [38]. The DRAM model used in this thesis is abstracted from this core

DRAM architecture and the current generation synchronous DRAM. There have been a

few hardware modifications to improve the performance of the device. The evolution of

these hardware modifications to the core DRAM architecture is discussed in further detail.

Conventional DRAM devices which lead to the development of modern DRAM device

were asynchronous in nature. Several improvements were made to the conventional DRAM

device which lead to the development of FPM (Fast page DRAM), EDO (extended data

out DRAM), and BEDO (burst extended data out device). Although, asynchronous DRAM

devices are historical commodity devices and not commercially used, they are important

from point of view of understanding the evolution of DRAM devices.
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Fig. 3.2: Open bit line DRAM structure.

In case of conventional asynchronous DRAM, the row and column address components

are sent separately at two different times on the bus. The row and column address are

multiplexed on a single address bus, row access strobe (RAS) and column access strobe

(CAS) signals are asserted to latch appropriate values at the input. The RAS signal for two

sequential accesses to the same row must be de-asserted and re-asserted for a conventional

DRAM. Figure 3.3 gives us the timing for a conventional asynchronous DRAM.

In case of most applications it is observed that majority of accesses are to the same row

because of spatial locality. This property is exploited in case of a fast-page mode DRAM.

The RAS signal may remain asserted in case of fast-page mode DRAM for a faster access

cycle as long as the addresses have identical row component addresses. A slight modification

is required to the conventional DRAM circuitry to obtain a FPM DRAM [39]. The sense

amplifiers for an FPM DRAM have to hold the output value till a change on the address

input lines and column address latch takes place. The row address latch holds the same
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Address
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 Column
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Dataout
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Fig. 3.3: Read timing for the asynchronous DRAM.

value till a change is necessitated by the row address strobe. Figure 3.4 gives the timing

for FPM read. There is little increase in the amount of die area for an FPM DRAM as

compared to a conventional DRAM.

EDO DRAM followed the fast page DRAM device. The EDO DRAM is a slightly

modified version of the FPM DRAM. There is an additional latch present between the

sense amplifiers and the output of the DRAM. This helps the DRAM to pre-charge faster,

since the output is held by the latch and the CAS can be applied at a higher rate [38]. An

BEDO DRAM is an EDO DRAM with a burst counter. Additional control signals are used

to differentiate between a normal access and a burst access. Figures 3.5 and 3.6 give us the

timing for an EDO read and an BEDO DRAM read, respectively. The amount of die area

utilized by these additional modifications is not that significant.

Synchronous DRAM devices was the next major step in the evolution of DRAM devices.

The synchronous DRAM device forms the basis of many DRAM devices that followed
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Fig. 3.4: Read timing for FPM DRAM. The FPM DRAM holds the row constant for
multiple column access in rapid succession.
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Fig. 3.5: Read timing for EDO DRAM. The latch at the output of the EDO DRAM allows
for the column access and the data transfer to overlap.
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Fig. 3.6: Read timing for BEDO DRAM. The column access signal is controlled by an
internal counter giving it a faster data transfer rate.

it. The synchronous DRAM differs from the previous devices in three major ways. The

synchronous DRAM device has a synchronous device interface, it contains multiple banks

and the synchronous DRAM is a programmable device. The RAS and CAS signal on the

synchronous DRAM no longer control the latch directly. A control logic is present in order

to evaluate these strobe signals. Figure 3.7 gives us the read timing for an synchronous

DRAM. The concept of burst mode is also present in the synchronous DRAM. The Double

data rate (DDR) synchronous DRAM improves upon the synchronous DRAM device by

operating the data bus at twice the rate of address and command bus [38]. The memory

sub system in case of DDR synchronous DRAM transfers data on both the edges of the

data strobe signal. Further improvement to the DDR synchronous DRAM is made possible

by increasing the prefetch length of the device.
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Chapter 4

Process Variation Model

In this chapter, the different models that have been used to account for process variation

in DRAMs are discussed.

Process variation is divided into two main categories: inter-die and intra-die variations.

Inter-die variation refers to the parametric variation that has a single value across the entire

die. Inter-die variation represents a shift in the mean value of the parameter distribution

from the nominal value. The inter-die variation parameter captures the variation that occurs

from die-to-die, wafer-to-wafer, and from lot-to-lot. These variations are independent from

each other, and hence can be represented by a single value for each die. These variations

include gate length variations caused from varying exposure time during the manufacturing

process and metal thickness variations for different metal layers. There is a systematic trend

for inter-die variation across dies that can be captured if the orientation and the location

of the die is know during design time. Since, the designer has no control on the placement

of the die on the wafer and the information is not available during design time the impact

of these factor on the process is captured using random variable. The inter-die variation

parameter is assumed to have a simple distribution [40], and hence a Gaussian distribution

is used to model it.

Intra-die variation is the component of variation that causes the device parameters to

vary across different locations within a single die. Each device on the die is required to

have a separate random variable to be able to account for its intra-die variation. Intra-die

variations are either spatially correlated or spatially uncorrelated. By definition, system-

atic variations exhibit spatial correlation and therefore, nearby transistors share similar

parametric variation [41]. In contrast, random variation has no spatial correlation, and

a transistor’s randomly varying parameters differ from those of its immediate neighbors.
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Lithographic aberrations introduce systematic variations, while dopant fluctuations and

line edge roughness generate random variations.

Most generally, variation in any parameter can be represented as follows [40]:

∆P = Pnom + ∆Pinter + ∆Pintra(Xi, Yi) (4.1)

= Pnom + ∆Pinter + ∆Pspatial(Xi, Yi) + ∆Prand,i,

where the process parameter that is being affected by variation is represented as ∆P . Pnom

is the nominal value of the process parameter at a particular technology node. ∆Pinter is

the inter-die variation value and it is constant here as the entire DRAM circuit is assumed

to be fabricated from the same die. A Gaussian distribution similar to the one shown in

Figure 4.1 is used to model the inter-die variation parameter. ∆Pintra(Xi, Yi) is the intra-die

process variation affecting a particular block, gate or region “i” located at co-ordinates Xi

and Yi. This component is further subdivided into spatial (∆Pspatial(Xi, Yi)) and random

component (∆Prand,i).

4.1 Random Variation

Random variation for a particular parameter is modeled using a Gaussian function. A

standard normal distribution is obtained from the Gaussian function by use of Box-Muller

transformation. Random variation of different components like length, width, and oxide

thickness is mapped using the Gaussian curve shown in Figure 4.1. Random variation

occurs at a much finer granularity as compared to systematic variation (i.e., it occurs at

the individual transistor level).

4.2 Systematic Variation

The systematic variation or spatial variation is modeled using a normal distribution

[38], which has a spherical spatial correlation. Each gate in the row decoder and the

column decoder circuit have their own systematic variation parameter. In case of the array
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Fig. 4.1: Gaussian distribution for parametric variation.

structure, 16 bits of data line are grouped together as a single block for systematic variation

modeling.

Spatial correlation is assumed to be independent of the position on the die and not

dependent on the direction. This assumption implies that for any two points on the die,

the correlation of systematic variation will be dependent only on the distance between the

two points [41]. The correlation function for the systematically varying parameter P can

be defined as

Corr(P−→x , P−→y ) = ρ(r) r =| −→x −−→y |, (4.2)

where the parameter “r” represents the distance between any two devices, or blocks on the

die. By definition it can be observed that ρ(0) = 1 and ρ(∞) = 0. In order to map the

behavior of ρ(r), a spherical model is used [41, 42]. The spherical function can be defined

as



16

ρ(r) =











1− 3r
2φ + r3

2φ3 (r ≤ φ)

0 otherwise.
(4.3)

The parameter values are highly correlated with their neighbor. The correlation de-

creases approximately linearly at the beginning. Then it starts decreasing slowly as the

value moves further away from the defect point. The spherical model ensures a valid spatial

correlation function as defined in Xiong et al. [43].

At a finite distance from the origin of error, the correlation function converges to zero.

This means that at a certain distance there is no longer any correlation between the intra-

die variation of the two transistors. The limit is defined to be equal to φ. In Figure 4.2, φ is

expressed as a fraction of the chip length. A large φ implies that large sections of the chip

are correlated with each other; the opposite is true for a small φ. As an illustration, Figure

4.2 shows example systematic variation maps for chips with φ = 0.1 and φ = 0.5 [41]. In

the second case, large spatial features are used, whereas in the first one, the features are

small. A distribution without any correlation appears as white noise [41].

A single defect has been introduced on the chip in Figure 4.3, which results in systematic

variation. The red spot on the chip represents the area of the chip with maximum deviation

from the nominal value due to process variation. The remaining blue area is affected by

random variation and the inter-die variation. Thousands of such errors occur during the

manufacturing process.

A graphical representation of the above systematic variation function defined in equa-

tion (4.3) can be seen in Figure 4.4. The height of the graph corresponds to the amount

of variation that is being introduced due to a defect occurring at a particular point on the

die. The peak of the 3D graph represents the point where a defect has occurred. From the

graph it can be observed that the variation spreads out in a radial pattern from the defect

point.
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Fig. 4.2: Systematic variation maps for a die with φ = 0.1 (left) and φ = 0.5 (right).

Fig. 4.3: Variation map due to systematic and random component (for single systematic
error).
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Fig. 4.4: Graph showing the 3D correlation function ρ(r).
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Chapter 5

Delay Models

In this chapter, sensitivity-based delay models for measuring the performance impact

of process variation on large DRAM arrays are discussed.

A complete HSPICE (Simulation Program with Integrated Circuit Emphasis) based

Monte Carlo simulation for measuring the effect of process variation is computationally

prohibitive for large dense structures like a multi GB DRAM. To mitigate this computational

effort, a two-step hierarchical modeling approach is taken. HSPICE models are developed

for the basic components of the DRAM array including NAND gates, NOT gates, and basic

1T1C DRAM cell. These models are used to develop the look-up tables. The gate level

models are used in a statistical timing flow for the DRAM arrays, while incorporating the

spatial variation component in the blocks.

Figure 5.1 gives us an overview of the design flow. The intra-die and inter-die variation

are combined together using equation (4.1) to form a variation map of the entire DRAM

circuit. The variation map gives us the amount of variation present in length, width, and

oxide thickness for each device present in the proposed model. Monte Carlo simulations are

used to develop look-up table based delay models for NAND, NOT, and the 1T1C memory

cell in HSPICE. These look-up tables are employed in the design framework to perform

statistical timing analysis of the circuit.

Look-up table-based approach is used for statistical analysis as opposed to analytical

equations because the result obtained from HSPICE simulations are not smooth enough

to formulate accurate equations. In the proposed approach the transition time at the

input and the output loading are used as indexes to find the delay. The delay values for

intermediate transition times and output loads are obtained using linear interpolation [40].

The total delay of a particular path is a function of the variation in process parameters
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Fig. 5.1: Delay estimation framework.

and is amenable to any arbitrary distribution of the underlying process variation. Linear

interpolation is used in order to have a fair amount of accuracy without significant run-time

for statistical analysis.

The delay for a particular path is modeled as

Di = Dnom,i +

p
∑

j=1

p
∑

k=1

αijk∆Pjk, (5.1)

where Dnom,i is the nominal value of delay for path “i.” ∆Pjk represents the variation in

the jth process parameter of the kth gate present in path “i.” The effective variation in

gate delay values in response to individual process parameters is captured by the sensitivity

parameter α. αijk represents the sensitivity of the parameter “j” of gate “k” in path “i”

on the total delay of the path. Three process parameters have been considered (i.e., length,

width, and oxide thickness). Figures 5.2, 5.3, and 5.4 present sensitivity analysis for the
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variation of delay with respect to length, width, and oxide, respectively. These values

are obtained using HSPICE simulations and used to determine the value of the respective

sensitivity parameters. The details about the procedure used to obtain these graphs is

described in further detail in Chapter 7.

The interconnect network’s delay in the open bitline structure is calculated using an

RLC circuit model [44]. The sense amplifier delay is assumed to be independent of process

variation. A constant delay is assumed for these amplifier circuits.

In order to introduce the interconnect delay in the circuit, RLC interconnect delay

model is used [44]. The line resistance, capacitance, and inductance per unit length can be

expressed using the equations mentioned by Wong et al. [45] and Qi et al. [46], provided

next.

R = ρeff
1

WT
, (5.2)

Cg

εox
=

(

2W

H

)

+ 4.08

(

T

T + 4.53411H

)0.071

+

(

S

S + 0.5355H

)1.773

, (5.3)

Cc

εox
= 1.4116

(

T

S

)

exp

(

−4S

S + 8.014H

)

+4.08

(

T

T + 4.53411H

)0.071

+

(

S

S + 0.5355H

)1.773

, (5.4)

Lself =
µ0

2π

[

ln

(

2l

W + T

)

+
1

2
+ 0.2235

(

W + T

l

)]

, l ≫ (W + T ), (5.5)
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Lmut =
µ0

2π

[

ln

(

2l

S

)

− 1 +
S

l

]

, l > S, (5.6)

where Cg and Cc are capacitance per unit length between line-to-ground and line-to-line,

respectively. Lself and Lmut are self and mutual inductance per unit length, respectively.

ρeff is the effective resistivity. εox is the effective dielectric constant of the material and µ0 is

the vacuum magnetic permeability. W, S, T, H, and l represent the line width, line spacing,

line thickness, dielectric thickness, and length of the line, respectively. The interconnect

empirical parasitic model that is defined by the formula given above can accurately estimate

the electrical parameters for most materials.

The impact of mutual capacitance and inductance on the accuracy of the estimate of

interconnect performance is also taken into consideration. The total capacitance and the

total inductance per unit length is given as [45]

C = Cg + 2Cc,

L = Lself + 2Lmut.

Combining the above equations for R, L, and C, the value of these parameters can be

extracted for the interconnect circuit. An RLC delay model is simulated in HSPICE to

obtain the delay value of the interconnect circuit.
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Fig. 5.2: Variation in delay(%) with respect to variation in length(%).

-10

-5

 0

 5

 10

-10 -5  0  5  10

Pe
rc

en
t V

ar
ia

tio
n 

in
 T

im
e

Percent Variation in Width

Nand
Not

1T1C-Memory cell

Fig. 5.3: Variation in delay(%) with respect to variation in width(%).
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Chapter 6

Process Variation Aware DRAM Design

In this chapter, technique to make the DRAM model more robust to process variation

is developed by use of an adaptive body biasing technique.

Adaptive body biasing is a technique that allows for post-silicon tuning of individually

manufactured dies such that each die is able to optimally meet the delay and power con-

straints. The threshold voltage of the transistor is controlled through body biasing. The

delay distribution can either be moved towards the right (by raising the Vth) or to the left

(by lowering the Vth). The Vth for dies that are too slow is lowered and is increased for dies

that are too leaky. This helps to increase the number of dies which meet both the timing

and power constraints. Varying the Vth in either direction can be accomplished by the use

of bidirectional base biasing [35].

6.1 ABB Implementation

In the simplest ABB scheme, a single bias voltage is used for the entire chip. But

the use of a single bias voltage would ignore the intra-die variation. This will result in a

sub-optimal solution with a large amount of variation in timing values and leakage among

different circuit blocks fabricated on the same chip. In this work, the within die variations

are taken into consideration while evaluating the bias voltages. The circuit is divided into

individual blocks for the application of bias voltages. The threshold voltage of individual

blocks in each die is controlled not only by the manufacturing process but also by the

application of appropriate amount of forward base bias and reverse base bias voltages.

Each block independently adjusts its own body bias to meet the target delay, and therefore

the total die leakage is minimized for the target frequency. Bidirectional ABB is used

to apply an optimum threshold voltage, which maximizes the yield subject to timing and
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power constraints. The body bias may be applied by an external source or by an on-chip

bias generator [35].

A process variation aware method is used that clusters gates at design time into a

handful of independent body bias groups or blocks. These base bias groups are then indi-

vidually tuned post-silicon for each die [47]. The dies are tuned by selecting appropriate Vth

voltage for each block. The row decoder circuit, column decoder circuit, and the DRAM

array are individually separated into blocks. An appropriate threshold voltage needs to be

selected for these independent body bias groups formed during the design stage to achieve

maximum yield.

One of the drawback of the adaptive base biasing technique is the need for an additional

on-chip distribution network. The distribution network is used for the application of body

bias voltages to various blocks in the circuit. The current drawn by these distribution

network is small and does not contribute significantly to the overall power consumption of

the chip. However, the distribution network occupies additional silicon area and needs to be

routed. A central bias generator circuit capable of generating several different bias voltage

for each block in the circuit is also required. Thus, in order to limit overhead in the design,

the number of blocks to be incorporated in the design should be carefully chosen.

6.2 Block-Based Vth Assignment Algorithm

Algorithm 6.1 presents the proposed algorithm for robust DRAM design. This algo-

rithm estimates the optimal Vth assignment for each block to maximize the DRAM yield.

There is a large combination of values for Vth assignment of every block. Since, the

solution space is very large simulated annealing is used, which is a heuristic algorithm. The

delay distribution and power of the circuit is recalculated after every iteration of simulated

annealing based on the new Vth assignment. These value are then used to find the yield

of the circuit as defined in section 6.2.1. The process of Vth assignment for each block is

explained in details in section 6.2.2. There are two moves present in the proposed algorithm

described in section 6.2.3.
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Algorithm 6.1

1: Initialize Model
2: Inflict error in model using spherical model
3: Add Die to Die and Within Die variation
4: Calculate rk and ck using equations (6.2) and (6.3)
5: Initialize Vth ← f(rk, ck); for ’k’ number of blocks;
6: D ← DELAY (Vth); P ← POWER(Vth)
7: Y ← Y IELD(D,P )
8: while (T > ǫ) OR (Reject/moves < 0.90) do

9: uphill = moves = Reject = 0
10: while (moves < 2M) OR (uphill < M) do

11: γk = f(rk, ck,D, P )
12: Calculate Vthnew

← RANDOMMOV ES(Vth); for ’k’ number of blocks;
13: Dnew←DELAY (Vthnew

);Pnew←POWER(Vthnew
)

14: Ynew ← Y IELD(Dnew, Pnew)
15: ∆Y = Ynew − Y
16: if (∆Y > 0) OR (Random < e∆Y/T ) then

17: if (∆Y > 0) then

18: uphill = uphill + 1;
19: end if

20: D ← Dnew; P ← Pnew;
21: Vth ← Vthnew

;Y ← Ynew

22: if Y > Ybest then

23: Ybest ← Ynew; Vthbest
← Vthnew

24: end if

25: else

26: Reject = Reject + 1;
27: end if

28: end while

29: T ← λT
30: end while
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6.2.1 Parametric Yield Function

The objective function is the parametric yield function, which can be defined as

Y = Pr(Delay ≤ D0, Power ≤ P0), (6.1)

where the delay of the circuit is constrained to be less than D0 and the leakage power of

the circuit is constrained to be less than P0.

6.2.2 Vth Assignment

The DRAM structure in the proposed model is repetitive in nature. This inherent prop-

erty of the DRAM can be exploited for effective Vth assignment. By use of equation (6.2),

and (6.3), approximate value for the spatial correlation of process variation between neigh-

boring devices for a particular block can be found. Equation (6.2) and (6.3) are evaluated

for n number of rows and m number of columns. The initial Vth assignment is done by

using these two equations. Combining these equations with the overall delay and power of

the circuit gives us a guideline for future Vth assignment. A parameter γ is created, which

is dependent on the overall delay, power, rk, and ck for this purpose. The γ parameter is

evaluated for each block in the circuit and forms the framework for Vth assignment in the

next iteration of simulated annealing.

rk =
m

∑

j=0

ti,j
m

for i = 0 to i = n− 1 , (6.2)

ck =

n
∑

i=0

ti,j
n

for j = 0 to j = m− 1 , (6.3)

where ti,j is the time required to access the memory cell located in the “ith” row and “jth”

column of the DRAM array. “k” denotes the different blocks present in the circuit.
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6.2.3 Type of Moves

In this algorithm, two moves, m1 and m2 defined in (6.4) and (6.5), are used. One of

the moves is randomly selected for computing the new Vth assignment of the “k” number

of blocks present in the circuit. In the first move m1, previously calculated function “γ” is

used, which is dependent on timing delay, leakage power, and the spatial correlation of error

in the circuit. For the second move m2, the Vth level of each circuit block are randomly

varied.

m1 : Vth(blockk) = Vth(blockk) + γk × Vth(blockk) (6.4)

m2 : Vth(blockk) = Vth(blockk)± rand× Vth(blockk) (6.5)

The delay distribution and the leakage power of the circuit is then recalculated based on

the new Vth assignment.

6.2.4 γk function

The value of the γ function is based on the leakage power, timing distribution, and

spatial correlation of individual blocks. Each block in the model has a unique value of γ

associated with it.

Decrease in the Vth level for a block would result in reduction of leakage power and

an increase in timing distribution [29], whereas an increase in the Vth level would result in

improvement to the timing distribution of the block and increase in power [32]. According

to equation (6.4), a negative value for the γ function is required to improve the leakage

power. On the other hand, a positive value for the γ function would help to improve the

timing distribution of the block. The magnitude of the γ function is proportional to the

deviation of leakage power and the timing delay from its nominal values for a particular

block.

Lower value of deviation implies that the delay values might be related strongly to each

other. Thus, the effect that the γ function has on the overall block is consistent. A smaller

magnitude of γ would suffice to meet the timing and power requirement. On the other hand,
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if the deviation among delay values in a block is high, transistor lying at extremities are

to be considered. To handle these large disparities between the transistors dimensions, the

worst case condition is taken into account. So, a higher value for the γ function is reached

in this case.

The size of the block is also an important consideration for determining the value of

γ. A larger block size would result in a rapid increase in the overall leakage power due to

increase in the Vth levels. This usually results in a failure for the chip as a result of the

power constraints. Thus, a more conservative policy is employed for determining the value

for the γ function in case of large blocks. In case of smaller blocks, a much more aggressive

policy can be employed.
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Chapter 7

Methodology

In this chapter, the various HSPICE models that have been used for delay calculations

are discussed. The technique used to calculate the new delay and leakage power values after

the new Vth assignment is also discussed in this chapter.

Monte Carlo simulations are performed for NAND, NOT, and 1T1C memory storage

cell in HSPICE to obtain the variation in delay values with changes in process parameters

(i.e., with variation in length, width, and oxide thickness of the transistor). Values of

length, width, and oxide thickness were varied with a uniform distribution, with variance

of 0.1 [48]. The data obtained form these simulations is shown in Figures 5.2, 5.3, and

5.4. The corresponding values that were obtained are used to form the look-up tables. The

access timing of the DRAM circuit was obtained from these look-up tables using equation

(5.1).

The leakage power is calculated using the leakage power model provided by Srivastava

et al. [49]. The leakage power model can be expressed as

Leakage = exp(Vnom +

p
∑

i=1

βi∆Pi), (7.1)

where exp(Vnom) is the nominal value of leakage power and ∆Pi represents the variation

in the process parameter. The sensitivity of the process parameter to the overall leakage

power of the device is expressed in terms of β. The total leakage power is expressed as

the sum of the leakage power of individual gates amenable to the underlying variation. A

similar approach to the delay calculations is taken for the leakage power calculations. A

look-up table approach is used in order to obtain the leakage power of the different circuit

element present in the device based on the variation in process parameters. The look-up

tables are obtained by performing Monte Carlo simulations for the various devices in the
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circuit to determine the leakage power variations.

In order to compute the new yield using the simulated annealing algorithm, the delay

and leakage power values of the DRAM circuit are recalculated based on the Vth assignment

for the various blocks present in the circuit. The static leakage power is taken into account

to estimate the yield, because variations in dynamic power due to process variation are

insignificant as compared to static leakage power [49]. To calculate these new delay values,

equation (5.1), equation (7.1), and the look-up tables obtained from the graphs in Figures 7.1

and 7.2 are used. The sensitivity parameter for HSPICE simulations is dependent only on

the change in Vth levels. Based on the percentage change in the Vth value present in the

new voltage assignment, the new delay and power values are determined.

Two chips are simulated, each with four 128MB banks. There is one chip select bit

and two bank select bits. A total of 13 row address bits and 11 column address bits are

used in order to access data in these banks. The two chips are assumed to be from the

same die. In this case, the 32nm technology node is used for simulation purpose and this

is the nominal value. Ten-thousand Monte Carlo simulations are performed to obtain the

final delay values for all the DRAM bits present in the array. All the column bits present

are accessed in a single row access in order to obtain the random access time tRAC .
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Fig. 7.1: Variation in time(%) with respect to variation in Vth(%).
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Chapter 8

Validation of the DRAM Model

To verify the result obtained for the delay model described in Chapter 5, complete

Monte Carlo simulation is used. The validation of the proposed model has been done

through HSPICE simulations for a 32nm CMOS process. Sixteen-bit, 32-bit, and 64-bit

DRAM modules are modeled in HSPICE and Monte Carlo simulations are performed to

obtain a reliable timing distribution. The DRAM module created in HSPICE is based on

the architectural DRAM model that is described in Chapter 3. The 16-bit DRAM device is

arranged in a 4X4 matrix formation with four row and column address bits to resolve the

address space. Likewise, the 32-bit DRAM device is arranged in a 8X4 matrix formation

and the 64-bit DRAM device has a 8X8 matrix formation. The row decoder and the column

decoder circuit consists of NAND and NOT gates. Row access strobe (RAS) and column

access strobe (CAS) signals are used in the circuit in order to simulate the access pattern

of a conventional DRAM.

In order to validate the model, a reliable timing distribution should be obtained from

the HSPICE simulations. The access time for a particular bit in the simulations is calculated

as the time beginning from the application of the row address strobe to the time it takes

for output to arrive (i.e., tRAC). In order for timing values to be consistent with the access

pattern of a standard DRAM device, the row address strobe is applied first to resolve the row

address line. The column access strobe is applied only after the row address line is resolved

by the decoder circuit. To simulate the effect of process variation in case of HSPICE models,

process variation model describe in Chapter 4 is used. The error map obtained from the

process variation model gives us the total effect intra-die variation and inter-die variation

has on all the gates and DRAM array present in the proposed model. The variation that

occurs in case of the process parameters length, width, and oxide thickness for each gate
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and storage cell is present in the error map. The equivalent process parameters are modified

for gates and storage cell present in the HSPICE model using the error map to simulate

the overall effect of process variation. Since, the propsed process variation model is used,

inter-die variation, random variation, and systematic variation are all taken into account

in case of the HSPICE model. One-thousand Monte Carlo simulations are performed in

order to obtain the delay distribution for comparison of mean and standard deviation of

the timing access. Table 8.1 gives us the error for mean and standard distribution of the

timing values for the various DRAM models.

From the results obtained it can be observed that there is an error present for the mean

and the standard deviation of the timing parameter. The look-up table approach taken for

out statistical analysis uses linear interpolation to calculate delay values for intermediate

transition times. The use of linear interpolation for determining the timing values of the

circuit paths adds some amount of error to the simulation result. The error due to linear

interpolation could be reduce by use of quadratic interpolation method albeit at the cost of

increase in computational complexity of the model, which will result in a huge increase in

the run-time.

Table 8.1: Validation result.

DRAM Size
Error Compared to Monte Carlo Simulations
Mean Error Standard Deviation Error

16 Bit DRAM 5.03% 3.77%

32 Bit DRAM 5.18% 2.28%

64 Bit DRAM 4.45% 0.76%
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Chapter 9

Results

The CDF (Cumulative Distribution Function) plot of the access delay for a 16-bit

DRAM array in terms of tRAC is shown in Figure 9.1. tRAC is the total time taken by

the DRAM from the point it gets the address input, to the time it puts the values on the

output pins. tRAC can also be expressed as the addition of row command delay (i.e., tRCD

and column access strobe latency, tCAS). The CDF plot is used as an example to illustrates

the effect process variation has on the overall performance of the device. The CDF plot

indicates that some of the bits have a higher timing values as compared to others due to

process variation. Some section of the die may have a positive change in timing values while

other sections may have a negative impact due to variation.

The distribution map is obtained by plotting the timing values of different bits in the

DRAM array. The entire chip is divided into 16 blocks in this case for adaptive base bias

application. The distribution map for the time required to access individual storage bits in

absence of adaptive base biasing is shown in Figure 9.2(a). The varying effect that process

variation can have on different section of the die due to intra-die variation is illustrated in

the distribution map. The change in the distribution map after the application of adaptive

base biasing can be seen in Figure 9.2(b). The distribution map indicates that there is an

reduction in the delay for nearly all the blocks in the circuit. Some of the delay values lying

on the corner cannot be reduced further because of leakage power restrictions.

The yield result for adaptive base bias implementation are shown in Figure 9.3 and

the equivalent leakage power result are shown in Figure 9.4. The yield result have been

obtained for a 1GB DRAM using 2, 4, 8, and 16 blocks. On average, 14.66% improvement

is seen in the yield. The yield result shown in Figure 9.5 are obtained by decreasing the

leakage power limit in the yield function. The resulting change in leakage power is shown in
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Fig. 9.1: Delay distribution.

Figure 9.6. As a result of a more stringent requirement for power, the overall yield decreases

as more dies fail due to the restrictions brought about by the leakage power constraint. An

average improvement of 6.07% is seen for yield in this case. The number of blocks in the die

is an important paramter that needs to be carefully selected during design phase. There is

a tradeoff in terms of the yield of the device and the design complexity, leakage power, and

area which needs to be carefully evaluated beforehand.

In both cases, these is an increase in yield when moving from 2 to 16 blocks. This is due

to the fact that there is better granularity of control over leakage power and timing values

as the number of blocks increases, but there is a trade-off in terms of design complexity

and area. The better control translates into better utilization of the timing slack or the

power slack and results in an improvement to the overall yield of the device. The leakage

power of dies that are too leaky is reduced and improve the timing values of the die which

are too slow by use of the proposed technique. The relation between the threshold voltage

and increase in leakage power is shown in Figure 7.2. Because of the exponential nature of

the relation, the increase in leakage power for slow dies is much higher as compared to the

decrease in leakage power achieved in case of leaky dies. The size of the block is also an
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Fig. 9.2: Delay distribution map in seconds.

important factor in determining the effect the proposed technique has on the leakage power.

A larger block size results in a rapid increase in the overall leakage power due to increase in

the forward base biasing voltage. This usually can result in a failure for the die as a result

of the power constraints. A smaller block size on the other hand is able to better manage

the leakage power slack. Thus, the technique is able to achieve a better yield by pushing

the overall leakage power of the die to the limit. Therefore, there is an increasing trend in

leakage power of the device due to the use of adaptive base biasing technique.
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