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ABSTRACT

Modulation of the Host Response to Tacaribe Aramavinfection in AG129 Mice

by MY-24

by

Eric Sefing, Master of Science
Utah State University, 2012

Major Professor: Brian B. Gowen
Department: Animal, Dairy and Veterinary Science

MY-24 is an aristeromycin derivative piasly shown to protect AG129 type |
and Il interferon receptor knockout mice from léttiaallenge with Tacaribe virus
(TCRV). TCRV is nonpathogenic to humans, but asely related to the highly
pathogenic New World arenaviruses that cause détehviral hemorrhagic fever
syndromes. Remarkably, MY-24 prevented mortaliyhout reducing TCRV burden in
the circulation or tissues. To investigate the ma@ism by which MY-24 protects
AG129 mice against TCRV infection, we first chaeaited the natural history of disease
in the model with an emphasis on cytokine respoasdsvascular integrity to establish
the best times to evaluate the effects of MY-24ttreent on host responses believed to
contribute to pathogenesis and fatal outcome. Miad that viral replication in the
blood and in various tissues precedes a hyperptiotiuaf proinflammatory mediators
that may lead to the destabilization of the enda@hbkarrier and increased vascular

leakage believed to contribute to terminal shodoeisited with severe cases of



iii
hemorrhagic fever. We also found slightly redueeds titers in certain tissues from
MY-24-treated mice, suggesting that there may eak antiviral effect; however,
TCRV was not cleared from lung, spleen, brain dnkly in recovering animals out to 40
days post-infection, indicative of the establishtr@rchronic infection in mice that are
able to survive the initial challenge. Neutralgi@ntibodies do not appear to play a
major role in the antiviral effect of MY-24, whesegeductions in several key
proinflammatory cytokines in mice treated with M¥-hay serve to reduce vascular

leakage caused by TCRV infection.



PUBLIC ABSTRACT

Modulation of the Host Response to Tacaribe Aramavinfection in AG129 Mice

by MY-24

by

Eric Sefing, Master of Science
Utah State University, 2012
Major Professor: Brian B. Gowen
Department: Animal, Dairy and Veterinary Science
MY-24 is a new antiviral compound recgrahown to protect
immunocompromised mice from lethal challenge widltdribe virus (TCRV). Tacaribe
virus is incapable of causing disease to humartsshalosely related to the highly
pathogenic New World arenaviruses that cause détehviral hemorrhagic fever
syndromes. Remarkably, MY-24 prevents mortalitthait reducing virus burden in the
circulation or tissues. To investigate the mecranby which MY-24 protects AG129
mice against Tacaribe virus infection, we firstretderized the natural history of disease
in the model with an emphasis on host immune respand blood vessel function to
establish the best times to evaluate the effeck8Y624 treatment on host immune
responses believed to contribute to disease sgwarit fatal outcome. We found that
viral replication in the blood and in various tissyprecedes an overzealous immune
response that may lead to the destabilizationebtbod vessels and increased fluid

leakage believed to contribute to fatal shock assed with severe cases of hemorrhagic



fever. We also found slightly reduced virus titergertain tissues from MY-24-treated
mice, suggesting that there may be a weak antigffatt; however, TCRV was not
cleared from lung, spleen, brain or kidney in resrovg animals out to 40 days post-
infection, indicating the establishment of a checonifection infection in mice that are
able to survive the initial challenge. Neutralgi@ntibodies do not appear to play a
major role in the antiviral effect of MY-24, wheregeductions in several key factors that
cause inflammation in mice treated with MY-24 maywe to reduce fluid leakage caused

by Tacaribe virus infection.
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CHAPTER 1

INTRODUCTION

1. Arenaviruses- Emerging human pathogens

A group of close to 30 arenaviruses make upAtteaaviridae family of viruses
[1]. They are a diverse group of enveloped, sislanded negative sense RNA viruses
with bi-segmented genomes, serologically and prepetjcally divided into Old World
and New World lineages [2,3]. Novel arenaviruseskeing discovered, on average,
every 2-3 years, and the recent emergence of ndwgenic arenavirus species is of
great concern as these viruses are zoonotic agariisred in rodent reservoirs with the
potential to come in close contact with expandimglrhuman populations [4,5].
Arenaviruses develop asymptomatic chronic infectiontheir rodent hosts and can be
transmitted to humans by inhalation of aerosolieecteta or contaminated secretions.
Transmission from persistently infected rodentsumans can also occur through contact
of infectious materials with skin abrasions. Humarfected with arenaviruses develop a
wide range of disease signs and symptoms from asyngtic or mild febrile illnesses
that clear within a few days to severe hemorrhéaier (HF) requiring prompt medical
attention. The onset of arenaviral HF proceedsnapicuously leading to
immunosuppression, high viremia, hypercytokinenmereased vascular permeability,
extensive organ damage and eventually hypovolehdclks[6]. There are presently 7
arenaviruses known to cause viral HF. The groofudes 5 New World viruses (Junin,
Machupo, Guanarito, Sabia, and Chapare) presemeas of South America, and two
Old World viruses (Lassa and Lujo) found in defimedions of Western and South

Africa [7,8].



The New World arenaviruses (NWA) are comprised dfstinct clades, designated
clade A, B and C, collectively within the Tacarib@mplex [2]. Clade B contains the 5
highly pathogenic arenavirues and several closdated non-pathogenic viruses
including Tacaribe virus (TCRYV), first isolated 1856 from a fruit-eating ba#(tibeus
lituratus) on the island of Trinidad [9]. TCRYV is most adbgrelated to Junin virus
(JUNV) [7], the etiologic agent of Argentine HFUNV has produced the greatest
disease burden due to infection by the pathoge#®Nwith case fatality rates ranging
from 15-30% in hospitalized patients [10]. Dysragion of the host innate immune
response by JUNV and other pathogenic NWA is betieo impair the development of
protective immunity, leading to morbidity and paiafty lethal results [6,11]. Those that
survive infection develop an antiviral immune resp® that controls infection with the
eventual systemic clearance of the virus.

In addition to being public health concerns froatumal transmission in endemic
regions of South America, the pathogenic NWA anesaered bioterror agents that
could be intentionally released in highly populateeas across the globe [12]. While
arenaviruses are a concern to the health and dafétg human population in close
contact with the natural rodent reservoirs harlgptire highly pathogenic clade B
arenaviruses, the aerosol transmissibility of theseses makes them serious biothreats.
Further, the lack of safe and effective therapenypittons also contributes to the
designation of JUNV and other HF-causing NWA asag] priority category A NIAID
pathogens [12]. The only proven effective vac@gainst an arenavirus HF is the JUNV

Candid #1 attenuated virus vaccine [13]. Howethez,vaccine is only indicated for



those at high risk in the endemic regions of Argentsuch as agricultural workers and
those that live near areas prone to infestatiothbyodent hostCalomys musculinus

[14]. Currently, Immune plasma is considered tia@dard of treatment for Argentine
HF; however, the lack of efficacy in clinical disegpast 8 days of evolution, the risk of
transfusion associated diseases, and difficulfiesaontaining sufficient stockpiles of
immune plasma support continued drug developménittef10].

The Old World arenaviruses [15] include the prgpatal arenavirus, lymphocytic
choriomeningitis virus (LCMV), a medically importaarenavirus particularly in immune
compromised individuals, and Lassa virus (LASV) féwythe arenaviral HF agent that
has caused the greatest morbidity and mortali@MV infections generally cause mild
febrile illness sometimes associated with asepéningitis, but can also cause severe
disease in fetuses or newborns [16]. Organ trangjplatients are also at higher risk of
productive infection and have high mortality durmgtbreaks of LCMV [17]. Lassa
Fever, the most significant arenaviral diseaselims of number of cases, was first
described during a 1969 outbreak in Nigeria [18ASV is endemic to Western Africa
and afflicts approximately 300,000 people with atireated 5000 deaths annually [19].
In endemic regions of Western Africa, LASV infecticausing severe disease results in
mortality rates of >15%, with up to 50% case fayal hospital acquired infections
[20,21]. More recently, Lujo virus emerged in Swrh Africa with the index case and 3
of the 4 caregivers exposed to the virus succumiainige infection (80% lethality) [5].
The only survivor was treated with ribavirin, buis not clear whether the intervention
had a significant effect on the outcome of thahfdase. In patients with severe Lassa

fever, ribavirin has been shown to have some eaffiga treating disease within the first



six days of evolution [22]; however, previously edtside effects that include hemolytic
anemia are less than desirable when treating asi#sghere hemorrhaging can be
significant [23]. Nevertheless, ribavirin is cahsied the standard of care in Western
Africa for treating severe LASV infections [24],chm the US in the event of a

bioterrorist act, an imported case, or laboratagident [12].

2. Arenavirus molecular and cell biology

Genetic diversity is considerable among Anenaviridae family members, even
within the same virus species. Despite the genetiability at the nucleotide and amino
acid levels, there are common features sharedl layeadaviruses. Arenavirus virions are
generally pleomorphic particles ranging from 50-8300 in diameter and contain electron
dense ribosomal particles, which under an eleatramoscope give the virus a grainy
appearance [25]. Consequently, the family namenares derived from the Latin term
“arenosus” which means “sandy” [25]. The arenaasgiare non-lytic and replicate
strictly in the cytoplasm. The genome consistsavaf single stranded ambisense RNA
segments encoding 4 proteins [26]. The large (d) small (S) viral RNA segments each
include two open reading frames in mutually opposiientations separated by a
noncoding intergenic region with a predicted stdfa@pin structure [26]. The S segment
is 3.4 kb in length and encodes the viral nucletgincand glycoprotein precursor (GPC)
which is post translationally cleaved to form GRtl &P2 [27]. The L segment is 7.2 kb
in length and encodes the viral RNA-dependent Ridmerase (L protein) and a
matrix (Z) protein [28]. In addition to its polymeese function, L also has 5’
endonuclease activity for “cap-snatching”. The G&@ Z matrix proteins are translated

from subgenomic virus sense mRNA, while the nuadletgins and RNA polymerase are



translated from subgenomic virus anti-sense mRNR, Z and L are translated in the
cytosol while the viral GPC is a type | membranet@n synthesized in the host cell’'s
secretory pathway [29].

NP is the major structural protein encapsidatimguiral genome and also has cap-
binding activity to assist L-mediated viral replicaa and transcription [30]. The NP
associates with viral RNA to form nucleocapsids]|[1bhe L protein is also incorporated
into the viral nucleocapsid [31,32]. The GPC pirots initially synthesized as a single
polypeptide cleaved during processing in the erakpic reticulum into two
glycoproteins, the N-terminal GP1 domain and asma@mbrane GP2, by a host cell
protease [27,33]. GP1/GP2 forms a tripartite ca@xplith a stable signal peptide (SSP),
which represents the arenavirus functional unihimst cell attachment and entry [34].
The GPC is dependent upon the SSP for proper ntiatur&ansport, and membrane
fusion [1].

The ability of clade B arenaviruses to cause gdisdws been directly linked to GP1
binding to transferrin receptor 1 (TfR1) [35], thencipal receptor mediating attachment
and entry of the NWA that cause HF [36]. Withiada# B, only the pathogenic
arenaviruses utilize human TfR1, whereas nonpatiiogelatives such as TCRV and
Amapari virus recognize the TfR1 ortholog in th@spective rodent hosts [37]. The
major receptor for clade C and OWA has been fooraeti-dystroglycan [38,39]. The
receptor for the clade A arenaviruses has not beemndated.

Once the binding of pathogenic NWA to TfR1 isietied, the virion is endocytosed
and GPC-mediated fusion of the viral and endosangthbranes is activated in response

to a change to low pH of the maturing endosome (Ilhde A and B NWA enter the cell



through clathrin-mediated endocytosis while OWA @Aand LCMV) entry is
independent of clathrin [40]. Once penetratiow ithie cytoplasm occurs the viral
ribonucleoprotein acts as a template for trangorpand replication mediated by the
viral polymerase [41]. Viral transcription and lieption is dependent on the L and NP
proteins while delayed expression of the Z proteamonstrates a dose dependent
inhibitory effect on these processes [31,42,43)e Z matrix protein is essential to
arenavirus budding while the physical interactibG® and Z is required for the
incorporation of GPs into arenavirus virion padg&[44]. The formation of the virion
particles and the budding of these infectious pngdeom infected host cells requires the
assembled RNP to associate at the host cell suefagehed with viral GP. The
endosomal sorting complex required for transpoRNP components are recruited by
the GP and Z interaction to facilitate virion asbf§rand release from the infected host
cell [45] In addition to its critical role in vioph egress, the Z protein has been shown to
interfere with the type | IFN response [46].
3. Animal models of arenaviral

hemorrhagic fever

Proof-of-concept studies utilizing animal modelattrecapitulate the features of

human disease are essential to advance developigmmising therapeutic agents
towards practical clinical applications. For HIemaviruses, the greatest challenge has
been the lack of disease models in immune competee The currently available

infection models are shown in Table 1.



Table 1.

Animal Modelsfor the Study of Arenaviral HF

Virus Disease Animal model Selected references

Lassa Lassa fever Rhesus macaque [47], [48], [49]
Cynomolgus macaque [50], [51], [52]
Marmoset [53]
Guinea pig [54], [55]

Lassa virus replication HHDmMouse [56]

MHC-1"® mouse [56]

Lujo Hemorrhagic fever Guinea pig [57]

LCM Hemorrhagic fever Rhesus macaque [58]
Guinea pig [59]

Pichinde Hemorrhagic fever Guinea pig [60], [61], [62]
Hamster [63], [64], [65]

Pirital Hamster [66], [67]

Junin Argentine hemorrhagic fever Rhesus macaque 8], [€9]
Marmoset [70], [71]
Guinea pig [72], [73], [74]
AG129 mouse [75]

Tacaribe AG129 mouse [76]

Machupo Bolivian hemorrhagic fever Rhesus macaque 771, (78], [79]

Cynomolgus macaque

African green monkey

Guinea pig

STAT-1"¢ mouse

[78]

[80], [81]

[82]

[83]



Guanarito Venezuelan hemorrhagic fever  Guinea pig [84]

Flexal Hemorrhagic fever Hamster [85]

 Genetically engineered mouse that expresses arfiomoase-chimeric HLA-A2.1 molecule in place of
the murine MHC-I.

b B2-microglobulin-deficient mouse (MHC").

©Virus adapted to produce lethal disease.

4 Type | and Il interferon receptor-deficient mouse.

® Signal transducer and activator of transcriptieseficient mouse (STAT-1).

Lymphocytic choriomeningitis, LCM.

Work with most of the arenavirus HF models (La$sgo, Junin, Machupo, and
Guanarito) is restricted to approximately 6 biosafevel (BSL-4) maximum
containment laboratories in the US, and severdlitias abroad. Accessibility to such
labs and the high cost associated with conductundjess in BSL-4 has limited research in
this area. Although more accessible and less bardaus, the use of Pichinde (BSL-2),
Pirital (BSL-2), and Flexal (BSL-3) clade A arenasd models is less than ideal
considering that all the HF NWA are in clade B. this end, we developed a model
based on the challenge of AG129 mice with the cBAd€RYV, a virus that can be
worked with safely in BSL-2 containment [76].

In addition to its relatedness to JUNV, TCRV camadlapted to produce dramatic
cytopathic effect (CPE) making it amenable to uskigh-throughput screening (HTS)
invitro for identification of small molecule inhibitorsahcould be useful against the
pathogenic clade B relatives. Compounds identifigthis approach that demonstrated
antiviral activity and specificity against TCRV veealso found to be active against

JUNV and other pathogenic clade B NWA in other calture-based assays [86]. The



lead compound, ST-294, was further evaluated ireaipusly described newborn
BALB/c mouse model [87]. Effective treatment follmg TCRV challenge of 4-day-old
BALB/c mice by the intraperitoneal (i.p.) route pided proof-of-concept that ST-294
had activityin vivo [86]; however, the difficulty of working with newlbo animals
prompted others to pursue other alternatives. [Eaid to the development of the AG129
IFN-0/p andy receptor-deficient mouse TCRV challenge model.[7Bjis model has
been particularly useful in evaluating promisingi-@nenavirus compounds that have
little to no activity against the clade A Pichindeus (PICV)in vitro. Until the
development of the TCRV model, only animal studiesamsters challenged with PICV
could be performed in BSL-2, requiring both actnagainst PICV and far greater
guantities of compound, which are often limiteckarly stages of drug discovery and
development. In addition, work with the apathogelCRYV greatly reduces the risks
associated with arenavirus research. The inalofilyfCRV to antagonize the host
interferon response like other NWA likely contribstto its lack of pathogenicity [88].
4. Small molecule experimental therapies

for treatment of arenaviral infections

While there is an expanding list of compounds tieate demonstrated anti-

arenaviral activityn vitro, most have not been evaluated in experimental@mmodels
[8], and, thus, are beyond the scope of this liteeareview. There are, however, several
promising small molecules that have shown effiaacseveral of the models described in
section 3. ST-294 is potent and selective compaliatwas effective in the newborn
TCRV mouse challenge model; however, activity wesdricted to clade B NWA [86]. A

second compound with expanded spectrum, ST-193fomasl to be protective against
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the LASV infection in strain 13 guinea pigs [89he ST compounds represent a new
class of viral entry inhibitors that disrupt thedraction between the GP2 subunit and the
SSP [90,91]. With its broad-spectrum activity agaboth Old and NWA, ST-193 is the
most promising lead for further development. Beesitihas a mechanism of action
distinct from ribavirin [1,92], combination therapfudies testing ST-193 and ribavirin in
guinea pig or nonhuman primate models of arenakiFathould be considered.

Favipiravir (T-705) is a compound originally debed as a potent influenza virus
inhibitor [93,94], and has advanced through clihigals in Japan for the treatment of
influenza virus infections. The compound is prélyein phase Il clinical trials in the US
for the same indication. In addition to its adinagainst influenza, several laboratories
have shown that the compound broadly inhibits RNWAsvinfections [95]. If approved
for use against influenza virus, favipiravir coble used “off-label” for other viral
diseases including arenaviral HF, as the compoasdken shown to inhibit multiple
arenaviruses including JUNV [96]. Favipiravir attke a purine nucleoside analog
inhibiting the influenza virus RNA dependent RNAyoerase, and the polymerase is
also the likely arenavirus target [96,97]. Remhblkafavipiravir has been shown to be
active against advanced PICV infection even wheaytleg treatment until after the
onset of clinical disease [98,99]. Encouragingitsshave fueled further development of
favipiravir as a therapeutic for the treatment@NY infection in guinea pigs, and
ultimately nonhuman primates.

As a result ofn vitro screening efforts, our lab identified MY-24, arstromycin
derivative, as an inhibitor of TCRV in a seriescefl culture screening assays. Because

the compound was also found to be active agaiesatienuated Candid #1 vaccine strain
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of JUNV, it was evaluated in the TCRV AG129 mousection model [76]. In those
experiments, MY-24 consistently protected clos#d0% of treated mice from lethal
challenge with TCRV. Most impressive was the thet therapy was still effective even
when delaying the initiation of MY-24 treatmentlate as 5 days post infection [76].
Remarkably, however, treatment did not significantiduce virus titers, suggesting that
the beneficial protective effect may be due to analion of the pathogenesis related to
an overzealous host response. The current thingititat excessive production of
inflammatory mediators triggers vascular leak, altinately hypovolemic shock is the
cause of death in severe cases of viral HF [10(,101

At present, it is unclear how MY-24 is protectinGRV-challenged mice from
mortality. The compound is an analog (5'-homoar@nycin) of aristeromycin, a
carboxylic nucleoside antibiotic that has been shawinhibit AMP synthesis in
mammalian cells and most importantly, in the contéantiviral research, has
demonstrated inhibition of the enzyme S-adenosytuysteine hydrolase (AdoHcyase)
[102,103]. AdoHcyase catalyzes the hydrolysis-afd&nosylhomocysteine to form
adenosine and homocysteine products that are tmdlae methylation process
associated with various biological processes, dioly RNA capping [104]. Because of
toxicity from 5'-phosphate formation, aristeromybis not advanced in development as
an antiviral agent [105,106]. In contrast, MY-24far less toxic than aristeromycin, and
was well tolerated in mice. Despite having antiRNCactivity in cell culture, the
compound does not appear to act in a similar fasimanice, as reduced titers were not
evident. Thus, we hypothesize that the MY-24 thioing hypercytokinemia elicited in

response to TCRYV infection, and thereby limitingaalar leak and its putative



contribution to the demise of the AG129 mice.

12
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CHAPTER 2

MATERIALSAND METHODS

1. Animals
Six- to seven-week-old AG129 IFd and y receptor-deficient mice were used
in these experiments and were obtained from thedmmg colony at USU. They were

fed irradiated mouse chow and autoclaved wadérbitum.

2. Ethics statement

All animal procedures complied with USDA guidelireesd were conducted at the
AAALAC-accredited Laboratory Animal Research Cergeltah State University
(USU) under protocol 1425 approved by the USU tastinal Animal Care and Use

Committee.

3. Virus
TCRV, strain TRVL 11573, was obtainednfirdmerican Type Culture Collection

(ATCC: Manassas, VA). The virus stock {£050% cell culture infectious doses
(CCIDsg)/ml) was prepared from clarified liver homogendtesn AG129 mice
challenged with TCRV (2 passages in Vero 76 Afrigagen monkey kidney cells).
Virus stock was diluted in sterile MEM plus h@/ml gentamicin and inoculated by
bilateral i.p. injections totaling 0.2 ml.
4. Natural history of diseasein AG129

mice challenged with TCRV

Mice were sorted based on age and gentie® groups of 4 animals per group,
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and 1 group with 5 mice to account for projectedtdsg late in the course of infection.
The animals were ear tagged and individual weiglet® determined every other day
starting on day O relative to the time of viruseiction with approximately 450 CCip

of TCRV. Groups of 4 TCRV-infected animals werergaced daily, with 1 of the 5
mice in the day-10 group succumbing prior to sa®if Ten sham-infected mice
(normal controls) were included in the study foilydaacrifice [one per day] and
comparison to the TCRV-challenged animals. Serndliaer, spleen, brain, kidney,
and lung tissues were obtained for virus titer gheteation and cytokine profiling. The
spleens from all animals were weighed prior to pssing for virus titers. Whole blood
collected in EDTA-coated tubes was analyzed fordteingy using the VetScan HMT
(Abaxis Inc. Union City, CA). A sample of eachstie was preserved in 10% formalin
and sent to the Ross A. Smart Veterinary Diagnastimoratory (VDL; Logan, UT) for
histopathology. Here and elsewhere, clarifiedugsdsomogenates in minimal essential

medium and serum were stored at -80 °C until tifrenalysis.

5. Tissuevirustiter determinations
Virus titers were assayed using an infeicell culture assay as previously
described [96]. Briefly, a specific volume of tiesshomogenate or serum was serially

diluted and added to triplicate wells of Vero 7@r{gan green monkey kidney) cell
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monolayers in 96-well microtiter plates. The vicgtopathic effect (CPE) was
determined 7-8 days post-virus inoculation, anditiees were calculated by endpoint
titration [96]. The assay detection ranges wege- 2.5 logo CCIDsy/g of tissue or 1.8 -
8.5 logo CCIDs¢/ml of serum. In samples presenting with undetdetiissue or serum
virus, a value of < 2.8 or 1.8 lggwas assigned, respectively. Therefore, the megas v
titer for samples with undetectable levels of viiskely an overestimate of the actual
viral load. For statistical analysis, values & ar 2.8 logo were assigned for samples

with undetectable virus levels.

6. Assessment of vascular leakage

Vascular permeability was determinedriyavenous administration of Evans blue
dye (EBD) (Sigma-Aldrich, St. Louis, MO) and traegiits diffusion into various tissues
as previously described . At designated time®Walhg infection, untreated or treated
mice were anesthetized with isoflurane and injecééab-orbitally with a 0.5% EBD
phosphate-buffered saline (PBS) solution. Rettotalrinjections were given using a 27-
guage needle by carefully inserting the tip apprately 1 mm from the outermost edge
of the eye into the membrane exposed by gentlymqmuthe skin away from the eye.
Once the membrane has been penetrated, the EB@My snjected into the eye for
absorption by the capillary nexus at that siteteA& 3 h period, blood was collected by
cheek bleed, and the animals were extensivelydeadilly perfused with PBS. Similar
sized sections of liver, spleen, lung, and kidngsues were harvested, placed in pre-
weighed 1.5 ml microtubes for weight determinatiamg 0.5 ml of formamide was added
for complete immersion of all samples. The EBD weisacted from tissue samples by

overnight incubation at 37 degrees C. A 0.2 muwté from each tube was placed into a
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96-well microtiter plate and the absorbance athOvas measured. Relative EBD
content in the serum was determined from 1:10 elil 'amples measured at 610 nm and
740 nm. The absorbance at 740 nm was subtradedtire 610 nm absorbance values
to remove contributions due to hemoglobin contatna Data are expressed as a ratio

of absorbance/g of tissue:absorbance of a 10-fbltda@h of serum sample.

7. Compounds.

MY-24 was provided by Stewart Schneller (Auburn\émsity, Auburn, AL). The
synthesis of the compound has previously been teg$t07] and it$n vitro andin vivo
activity against TCRV has been described [76]. R¥was dissolved in sterile saline

solution and administered by i.p. injection.

8. MY-24 mechanism of action studies

Mice were sorted based on age for maldsageight for females into 6 TCRV
infected groups of 5-6 animals per group. The alimare ear tagged and individual
weights were determined every third day. Animaésenreated with saline vehicle
placebo or 25 mg/kg of MY-24, once daily for ugtdays starting 3 days post-challenge
with ~450 CCIRp of TCRV. Groups of 5 MY-24- and placebo-treatedenwere
sacrificed on day 8, and remaining 4-5 mice peugron days 16, 24, 32 and 40 relative
to time of infection. Placebo-treated animals waseincluded for these later time points
because they would not be expected to survive @RW challenge. Five sham-infected
normal control mice were included in the studydacrifice at the different time points
and comparison to the TCRV-challenged animals.r8emd liver, spleen, brain, kidney,

and lung tissues were collected for analysis, asrdeed above. Due to death prior to
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time of sacrifice, 1 of 5 animals in the 24- andd2® groups, and 2 of 6 animals in the
40-day group were not included in the analysisy-Baamples were assayed for
neutralizing antibody titers and profiled for syste cytokine expression. Spleen

samples collected on day 8 were also includedercjiokine analysis.

9. Cytokine multiplex profiling

Tissue and serum concentrations of 16kiyes (IL-Io, IL-18, IL-2, IL-3, IL-4,
IL-5, IL-6, IL-9, IL-10, IL-12, MCP-1, IFNy, TNF-a, MIP-1a, GM-CSF, and RANTES)
were evaluated in TCRV-infected mice using Q-Rteuse cytokine arrays (BioLegend,
San Diego, CA) as recommended by the manufact@amples from normal control
animals were included to establish baseline cymkmncentrations in AG129 mice. For
the natural history study, fold change was caledatlative to the normal control values
(n=3-6) for the respective cytokines. For the expent to determine the effects of MY-
24 treatment on cytokine induction in infected midata are presented as pg/ml of serum
or pg/g of spleen tissue.
10. Serum plaquereduction and

neutralization (PRNT) titers

Neutralizing antibody titers were deterad by standard PRNT assay. Briefly, 6-
well cell culture plates were seeded with Vero &sao achieve ~70-80 % confluence.
Equal volumes of media containing ~400 Cegdbf TCRV was added to serial 2-fold
dilutions of heat-inactivated (86 for 30 min) serum samples diluted in MEM
supplemented with 2% FBS. Experimental samplegw#uted 1:5 to 1:160. The
immune serum control was diluted starting at 1:250e serum plus TCRV mixture was

incubated at 3T for 2 h. After removing media from cells, 200qilthe serum-TCRV
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mixtures were added to respective wells of 6-wiltgs and incubated at 37 for 2 h,
while rocking plates every 10 min to prevent dryafgells and to distribute virus
evenly. After the 2-h absorption period, each wels washed twice with 1 ml of DPBS
prior to the addition of a warmed solution of 2a@hR% sea plaque agarose (Lonza,
Rockland, ME) and an equivalent amount of 2X MEM/B&S/gentamicin. Plates were
incubated 5 min at°€ to solidify agarose, and then incubated &C3for 6 days, at
which time 1 ml filtered-sterilized 0.034% neutratl solution was added to each well
and incubated an additional 2 h. Neutral red vepsrated and plaques enumerated with
the aid of a light box. Plates were further indeldeovernight at 3C and read on day 7
to verify accuracy of initial plaque count. Theautralizing antibody titers were expressed
as the highest dilution of serum reducing the ayeraumber of plaques present in the

virus control wells (TCRYV incubated with normal wer) by 50% or greater (PRNJ.

11. Statistical analysis

For analyzing differences in viral titers, cytokileeels, plague reduction
neutralization titer and vascular permeability, -oveey analysis of variance [108] with
Newman-Keuls posttests were performed. The Maniiti test (two-tailed) was used
for evaluating differences in spleen weights anahdwelogy. All statistical evaluations

were done using Prism (GraphPad Software, CA).
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CHAPTER 3
RESULTS

1. Natural history of TCRV-infection
in AG129 mice

One of the goals of the present studytwaketermine the kinetics of viral
replication of TCRV in AG129 mice, as part of a meomprehensive characterization of
the infection model. As seen in Figure 1, alluess examined harbored virus. Virus first
became apparent systemically on day 6 in 2 of dleriged mice, and titers gradually
increased until reaching mean levels above 7.2f [0G1Ds¢/ml on day 9 (Figure 1A).
Liver virus was barely detectable in a single arniomeday 6, rising to 7.75 lag
CCIDs¢/g by day 9 (Figure 1B). By gross visual examimatiliver samples taken from
day 10 mice were a pale light color in 2 of theudvssors. Substantial lung virus titers
could be detected in 75% of the mice on day 7, witheasing burden thereafter,
reaching peak levels (~6.75 @ CIDsy/g) on day 10 (Figure 1C). Gross visual
examination of lungs revealed necrotic lesions ayn@and thereafter. The first organ to
present with significant amounts of TCRYV replicatiwas the spleen, with >4.75 lgg
CCIDsy/g on day 5 of the infection, and sustained virusibn of >6.5 log CCIDsy/g
out to day 10 (Figure 1D). In several spleen saspbllected on and after day 8, gross
examination revealed pyogranulomatous lesions gralealight coloration, in addition to
splenomegaly. TCRV was found in the brain in % @nimals on day 8 and all infected
animals thereafter, with up to 6 @ CIDsy/g present on days 9 and 10 (Figure 1E).
Substantial kidney virus was not observed until 8ay infection, with the highest mean

viral loads of >6.5 logy CCIDsy/g seen on days 9 and 10 (Figure 1F).
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The mean weight of the TCRV-infected mice droppeatgly after day 6 (Figure
2). Splenomegaly was also observed as early a6 daynfected mice, with spleens
doubling in weight compared to the sham controigyfe 3). WBCs increased
precipitously starting on day 8, as did the lymptieand granulocyte populations (Table
2). Monocytes were slightly increased, also stgrtn day 8. Notably, platelet counts
did not decrease in the TCRV-infected animals (@&)| which is a characteristic feature
of South American hemorrhagic fever [101]. No otkignificant changes were seen in

the hematologic analysis.

-o- TCRV-Infected
1204 - Normals

% Weight Change

80 ] v v v v v
0 2 4 6 8 10

Days Post-Infection

Figure2. Weight Changein AG129 Mice during the Course of TCRV-Infection.

The data are represented as the group mean anthstateviation of the percent change
in weight of surviving animals relative to theiaging weights, measured at 3-day
intervals. n=40, 36, 28, 20, 12, and 4 for the WaRfected mice, and n=10, 9, 7, 5, 3,
and 1 mouse for the normal controls, on day 0, B, 8, and 10, respectively.
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Figure 3. Spleen Weightsfrom Infected AG129 Mice during TCRV-Infection. The
data represent the mean and standard deviationgroups of 4 TCRV-infected mice
sacrificed at the indicated times. Data from Inmarcontrol animal per day are included
for comparison. P < 0.05 compared to day 1 TCRV infected animals.
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Cytokine levels were examined on day®%Alserum, brain and lungs, days 4-10
for kidney, days 3-10 for spleen, and days 2-10i¥@r. As shown in top left panel of
Figure 4, serum concentrations of IL-6, IL-10, IFNand MIP-Lx in were increased >50-
fold as TCRV progressed. Levels of TMRRnd MCP-1 also increased over time, and, in
addition to IL-6, have been associated with sedeease in cases of viral hemorrhagic
fever [101]. Overall, the cytokines included ir thnalysis were broadly induced in
spleens from infected mice (Figure 4, lower lefag@® Notably, however, IL-6, MCP-1,
IFN-y, and MIP-4, actually demonstrated a trend of induction oiraet whereas the
concentrations of most other cytokines fluctuatddtive to the levels observed in
uninfected mice.

Cytokine expression in the livers frorferted animals were less remarkable than
the high levels observed in the sera and spleéh,tesinporal induction observed with
MCP-1 and MIP-#&, and consistently high levels of IFN{Figure 4, top center panel).

In lung tissues, increased production in numergtskines was observed later in the
course of infection (days 9 and 10) (Figure 4,right panel). A temporal pattern of
increasing concentrations of IL-6, IL-10, MCP-1NHy, MIP-1a,, and RANTES was
evident. In general, cytokine production in kidraad brain tended to be suppressed by
TCRYV infection (Figure 4, bottom right panels).

Although there was histopathology presesipleens by day 7 (Appendix, Table
Al), evidence of disease was not seen in othardssantil day 8 of infection. Typical
liver lesions included moderate numbers of pogtaddhocytes and histiocytes (Figure
5A) and scattered degenerate/necrotic hepatocytesusided by small numbers of

neutrophils or lymphocytes.
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Figure4 . Cytokineand Chemokine Responseto TCRV-Infection. Groups of 4
TCRV-infected animals were sacrificed on the inthdaday relative to the time of
infection and the serum and tissue concentratibsslected cytokines were determined
using a multiplexed array including the indicatgtb&ines. Fold change in expression is
relative to normal animals (n=3-6). In certainegscytokines were not detected (nd) in
serum or tissue homogenates.
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Spleens of infected mice had hyperplastic follicfeflicular lympholysis and increast
numbers of interstitial neutrophils (Fie 5B). Findings from dag-and10 livers and
spleens had similar pathology to that debed for day8 tissue samples (Append
Table A]). There was no kidney or brehistgpathology associated with advanc
TCRYV infection in the AG129 mi«. Lung hisopathology was mild to n-existent on

day 8, with the most profound histopathology obed on day 9 (Appendix, Table A

Figure5. Histologic Examination of Liver and Spleen Sectionsfrom TCRV-Infected
AG129 Mice. Representative A) liver and B) spleen histopathplog day 8 of TCR\
infection in AG129 mic¢ C) Liver and D) spleen tissue from healthy s-infected
mice. Tissue sections were stained with hematoxayid eosit
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If we are to consider therapeutic strategies aiatedaintaining vascular integrity
in order to limit capillary leakage that ultimatelsults in plasma volume loss, multi-
organ failure and shock, we must first establigt tlascular hyperpermeability results
from TCRYV infection in the AG129 mouse infection deb. Thus, we also performed a
separate time course analysis of vascular pernigatbilring TCRYV infection in AG129
mice by tracking the movement of retro-orbitallyeicted EBD into various primary
tissues. In this study, TCRV-challenged mice eédbclear signs of clinical illness
including lethargy and ruffling of fur by day 8 aBdand the deteriorating condition of
the animals was reflected in loss of body weiglgFe 6). By day 10, the infected mice
were approaching a moribund state and the anirhatsatere the most morbid did not
show markedly blue extremities as seen in the nbcorarols or less ill mice (not
shown). This is consistent with previously obsdriaxk of perfusion in a model of acute
arenavirus infection in hamsters, likely due to ¢tgmsion associated with vascular leak
[65].

When measuring systemic EBD levels, secantentrations were reduced in the
TCRV-infected control animals on day 8, 9 and 1L@gesting leakage of the dye into the
viscera (Figure 7A). However, we cannot rule twat possibility that the lower systemic
EBD levels seen at advanced stages of illnessim @RV-infected mice may be due to
lack of absorption from the orbital capillary nexugherefore, to more accurately access
vascular leak of EBD, the tissue concentrationsewermalized to amount of dye
present in the serum. Liver, kidney, lung and eplghowed a markedly higher average

of tissue to serum ratio in the TCRV-infected arsr@mpared to the sham-infected
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mice on day 8, 9 and 10 (Figure 7B-E), indicatingt tvascular leakage is occurring and

may be an important factor in the demise of the 2&tice challenged with TCRV.
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Figure6. Individual Animal Body Weight Change During the Course of the

Vascular Permeability Study. TCRV- and sham-infected mice in the vascular degk
study were weighed on day 0, 2, 4, 6, 8, 9, angdddi-infection. The data are presented
as the group mean and standard deviation of theepechange in weight of surviving
animals relative to their starting weights.
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Figure7. Evaluation of Vascular Per meability During TCRV-Infection in AG129
Mice. TCRV- and sham-infected mice were infused with 58 dn day 4, 7, 8, 9 and 10
of infection and systemic levels, as well as leakiagpo the viscera was evaluated. A)
Serum EB dye levels and ratios of tissue to respgeserum levels are shown for B)
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to sham-infected animals.
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2. Characterization of the protective effect
of MY-24 during TCRV- infection in
AG129 mice

The second aim of this study was to measure titigyadd MY-24 to clear TCRV
from the circulation and tissues in surviving ansrauccessfully treated with the
compound. Groups of TCRV-challenged mice treated 86 mg/kg/day MY-24 were
sacrificed on days 8, 16, 24, 32 and 40. Placsedatdd mice were included for the day-8
comparison. On day 8 of the infection, 3 of the&$-24- and placebo-treated mice had
detectable virus loads in the serum (Figure 8All.nAce were viremic on day 16, but
TCRYV was no longer detectable by 24 days in the 24¥treated mice. As seen with the
serum, virus titers in the liver were slightly heghn the placebo-treated animals on day 8
(Figure 8B). Peak viral loads of ~7.5 @ CIDs¢/g of liver were observed on day 16.
The virus was detected in only 2 of 4 survivingnaalis on day 24 and was cleared by day
32. Inthe lung, a slight increase in day 8 viitess was also noted in mice receiving
placebo relative to those treated with MY-24 (F8C). Approximately 7 log
CCIDsg¢/g of lung was detected on day 16, with a gradealide in titers out to day 40.
Remarkably, >5 log CCIDsy/g of tissue virus burden was still present atehe of the
40-day experiment. The spleen was the only tigswdich the viral titers were higher
in the MY-24-treated animals on day 8 (Figure 8Bemarkably, 3 of the 5 MY-24-
treated mice had >9.5 lggCCIDs¢/g. Spleen viral burden decreased on days 160, b
persisted similar to that observed in the lung. dan 8 of the infection, virus was found
only in brain tissue from a single placebo-treanunal (Figure 8E). However,
substantial titers were observed starting on dasah§ing from 6 to 7.5 lag CCIDsy/g
of brain. TCRV persistence was also observed irkitheeys of recovering MY-24-

treated mice (Figure 8F). As in most tissues, [igaks were
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Figure8. Analysisof Serum and Tissue VirusTitersin AG129 Mice I nfected with
TCRV and Treated with MY-24. Groups of 4-5 TCRV-infected animals treated with
MY-24 or placebo for up to 8 days starting on dgyo3t-challenge, were sacrificed on
the specified days of infection for analysis ofs€yum, B) liver, C) lung, D) spleen, E)
brain, and F) kidney virus titers. One mouse p&r-24 group at the 24, 32, and 40 h
time points succumbed prior to the time of saceific
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observed on day 16 (~6.5 IR CIDsy/g of kidney), with a subsequent reduction in siter
as the experiment progressed. Notably, 60% (3 of Bice that received placebo had
considerable day 8 viral titers, whereas none @fammals treated with MY-24 had
detectable virus until day 18n general, MY-24-treated mice began to lose weadtsr
day 15 and started to recover the lost weight & dter (Figure 9). These data are
consistent with peak titers being observed primamni day 16, with reductions in load in
most cases by day 24 (Figure 8).

In addition to assessing the viral titeus to 40 days post infection, we also
analyzed neutralizing anti-TCRYV titers. The dageBnparison data indicate that low
levels of neutralizing antibodies were elicited emquickly in placebo-treated animals
(Figure 10). By day 16, PRN{dtiters were at their peak in the MY-24-treated erand
waned thereafter. Compared to the PBNiters from immune serum from mice that
were boosted with live TCRV having survived infectiwith a non-lethal challenge dose,
the primary neutralizing antibody response wadikaly weak.

To further gauge the effect of MY-24 treant on the immune response during
TCRV infection in AG129 mice, a multiplex cytokimgray analysis was conducted.
Cytokine levels were examined on day-8 serum afeksmsamples from treated mice
and normal controls to assess the impact of MY 124ystemic inflammation and locally
in the spleen. As shown previously in the nathrsiiory study (Figure 4), serum IFN-
was highly stimulated by TCRYV infection (Figure 1dp panel). Most notably, however,
systemic IL-6 concentration was reduced signifigaint MY-24-treated mice. The only

other significant difference was a
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slightly reduced level of IL-d observed in the placebo group relative to MY-2d an
normal control animals (Figure 11, upper panellthdugh not statistically significant,
MY-24 also appeared to reduce the levels of Td\#d MCP-1 (Figure 11, lower panel),
which in addition to IL-6, are linked to more sexéorms of viral hemorrhagic fever
[101].

Consistent with the natural history d#-y, MIP-1a, and MCP-1 were clearly
induced in the spleens 8 days after TCRYV infecfitigure 12). RANTES was the only
cytokine significantly altered by the MY-24 treatmiéFigure 12, upper panel). Unlike
the trend of higher serum cytokine concentrationthe placebo-treated animals (Figure
11), greater levels of most cytokines and chemakimere observed in MY-24 treated
animals (Figure 12). This may be a reflectionhaf higher splenic virus titers in mice
treated with MY-24 (Figure 8D). It is conceivalbtat this more robust immune
response locally is preferable, in contrast toesyst inflammation that can trigger
vascular leakage.

Based on the natural history study, visquermeability was examined on day 9 of
infection in selected tissues from treated micageess the impact of MY-24. Serum
EBD content was reduced in the TCRV-infected ansnoal day 9, suggesting vascular
hyperpermeability (Figure 13A). In liver, kidnegnd spleen, higher average of tissue to
serum EBD ratio was observed in the TCRV-infecteidhals compared to the normal
sham-infected mice (Figure 13B, C, E). In gendha, tissue EDB ratios were lower in
the MY-24 treated mice compared to placebo-treateshals, suggesting that MY-24

may be reducing vascular leakage.
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Figure 13. Evaluation of Vascular Permeability in TCRV-Infected Mice Treated
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However, the effect was slight in most cases, aeditfferences were not statistically

significant (Figure 13B-E).
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CHAPTER 4

DISCUSSION

Junin and other South American hemorihégier-causing arenaviruses pose a
considerable public health threat as emerging tithes disease agents and because of
their potential for intentional release. Furthesaarch to better understand the HF
disease process to aid the development of theliamnd prophylactic interventions is
needed; however, all of the highly pathogenic NWAnin, Machupo, Guanarito, Sabia),
including the recently identified Chapare virugjue BSL-4 containment facilities for
their study. TCRV is a nonpathogenic NWA thatlesely related to JUNV at the amino
acid level [7]. Due to the high cost and relafivaccessibility of BSL-4 facilities,

TCRYV, which can be worked with in BSL-2 containmdatilitates early stage

preclinical development of promising antiviral cooamds. However, despite its
relatedness to the highly pathogenic NWA, TCRYV tattle ability to antagonize the host
IFN response [88], and therefore requires AG129 iédeptor-deficient mice as hosts for
productive infection. We employed the TCRV AG18€ection model to test the
hypothesis that MY-24 protects AG129 mice from &{hCRYV infection by subduing

the inflammatory response and limiting vasculaklea

The initial objective of this study wasdharacterize the natural history of disease
for the AG129 mouse TCRYV infection model to comphredisease to the human
condition and determine the optimal time to evauhe effects of MY-24 on the disease
process. The first part involved determining tiveekics of viral replication in blood and
tissues, assessing changes in clinical and hengitgdarameters, tracking

histopathological changes, and cytokine profilinging the course of infection. The
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second part of the initial objective was to detewni and when TCRYV infection
increased vascular permeability characteristici@ VHF syndromes. The careful
characterization of the model paved the way fodistto evaluate the effects of MY-24
on the host response to infection. The hypotrmsgigesting that MY-24 is primarily
acting by dampening an overzealous inflammatorgaese was borne out of the findings
from the original work that reported robust proiectafforded by MY-24 treatment
without any reduction in viral burden [76]. Thesués from the present study confirm
the previous finding; however, there was a trerghssting that MY-24 may be having a
slight effect in reducing titers in serum and sdisgues. Nevertheless, the lack of
statistically significant reductions in viral loadsgues against a direct antiviral effect.

The current paradigm in the viral HF died that exaggerated release of
proinflammatory cytokines into the circulation etcause of the devastating vascular
leakage that leads to systemic shock, multi-orgélare, and death [101,109]. With this
in mind, the treatment of advanced cases of viRalduld likely require a combination
of an effective antiviral that directly disruptsethirus life cycle with an agent that can
limit the collateral damage caused by an overly@sgjve host response. Our data
measuring vascular integrity in mice during thetaqhase of TCRYV infection indicates
that vascular leak is a part of the disease probessts overall contribution to the
decline of the animals is difficult to measure.

In general, our collective natural higtdata are consistent with the idea that
increasing viral burden in the blood leads to redeaf proinflammatory cytokines that
drive vascular leak, which likely contributes te tthemise of the animals. Indeed, low-

level viremia begins on day 6 post infection (Fegdj, at which time elevations in
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systemic proinflammatory mediators such as IL-6,MC and TNFe are detected

(Figure 4), and likely contribute to the increasedcular permeability which begins on
day 8 (Figure 7), and may contribute to mortaliynenonly observed between days 9-
11. IL-6, which has been associated with seveseatie in cases of viral HF and bacterial
sepsis [110,111], was slightly reduced on day feiction in mice treated with MY-24.
This, in addition to slight reductions in the levef MCP-1 and TNFe, may be sufficient
to alter the disease course in a way that MY -24té@ animals are able to survive the
infection.

We predicted that a reduction in certaag inflammatory cytokines by MY-24
treatment would lead to diminished vascular leAkhough there was a trend of lower
accumulation of EBD in tissues of mice receiving M¥, the differences were not
significant when measured on day 9 post infectiigyre 13). Because we only assayed
for vascular permeability on day 9, it is conceieathat MY-24 could have reduced the
duration of the vascular leak or delayed its on&eich changes in the kinetics of
vascular leak could make a difference betweeraliig death.

A modified version of our hypothesishat MY-24 simply delays the deleterious
hyperimmune response, thereby changing the dynashit® disease and the onset and
degree of vascular leak in a way that produces r@ manageable disease. Our MY-24
cytokine profiling data are consistent with thisadFigures 11, 12). Moreover,
neutralizing antibody responses appeared to bgektia the MY-24 treated mice
compared to animals receiving placebo (Figure N)tably, surviving animals treated
with MY-24 appear ill (ruffled fur, lethargy, weigjtoss) during the second and third

weeks of the infection, compared to the mice tebatth placebo which generally show
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clinical signs a day or two earlier. If too vigasof a host response is largely
responsible for TCRV-induced disease, the abilityly'-24 to slow the process may be
sufficient to prevent mortality and allow the adeptimmune response to help control
the systemic infection, as suggested by the PRNA atad the eventual clearance of the
virus from the circulation.

As reported in our initial publicationsteibing the TCRV model [76], the spleen
was the first site where significant viral loadsrevedetected, and only it and liver tissue
presented with it considerable histopathology. Xpeetedly, we found >9.5 logs of
virus in the spleens of 3 of 5 mice treated with 124, approximately 3 logs greater than
the observed titers for the other two mice andbtla@imals that were treated with
placebo (Figure 9D). In fact, the spleen was thig bssue in which there was more
virus present compared to the placebo group, asduis also observed, but to a lesser
degree, in the previously reported study [76]. &ffects of the increased viral load were
reflected in higher cytokine levels in day 8 splé@mogenates from MY-24-treated
mice. The importance of this finding and how ityncantribute to the survival of mice
treated with MY-24 is unclear.

In regards to the immune response to T@R¥ie AG129 mice, we were surprised
to see a general reduction in kidney and brainigigytokine levels (Figure 4). Although
virus did appear later in these tissues, we woatdhpredicted the overall suppressive
effect observed. The subdued proinflammatory dpwkesponse in kidney and brain
tissues presumably accounts for the lack of patgyldhe more robust cytokine
responses in spleen, liver, and lung tissues watsistent with the more prominent

pathology observed in those tissues, and suggestimopathology. Interestingly, the
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brain was the only tissue in which viral loads eased gradually out to 32 days post
infection (Figure 8E). This is striking in thatssgmic virus was cleared by day 24
(Figure 8A). This suggests that the high and @mditers found in the brains of TCRV-
challenged animals on days 24, 32, and 40 wereethdts of viral replication and
persistence in the brain, and not continued seddimg circulating virus.

Arenaviruses are zoonotic agents thalyre subclinical infections in their
respective rodent reservoir species. An intergstimd unexpected finding from our
studies was that surviving mice go on to develapmic infection in various tissues,
despite clearing the virus systemically. We fotimat the weight loss nadir in MY-24-
treated mice from days 18 to 21, prior to the recpwf the animals, is consistent with
the systemic clearance of the virus between thentii24 day time points. Importantly,
however, the AG129 mice lack type | and Il IFN natoes, and thus it is difficult to make
conclusions regarding the biological significantéhis finding. Notwithstanding, it is
likely that arenaviruses antagonize native rodeENt lesponse pathways as a mechanism
by which they establish chronic carrier statesdifidnal studies investigating the long-
term carriage of TCRV in AG129 mice may lead to nesights in arenavirus-rodent
reservoir interactions.

Taken together, our data provides eviddhat an increase in systemic TCRV
levels is followed by hypercytokinemia, which ligedrives the observed vascular leak in
the AG129 mouse model. Ensuing plasma volume togsn failure, and shock are
believed to be the cause of death. In MY-24-tekatece there was an overall slight
reduction in serum viral load, a slight decreask.i6, IFN-y and MCP-1 (with a

minimal reduction in other proinflammatory cytoki)€Figure 11), and a trend of
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reduced vascular permeability in several tissuagi(E 13). We expected a more
dramatic effect for MY-24 treatment in reducinglamhmatory responses and improving
vascular integrity, which was the basis of our Hiagsis. However, it is possible that
even a slight effect in the measured parametensl @musufficient to alter the outcome of
TCRYV infection. Certainly, there are other facttirat contribute to the fatal outcome of
TCRYV infection in AG129 mice, and MY-24 may be hayia more substantial effect in
that context. What appears to be clear is thgtitteaving activity against TCRW

vitro, there is little evidence for a direct antivirffleet targeting the virus life cycla

vivo. Our continued line of thinking is thitY-24 is blunting several response

pathways in the AG129 host response sufficientter the outcome of TCRV

infection.
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TableAl. Summary of Histopathology Findings from Mice I nfected with TCRV
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Mouse no.

Liver

Spleen

Lung

Kidney

Brain

Day Post Infection

211

Hyperplastic splenic
follicles with
increased numbers
of neutrophils

212

Hyperplastic splenic
follicles

228

Hyperplastic splenic
follicles with
increased numbers
of neutrophils

229

Hyperplastic splenic
follicles

213

Moderate numbers
of lymphocytes and
histiocytes infiltrate
portal zones Widely
scattered individual

hepatocytes are
degenerate/necrotic
and are surrounded
by small numbers of

neutrophils
or lymphocytes.

Hyperplastic splenic
follicles with
scattered lytic cells

Mild perivascular
edema with small
numbers of mixed
inflammatory cells

or moderate
perivascular
hemorrhage
surrounding
scattered
pulmonary
arterioles.

214

"Moderate numbers
of lymphocytes and
histiocytes infiltrate
portal zones Widely
scattered individual

hepatocytes are
degenerate/necrotic
and are surrounded
by small numbers of

neutrophils
or lymphocytes."

Hyperplastic splenic
follicles with
scattered lytic
cells and increased
numbers of
neutrophils.

230

Moderate numbers
of lymphocytes and
histiocytes infiltrate
portal
zones (liver). Widely
scattered individual
hepatocytes are
necrotic and
are surrounded by
small numbers of
neutrophils or
lymphocytes.

Hyperplastic splenic
follicles with
scattered lytic cells




59

Mouse no.

Liver

Spleen

Lung

Kidney

246

Moderate numbers
of lymphocytes and
histiocytes infiltrate
portal

zones (liver).

Scattered individual
hepatocytes are

degenerate/necrotic
and are surrounded
by small numbers of

neutrophils or

lymphocytes.

Hyperplastic splenic
follicles with
increased numbers
of neutrophils.

Moderate
numbers of
lymphocytes,
neutrophils and
histiocytes infiltrate
portal
zones and
accumulate in
sinusoidal spaces.
Scattered individual
hepatocytes are
degenerate/necrotic
and are surrounded
by aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles with
scattered lytic cells.

Perivascular edema
fluid with small
numbers of
neutrophils
or perivascular
hemorrhage
surrounds scattered
arterioles.

Moderate numbers
of lymphocytes,
neutrophils and

histiocytes
infiltrate portal
zones and
accumulate in
sinusoidal spaces.

Scattered individual

hepatocytes are
degenerate/necrotic
and are
surrounded by
aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles.

Esophagus:
aggregates of
neutrophils
multifocally widen
the

Moderate numbers
of lymphocytes,
neutrophils and

histiocytes infiltrate

portal zones (liver)
and accumulate in
sinusoidal spaces.
Scattered
individual
hepatocytes are
degenerate/necrotic
and are surrounded
by
aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles

Small numbers of
neutrophils are
within scattered

alveoli
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection
Lymphocytic/neutro
philic
Moderate numbers myocarditis(section
of heart
of lymphocytes, .
: accompanying
neutrophils and
- S lung). Heavy
histiocytes infiltrate P
- infiltrate of
portal zones (liver). . .
X Hyperplastic splenic | lymphocytes and
Widely scattered . . o .
P follicles with histiocytes with
individual .
increased numbers fewer 9
hepatocytes are . .
. of neutrophils. neutrophils in fat
degenerate/necrotic
around heart and
and are surrounded .
by adjacent segments
of pleurae. A
small numbers of
- large aggregate of
neutrophils or
lymphocytes pyogranulomatous
' inflammation
replaces a group of
alveoli (lung)
Moderate numbers
of
lymphocytes,
neutrophils and Esophagus:
histiocytes infiltrate aggregates of
portal zones (liver) neutrophils
and accumulate in | Hyperplastic splenic | multifocally widen
sinusoidal spaces. follicles with the
217 Scattered individual | scattered lytic cells submucosa. 10
hepatocytes and interstitial Neutrophils and
are fibrin. histiocytes infiltrate
degenerate/necrotic periesophageal
and are surrounded connective tissue
by aggregates of unilaterally.
neutrophils
and lymphocytes.
Moderate numbers
of lymphocytes,
neutrophils and
histiocytes Scattered
infiltrate portal perivascular and
zones (liver) and peribronchiolar
accumulate in Hyperplastic splenic | hemorrhages. Some
218 sinusoidal spaces. follicles with larger 10

Scattered individual
hepatocytes are
degenerate/necrotic
and are
surrounded by
aggregates of
neutrophils and
lymphocytes.

regularly scattered
lytic cells.

vessels are also
surrounded by
moderate numbers
of lymphocytes and
neutrophils.




Mouse no.

Liver

Spleen

Lung

Kidney

Brain

Day Post Infection

249

Moderate numbers
of lymphocytes,
neutrophils and

histiocytes
infiltrate portal
zones (liver) and
accumulate in
sinusoidal spaces.

Scattered individual
hepatocytes are

degenerate/necrotic

and are
surrounded by
aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles with
regularly scattered
lytic cells.

Scattered
perivascular and
peribronchiolar
hemorrhages.

10

250

Moderate numbers
of lymphocytes,
neutrophils and

histiocytes infiltrate

portal zones (liver)
and
accumulate in
sinusoidal spaces.

Scattered individual

hepatocytes are
degenerate/necrotic
and are surrounded
by aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles with
scattered lytic cells

Mild
neutrophilic/lympho
cytic pleuritis.

10

300

Moderate numbers
of lymphocytes,
neutrophils and

histiocytes
infiltrate portal
zones (liver) and
small clusters
accumulate in
sinusoidal spaces.

Scattered individual
hepatocytes are

degenerate/necrotic

and are surrounded
by aggregates of
neutrophils and
lymphocytes.

Hyperplastic splenic
follicles with
scattered lytic cells
and interstitial
fibrin.

10
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection
237 Sham 7
238 Sham s
239 Sham 9
Scattered
240 Sham perl\'/asculat'- and 10
peribronchiolar

hemorrhages
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