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ABSTRACT 
 
 

Modulation of the Host Response to Tacaribe Arenavirus Infection in AG129 Mice 
 

by MY-24  
 
 

by 
 
 

Eric Sefing, Master of Science 
 

Utah State University, 2012 
 
 

Major Professor: Brian B. Gowen 
Department: Animal, Dairy and Veterinary Science 
 
 
          MY-24 is an aristeromycin derivative previously shown to protect AG129 type I  
 
and II interferon receptor knockout mice from lethal challenge with Tacaribe virus  
 
(TCRV).  TCRV is nonpathogenic to humans, but is closely related to the highly  
 
pathogenic New World arenaviruses that cause often-fatal viral hemorrhagic fever  
 
syndromes.  Remarkably, MY-24 prevented mortality without reducing TCRV burden in  
 
the circulation or tissues.  To investigate the mechanism by which MY-24 protects  
 
AG129 mice against TCRV infection, we first characterized the natural history of disease  
 
in the model with an emphasis on cytokine responses and vascular integrity to establish  
 
the best times to evaluate the effects of MY-24 treatment on host responses believed to  
 
contribute to pathogenesis and fatal outcome.  We found that viral replication in the  
 
blood and in various tissues precedes a hyperproduction of proinflammatory mediators  
 
that may lead to the destabilization of the endothelial barrier and increased vascular  
 
leakage believed to contribute to terminal shock associated with severe cases of  
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hemorrhagic fever.  We also found slightly reduced virus titers in certain tissues from  
 
MY-24-treated mice, suggesting that there may be a weak antiviral effect; however,  
 
TCRV was not cleared from lung, spleen, brain or kidney in recovering animals out to 40  
 
days post-infection, indicative of the establishment of chronic infection in mice that are  
 
able to survive the initial challenge.  Neutralizing antibodies do not appear to play a  
 
major role in the antiviral effect of MY-24, whereas reductions in several key  
 
proinflammatory cytokines in mice treated with MY-24 may serve to reduce vascular  
 
leakage caused by TCRV infection. 
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PUBLIC ABSTRACT 
 
 

Modulation of the Host Response to Tacaribe Arenavirus Infection in AG129 Mice 
 

by MY-24  
 
 

by 
 
 

Eric Sefing, Master of Science 
 

Utah State University, 2012 
 
 

Major Professor: Brian B. Gowen 
Department: Animal, Dairy and Veterinary Science 
 
 
          MY-24 is a new antiviral compound recently shown to protect 
 
immunocompromised mice from lethal challenge with Tacaribe virus (TCRV).  Tacaribe  
 
virus is incapable of causing disease to humans, but is closely related to the highly  
 
pathogenic New World arenaviruses that cause often-fatal viral hemorrhagic fever  
 
syndromes.  Remarkably, MY-24 prevents mortality without reducing virus burden in the  
 
circulation or tissues.  To investigate the mechanism by which MY-24 protects AG129  
 
mice against Tacaribe virus infection, we first characterized the natural history of disease  
 
in the model with an emphasis on host immune response and blood vessel function to  
 
establish the best times to evaluate the effects of MY-24 treatment on host immune  
 
responses believed to contribute to disease severity and fatal outcome.  We found that  
 
viral replication in the blood and in various tissues precedes an overzealous immune  
 
response that may lead to the destabilization of the blood vessels and increased fluid  
 
leakage believed to contribute to fatal shock associated with severe cases of hemorrhagic  
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fever.  We also found slightly reduced virus titers in certain tissues from MY-24-treated  
 
mice, suggesting that there may be a weak antiviral effect; however, TCRV was not  
 
cleared from lung, spleen, brain or kidney in recovering animals out to 40 days post- 
 
infection, indicating the establishment of a chronic infection infection in mice that are  
 
able to survive the initial challenge.  Neutralizing antibodies do not appear to play a  
 
major role in the antiviral effect of MY-24, whereas reductions in several key factors that  
 
cause inflammation in mice treated with MY-24 may serve to reduce fluid leakage caused  
 
by Tacaribe virus infection.  
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                                                            CHAPTER 1 
 
                                                        INTRODUCTION 
 
  
1.  Arenaviruses - Emerging human pathogens 
 
          A group of close to 30 arenaviruses make up the Arenaviridae family of viruses 
 
[1].  They are a diverse group of enveloped, single-stranded negative sense RNA viruses  
 
with bi-segmented genomes, serologically and phylogenetically divided into Old World  
 
and New World lineages [2,3].  Novel arenaviruses are being discovered, on average,  
 
every 2-3 years, and the recent emergence of new pathogenic arenavirus species is of  
 
great concern as these viruses are zoonotic agents harbored in rodent reservoirs with the  
 
potential to come in close contact with expanding rural human populations [4,5].   
 
Arenaviruses develop asymptomatic chronic infections in their rodent hosts and can be  
 
transmitted to humans by inhalation of aerosolized excreta or contaminated secretions.   
 
Transmission from persistently infected rodents to humans can also occur through contact  
 
of infectious materials with skin abrasions.  Humans infected with arenaviruses develop a  
 
wide range of disease signs and symptoms from asymptomatic or mild febrile illnesses  
 
that clear within a few days to severe hemorrhagic fever (HF) requiring prompt medical  
 
attention.  The onset of arenaviral HF proceeds inconspicuously leading to  
 
immunosuppression, high viremia, hypercytokinemia, increased vascular permeability,  
 
extensive organ damage and eventually hypovolemic shock [6].  There are presently 7  
 
arenaviruses known to cause viral HF.  The group includes 5 New World viruses (Junin,  
 
Machupo, Guanarito, Sabia, and Chapare) present in areas of South America, and two  
 
Old World viruses (Lassa and Lujo) found in defined regions of Western and South  
 
Africa [7,8].
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 The New World arenaviruses (NWA) are comprised of 3 distinct clades, designated 

clade A, B and C, collectively within the Tacaribe complex [2].  Clade B contains the 5 

highly pathogenic arenavirues and several closely related non-pathogenic viruses 

including Tacaribe virus (TCRV), first isolated in 1956 from a fruit-eating bat (Artibeus 

lituratus) on the island of Trinidad [9].  TCRV is most closely related to Junin virus 

(JUNV) [7], the etiologic agent of Argentine HF.  JUNV has produced the greatest 

disease burden due to infection by the pathogenic NWA, with case fatality rates ranging 

from 15-30% in hospitalized patients [10].  Dysregulation of the host innate immune 

response by JUNV and other pathogenic NWA is believed to impair the development of 

protective immunity, leading to morbidity and potentially lethal results [6,11].  Those that 

survive infection develop an antiviral immune response that controls infection with the 

eventual systemic clearance of the virus.   

 In addition to being public health concerns from natural transmission in endemic 

regions of South America, the pathogenic NWA are considered bioterror agents that 

could be intentionally released in highly populated areas across the globe [12].  While 

arenaviruses are a concern to the health and safety to the human population in close 

contact with the natural rodent reservoirs harboring the highly pathogenic clade B 

arenaviruses, the aerosol transmissibility of these viruses makes them serious biothreats.  

Further, the lack of safe and effective therapeutic options also contributes to the 

designation of JUNV and other HF-causing NWA as highest priority category A NIAID 

pathogens [12].  The only proven effective vaccine against an arenavirus HF is the JUNV 

Candid #1 attenuated virus vaccine [13].  However, the vaccine is only indicated for 



 

 

3

those at high risk in the endemic regions of Argentina, such as agricultural workers and 

those that live near areas prone to infestation by the rodent host, Calomys musculinus 

[14].  Currently, Immune plasma is considered the standard of treatment for Argentine 

HF; however, the lack of efficacy in clinical disease past 8 days of evolution, the risk of 

transfusion associated diseases, and difficulties of maintaining sufficient stockpiles of 

immune plasma support continued drug development efforts [10]. 

 The Old World arenaviruses [15] include the prototypical arenavirus, lymphocytic 

choriomeningitis virus (LCMV), a medically important arenavirus particularly in immune 

compromised individuals, and Lassa virus (LASV), by far the arenaviral HF agent that 

has caused the greatest morbidity and mortality.  LCMV infections generally cause mild 

febrile illness sometimes associated with aseptic meningitis, but can also cause severe 

disease in fetuses or newborns [16].  Organ transplant patients are also at higher risk of 

productive infection and have high mortality during outbreaks of LCMV [17].  Lassa 

Fever, the most significant arenaviral disease in terms of number of cases, was first 

described during a 1969 outbreak in Nigeria [18].  LASV is endemic to Western Africa 

and afflicts approximately 300,000 people with an estimated 5000 deaths annually [19].  

In endemic regions of Western Africa, LASV infection causing severe disease results in 

mortality rates of >15%, with up to 50% case fatality in hospital acquired infections 

[20,21].  More recently, Lujo virus emerged in Southern Africa with the index case and 3 

of the 4 caregivers exposed to the virus succumbing to the infection (80% lethality) [5].  

The only survivor was treated with ribavirin, but it is not clear whether the intervention 

had a significant effect on the outcome of that fifth case.  In patients with severe Lassa 

fever, ribavirin has been shown to have some efficacy in treating disease within the first 
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six days of evolution [22]; however, previously noted side effects that include hemolytic 

anemia are less than desirable when treating a disease where hemorrhaging can be 

significant [23].  Nevertheless, ribavirin is considered the standard of care in Western 

Africa for treating severe LASV infections [24], and in the US in the event of a 

bioterrorist act, an imported case, or laboratory accident [12]. 

 
2.  Arenavirus molecular and cell biology 
 
 Genetic diversity is considerable among the Arenaviridae family members, even 

within the same virus species.  Despite the genetic variability at the nucleotide and amino 

acid levels, there are common features shared by all arenaviruses.  Arenavirus virions are 

generally pleomorphic particles ranging from 50-300 nm in diameter and contain electron 

dense ribosomal particles, which under an electron microscope give the virus a grainy 

appearance [25]. Consequently, the family name “arena” is derived from the Latin term 

“arenosus” which means “sandy” [25].  The arenaviruses are non-lytic and replicate 

strictly in the cytoplasm.  The genome consists of two single stranded ambisense RNA 

segments encoding 4 proteins [26].  The large (L) and small (S) viral RNA segments each 

include two open reading frames in mutually opposite orientations separated by a 

noncoding intergenic region with a predicted stable hairpin structure [26].  The S segment 

is 3.4 kb in length and encodes the viral nucleoprotein and glycoprotein precursor (GPC) 

which is post translationally cleaved to form GP1 and GP2 [27].  The L segment is 7.2 kb 

in length and encodes the viral RNA-dependent RNA polymerase (L protein) and a 

matrix (Z) protein [28].  In addition to its polymerase function, L also has 5’ 

endonuclease activity for “cap-snatching”.  The GPC and Z matrix proteins are translated 

from subgenomic virus sense mRNA, while the nucleoproteins and RNA polymerase are 
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translated from subgenomic virus anti-sense mRNA.  NP, Z and L are translated in the 

cytosol while the viral GPC is a type I membrane protein synthesized in the host cell’s 

secretory pathway [29]. 

 NP is the major structural protein encapsidating the viral genome and also has cap-

binding activity to assist L-mediated viral replication and transcription [30].  The NP 

associates with viral RNA to form nucleocapsids [15].  The L protein is also incorporated 

into the viral nucleocapsid [31,32].  The GPC protein is initially synthesized as a single 

polypeptide cleaved during processing in the endoplasmic reticulum into two 

glycoproteins, the N-terminal GP1 domain and a transmembrane GP2, by a host cell 

protease [27,33].  GP1/GP2 forms a tripartite complex with a stable signal peptide (SSP), 

which represents the arenavirus functional unit for host cell attachment and entry [34].  

The GPC is dependent upon the SSP for proper maturation, transport, and membrane 

fusion [1]. 

 The ability of clade B arenaviruses to cause disease has been directly linked to GP1 

binding to transferrin receptor 1 (TfR1) [35], the principal receptor mediating attachment 

and entry of the NWA that cause HF [36].  Within clade B, only the pathogenic 

arenaviruses utilize human TfR1, whereas nonpathogenic relatives such as TCRV and 

Amapari virus recognize the TfR1 ortholog in their respective rodent hosts [37].  The 

major receptor for clade C and OWA has been found to be α-dystroglycan [38,39].  The 

receptor for the clade A arenaviruses has not been elucidated. 

 Once the binding of pathogenic NWA to TfR1 is initiated, the virion is endocytosed 

and GPC-mediated fusion of the viral and endosomal membranes is activated in response 

to a change to low pH of the maturing endosome [1].  Clade A and B NWA enter the cell 
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through clathrin-mediated endocytosis while OWA (LASV and LCMV) entry is 

independent of clathrin [40].  Once penetration into the cytoplasm occurs the viral 

ribonucleoprotein acts as a template for transcription and replication mediated by the 

viral polymerase [41].  Viral transcription and replication is dependent on the L and NP 

proteins while delayed expression of the Z protein demonstrates a dose dependent 

inhibitory effect on these processes [31,42,43].  The Z matrix protein is essential to 

arenavirus budding while the physical interaction of GP and Z is required for the 

incorporation of GPs into arenavirus virion particles [44]. The formation of the virion 

particles and the budding of these infectious progeny from infected host cells requires the 

assembled RNP to associate at the host cell surface enriched with viral GP. The 
 
endosomal sorting complex required for transport of RNP components are recruited by 
  
the GP and Z interaction to facilitate virion assembly and release from the infected host 
 
cell [45]  In addition to its critical role in virion egress, the Z protein has been shown to 
  
interfere with the type I IFN response [46]. 
 

3.  Animal models of arenaviral  
     hemorrhagic fever 
 
 Proof-of-concept studies utilizing animal models that recapitulate the features of  

human disease are essential to advance development of promising therapeutic agents 

towards practical clinical applications.  For HF arenaviruses, the greatest challenge has 

been the lack of disease models in immune competent mice.  The currently available 

infection models are shown in Table 1. 
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Table 1.  Animal Models for the Study of Arenaviral HF 

Virus Disease Animal model Selected references 

Lassa Lassa fever Rhesus macaque [47], [48], [49] 

  
Cynomolgus macaque [50], [51], [52] 

  
Marmoset [53] 

  
Guinea pig [54], [55] 

 
Lassa virus replication HHDa mouse [56] 

 

Lujo 

 

Hemorrhagic fever 

MHC-I-/-b  mouse 

Guinea pig 

[56] 

[57] 

LCM 

 

Hemorrhagic fever 

 

Rhesus macaque 

Guinea pig 

[58] 

[59] 

Pichinde Hemorrhagic fever Guinea pigc [60], [61], [62] 

  
Hamster [63], [64], [65] 

Pirital 
 

Hamster [66], [67] 

Junin Argentine hemorrhagic fever Rhesus macaque [68], [69] 

  
Marmoset [70], [71] 

  
Guinea pig [72], [73], [74] 

  
AG129d mouse [75] 

Tacaribe 
 

AG129d mouse [76] 

Machupo Bolivian hemorrhagic fever Rhesus macaque [77], [78], [79] 

  
Cynomolgus macaque [78] 

  
African green monkey [80], [81] 

  
Guinea pig [82] 

  
STAT-1-/-e mouse [83] 
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Guanarito 

Flexal 

Venezuelan hemorrhagic fever 

Hemorrhagic fever 

Guinea pig 

Hamster 

[84] 

[85] 

a Genetically engineered mouse that expresses a human/mouse-chimeric HLA-A2.1 molecule in place of 

the murine MHC-I. 

b β2-microglobulin-deficient mouse (MHC-I-/-). 

c Virus adapted to produce lethal disease. 

d Type I and II interferon receptor-deficient mouse. 

e Signal transducer and activator of transcription 1-deficient mouse (STAT-1-/-). 

Lymphocytic choriomeningitis, LCM. 

 

 Work with most of the arenavirus HF models (Lassa, Lujo, Junin, Machupo, and 

Guanarito) is restricted to approximately 6 biosafety level (BSL-4) maximum 

containment laboratories in the US, and several facilities abroad.  Accessibility to such 

labs and the high cost associated with conducting studies in BSL-4 has limited research in 

this area.  Although more accessible and less biohazardous, the use of Pichinde (BSL-2), 

Pirital (BSL-2), and Flexal (BSL-3) clade A arenavirus models is less than ideal 

considering that all the HF NWA are in clade B.  To this end, we developed a model 

based on the challenge of AG129 mice with the clade B TCRV, a virus that can be 

worked with safely in BSL-2 containment [76].  

 In addition to its relatedness to JUNV, TCRV can be adapted to produce dramatic 
 
cytopathic effect (CPE) making it amenable to use in high-throughput screening (HTS) 
 
in vitro for identification of small molecule inhibitors that could be useful against the 
 
pathogenic clade B relatives.  Compounds identified by this approach that demonstrated  
 
antiviral activity and specificity against TCRV were also found to be active against  
 
JUNV and other pathogenic clade B NWA in other cell culture-based assays [86].  The  
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lead compound, ST-294, was further evaluated in a previously described newborn  
 
BALB/c mouse model [87].  Effective treatment following TCRV challenge of 4-day-old  
 
BALB/c mice by the intraperitoneal (i.p.) route provided proof-of-concept that ST-294  
 
had activity in vivo [86]; however, the difficulty of working with newborn animals  
 
prompted others to pursue other alternatives.  This lead to the development of the AG129  
 
IFN-α/β and γ receptor-deficient mouse TCRV challenge model [76].  This model has  
 
been particularly useful in evaluating promising anti-arenavirus compounds that have  
 
little to no activity against the clade A Pichinde virus (PICV) in vitro.  Until the 
 
development of the TCRV model, only animal studies in hamsters challenged with PICV  
 
could be performed in BSL-2, requiring both activity against PICV and far greater 
 
quantities of compound, which are often limited in early stages of drug discovery and 
 
development.  In addition, work with the apathogenic TCRV greatly reduces the risks  
 
associated with arenavirus research.  The inability of TCRV to antagonize the host  
 
interferon response like other NWA likely contributes to its lack of pathogenicity [88]. 
 
 
4.  Small molecule experimental therapies 
     for treatment of arenaviral infections  
 
 While there is an expanding list of compounds that have demonstrated anti-

arenaviral activity in vitro, most have not been evaluated in experimental animal models 

[8], and, thus, are beyond the scope of this literature review.  There are, however, several 

promising small molecules that have shown efficacy in several of the models described in 

section 3.  ST-294 is potent and selective compound that was effective in the newborn 

TCRV mouse challenge model; however, activity was restricted to clade B NWA [86].  A 

second compound with expanded spectrum, ST-193, was found to be protective against 
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the LASV infection in strain 13 guinea pigs [89].  The ST compounds represent a new 

class of viral entry inhibitors that disrupt the interaction between the GP2 subunit and the 

SSP [90,91].  With its broad-spectrum activity against both Old and NWA, ST-193 is the 

most promising lead for further development.  Because it has a mechanism of action 

distinct from ribavirin [1,92], combination therapy studies testing ST-193 and ribavirin in 

guinea pig or nonhuman primate models of arenaviral HF should be considered. 

 Favipiravir (T-705) is a compound originally described as a potent influenza virus 

inhibitor [93,94], and has advanced through clinical trials in Japan for the treatment of 

influenza virus infections.  The compound is presently in phase II clinical trials in the US 

for the same indication.  In addition to its activity against influenza, several laboratories 

have shown that the compound broadly inhibits RNA virus infections [95].  If approved 

for use against influenza virus, favipiravir could be used “off-label” for other viral 

diseases including arenaviral HF, as the compound has been shown to inhibit multiple 

arenaviruses including JUNV [96].  Favipiravir acts like a purine nucleoside analog 

inhibiting the influenza virus RNA dependent RNA polymerase, and the polymerase is 

also the likely arenavirus target [96,97].  Remarkably, favipiravir has been shown to be 

active against advanced PICV infection even when delaying treatment until after the 

onset of clinical disease [98,99].  Encouraging results have fueled further development of 

favipiravir as a therapeutic for the treatment of JUNV infection in guinea pigs, and 

ultimately nonhuman primates. 

 As a result of in vitro screening efforts, our lab identified MY-24, an aristeromycin 

derivative, as an inhibitor of TCRV in a series of cell culture screening assays.  Because 

the compound was also found to be active against the attenuated Candid #1 vaccine strain 



 

 

11

of JUNV, it was evaluated in the TCRV AG129 mouse infection model [76].  In those 

experiments, MY-24 consistently protected close to 100% of treated mice from lethal 

challenge with TCRV.  Most impressive was the fact that therapy was still effective even 

when delaying the initiation of MY-24 treatment as late as 5 days post infection [76].  

Remarkably, however, treatment did not significantly reduce virus titers, suggesting that 

the beneficial protective effect may be due to amelioration of the pathogenesis related to 

an overzealous host response.  The current thinking is that excessive production of 

inflammatory mediators triggers vascular leak, and ultimately hypovolemic shock is the 

cause of death in severe cases of viral HF [100,101]. 

 At present, it is unclear how MY-24 is protecting TCRV-challenged mice from 

mortality.  The compound is an analog (5'-homoaristeromycin) of aristeromycin, a 

carboxylic nucleoside antibiotic that has been shown to inhibit AMP synthesis in 

mammalian cells and most importantly, in the context of antiviral research, has 

demonstrated inhibition of the enzyme S-adenosylhomocysteine hydrolase (AdoHcyase) 

[102,103].  AdoHcyase catalyzes the hydrolysis of S-adenosylhomocysteine to form 

adenosine and homocysteine products that are crucial in the methylation process 

associated with various biological processes, including RNA capping [104].  Because of 

toxicity from 5'-phosphate formation, aristeromycin has not advanced in development as 

an antiviral agent [105,106].  In contrast, MY-24 is far less toxic than aristeromycin, and 

was well tolerated in mice.  Despite having anti-TCRV activity in cell culture, the 

compound does not appear to act in a similar fashion in mice, as reduced titers were not 

evident.  Thus, we hypothesize that the MY-24 is reducing hypercytokinemia elicited in 

response to TCRV infection, and thereby limiting vascular leak and its putative 
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contribution to the demise of the AG129 mice.
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CHAPTER 2 

MATERIALS AND METHODS 

1.  Animals 
 
          Six- to seven-week-old AG129 IFN-α/β and -γ receptor-deficient mice were used  
 
in these experiments and were obtained from the breeding colony at USU.  They were  
 
fed irradiated mouse chow and autoclaved water ad libitum. 
 

 
2.  Ethics statement 
 
          All animal procedures complied with USDA guidelines and were conducted at the  
 
AAALAC-accredited Laboratory Animal Research Center at Utah State University  
 
(USU) under protocol 1425 approved by the USU Institutional Animal Care and Use  
 
Committee. 
 
 
3.  Virus 
 
          TCRV, strain TRVL 11573, was obtained from American Type Culture Collection  
 
(ATCC; Manassas, VA).  The virus stock (106.35 50% cell culture infectious doses  
 
(CCID50)/ml) was prepared from clarified liver homogenates from AG129 mice  
 
challenged with TCRV (2 passages in Vero 76 African green monkey kidney cells).   
 
Virus stock was diluted in sterile MEM plus 50 µg/ml gentamicin and inoculated by  
 
bilateral i.p. injections totaling 0.2 ml. 
 
 
4.  Natural history of disease in AG129 
     mice challenged with TCRV 
 
           Mice were sorted based on age and gender into 9 groups of 4 animals per group,  
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and 1 group with 5 mice to account for projected deaths late in the course of infection.  
 
The animals were ear tagged and individual weights were determined every other day  
 
starting on day 0 relative to the time of virus infection with approximately 450 CCID50  
 
of TCRV.  Groups of 4 TCRV-infected animals were sacrificed daily, with 1 of the 5  
 
mice in the day-10 group succumbing prior to sacrifice.  Ten sham-infected mice  
 
(normal controls) were included in the study for daily sacrifice [one per day] and  
 
comparison to the TCRV-challenged animals.  Serum and liver, spleen, brain, kidney,  
 
and lung tissues were obtained for virus titer determination and cytokine profiling.  The  
 
spleens from all animals were weighed prior to processing for virus titers.  Whole blood  
 
collected in EDTA-coated tubes was analyzed for hematology using the VetScan HMT  
 
(Abaxis Inc. Union City, CA).  A sample of each tissue was preserved in 10% formalin  
 
and sent to the Ross A. Smart Veterinary Diagnostic Laboratory (VDL; Logan, UT) for  
 
histopathology.  Here and elsewhere, clarified tissue homogenates in minimal essential  
 
medium and serum were stored at -80 °C until time of analysis. 
 
 
5.  Tissue virus titer determinations 
 
         Virus titers were assayed using an infectious cell culture assay as previously  
 
described [96].  Briefly, a specific volume of tissue homogenate or serum was serially  
 
diluted and added to triplicate wells of Vero 76 (African green monkey kidney) cell  
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monolayers in 96-well microtiter plates.  The viral cytopathic effect (CPE) was  
 
determined 7-8 days post-virus inoculation, and the titers were calculated by endpoint  
 
titration [96].  The assay detection ranges were 2.8 - 9.5 log10 CCID50/g of tissue or 1.8 -  
 
8.5 log10 CCID50/ml of serum.  In samples presenting with undetectable tissue or serum  
 
virus, a value of < 2.8 or 1.8 log10 was assigned, respectively.  Therefore, the mean virus  
 
titer for samples with undetectable levels of virus is likely an overestimate of the actual  
 
viral load.  For statistical analysis, values of 1.8 or 2.8 log10 were assigned for samples  
 
with undetectable virus levels. 
 
 
6.  Assessment of vascular leakage 
 
          Vascular permeability was determined by intravenous administration of Evans blue  
 
dye (EBD) (Sigma-Aldrich, St. Louis, MO) and tracking its diffusion into various tissues  
 
as previously described .  At designated times following infection, untreated or treated  
 
mice were anesthetized with isoflurane and injected retro-orbitally with a 0.5% EBD  
 
phosphate-buffered saline (PBS) solution.  Retro-orbital injections were given using a 27- 
 
guage needle by carefully inserting the tip approximately 1 mm from the outermost edge  
 
of the eye into the membrane exposed by gently pulling the skin away from the eye.   
 
Once the membrane has been penetrated, the EBD is slowly injected into the eye for  
 
absorption by the capillary nexus at that site.  After a 3 h period, blood was collected by  
 
cheek bleed, and the animals were extensively transcardially perfused with PBS.  Similar  
 
sized sections of liver, spleen, lung, and kidney tissues were harvested, placed in pre- 
 
weighed 1.5 ml microtubes for weight determination, and 0.5 ml of formamide was added  
 
for complete immersion of all samples.  The EBD was extracted from tissue samples by  
 
overnight incubation at 37 degrees C.  A 0.2 ml volume from each tube was placed into a 
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96-well microtiter plate and the absorbance at 610 nm was measured.  Relative EBD  
 
content in the serum was determined from 1:10 diluted samples measured at 610 nm and  
 
740 nm.  The absorbance at 740 nm was subtracted from the 610 nm absorbance values  
 
to remove contributions due to hemoglobin contamination.  Data are expressed as a ratio  
 
of absorbance/g of tissue:absorbance of a 10-fold dilution of serum sample. 
 
 
7.  Compounds. 
 
          MY-24 was provided by Stewart Schneller (Auburn University, Auburn, AL).  The  
 
synthesis of the compound has previously been reported [107] and its in vitro and in vivo  
 
activity against TCRV has been described [76].  MY-24 was dissolved in sterile saline  
 
solution and administered by i.p. injection. 
 
 
8.  MY-24 mechanism of action studies 
 
          Mice were sorted based on age for males and weight for females into 6 TCRV 
 
infected groups of 5-6 animals per group. The animals were ear tagged and individual  
 
weights were determined every third day.  Animals were treated with saline vehicle  
 
placebo or 25 mg/kg of MY-24, once daily for up to 8 days starting 3 days post-challenge  
 
with ~450 CCID50 of TCRV.  Groups of 5 MY-24- and placebo-treated mice were  
 
sacrificed on day 8, and remaining 4-5 mice per group on days 16, 24, 32 and 40 relative  
 
to time of infection.  Placebo-treated animals were not included for these later time points  
 
because they would not be expected to survive the TCRV challenge. Five sham-infected  
 
normal control mice were included in the study for sacrifice at the different time points  
 
and comparison to the TCRV-challenged animals. Serum and liver, spleen, brain, kidney,  
 
and lung tissues were collected for analysis, as described above. Due to death prior to  
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time of sacrifice, 1 of 5 animals in the 24- and 32-day groups, and 2 of 6 animals in the  
 
40-day group were not included in the analysis.  Day-8 samples were assayed for  
 
neutralizing antibody titers and profiled for systemic cytokine expression.  Spleen  
 
samples collected on day 8 were also included in the cytokine analysis. 
 
 
9.  Cytokine multiplex profiling 
 
          Tissue and serum concentrations of 16 cytokines (IL-1α, IL-1β, IL-2, IL-3, IL-4,  
 
IL-5, IL-6, IL-9, IL-10, IL-12, MCP-1, IFN-γ, TNF-α, MIP-1α, GM-CSF, and RANTES) 
 
 were evaluated in TCRV-infected mice using Q-Plex mouse cytokine arrays (BioLegend,  
 
San Diego, CA) as recommended by the manufacturer.  Samples from normal control  
 
animals were included to establish baseline cytokine concentrations in AG129 mice.  For  
 
the natural history study, fold change was calculated relative to the normal control values  
 
(n=3-6) for the respective cytokines.  For the experiment to determine the effects of MY- 
 
24 treatment on cytokine induction in infected mice, data are presented as pg/ml of serum  
 
or pg/g of spleen tissue. 
 
 
10.  Serum plaque reduction and  
       neutralization (PRNT) titers 
 
          Neutralizing antibody titers were determined by standard PRNT assay.  Briefly, 6- 
 
well cell culture plates were seeded with Vero 76 cells to achieve ~70-80 % confluence.   
 
Equal volumes of media containing ~400 CCID50 of TCRV was added to serial 2-fold  
 
dilutions of heat-inactivated (56°C for 30 min) serum samples diluted in MEM  
 
supplemented with 2% FBS.  Experimental samples were diluted 1:5 to 1:160.  The  
 
immune serum control was diluted starting at 1:250.  The serum plus TCRV mixture was  
 
incubated at 37°C for 2 h.  After removing media from cells, 200 µl of the serum-TCRV  
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mixtures were added to respective wells of 6-well plates and incubated at 37°C for 2 h,  
 
while rocking plates every 10 min to prevent drying of cells and to distribute virus  
 
evenly.  After the 2-h absorption period, each well was washed twice with 1 ml of DPBS  
 
prior to the addition of a warmed solution of 2 ml of 2% sea plaque agarose (Lonza,  
 
Rockland, ME) and an equivalent amount of 2X MEM/4% FBS/gentamicin.  Plates were  
 
incubated 5 min at 4°C to solidify agarose, and then incubated at 37°C for 6 days, at  
 
which time 1 ml filtered-sterilized 0.034% neutral red solution was added to each well  
 
and incubated an additional 2 h.  Neutral red was aspirated and plaques enumerated with  
 
the aid of a light box.  Plates were further incubated overnight at 37°C and read on day 7  
 
to verify accuracy of initial plaque count.  The neutralizing antibody titers were expressed  
 
as the highest dilution of serum reducing the average number of plaques present in the  
 
virus control wells (TCRV incubated with normal serum) by 50% or greater (PRNT50). 
 
 
11.  Statistical analysis 
 
          For analyzing differences in viral titers, cytokine levels, plaque reduction  
 
neutralization titer and vascular permeability, one-way analysis of variance [108] with  
 
Newman-Keuls posttests were performed.  The Mann-Whitney test (two-tailed) was used  
 
for evaluating differences in spleen weights and hematology.  All statistical evaluations  
 
were done using Prism (GraphPad Software, CA).
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CHAPTER 3 

RESULTS 

1.  Natural history of TCRV-infection 
     in AG129 mice 
 
          One of the goals of the present study was to determine the kinetics of viral  
 
replication of TCRV in AG129 mice, as part of a more comprehensive characterization of  
 
the infection model.  As seen in Figure 1, all tissues examined harbored virus. Virus first  
 
became apparent systemically on day 6 in 2 of 4 challenged mice, and titers gradually 
 
increased until reaching mean levels above 7.25 log10 CCID50/ml on day 9 (Figure 1A).   
 
Liver virus was barely detectable in a single animal on day 6, rising to 7.75 log10  
 
CCID50/g by day 9 (Figure 1B).  By gross visual examination, liver samples taken from  
 
day 10 mice were a pale light color in 2 of the 4 survivors.  Substantial lung virus titers  
 
could be detected in 75% of the mice on day 7, with increasing burden thereafter,  
 
reaching peak levels (~6.75 log10 CCID50/g) on day 10 (Figure 1C).  Gross visual  
 
examination of lungs revealed necrotic lesions on day 9 and thereafter.  The first organ to  
 
present with significant amounts of TCRV replication was the spleen, with >4.75 log10  
 
CCID50/g on day 5 of the infection, and sustained virus burden of >6.5 log10 CCID50/g  
 
out to day 10 (Figure 1D).  In several spleen samples collected on and after day 8, gross  
 
examination revealed pyogranulomatous lesions and a pale light coloration, in addition to  
 
splenomegaly.  TCRV was found in the brain in 1 of 4 animals on day 8 and all infected  
 
animals thereafter, with up to 6 log10 CCID50/g present on days 9 and 10 (Figure 1E).   
 
Substantial kidney virus was not observed until day 8 of infection, with the highest mean  
 
viral loads of >6.5 log10 CCID50/g seen on days 9 and 10 (Figure 1F). 
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Figure 1.  Temporal Analysis of Serum and Tissue Virus Titers in AG129 Mice 
Challenged with TCRV.  Groups of 4 animals were sacrificed on the specified days of 
infection for analysis of A) serum, B) liver, C) lung, D) spleen, E) brain, and F) kidney 
virus titers.  One of 5 mice in the day-10 group succumbed prior to the time of sacrifice. 
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The mean weight of the TCRV-infected mice dropped sharply after day 6 (Figure 

2).  Splenomegaly was also observed as early as day 6 in infected mice, with spleens 

doubling in weight compared to the sham controls (Figure 3).  WBCs increased 

precipitously starting on day 8, as did the lymphocyte and granulocyte populations (Table 

2).  Monocytes were slightly increased, also starting on day 8.  Notably, platelet counts 

did not decrease in the TCRV-infected animals (Table 2), which is a characteristic feature 

of South American hemorrhagic fever [101]. No other significant changes were seen in 

the hematologic analysis. 

 

 

Figure 2.  Weight Change in AG129 Mice during the Course of TCRV-Infection.  
The data are represented as the group mean and standard deviation of the percent change 
in weight of surviving animals relative to their starting weights, measured at 3-day 
intervals.  n=40, 36, 28, 20, 12, and 4 for the TCRV-infected mice, and n=10, 9, 7, 5, 3, 
and 1 mouse for the normal controls, on day 0, 2, 4, 6, 8, and 10, respectively. 
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Figure 3.  Spleen Weights from Infected AG129 Mice during TCRV-Infection.  The 
data represent the mean and standard deviation from groups of 4 TCRV-infected mice 
sacrificed at the indicated times.  Data from 1 normal control animal per day are included 
for comparison.  *P < 0.05 compared to day 1 TCRV infected animals. 
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          Cytokine levels were examined on days 5-10 in serum, brain and lungs, days 4-10 

for kidney, days 3-10 for spleen, and days 2-10 for liver.  As shown in top left panel of 

Figure 4, serum concentrations of IL-6, IL-10, IFN-γ, and MIP-1α in were increased >50-

fold as TCRV progressed.  Levels of TNF-α and MCP-1 also increased over time, and, in 

addition to IL-6, have been associated with severe disease in cases of viral hemorrhagic 

fever [101].  Overall, the cytokines included in the analysis were broadly induced in 

spleens from infected mice (Figure 4, lower left panel).  Notably, however, IL-6, MCP-1, 

IFN-γ, and MIP-1α, actually demonstrated a trend of induction over time, whereas the 

concentrations of most other cytokines fluctuated relative to the levels observed in 

uninfected mice. 

          Cytokine expression in the livers from infected animals were less remarkable than 

the high levels observed in the sera and spleen, with temporal induction observed with 

MCP-1 and MIP-1α, and consistently high levels of IFN-γ (Figure 4, top center panel).  

In lung tissues, increased production in numerous cytokines was observed later in the 

course of infection (days 9 and 10) (Figure 4, top right panel).  A temporal pattern of 

increasing concentrations of IL-6, IL-10, MCP-1, IFN-γ, MIP-1α, and RANTES was 

evident.  In general, cytokine production in kidney and brain tended to be suppressed by 

TCRV infection (Figure 4, bottom right panels). 

          Although there was histopathology present in spleens by day 7 (Appendix, Table 

A1), evidence of disease was not seen in other tissues until day 8 of infection.  Typical 

liver lesions included moderate numbers of portal lymphocytes and histiocytes (Figure 

5A) and scattered degenerate/necrotic hepatocytes surrounded by small numbers of 

neutrophils or lymphocytes.  
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Figure 4 .  Cytokine and Chemokine Response to TCRV-Infection.  Groups of 4 
TCRV-infected animals were sacrificed on the indicated day relative to the time of 
infection and the serum and tissue concentrations of selected cytokines were determined 
using a multiplexed array including the indicated cytokines. Fold change in expression is 
relative to normal animals (n=3-6).  In certain cases, cytokines were not detected (nd) in 
serum or tissue homogenates.  
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Figure 5.  Histologic Examination of 
AG129 Mice.  Representative A) liver and B) spleen histopathology on day 8 of TCRV 
infection in AG129 mice.
mice.  Tissue sections were stained with hematoxylin and eosin.

Spleens of infected mice had hyperplastic follicles, follicular lympholysis and increased 

numbers of interstitial neutrophils (Figure 5B).  Findings from day-9 and 

spleens had similar pathology to that described for day-8 tissue samples (Appendix, 

).  There was no kidney or brain histopathology associated with advanced 

TCRV infection in the AG129 mice.  Lung histopathology was mild to non

day 8, with the most profound histopathology observed on day 9 (Appendix, Table A1).

xamination of Liver and Spleen Sections from TCRV
Representative A) liver and B) spleen histopathology on day 8 of TCRV 

infection in AG129 mice.  C) Liver and D) spleen tissue from healthy sham
mice.  Tissue sections were stained with hematoxylin and eosin.
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If we are to consider therapeutic strategies aimed at maintaining vascular integrity 

in order to limit capillary leakage that ultimately results in plasma volume loss, multi-

organ failure and shock, we must first establish that vascular hyperpermeability results 

from TCRV infection in the AG129 mouse infection model.  Thus, we also performed a 

separate time course analysis of vascular permeability during TCRV infection in AG129 

mice by tracking the movement of retro-orbitally injected EBD into various primary 

tissues.  In this study, TCRV-challenged mice exhibited clear signs of clinical illness 

including lethargy and ruffling of fur by day 8 and 9, and the deteriorating condition of 

the animals was reflected in loss of body weight (Figure 6).  By day 10, the infected mice 

were approaching a moribund state and the animals that were the most morbid did not 

show markedly blue extremities as seen in the normal controls or less ill mice (not 

shown).  This is consistent with previously observed lack of perfusion in a model of acute 

arenavirus infection in hamsters, likely due to hypotension associated with vascular leak 

[65]. 

          When measuring systemic EBD levels, serum concentrations were reduced in the 

TCRV-infected control animals on day 8, 9 and 10, suggesting leakage of the dye into the 

viscera (Figure 7A).  However, we cannot rule out the possibility that the lower systemic 

EBD levels seen at advanced stages of illness in the TCRV-infected mice may be due to 

lack of absorption from the orbital capillary nexus.  Therefore, to more accurately access 

vascular leak of EBD, the tissue concentrations were normalized to amount of dye 

present in the serum.  Liver, kidney, lung and spleen showed a markedly higher average 

of tissue to serum ratio in the TCRV-infected animals compared to the sham-infected 
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mice on day 8, 9 and 10 (Figure 7B-E), indicating that vascular leakage is occurring and 

may be an important factor in the demise of the AG129 mice challenged with TCRV. 
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Figure 6.  Individual Animal Body Weight Change During the Course of the 
Vascular Permeability Study.  TCRV- and sham-infected mice in the vascular leakage 
study were weighed on day 0, 2, 4, 6, 8, 9, and 10 post-infection.  The data are presented 
as the group mean and standard deviation of the percent change in weight of surviving 
animals relative to their starting weights.
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Figure 7.  Evaluation of Vascular Permeability During TCRV-Infection in AG129 
Mice.  TCRV- and sham-infected mice were infused with EB dye on day 4, 7, 8, 9 and 10 
of infection and systemic levels, as well as leakage into the viscera was evaluated.  A) 
Serum EB dye levels and ratios of tissue to respective serum levels are shown for B) 
liver, C) kidney, D) lung, and E) spleen tissues.  Day 9 data include values from two 
separate experiments.  *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 compared 
to sham-infected animals. 
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2.  Characterization of the protective effect 
     of MY-24 during TCRV- infection in  
     AG129 mice 

 The second aim of this study was to measure the ability of MY-24 to clear TCRV 

from the circulation and tissues in surviving animals successfully treated with the 

compound.  Groups of TCRV-challenged mice treated with 25 mg/kg/day MY-24 were 

sacrificed on days 8, 16, 24, 32 and 40.  Placebo-treated mice were included for the day-8 

comparison.  On day 8 of the infection, 3 of the 5 MY-24- and placebo-treated mice had 

detectable virus loads in the serum (Figure 8A).  All mice were viremic on day 16, but 

TCRV was no longer detectable by 24 days in the MY-24-treated mice.  As seen with the 

serum, virus titers in the liver were slightly higher in the placebo-treated animals on day 8 

(Figure 8B).  Peak viral loads of ~7.5 log10 CCID50/g of liver were observed on day 16.  

The virus was detected in only 2 of 4 surviving animals on day 24 and was cleared by day 

32.  In the lung, a slight increase in day 8 virus titers was also noted in mice receiving 

placebo relative to those treated with MY-24 (Figure 8C).  Approximately 7 log10 

CCID50/g of lung was detected on day 16, with a gradual decline in titers out to day 40.  

Remarkably, >5 log10 CCID50/g of tissue virus burden was still present at the end of the 

40-day experiment.  The spleen was the only tissue in which the viral titers were higher 

in the MY-24-treated animals on day 8 (Figure 8D).  Remarkably, 3 of the 5 MY-24-

treated mice had >9.5 log10 CCID50/g.  Spleen viral burden decreased on days 16-40, but 

persisted similar to that observed in the lung.  On day 8 of the infection, virus was found 

only in brain tissue from a single placebo-treated animal (Figure 8E).  However, 

substantial titers were observed starting on day 16 ranging from 6 to 7.5 log10 CCID50/g 

of brain. TCRV persistence was also observed in the kidneys of recovering MY-24-

treated mice (Figure 8F).  As in most tissues, peak titers were  
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Figure 8.  Analysis of Serum and Tissue Virus Titers in AG129 Mice Infected with 
TCRV and Treated with MY-24.  Groups of 4-5 TCRV-infected animals treated with 
MY-24 or placebo for up to 8 days starting on day 3 post-challenge, were sacrificed on 
the specified days of infection for analysis of A) serum, B) liver, C) lung, D) spleen, E) 
brain, and F) kidney virus titers.  One mouse per MY-24 group at the 24, 32, and 40 h 
time points succumbed prior to the time of sacrifice. 
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observed on day 16 (~6.5 log10 CCID50/g of kidney), with a subsequent reduction in titers 

as the experiment progressed.  Notably, 60% (3 of 5) of mice that received placebo had 

considerable day 8 viral titers, whereas none of the animals treated with MY-24 had 

detectable virus until day 16.  In general, MY-24-treated mice began to lose weight after 

day 15 and started to recover the lost weight 6 days later (Figure 9).  These data are 

consistent with peak titers being observed primarily on day 16, with reductions in load in 

most cases by day 24 (Figure 8). 

          In addition to assessing the viral titers out to 40 days post infection, we also 

analyzed neutralizing anti-TCRV titers.  The day-8 comparison data indicate that low 

levels of neutralizing antibodies were elicited more quickly in placebo-treated animals 

(Figure 10).  By day 16, PRNT50 titers were at their peak in the MY-24-treated mice and 

waned thereafter.  Compared to the PRNT50 titers from immune serum from mice that 

were boosted with live TCRV having survived infection with a non-lethal challenge dose, 

the primary neutralizing antibody response was relatively weak. 

          To further gauge the effect of MY-24 treatment on the immune response during 

TCRV infection in AG129 mice, a multiplex cytokine array analysis was conducted.  

Cytokine levels were examined on day-8 serum and spleen samples from treated mice 

and normal controls to assess the impact of MY-24 on systemic inflammation and locally 

in the spleen.  As shown previously in the natural history study (Figure 4), serum IFN-γ 

was highly stimulated by TCRV infection (Figure 11, top panel).  Most notably, however, 

systemic IL-6 concentration was reduced significantly in MY-24-treated mice.  The only 

other significant difference was a  
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Figure 9.  Analysis of Weight Change in AG129 Mice Infected with TCRV and 
Treated with MY-24 or Placebo.  Mice from the longitudinal study described in Figure 
8 were weighed every third day over the course of the experiment.  Normal control mice 
(n=5, with 1 mouse each sacrificed on days 8, 16, 24, 32, and 40) are included for 
comparison. The data are represented as the group mean and standard deviation of the 
percent change in weight of surviving animals relative to their starting weights.
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Figure 10. Neutralizing Antibody Levels During the Course of TCRV-Infection and 
Recovery in AG129 Mice Treated with MY-24.  Serum samples from TCRV-infected 
animals treated with MY-24 or placebo, as indicated in the longitudinal study described 
in Figure 8, were analyzed for neutralizing antibodies by PRNT.  Normal serum from 
uninfected mice and immune serum were included as controls.  *P < 0.05. 
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slightly reduced level of IL-1α observed in the placebo group relative to MY-24 and 

normal control animals (Figure 11, upper panel).  Although not statistically significant, 

MY-24 also appeared to reduce the levels of TNF-α and MCP-1 (Figure 11, lower panel), 

which in addition to IL-6, are linked to more severe forms of viral hemorrhagic fever 

[101]. 

          Consistent with the natural history data, IFN-γ, MIP-1α, and MCP-1 were clearly 

induced in the spleens 8 days after TCRV infection (Figure 12).  RANTES was the only 

cytokine significantly altered by the MY-24 treatment (Figure 12, upper panel).  Unlike 

the trend of higher serum cytokine concentrations in the placebo-treated animals (Figure 

11), greater levels of most cytokines and chemokines were observed in MY-24 treated 

animals (Figure 12).  This may be a reflection of the higher splenic virus titers in mice 

treated with MY-24 (Figure 8D).  It is conceivable that this more robust immune 

response locally is preferable, in contrast to systemic inflammation that can trigger 

vascular leakage. 

          Based on the natural history study, vascular permeability was examined on day 9 of 

infection in selected tissues from treated mice to assess the impact of MY-24.  Serum 

EBD content was reduced in the TCRV-infected animals on day 9, suggesting vascular 

hyperpermeability (Figure 13A).  In liver, kidney, and spleen, higher average of tissue to 

serum EBD ratio was observed in the TCRV-infected animals compared to the normal 

sham-infected mice (Figure 13B, C, E).  In general, the tissue EDB ratios were lower in 

the MY-24 treated mice compared to placebo-treated animals, suggesting that MY-24 

may be reducing vascular leakage.  
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Figure 11.  Comparative Analysis of Serum Cytokine Levels in Mice Infected with 
TCRV and Treated with MY-24 or Placebo.  As described in Figure 8, TCRV-infected 
animals treated with MY-24 (n=5) or placebo (n=5) were sacrificed on day 8 relative to 
the time of infection.  Shown are the serum concentrations of selected cytokines 
determined using a multiplexed array.  *P < 0.05.  
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Figure 12. Comparative Analysis of Spleen Cytokine Levels in Mice Infected with 
TCRV and Treated with MY-24 or Placebo.  As described in Figure 8, TCRV-infected 
animals treated with MY-24 (n=5) or placebo (n=5) were sacrificed on day 8 relative to 
the time of infection.  Shown are the splenic concentrations of selected cytokines 
determined using a multiplexed array.  *P < 0.05.  
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Figure 13.  Evaluation of Vascular Permeability in TCRV-Infected Mice Treated 
with MY-24.  TCRV-infected mice treated with MY-24 or placebo, starting 3 days after 
challenge, were infused with EB dye on day 9 of infection and systemic levels, as well as 
leakage into the viscera was evaluated.  A) Serum EB dye levels and ratios of tissue to 
respective serum levels are shown for B) liver, C) kidney, D) lung, and E) spleen tissues.  
*P < 0.05, ** P < 0.01 compared to sham-infected animals. 
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However, the effect was slight in most cases, and the differences were not statistically 

significant (Figure 13B-E). 
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CHAPTER 4 

DISCUSSION 

          Junin and other South American hemorrhagic fever-causing arenaviruses pose a 

considerable public health threat as emerging infectious disease agents and because of 

their potential for intentional release.  Further research to better understand the HF 

disease process to aid the development of therapeutic and prophylactic interventions is 

needed; however, all of the highly pathogenic NWA (Junin, Machupo, Guanarito, Sabia), 

including the recently identified Chapare virus, require BSL-4 containment facilities for 

their study.  TCRV is a nonpathogenic NWA that is closely related to JUNV at the amino 

acid level [7].  Due to the high cost and relative inaccessibility of BSL-4 facilities, 

TCRV, which can be worked with in BSL-2 containment, facilitates early stage 

preclinical development of promising antiviral compounds.  However, despite its 

relatedness to the highly pathogenic NWA, TCRV lacks the ability to antagonize the host 

IFN response [88], and therefore requires AG129 IFN receptor-deficient mice as hosts for 

productive infection.  We employed the TCRV AG129 infection model to test the 

hypothesis that MY-24 protects AG129 mice from lethal TCRV infection by subduing 

the inflammatory response and limiting vascular leak. 

          The initial objective of this study was to characterize the natural history of disease 

for the AG129 mouse TCRV infection model to compare the disease to the human 

condition and determine the optimal time to evaluate the effects of MY-24 on the disease 

process.  The first part involved determining the kinetics of viral replication in blood and 

tissues, assessing changes in clinical and hematologic parameters, tracking 

histopathological changes, and cytokine profiling during the course of infection.  The 
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second part of the initial objective was to determine if and when TCRV infection 

increased vascular permeability characteristic of viral HF syndromes.  The careful 

characterization of the model paved the way for studies to evaluate the effects of MY-24 

on the host response to infection.  The hypothesis suggesting that MY-24 is primarily 

acting by dampening an overzealous inflammatory response was borne out of the findings 

from the original work that reported robust protection afforded by MY-24 treatment 

without any reduction in viral burden [76].  The results from the present study confirm 

the previous finding; however, there was a trend suggesting that MY-24 may be having a 

slight effect in reducing titers in serum and some tissues.  Nevertheless, the lack of 

statistically significant reductions in viral loads argues against a direct antiviral effect. 

          The current paradigm in the viral HF field is that exaggerated release of 

proinflammatory cytokines into the circulation is the cause of the devastating vascular 

leakage that leads to systemic shock, multi-organ failure, and death [101,109].  With this 

in mind, the treatment of advanced cases of viral HF would likely require a combination 

of an effective antiviral that directly disrupts the virus life cycle with an agent that can 

limit the collateral damage caused by an overly aggressive host response.  Our data 

measuring vascular integrity in mice during the acute phase of TCRV infection indicates 

that vascular leak is a part of the disease process, but its overall contribution to the 

decline of the animals is difficult to measure. 

          In general, our collective natural history data are consistent with the idea that 

increasing viral burden in the blood leads to release of proinflammatory cytokines that 

drive vascular leak, which likely contributes to the demise of the animals.  Indeed, low-

level viremia begins on day 6 post infection (Figure 1), at which time elevations in 
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systemic proinflammatory mediators such as IL-6, MCP-1, and TNF-α are detected 

(Figure 4), and likely contribute to the increased vascular permeability which begins on 

day 8 (Figure 7), and may contribute to mortality commonly observed between days 9-

11.  IL-6, which has been associated with severe disease in cases of viral HF and bacterial 

sepsis [110,111], was slightly reduced on day 8 of infection in mice treated with MY-24.  

This, in addition to slight reductions in the levels of MCP-1 and TNF-α, may be sufficient 

to alter the disease course in a way that MY-24-treated animals are able to survive the 

infection. 

          We predicted that a reduction in certain key inflammatory cytokines by MY-24 

treatment would lead to diminished vascular leak.  Although there was a trend of lower 

accumulation of EBD in tissues of mice receiving MY-24, the differences were not 

significant when measured on day 9 post infection (Figure 13).  Because we only assayed 

for vascular permeability on day 9, it is conceivable that MY-24 could have reduced the 

duration of the vascular leak or delayed its onset.  Such changes in the kinetics of 

vascular leak could make a difference between life and death. 

          A modified version of our hypothesis is that MY-24 simply delays the deleterious 

hyperimmune response, thereby changing the dynamics of the disease and the onset and 

degree of vascular leak in a way that produces a more manageable disease.  Our MY-24 

cytokine profiling data are consistent with this idea (Figures 11, 12).  Moreover, 

neutralizing antibody responses appeared to be delayed in the MY-24 treated mice 

compared to animals receiving placebo (Figure 10).  Notably, surviving animals treated 

with MY-24 appear ill (ruffled fur, lethargy, weight loss) during the second and third 

weeks of the infection, compared to the mice treated with placebo which generally show 
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clinical signs a day or two earlier.  If too vigorous of a host response is largely 

responsible for TCRV-induced disease, the ability of MY-24 to slow the process may be 

sufficient to prevent mortality and allow the adaptive immune response to help control 

the systemic infection, as suggested by the PRNT data and the eventual clearance of the 

virus from the circulation. 

          As reported in our initial publication describing the TCRV model [76], the spleen 

was the first site where significant viral loads were detected, and only it and liver tissue 

presented with it considerable histopathology.  Unexpectedly, we found >9.5 logs of 

virus in the spleens of 3 of 5 mice treated with MY-24, approximately 3 logs greater than 

the observed titers for the other two mice and the 5 animals that were treated with 

placebo (Figure 9D).  In fact, the spleen was the only tissue in which there was more 

virus present compared to the placebo group, and this was also observed, but to a lesser 

degree, in the previously reported study [76].  The effects of the increased viral load were 

reflected in higher cytokine levels in day 8 spleen homogenates from MY-24-treated 

mice.  The importance of this finding and how it may contribute to the survival of mice 

treated with MY-24 is unclear. 

          In regards to the immune response to TCRV in the AG129 mice, we were surprised 

to see a general reduction in kidney and brain tissue cytokine levels (Figure 4).  Although 

virus did appear later in these tissues, we would not of predicted the overall suppressive 

effect observed.  The subdued proinflammatory cytokine response in kidney and brain 

tissues presumably accounts for the lack of pathology.  The more robust cytokine 

responses in spleen, liver, and lung tissues were consistent with the more prominent 

pathology observed in those tissues, and suggest immunopathology.  Interestingly, the 
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brain was the only tissue in which viral loads increased gradually out to 32 days post 

infection (Figure 8E).  This is striking in that systemic virus was cleared by day 24 

(Figure 8A).  This suggests that the high and constant titers found in the brains of TCRV-

challenged animals on days 24, 32, and 40 were the results of viral replication and 

persistence in the brain, and not continued seeding from circulating virus. 

          Arenaviruses are zoonotic agents that produce subclinical infections in their 

respective rodent reservoir species.  An interesting and unexpected finding from our 

studies was that surviving mice go on to develop chronic infection in various tissues, 

despite clearing the virus systemically.  We found that the weight loss nadir in MY-24-

treated mice from days 18 to 21, prior to the recovery of the animals, is consistent with 

the systemic clearance of the virus between the 16 and 24 day time points.  Importantly, 

however, the AG129 mice lack type I and II IFN receptors, and thus it is difficult to make 

conclusions regarding the biological significance of this finding.  Notwithstanding, it is 

likely that arenaviruses antagonize native rodent IFN response pathways as a mechanism 

by which they establish chronic carrier states.  Additional studies investigating the long-

term carriage of TCRV in AG129 mice may lead to new insights in arenavirus-rodent 

reservoir interactions. 

          Taken together, our data provides evidence that an increase in systemic TCRV 

levels is followed by hypercytokinemia, which likely drives the observed vascular leak in 

the AG129 mouse model.  Ensuing plasma volume loss, organ failure, and shock are 

believed to be the cause of death.  In MY-24-treated mice there was an overall slight 

reduction in serum viral load, a slight decrease in IL-6, IFN-γ and MCP-1 (with a 

minimal reduction in other proinflammatory cytokines) (Figure 11), and a trend of 
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reduced vascular permeability in several tissues (Figure 13).  We expected a more 

dramatic effect for MY-24 treatment in reducing inflammatory responses and improving 

vascular integrity, which was the basis of our hypothesis.  However, it is possible that 

even a slight effect in the measured parameters could be sufficient to alter the outcome of 

TCRV infection.  Certainly, there are other factors that contribute to the fatal outcome of 

TCRV infection in AG129 mice, and MY-24 may be having a more substantial effect in 

that context.  What appears to be clear is that despite having activity against TCRV in 

vitro, there is little evidence for a direct antiviral effect targeting the virus life cycle in 

vivo.  Our continued line of thinking is that MY-24 is blunting several response 

pathways in the AG129 host response sufficient to alter the outcome of TCRV 

infection.             
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection

211

Hyperplastic splenic 

follicles with 

increased numbers 

of  neutrophils

7

212
Hyperplastic splenic 

follicles 
7

228

Hyperplastic splenic 

follicles with 

increased numbers 

of  neutrophils

7

229
Hyperplastic splenic 

follicles 
7

213

Moderate numbers 

of lymphocytes and 

histiocytes infiltrate 

portal  zones Widely 

scattered individual 

hepatocytes are  

degenerate/necrotic 

and are surrounded 

by small numbers of 

neutrophils  

or lymphocytes.

Hyperplastic splenic 

follicles with 

scattered lytic  cells

 Mild perivascular 

edema with small 

numbers of mixed 

inflammatory cells 

or moderate 

perivascular 

hemorrhage 

surrounding 

scattered  

pulmonary 

arterioles.    

8

214

"Moderate numbers 

of lymphocytes and 

histiocytes infiltrate 

portal  zones Widely 

scattered individual 

hepatocytes are  

degenerate/necrotic 

and are surrounded 

by small numbers of 

neutrophils  

or lymphocytes."

Hyperplastic splenic 

follicles with 

scattered lytic  

cells and increased 

numbers of 

neutrophils.

8

230

Moderate numbers 

of lymphocytes and 

histiocytes infiltrate 

portal  

zones (liver). Widely 

scattered individual 

hepatocytes are 

necrotic and  

are surrounded by 

small numbers of 

neutrophils or 

lymphocytes.  

Hyperplastic splenic 

follicles with 

scattered lytic cells  
8

Table A1.  Summary of Histopathology Findings from Mice Infected with TCRV 
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection

246

Moderate numbers 

of lymphocytes and 

histiocytes infiltrate 

portal  

zones (liver). 

Scattered individual 

hepatocytes are 

degenerate/necrotic  

and are surrounded 

by small numbers of 

neutrophils or 

lymphocytes.  

Hyperplastic splenic 

follicles with 

increased numbers 

of neutrophils. 

8

215

 Moderate  

numbers of 

lymphocytes, 

neutrophils and 

histiocytes infiltrate 

portal  

zones and 

accumulate in 

sinusoidal spaces. 

Scattered individual  

hepatocytes are 

degenerate/necrotic 

and are surrounded 

by aggregates of 

neutrophils and 

lymphocytes.

Hyperplastic splenic 

follicles with  

scattered lytic cells.  

Perivascular edema 

fluid with small 

numbers of 

neutrophils  

or perivascular 

hemorrhage 

surrounds scattered 

arterioles.

9

216

Moderate numbers 

of lymphocytes, 

neutrophils and 

histiocytes  

infiltrate portal 

zones  and 

accumulate in 

sinusoidal spaces.  

Scattered individual 

hepatocytes are 

degenerate/necrotic 

and are  

surrounded by 

aggregates of 

neutrophils and 

lymphocytes.

Hyperplastic splenic 

follicles.

Esophagus: 

aggregates of 

neutrophils 

multifocally widen 

the  

9

247

Moderate numbers 

of lymphocytes, 

neutrophils and 

histiocytes infiltrate  

portal zones (liver) 

and accumulate in 

sinusoidal spaces. 

Scattered  

individual 

hepatocytes are 

degenerate/necrotic 

and are surrounded 

by  

aggregates of 

neutrophils and 

lymphocytes.

Hyperplastic splenic 

follicles

Small numbers of 

neutrophils are 

within scattered 

alveoli 

9
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection

248

Moderate numbers 

of lymphocytes, 

neutrophils and  

histiocytes infiltrate 

portal zones (liver). 

Widely scattered  

individual 

hepatocytes are 

degenerate/necrotic 

and are surrounded 

by  

small numbers of 

neutrophils or 

lymphocytes.

Hyperplastic splenic  

follicles with 

increased numbers 

of neutrophils.  

Lymphocytic/neutro

philic 

myocarditis(section 

of heart 

accompanying 

lung). Heavy 

infiltrate of 

lymphocytes and 

histiocytes with 

fewer  

neutrophils in fat 

around heart and 

adjacent segments 

of pleurae. A  

large aggregate of 

pyogranulomatous 

inflammation 

replaces a group of  

alveoli (lung)

9

217

 Moderate numbers 

of  

lymphocytes, 

neutrophils and 

histiocytes infiltrate 

portal zones (liver)  

and accumulate in 

sinusoidal spaces. 

Scattered individual 

hepatocytes  

are 

degenerate/necrotic 

and are surrounded 

by aggregates of 

neutrophils  

and lymphocytes. 

Hyperplastic splenic 

follicles with  

scattered lytic cells 

and interstitial 

fibrin. 

Esophagus: 

aggregates of 

neutrophils 

multifocally widen 

the  

submucosa. 

Neutrophils and 

histiocytes infiltrate 

periesophageal  

connective tissue 

unilaterally.

10

218

Moderate numbers 

of lymphocytes, 

neutrophils and 

histiocytes  

infiltrate portal 

zones (liver) and 

accumulate in 

sinusoidal spaces.  

Scattered individual 

hepatocytes are 

degenerate/necrotic 

and are  

surrounded by 

aggregates of 

neutrophils and 

lymphocytes. 

Hyperplastic splenic 

follicles with 

regularly scattered  

lytic cells.   

Scattered 

perivascular and 

peribronchiolar 

hemorrhages. Some 

larger  

vessels are also 

surrounded by 

moderate numbers 

of lymphocytes and  

neutrophils.

10
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection

249

Moderate numbers 

of lymphocytes, 

neutrophils and 

histiocytes  

infiltrate portal 

zones (liver) and 

accumulate in 

sinusoidal spaces.  

Scattered individual 

hepatocytes are 

degenerate/necrotic 

and are  

surrounded by 

aggregates of 

neutrophils and 

lymphocytes.

Hyperplastic splenic 

follicles with 

regularly scattered  

lytic cells. 

Scattered 

perivascular and 

peribronchiolar 

hemorrhages.

10

250

Moderate numbers 

of lymphocytes,  

neutrophils and 

histiocytes infiltrate 

portal zones (liver) 

and  

accumulate in 

sinusoidal spaces. 

Scattered individual 

hepatocytes are  

degenerate/necrotic 

and are surrounded 

by aggregates of 

neutrophils and 

lymphocytes.  

Hyperplastic splenic 

follicles with  

scattered lytic cells 

Mild 

neutrophilic/lympho

cytic pleuritis.

10

300

Moderate numbers 

of lymphocytes, 

neutrophils and 

histiocytes  

infiltrate portal 

zones (liver) and 

small clusters 

accumulate in  

sinusoidal spaces. 

Scattered individual 

hepatocytes are  

degenerate/necrotic 

and are surrounded 

by aggregates of 

neutrophils and 

lymphocytes. 

Hyperplastic splenic 

follicles with 

scattered lytic cells  

and interstitial 

fibrin. 

10
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Mouse no. Liver Spleen Lung Kidney Brain Day Post Infection

237 Sham 7

238 Sham 8

239 Sham 9

240 Sham

Scattered 

perivascular and 

peribronchiolar 

hemorrhages 

10
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