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Abstract

Autocorrelation-Based Estimate of Particle Image Density in Particle Image Velocimetry

by

Scott O. Warner, Master of Science

Utah State University, 2012

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

In Particle Image Velocimetry (PIV), the number of particle images per interrogation

region, or particle image density, impacts the strength of the correlation and, as a result, the

number of valid vectors and the measurement uncertainty. Therefore, any a-priori estimate

of the accuracy and uncertainty of PIV requires knowledge of the particle image density.

An autocorrelation-based method for estimating the local, instantaneous, particle image

density is presented. Synthetic images were used to develop an empirical relationship based

on how the autocorrelation peak magnitude varies with particle image density, particle

image diameter, illumination intensity, interrogation region size, and background noise.

This relationship was then tested using images from two experimental setups with

different seeding densities and flow media. The experimental results were compared to

image densities obtained through using a local maximum method as well as manual particle

counts and are found to be robust. The effect of varying particle image intensities was also

investigated and is found to affect the particle image density.

(89 pages)
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Public Abstract

Autocorrelation-Based Estimate of Particle Image Density in Particle Image Velocimetry

by

Scott O. Warner, Master of Science

Utah State University, 2012

Major Professor: Dr. Barton L. Smith
Department: Mechanical and Aerospace Engineering

Particle Image Velocimetry (PIV) is an optical method for measuring the speed of

liquids and gases. As part of PIV, the flow is seeded with small particles. Images of the

particles are captured at time intervals and the movement of the particles between images is

used to calculate the speed and direction of the fluid flow. The ability of PIV to accurately

measure the flow velocity is a function of many parameters including the particle image

density, or number of particles contained within an image. Therefore, a knowledge of the

particle image density can be used to estimate the accuracy and uncertainty of the PIV

measurements.

A method for estimating the particle image density is presented. With the use of

synthetic (computer generated) images, a formula was developed that relates the particle

image density to a function called an autocorrelation, as well as the particle image diameter,

average particle intensity, and the interrogation region size. The relationship was then tested

on PIV images from two experimental setups. Particle image density estimates from the

experimental images were compared to results acquired by using a local maximum method

as well as manual particle counts and are found to be robust. The effect of varying the

particle image intensity was also investigated and found to affect the particle image density.
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Chapter 1

Introduction

Particle image velocimetry (PIV) is a non-intrusive measurement technique used in

experimental fluid mechanics to acquire spatially resolved velocity fields. PIV is capable of

producing two- or three-component velocity fields which other flow measurement techniques,

such as hot wire anemometry and acoustic Doppler velocimetry, cannot. PIV is applied to

a wide variety of flow problems, ranging from measuring flows in turbomachinery [1] to

determining Reynolds stresses in artificial heart valves [2], and is often used as a validation

technique for numerical simulations, including Computational Fluid Dynamics (CFD).

As with any measurement technique, it is important to be aware of the parameters

that contribute to the measurement uncertainty. Being able to estimate these values allows

for a better understanding of how a given parameter effects the measurement and provides

a means of quantifying the uncertainty [3]. The remainder of this chapter discusses the

fundamentals of PIV and the parameters that contribute to its uncertainty.

1.1 Particle Image Velocimetry

The method of PIV involves introducing neutrally buoyant seeding particles in a flow

field and illuminating them with a double-pulsed laser sheet. Image-pairs of the illuminated

particles are acquired at discrete time intervals using a high-speed CCD camera. The images

are then subdivided into interrogation regions and processed using a cross-correlation-based

algorithm to obtain the associated particle displacements and, thus, velocity fields. A

diagram of the PIV method is shown in Fig. 1.1. Articles by Prasad [4], Adrian [5], and

Westerweel [6] provide a comprehensive description of the technique.

Since its beginning, PIV has undergone substantial improvements in measurement ac-

curacy and reliability [8]. The early technique of analog film recording and evaluation have
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Fig. 1.1: A Particle Image Velocimetry System [7]. A double-pulsed laser illuminates seed-
ing particles that are distributed in a flow. A CCD camera captures images of the seeding
particles separated by discrete time intervals. The images are then subdivided into interro-
gation regions and processed using a cross-correlation-based algorithm to produce a velocity
vector field.

been replaced with digital camera techniques. The introduction of sub-pixel interpolation

resulted in accuracy values reported as low as 0.1 pixel units [9]. The use of adaptive

evaluation algorithms, such as discrete window offsets (DWO) [10] and iterative image de-

formation methods [11] have been shown to reduce uncertainty levels. A comprehensive

report of the historical development of PIV is provided by Adrian [8].

1.2 Uncertainty in PIV

The uncertainty in PIV measurements is a function of many parameters [12]. These

parameters include, but are not limited to, particle image diameter, displacement gradients,

sub-pixel displacements, and particle image density. Each of these parameters are discussed

in the following sections.

1.2.1 Particle Image Diameter

The particle image diameter, dτ , is the diameter (in pixel units) of the particle as it
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appears in the recording medium and is proportional to the width of the correlation peak

[13,14]. The correlation peak can be generated by either implementing a cross-correlation or

an autocorrelation. The cross-correlation method involves correlating two separate images

together, while an autocorrelation involves correlating a single image with itself. Many

different values have been suggested for optimum particle image diameter ranging from just

under 2 pixel units [15] to over 6 pixel units [16]. In general, the optimum particle image

diameter ranges from 2 to 4 pixel units [17]. The variation in optimum diameter stems

from the method used to estimate the sub-pixel displacements (e.g. three-point Gaussian,

three-point parabolic, and centroid fits).

When particle images become too small (≤ 1 pixel) the uncertainty can increase due

to “peak locking,” or pixel locking. Peak locking results in displacements that are biased

toward integer pixel values [12]. The presence of peak locking can be detected by making

a histogram plot of PIV displacements. If peak locking is present, the histogram will have

distinct peaks at integer displacement values. Image preprocessing can reduce the peak

locking effect.

The uncertainty also increases when particles become too large (for a fixed camera res-

olution and 3-point sub-pixel estimation method). As the particle image diameters increase,

the correlation peak becomes more wide, and the center of the correlation peak (used to

estimate sub-pixel displacement) becomes more difficult to locate [17].

1.2.2 Displacement Gradient

Displacement gradients, or flow velocity gradients, diminish the amplitude of the cor-

relation peak and broaden its width. As the correlation peak decreases and broadens, the

peak becomes less detectable, which results in increased uncertainty. The effect of the dis-

placement gradient on the correlation peak can be seen in Fig. 1.2, where Fig. 1.2a and

Fig. 1.2b are cross-correlation maps obtained from synthetic images with no displacement

gradient and a 0.2 pixels/pixel displacement gradient, respectively.

The displacement gradient can be obtained using various techniques [18], including

finite difference methods [19], biquadratic polynomial with least-squares interpolation [20],
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(a) (b)

Fig. 1.2: A demonstration of the effects of displacement gradients on the correlation peak.
The correlation of synthetic images with constant parameters show the difference between
applying (a) no gradient and (b) a 0.2 pixels/pixel gradient.

and radial basis functions [21,22].

1.2.3 Sub-Pixel Interpolation

Originally, the resolution of PIV measurements was limited to integer pixel values.

To improve the resolution and accuracy, sub-pixel interpolation methods are used in PIV.

These methods fit a curve to the correlation peak profile and estimate the location of the

correlation peak.

Many methods exist for estimating the sub-pixel displacement, including the peak

centroid method [23], Gaussian interpolation [9], sinc interpolation [24], and polynomial

interpolation [25]. It has been suggested that the optimal sub-pixel fit method may be a

function of the particle image diameter [26]. The uncertainty of the sub-pixel displacement

depends on the interpolation method used and how well it fits the correlation peak profile.

1.2.4 Particle Image Density

Another important parameter that effects the PIV measurement uncertainty is the

particle image density, NI . The particle image density is the mean number of particles per

interrogation region. It is recommended to have NI greater than 10 particles [27]. The PIV
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measurement uncertainty is impacted by NI in at least two ways:

1. Increasing the number of particle image pairs within an interrogation window increases

the probability of a valid displacement vector [28] and decreases the measurement

uncertainty [12,29].

2. In regions of shear, small NI can result in increased random uncertainty [3].

Due to its influence on uncertainty, it is important to know the local instantaneous

particle image density. The particle image density may vary in space and time to due

to variations in seeding levels or illumination issues. An estimation of the particle image

density can provide the ability to rapidly scan a PIV dataset for these issues, determine the

quality of a PIV dataset, and eliminate bad images prior to vector computation.

Few methods for estimating NI are available. For sufficiently low NI , one may attempt

to simply count the number of particle images by hand. However, the task is time consuming

and subject to user bias. It is also difficult to account for dim and overlapping particles

within an interrogation domain.

Another method of determining NI involves using a local maximum routine to find

particles. A threshold is needed to separate low level peaks generated by noise and those

created by actual particles. This method is also unable to account for overlapping particles

and tends to underestimate NI as the particle image density increases.

Previously, as part of a method for estimating the instantaneous local uncertainty, an

estimate of the particle image density NI has been made by applying a binary threshold

to an interrogation domain, summing the binary values of the image, and then dividing by

the approximate pixel area of a single particle [3]. This method was applied to computer

generated PIV images called “synthetic images.” This density estimate is not robust in that

it requires a correction factor and threshold value unique to each image set and it also

cannot account for overlapping particles.

The autocorrelation peak magnitude is proportional to the particle image density, par-

ticle image diameter, average particle image intensity, and the size of the interrogation

domain. With the use of synthetic images and estimates of the particle image diameter and
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average particle image intensity, an empirical relationship between these parameters was

determined; and a method to estimate the particle image density was developed.

The next chapter lists the objectives of this research. In chapter 3, the methods for

calculating the autocorrelation peak magnitude, particle image diameter, and average parti-

cle intensity are discussed along with preprocessing techniques. Chapter 4 covers synthetic

image generation and both experimental setups. Chapter 5 discusses the development of

the empirical equation used in the autocorrelation-based density (ABD) method followed

by the results of the ABD method on synthetic images with noise as well as images from

the two experimental setups.
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Chapter 2

Objectives

The objectives of the research are as follows:

� Develop a method for estimating the average particle intensity to be used in the

autocorrelation-based density (ABD) method.

� Generate synthetic images that contain various particle image diameters, densities,

and intensities.

� Develop an empirical relationship relating the particle image density to the correlation

peak height, particle image diameter, average intensity, and interrogation region size.

� Determine the effect of noise on method by introducing synthetic noise derived from

low speed and high speed PIV cameras.

� Determine the effect of particle image intensity on the particle image density estima-

tion by varying the lens aperture.

� Estimate the particle image density of the experimental data using the ABD method

and compare results those obtained by the local-maximum method and manual par-

ticle counting.
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Chapter 3

Approach

The relative height of the autocorrelation peak Rh for an interrogation region in a PIV

image is a function of particle image diameter dτ , particle image density NI , interrogation

domain area A, and average particle intensity Ip. As each of these parameters increase, so

does the height of the autocorrelation peak (see Fig. 3.1). In other words,

Rh = f(dτ , NI , A, Ip). (3.1)

A method is presented to extract the particle image density from the autocorrelation

peak height by quantifying the effects from the other contributing parameters. Before the

density estimation takes place, noise due to the image background is removed and the images

are normalized. Each of the parameters in Eq. 3.1 are discussed in detail, with exception

to A, as its calculation is trivial, followed by the pre-processing techniques used.

3.1 Relative Autocorrelation Peak Height

An autocorrelation map for a single interrogation area IA1 can be generated by com-

puting the discrete autocorrelation

R (r, s) =

DI−1∑
i=0

DI−1∑
j=0

IA1 (i, j) IA1 (i+ r, j + s) (3.2)

where DI is the interrogation cell size and r, s = −DI/2, ..., DI/2− 1 [30].

Alternatively, a frequency domain based correlation may be used in place of Eq. 3.2

by applying the Wiener-Khinchin theorem [12]. Using this theorem, the autocorrelation is
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Fig. 3.1: The relative height of the autocorrelation peak Rh as a function of (a) NI , (b) dτ ,
(c) A, and (d) IP . These figures were generated by autocorrelating synthetic images with
known particle image diameters, densities, and intensities.

computed with Fourier transforms as

R(r, s) = Re
[
FFT−1 {FFT ∗ (IA1)FFT (IA1)}

]
(3.3)
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where FFT denotes a Fast Fourier Transform, ∗ denotes the complex conjugate and the

Re operator returns the real part of the complex number [12]. The use of FFTs in Eq. 3.3

to compute the autocorrelation requires less computation time compared to the discrete

method in Eq. 3.2 [30]. In order to use Eq. 3.3, the interrogation size must be DI = 2n,

where n is an integer value.

As a result of using Eq. 3.3 to correlate IA1 with itself, an autocorrelation map is

generated such as shown in Fig. 3.2a. The relative peak height Rh is defined as

Rh = Rp −Rmin. (3.4)

where Rp is the height of the highest correlation peak and Rmin is the lowest value in the

correlation plane (Fig. 3.2b). Rh is calculated relative to the correlation background to

help copmpensate for a general image background level or background noise.

3.2 Average particle intensity

Since the autocorrelation peak magnitude depends on the average particle image inten-

sity, a means to quantify this value based on the images is required. The average particle

intensity is calculated by first locating obvious particles using a function that locates local

maximum values in the image. Since the pixel intensity is an average of the light intensity

incident on the pixel, the maximum intensity of a particle is highest and closest to the true

maximum intensity when the particle is centered on a pixel. Therefore, the average particle

intensity estimate was based on the particle images that were well aligned with the pixel

grid. Figure 3.3 shows the difference in the particle image intensity for an off-center particle

image and the preferred pixel-centered particle.

To determine if a particle (represented by a local maximum) is pixel-centered, the

standard deviation of the intensity of the four adjacent pixels is computed. If the standard

deviation is beneath a specified threshold value, it is deemed pixel-centered and contributes

to the average intensity calculation. All of the values of the pixel-centered particles are

averaged together to estimate the average particle intensity that contributes to the particle
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(a)

(b)

Fig. 3.2: Preforming an autocorrelation using Eq. 3.3 produces (a) an autocorrelation map.
A cross section of the autocorrelation map (b) shows the highest and lowest value of the
autocorrelation map, RP and Rmin repectively. The difference between these values is the
relative autocorrelation peak height.

image density calculation.

The average particle intensity estimation method is based solely on local maximum

intensities and not the average intensity of the actual individual particles. When two or
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Fig. 3.3: The maximum particle intensity depends on the sub-pixel location of the particle.
A particle with a 0.25 pixel offset (a) has a reduced maximum pixel intensity and a larger
standard deviation in surrounding pixels. A particle that is pixel centered (b) provides the
best estimate of the actual maximum particle intensity. If a particle is pixel centered, the
four adjacent pixels will have nearly identical intensity values and a low standard deviation.

more particles overlap, the intensities of the particles are summed together, which will

increase the average particle intensity estimate. As a results the average particle intensity

estimate will tend to overestimate the true average particle intensity as the density increases.

3.3 Particle Image Diameter Estimation

The particle image diameter dτ and the width of the displacement-correlation peak dD

are related by

dD ∼=
√

2d2τ +
4

3
a2, (3.5)

where the gradient parameter a can be neglected when dD is obtained through autocorre-

lation [17]. The autocorrelation peak width is commonly calculated using the e−2 width,
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which is four times the standard deviation for a Gaussian distribution. In order to find the

standard deviation from the autocorrelation peak, a 3-point Gaussian fit [12] is applied to

a cross section of the peak (Fig. 3.4).
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Fig. 3.4: A 3-point Gaussian is applied to the cross section of the correlation peak using
the three largest values.

Having obtained the standard deviation, and thereby the autocorrelation peak width,

equation 3.5 is solved directly for the particle image diameter

dτ ∼= 2
√

2σ, (3.6)

where σ is the standard deviation of the Gaussian fit.

3.4 Particle Image Density Estimation

Under favorable conditions, the particle image density can be approximated by count-

ing particles within an interrogation region. As previously mentioned, the task is time
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consuming and subject to user bias. Also, it is difficult to estimate the number of particles

when particles have low intensity or are overlapping.

The counting method for estimating the particle image density can also be automated

by locating and counting local maxima above a specified threshold intensity. This is done by

comparing the intensity of each pixel to the intensity of its 8 nearest neighbors. If the center

pixel intensity is larger than its neighboring pixels, then it is deemed a local maximum and,

therefore, contributes to the particle image density.

This local maximum method is able to provide somewhat accurate results when particle

image diameter and density are low. As the particle image diameter and density increase,

more particle images overlap, which decreases the number of local maximums and results in

an under estimate of the particle image density. To demonstrate this trend, synthetic images

were generated with known particle image diameters and image densities, the densities were

estimated using the local maximum method. The results are shown in Fig. 3.5. As the

density and diameter increase, the estimated value of the density decreases and the error

increases.

3.5 Image Preprocessing

One advantage of using digitally acquired images is the ability to remove non-ideal as-

pects. Under ideal circumstances images would contain brightly and uniformly illuminated

particles against a perfectly dark background. However, this idealized scenario is rarely

achieved in the experimental world. Generally, the image background is not perfectly dark

due to background noise and particles may vary in intensity or have low contrast. This

section will discuss methods for removing background noise and enhancing image contrast.

3.5.1 Background Image Removal

Background noise can limit the ability to estimate the particle image diameter and

particle image density. In some situations, noise may also cause error in the PIV mea-

surements. Background noise results from many things, including the zero-level noise of

the camera sensor, environmental lighting, non-uniform lighting, and laser reflections from
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stationary objects in the flow [31]. Noise from such sources should be avoided; however, this

is not always possible. Alternatively, preprocessing can be use to remove non-ideal aspects

from the images and is generally beneficial [32, 33]. One technique used to remove noise is

to subtract a background image from the original image.

Some of the most common methods of determining the background image include:

1. Recording an image of an illuminated flow without tracer particles.

2. Using the average or local minimum of all images within the image set [34,35].

3. Applying a low-pass/uniform or a median filter [17].

In the present work, the local minimum method was used to generate the background

image. The entire image set was analyzed, and the minimum value for each pixel loca-

tion was used for the background [26]. Fig. 3.6 shows an original image, the calculated

background using this approach, and the image with the background subtracted. Without
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the use of background removal, stationary objects and ambient lighting contribute to the

density estimate, resulting in significantly inflated results.

(a) (b)

(c)

Fig. 3.6: Demonstration of the impact of background removal: (a) the original image (b) the
background image based on the local minimum value from each pixel, and (c) the processed
image.

3.5.2 Image Normalization

The range of pixel intensities within an image set may vary due to the laser intensity,

lens focal number, and bit depth of the camera sensor. By adjusting these parameters,

particle intensities can range from values below the noise floor to the saturation threshold.

Local variations in intensity can occur due to variations in the size of the tracer particles,

nonuniform lighting, and reflections [17]. Preconditioning methods are available to optimize
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the contrast levels and provide uniform intensity across the full image. Some of these

methods include histogram equalization and min-max filtering [17].

The presence of unequal illumination between image sets, and interrogation regions

within those sets, can result in inaccurate estimates of the density. Therefore, the images

are normalized to ensure a consistent range in pixel intensities. Normalization occurs by

subtracting off the smallest intensity value Imin in the image and then dividing by Imax,

where

Imax = µp + 4σp, (3.7)

and where µp and σp are the mean and standard deviation of the particle intensities respec-

tively. Any pixel intensity greater than Imax is set to Imax in order to remove the effects of

particles with intensities far from the mean. As a result, images from different cameras with

different bit-depths, appear more similar and provide more consistent density estimates.
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Chapter 4

Synthetic Image Generation and Experimental Setups

The autocorrelation-based density method was developed using synthetic images with

known particle image diameters, image densities, particle image intensities, and interroga-

tion region sizes. The method was then verified using images from two experimental setups.

This chapter discusses the synthetic image generator and the experimental setups used to

supply images to develop and verify the autocorrelation-based density method.

4.1 Synthetic Image Generation

The particle image density estimation method that has been developed employs an

empirical relationship between the autocorrelation peak height and the other parameters

previously discussed to estimate the particle image density. The relationship was developed

using synthetic data with known particle image diameter, density, and intensity. The syn-

thetic image generator that was used is described by Timmins et al. [3]. The simulated

particles are randomly distributed throughout the interrogation domain area and within

the width of the light sheet. The intensity distributions of the particles are represented by

Gaussian functions and the particle image diameter is four times the standard deviation

of the Gaussian distribution. The laser sheet intensity distribution is Gaussian and the

maximum intensity of any given particle is determined by the particle’s position within

the light sheet. Flow properties, such as displacement and shear, have no effect on the

autocorrelation and are not accounted for.

In order to determine the effect of noise on the density estimation, two levels of back-

ground noise were added to the synthetic images to simulate the noise generated by the

cameras used in acquiring PIV measurements. To approximate the background noise, 100

images pairs were acquired using two different cameras with the lens caps on. The cameras



19

that were used are the PCO Sensicam QE 12-bit 1376× 1040 CCD and the Photron Fast-

Cam APX RS 10-bit CMOS camera. From these images, the mean and standard deviation

of the noise intensity were calculated and applied to the synthetic images.

4.2 Experimental Setups

In order to determine the robustness of the autocorrelation-based density method,

testing the method on actual experimental data is important. This was done by applying

the method on data from two separate experimental setups with different seeding particles

and flow media. The image densities were varried by introducing more seed into the fluid.

Each experimenta setup is discussed in detail in the following sections.

4.2.1 Laminar Jet

The first experimental setup consisted of a high-Reynolds-number, large shear, laminar

rectangular jet submerged in ambient air (Fig. 4.2). Images were acquired using the PCO

camera described above with a 105 mm lens and a New Wave dual-cavity 50 mJ / pulse

Nd:YAG laser. This system was controlled using DaVis 7.2 from LaVision [7] and seeded

with olive-oil droplets formed in a Laskin nozzle and added at the blower inlet.

Fig. 4.1: The schematic for the lamnar jet setup. The air drawn in by the blower is seeded,
conditioned, and then exits to the measurement region.

Six evenly spaced values of the volume flow rate through a Laskin nozzle were used

to adjust the seeding density and, thereby, the particle image density. The values through
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Fig. 4.2: Data is taken at the channel exit. The camera is positioned perpendicular to the
flow and normal to the laser plane.

the Laskin nozzle ranged from 200 to 450 standard liters per minute (SLPM) in increments

of 50 SLPM. The input air volume flow rate and the output seed mass flow rate have

been shown to behave somewhat linearly [36]. For each case, 1000 images were acquired

and analyzed using the autocorrelation-based density method. Density estimates were also

made by applying the local maximum method discussed earler, as well as manually counting

particles from several interrogation regions.

4.2.2 Aquarium

The second experimental setup consisted of a 10-gallon aquarium filled with water and

seeded using Potters 110P8 hollow glass microspheres, which have the characteristics shown

in Table 4.1. The same laser, lens, and camera were used in conjunction with DaVis 7.2

to acquire the images. A schematic of the aquarium setup is found in Fig. 4.3. As part

of this experiment, the effect of particle image diameter and image intensity on the density

estimation was investigated.

The particle image diameter can be varied by adjusting the f -number (or aperture)

of the lens. The particle image diameter varies as a function of the f -number through the

following approximation [12]:

dτ =
√

(Mdp)2 + d2s, (4.1)
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Table 4.1: The properties of Potters hollow microspheres used as seed. 1Density is measured
by gas displacement pycnometer. 2Bulk Density is the weight as measured in a container
and includes the interstitial air. 3Data represents percent volume distribution measured
using laser light scatter technique.

Properties of Potters 110P8 Microspheres

Density1, g/cc 1.10 ± 0.05

Bulk Density2, g/cc 0.49

Size Distribution3 (µm)

10% 5
50% 10
90% 21
97% 25

where M denotes the magnification of the image, dp is the actual particle diameter, and ds

is the diffraction-limited spot diameter,

ds = 2.44 (1 +M) f#λ, (4.2)

where λ is the wavelength of the light sheet, and f# is the ratio of the lens focal length, f ,

and aperture diameter, Da.

The amount of light that reaches the CCD array of the camera is a function of the

laser intensity and the aperture of the lens. By reducing the camera lens aperture while

maintaining a constant laser intensity, the effective amount of light incident on the CCD

array of the camera will decrease. This decrease in the amount of light captured by the

camera will result in fewer recognizable particle images.

To better illustrate why this decrease particle image density occurs, consider seeding

particles that have a size distribution that is Gaussian (the exact shape of the distribution

is not important to this discussion). The intensity of the light reflected from the particles

is a strong function of particle diameter [12,17] and their location in the Gaussian-profiled

light sheet. Therefore, the intensities of the reflections off the particles will also have a wide

distribution. Meanwhile, the camera sensor can only capture particle intensities that are

above its floor value. A decrease in the image intensity, weather due to the laser intensity

or lens aperture size, will result more particles dropping below the noise floor.
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(a)

(b)

Fig. 4.3: The schematics for the aquarium setup. Views include (a) an overhead and (b)
side view of the setup. The camera is positioned normal to the laser plane.

The situation is illustrated in Fig. 4.4. As the aperture size decreases (Fig. 4.4a to

Fig. 4.4c), for a fixed laser intensity and number of actual particles, the average particle

reflection intensity decreases and the reflections from smaller particles, as well as particles

near the edge of the laser sheet, are lost in the noise floor. Therefore, even though the

number of particles inside the field of view remains the same, the particle image density
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(from the camera’s point of view, which is what is important to PIV) decreases. Clearly,

the extent to which this is observed will depend on the width of the particle size distribution.
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Fig. 4.4: Effect of laser intensity and camera aperture on the estimated particle image
density. Three apertures are depicted: (a) large, (b) medium and (c) small. For each case,
four values of total seed mass m are depicted. The black and red shades represent the
camera noise floor and saturation level, respectively.

The area under any curve and outside of the shaded regions in Fig. 4.4 represents the

number of visible particles in the interrogation region. When the amount of seed is doubled,

the density will double. As more seed is added, the density will continue to increase linearly,

but with different slopes for each case. This trend may also occur for a case with a constant

aperture and decreasing laser intensity.

Five sets of data, each with twelve density levels, were acquired using a PCO Sensicam

QE 12-bit 1376 × 1040 CCD with a Nikon 105mm f/2.8D AF Micro-Nikkor Lens. The

f -number (which is inversely proportional to aperture size) and laser intensity were varied

in each set to determine the effect of particle image diameter and image intensity on the

density estimation.

The first three image sets had f -numbers of 11, 16, and 22. The laser intensity J for

the first three sets was adjusted such that few particles reached the camera saturation level.
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The final two image sets, f/16 (Jf11) and f/22 (Jf11), were acquired using the higher two

f -numbers while using the same laser intensity used for the f = 11 image set.

The seeding density was varied by adding known masses of seed to the flow medium.

The mass of each seed sample was measured using a highly accurate analytical balance. For

each measured mass of seed, 500 images were acquired and analyzed using the autocorrelation-

based density method. Again, density estimates were obtained by applying the local maxi-

mum method, as well as manually counting particles from several interrogation regions.
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Chapter 5

Results

This chapter discussed the derivation of the empirical equation for estimating the par-

ticle image density. The autocorrelation-based density (ABD) method is then applied to

synthetic data with known parameters in order to demonstrate the effect of particle image

diameter and particle image density on the ABD estimate. The effect of noise on the ABD

estimate is then investigated by adding artificial noise to the synthetic images. Lastly, the

ABD method is applied to experimental data from the two different experimental setups.

Results from the experimental data are discussed, including the effect of varying the particle

image diameter and image intensity.

5.1 Empirical Relationship

The ABD method for estimating the particle image density is based on relationship

between the autocorrelation peak height and the other parameters discussed previously.

The relationship was developed using synthetic data with known particle image diameter

and particle image density. The parameter space for the synthetic images used are shown

in Table 5.1. While the particle image diameter and density were specifically specified, the

average particle intensity was allowed to vary as a function of the other parameters. As the

particle image diameter and density increase, so does the number of overlapping particles

and, therefore, the estimated average particle intensity.

Table 5.1: Synthetic image parameter space.

Synthetic Image Parameter Lower Limit Upper Limit Step size

Particle Image Diameter (pixels) 1.5 8.0 0.5
Particle Image Density (particles/32× 32) 5 80 5
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For each combination of parameters, 1000 interrogation sized synthetic images were

generated. Interrogation sizes included 32×32, 64×64, 128×128, and 256×256. The relative

autocorrelation peak height, average particle intensity, and particle image diameter were

calculated for each synthetic image as previously described. Values for these parameters

were averaged and are shown in Fig. 5.1 where the particle image density NI is a function

of the particle image diameter dτ and the multiplication of Rh, A, and IP .
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Fig. 5.1: Averaged values of the particle image diameter, relative autocorrelation peak
height, interrogation area, and average particle intensity obtained from synthetic images
are plotted as a function of the true particle image density. Values for Rh, A, and IP are
combined through multiplication in order to reduce the 5-D surface to a 3-D surface for
viewing purposes.

The relationship between the parameters and the particle image density was modeled

using a power-law function of the form

NI
∼= a (Rh)b (dτ )c

(
Ip
)d

(A)e , (5.1)
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where the coefficients a, b, c, d, and e were determined using a nonlinear least-squares fit

with a trust-region algorithm. Values for the coefficients are found in Table 5.2 with their

corresponding goodness of fit value.

Table 5.2: The coefficients for Eq. 5.1 determined using a least-squares fit and the corre-
sponding goodness of fit value.

a b c d e R-square

178 1.40 -2.03 -2.05 -1.42 0.993

Applying the coefficients from Table 5.2 to Eq. 5.1 yields

NI
∼= 178

(Rh)1.40

(dτ )2.03
(
Ip
)2.05

(A)1.42
. (5.2)

All of the synthetic images defined by the parameter space were processed using Eq.

5.2. For each parameter set, the mean particle image density NI was calculated as

NI =
1

N

N∑
i=1

(NI)i (5.3)

where N is the number of measurements (NI)i. The absolute error ε and the relative error η

between the mean particle image density values and the actual density values for a 128×128

interrogation region are shown in Fig 5.2a-b. The absolute and relative errors are defined

as

ε =
∣∣NI,true −NI

∣∣ (5.4)

and

η =

∣∣NI,true −NI

∣∣
|NI,true|

(5.5)

where NI,true is the actual density of the synthetic images.

While using a 128× 128 interrogation region, the ABD method produces a maximum

absolute error of 4.5 particles at a particle image density of 80 particles/(32 × 32) and a

particle image diameter of 1.5 pixels which corresponds to a relative error of 5.6%. The
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maximum relative error of 44.1% occurs at a particle image density of 5 particles and a 2.0

pixel particle image diameter with a corresponding absolute error of 2.2 particles/(32× 32)

region.

For the 256×256 interrogation region, the absolute error (Fig. 5.3a) reaches a maximum

of 4.8 particles/(32 × 32) at an image density of 80 particles/(32 × 32) and particle image

diameter of 1.5 pixels which corresponds to a relative error of 6.0%. The relative error

(Fig. 5.3b) reaches a maximum of 47.0% at a particle image density of 5 particles/(32 ×

32) and particle image diameter of 2 pixels which corresponds to an absolute error of 2.3

particles/(32× 32).

When using a 64 × 64 interrogation region, the absolute error (Fig. 5.4a) reaches a

maximum of 5.2 particles/(32 × 32) at a particle image density of 80 particles/(32 × 32)

and particle image diameter of 1.5 pixels which corresponds to a relative error of 6.4%.

The relative error (Fig. 5.4b) reaches a maximum of 40.6% at a particle image density of 5

particles/(32×32) and particle image diameter of 2 pixels which corresponds to an absolute

error of 2.0 particles/(32× 32).

Lastly, a 32×32 interrogation region provides a maximum absolute error of 6.9 particles/(32×

32) at a particle image density of 80 particles/(32 × 32) and particle image diameter of

1.5 pixels which corresponds to a relative error of 8.6% (Fig. 5.5a). The maximum rel-

ative error for a 32 × 32 interrogation region is 31.9% at a particle image density of 5

particles/(32×32) and particle image diameter of 2 pixels which corresponds to an absolute

error of 1.6 particles/(32× 32) (Fig. 5.5b).

The average absolute and relative errors for each interrogation region size are shown

in Table 5.3. The lowest errors on average are obtained by using the 64× 64 interrogation

region. For all cases, the relative error is largest at an image density of 5 particles/(32×32)

and a particle image diameter of 2 pixels. The absolute error at this location is relatively

small, however, the value for particle image density is below the value recommended for

PIV and should be avoided. For all cases the aboslute error is highest at a particle image

density of 80 particles and a particle image diameter of 1.5 pixels.
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Fig. 5.2: The relative and absolute errors of the average particle image density calculated
using the ABD method. Estimated results are based on the average NI from 1000 synthetic
images with known densities. A 128× 128 interrogation region was used.
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Fig. 5.3: The relative and absolute errors of the average particle image density calculated
using the ABD method. Estimated results are based on the average NI from 1000 synthetic
images with known densities. A 256× 256 interrogation region was used.
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Fig. 5.4: The relative and absolute errors of the average particle image density calculated
using the ABD method. Estimated results are based on the average NI from 1000 synthetic
images with known densities. A 64× 64 interrogation region was used.
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Fig. 5.5: The relative and absolute errors of the average particle image density calculated
using the ABD method. Estimated results are based on the average NI from 1000 synthetic
images with known densities. A 32× 32 interrogation region was used.
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Table 5.3: The mean absolute errors ε and the mean relative errors η for the ABD method
obtained for each interrogation size. Errors were obtained by averaging results from the
synthetic images used to develop Eq. 5.2

A ε (particles/(32× 32)) η (% )

32× 32 1.91 7.13

64× 64 1.09 4.50

128× 128 1.24 5.31

256× 256 1.57 6.67

5.2 Test with Synthetic Images

While the autocorrelation-based density method was developed using synthetic data,

testing it further on synthetic data makes it possible to determine how precision uncertainty

varies with the given image parameters and to investigate the ABD method’s sensitivity

to image noise. The autocorrelation-based density method previously discussed was coded

into MATLAB and is shown in the Apendix. The ABD method was applied to synthetic

images with known particle image diameters and densities. The parameter space used may

be found in Table 5.1.

The results for the following cases were obtained by calculating the particle image

density for 100 interrogation regions using both the autocorrelation-based density method

and the local maximum method previously discussed. The sample mean NI , defined in Eq.

5.3, and sample standard deviation sNI
, defined by

sNI
=

[
1

N − 1

N∑
i=1

(
(NI)i −NI

)2]1/2
, (5.6)

were calculated for each case. The mean particle image density was plotted for each case

and the standard deviation was used to calculate uncertainty bands. All uncertainty bands

contained in the following figures represent the 95% confidence interval (1.96sNI
/
√
N [37])

of the mean particle image density.

5.2.1 Effect of Density

In the first case, synthetic images were generated with varying densities ranging from
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5 to 80 particles per 32× 32 interrogation region, particle image diameters of 3 pixels, and

no noise. Figure 5.6 shows the calculated particle image density as a function of the actual

particle image density. The particle image density was calculated using the ABD method

as well as the local maximum method for interrogation sizes of 32× 32, 64× 64, 128× 128,

and 256× 256.
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Fig. 5.6: The effect of particle image density on the particle image density estimation.
Synthetic images were used with known densities, particle image diameter of 3 pixels, and
no noise. The particle image density was estimated using the autocorrelation-based density
(ABD) and local maximum (LM) methods.

The ABD method provides similar averaged results for all interrogation sizes. The

local maximum method underestimates the particle image density as the actual density
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increases due to an increase in overlapping particle images. Increasing the density also

increases the the precision uncertainty (Fig. 5.7). However, as the interrogation region size

increases, the effect of increased density on the precision uncertainty diminishes due to

spatial averaging. Larger interrogation regions allow for more spatial averaging and less

variation in the estimated particle image density.
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Fig. 5.7: Precision uncertainty of the particle image density estimation results in Fig. 5.6.
The folowing values represent the 95% confidence interval (1.96sx/

√
N) for each interroga-

tion region size.
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5.2.2 Effect of Diameter

The particle image diameter also affects the performance of the ABD method as shown

in Fig. 5.8. Images were generated with varying particle image diameters ranging from 1.5

to 8 pixels, constant density of 40 particles per 32×32 region, and no synthetic noise. Again

the particle image density was calculated using the autocorrelation-based density method

as well as the local maximum method for interrogation sizes of 32× 32, 64× 64, 128× 128,

and 256× 256.
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Fig. 5.8: The effect of particle image diameter on the particle image density estimation.
Synthetic images with a particle image density of 40 particles per 32 × 32 region and no
noise were used. The particle image density was estimated using the autocorrelation-based
density (ABD) and local maximum (LM) methods.
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The mean ABD estimates vary between interrogation sizes due to the goodness of the

nonlinear least squares fit. In general, the particle image density estimates decrease with

increased interrogation size. For all cases the ABD estimates are significantly more accurate

than the results obtained by the local maximum method. The local maximum method un-

derestimates the particle image density as the particle image diameter increases. Increasing

the particle image diameter increases the amount of particle image overlap and decreases

the number of distinct particle images. For all interrogation sizes, the precision uncertainty

remains fairly constant as the diameter increases (Fig. 5.9). However, as the interrogation

region size increases, the effect of diameter on the precision uncertainty diminishes due to

spatial averaging.
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Fig. 5.9: Precision uncertainty of the particle image density estimation results in Fig. 5.6.
The folowing values represent the 95% confidence interval, 1.96sx/

√
N .
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5.2.3 Effect of Noise

Two levels of background noise were added to the synthetic images to simulate the

noise generated by the PCO Sensicam and Photron FastCam cameras with lens caps in

place. The mean and standard deviation of the noise intensity was calculated from 100

images pairs and are found in Table 5.4. The artificial noise was applied to synthetic im-

ages randomly using a normal distribution. The synthetic images had particle images with

3-pixel diameters. The average image densities for 1000 images were calculated with the

autocorrelation-based density method and the local maximum method using 32 × 32 and

128× 128 interrogation regions.

Table 5.4: The mean and standard deviation of noise from two PIV cameras.

Camera Bit Depth Mean Standard Deviation

PCO Sensicam 12-bit 41.411 2.441

FastCam APX RS 10-bit 2.902 14.541

The results in Fig. 5.10 show that the particle image density estimation is mostly

unaffected by the synthetic background noise for a 32 × 32 interrogation region. As the

density increases the particle image density estimates from the camera 2 noise synthetic

images drop below the particle image density estimates from the images with no noise and

camera 1 noise. The same trend is seen in the precision uncertainty shown in Fig. 5.11.

The results in Fig. 5.12 show that the density estimation is mostly unaffected by the

synthetic background noise for a 128×128 interrogation region and produces similar results

for all cases. However, as the particle image density increases, the precision uncertainty

increases similarly for the no noise and camera 1 noise cases ( Fig. 5.13), while the precision

uncertainty for the camera 2 noise case somewhat drops off.

Overall, the addition of noise to the synthetic images has little effect on the autocorrelation-

based density method. Most of the negative effects of the synthetic noise are removed by the

background image removal process discussed earlier in this paper. In order to demonstrate

the effect of background image subtraction, the image densities of the synthetic images
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Fig. 5.10: Effect of introducing noise into the synthetic images on the particle image density
estimation for a 32 × 32 interrogation region. The noise generated simulates the noise
introduced using two different types of cameras.

with noise from camera 1 and 2 were reprocessed without background removal. Results

from both the autocorrelation-based density method and the local maximum method for a

128× 128 interrogation region are shown in Fig. 5.14.

Without the use of background subtraction, both the autocorrelation-based density

method and the local maximum method are unable to provide acceptable estimates of the

particle image density. At low image densities both methods severely over estimate the par-

ticle image density due to the random fluctuations of the noise. For the local max method,

the random noise fluctuations form peaks, or “false particles,” that contribute to the par-

ticle image density. These false particles have a relatively low intensity compared to true

particles. At low image densities the false particles dominate the number of true particles
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Fig. 5.11: The effect of noise on the precision uncertainty of the density estimation results
in Fig. 5.10.

and, therefore, reduce the average intensity which, in turn, causes the autocorrelation-based

density method to overestimate the particle image density. As the density increases, the

particle image density estimates begin to be dominated by true particle images (rather than

false particles), and the slopes of the noisy data converge to the slope of the no noise particle

image density estimates. Background image subtraction should always be performed when

using the autocorrelation-based density method to estimate the particle image density.

5.3 Experimental Verification

Experimental verification of the synthetic image results requires a PIV setup with

adjustable particle image density. This requirement was realized by incrementally increasing

the amount of seed particles within the fluid. Images with increasing density were collected
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Fig. 5.12: Effect of introducing noise into the synthetic images on the particle image density
estimation for a 128 × 128 interrogation region. The noise generated simulates the noise
introduced using two different types of cameras.
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Fig. 5.13: The effect of noise on the precision uncertainty of the density estimation results
in Fig. 5.12.
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Fig. 5.14: Effect of introducing noise into the synthetic images on the particle image density
estimation for a 128× 128 interrogation region when background image subtraction is not
used. The noise generated simulates the noise introduced using two different types of
cameras. The particle image density was estimated using the autocorrelation-based density
(ABD) and local maximum (LM) methods.

from two separate experimental setups with different flow media and seed particles.

5.3.1 Laminar Jet Tests

The first experimental setup was a submerged rectangular jet in ambient air seeded

with olive-oil droplets as previously described in section 4.2.1. For each of the six evenly-

spaced values of the volume flow rate through the Laskin nozzle, 1000 images were acquired

and analyzed using the ABD method. Interrogation regions (32×32 pixels) from the images

acquired using the laminar jet setup are shown in Fig. 5.15. Particle image density esti-

mates were also made using the local maximum method and by manually counting particles
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from several interrogation regions. The average of the manually counted densities with their

accompanying 95% confidence intervals are plotted along side the results from the ABD and

local maximum methods in Fig. 5.16. Confidence intervals for the ABD method and local

maximum method are not shown as they are insignificant for such a large sample size.

(a) 200 slpm (b) 250 slpm (c) 300 slpm (d) 350 slpm (e) 400 slpm (f) 450 slpm

Fig. 5.15: Interrogation regions (32 × 32 pixels) from images acquired using the jet setup.
The particle image density was adjusted by increasing the volume flow rate (SLPM) into a
Laskin Nozzle.

The results show a nearly linear relationship between flow rate into the Laskin nozzle

and the estimated particle image density as anticipated. The local maximum method and

manual count results resemble the ABD results until the particle density exceeds 40 particles,

after which the local maximum results and manual count start to fall below the ABD

methods results. This difference in the results is expected. As the particle image density

increases, particle images become lost due to particle overlap. In effect, the rate of particle

image density per increase in flow rate decreases for the methods based on local maximums.

5.3.2 Aquarium Tests

The second experimental setup, described in section 4.2.2, consisted of an aquarium

filled with water and seeded with hollow glass spheres. Known masses of seeding particles

were added to increase NI . The purpose of this experiment was to further explore the

autocorrelation-based density method’s ability to estimate the particle image density when

subject to variations in particle image density and image intensity.

Twelve values of particle image density were obtained by adding measured masses of

seed, whose values are shown in Table 5.5, to the aquarium setup. In attempt to evenly

distribute the particles and avoid clumping, the seed samples were first blended into a
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Fig. 5.16: Particle image density estimates as a function of the mass flow rate to the
seeder for the rectangular jet case. Results were acquired implementing the autocorrelation-
based density method (solid lines and symbols) as well as the local maximum method and
manually counting particles from several interrogation regions. Error bars represent the
95% confidence interval.

portion of the flow media being added to the remaining fluid within the aquarium. Sets

of 500 images were acquired for each diameter and density. Interrogation regions (32 × 32

pixels) from the images acquired using the aquarium setup are shown in Fig. 5.17.

5.3.3 Effect of Particle Image Density

The first aim of this experiment was to determine the effect of the particle image

diameter on the autocorrelation-based density method. The diameter was altered by by

adjusting the f -number (or aperture) of the lens. Using f -numbers of 11, 16, and 22,

produced particle image diameters of 2.4, 3.0, and 4.0 pixels, respectively.

As the f -numbers increases, the aperture decreases, and the amount of light captured by

the camera decreases. To compensate for the variation in captured light, the laser intensity
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Table 5.5: The samples of hollow glass spheres mixed into the water of the aquarium
experiment. The mass of each sample was measured using an analytical balance.

Sample Mass (g) Total Mass (g)

1 0.02037 0.02037

2 0.03016 0.05053

3 0.04959 0.10012

4 0.04962 0.14974

5 0.05012 0.19986

6 0.05009 0.24995

7 0.15047 0.40042

8 0.20017 0.60059

9 0.20141 0.80200

10 0.20017 1.00217

11 0.39960 1.40177

12 0.39823 1.80000

(a) 0.020 g (b) 0.051 g (c) 0.100 g (d) 0.150 g (e) 0.200 g (f) 0.250 g

(g) 0.400 g (h) 0.601 g (i) 0.802 g (j) 1.002 g (k) 1.402 g (l) 1.800 g

Fig. 5.17: Images with varying densities acquired from the aquarium setup. The density
was increased by adding known masses of hollow glass spheres. Images shown are for the
f/22 case.

was adjusted in order to obtain similar average image intensities and few saturated particle

images for each f -number. The average particle image density values estimated using the

autocorrelation-based density method, local maximum method, and manual counting are

shown in Fig. 5.18.

The results in Fig. 5.18 show a linear relationship between the cumulative mass of

the seeding particles and the density estimated by the ABD method. The data for f/11
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Fig. 5.18: Estimated seeding density as a function of the total mass of seed particles added
to the water. Values are shown using three different particle image diameters. The solid
lines with the solid symbols represent the average particle image density calculated using
the autocorrelation-based density method. The dashed and dotted lines with the open
symbols represent the average particle image density estimates from the local maximum
(LM) method and manual counting (MC), respectively.

and f/16 are very similar because the average image intensities were nearly identical. The

maximum available laser intensity for the f/22 case was not sufficient to compensate for

the decrease in aperture, and thus the intensity of the images was noticeably decreased,

leading to a slight loss in recognizable particles and a slight decrease in slope.

The density estimates obtained by the local maximum method and manually counting

particles follow the same linear trend at lower densities. As the density increases, the local

maximum and manual counting methods are unable to account for overlapping particles

and, therefore, underestimates the particle image density. The difference between the local
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maximum particle image density estimates is due to the increase in particle image diameter.

As the diameter increases, more particle overlap occurs, which reduces the particle image

density estimate.

5.3.4 Effect of Image Intensity

In the second part of the this experiment, the effect of image intensity was investigated.

The image intensity was varied by adjusting the f -number while maintaining a constant

laser intensity J . Two image sets were acquired (f/16 (Jf11) and f/22 (Jf11)) with the

same laser intensity used for the f/11 image set. The average particle image density values

estimated using the autocorrelation-based density method, local maximum method, and

manual counting are shown in Fig. 5.19.

Although the slopes for each f -number is different, the results in Fig. 5.19 still show

a linear relationship between the cumulative mass of the seeding particles and the den-

sity estimated by the ABD method. For smaller apertures (larger f numbers) the particle

image density is smaller as less light reaches the CCD sensor. As before, the local maxi-

mum method and manually counting are unable to maintain a linear particle image density

relationship as the mass of seed increases due to particle overlap.
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Fig. 5.19: Estimated seeding density as a function of the total mass of seed particles added
to the water. Values are shown using three different image intensities. The image intensity
was adjusted by using different f -numbers while maintaining a constant laser intensity. The
solid lines with the solid symbols represent the average particle image density calculated
using the autocorrelation-based density method. The dashed and dotted lines with the open
symbols represent the average particle image density estimates from the local maximum
(LM) method and manual counting (MC), respectively.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

An autocorrelation-based (ABD) method for estimating the particle image density has

been develop. The ABD method is based on the relationship between the relative auto-

correlation peak magnitude and the parameters that contribute to its magnitude, namely

the particle image diameter, particle image density, interrogation region size, and average

particle intensity. The magnitude of each of these parameters was found to be directly pro-

portional to the autocorrelation peak magnitude. Established methods for quantifying the

relative autocorrelation peak height and particle image diameter, as well as a new method

for estimating the average particle intensity were presented.

Synthetic images with know image parameters were generated. The known image

parameters were estimated using the methods previously discussed. A least squares fit was

implemented to develop an empirical relationship between the known particle image density

and the estimated parameters from interrogation regions of size 32× 32, 64× 64, 128× 128,

and 256×256 pixels. The error between the known particle image density and the estimated

particle image density from the autocorrelation-based density method was presented. The

mean errors were minimized when using the 64× 64 interrogation region size having mean

absolute and relative errors of 1.09 particles/(32× 32) and 4.50%, respectively.

The ABD method was tested further on synthetic images in order to investigate the

effect of image parameters on the precision uncertainty and the effect of noise on the particle

image density estimate. In general the precision uncertainty decreases with interrogation

size, increases with particle image density, and relatively unaffected by particle image diam-

eter. Two levels of noise were added to the synthetic images based on the noise generated

by PIV cameras. The effect of the synthetic noise was found to have little influence on
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the particle image density estimation and precision uncertainty. The effect of background

image subtraction on noisy data was also investigated. In the absence of background image

subtraction, the error of the particle image density estimates from the noisy data was highly

elevated for both the ABD method and the local maximum method. The measurement error

was especially high at low particle image density.

The ABD method was then applied to experimental data acquired from two exper-

imental setups. The first setup consisted of a laminar rectangular jet submerged in air

and seeded with olive oil droplets. The density of the flow was increased by increasing

the volume flow rate to the Laskin Nozzle. The particle image density was estimated with

the ABD method, the local maximum method, and by manually counting particles. As

anticipated, results from the ABD method provided a near linear increase in particle image

density while the estimates of the other two methods eventually leveled off as the volume

flow rate increased.

The second experimental setup consisted of an aquarium filled with water. The density

was increased by adding known amounts of seed to the medium. As part of this experiment,

the effect of particle image diameter and image intensity was investigated by adjusting the

f -number and laser intensity. As the particle image diameter increased little change was

observed in the particle image density estimates from the ABD and local maximum methods.

The image intensity, however, was found to affect the particle image density estimation

substantially. As the image intensity decreased (due to an increase in f -number) so did the

slope of particle image density results. It is suggested that this difference in the particle

image density is due, at least in part, to the amount of light captured by the camera. As the

aperture decreases, the intensity of light captured by the camera decreases, which results

in dim particles becoming more dim and becoming lost amidst the noise floor.

For both experimental studies, the ABD method was able to provide a near linear

increase in particle image density as a function of volume flow rate (for the laminar jet) and

mass (for the aquarium) as expected. The local maximum method was able to match the

ABD method when the particle image density was low, however, as the density increased
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the slop of the particle image density estimate began to decay as a result of particle overlap.

Similar results were seen by manually counting particle images. The consistent linear results

obtained with the autocorrelation-based density method demonstrates its ability to account

for overlapping particles.

6.2 Future Work

Future work into the development of the autocorrelation-based estimate of the particle

image density may include developing a different method to estimate the average particle

intensity, using an alternate image normalization technique, and refining and expanding the

image parameter space.

The average particle intensity estimation used in the ABD method is based on a local

maximum method. When calculating the average particle intensity no distinction is made

between individual and overlapping particles. When particles overlap their intensities sum,

which results in an overestimation of the average particle intensity. The development of

an alternate method to estimate the average particle intensity that is able to account for

particle overlap may provide more accurate results. Alternatively, the influence of the

average particle intensity on the ABD method may possibly be removed or lessened through

the implementation of a different image normalization method.

The normalizing method used in the image intensity estimation subtracts the lowest

intensity from the entire image and then normalizes the image intensity with respect to

the highest intensity values within a given interrogation region. Other methods for image

normalization are available, including a min-max filtering method presented by Adrian [17].

The min-max filter is a nonlinear filter that, in effect, determines the upper and lower

envelope on the image signal. The lower and upper envelops are smoothed using a uniform

filter. The lower envelop is subtracted from the image and the upper envelop is used to

normalize the image. As a result the image particles have a more uniform intensity level

across the entire image and between image sets. The min-max method for normalizing the

image particle intensity may remove the need to quantify the average particle intensity, or

at least decrease the average particle intensities influence on the ABD method.
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Finally, refining and expanding the image parameter space may provide the means to

generate a more accurate fit capable of providing higher accuracy results over a wider range

of densities. An expansion of the particle image diameter may be done; however, most PIV

algorithms implement 3-point fits to estimate the sub-pixel displacements which perform

poorly on particles with large image diameters.
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This appendix contains the MATLAB code for the autocorrelation-based density method

used to process data from synthetic and experimental data. A graphical user interface (GUI)

is also available, but is not included.

1 %Version updated 10/9/12 PIVdiaden v.4.4a
2

3 % USE THIS CODE BY RUNNING THE GUI 'PIVdiadenGUI.m' WITH
4 % 'PIVdiadenGUI.fig' IN THE SAME LOCATION AS THIS CODE.
5 %
6 % TO USE THIS CODE WITHOUT THE GUI THE STRUCTURE 'Data' MUST
7 % BE CREATED TO RUN 'PIVdiaden(Data)'.
8 %{
9 Data.imdirec = 'C:\Users\EFDL\Downloads\repivdiadencode';

10 Data.imbase = 'B';
11 Data.imzeros = '5';
12 Data.imext = 'tif';
13 Data.imcstep = '0';
14 Data.imfstep = '1';
15 Data.imfstart= '1';
16 Data.imfend = '6';
17 Data.imNum = '1';
18 Data.DiaGS = '2';
19 Data.DenGS = '2';
20 Data.dens = '';
21 Data.diam = '';
22 Data.hardDens = '0';
23 Data.hardDia = '0';
24 Data.Plot = '0';
25 Data.outbase = 'B00001';
26 Data.direcout= 'C:\Users\EFDL\Desktop\';
27 Data.par = '0';
28 Data.parprocessors = '6';
29 PIVdiaden(Data)
30 %}
31

32 function PIVdiaden(Data)
33 % Uncertainty analysis tool based upon input structure "Data"
34 % generated using the PIVuncertainty.m and PIVuncertainty.fig GUI file.
35 %
36 % Required GUI inputs include:
37 % −Image files (including DaVis *.im7 files)
38 % Data Structure includes:
39 % −imdirec − directory where images are located
40 % −imbase − base letter(s) of image (ie. 'B' for 'B00001.im7')
41 % −imzeros − number of number places in file(ie 'B00001.im7' has 5)
42 % −imext − extension on image file (ie. *.im7, *.png, etc.)
43 % −imcstep − step from first image to second image
44 % −imfstep − step between first and third images
45 % −imfstart− first image number
46 % −imfend − last image number
47 % −imNum − chose first or second image (ie. *.im7 file)
48 % −DiaGS − Diameter Grid size (ie. 128x128, 64x64)
49 % −DenGS − Density Grid size (ie. 128x128, 64x64)
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50 % −dens − Image density if hard coded (leave as '' otherwise)
51 % −diam − Image diameter if hard coded (leave as '' otherwise)
52 % −hardDens− Hard code density '0' = no, '1' = yes
53 % −hrdDia − Hard code diameter '0' = no, '1' = yes
54 % −Plot − Plot results '0' = no, '1' = yes
55 % −outbase − output file name (ie. B00001)
56 % −outdirec− directory where results are saved
57 % −par − run in parallel
58 % −parprocessors − number of processors to use
59 % −bkgd − minimum pixel value over all images
60 % −imgMean − mean pixel value over all images
61 % −imgStd − pixel standard deviation over all images
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64

65 %Convert Grid Size selection to pixel values
66 if Data.DiaGS=='1'
67 Data.GSdia=32;
68 elseif Data.DiaGS=='2'
69 Data.GSdia=64;
70 elseif Data.DiaGS=='3'
71 Data.GSdia=128;
72 elseif Data.DiaGS=='4'
73 Data.GSdia=256;
74 end
75

76 if Data.DenGS=='1'
77 Data.GSden=32;
78 elseif Data.DenGS=='2'
79 Data.GSden=64;
80 elseif Data.DenGS=='3'
81 Data.GSden=128;
82 elseif Data.DenGS=='4'
83 Data.GSden=256;
84 end
85

86 %Set grid resolution to match interrogation size
87 Data.gridres=Data.GSden;
88

89 if Data.bkgd =='1'
90 %% Calculate BackGround:
91 %{
92 Noise is introduced through stationary objects, reflections, and a
93 non−zero backgrond. The background is calculated by comparing all
94 images in the set and taking the minimum value for each pixel.
95 %}
96 fprintf('\n−−−−−−−−−−− Calculating Background Image −−−−−−−−−−−−\n')
97 %Image file location and base (ie. C:\Folder\File−prefix)
98 if ispc
99 imbase=[Data.imdirec '\' Data.imbase];

100 else
101 imbase=[Data.imdirec '/' Data.imbase];
102 end
103

104 %Image sets
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105 I1 = str2double(Data.imfstart):str2double(Data.imfstep):str2double(...
Data.imfend);

106 I2 = I1+str2double(Data.imcstep);
107

108 if strcmp(Data.imext,'im7')==1 | | strcmp(Data.imext,'IM7')==1
109 %Load single image to determin image size
110 Davis=readimx([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext],I1(1))...

]);
111 im2=double(Davis.Data(:,1:Davis.Ny))';
112 else
113 %All other image files (Same method for DaVis *im7 files [above])
114 im2=double(imread([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext],I2...

(1))]));
115 end
116

117 %Pre−allocate matrices for the background and for the mean/stdv
118 imgSum = zeros(size(im2));
119 imgSum2 = zeros(size(im2));
120 bkgd = ones([size(im2),2])*(2ˆ16);
121

122 %Load every image pair
123 for q=1:length(I1)
124 if strcmp(Data.imext,'im7')==1 | | strcmp(Data.imext,'IM7')==1
125 %DaVis Image File
126 Davis=readimx([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext],I2...

(q))]);
127 %Select image (DaVis image pairs are stored in a single matrix,
128 %side by side)
129 if Data.imNum == '1'
130 im2=double(Davis.Data(:,1:Davis.Ny))';
131 elseif Data.imNum == '2'
132 im2=double(Davis.Data(:,Davis.Ny+1:2*Davis.Ny))';
133 elseif Data.imNum == '3'
134 im2=double(Davis.Data(:,2*Davis.Ny+1:3*Davis.Ny))';
135 elseif Data.imNum == '4'
136 im2=double(Davis.Data(:,3*Davis.Ny+1:4*Davis.Ny))';
137 end
138

139 %Assign current image to 2nd slot in matrix
140 bkgd(:,:,2) = im2;
141 %Compare the current min the the new image, keep lowest value
142 bkgd(:,:,1) = min(bkgd,[],3);
143 %Values for mean and stdv
144 imgSum = imgSum + im2;
145 imgSum2 = imgSum2 + im2.ˆ2;
146 else
147 %All other image files (Same as DaVis *im7 files [above])
148 if Data.imNum == '1'
149 im2=double(imread([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext...

],I1(q))]));
150 elseif Data.imNum == '2'
151 im2=double(imread([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext...

],I2(q))]));
152 end
153 bkgd(:,:,2) = im2;
154 bkgd(:,:,1) = min(bkgd,[],3);
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155 imgSum = imgSum + im2;
156 imgSum2 = imgSum2 + im2.ˆ2;
157 end
158 end
159 %Store background in Data structure for future use
160 Data.bkgrd = bkgd(:,:,1);
161 %Calculate and store mean
162 Data.imgMean = (imgSum./q);
163 %Calculate and store standard deviation using:
164 %http://en.wikipedia.org/wiki/Computational formula for the variance
165 Data.imgStd = sqrt(imgSum2./(q−1)−(q/(q−1))*((imgSum./q).ˆ2));
166 %{
167 %Uncomment to make the following plots:
168

169 map = gray(2ˆ10);
170 %Shows Original Image
171 figure(1)
172 imshow(im2,map)
173

174 %Shows time minimum background
175 figure(2)
176 imshow(Data.bkgrd,map)
177

178 %Shows Figure (1) without background
179 figure(3)
180 Temp2=im2−Data.bkgrd;
181 Temp2(Temp2<0)=0;
182 imshow(Temp2,map)
183 %}
184 %End Calculage Backgroud
185 end
186

187 %% Run Jobs in Parallel
188 %{
189 If the "Run in Parallel" box is checked in the PIVuncertainty GUI,
190 this section opens matlabpool which enables parallel processing.
191 Images are devided between the total number of processors.
192 %}
193 if str2double(Data.par)
194 mkdir('TempFolder')
195 fprintf('\n−−− Initializing Processor Cores for Parallel Job −−−−\n')
196 poolopen=1;
197

198 %Don't open more processors than there are image pairs
199 if length(str2double(Data.imfstart):str2double(Data.imfstep):str2double(...

Data.imfend)) < str2double(Data.parprocessors)
200 Data.parprocessors=num2str(length(str2double(Data.imfstart):...

str2double(Data.imfstep):str2double(Data.imfend)));
201 end
202

203 try
204 %Open Matlab Pool
205 matlabpool('open','local',Data.parprocessors);
206 catch
207 try
208 %If First attepmt doesn't work, close and retry
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209 matlabpool close
210 matlabpool('open','local',Data.parprocessors);
211 catch
212 %If Second attempt doesn't work, continue with single processor
213 beep
214 disp('Error Running Job in Parallel − Defaulting to Single ...

Processor')
215 poolopen=0;
216 fprintf('\n−−−−−−−−−−−−−− Processing Dataset −−−−−−−−−−−−−−−−−−\n...

')
217 Data.par = '0';
218 diadenprocessing(Data)
219 fprintf('−−−−−−−−−−−−−−−− Job Completed −−−−−−−−−−−−−−−−−−−−−\n')
220 end
221 end
222 if poolopen
223 %Pool successfully open, divide sets
224 I1=str2double(Data.imfstart):str2double(Data.imfstep):str2double(...

Data.imfend);
225 I2=I1+str2double(Data.imcstep);
226

227 fprintf('\n−−−−−−−−−−−−−−− Processing Dataset ...
−−−−−−−−−−−−−−−−−−−\n')

228 spmd
229 verstr=version('−release');
230 if str2double(verstr(1:4))>=2010
231 I1dist=getLocalPart(codistributed(I1,codistributor('1d'...

,2)));
232 I2dist=getLocalPart(codistributed(I2,codistributor('1d'...

,2)));
233 else
234 I1dist=localPart(codistributed(I1,codistributor('1d',2),'...

convert'));
235 I2dist=localPart(codistributed(I2,codistributor('1d',2),'...

convert'));
236 end
237 diadenprocessing(Data,I1dist,I2dist);
238 end
239 fprintf('−−−−−−−−−−−−−−−−− Job Completed −−−−−−−−−−−−−−−−−−−−−−\n...

')
240

241 if poolopen
242 matlabpool close
243 end
244 end
245 %Combine solution from the parallel processors
246 DiadenCombine(Data)
247 else
248 %"Run in Parallel" not selected − Default to single processor
249 fprintf('\n−−−−−−−−−−−−−− Processing Dataset −−−−−−−−−−−−−−−−−−\n')
250 Data.par = '0';
251 diadenprocessing(Data)
252 fprintf('−−−−−−−−−−−−−−−− Job Completed −−−−−−−−−−−−−−−−−−−−−\n')
253 end
254

255
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256 function diadenprocessing(Data,I1,I2)
257

258 tic
259 % Image file location/base (ie. C:\Folder\File−prefix) and
260 % output directory
261 if ispc
262 imbase=[Data.imdirec '\' Data.imbase];
263 tempout = ['TempFolder\' Data.imbase];
264 Data.outdirec= [Data.outdirec '\'];
265 else
266 imbase=[Data.imdirec '/' Data.imbase];
267 tempout = ['TempFolder/' Data.imbase];
268 Data.outdirec= [Data.outdirec '/'];
269 end
270

271 if nargin<3 %(Not runing in parallel)
272 %Image indices
273 I1 = str2double(Data.imfstart):str2double(Data.imfstep):str2double(...

Data.imfend);
274 I2 = I1+str2double(Data.imcstep);
275 end
276

277

278 %% EVALUATE IMAGE PAIRS
279 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
280 for q=1:length(I1)
281

282 %Load image pair and flip coordinates
283 if strcmp(Data.imext,'im7')==1 | | strcmp(Data.imext,'IM7')==1
284 %DaVis Image File
285 Davis=readimx([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext],I2...

(q))]);
286 if Data.imNum == '1'
287 im2=double(Davis.Data(:,1:Davis.Ny))';
288 elseif Data.imNum == '2'
289 im2=double(Davis.Data(:,Davis.Ny+1:2*Davis.Ny))';
290 elseif Data.imNum == '3'
291 im2=double(Davis.Data(:,2*Davis.Ny+1:3*Davis.Ny))';
292 elseif Data.imNum == '4'
293 im2=double(Davis.Data(:,3*Davis.Ny+1:4*Davis.Ny))';
294 end
295

296 else
297 %All other image files
298 if Data.imNum == '1'
299 im2=double(imread([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext...

],I1(q))]));
300 elseif Data.imNum == '2'
301 im2=double(imread([imbase sprintf(['%0.' Data.imzeros 'i.' Data.imext...

],I2(q))]));
302 end
303 end
304 %Subtract background and 20 to compensate for an low level noise
305 %(Effects on the image densitsy are minimal (tipically 0.5% of max)
306 if Data.bkgd =='1'
307 im2 = im2−Data.bkgrd−20;
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308 end
309

310 %Any negative values set to zero
311 im2(im2<0)=0;
312

313 %Flip image
314 im2=flipud(im2);
315

316 %ESTIMATE THE FOLLOWING VALUES:
317 % P Dia − Particle image diameter
318 % P Dens − Image density
319 % DiaRatio − (dia x/dia y) to detect elliptical particles
320 % PeakDen − Image density using peak counting (8−neighbor)
321 % PeakDen2 − Image density using peak counting (20−neighbors)
322 % Iavg − Average particle intensity
323 [P Dia, P Dens, DiaRatio, PeakDen PeakDen2 Iavg]=DiaDen(im2,Data);
324

325 %Convert to single precision to save memory
326 P Dia=single(P Dia);
327 P Dens=single(P Dens);
328 DiaRatio=single(DiaRatio);
329 PeakDen=single(PeakDen);
330 PeakDen2=single(PeakDen2);
331 Iavg=single(Iavg);
332

333 %If running in parallel, save individual files (combined ln 248)
334 if str2double(Data.par)
335 save([tempout sprintf(['%0.' Data.imzeros 'i.mat'],I1(q))],...
336 'P Dia','P Dens','DiaRatio','PeakDen','PeakDen2','Iavg');
337 else
338 %Otherwise save results for each image to matrix
339 avgI(:,:,q)=Iavg;
340 Dia(:,:,q)=P Dia;
341 Den(:,:,q)=P Dens;%/(32*32); %Convert to particles/pixel
342 Rat(:,:,q)=DiaRatio;
343 PkDen(:,:,q)=PeakDen;%/(32*32);
344 PkDen2(:,:,q)=PeakDen2;%/(32*32);
345 end
346 %Output current step
347 fprintf(['Completed (' num2str(q) '/' num2str(length(I1)) ')\n'])
348 end
349 %If not running in parallel, continue to stats subfunction
350 if Data.par == '0'
351 DiaDenMeanStdev(Data,Dia,Den,Rat,PkDen,PkDen2,avgI)
352 end
353

354

355

356 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
357 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
358 function [DIA PD R PkD PkD2 Iavg] = DiaDen(IM,Data)
359

360 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
361 % Code written to estimate the particle diameter and density for an %
362 % image. A minimum grid size of 64x64 should be used. Results below %
363 % this grid size become significantly less accurate. %
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364 % %
365 % Inputs: IM − the full image %
366 % Data− structure containing all other inputs %
367 % Output: dia − Diameters for each interrogation region %
368 % PD − Particle Density for each interrogation region %
369 % R − Diameter ratio %
370 % PkD − Peak counting (8−neigbors) %
371 % PkD2− Peak counting (20−neighbors) %
372 % Iavg− Average Particle intensity %
373 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
374

375 [ysize xsize]= size(IM);
376 gridres = Data.gridres;
377 S=[ysize xsize]./gridres;
378

379 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
380 % Begin Diameter Estimation %
381 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
382 if str2double(Data.hardDia)==0
383 k=0;
384 %Generate sub−images
385 GS = Data.GSdia; %Grid size (pix)
386 inc=GS/gridres;
387 for i = 1:GS:floor(ysize/GS)*GS
388 l=0;
389 k = k+inc;
390 for j = 1:GS:floor(xsize/GS)*GS
391 l=l+inc;
392 img=IM(i:i+(GS−1),j:j+(GS−1));
393 [Diam,Ratio] = Diameter(img,GS);
394 DIA(k−inc+1:k,l−inc+1:l) = Diam;
395 R(k−inc+1:k,l−inc+1:l) = Ratio;
396 end
397 end
398

399 %Caluclate diameter for portion not withing the GSxGS regions
400 %−−−−−−−−−−−−−−−−x edge−−−−−−−−−−−−−−−
401 k=0;
402 for i = 1:GS:floor(ysize/GS)*GS
403 k = k+inc;
404 j = xsize−GS+1:xsize;
405 img=IM(i:i+(GS−1),j);
406 [Diam,Ratio] = Diameter(img,GS);
407 DIA(k−inc+1:k,l+1:ceil(xsize/gridres)) = Diam;
408 R(k−inc+1:k,l+1:ceil(xsize/gridres)) = Ratio;
409 end
410 %−−−−−−−−−−−−−−−−y edge−−−−−−−−−−−−−−−
411 i = ysize−GS+1:ysize;
412 l=0;
413 for j = 1:GS:floor(xsize/GS)*GS
414 l=l+inc;
415 img=IM(i,j:j+(GS−1));
416 [Diam,Ratio] = Diameter(img,GS);
417 DIA(k+1:ceil(ysize/gridres),l−inc+1:l) = Diam;
418 R(k+1:ceil(ysize/gridres),l−inc+1:l) = Ratio;
419 end



65

420 %−−−−−−−−−−−−−−−−corner−−−−−−−−−−−−−−−
421 img=IM(ysize−GS+1:ysize,xsize−GS+1:xsize);
422 [Diam,Ratio] = Diameter(img,GS);
423 DIA(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = Diam;
424 R(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = Ratio;
425

426 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
427

428 else %Hard−Code box is checked
429 DIA=str2double(Data.diam)*ones(ceil(S(1)),ceil(S(2)));
430 R=ones(ceil(S(1)),ceil(S(2)));
431 end
432 DIA(isnan(DIA))=0;
433

434

435 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
436 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
437 %%%%%% Estimate Density %%%%%%
438 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
439 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
440 if str2double(Data.hardDens)==0
441

442 GS =Data.GSden;
443 inc=GS/gridres;
444 k=0;
445

446 for i = 1:GS:floor(ysize/GS)*GS
447 l=0;
448 k = k+inc;
449 for j = 1:GS:floor(xsize/GS)*GS
450 l=l+inc;
451 % Inerrogation region size (GS x GS)
452 IA1=IM(i:i+(GS−1),j:j+(GS−1));
453 % Particle diameter for region
454 Dia = mean(mean(DIA(k−inc+1:k,l−inc+1:l)));
455 % Calculate the Density
456 [Dens pkDen pkDen2 avgI] = Density(IA1, Dia, GS,pkcut,thresh);
457 % Store Solutions
458 pd(k−inc+1:k,l−inc+1:l) = Dens;
459 pkd(k−inc+1:k,l−inc+1:l) =pkDen;
460 pkd2(k−inc+1:k,l−inc+1:l) =pkDen2;
461 Iavg(k−inc+1:k,l−inc+1:l) =avgI;
462 end
463 end
464

465 %−−−−−−−−−−−−−−−−x edge−−−−−−−−−−−−−−−
466 k=0;
467 for i = 1:GS:floor(ysize/GS)*GS
468 k = k+inc;
469 IA1=IM(i:i+(GS−1),xsize−GS+1:xsize);
470 Dia = mean(mean(DIA(k−inc+1:k,ceil(xsize/gridres)...
471 −inc+1:ceil(xsize/gridres))));
472 [Dens pkDen pkDen2 avgI] = Density(IA1, Dia, GS,pkcut,thresh);
473 pd(k−inc+1:k,l+1:ceil(xsize/gridres)) = Dens;
474 pkd(k−inc+1:k,l+1:ceil(xsize/gridres)) = pkDen;
475 pkd2(k−inc+1:k,l+1:ceil(xsize/gridres)) = pkDen2;
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476 Iavg(k−inc+1:k,l+1:ceil(xsize/gridres)) = avgI;
477 end
478

479 %−−−−−−−−−−−−−−−−y edge−−−−−−−−−−−−−−−
480 l=0;
481 for j = 1:GS:floor(xsize/GS)*GS
482 l=l+inc;
483 IA1=IM(ysize−GS+1:ysize,j:j+(GS−1));
484 Dia = mean(mean(DIA(ceil(ysize/gridres)...
485 −inc+1:ceil(ysize/gridres),l−inc+1:l)));
486 [Dens pkDen pkDen2 avgI] = Density(IA1, Dia, GS,pkcut,thresh);
487 pd(k+1:ceil(ysize/gridres),l−inc+1:l) = Dens;
488 pkd(k+1:ceil(ysize/gridres),l−inc+1:l) = pkDen;
489 pkd2(k+1:ceil(ysize/gridres),l−inc+1:l) = pkDen2;
490 Iavg(k+1:ceil(ysize/gridres),l−inc+1:l) = avgI;
491 end
492

493 %−−−−−−−−−−−−−−−−corner−−−−−−−−−−−−−−−
494 IA1=IM(ysize−GS+1:ysize,xsize−GS+1:xsize);
495 Dia = mean(mean(DIA(ceil(ysize/gridres)−inc+1:ceil(ysize/gridres),...
496 ceil(xsize/gridres)−inc+1:ceil(xsize/gridres))));
497 [Dens pkDen pkDen2 avgI] = Density(IA1,Dia,GS,pkcut,thresh);
498 pd(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = Dens;
499 pkd(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = pkDen;
500 pkd2(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = pkDen2;
501 Iavg(k+1:ceil(ysize/gridres),l+1:ceil(xsize/gridres)) = avgI;
502 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
503 pd(pd<0)=0;
504 pkd(pd<0)=0;
505 pkd2(pd<0)=0;
506 PD=pd;
507 PkD=pkd;
508 PkD2=pkd2;
509 else %Hard Code box is checked
510 PD=str2double(Data.dens)*ones(ceil(S(1)),ceil(S(2)));
511 PkD=str2double(Data.dens)*ones(ceil(S(1)),ceil(S(2)));
512 PkD2=str2double(Data.dens)*ones(ceil(S(1)),ceil(S(2)));
513 Iavg=ones(ceil(S(1)),ceil(S(2)));
514 end
515

516 %(un)comment to supress or plot images of diameter/density distribtions
517 %{
518 figure(10);surf(DIA,'DisplayName','DIA','edgecolor','none');
519 view(0,90);axis square;colorbar;title('Particle Image Diameter')
520

521 figure(11); surf(PD,'DisplayName','pd','edgecolor','none');
522 view(0,90);axis square;colorbar;
523 title('Particle Density')
524

525 figure(12);map = gray(2ˆ8);imshow(flipud(IM),map);title('Raw Image')
526 %}
527 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
528

529

530

531 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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532 function [Diam,Ratio] = Diameter(img,GS)
533 % The relationship between the particle image diameter and the width of
534 % the correlation peak is discussed in Adrian (8.126)
535 %Subtract the minimum value of the image
536 img=img−min(img(:));
537 %Auto−correlate
538 A=fftn(img);
539 C2=real(ifftn(conj(A).*A));
540 %Correlation Peak at Center of image
541 C2(1:GS/2,1:GS/2)=rot90(C2(1:GS/2,1:GS/2),2);
542 C2(1:GS/2,GS/2+1:GS)=rot90(C2(1:GS/2,GS/2+1:GS),2);
543 C2(GS/2+1:GS,1:GS/2)=rot90(C2(GS/2+1:GS,1:GS/2),2);
544 C2(GS/2+1:GS,GS/2+1:GS)=rot90(C2(GS/2+1:GS,GS/2+1:GS),2);
545 if max(C2(:))>0
546 %Locate Correlation Maximum
547 C2=C2−min(C2(:));
548 [ymaxval yind] = max(C2,[],1);
549 [˜, xind] = max(ymaxval);
550 yind = yind(xind);
551 x=0.5:size(C2,1)−0.5;
552 %Number of points used in Gauss Fit (N = val*2+1)
553 val = 1;
554 xData=x(yind−val:yind+val);
555 yData=C2(yind−val:yind+val,xind);
556 %Gauss Fit
557 % [fitresult, ˜] = fit( xData', yData, 'gauss1');
558 % Diam = 2*fitresult.c1;
559 %The function "fit" above requires curve fitting toolbox.
560 %Alternate method:
561 p=polyfit(xData',log(yData),2);
562 sigma=sqrt(−1/(2*p(1)));
563 %mu=p(2)*sigmaˆ2; A=exp(p(3)+muˆ2/(2*sigmaˆ2));
564 %Particle image diameter in y−direction
565 DiamY = 2*sqrt(2)*sigma;
566

567 %In the Y direction
568 y=0.5:size(C2,2)−0.5;
569 yData2 = y(xind−val:xind+val);
570 xData2 = C2(yind,xind−val:xind+val);
571 p2=polyfit(yData2,log(xData2),2);
572 sigma2=sqrt(−1/(2*p2(1)));
573 %Particle image diameter in x−direction
574 DiamX = 2*sqrt(2)*sigma2;
575 %Average particle image diameter
576 Diam = (DiamX+DiamY)/2;
577 %Calculate the diameter ratio
578 if DiamY˜=0
579 Ratio=DiamX/DiamY;
580 else
581 Ratio=0;
582 end
583

584 else
585 Diam = 0; Ratio = 0;
586 end
587 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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588

589

590

591 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
592 function [Dens pkDen pkDen2 avgI] = Density(IA1, Dia, GS)
593 %If particle counting has (dens < pkcut), the value for particle
594 %ct is used
595 pkcut=3;
596 %(image intensities < thresh) are set to 0 (accounts for noise)
597 thresh=1;
598

599 IA3=IA1; % Store unalterd image
600 IA1=sqrt(IA1); % Makes for better solution
601

602 %Locate peaks
603 BWI = Peak8(IA3);%imregionalmax(IA1);
604 PeaksI = IA3.*BWI;
605 peaksI = PeaksI(PeaksI˜=0);
606 %Take the average and standard deviation of peaks (for normalizing)
607 if isempty(peaksI)
608 imavg = 0;
609 imstd = 0;
610 else
611 imavg = mean(peaksI);
612 imstd = std(peaksI);
613 end
614 %Values to normailze interrogation region
615 IMmin = sqrt(min(IA3(:)));
616 IMmax = sqrt(imavg+4*imstd);
617

618 %If the above value is larger than the maximum value in the image
619 if IMmax > max(IA1(:))
620 IMmax = max(IA1(:));
621 end
622

623 IA1=IA1−IMmin; % Normalize image
624 IA1 = IA1*255/(IMmax−IMmin); % Normalize image
625 IA1(isinf(IA1) |isnan(IA1))=0;
626 IA1(IA1>255)=255; % Any value above IMmax = IMmax
627 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
628 %Autocorrelate
629 A=fftn(IA1);
630 C3=real(ifftn(conj(A).*A));
631 %Correlation Peak at Center of image
632 C3(1:GS/2,1:GS/2)=rot90(C3(1:GS/2,1:GS/2),2);
633 C3(1:GS/2,GS/2+1:GS)=rot90(C3(1:GS/2,GS/2+1:GS),2);
634 C3(GS/2+1:GS,1:GS/2)=rot90(C3(GS/2+1:GS,1:GS/2),2);
635 C3(GS/2+1:GS,GS/2+1:GS)=rot90(C3(GS/2+1:GS,GS/2+1:GS),2);
636 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
637 %Count particles by finding local maximums
638 IA4 = IA1;
639 IA4(IA4<thresh)=0;
640 BW2 = Peak8(IA4);
641 Peaks2 = IA4.*BW2;
642 peaks2 = Peaks2(Peaks2˜=0);
643 pk2=length(peaks2);
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644 pkDen =(32*32)*(pk2)/((length(IA1)−2)ˆ2);
645

646 %Consider using peaks2 from above instead of peaks for avg intensity
647 BW = Peak(IA4);
648 Peaks = IA4.*BW;
649 peaks = Peaks(Peaks˜=0);
650 pk3=length(peaks);
651 pkDen2 =(32*32)*(pk3)/((length(IA1)−4)ˆ2);
652

653 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
654 % AVERAGE INTENSITY %
655 % Calculate average intensity by taking peak locations and stdev of%
656 % four points around them. If stdev is low then particle images is %
657 % centered on a pixel and give a better representation of actual %
658 % particle peak intensity %
659 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
660 %Pre−allocate
661 I=zeros([size(IA1) 4]);
662 %Create 3D matrix with 3rd dimension containing the four
663 %surrounding points. (ie for pixel IA1(2,2) in image I(2,2,:)
664 %contains: IA1(1,2) IA1(3,2) IA1(2,1) IA1(2,3)
665 I(:,2:GS,1)=IA3(:,1:GS−1);
666 I(:,1:GS−1,2)=IA3(:,2:GS);
667 I(2:GS,:,3)=IA3(1:GS−1,:);
668 I(1:GS−1,:,4)=IA3(2:GS,:);
669 %Only keep values where peaks are located
670 I(:,:,1)=(I(:,:,1)./IA3).*BW;
671 I(:,:,2)=(I(:,:,2)./IA3).*BW;
672 I(:,:,3)=(I(:,:,3)./IA3).*BW;
673 I(:,:,4)=(I(:,:,4)./IA3).*BW;
674 %Remove any Nan
675 I(isnan(I))=0;
676 %Compute standard deviation of four values surronding peaks
677 Var=std(I,0,3);
678 %Calculate the max of the four values surrounding peaks
679 Imax=max(I,[],3);
680 %Create mask
681 Tmp1 = ones(size(IA1));
682 %Remove saturate particles (ie peak value = surround value)
683 Tmp1(IA3==Imax)=0;
684 %Remove peaks where surround values have large standard deviations
685 Tmp1(Var>=0.34)=0;
686 %Remove values where there are no peaks
687 Tmp1(BW==0)=0;
688 %Apply mask
689 Pks = Tmp1.*IA1;
690 %Collect peak values
691 Temp=Pks(Pks˜=0);
692

693 %Average Intensity:
694 if size(Temp,1)>1
695 avgI = mean(Temp);
696 elseif length(peaks)>=1
697 pks=peaks(peaks>=25);
698 avgI = mean(pks);
699 else
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700 avgI = max(IA3(:));
701 end
702 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
703

704 %Correlation Peak Value
705 CorrPeak=max(C3(:));
706

707 %Parameters for empirical density obtained through Least Squares fit
708 % Goodness of fit:
709 % R−square: 0.9999
710

711 a= 12.440818554697394;
712 b= 1.252907533572718;
713 c= −2.017253413241566;
714 d= −1.268448437457117;
715 e= −1.271518390712386;
716

717 %Calculate image density
718 Dens=a*(CorrPeakˆb)*(Diaˆc)*((GS*GS)ˆd)*(avgIˆe);
719

720 %If density is below 3 particles, resort to peak counting.
721 if pkDen < pkcut
722 Dens = pkDen;
723 end
724 Dens(isnan(Dens))=0;
725

726

727

728 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
729 % Peak Finder %
730 % This function locates local maximums by comparing each location %
731 % (i,j) to the surrounding 20 points %
732 % %
733 % | | | | %
734 % | | | | | | %
735 % i | | |x | | | %
736 % | | | | | | %
737 % | | | | %
738 % j %
739 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
740 function Matrx = Peak(IMG)
741

742 ny = size(IMG,2);
743 nx = size(IMG,1);
744 Matrx = zeros(size(IMG));
745 for i = 3:nx−2
746 for j = 3:ny−2
747 if IMG(i,j)>IMG(i,j−2) && IMG(i,j)> IMG(i,j−1)...
748 && IMG(i,j)>IMG(i,j+1) && IMG(i,j)> IMG(i,j+2)...
749 && IMG(i,j)>IMG(i−1,j−1) && IMG(i,j)> IMG(i−1,j)...
750 && IMG(i,j)>IMG(i−1,j+1) && IMG(i,j)> IMG(i−2,j)...
751 && IMG(i,j)>IMG(i+1,j−1) && IMG(i,j)> IMG(i+1,j)...
752 && IMG(i,j)>IMG(i+1,j+1) && IMG(i,j)> IMG(i+2,j)...
753 && IMG(i,j)>IMG(i−1,j−2) && IMG(i,j)> IMG(i+1,j−2)...
754 && IMG(i,j)>IMG(i+2,j−1) && IMG(i,j)> IMG(i+2,j+1)...
755 && IMG(i,j)> IMG(i−1,j+2)&& IMG(i,j)>IMG(i+1,j+2)...



71

756 && IMG(i,j)> IMG(i−2,j+1)&& IMG(i,j)> IMG(i−2,j−1)
757 Matrx(i,j) = 1;
758 end
759 end
760 end
761 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
762

763

764

765 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
766 % Peak Finder 8 %
767 % This function locates local maximums by comparing each location %
768 % (i,j) to the surrounding 8 points %
769 % %
770 % | | | | %
771 % i | |x | | %
772 % | | | | %
773 % j %
774 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
775 function Matrx = Peak8(IMG)
776 ny = size(IMG,2);
777 nx = size(IMG,1);
778 Matrx = zeros(size(IMG));
779 for i = 2:nx−1
780 for j = 2:ny−1
781 if IMG(i,j)> IMG(i,j−1) && IMG(i,j)> IMG(i,j+1)...
782 && IMG(i,j)> IMG(i−1,j−1) && IMG(i,j)> IMG(i−1,j)...
783 && IMG(i,j)> IMG(i−1,j+1) && IMG(i,j)> IMG(i+1,j−1)...
784 &&IMG(i,j)> IMG(i+1,j) && IMG(i,j)> IMG(i+1,j+1)
785 Matrx(i,j) = 1;
786 end
787 end
788 end
789 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
790

791

792

793 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
794 % When code PIVdiaden is run in parallel individual image solutions %
795 % are stored and then read in by this function. The individual results%
796 % are stored in a temporary file that is deleted at the end of this %
797 % function. %
798 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
799 function DiadenCombine(Data)
800

801 %Determine PC or Mac
802 if ispc
803 tempout = ['TempFolder\' Data.imbase];
804 Data.outdirec= [Data.outdirec '\'];
805 else
806 tempout = ['TempFolder/' Data.imbase];
807 Data.outdirec= [Data.outdirec '/'];
808 end
809

810 %Number of Images processed
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811 N = length(str2double(Data.imfstart):str2double(Data.imfstep):str2double(...
Data.imfend));

812

813 %Open first mat file to preallocate size
814 fname = [tempout sprintf(['%0.' Data.imzeros 'i.mat'],str2double(...

Data.imfstart))];
815 load(fname)
816 %Preallocate matrices
817 Dia = zeros(size(P Dia,1),size(P Dia,2),N,'single');
818 Den = zeros(size(P Dens,1),size(P Dens,2),N,'single');
819 Rat = zeros(size(P Dia,1),size(P Dia,2),N,'single');
820 PkD = zeros(size(P Dens,1),size(P Dens,2),N,'single');
821 PkD2 = zeros(size(P Dens,1),size(P Dens,2),N,'single');
822 avgI = zeros(size(P Dens,1),size(P Dens,2),N,'single');
823 %Load all *.mat files and store in three dimensional array
824 n = 1;
825 for i = str2double(Data.imfstart):str2double(Data.imfstep):str2double(...

Data.imfend)
826 fname = [tempout sprintf(['%0.' Data.imzeros 'i.mat'],i)];
827 load(fname)
828 Dia(:,:,n) = P Dia;
829 Den(:,:,n) = P Dens;
830 Rat(:,:,n) = DiaRatio;
831 PkD(:,:,n) = PeakDen;
832 PkD2(:,:,n)= PeakDen2;
833 avgI(:,:,n)= Iavg;
834 n = n + 1;
835 end
836 %Calculate Mean and Standard deviation
837 DiaDenMeanStdev(Data,Dia,Den,Rat,PkD,PkD2,avgI)
838 %Delete Temporary Folder
839 rmdir('TempFolder','s')
840 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
841

842

843

844

845 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
846 % This portion calculates the mean and standard deviation of the %
847 % entire image set. Used for both parallel and serial cases. %
848 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
849 function DiaDenMeanStdev(Data,Dia,Den,Rat,PkD,PkD2,avgI)
850 %Remove NaNs
851 Dia(isnan(Dia))=0;
852 Den(isnan(Den))=0;
853 Rat(isnan(Rat))=0;
854 PkD(isnan(PkD))=0;
855 PkD2(isnan(PkD2))=0;
856 avgI(isnan(avgI))=0;
857 %Calculate Mean and Standard Deviation
858 meanDia = mean(Dia,3);
859 meanDen = mean(Den,3);
860 meanRat = mean(Rat,3);
861 meanPkD = mean(PkD,3);
862 meanPkD2 = mean(PkD2,3);
863 meanIavg = mean(avgI,3);
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864 sigDen=std(Den,0,3);
865 sigDia=std(Dia,0,3);
866 sigRat=std(Rat,0,3);
867 sigPkD=std(PkD,0,3);
868 sigPkD2=std(PkD2,0,3);
869 %Reduce solution to single value per interrogation region
870 ii = size(Dia,1);
871 jj = size(Dia,2);
872 VarDia = Data.GSdia/Data.gridres;
873 stdDia = sigDia(1:VarDia:ii,1:VarDia:jj);
874 muDia = meanDia(1:VarDia:ii,1:VarDia:jj);
875 Diam = Dia(1:VarDia:ii,1:VarDia:jj,:);
876 stdRat = sigRat(1:VarDia:ii,1:VarDia:jj);
877 muRat = meanRat(1:VarDia:ii,1:VarDia:jj);
878 Ratio = Rat(1:VarDia:ii,1:VarDia:jj,:);
879

880 ii = size(Den,1);
881 jj = size(Den,2);
882 VarDen = Data.GSden/Data.gridres;
883 muDen = meanDen(1:VarDen:ii,1:VarDen:jj);
884 stdDen = sigDen(1:VarDen:ii,1:VarDen:jj);
885 Dens = Den(1:VarDen:ii,1:VarDen:jj,:);
886 muPkD = meanPkD(1:VarDen:ii,1:VarDen:jj);
887 stdPkD = sigPkD(1:VarDen:ii,1:VarDen:jj);
888 muPkD2 = meanPkD2(1:VarDen:ii,1:VarDen:jj);
889 stdPkD2 = sigPkD2(1:VarDen:ii,1:VarDen:jj);
890 PkDen = PkD(1:VarDen:ii,1:VarDen:jj,:);
891 PkDen2 = PkD2(1:VarDen:ii,1:VarDen:jj,:);
892 muIavg = meanIavg(1:VarDen:ii,1:VarDen:jj);
893 Iavg = avgI(1:VarDen:ii,1:VarDen:jj);
894 %Save Data to specified location
895 save([Data.outdirec Data.outbase],'Diam','Dens','Ratio','muDia',...
896 'muDen','muRat','stdDia','stdDen','stdRat','muPkD','stdPkD',...
897 'PkDen','muPkD2','stdPkD2','PkDen2','Iavg');
898

899 %Plot if desired
900 if Data.Plot == '1'
901 figure(100);
902 surf(double(meanDia),'DisplayName','DIA','edgecolor','none');
903 view(0,90);axis square;colorbar;title('Particle Image Diameter')
904 figure(101);
905 surf(double(meanDen),'DisplayName','pd','edgecolor','none');
906 view(0,90);axis square;colorbar;
907 title('Particle Density')
908 end
909 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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