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Fig. 4.9: Illustration of the time evolution of the cross-correlation between pair of species
of the Michaelis-Menten system: (a) Cross-correlation between species E and S, (b) Cross-
correlation between species S and ES.
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Fig. 4.10: This picture depicts the simulation time average of the absolute value of species
cross-correlations for the Michaelis-Menten System.

the species are and how the PCs show similar variation to that of the original data. First,

consider the covariance matrix, Σ, below. This symmetric matrix shows the variances of

the species along the main diagonal, whereas the non-diagonal elements show the covari-

ances between pairs of species. For illustration, the eigenvalues and eigenvectors, Λ and A,

respectively, are shown below. The principal components are computed using the last two

eigenvectors in A, which are the ones that correspond to the largest two eigenvalues in Λ.

Figure 4.11 plots the time evolution of the trace of the covariance matrices computed at the

end of each time increment in the MPDE-conservation algorithm. The fact that this figure

settles at a small value indicates that the individual variances of the species are very small.

Figure 4.12 depicts a scatter plot of the linearly correlated species. After applying PCA,

the principal components are plotted in Figure 4.13(a) which resemble the shape of species

S and ES of the original data shown in Figure 4.13(b). These findings reinforce the idea

that PCA can indeed be used as an alternate method in case persistent correlations remain

after applying MPDE-conservation.
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Σ =



16.66 −16.66 88.30 −71.64

−16.66 16.66 −88.30 71.64

88.30 −88.30 732.05 −643.75

−71.64 71.64 −643.75 572.11



Λ =



−9.55× 10−14 0 0 0

0 3.31× 10−16 0 0

0 0 16.65 0

0 0 0 13.21× 102



A =



0.32 0.71 −0.63 −0.08

−0.32 0.71 0.63 0.08

−0.63 −0.00 −0.21 −0.74

−0.63 0.00 −0.41 0.65
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Fig. 4.11: This figure depicts the time evolution of the trace of the covariance matrix for a
run of the Michaelis-Menten model with MPDE-conservation.
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Fig. 4.12: This plot depicts the linear relationship or “correlation” of the species in the
Michaelis-Menten reaction system. This information is easily obtained from the covariance
matrix, Σ, above. (a) Scatter plot of the correlation between species E and ES, (b) Scatter
plot showing the correlation between species P and S.
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Fig. 4.13: Comparison between the simulation data of the Michaelis-Menten reaction system
and the Principal Components obtained from PCA showing that the variation of the PCs
is very similar to the original data from the ODE simulation. (a) Plot of the Principal
Components (PCs) against time, (b) ODE simulation plot of the Michaelis-Menten system.
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Chapter 5

Results

The Marginal Probability Density Evolution (MPDE) has been implemented within

iBioSim and MPDE with conservation constraint resolution has been implemented in C/C++.

Several example models have been applied to test the performance and accuracy of MPDE

to compare it with that of SSA. Models such as the VKBL circadian rhythm [47], 1 and the

Michaelis-Menten enzymatic reaction system [33], were taken as starting models because of

their detailed description and documentation in the literature. The remaining of this chapter

is organized as follows: all simulation results pertaining to the Michaelis-Menten enzymatic

reaction network is presented in Section 5.1 and the aforementioned VKBL circadian rhythm

is explored in Section 5.2.

5.1 Michaelis-Menten

The first model considered is the Michaelis-Menten reaction system. The chemical re-

action network for this system is described in Appendix A.1 and depicted in Figure 5.1.

This model describes the velocity of enzymatic reactions by relating the rate with the con-

centration of a substrate. Figure 3.2 on Page 25 shows the ODE simulation results for the

Michaelis-Menten system. For a simple system like this, ODE models work well. However,

it has been widely argued, as stated in Chapter 3, that ODE models assume that the system

varies deterministically and continuously. This assumption might be valid when there are

large amounts of molecules and the cell volume is well-stirred. The fact is that most systems

are discrete and stochastic, meaning that there is a small amount of molecules and chemical

reactions occur at random. Therefore, stochastic models are required to better capture the

true behavior of biochemical networks.
1The SBML file and network description for this model can be found in biomodels database under ID

BIOMD0000000101 (http://www.ebi.ac.uk/biomodels-main/publmodels).
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Fig. 5.1: Michaelis-Menten schematic diagram as drawn in iBioSim. Species are represented
by curved rectangles while reactions are drawn as small circles labeled Rj . Arrows leaving
from a species and arriving in a reaction Rj indicate that species Rj is a reactant in this
particular reaction. Arrows arriving at a species Si indicate that reaction Rj affects species
Si. Also, reactions are affected by modifier species. This case is represented by a line
connecting the modifier species and the reaction it participates in.

Figure 5.2(a) shows the results after simulating the Michaelis-Menten system using

Gillespie’s Stochastic Simulation Algorithm (SSA). One can notice that the behavior is very

similar to that of the ODE results. Indeed, for a very large amount of molecules these two

simulations will be nearly identical. SSA simulations produce a single path or sample from

the probability density function described by the chemical master equation (CME). Very

often designers are interested in answering two fundamental questions: what is the “typical”

behavior of the systems and how robust is it? A simple and intuitive approach is to take the

average of multiple independent runs of SSA as shown in Figure 5.2(b). For simple systems

like this averaging yields accurate results. However, most interesting biological systems in

nature, as well as synthetically engineered, exhibit a high degree of stochasticity. For highly

stochastic models simply aggregating tends to distort the intrinsic behavior of the biological

system and this effect will be shown in the subsequent sections.

This model was also simulated using MPDE and the result is shown in Figure 5.3(a).

Though not very accurate, MPDE is able to capture the intrinsic behavior of the enzymatic

network. The inaccuracies in the MPDE simulations are due violations of some conservation

constraints.

To illustrate the effect of conservation constraints on MPDE, let us first consider the
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enzymatic reaction system of Michaelis-Menten in Appendix A.1. This model contain a

couple of weakly correlated species and the conservation law is given by [E]+ [ES] = K and

[S] + [P ] = K + [E], where K is some initial condition (molecule amount). When MPDE

is applied to this model the result is close to the expected behavior, but it deviates a little

and is not as smooth and clean as a single SSA run or average of multiple SSA runs, as

shown in Figure 5.3(a). Broken conservation laws force MPDE to deviate from the true

behavior of the system. However, these constraints are resolved when the refined version

of MPDE, MPDE-conservation, is applied to the system. Figure 5.3(b) depicts the results

corresponding to MPDE-conservation, yielding a smooth path that is true to the expected

behavior of the enzymatic network.

5.2 VKBL Circadian Rhythm

The VKBL oscillator is a minimal model of a circadian rhythm based on positive and

negative feedback networks [47]. It is composed primarily of two genes, an activator A and

a repressor R. A acts as a positive element in transcription by binding to the A and R

promoters to increase transcription rates. On the other hand, repressor R acts as a negative

element by inhibiting the activator. The schematic for this circuit is shown in Figure 5.4

and the corresponding reaction network is discussed in Appendix A.2.

When simulated with both deterministic (ODE) and stochastic (SSA) models, this

system exhibits an oscillatory behavior (See Vilar et al. [47] for ODE simulations). In the

deterministic model2, every oscillation is identical to the previous one, whereas the stochastic

model shows variability both in the number of molecules and the period of oscillation, as

seen in Figure 5.5(a). These variations correspond to inherent fluctuations of the biochemical

network.

Under certain conditions or, more specifically, for some values of parameters, both

the stochastic and deterministic approaches produce similar results. However, Vilar et al.

[47] have found that parameters that indicate a stable steady state using the deterministic
2All deterministic simulations referred to in this section have been referenced to the work of Vilar et

al. [47].
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approach continue to produce sustained oscillations when simulated with SSA. Therefore,

the presence of noise can change the behavior of the system revealing marked qualitative

differences that cannot be observed by deterministic means [47].

As pointed out before, single SSA runs cannot reveal the clean average “signal” hidden

under noise. The common approach to filter out the noise component is by averaging multiple

independent stochastic simulations. However, as shown in Figure 5.5(b), the method of

averaging may wash out the true behavior of highly stochastic systems. The proposed

solution is to use MPDE [11]. Nevertheless, even MPDE fails when there are conservation

constraints in a biochemical network like the VKBL oscillator. Figure 5.6(a) illustrates the

effect of conservation constraints violation in MPDE, where all oscillations are concealed

but just the first.

The core of MPDE relies on the assumption that any pair of species in the system are

conditionally independent given the rest of the system. Nonetheless, if dependencies appear

among the species, MPDE may perform poorly and even yield incorrect results. The matter

of fact is that most interesting biological systems in nature as well as man made contain

tightly correlated species. In addition, an increasing number of computational methods use

forms of abstraction to accelerate the computation time by reducing the effective number

of chemical reactions. When systems are abstracted in this way, dependencies may be

introduced [43]. Therefore, MPDE is not attractive to simulate systems that have been

abstracted [48, 49]. Hence, a method is required to correct errors caused by MPDE when

conservation constraints appear. The technique presented in Chapter 4 successfully resolves

these types of errors by identifying dependent species from independent species. After

moieties have been properly separated, MPDE is run only for the independent species,

which can then be used to compute the states of the dependent species. Figure 5.6(b)

shows how MPDE-conservation successfully maintains conservation laws intact, producing

the expected behavior of this oscillatory network.
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Fig. 5.2: Results of simulating the Michaelis-Menten enzymatic reaction system using SSA.
(a) Depiction of a single SSA path, (b) Shows the result of averaging 100 independent SSA
simulation runs. The parameters used to produce these simulations are given in Appendix
A.1. Simulated using iBioSim.
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Fig. 5.3: Results of simulating the Michaelis-Menten enzymatic reaction using MPDE.
(a) Simulation obtained using MPDE, (b) Results of simulating the model with MPDE-
conservation. The parameters used to produce this figures were: τ = 0.1 and runs = 200.
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Fig. 5.4: VKBL schematic diagram as drawn in iBioSim. Species are represented by curved
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species and arriving in a reaction Rj indicate that species Rj is a reactant in this particular
reaction. Arrows arriving at a species Si indicate that reaction Rj affects species Si. Also,
reactions are affected by modifier species. This case is represented by a line connecting the
modifier species and the reaction it participates in.
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Fig. 5.5: Stochastic simulations of the VKBL circadian rhythm: (a) Single SSA run for
300 seconds, (b) Average of 100 SSA runs illustrating how this approach can wash out the
expected behavior of highly stochastic and/or oscillatory networks. These simulations were
performed using the VKBL model from the biomodels database in iBioSim.
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Fig. 5.6: Stochastic simulations using MPDE and MPDE-conservation. (a) MPDE results
illustrating the effects of conservation constraints. Conservation constraints impose bio-
chemical laws among the chemical species that are broken by MPDE. (b) Results of MPDE-
conservation showing successful results when conservation laws are taken into account in
MPDE.
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Chapter 6

Discussion

While the results show that MPDE is a promising algorithm to simulate genetic cir-

cuits, there are areas in which in can be further improved. First, MPDE uses SSA as its

core algorithm. Modifying MPDE to use more efficient methods such as tau-leaping would

increase its computational efficiency. Efficient SSA variants often contain restrictions that

would be passed on to MPDE. It would be beneficial to investigate ways to combine differ-

ent simulation methods at run time to accelerate MPDE computational time. In addition,

making the time increment adaptive might increase the efficiency of MPDE as well.

Second, MPDE relies on the assumption that species are conditionally independent.

This independence approximation has proven to be accurate for detailed reaction networks.

However, when abstraction methods are employed, highly correlated species may appear.

Further research should be done to lift the conditional independence restriction and find

a method to generate more accurate molecule counts for every species without violating

conservation constraints. In the same line, the way the conservation constraints identification

algorithm is currently implemented can be written in a more efficient manner. Presently,

both MPDE and MPDE-Conservation are implemented separately. These two methods can

be combined such that if conservation laws do not exist in the system, then MPDE is run

without having to verify and periodically check that conservation constraints are met. On

the other hand, if there are conservation relationships in the reaction network, then MPDE-

Conservation is used for the simulation.

In addition to linear relationships, there may appear other subtle correlations among

the molecular species that are not detected by conservation constraint analysis. These

correlations can be identified by computing the covariance matrix at the beginning of each

time increment in MPDE. If there exists any correlations, Principal Component Analysis



66

(PCA) can be used to transform the space into an effective number of uncorrelated species,

the principal components, that hold most of the variations of the system. The principal

components are used to run the simulation until the end of the time increment, at which time

the space is transformed back into its original species, thus having corrected the correlations.

The drawback with this method, as opposed to conservation analysis, is the computational

burden of having to find the covariance matrix and running PCA for every time increment.

Whereas conservation analysis is done only once, at the beginning of the simulation, and

uses a simple equation to compute the dependent species from the independent species, thus

making it the preferred method. All in all, PCA would be great tool to be used if, after doing

conservation analysis, there still remain correlations that make even MPDE-conservation fail.

Furthermore, there are genetic circuits that can exhibit bi-stability, like the toggle

switch presented by Wilhelm [41], or multi-stability. For such systems, MPDE is only able

to follow a single path, which turns out to be the most likely path. It would be useful

to extend MPDE’s capability to identify bifurcations and compute the probability of each

possible path. Finally, the capabilities of MPDE can be exploited and further improved if

it is implemented in a tool such as iBioSim. 1

To finalize this work, there are two major limitations about MPDE with conservation

constraint resolution listed below. The first one, simulation time, is inherent to the structure

of the algorithm and very little can be done about it. The second limitation can be further

explored by using PCA to detect and correct nonlinear correlations among the species.

Nonetheless, it will add some overhead time, thus making the algorithm slower.

• Slightly slower than MPDE and much more slower than SSA;

• Only linear relationships can be corrected.

1See http://www.async.ece.utah.edu/iBioSim/.
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Appendix A

Chemical Reaction Network Models

A.1 Michaelis-Menten Enzymatic Reaction Network

Table A.1: Michaelis-Menten Reaction Network.

Reaction Rate Constant

E + S
k1→ ES k1 = 0.005

ES
k2→ E + S k2 = 0.1

ES
k3→ E + P k3 = 1

Table A.2: Reaction rate constants for the Michaelis-Menten model in Table A.1.

Species Amount
E 50
S 100
ES 0
P 0

N =


E S ES P

R1 −1 −1 1 0
R2 1 1 −1 0
R3 1 0 −1 0


Fig. A.1: Stoichiometry matrix for the Michaelis-Menten model.
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A.2 VKBL Circadian Rhythm Reaction Network Model

Table A.3: VKBL circadian rhythm model reaction network.

Reaction Rate Constant

DA
k1→ DA+MA k1 = 50

DAp
k2→ DAp+MA k2 = 500

DR
k3→ DR+MR k3 = 0.01

DRp
k4→ DRp+MR k4 = 50

MA
k5→ A+MA k5 = 50

MR
k6→ R+MR k6 = 5

A+DA
k7→ DAp k7 = 1

A+R
k8→ C k8 = 2

A+DR
k9→ DRp k9 = 1

A
k10→ ∅ k10 = 1

C
k11→ R k11 = 1

MA
k12→ ∅ k12 = 10

MR
k13→ ∅ k13 = 0.5

R
k14→ ∅ k14 = 0.2

DAp
k15→ A+DA k15 = 50

DRp
k16→ A+DR k16 = 100

Table A.4: Reaction rate constants for the VKBL model in Table A.3.

Species Amount
A 0
C 0
DA 1
DAp 0
DR 1
DRp 0
MA 0
MR 0
R 0
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N =



A C DA DAp DR DRp MA MR R

R1 0 0 0 0 0 0 1 0 0
R2 0 0 0 0 0 0 1 0 0
R3 0 0 0 0 0 0 0 1 0
R4 0 0 0 0 0 0 0 1 0
R5 1 0 0 0 0 0 0 0 0
R6 0 0 0 0 0 0 0 0 1
R7 −1 0 −1 1 0 0 0 0 0
R8 −1 1 0 0 0 0 0 0 −1
R9 −1 0 0 0 −1 1 0 0 0
R10 −1 0 0 0 0 0 0 0 0
R11 0 −1 0 0 0 0 0 0 1
R12 0 0 0 0 0 0 −1 0 0
R13 0 0 0 0 0 0 0 −1 0
R14 0 0 0 0 0 0 0 0 −1
R15 1 0 1 −1 0 0 0 0 0
R16 1 0 0 0 1 −1 0 0 0


Fig. A.2: Stoichiometry matrix for the VKBL model.


