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Abstract

Extracting Atmospheric Profiles from Hyperspectral Data Using Particle Filters

by

Dustin Rawlings, Master of Science

Utah State University, 2013

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

Removing the effects of the atmosphere from remote sensing data requires accurate

knowledge of the physical properties of the atmosphere during the time of measurement.

There is a nonlinear relationship that maps atmospheric composition to emitted spectra,

but it cannot be easily inverted. The time evolution of atmospheric composition is approx-

imately Markovian, and can be estimated using hyperspectral measurements of the atmo-

sphere with particle filters. The difficulties associated with particle filtering high-dimension

data can be mitigated by incorporating future measurement data with the proposal density.

(61 pages)
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Public Abstract

Extracting Atmospheric Profiles from Hyperspectral Data Using Particle Filters

by

Dustin Rawlings, Master of Science

Utah State University, 2013

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

Removing the effects of the atmosphere from remote sensing data requires accurate

knowledge of the physical properties of the atmosphere during the time of measurement.

There is a nonlinear relationship that maps atmospheric composition to emitted spectra,

but it cannot be easily inverted. Inverting this relationship, however, would allow us to es-

timate atmospheric parameters by taking hyperspectral measurements of the light emitted

from the atmosphere. The particle filter is a method whereby one can estimate a hidden sys-

tem state based on measurements, without ever having to directly invert the measurement

relationship.

Traditionally, particle filters do not perform well in high-dimensional systems. This

thesis presents a modification to the particle filter algorithm which can significantly im-

prove performance of atmospheric parameter estimation as well as other high-dimensional

estimation problems.
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“Lever vi inte i ett fritt land kanske? F̊ar man inte g̊a hur man vill?”
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Chapter 1

Problem Statement

The earth’s atmosphere can inhibit the performance of imaging systems that attempt

to look through it [1]. Light passing through the atmosphere is scattered, absorbed, and

emitted. The atmosphere also emits its own black-body radiation. All of these factors lead

to the confusion of sensors trying to measure something embedded in the atmosphere, or

something on the other side of it. For an aerial sensor, the target might be the surface of

the earth. For a ground-based sensor, the target could be the farthest reaches of space.

Interference from the atmosphere can be compensated for to increase the fidelity of

the measured data [2]. However, this interference is highly dependent upon the temporal

composition of the atmosphere, meaning that proper compensation requires accurate knowl-

edge of the atmosphere at the time that the measurement was made [1]. Remote sensing of

atmospheric parameters can provide the information necessary to solve this problem.

1.1 Why Measure the Atmosphere Remotely?

The historic method for measuring atmospheric parameters is the weather balloon. By

attaching meteorological equipment to a large balloon, features of the atmosphere can be

measured as the balloon ascends, and this information can be relayed back to the surface via

radio. There are many limitations to this approach. A weather balloon takes time to rise

through the atmosphere, and rarely pursues a straight course as it ascends, being completely

at the mercy of the wind. Therefore, an instantaneous measurement of a vertical column of

atmosphere is simply not possible with weather balloons. Another limitation is the amount

of data that can feasibly be collected. Imagine trying to monitor the atmosphere for changes

every second for several days using balloons. Such an experiment would be very difficult to

execute.
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On top of restrictions to the frequency of measurements, it may be desired to measure

the atmosphere in an inaccessible location, due to either geological or political barriers.

Whereas launching a weather balloon from the ground in such an area is impossible, re-

motely viewing the area from a satellite might be an option. For all of these reasons, the

ability to remotely measure the atmosphere opens many doors in the areas of meteorology,

astronomy, and defense that were previously closed.

1.2 Hyperspectral Imaging

Hyperspectral imaging comes as an extension of multispectral imaging. A multispectral

image is comprised of pixels, each of which represent radiance at a number of discrete wave-

lengths over a given area. Hyperspectral images contain radiance measurements at a much

greater number of wavelengths, which are close enough together to accurately approximate

a continuous radiance spectrum [3].

The Atmospheric Sounder Spectrometer for Infrared Spectral Technology II (ASSIST

II) is a mid-wavelength/long-wavelength infrared hyperspectral sensor with spectral reso-

lution of 0.7 cm−1 over the range of 500 to 3000 cm−1. This is a ground-based device

designed to measure the down-welling radiance of the atmosphere. It is important to note

that the ASSIST II is not a traditional hyperspectral imager, which combines a matrix of

hyperspectral pixels into a single image, but rather a spectrometer which takes a single

combined measurement of all light entering into the sensor. Figure 1.1 shows an example

of a measurement taken with the ASSIST II.

1.3 Relationship Between Radiative Transfer and Atmospheric Parameters

Interesting features of the atmosphere that can be measured include temperature, wa-

ter vapor mixing ratio, trace gas concentrations, and aerosol concentration. All of these

factors have an effect on how light propagates through and is emitted from the atmosphere.

A radiative transfer model (RTM) models the radiation intensity of light at specific wave-

lengths emitted from the atmosphere given a set of parameters (such as temperature, water

vapor mixing ratio, etc.) [4]. The RTM must account for all sources of radiation that in-
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Fig. 1.1: Out-welling atmospheric spectra.

terface with the atmosphere. These radiative sources are pictorially described in figure 1.2.

The RTM is known as a forward model, but what is truly desired for this application is the

inverse of the RTM, which could model atmospheric parameters based on a measurement

of radiation intensities at many different wavelengths. If this were possible, then remotely

measuring parameters in the atmosphere could be achieved by measuring the light emit-

ted from the atmosphere. Unfortunately, the RTM is nonlinear, and therefore not directly

invertible; but methods have been developed over the past few decades which make good

progress toward solving this problem [5,6].

1.4 Existing Methods for Inverting the Radiative Transfer Model

Fleming and Smith [5] have outlined several methods for inverting the RTM. Their
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Fig. 1.2: Sources of radiation: (a) is light from the sun reflected by earth’s surface and
scattered in the atmosphere. (b) is light from the sun scattered in the atmosphere. (c) is
blackbody emission from the earth scattered in the atmosphere. (d) is blackbody emission
from the atmosphere itself.

study compares the performance of various iterative methods for nonlinear inversion. They

were unable to identify a method that consistently outperformed all the others but men-

tioned that each method involves a tradeoff of some sort, for example the amount of neces-

sary information and the importance of initialization parameters. Derivatives of the meth-

ods outlined by Flemming and Smith are still in use today, for example by Liu et al. in

their work using super channels for the retrieval of atmospheric profiles [7].
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1.5 Room for Improvement in Existing Methods

The methods in use by Liu et al. [7] for inverting the RTM overlook additional data

that could be used to obtain better estimates of atmospheric parameters. It is believed

that the strong temporal correlation that exists in the time sequence of these atmospheric

parameters can be used to the advantage of an estimator. This fact is not exploited in iter-

ative nonlinear inversion techniques. In addition, these existing methods can occasionally

produce very inaccurate results, yet they provide no measure of confidence in the accuracy

of their solution.

1.6 A New Method for Model Inversion: Particle Filtering

This thesis will detail the theory and implementation of a new method for inverting the

radiative transfer model using a particle filter. The particle filter is well suited for problems

that involve tracking the time evolution of a system state that has high temporal correlation

[8]. It will be shown that this new method can capitalize on information contained in the

problem that other methods are agnostic to, and that it can achieve better quality estimation

of atmospheric profiles by including a metric of confidence in the given estimations.

1.7 Hampton University Experiment

To further research into inverting the radiative transfer model and to test the per-

formance of the ASSIST II interferometer, Hampton University conducted a series of ex-

periments to collect hyperspectral measurements of down-welling atmospheric radiation

continuously over the course of several hours. This data was to be used in testing radiative

transfer techniques and to attempt to recover a continuous measurement of atmospheric

parameters for the corresponding time. The data set obtained from this experiment was

used in the testing and development of the particle filtering solution described in this report.
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Chapter 2

Experimental Setup

The data that are being used to for the testing and development of this new algorithm

for radiative transfer model inversion was collected during an experiment conducted by

Hampton University in April 2011. During the course of the experiment, 23.5 hours of

down-welling spectral data were collected at a rate of approximately 25 samples per hour.

2.1 Hyperspectral Sensor

The ASSIST (Atmospheric Sounder Spectrometer for Infrared Spectral Technology) II

is a mid-infrared (500−3000 cm−1) spectroradiometer. It was designed by LR Tech as a tool

for atmospheric scientists to profile temperature and moisture content in the atmosphere.

The device operates by performing Fourier Transform Spectroscopy on data collected by a

Michelson interferometer.

2.1.1 Michelson Interferometers

A Michelson interferometer creates an interference pattern in light by first splitting

a beam of light and then recombining the two beams after they have traveled different

distances, so that the two beams will be out of phase [9]. The device is named after

its inventor, Albert Abraham Michelson, and was used by him in the famous Michelson-

Morley experiment of 1887. This experiment was a failed attempt to demonstrate the effect

of “aether wind” on the speed of light.

A basic Michelson interferometer (depicted in figure 2.1) operates by shining a beam

of light onto a 50/50 beam splitter, such as a half-silvered mirror. Both of the divergent

beams are directed toward mirrors which reflect the beams back toward the beam splitter

(now acting as a beam combiner). Because the two reflecting mirrors are different distances
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Fig. 2.1: Optical paths in a Michelson interferometer. Image credit: Stigmatella aurantiaca
at English Wikipedia.

from the beam splitter, the two beams become out of phase with each other when they

are recombined. A detector captures the interference pattern created by the out of phase

beams after they are recombined.

When the interferometer is modified such that the position of one of the reflecting

mirrors is configurable, it becomes possible to measure the intensity of a range of spectra

of light entering the interferometer by a method called Fourier Transform Spectroscopy.
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2.1.2 Fourier Transform Spectroscopy

A Michelson interferometer with a movable mirror allows a series of interferograms with

varying time delay on one of the interfering beams to be measured. Spectral information is

contained in the temporal coherence of the light, and can be retrieved through the Fourier

Transform of these interferograms.

Let I(p, ν̃) represent the intensity of light at a frequency ν̃ for path length difference p

in the interferometer. This function can be expressed as

I(p, ν̃) = I(ν̃)[1 + cos(2πν̃p)],

I(p) =

∫

∞

0
I(p, ν̃)dν̃ =

∫

∞

0
I(ν̃)[1 + cos(2πν̃p)]dν̃.

This is a Fourier cosine transform of I(ν̃). The inverse transform gives us

I(ν̃) = 4

∫

∞

0
[I(p)−

1

2
I(p = 0)] cos(2πν̃p)dp.

Therefore, the intensity of light at wavelength ν̃ is a function of the intensity of light

for path length difference p as measured by the interferometer.

2.1.3 ASSIST II Specifications

The following specifications are provided by the maker of the ASSIST II, LR Tech:

• Spectral range: 500 to 5,000 cm−1;

• Single plate KBr beamsplitter (self compensated);

• Nominal beam diameter at beam stop: 2.54 cm;

• Maximum beam divergence is 45 milliradians full angle;

• Spectral sampling: 0.5 cm−1;

• HeNe laser metrology system (for digital sampling and mirror velocity control) mounted

on pre-aligned assembly for easy replacement;
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• Sampling rate (laser fringe rate: 32khz to 100 kHz, computer selectable);

• Throughput: 0.00805 sr cm2;

• Start-up is with a white light zero path difference reference channels used to define

ZPD position and sampling window; the white light is turned off during normal scan-

ning;

• Purging capability of the interferometer enclosure;

• Dimensions: 12.4 inches x 13.2 inches x 7.8 inches high;

• Operating temperature range: 10◦ to 40◦ C.

2.2 Experiment Procedure

The experiment was carried out over a series of nine hour segments where the ASSIST

interferometer was continually measuring data. Twice during the experiment a weather

balloon was launched with a radiosonde attached to it to measure actual atmospheric pa-

rameters. The sensor does not function well in the rain so a rain sensor controlled a hatch

door over the sensor to shield it during rain fall. During periods of rainfall, the data being

collected by the sensor is incorrect (essentially just a measurement of the emissivity of the

rain hatch door in front of it). This data is therefore tagged as bad data, and is not used

in the atmospheric profile extraction process.

The purpose of the experiment was to perform a field test of the ASSIST II interfer-

ometer as a ground-based hyperspectral sensor and to collect a large amount of real world

data to test extraction algorithms on. In the future the results from this experiment can

help in developing algorithms for space-based hyperspectral data collection where the hy-

perspectral sensor is located on a satellite observing the surface of the earth. While ground-

based remote sensing can still provide many advantages over weather balloon atmospheric

measurement, space-based observation would provide the ability to observe atmospheric

properties anywhere in the world.



10

2.3 Additional Data Available

In addition to the data collected during the experiment, statistical weather data from

the area where the experiment was carried out is available to us. This data includes historical

measurements and averages for temperature, water vapor mixing ratio, barometric pressure

among many others. This data is important for the extraction algorithm by providing

initialization parameters and covariances for the atmospheric profiles that we are trying to

estimate.

2.4 Results

As a result of the experiment, two days worth of hyperspectral data were collected.

The experiment was considered a success, the ASSIST II functioned properly and a large

amount of high quality data is now available for use in testing extraction algorithms. Figure

2.2 depicts a 9-hour segment of the data collected during the experiment. Each column of

pixels in the image represents a single measured spectra, similar to figure 1.1. While there

is not much insight to be gained by this representation of the data, it is provided as an

illustration to the subtle changes which take place in the radiance over the course of a day.
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Chapter 3

Radiative Transfer Models

3.1 Theoretical Background

A radiative transfer model describes the change in radiation intensity of light as it

propagates through a medium [4]. The fundamental equation of radiative transfer at some

wavelength ν is

1

kν

dIν
ds

= −Iν +
jν
kν

.

In this equation, Iν is the radiation intensity along a ray path, kν is the local absorption,

and jν is the volume emission. What this tells us is that as light propagates through a

medium some of it will be absorbed by the medium at certain frequencies. The medium

itself will also emit light at certain frequencies.

The radiance emitted from the atmosphere is dynamic, and is primarily affected by

temperature, water vapor, aerosols, and trace gases. Because of this dependence, it is

possible to develop a model for radiative transfer which can predict the out-welling radiance

of an atmosphere with a given composition [7]. The inverse of this problem, calculating the

composition of the atmosphere from measured radiance, is quite difficult.

One radiative transfer model used to predict up-welling atmospheric radiance is the

AIRS model defined by Strow et al. [4] Monochromatic radiance at a wavelength ν leaving

the top of a nonscattering, clear atmosphere is described as

Rν = ǫνBν(Ts)τν(ps → 0, θsat)

+

∫ 0

ps

Bν(T (p))
dτν(p → 0, θsat)

dp
dp

+F d
ν ρ

t
ντν(ps → 0, θsat)

+
Hν

sec(θsun)
τν(0 → ps, θsun)ρ

s
ντν(ps → 0, θsat).
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Each term in this model can be described as follows:

• ǫνBν(Ts)τν(ps → 0, θsat) is the blackbody emission of the surface of the earth, ǫν is

the surface emissivity, and Bν(Ts) is the Planck function;

•
∫ 0
ps
Bν(T (p))

dτν(p→0,θsat)
dp

dp is the atmospheric emission;

• F d
ν ρ

t
ντν(ps → 0, θsat) is the down-welling atmospheric emission reflected by the surface,

where F d
ν is the down-welling thermal flux and ρtν is the reflectance of this flux by the

surface;

• Hν

sec(θsun)
τν(0 → ps, θsun)ρ

s
ντν(ps → 0, θsat) is the reflected solar radiation, where Hν is

the solar irradiance incident at the top of the atmosphere and ρsν is the solar reflectance

by the surface.

These terms also include the atmospheric layer-to-space transmittance τν(ps → 0, θsat),

meaning the transmittance from some pressure ps to space (zero pressure) at an angle θsat,

the satellite zenith angle as measured along the ray from the surface to the satellite [4]. This

model has much in common with other radiative transfer models, including the model that

is used by Hampton University in their experiments, LBLCALC. The primary difference

between the AIRS model and LBLCALC is perspective. While the AIRS model is designed

to model up-welling radiance from a satellite, LBLCALC models down-welling radiance to

a sensor on the ground. Since we are using Matlab code from Hampton University as a

starting point to develop our particle filter solution, we will use LBLCALC for our radiative

transfer model.

3.2 Model Limitations

Because of the summing effect of the atmosphere on radiative transfer, there is a

many-to-one relationship between an atmospheric profile and emitted spectra as calculated

by the radiative transfer model. This fact can pose a significant problem for any inversion

technique, because based on the radiative transfer model, two vastly different atmospheric



14

profiles could potentially produce identical spectra, as well as an infinite number of dif-

ferent atmospheric profiles between them. Different extraction techniques take different

approaches to resolving this ambiguity (usually relying on historical measurements to hope-

fully initialize the problem somewhere close to the solution [10]) but unfortunately, there

is nothing to be done to completely resolve the problem. This non-invertible model is just

that: non-invertible. No solution achieved using radiative transfer alone will be 100 percent

reliable. The only hope for this approach is to be able draw boundaries around what is

likely to be the truth, and what is unlikely.

3.3 Matlab Implementation

A Matlab implementation of the LBLCALC radiative transfer model was provided by

Hampton University at the outset of this project. It is termed a “fast, line-by-line” algorithm

for calculating radiative transfer because of the way it approximates the atmosphere as

discrete layers with constant parameters instead of a continuum. During the discussion of

this Matlab code, the radiative transfer model will be referred to by its Matlab function

name, fastlblcalc.

The execution time of fastlblcalc in its original state was not suitable for use in a particle

filter solution. Current extraction techniques that rely on iterative nonlinear inversion only

need to calculate spectra with the RTM a handful of times, so long execution time of

fastlblcalc was not much of an issue. It will be shown that using the RTMwith a particle filter

will result in many more calls to fastlblcalc, enough so to make execution time a problem.

fastlblcalc takes as inputs a 60-dimensional vector representing a temperature profile, and a

60-dimensional vector representing a water vapor mixing ratio profile. fastlblcalc produces

as an output an estimate of spectral emission from an atmosphere with the given parameters.

This output is calculated based on the LBLCALC Radiative Transfer Model.

One goal of this project is to ensure that the execution time of the new extraction

method is not significantly longer than that of the original algorithm. In order to talk

about execution times in a meaningful way, a pair of units for time measurement will be

introduced.
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The length of time required to process the entire Hampton data set using the original

extraction algorithm will be known as 1 extraction time. The length of time required for

one call to the original fastlblcalc function will be called 1 fastlblcalc time. Since execution

times vary based on the host machine, these units will help to compare execution times

between old and new methods.

For reference, 1 fastlblcalc time is approximately 5 seconds on an AMD Athlon 64 2

GHz processor with 4 GB RAM. If this function were to be used as part of a particle filter,

fastlblcalc would need to be called once per particle at each time step. There are 234 time

steps in the Hampton University data set that will be used in development, meaning that a

filter with 50 particles would make a total of 11,700 separate calls to fastlblcalc. With our

reference time of 5 seconds per fastlblcalc time, this equates to over 16 hours of computation

time. Since 1 extraction time is about 20 minutes on our reference machine, this equates to

about 48 times longer than a single extraction time. This would represent an unacceptable

increase in execution time, but fortunately fastlblcalc can be optimized to greatly increase

its speed.

fastlblcalc is known as a line-by-line method for computing radiative transfer. For a

discrete set of wavelengths, radiative transfer is approximated by modeling propagation

of light through a number of atmospheric “layers” where each layer is assumed to have

constant parameters such as temperature, mixing ratio, aerosols, and trace gases.

fastlblcalc is tuned to be compatible with the ASSIST II spectrometer, which measures

2000 wavelengths in the range of (500−3000 cm−1). This means that fastlblcalc will compute

a radiative transfer prediction 2000 times, one for each wavelength measured by the ASSIST,

during a single call to the function. Nearly all of the atmospheric parameters which factor in

to the radiative transfer model are predetermined based on historical data from the area of

measurement. The only parameters which can vary, as mentioned earlier, are temperature

and water vapor mixing ratio.

The basic structure of the fastlblcalc algorithm can be described as a nested “for” loop:

1: for i = 1 : 2000 do ⊲ For each desired wavelength
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2: for j = 1 : 60 do ⊲ At each layer of the atmosphere

3: RTM(i,params(j)); ⊲ Model radiative transfer for given atmospheric parameters

4: end for

5: end for

3.4 Optimizations

The approach for optimizing this function is twofold:

1. Look for segments of code which are written as inefficient loop operations that could

benefit from Matlab’s more optimized matrix-vector operations;

2. Find redundant calculations inside of loop statements that can be precalculated out-

side of the loop once instead of at each iteration.

Fortunately, there were several examples of each case which could be optimized. Some

of the code inside of fastlblcalc was originally written in Fortran, and later ported to Matlab

code. During the port, not much care was taken to take advantage of Matlab’s capabilities

in matrix-vector operations. As a result, several code loops were able to be reduced to much

faster matrix-vector operations.

The greatest step in optimization came from eliminating redundant calculations. Such

redundancies were identified at nearly every level of execution inside of fastlblcalc. To better

illustrate these optimizations, a set of “execution levels” will be defined:

• Level 1: Not executed during fastlblcalc;

• Level 2: Executes once per call to fastlblcalc;

• Level 3: Executes 2000 times per call to fastlblcalc;

• Level 4: Executes 120,000 (2000× 60) times per call to fastlblcalc.

Some examples of redundancies that were eliminated are: Identifying a setup routine

at level 2 which could be moved to level 1; identifying calculations at level 3 which did

not depend of wavelength, and could therefore be moved to level 2. The most dramatic
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optimization comes from the discovery of large portions of code at level 4 which also did

not depend on wavelength and could therefore be moved up to level 2.

3.5 Performance

The result of these optimizations was to reduce the execution time of fastlblcalc down

from 1 fastlblcalc time to approximately 0.16 fastlblcalc time. This reduction brings our

estimate of a 16-hour extraction time with 50 particles down to 2.5 hours. This is still

significantly longer than 1 extraction time, (it is actually about 10 extraction times) however

it does bring it much closer, and is more than fast enough for real-time data processing.

It will be shown in the following chapters that 50 particles may be more than is nec-

essary, and the running time of the particle filter begins to decrease very quickly as the

number of particles decrease.

Care was taken to ensure that the numerical accuracy of the results from fastlblcalc

were not disturbed due to the optimization. By comparing results obtained by the original

fastlblcalc to results from the optimized fastlblcalc on identical data sets, the mean squared

error between the two was observed to be less than 10−14.
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Chapter 4

Proposed Solution

4.1 Theoretical Background of Particle Filters

A particle filter is a Monte-Carlo method for modeling system state dynamics. It is

similar in function to the Kalman filter. The Kalman filter can provide optimum state

estimation under the constraints of linear state dynamics and Gaussian noise [11]. The

particle filter, on the other hand, is not limited by these constraints, and is free to operate

in nonlinear systems with non-Gaussian noise [12]. This is a tremendous advantage in the

case of radiative transfer modeling, due to the nonlinear nature of the problem.

The standard particle filter assumes a system with state dynamics defined as:

xt+1 = F (xt, nt),

where xt is the system state at time t and nt is a noise process. xt is therefore a stochastic

function of the system state at the previous time. Also assumed in the particle filter is the

notion that the system state xt is not directly observable. The only information available

to the observer comes through what we will refer to as the measurement function:

yt = G(xt, νt).

Each measurement yt is a stochastic function of the system state xt. We will assume that

G is not invertible, so that xt cannot be directly inferred from measurement yt. The goal

of the particle filter can be smoothing, state estimation, or prediction. For the purposes of

this problem of estimating atmospheric parameters based on spectral measurements, system

state estimation is our primary goal.

The particle filter algorithm begins by making a guess for the initial state of the system,
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x0. A prior distribution for x0 is also assumed. How this probability density function (PDF)

is found will be discussed in the next chapter. We define a random variable with this PDF

from which we will make a sequence of random draws. Each random draw from the PDF

is called a particle. The set of particles randomly drawn from the PDF can be thought of

as a discrete approximation of the PDF, as depicted in figure 4.1. As the number of drawn

particles increases, the approximation to the PDF gets better. The number of particles

necessary to adequately characterize the PDF is generally at the discretion of the designer.

Too many particles will needlessly increase the computational load of the algorithm, while

too few particles will misrepresent features in the PDF and cause errors. Often the driving

factor in the number of required particles is the dimensionality of the system state. In most

cases, the number of particles required to characterize the PDF increases exponentially with

the dimensionality of the system state variable.

Once we have our set of discrete samples of the PDF, we begin the iterative phase of the

algorithm. First, each particle is propagated one time step into the future by means of the

state dynamics function F (xt, nt). The notation used for particles will be xit, representing

the ith particle at time t. This gives us the set of particles xit+1 = F (xit, nt). We can now

use the measurement available to us at time t + 1 to determine which of these particles

are most likely to be an accurate representation of the system state xt+1. Each particle

xit+1 is transformed into something comparable with the measurement yt+1 through the

measurement function G(xt, νt). Each transformed particle yit+1 = G(xit+1, 0) is compared

to the measurement

mi = ||yt+1 − yit+1||2.

Note that the 2-norm is used as an example. Other ways of comparing yt+1 to yit+1 may be

appropriate depending on the situation. The set of measurements m are then transformed

into a set of weighting values which serve to rank each particle based on how close the

transformed particle is to the measurement. The weights take the form

wi =
1/mi

∑

i 1/mi

.
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Fig. 4.1: A discrete set of particles approximating a PDF.

With our newly found set of weighting values, we are almost ready to begin the iter-

ative process again at the next time step. First, however, we must define a new PDF to

characterize p(xt+1|xt). The particle weights tell us which particles are more likely to be

close to the true system state. In order for the particle filter to characterize the PDF, a

higher probability in the PDF will translate into a higher number of particles in that area

of the PDF. Therefore we randomly sample a new set of particles for the next iteration of

the particle filter, and the pool that we will sample from is the previous set of particles.

The likelihood of each particle being selected for inclusion in the next iteration is dependent

upon its weight. Particles with large weights may be selected multiple times for inclusion

in the next time step, while particles with low weights may not be included at all in the

next round. This newly selected set of particles is now ready for the next round of itera-
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tion, where they will be randomly propagated one time step into the future according to

xit+2 = F (xit+1, nt). At each time step, an estimate of the current state xt can be produced

by taking the weighted average of all the particles, x̃t =
∑

iwix
i
t.

It is important to note from this description of the particle filter algorithm that at

no time is the measurement function G(xt, νt) inverted. Because of this, the particle filter

lends itself particularly well to problems with nonlinear or incomplete observations. Also of

note is how discretely approximating the PDF through random samples means that there

are not restrictions on the distribution as there would be with a Kalman filter.

One common problem with particle filters is the notion of degeneracy. Degeneracy

happens when the majority of the weight is distributed among a relatively few number

of particles. This is a situation to be avoided, because it indicates that there is a poor

representation (few particles) of the statistically significant (high weight) areas of the PDF,

and an over-representation (many particles) of statistically insignificant (low weight) areas

of the PDF. A common way to combat filter degeneracy is to add a “resampling” step at

the end of each iteration. The resampler only acts when it detects a weighting distribution

that is too unbalanced. When the resampler acts, very low weight particles are dropped

from the solution and high-weight particles are split into multiple particles. The effect of

this is to achieve greater resolution on the approximation of the PDF in areas of interest.

Without resampling, the low resolution in the approximation can fool the particle filter into

moving off course and away from the true system state.

4.2 Adapting Extraction as a Particle Filter Problem

We approximate the atmosphere directly above a ground-based sensor looking upward

as 60 layers with constant parameters at fixed altitudes. The parameters of interest in this

application are temperature and water vapor mixing ratio. To estimate these parameters

from spectral measurements, we construct a particle filter.
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• Let tk = temperature, qk = water vapor mixing ratio; at time k

xk =







tk

qk







tk ∈ R
60

qk ∈ R
60

xk+1 = xk + nk.

• Let yk be the observation at time k; RTM(x) is the radiative transfer model

yk = RTM(xk) + νk.

The random movement nk drives the system forward based on the covariance of historical

atmospheric measurements of the local area. This covariance is shown in figure 4.2. A more

advanced model for atmospheric dynamics could potentially improve the performance of

the particle filter significantly.

The probability density function (PDF) of the system state is approximated by a set

of N particles:

p(x) ≈
N
∑

i=1

wiδ(x− x(i)).

4.3 Benefits of Particle Filter over Nonlinear Inversion

Using a particle filter to estimate atmospheric parameters can potentially achieve better

results than existing iterative nonlinear inversion techniques by taking advantage of the

highly correlated nature of atmospheric dynamics. With a good model for the time evolution

of atmospheric parameters, the particle filter can track these parameters, and at the same

time offer a confidence measure for the estimate based on the particles themselves. When

there is uncertainty in the estimate, i.e. a flat-looking region of the system state PDF,

the particles will naturally disperse to fill the space. Conversely, the particles will tend to

coalesce around high-likelihood estimates. Therefore, the variance of the particles in the

filter can be an effective measure of confidence in the estimate. This measure of confidence

in the estimate is something not available in current RTM inversion methods, despite their

inaccuracies.
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Fig. 4.2: Covariance of historical measurements of temperature and water vapor mixing
ratio.
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Chapter 5

Breaking the Curse of Dimensionality

5.1 Why Particle Filtering in High Dimensions Does Not Work

A particle filter represents a discrete approximation of a continuous probability density

function. Each particle in the filter can be thought of as a scaled Kronecker delta function

at a specific point in the PDF. At any time in the particle filtering process, an estimate of

the system state can be obtained by taking the weighted average of all of the particles. This

performs the same function as finding the expected value of the PDF which the particles are

approximating. It can easily be seen that this method for state estimation would not lend

itself well to a situation where the probability of the system state was highly multi-modal.

For example, the expected value of a bi-modal PDF would likely be in the low probability

region between the two modes, which is unlikely to be close to the actual system state. So,

we see that although a unimodal noise model is not required for particle filters to function,

some adaptation may be necessary for it to function well if multimodal noise is prevalent

in the system.

We have said that particles in a particle filter approximate a continuous PDF. What

should be obvious is that in order for the particle filter to accurately estimate the system

state, the particles must be a good approximation to the PDF. Consider again a bi-modal

PDF representing the probability of a system state. If there was only one particle (see figure

5.1) with which to approximate the PDF, where should it be? Certainly not at the expected

value, because then the only choice for estimating the system state would lie directly in the

center of an area that is highly unlikely to represent the system state. However, if the

particle were placed in the center of one of the two modes, the particle may be very close to

the true system state, or it may be even farther from the system state than before. Good

approximation of high likelihood areas of the PDF are vital to accurate estimation, meaning
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as many particles as can be computationally afforded.

As the number of particles available in the estimation becomes large, the approxima-

tion to the PDF approaches perfection. Unfortunately, dealing with a large number of

particles becomes very computationally intensive. During the particle filtering algorithm,

every particle must produce an observation estimate based on the measurement equation

defined in the filter. In some cases the measurement equation may be very computationally

simple, and filtering with thousands of particles might have little effect on the running time

of the algorithm. In the case of this application, the measurement equation is the radiative

transfer model, which is very computationally intensive, and even as many as 100 particles

would make the extraction take too long to be palatable. Unfortunately, even the running

time of the measurement equation turns out to be of little consequence where dimensional-

ity is concerned. The number of measurements to be calculated increases linearly with the

number of particles in the filter, but the number of particles needed for the filter to avoid

collapse scales exponentially with the dimension of the system state.

To show that this is the case, consider a PDF representing the position of a target as

uniformly distributed between zero and ten meters. If we impose as a constraint that there

must be no more than one meter between particles in order to avoid filter collapse, then

in the single-dimensional case a minimum of nine particles is needed. In the 2-dimensional

case, where the target is now somewhere on a plane, the number of particles required to

satisfy the constraint becomes nine squared. If the target were somewhere in a 3-dimensional

volume, it would take nine cubed particles, etc.

As the number of dimensions increases, the number of required particles can quickly

get out of hand. This is the reason that the standard particle filtering literature advises

against particle filtering in many dimensions [13], and perhaps why particle filtering has

found such enthusiastic response in the areas of target tracking in two or three dimensions.

When faced with idea of trying to adapt a particle filter to avoid collapse in 120 dimensions,

it does appear to be a daunting task.
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Fig. 5.1: A poor approximation for a bi-modal PDF.

Figure 5.2 shows the result of trying to track the temperature and water vapor mix-

ing ratio of the atmosphere using the unmodified particle filter described in the previous

chapter. The figure is a plot of error in the estimate compared to spectral measurements.

This comparison is made through the RTM, which transforms the estimate into a spec-

tral prediction, which can be compared directly to the observed spectra. Due to the high

number of dimensions in the system state, the particle filter cannot track a minimal-error

solution without an unfeasibly large number of particles. We will propose a modification to

the particle filter algorithm which will help the filter track the system state with a limited

number of particles. A discussion on the minimal-error curve in the figure can be found in

Chapter 7.
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Fig. 5.2: Error of particle filter estimate, compared to the minimum error achievable.

5.2 Previous Work in High-Dimensional Particle Filters

Fortunately (or perhaps unfortunately, if using particle filters in high dimensions some-

day starts to get a lot of attention) we are not the first to be investigating this problem.

P. J. van Leeuwen has published the results from his investigation into using particle fil-

ters for very high-dimensional geophysical systems [14]. He claims that information from

future observations can be incorporated into the particle filtering algorithm in the form of

a proposal density which serves to draw particles toward the observations. Because of this

forcing of the particles toward the observations, the need for strong particle support over

the entire PDF is diminished. The particles stay corralled close to the observation, so there

is relatively good approximation in the area most likely to represent the true system state.

The cost of this approach, however, is that there are very large areas of the PDF which
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have zero particle support, and hence very poor approximation. As a result of this, this

method may not hold up well to an environment rich in statistical outliers, as it depends

on the system dynamics to be very predictable.

van Leeuwen makes bold claims in his work that with the inclusion of this proposal den-

sity, a very small number of particles would be able to approximate systems with thousands

of dimensions without collapse. Also mentioned is that the implementation of the proposal

density is flexible [15]; any rule which effectively draws the particles toward the observation

and keeps them close enough to each other so as to all be weighted nearly equally should

work.

5.3 A Surprisingly Effective Proposal Density

We recognize from van Leeuwen’s work that there is flexibility in how we choose to draw

the particles toward the observation. We also recognize that comparing particle locations,

which reside in the system state space, to observations, which reside in the measurement

space, is not trivial. We have already established that the radiative transfer model which

transforms a vector from system state space into measurement space is highly nonlinear.

In addition to the nonlinear relationship in the radiative transfer model, the measurement

space has 2000 dimensions, while the system state space has only 120. All of this leads

to a difficult time in determining what kind of movement of the particles in the system

state space will correspond to them being more closely aligned with the observations in the

measurement space.

van Leeuwen’s suggestion for the proposal density requires that the measurement equa-

tion be linear, which is not the case with our radiative transfer model. Therefore, we must

investigate just how “flexible” the choice of a proposal density is, to see if one can be

adapted to work for our problem.

Since we recognize that comparing between measurement space and system state space

is difficult, we rely on the measurement equation itself for the answer. At any given time

in the particle filtering algorithm, each particle is assigned a weight corresponding to the

likelihood that that particle is the actual system state. These weights are derived using
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the measurement equation. By using the particle as an input atmospheric profile to the

radiative transfer model, the model produces as an output a spectra which can be compared

to what was actually measured with the interferometer. The closer that the model spectra

is to the actual measured spectra, the more weight the particle will receive, as it is perceived

that that particle is more likely to represent the true system state. Therefore, we recognize

that drawing the particles toward the particle that possesses the highest weight is likely

to correspond well to drawing the particles toward the observation. The process for this

modification to the standard particle filter is summarized like so.

• In order to draw the particles toward a point in the system state space (R120) that

corresponds to a point in the observation space (R2000), we recognize that drawing

the particles toward the particle with the highest weight is likely to be drawing them

toward the observation.

• Let x
[i]
k represent particle i and wi,k represent the weight of particle i at time k.

• Select the highest-weighted particle

j = argmax
i

wi,k.

• Draw the other particles some distance toward it

x
(i)
k+1 = θx

(i)
k + (1− θ)x

(j)
k + nk 0 ≤ θ ≤ 1.

• Adjust the weights

wi,k+1 =
1

||RTM(x
(i)
k+1)− yk+1||2

∑N
j=1 ||RTM(x

(j)
k+1)− yk+1||2

.

This proposal density is a very simple and intuitive approach, but it will be shown

that it is indeed an effective one. Figures 5.3 and 5.4 give a graphical representation of this

process.
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Largest Particle

Fig. 5.3: Drawing particles toward the observation.

Fig. 5.4: PDF approximation improves in high-likelihood areas by drawing the particles
close together.
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Chapter 6

Working With Ambiguous Measurements

6.1 Ill-Posed Problems

There is a significant limitation to the notion of inferring atmospheric parameters

from hyperspectral measurements. While the radiative transfer model can predict observed

spectra based on atmospheric parameters reasonably well, mapping an observed spectra

back to a set of atmospheric parameters is not unique. In fact, there is an infinite set

of atmospheric parameters that map to an arbitrarily observed spectra according to the

radiative transfer model. This makes ranking atmospheric parameters according to best

model fit impossible.

Consider the two temperature profiles shown in figure 6.1, and an associated observed

spectra. Our goal might be to determine which of these temperature profiles is more likely to

represent the actual temperature of the atmosphere at the time this spectra was observed,

according to our radiative transfer model. This would prove to be a very difficult task.

Both of these profiles match the observation equally well, according to the radiative transfer

model. Better, in fact, than the actual temperature profile of the atmosphere at the time

the spectra was measured based on weather balloon measurement. It turns out that there

is a continuum of temperature profiles between these two that all give comparable fit to the

same measured spectra. In terms of a particle filter, these continua of equal fit represent

deep grooves that the particles become trapped in while exploring the solution space, but

these grooves tend to lead the particles away from the true solution rather than toward it.

The question becomes: Is there really sufficient information contained in spectral emis-

sion of the atmosphere to infer anything about atmospheric parameters? Can we have any

certainty about a solution arrived to by means of the radiative transfer model when we

know that the model cannot distinguish between the truth and a myriad of impostors?
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Fig. 6.1: Two temperature profiles that produce nearly-equal spectra in the radiative trans-
fer model.

It is obvious that something besides model fit needs to influence weight assignment to

particles. If model fit were the only metric to judge important particles, then the particles

would be more or less free to roam along the continuous space where model fit is approx-

imately equal, and they would invariably wander away from the true solution. Instead,

we need a weighting scheme that is influenced by multiple metrics, model fit being one of

them, so that when faced with multiple particles with comparable model fit, the filter can

use additional information to select the particles that are truly more likely to accurately

represent the system state.

One additional metric that can be employed is a measure of how much a given atmo-

spheric profile resembles other profiles observed empirically for a given geographic area. The

idea is that for any particle we can assign it a measure of how “believable” it is, based on
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previous observation of that atmospheric parameter. For example, there may be a particle

that fits the model very well, but represents an atmospheric profile that is physically very

unlikely to actually occur in nature. This particle should receive a lower weight than a

particle that also fits the model well, but represents an atmospheric profile that very often

occurs in nature, since that particle is more likely to represent the truth.

There is more than one approach to determining this measure of particle viability.

One approach would be to model each atmospheric parameter as a random variable based

on historical observations of the area. Particles that fall close to the mean would receive

more weight than particles that fall far from it. There are disadvantages to this approach,

however. If atmospheric parameters vary too much, then the mean of historical observations

of that parameter could be meaningless (pun intended). In fact, the mean of all observations

could itself represent an atmospheric profile that is statistically unlikely to occur in nature.

Care would need to be taken to not make faulty assumptions about the distribution of the

random variable such as unimodality, etc.

A possible alternative to modeling parameters as random variables is the idea that

actual atmospheric parameters can be closely approximated by a sparse combination of

instances of that parameter observed previously. For example, if we have a collection of

temperature profiles for a given area measured by weather balloons, it is theorized that com-

mon temperatures can be easily synthesized by a sparse combination of these observations,

while uncommon temperature profiles cannot be synthesized sparsely. Therefore, a metric

of believability for a given profile can be obtained based upon how accurately that profile

can be approximated by a sparse combination of previous observations of the atmospheric

parameter.

There is more than one way to incorporate this sparse metric into the particle filter.

The most direct way would be to make a sparse approximation to every particle at each

time step, and assign weights based on the fit of that approximation. The weights assigned

to the particles would also be influenced by model fit, as discussed previously, so the two

metrics both influence the final weight of each particle.
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6.2 Need for Accurate Dynamics

In the case of radiative transfer model inversion, there is a continuum of possible

atmospheric parameters which all map to the same spectra. Because of this, it is only

natural that when the particles in the filter exist close to the true state of the atmosphere,

several of them will lie in or close to this continuum. All particles in this continuum will

receive equal weights in the particle filtering algorithm, meaning that once the particles come

in contact with the continuum, they are free to explore it in its entirety without penalty.

This continuum of equal spectra extends well beyond the realm of physical possibility for

atmospheric parameters, which could be easy to identify when the particles reach a state

that just could not possibly be true. However, in order to reach such absurd locations, the

particles would have had to travel a space of possible (but increasingly less likely) states

first. Being able to detect when the particles stopped tracking the true solution and began

to wander away from it can be difficult.

This is not a unique problem in particle filtering. Particle filters can still be very useful

in cases where the measurement contains incomplete data, even though it gives rise to this

very problem. Consider as an example a particle filter tracking a moving target on a 2-

dimensional polar coordinate space, where the only measurement available is the angle of

the target; the magnitude is unknown. With the combination of an imprecise model for

the dynamics of the target, a restricted number of particles, or perhaps just a large amount

of measurement noise, it is possible for the particle filter’s estimate of the target position

to diverge sharply from the actual position, even while making estimates that agree very

certainly with the measurements.

This problem can often be avoided with a tighter system state dynamics model. The

certainty of the model will propel the particles in the right direction and make up for miss-

ing information. However, in the case where the measurement does not contain complete

information, you may never be able to avoid the need for occasional recalibration. The rea-

son is that once you have diverged from the true system state, but are instead wandering

through a space that the model is indifferent to, you may never reconverge with the true
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solution again. Even more, if reconvergence did happen, there would be no way to detect

it without a measurement with complete data.

In the case of radiative transfer model inversion, a relatively good way to obtain a

complete measurement is by way of a radiosonde and a weather balloon. This is not ideal,

since the dependence on weather balloon measurements is exactly what this method is

supposed to eliminate the need for. However, it may be possible to “reset” the particle

filter using confident forecast data and historical measurements for the area.
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Chapter 7

Results

This chapter details the results of the extraction algorithm based on the modified par-

ticle filter that we derived previously. Figure 7.1 gives an in-process view of the extraction

algorithm, with individual particles depicted in green and the INLI estimate for the given

time step in red as a reference.

7.1 Summary of Innovations

The code for implementing the radiative transfer model in Matlab has been significantly

optimized so that the running time for calculating each spectral estimation is reduced by

an order of magnitude.

A proposal density was incorporated into the particle filter which draws the particles

towards the particle most likely to be representative of the system state.

Using the covariance of other extractions and historical weather data from the area

available to us the weights of the particles are not solely dependent on model fit but also

upon a likelihood based on resemblance to typical weather for the area.

7.2 Comparison to Iterative Nonlinear Inversion

One of the fundamental problems in developing methods for inverting the radiative

transfer models is not ever being able to say with certainty whether or not any estimate

of atmospheric parameters is correct. We simply do not have a true measurement to com-

pare against. The closest thing to a true measurement we have available to us is weather

balloon data. As discussed previously, weather balloon measurement is only as reliable

as the straightness of its ascension route; but since it is the best we can do, we have lit-

tle choice but to hold it up as the standard to compare atmospheric parameter estimates
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Fig. 7.1: Snapshot of the estimation process showing particle locations.

against. Unfortunately, we have only two weather balloon measurements during the entire

hyperspectral data set, and so our judgment of the performance of an algorithm will rest

principally upon the estimates at those two particular time steps.

Figures 7.2 and 7.3 show estimates of temperature for the entire nine hour data set using

iterative nonlinear inversion and particle filtering, respectively. Figures 7.4 and 7.5 show

the same for water vapor mixing ratio. Differences between the estimates are apparent, for

example the particle filter detected a slight drop in temperature between hours 21 and 23,

while the iterative nonlinear inversion method detected only a single peak in temperature

during the day. Which estimate is correct? It is difficult to say.



38

Fig. 7.2: Temperature retrieval using iterative nonlinear inversion.
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Fig. 7.3: Temperature retrieval using the particle filter.
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Fig. 7.4: Water vapor mixing ratio retrieval using iterative nonlinear inversion.
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7.2.1 A Performance Metric

While constructing the particle filter for this problem, we decided to weight the particles

based on a comparison of the RTM output spectra from each particle to the actual spectra

observed by the ASSIST II. This comparison can also give us a cursory look into the

performance of an estimator. By taking each estimate of the atmospheric parameters and

comparing the RTM output spectra for that estimate to the observed spectra at that time

step, we can get a metric for how closely the estimates agree with the observations. We use

the following for the comparisons

Errork =
||RTM(x̄k)− yk||

2

||yk||2
,

where Errork is the mismatch of our estimate to the observation at time k, x̄k is the estimate

at time k, and yk is the observation at time k.

We have already discussed the many-to-one relationship between atmospheric profiles

and observed spectra. For this reason, the comparison just described is not enough to

determine whether or not an estimate of atmospheric parameters is correct, only whether

or not it agrees with the observations. Figure 7.6 shows the result of this comparison for both

the particle filter and iterative nonlinear inversion methods. Both methods track the same

curve, meaning that they both agree equally well with the observations, despite differences in

the actual estimates themselves. The error curve itself also has some interesting features to

it, periods of time where both methods for some reason performed worse in their agreement

with the observations. Figure 7.7 shows that the features of this curve are not coincidental.

As the number of particles used in the particle filter increases, the error decreases until it

converges to this shape and cannot do any better. A possible explanation for the interesting

features of the error curve might be deficiencies in the observed data, or in the radiative

transfer model. In either case, we believe that the error curve in figure 7.6 possibly represents

a “minimum error” of sorts because two radically different approaches both converged to

it.
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7.2.2 Comparison to Weather Balloon Measurements

Figures 7.8 and 7.9 show the comparison of both the particle filter and iterative non-

linear inversion estimates of temperature to weather balloon measurements. Temperature

is the most dominant factor in the radiative transfer model, and it also tends to move

smoothly. Because of these two factors, the temperature estimates of the particles tend to

be tightly grouped with a high degree of confidence in the estimate. It can be seen from

the figures that both methods track the weather balloon measurement well, although fig-

ure 7.9 shows the iterative nonlinear inversion method with a better estimate of the balloon

measurement than the particle filter.
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Fig. 7.8: Comparison of particle filter estimation of temperature to sonde measurement
number one.
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Fig. 7.9: Comparison of particle filter estimation of temperature to sonde measurement
number two.

Water vapor mixing ratio estimates are more dynamic, as shown in figures 7.10 and 7.11.

Figure 7.10 shows the iterative nonlinear inversion estimate to track closer to the weather

balloon measurement most of the time, however at 40km it estimates a large spike in water

vapor mixing ratio which isn’t observed by the balloon. The particle filter’s estimate at

40km is much more conservative. Figure 7.11 does not really depict a clear winner.

7.2.3 What Does It Mean?

The fact that a 120-dimensional system can be tracked with minimal error between

the state estimates and the observation with only 20 particles is extremely encouraging. It

shows that drawing the particles toward the observations is possible and that it can prevent
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Fig. 7.10: Comparison of particle filter estimation of water vapor mixing ratio to sonde
measurement number one.

filter degeneracy in high-dimensional systems even with a small number of particles. It is

also encouraging that the estimates of the particle filter are close to measurements made by

weather balloons, and comparable to estimates made by other methods, even when using the

simplest possible model for atmospheric dynamics. It is believed that a more sophisticated

model for atmospheric dynamics can greatly improve the quality of the estimate, and reduce

even further the tendency for the particle filter to wander away from the true solution while

maintaining minimal error between estimate and observation.

7.3 Computation Time

The running time of the particle filtering algorithm is slower than the iterative nonlinear
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Fig. 7.11: Comparison of particle filter estimation of water vapor mixing ratio to sonde
measurement number two.

inversion algorithm implemented at Hampton University. There is room for optimization

inside the particle filtering algorithm itself which could serve to bring the running time

down to something comparable to other methods but it is unlikely that this particle filtering

solution will ever be faster than iterative nonlinear inversion due to the very few times that

iterative nonlinear inversion must calculate radiative transfer compared to the particle filter.
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Chapter 8

Conclusions

Particle filtering in high dimensions is a topic that will likely continue to be studied for

some time. The advantages of particle filtering such as not needing to invert the observation

equation, flexibility in modeling dynamics, and the ability to work in situations with non-

Gaussian noise are extremely enticing. People will continue to look for ways to implement

particle filters in high-dimensional spaces with relatively few particles. This body of work

has demonstrated that particle filtering in high dimensions is possible with a modest amount

of particles, although it can have a tendency to exaggerate other deficiencies in particle

filtering related to the many to one relationship of a nonlinear observation model.

The main concern when particle filtering in high dimensions is that an unwieldy num-

ber of particles would be necessary to have a good enough approximation of the PDF of the

system state in order to track the dynamics of the system. This concern is especially per-

tinent in systems whose dynamics tend to include occasional “decisions” where the system

state might turn one direction or another. The PDF of the system state at the time step

directly after such a decision could be thought of as multi-modal, with a certain probability

associated with each decision. There is a “volume” of sorts at each of the modes in the

PDF which needs to be represented by a number of particles. When working with fewer

than an ideal number of particles to begin with, splitting the group between modes in the

PDF will almost certainly cause collapse of the filter.

Degeneracy is a problem in all but the very simplest of particle filters, and has been a

topic of discussion in the particle filtering literature almost since the idea of a particle filter

was first proposed. A small number of particles will collect all of the weight in the filter,

leaving the majority of the particles with a very small weight, and representing areas of the

PDF that have very low probability. Ideally, we want particle weights to be approximately
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equal, meaning that there is very dense representation of the PDF in its most likely areas.

Resampling has been introduced as a technique to avoid filter degeneracy, and has proven

to be effective in relatively low dimensional problems. However, in the 120-dimensional

space of this problem, traditional resampling was not enough to keep the particle filter from

wandering away from the system state, nor to keep the particles from wandering away from

each other.

Particle filtering in high dimensions can work well with a strong and dependable model

for system state dynamics. Perhaps that is a bit obvious. For instance, if the system state

dynamics were perfect and deterministic without noise, why even bother to measure at all?

However, based on the results from this work, it is believed that even in a noisy environment,

dimensionality can be overcome if the state dynamics are well defined.

By implementing a modification to the particle filtering algorithm that draws particles

toward the most likely observation we achieve good representation of the PDF around the

estimate of the system state. The result of this modification is that the particles maintained

nearly equal weights during the entire extraction and tracked a system state with minimal

error compared to the observations. There are sacrifices which are made by taking this

approach. By forcing the particles to keep a tight approximation around the estimated

system state support of the PDF in less likely areas becomes virtually nonexistent. Also due

to the many to one relationship between the observations and possible system states there

is high likelihood that the particle filter will track an incorrect system state that happens

to also have minimal error with the observations. In fact, as observed with weather balloon

measurements, there is often an incorrect system state which matches the observation via

the radiative transfer model better than the true system state.

Looking forward both for this problem and for high-dimensional particle filtering in

general, there is work to be done to show what advantages more reliable dynamics models

can bring to the table. For this problem the historical weather data combined with a smarter

model for atmospheric dynamics could provide great improvement to the performance of

the particle filter. As it stands the particle filter extracts atmospheric profiles from hyper-
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spectral data with comparable results to iterative nonlinear inversion techniques. One of

the things that particle filter has to offer in addition to state estimation is a measure of

confidence in the estimated solution. Iterative nonlinear inversion has a serious shortcoming

in that it can not sense when its estimations are wildly inaccurate. While the particle filter

can also occasionally give inaccurate estimates, it brings with it a measure of confidence

which can alert the operator of the potential for an inaccurate estimation.
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