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Figure 4.3: Locations of 28 ionosonde stations in the northern hemisphere.

clearly dominates the shape of the foF2 curves, as shown in Fig. 4.2. A comprehensive

overview of statistical methods proposed in the space physics community is given in Las-

tovicka et al. (2006). The main problem from which they suffer is their inability to combine

the information from many spatial locations. The model and the testing approach we pro-

pose is an attempt to overcome this difficulty. We consider the following specialization of

model (4.10):

foF2(s; t) = β1 + β2t+ β3SRF(t) +

p∑

j=1

ζj(s)vj(t). (4.17)

The covariate SRF is the solar radio flux measured in W/m2Hz. It is a proxy for the solar

activity. Another possible proxy is the sunspot number. Our primary interest in this section

is in testing the hypothesis H0 : β2 = 0.

In this paper, we use data from 28 ionosonde stations, see Fig. 4.3, located in the

mid–latitude region form 300 to 600 in the magnetic coordinate system. To study the solar

influence on trends we split data into Night data from 22 to 2 LT, Noon Data from 10 to
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Table 4.1: P-values for the trend parameter as a function of the number of the FPC’s.

Day Noon Night
Target Final Final

P-value
Final Final

P-value
Final Final

P-value
CV,% p CV,% p CV,% p CV,%

80 2 80.81 3.3 · 10−03 2 84.08 5.58 · 10−3 2 81.82 0.3025
85 – – – – – – 3 89.08 0.3197
90 3 90.81 0.0101 3 92.32 5.79 · 10−3 4 92.40 0.3302
– 4 93.10 0.0102 4 94.70 5.79 · 10−3 – – –
– 5 94.62 0.0103 – – – – – –
95 6 95.87 0.0103 5 96.26 6.04 · 10−3 5 95.24 0.3304

14 LT and Day data (no time filter is applied). Here and below LT means local (latitudal)

time. The data are available from 1967-08-01 to 1989-08-01. This interval covers 22 years

or two solar 11-year cycles. We do not discuss the details of creating the functional objects

from the raw data, as these are fairly complex. An interested reader is referred to Chapter 2

and Chapter 3 herein. The distance between the locations on the globe is measured using

the chordal distance.

Table 4.1 shows the P–values obtained for several values of p. These values were

selected by targeting a specific percentage of variance explained by the first p FPC’s. It is

seen that the trend coefficient is significant for the Day and Noon data, but not for the Night

data. A more comprehensive discussion of this finding will require a more detailed space

physics research, but we note that our result is consistent with discussions published in space

physics literature. Due to different physical processes, the behavior of the upper atmosphere

is different at different times of a day. Our finding, in a sense, confirms that the problem of

trend determination is complex, an a clear cut answer may not be available. The problem

must be formulated in a more precise way. One might clearly wonder if the acceptance of

H0 : β2 = 0 is not a type I error. As seen in Fig. 4.5, the test has the power of about

80%, so a type one error is a possibility. One way to increase power, would be to consider

more ionosonde locations. There are however two problems that must first be solved. 1)

As seen in Fig. 4.3, the amplitude of the curves depends on the latitude. Thus extending
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the latitudinal coverage would violate te assumption of stationarity that underlines our

methodology. 2) Most stations outside the northern hemisphere have incomplete records.

These are not a few missing observations, but missing stretches of data of length 5–20

years. A suitable methodology to accommodate such incomplete records would need to be

developed.

4.7 Validation of the methodology

In this section, we present the results of several simulation studies that validate the

estimation on testing methods introduced in Sections 4.4 and 4.5.

Methodology of Section 4.4. To demonstrate the superior performance (in small

samples) of the new nonparametric estimation procedure, we designed the following simu-

lation study. We generate data using model (4.4) with two FPC’s, i.e.

X(s; t) = µ(t) + ζ1(s)v1(t) + ζ2(s)v2(t). (4.18)

We set

v1(t) = sin(2πt · 7) + sin(2πt · 2), v2(t) =
√
2 sin(2πt · 3);

ζ1 ∼ N(0,Γ1), ζ2 ∼ N(0,Γ2),

where the elements of the covariance matrices have the following parametric form:

γ1(dkℓ) = exp(−dkℓ/0.1), γ2(dkℓ) = 0.2 exp(−(dkℓ/0.3)
2).

The spatial locations sk are uniformly distributed on the unit square (different locations for

every MC replication).

We compare four estimation procedures:

S Simple average, which totally ignores the spatio–temporal dependence;

T The infeasible method which uses the true covariance matrix C = Γ1 + Γ2;
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P The method that uses a misspecified parametric spatio–temporal covariance function

σ2C(h;u), with C(h;u) given by

C(h;u) =
1

1 + a|u|2α exp

(
− c‖h‖
(1 + a|u|2α)β/2

)
. (4.19)

(This covariance function is discussed in detail in Example 4.7.1 below in this section.)

N The new nonparametric method.

Method S corresponds to using only step (a) in the algorithm presented earlier in this

section. It would be the default method if standard R or Matlab software were to be used.

The remaining methods are iterative, and differ by the way in which the covariance matrix

in step (b) is estimated. The parametric model used in method P is discussed in greater

detail in Example 4.7.1.

Table 4.2 compares the performance of the four methods for sample sizes ranging from

15 to 40. We report Monte Carlo averages and standard deviations of the L2 distance

defined as

L2 =

{∫
(µ̂i(t)− µ(t))2 dt

}1/2

. (4.20)

The most important conclusion is that method N is significantly better than all other

methods at the 5% confidence level (a difference of more than two standard deviations, which

will be the benchmark in the discussion that follows). It is even better than the parametric

method T which assumes the known true covariances. This illustrates a relatively well–

known fact that a flexible nonparametric model can approximate the stochastic structure

of the data better than a true parametric model, when the number of data points is small.

Method P, based on a more flexible parametric family is significantly worse than method

N, but “almost” significantly better than Method T: the differences between N and P are

significant at about 10% level. The standard method S is significantly worse than any other

methods. This means that taking into account spatial dependence of the curves even in

a suboptimal way significantly improves the estimates. We emphasize that for method P

only the cases in which the variogram optimization converged were considered; it did not
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Table 4.2: Average L2 distance between the estimated and true mean functions for different
estimation methods; the second number represents the standard error. The entries are
based on 104 replications.

Sample S T P N

15 0.164 ± 0.006 0.151 ± 0.005 0.145 ± 0.006 0.069 ± 0.004
20 0.137 ± 0.005 0.123 ± 0.004 0.116 ± 0.005 0.061 ± 0.003
25 0.122 ± 0.005 0.108 ± 0.004 0.098 ± 0.004 0.059 ± 0.004
30 0.115 ± 0.004 0.105 ± 0.004 0.098 ± 0.004 0.060 ± 0.004
35 0.109 ± 0.004 0.096 ± 0.004 0.089 ± 0.004 0.060 ± 0.004
40 0.104 ± 0.005 0.089 ± 0.004 0.082 ± 0.004 0.059 ± 0.005

converge in over 10% of replications. The conclusions reached from the analysis of Table 4.2

do not change if the data generating process (4.18) is modified by adding more principal

components which however do not account for more than 10% of variability, as is the case

for the ionosonde data.

The results reported in Table 4.2 reveal good performance of Method P based on

the misspecified covariances (4.19). The example below considers this spatio–temporal

model a bit closer. It is not a model for spatially indexed functional data that drives our

methodology, so it serves to underline the flexibility and extendability of our approach,

which proposes to estimate the spatial components nonparametrically, when the number of

spatial locations is small. It turns out that our nonparametric approach can improve on

the current estimation methodology for model (4.19) as well.

Example 4.7.1 We now consider the model Z(s; t) = µ+ε(s; t), with the true mean µ = 0.

The spatial locations sk are uniformly distributed on the unit square (different locations

for every MC replication). The errors are normal with the space–time correlation function

given by (4.19), i.e. by Eq. (14) in Gneiting (2002). The scale parameters a and c are

nonnegative, the smoothness parameter α, and the space-time interaction parameter β take

values in [0, 1]. The goal is to study performance of the nonparametric method in three

regimes: no space-time interaction β = 0, moderate space-time interaction β = 0.5, and

strong space-time interaction β = 1. The parameter a is also of importance; if it is small, it
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induces long range temporal correlation, if it is large the temporal correlation decays fast.

The space scale parameter and the smoothness parameter are fixed (c = 5, α = 0.7). Again,

to estimate the mean, we must estimate the covariance structure. The details are outlined

at the end of this example. The methods we study are:

S Simple average, which totally ignores the spatio–temporal dependence;

T The infeasible method which uses the correct model and true parameter values;

P The parametric method that uses the correct model and estimated parameters;

N The new nonparametric method.

The results of our simulations are displayed in Table 4.3. In all but four cases, method

N is significantly better than method P at 5% level of significance. In the remaining four

cases, the average L2 distance for method N is smaller, but the difference is smaller than

two standard deviations. The difference is much more significant than 5% for N = 15 and

N = 20. The marginally insignificant result for N = 15 and β = 1, a = 1 could be a type

II error. In all cases considered the infeasible method (T) is not significantly better than N

at 5% level. Somewhat surprisingly, in a few cases with N = 15 and N = 20 method P is

not significantly better than the trivial method S.

We conclude this example by outlining the covariance estimation procedure for model

(4.19), see Section 4 in Gneiting (2002) for more details. By plugging in (4.19) into (4.9)

one can see that for mean estimation only a purely spatial covariance is needed:

C(h) =

∫ 1

0
C(h; 0)dt = exp (−c‖h‖) .

After determining the parameter c via nonlinear fitting we calculate the weights using

(4.8). For method N, we estimate the covariance function nonparametrically, as described

in Section 4.2.

Methodology of Section 4.5. There are many reasonable data generating processes

that could be used to evaluate the finite sample performance of the normal test based on



81

Table 4.3: Average L2 distance between the estimated and true means; the second number
represents the standard error. Entries are based on 104 replications.

Parameters Sample S T P N

β = 0, a = 0.1,

15 0.201 ± 0.002 0.185 ± 0.003 0.192 ± 0.004 0.181 ± 0.001
20 0.188 ± 0.002 0.167 ± 0.002 0.183 ± 0.007 0.166 ± 0.002
25 0.178 ± 0.002 0.158 ± 0.003 0.158 ± 0.004 0.155 ± 0.002
30 0.173 ± 0.003 0.154 ± 0.003 0.158 ± 0.006 0.150 ± 0.003

β = 0, a = 1,

15 0.199 ± 0.002 0.183 ± 0.002 0.191 ± 0.003 0.181 ± 0.002
20 0.189 ± 0.002 0.171 ± 0.003 0.178 ± 0.006 0.166 ± 0.002
25 0.179 ± 0.002 0.159 ± 0.002 0.163 ± 0.003 0.156 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.002 0.154 ± 0.003 0.149 ± 0.001

β = 0.5, a = 0.1,

15 0.200 ± 0.002 0.182 ± 0.002 0.196 ± 0.004 0.182 ± 0.002
20 0.189 ± 0.002 0.166 ± 0.002 0.171 ± 0.002 0.166 ± 0.002
25 0.179 ± 0.003 0.157 ± 0.005 0.167 ± 0.006 0.154 ± 0.003
30 0.173 ± 0.002 0.152 ± 0.002 0.158 ± 0.003 0.151 ± 0.002

β = 0.5, a = 1,

15 0.199 ± 0.002 0.181 ± 0.002 0.188 ± 0.002 0.180 ± 0.002
20 0.182 ± 0.002 0.161 ± 0.002 0.171 ± 0.004 0.161 ± 0.002
25 0.179 ± 0.002 0.157 ± 0.002 0.167 ± 0.004 0.156 ± 0.002
30 0.174 ± 0.002 0.162 ± 0.006 0.168 ± 0.005 0.151 ± 0.001

β = 1, a = 0.1,

15 0.199 ± 0.001 0.185 ± 0.003 0.196 ± 0.004 0.181 ± 0.002
20 0.189 ± 0.002 0.171 ± 0.003 0.180 ± 0.007 0.166 ± 0.002
25 0.177 ± 0.002 0.157 ± 0.002 0.166 ± 0.004 0.156 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.001 0.158 ± 0.003 0.148 ± 0.001

β = 1, a = 1,

15 0.201 ± 0.001 0.185 ± 0.002 0.189 ± 0.002 0.186 ± 0.002
20 0.187 ± 0.002 0.172 ± 0.003 0.176 ± 0.003 0.166 ± 0.002
25 0.181 ± 0.002 0.159 ± 0.002 0.165 ± 0.003 0.157 ± 0.002
30 0.172 ± 0.002 0.150 ± 0.001 0.152 ± 0.003 0.149 ± 0.001

β̂i/

√
Var[β̂i]. A number of spatial designs, shapes of the FPC’s and the covariance functions

for the scores could be employed. To avoid producing a large number of tables, we focus

on a simulation study relevant to the science problem we consider in Section 4.6. The data

generating processes are designed to resample true data.

To evaluate the empirical size and power, we generate the data using model (4.17) with

p = 3 because the first three estimated FPC’s explain about 91–92% of the variance for

each of the three types of data. The coefficients β1 and β3 are equal to these coefficients

estimated from the real data. To evaluate the size, we set β2 = 0, to study the power,
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Figure 4.4: Normal QQ-plots plots for the estimated scores, ζi, 1 ≤ i ≤ 6 for the Day data.

we consider 0 < β2 ≤ 0.5. The FPC’s vj are equal to those estimated from the real data.

The vectors ζj are N(0, Γ̂j) with the Γ̂j equal to the covariance matrices estimated from

the data (using the nonparametric method). Monte Carlo replications are generated by

repeated simulations of the vectors ζj . The assumption of normality holds to a reasonable

approximation as shown in Fig. 4.4 for the Day data. The plots for the Noon and Night

data look similar. There is one outlying point in the QQ–plot of the ζ2(sk), and the plot for

the ζ3(sk) indicates some departure from normality. The third FPC contributes however

less than 10% to the variance, so its impact on our conclusions is small. In fact, the after

removing this point, the trend parameter practically did not change.

The empirical size of the test developed in Section 4.5 is reported in Table 4.4 as a

function of p. It is remarkably close to the nominal size and does not depend on p, as long

as it remains in a reasonable range. This remains true if the scores are not normal, but
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Table 4.4: Empirical Size of the test of H0 : β2 = 0.
Day Noon Night

p 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 9.06 4.24 0.90 10.28 5.52 1.14 10.47 5.34 1.17
3 9.94 4.75 1.23 9.82 5.15 1.01 10.51 5.24 1.04
4 9.80 4.76 1.03 10.01 5.08 1.00 9.78 4.77 1.07
5 10.21 4.93 1.16 9.52 4.91 1.06 9.95 4.88 1.01

Table 4.5: Empirical Size for the “simple” method.
Day Noon Night

p 10% 5% 1% 10% 5% 1% 10% 5% 1%

2 65.97 60.82 49.91 27.34 19.21 8.35 54.70 47.59 34.79
3 61.95 55.42 43.23 69.34 64.02 53.98 55.51 47.27 35.65
4 60.22 53.49 41.40 68.20 63.73 54.63 55.52 48.73 35.94
5 62.18 55.31 43.51 70.51 62.15 53.24 54.75 47.08 34.24

severe departures from normality may distort the size for some values of p. For comparison,

Table 4.5 shows the sizes for the method which can be termed “simple.” It also relies on

(4.13) and (4.15), but it uses the standard estimation procedure implemented in software

packages discussed in Ramsay et al. (2009). (In the “simple” method, we set wk = 1/N and

the vj in Ω are estimated as the eigenfunctions of the usual empirical covariance operator.)

The “simple” method does not take into account the spatial dependence of the curves.

This method severely overrejects. The empirical power of the new method is displayed in

Fig. 4.5. The power curves for the Day data rise less steeply than those for the Noon and

Night data. We will return to these curves when we discuss the results of the application

of the test to the real data.

4.8 Summary and conclusions

The research reported in the paper is the outcome of our attempts to solve the hy-

pothesis of global ionospheric cooling in a manner that would survive a rigorous scientific

scrutiny. Our initial approaches failed because the standard parametric spatial model fitting



84

Figure 4.5: Empirical power. Solid line - empirical power for α = 10%, dash–dotted line -
empirical power for α = 5%, dashed line - empirical power for α = 1%.

Figure 4.6: Convergence of the iterative method for the estimation of the means Ri as a
function of iteration i.

produces very poor results if a small sample of spatial locations is available. To address

this issue, we built on the nonparametric approach and developed a set of tools that can be

used with confidence in small samples of spatially distributed curves. The main ingredients

of the new methodology are the following. 1) Nonparametric estimation procedure for the

mean function which produces significantly smaller mean squared errors than any of the

existing procedures. 2) Estimation procedure for the mean function expressed as a linear
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combination of known functions. 3) A test to determine the significance of the coefficient

of any of the known functions in 2). As explained in the introduction, we hope that our

methodology will be used in other problems of inference for functional data available at a

small number of spatial locations.

4.9 Bandwidth selection and the construction of the functional confidence in-

tervals

In this section, we describe the procedures for the selection of the bandwidth h and

for the construction of the functional confidence intervals, the two important ingredients of

the methodology introduced in Section 4.2.

Regarding the choice of h, we performed a very extensive simulation study to evaluate

the performance of several potential methods. It is important to note that the nonparamet-

ric covariance function estimation described in Section 4.2 is only an ingredient of a broader

methodology for the estimation and testing in the functional spatio–temporal framework.

The choice of the bandwidth must thus be be tailored to the problems we want to solve.

These problems revolve around the estimation of the mean function µ(t) in model (4.4).

The procedure employed in all numerical work reported in this paper is the following: We

first center the functions by their average (their possible spatial dependence is not taken

into account). This step transforms the functions to a set of approximately mean zero func-

tions. We then estimate the covariance functions using a several choices of h, the same h for

every functional principal component. We select h for which the estimated mean function

is closest to zero. In other words, we select h which minimizes

‖µ̂h − 0‖2 =
∫
µ̂2h(t)dt

where µ̂h is the final estimated mean function (of the centered curves) obtained using

bandwidth h.

The other approaches we experimented with included: 1) cross–validation to minimize

the integrated mean squared error of m̂ given by (4.2) or of γ̂ described in the next para-
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graph. 2) Cross–validation to minimize the integrated mean squared error of the estimated

function µ̂h. 3) Spatial versions of the cross validations in 1) and 2), in which the removed

observation is replaced by a spatial prediction obtained using kriging with various values of

h. None of these approaches yielded uniformly satisfactory results.

We now turn to the construction of functional confidence bounds for the covariance

function γ(·). The idea is as follows. First, using the quasi–bootstrap procedure proposed by

Solow (1985) and further improved by Clark and Allingham (2011), we produce a collection

of M independent covariance curves, γ̂i(d), 1 ≤ i ≤ M . Then using the concept of a

functional depth we construct the confidence bounds. The concept of functional depth has

been extensively used lately, see Fraiman and Muniz (2001), Febrero et al. (2008), López-

Pintado and Romo (2009) and Sun and Genton (2011), but not in the context of covariances

of spatial data.

We start with outlining the quasi–bootstrap procedure. The estimated covariance

matrix Γ̂ is decomposed using the Cholesky decomposition as Γ̂ = L̂L̂T , where L̂ is the

lower triangular matrix. Using L̂, the spatial field ζ can be decorrelated as ζ0 = L̂−1ζ. Next,

ζ0 is resampled with replacement and recorrelated ζi = L̂ζ0. The superscript 1 ≤ i ≤ M

refers to the iteration step. Based on the bootstrap sample ζi, the correlation is estimated

by γ̂i(d) using the nonparametric method. These steps are repeated sufficiently many, say

M = 1, 000, times. This leads to a collection of independent covariance curves γ̂i(d).

A functional depth can be defined in many different ways. Here we use the definition

presented in Chapter 1 of Horváth and Kokoszka (2012). Let

FN,d(γ) =
1

N

N∑

i=1

I {γ̂i(d) ≤ γ} ,

be the empirical distribution function at point d. We define the functional depth (FD) of

the curve γ̂i by integrating the univariate depth:

FDN (γ̂i) =

∫
(1− |1/2− FN,d(γ̂(s))|) ds.
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Next, we select K curves with the largest depth. Then, for each d we find min(γ̂i(d))

and max(γ̂i(d)) from among these K curves. This produces the lower and upper bounds

which form the functional analogue of the univariate 1−α = K/M confidence interval. An

Example of the functional confidence bounds is shown in Fig. 4.1.



CHAPTER 5

EVALUATION OF THE COOLING TREND IN THE IONOSPHERE USING

FUNCTIONAL REGRESSION WITH INCOMPLETE CURVES1

Abstract

Long–term trends in the ionosphere can impact the operation of space–based civilian

and defense systems. The ionospheric cooling trend studied in this paper is also related to

the global warming hypothesis; both are attributed to the same drivers. The hypothesis

that such a trend exists has been an important focus of space physics research for two

decades. A central difficulty in reaching broadly agreed on conclusions was the absence of

data with sufficiently long temporal and sufficiently broad spatial coverage. Time series of

data that cover several decades exist only in several separated (industrialized) regions. The

space physics community has struggled to combine the information contained in these data,

and often contradictory conclusions have been reported based on the analyses relying on

one or a few locations. We present a statistical analysis that uses all data, even those with

incomplete temporal coverage. It is based on a new functional regression approach that

can handle unevenly spaced, partially observed curves. We conclude that a statistically

significant cooling trend exists in the Northern Hemisphere. This confirms the hypothesis

put forward in the space physics community over two decades ago. We also define the

minimum requirements on the number of curves and their temporal extent in order for

statistical significance of trend to be determined.

5.1 Introduction

1CO-AUTHORED BY O. GROMENKO, P. KOKOSZKA, AND J. SOJKA. THIS PAPER IS SUB-

MITTED TO THE JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION: APPLICATIONS

AND CASE STUDIES.
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This paper is concerned with a long standing problem of space physics research. The

increased concentration of greenhouse gases in the upper atmosphere is associated with

global warming in the lower troposphere. Roble and Dickinson (1989) suggested that the

increasing amounts of these radiatively active gases, mostly CO2 and CH4, would lead to

a global cooling in the thermosphere by about 50K. Rishbeth (1990) pointed out that this

would result in a thermal contraction of the atmosphere and the global lowering of the

ionospheric peak height and the decrease of the inospheric peak density, see Fig. 5.1. The

F region peak has been observed for many decades by globally distributed ground–based

ionosondes. The ionosonde is a type of radar projecting a spectrum of high-frequencies (HF)

vertically into the ionosphere. In principle, these observations could be used to quantita-

tively test the hypothesis of Roble and Dickinson (1989). A long term change in the upper

atmosphere can impact space–based navigation (including GPS systems), HF (2-30MHz)

radio communication and the operation of low orbit satellites. It is associated with the

global warming hypothesis because a physical mechanism for the conjectured cooling trend

is also attributable to greenhouse gases.

The ionospheric layer which contains the peak electron density is known as the F2

region (the right–most peak in Fig. 5.1). Ionosonde measurements allow us to observe a

critical frequency, denoted foF2. The ionosonde observes the frequency associated with

the peak plasma density known as the plasma frequency or the critical frequency of the

ordinary ray propagation of the transmitted radio wave. This frequency decreases as the

peak density proportional to the square root of the peak density. There has consequently

been extensive space physics research aimed at determining if a decreasing temporal trend

in the foF2 frequency indeed exists. Lastovicka et al. (2008) review some of the relevant

literature.

Long-term changes in the upper atmosphere are usually described using a linear ap-

proximation referred to as the ionospheric trend. The main problem in its determination

is the separation of the solar activity and other factors, like the long term changes in the

internal magnetic field of the Earth; the solar cycle dominates the shape of the foF2 curves,



90

12

45

85

300

600

H
e

ig
h

t,
 k

m

TROPOSPHERE

STRATOSPHERE

MESOSPHERE

THERMOSPHERE

EXOSPHERE

D

E

F

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Electron density, cm
−3

Figure 5.1: Typical profile of day time ionosphere. The curve shows electron density as a
function of height. The right vertical axix indicates the D, E and F regions of the ionosphere.

see Fig. 5.2. A comprehensive overview of statistical methods proposed in the space physics

community is given in (Lastovicka et al., 2006). The main problem from which they suffer

is their inability to combine the information from many spatial locations. The usual ap-

proach is to calculate trends separately at a number of locations, often using different time

periods, and then average these trends to obtain a sense of a global trend, see Bremer et

al. (2012) for a recent contribution and a discussion of previous work. There has, however,

long been a sentiment in the ionospheric physics community, that, in addition to informative

exploratory analyses, an inferential statistical framework should be developed to address

the question of the existence of long term ionospheric trends; Ulich et al. (2003) stress that

to make any trends believable, a suitable statistical modeling, a proper treatment of “errors

and uncertainties” is called for.
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Figure 5.2: Gray lines represent all foF2 records analysed in this paper with the scale on
the left-hand side. The black line represents the observed solar radio flux with the scale on
the right-hand side.

Our objective is to make a contribution in this direction which establishes the existence

of the negative foF2 trend over the mid–latitude Northern Hemisphere with statistical signif-

icance. This is achieved by developing an inferential framework which allows us to combine

incomplete ionosonde records from globally distributed locations and take their spatial de-

pendence into account. The absence of complete records has been a major stumbling block

in space physics research to date. Our approach is developed in the framework of functional

data analysis: the ionosonde records are viewed as spatially indexed curves which are only

partially observed.

There has been an increasing interest in correlated (in particular spatially dependent)

functional data. Such data occur in many settings of practical relevance: meteorological and

pollution variables at many locations measured over long periods of time, records of brain

activity at a number of locations within the brain, economic or health variables indexed

by counties, etc. An interested reader is referred to Delicado et al. (2010), Giraldo et al.
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(2009, 2010, 2011, 2012), Nerini et al. (2010), Secchi et al. (2011, 2012), Jiang and Serban

(2012), Crainiceanu et al. (2012), Staicu et al. (2010, 2012), and Chapters 2, 3 and 4

herein. Even though our new functional regression technique has been developed to solve a

specific science problem, it is hoped that it will be received with interest as a more broadly

applicable tool of functional data analysis.

The remainder of the paper is organized as follows. In Section 5.2, we introduce the

space physics data we work with. Section 5.3 is devoted to the new statistical methodology

we had to develop to solve the problem outlined above. Some technical aspects of this

methodology are explained in Sections 5.5, 5.6 and 5.7. In Section 5.4, we apply these

tools to establish, with statistical significance, the existence of a negative foF2 trend in the

mid–latitude Northern Hemisphere.

5.2 The data

The main data used in our study are the foF2 values calculated from ionosonde radio

wave echoes from the F2 layer. The raw data are available at the Space Physics Interactive

Data Resource (SPIDR), http://spidr.ngdc.noaa.gov/spidr/. In principle, these are

equidistant time series at over 200 locations with the typical separation between the obser-

vations of one hour. In practice, these raw data contain huge gaps, often over a decade long,

as well as a large number of “sporadic” missing observations, most likely due to equipment

failure or maintenance. Missing data are often not indicated and not plugged in a standard

way. Even at the same location, the foF2 values are sometimes reported in different units at

various times in the pat six decades. We developed a C++ program which converts the raw

data to standard units and to regularly spaced time series with missing values flagged. Due

to rounding of geographical coordinates, some stations appear to have the same location.

When this happens, we use exact locations provided by external sources. Also, some sta-

tions are listed twice with different 5-digit SPIDR codes. For example, HAJ43 and HAJ45

both are Hanscom AFB, MA. In this case, we use the record with the 5-digit code which

has the lower numeric part. In some cases, we merge such records to obtain longer temporal

coverage.
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Figure 5.3: Locations of the 85 ionosonde stations used in this study, black discs. The
two circles in northern Canada represent stations located in the auroral zone (dashed line),
which were not used.

For the study reported in the paper, we calculated monthly medians using only near

noon observations, 10-14 LT (LT denotes local solar time). At noon, the behavior of the

ionosphere is completely dominated by the solar radiation, see Fig. 5.2, which can be re-

moved using our regression model. At night, the behavior of the ionosphere is complicated,

and we postpone the study of the night time data to a more specialized space physics pa-

per. Our statistical study requires the assumption of spatial stationarity. To make this

assumption reasonable, we focus only on the mid–latitude region located between 30◦N and

60◦N geographic latitude. The ionosphere can be divided into three regions, equatorial,

mid–latitude and auroral. It exhibits different electron density profiles in each of these

regions, with the profile shown in Fig. 5.1 typical of the mid–latitude region. The reason

for choosing the northern hemisphere is that it contains the longest records with the most
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extensive spatial coverage, see Fig. 5.3. We dropped two Canadian stations located between

30◦N and 60◦N which are however in the auroral zone (determined by the magnetic coordi-

nates). Visual examination shows that these two records indeed appear to be outliers. The

total number of selected stations is 85. The majority of the ionosondes started to operate

in 1957, the international geophysical year. We selected the time interval from July 1957

to December 2011, so that the total number of months is 654. While the total number of

selected stations is 85, the number of stations available at any specific month never exceeds

50.

The foF2 curves are used as responses in our functional regression. The main ex-

planatory variable is the observed solar radio flux (SRF), also available at SPIDR, which

is a well established proxy for the solar activity. We also use another regressor which is

a function of the direction of the internal magnetic field of the Earth, which has changed

at every ionosonde location over the time span of the data. These directions are com-

puted using the international geomagnetic reference field (IGRF); the software is available

at http://www.ngdc.noaa.gov/IAGA/vmod/.

5.3 Statistical model and inference

In order to develop an inferential procedure, a statistical model for the data must

be postulated. Denote by {sk, 1 ≤ k ≤ N} the locations at which the functional field is

observed. We assume that each curve X(sk, ·) is an element of a strictly stationary spatial

random field taking values in the space L2 of square integrable functions. This assumption

implies that all curves X(sk, ·) have the same distribution in L2, in particular, they have

the same mean function µ(t) = E[X(s, t)] and the same functional principal components

(FPC’s), which we denote by vj(t). The inference on the mean function µ(·) is the main

objective of this research; this function may or may not contain the conjectured foF2 trend.

The main difficulty arising in the work that follows is that the curves X(sk, ·) are often not

available over long periods of time, these periods being different at different locations sk.

There is also a small measurement error, which we denote by θ(s; t). We assume that θ(s, t)

are mean zero iid random variables with variance σ2θ . We also assume that the random
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fields X and θ are independent. Under these assumptions, the model for the data is

X(s; t) = µ(t) +

∞∑

j=1

ζj(s)vj(t) + θ(s; t), (5.1)

where the second term on the right-hand side is the Karhunen–Loéve expansion, see e.g.

Chapter 17 of Horváth and Kokoszka (2012). Each ζj is a strictly stationary mean zero

scalar random field. For every s, E[ζj′(s)ζj(s)] = 0, j′ 6= j (this is a general property of the

scores). We impose a stronger assumption that for any s, s′,

E[ζj′(s
′)ζj(s)] = 0, j′ 6= j, (5.2)

which is needed to derive a test statistic whose distribution can be approximated. In

Section 5.5, we show that (5.2) is a very reasonable assumption for the foF2 data. Using

a mathematical argument, we also show in Section 5.5 that (5.2) holds for every separable

spatio–temporal random field, i.e. a field for which

Cov
(
X(s, t),X(s′, t′)

)
= Σ(s, s′)c(t, t′). (5.3)

We however do not assume separability. The covariance structure of our model, which can

be viewed as a spatio–temporal field, is

Cov
(
X(s, t),X(s′, t′)

)
=

∞∑

j=1

Σj(s, s
′)vj(t)vj(t

′),

where

Σj(s, s
′) = E[ζj(s)ζj(s

′)].

In our estimation procedure, we assume that the fields ζj are isotropic, an assumption that

holds reasonably well for the foF2 data.
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5.3.1 Estimation in the presence of incomplete records

In this section, we introduce a new method for the estimation of the mean function

µ(·) and the FPC’s vj(·) in model (5.1). This new approach is called for by the need to deal

with incomplete data.

Estimation of the mean function. For complete records, Chapter 2 proposed

several approaches. The most straightforward method is to estimate the mean by the

weighted sum:

µ̂(t) =
N∑

k=1

wkX(sk; t),
N∑

k=1

wk = 1. (5.4)

The optimal weights are found by minimizing the expected value of the L2 distance between

the mean and its estimator (5.4), subject to constrain wT1 = 1. This leads to the following

expression for the weights:

w = Σ−11/(1TΣ−11), (5.5)

where Σ is an N ×N positive definite matrix with entries

Σ(sk, sℓ) = E

∫
{X(sk; t)− µ(t)} {X(sℓ; t)− µ(t)} dt. (5.6)

It is clear that (5.4) and (5.6) require the curves X(sk; t) to be complete. This is particularly

important in (5.6); for incomplete records, it may happen that the segments over which

X(sk; t) and X(sℓ; t) are available are practically disjoint. A similar problem occurs if one

attempts to use the methods of the estimation of the FPC’s vj developed in Chapter 2

in situations when large segments of data are missing. These difficulties motivate us to

propose an different approach which we now describe.

Let N be the total number of curves, i.e. the number of ionosonde stations used in the

study. By ti, 1 ≤ i ≤ T , we denote all possible times at which the ionosonde records can, in

principle, be evaluated. By Ni, 0 ≤ Ni ≤ N , we denote the number of observations actually

available at time ti, and by Tk the actual number of observations of the curve X(sk).

The new method also uses weights to account for spatial dependence. To handle missing
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observation we use smoothing, common in longitudinal data analysis. The mean function

is estimated by the local linear indexed regression:

(m̂0(t), m̂1(t)) (5.7)

= arg min
m0,m1

T∑

i=1

κµ

(
t− ti
hµ

){ Ni∑

k=1

wk(ti)X(sk; ti)−m0 −m1(t− ti)

}2

.

The curve m̂0(·) is the estimate of the mean function µ(·). We report the results obtained by

using the Epanechnikov kernel κµ(t) = 3/4(1− t2)1[−1,1](t) because it has several desirable

properties, see e.g. Theorem 3.4 in Fan and Gijbels (1996). Simulations and application

to foF2 data show that the choice of kernel plays practically no role. The conclusions for

the foF2 data do not depend on the choice of the bandwidth hµ either, as long as it is in a

reasonable range, so that the smoothed curves visually follow the raw data. Specific values

are given in Section 5.4.

The main idea encapsulated in formula (5.7) is that at each time ti we use only the

Ni available curves; the weights wk(ti), which capture the spatial structure, depend on ti.

Their calculation is discussed in the following. This is a novel aspect because smoothing

methodology developed to date, see Yao et al. (2005), Yao and Lee (2006), Müller and Yao

(2008), assumes independence of the curves.

Calculation of the weights. In Chapter 2 proposed the so-called functional vari-

ogram:

2γ(dkℓ) = E

{∫
(X(sk; t)−X(sℓ; t))

2dt

}
. (5.8)

A natural estimator of 2γ(dkℓ) for complete records is

2γ̃(dkℓ) =
1

pkℓ

∑

P (dkℓ)

1

T

T∑

i=1

(X(sk; ti)−X(sℓ; ti))
2, (5.9)

where P (dkℓ) = {(sk, sℓ) : ‖sk − sℓ‖ = dkℓ} and pkℓ is the cardinality of P (dkℓ). The

points with d = 0 are not included. When the records are incomplete, averaging over

time can be a source of a severe bias especially for short records. Thus, preaveraging over
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time should be avoided. Instead, we perform averaging for all available squared differences

(X(sk; ti) − X(sℓ; ti))
2 , 1 ≤ i ≤ T , for locations which fall into P (dkℓ), see Fig. 5.4.

The resulting estimator is noisy and the corresponding spatial covariance is not necessarily

positive definite. We thus fit a valid parametric variogram model to the γ̃(dkℓ), using

nonlinear least squares, and restore the covariance. We use the Gaussian model

γ(d) = (σ2 − σ2ν)(1 − exp(−d2/ρ2)) + σ2ν1(0,∞)(d) (5.10)

because it fits the estimated variogram for the real data well, see Figure 5.4.

Once the parameters σ2, σ2ν and ρ2 have been estimated, calculation of the weights

wk(ti) is straightforward: we first estimate the covariance matrix Σ(ti) by plugging the

distances between locations with available observations into (5.10) and then use formula

w(ti) = Σ(ti)
−11/(1TΣ(ti)

−11).

Note that above Σ(ti) is the Ni ×Ni dimensional matrix and 1 is the Ni × 1 dimensional

vector.

We will also work with “universal” weights w obtained by plugging in distances between

all locations into (5.10) and using (5.5). We need the weights w for the trend estimation in

section 5.3.2.

Estimation of the covariance structure. To determine the statistical significance

of the conjectured cooling trend, we need to estimate several elements of the second order

structure of the incomplete functional field X. We will see in Section 5.3.2 that what is

needed are estimates of the FPC’s vj and of the matrices Σj whose entries are

Σj(k, ℓ) = E[ζj(sk)ζj(sℓ)], 1 ≤ k, ℓ ≤ N. (5.11)

To calculate these estimates, we extended the ideas used in the estimation of the mean

function to the estimation of the second order structure by using bivariate smoothing. The
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Figure 5.4: Estimation of the weights for incomplete records. Left panel: Gray dots represent
all available squared differences (X(sk; ti) − X(sℓ; ti))

2, 1 ≤ i ≤ T ; black dots represent
squared differences (X(sk; ti)−X(sℓ; ti))

2, for some fixed ti. Dashed lines separate regions
P (dkℓ). Right panel: The thin line shows the estimated variogram, the bold line represents
the fitted Gaussian variogram.

details are however fairly technical, and are presented in Section 5.6.

5.3.2 Functional regression

Estimation of the trend. In Chapter 4 we proposed a procedure for determining

the linear trend for complete records when all covariates are global, like the SRF which

does not depend on the spatial location. Here we generalize that approach to the case of

incomplete curves and covariates which may depend on the spatial location.

We assume that the mean function µ(t) is a linear combination of q known functions

(covariates) zi(t; s), so that model (5.1) takes the form

X(s; t) =

q∑

i=1

βizi(t; s) +

∞∑

j=1

ζj(s)vj(t) + θ(s; t). (5.12)
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Some covariates are global, but we use the notation zi(t; s) for all of them. All covariates

are fully observed and are treated as deterministic regressors.

For an arbitrary weight vector w = [w1, . . . , wN ]
T , set

zwi(t) =

N∑

k=1

wkzi(t; sk).

Next, introduce the following vectors

β = [β1, . . . , βq]
T , z(t) = [zw1(t), . . . , zwq(t)]

T ,

and matrices

Q =
[
〈zwi, zwi′〉 , 1 ≤ i, i′ ≤ q

]
, Ω = [〈zwi, vj〉 , 1 ≤ i ≤ q, 1 ≤ j ≤ p] .

The number p of the FPC’s in the definition of the matrix Ω is selected using the cumulative

variance criterion, see e.g. Ramsay and Silverman (2005) or Horváth and Kokoszka (2012).

A general recommendation is to use p such that the first p components explain about 85-

90% of the variance. It is often useful to perform inference for several values of p. If the

conclusions do not depend on p, we can place more confidence in them.

We now explain how the parameter vector β is estimated. If the responses X(sk) are

fully observed, we minimize

∣∣∣∣∣

∣∣∣∣∣

N∑

k=1

wk

{
X(sk)−

q∑

i=1

zi(sk)βi

}∣∣∣∣∣

∣∣∣∣∣

2

,

N∑

k=1

wk = 1. (5.13)

This leads to the solution

β̂ = Q−1
〈
z,wTX

〉
, z = [zw1, . . . , zwq]

T , (5.14)

with the weights w given by (5.5). The quantity
〈
z,wTX

〉
is the q × 1 vector with the ith

entry
〈
zwi,

∑N
k=1wkX(sk)

〉
.
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Notice that wTX is the estimate of the mean function µ for full records. Solution

(5.14) can thus be written as

β̂ = Q−1 〈z, µ̂〉 . (5.15)

When the record are partially observed, µ is estimated using the indexed regression discussed

above. Thus (5.15) is suitable for estimating the parameter vector when data contain missing

observations. This is the approach we take.

Significance of regression coefficients. The variance of the estimator (5.15) is

Var[β̂] = Q−1E
[
〈z, µ̂ − µ〉 〈z, µ̂ − µ〉T

]
Q−1, (5.16)

where the middle term is a q × q matrix whose (i, j) element is

∫∫
zwi(t)zwj(t

′)Cov(µ̂)(t, t′)dtdt′. (5.17)

The formula for Cov(µ̂)(t, t′) is given in Section 5.7, where we also derive the approximations:

Var[β̂] = Q−1ΩVar[ζw]Ω
TQ−1 + σ2θQ

−1wTw, (5.18)

where, assuming that the weights are known constants,

Var[ζw] = diag
(
wTΣ1w, . . . ,w

TΣpw
)
. (5.19)

The last expression is a p×p diagonal matrix. The diagonal form of Var[ζw] is a consequence

of assumption (5.2). Quantities appearing in (5.18) and (5.19) can be estimated using the

methodology presented in the previous sections.

Using numerical simulations, we found that the estimator β̂ is approximately normal

even if the functions X(sk) are not normally distributed. The ionosonde data do not show

alarming departures from normality, see Fig. 5.6. Thus to test βi = 0, for a fixed i, we

assume that the statistic β̂i/

√
Var[β̂i] has the standard normal distribution, the P-value is
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calculated as

P-value = 2Φ(β̂i/

√
Var[β̂i]). (5.20)

5.4 Application to ionosonde data

The specific form of regression (5.12) used in this section is

X(sk; t) = β1 + β2t+ β3SRF(t) + β4M(sk; t) +

p∑

j=1

ζj(sk)vj(t), 1 ≤ k ≤ 85. (5.21)

As explained in Section 5.6, the estimated noise variance is extremely small, so the noise

term is not included in the final model. The global functional covariate SRF is the observed

solar radio flux. The local covariates, M(sk), reflect the potential impact of decadal changes

in the direction of the internal magnetic field of the Earth, and are given by

M(sk; t) = sin I(sk; t) cos I(sk; t), (5.22)

where I(sk; t) is the inclination of the Earth’s magnetic field, see e.g. Chapter 13 of Kivelson

and Russell (1997). The space physics background justifying formula (5.22) is complicated.

An interested reader is referred to Elias (2009) and references therein. We also consider

a restricted model with β4 = 0. Using the full and the restricted models will allow us to

evaluate the impact of the decadal changes in the internal field on the conjectured trend.

Our interest is in estimating the coefficient β2, which we call the “trend,” and evaluating

its statistical significance.

Examples of modeling of the foF2 curves using model (5.21) are shown in Fig. 5.5.

Estimates of the linear trend as well as their statistical significance for different smoothing

bandwidths are summarized in Table. 5.1. We found that inclusion of the changes in the

Earth’s magnetic field changes the estimated values only slightly. A small impact of this

covariate is however clear, as it decreases the value of the estimated trend. Our main

conclusion is that the trend is negative and it is statistically significant. The estimated

trend value practically does not depend on the bandwidth hµ. When p = 3, 4 the estimated
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Figure 5.5: Examples of modeling of the foF2 records via (5.1) with hµ = 5, hc = 10 and
p = 3. Gray lines represent original records, solid black lines - model, dashed black line
- the mean function. Top: An almost complete record, middle: partially observed record,
bottom: example of unstable modeling when the number of observations per curve is less
than 200.

standard deviation and P-values do not depend on the bandwidth hc. But when the number

of FPC’s is 2, the estimated standard deviations and P-values are much smaller than those
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Table 5.1: Trends and P-values for different bandwidths. “NM” denotes estimation without
magnetic inclination, “M” denotes estimation when magnetic inclination is included. The
number of the FPC’s, p, was chosen to obtain the cumulative variance closest to but greater
than 85% (indicated as Final CV).

Final NM M
hµ hC CV,% p β2, 10

−3MHz/Year P-value β2, 10
−3MHz/Year P-value

10 86.77 3 −5.22 ± 2.25 0.020 −4.91 ± 2.24 0.028
5 15 90.44 3 −5.22 ± 2.30 0.023 −4.91 ± 2.29 0.032

20 87.07 2 −5.22 ± 1.48 4.36 · 10−4 −4.91 ± 1.47 8.62 · 10−4

10 88.75 4 −5.18 ± 2.15 0.016 −4.88 ± 2.14 0.023
10 15 87.57 3 −5.18 ± 2.11 0.014 −4.88 ± 2.10 0.020

20 86.50 2 −5.18 ± 1.83 4.67 · 10−3 −4.88 ± 1.82 7.52 · 10−3

10 88.55 4 −5.28 ± 2.16 0.014 −4.99 ± 2.15 0.020
15 15 87.09 3 −5.28 ± 2.11 0.012 −4.99 ± 2.11 0.018

20 91.36 3 −5.28 ± 2.20 0.016 −4.99 ± 2.19 0.023

10 88.58 4 −5.07 ± 2.13 0.017 −4.79 ± 2.12 0.024
20 15 87.02 3 −5.07 ± 1.99 0.011 −4.79 ± 1.98 0.015

20 91.04 3 −5.07 ± 2.04 0.013 −4.79 ± 2.03 0.018

for p = 3, 4. We believe that this happens due to oversmoothing of the covariance surface and

the resulting underestimation of the variance. The normal quantile-quantile plots are shown

in Fig. 5.6 which suggests that there is a slight deviation from normality, but according

to our simulations (not reported here) the t–statistics in (5.20) is robust enough to such

departures.

Our conclusion (significant negative trend) agrees with the hypothesis of Roble, Dick-

inson and Rishbeth discussed in Section 5.1. The exploratory analysis in Bremer et al.

(2012) applied to 37 stations located worldwide and various time periods yields however

mixed evidence. The average trend (simple average of individual trends) is either negative

or practically zero depending on the time period and the number of stations. It is therefore

important to determine if our conclusion depends on the choice of locations and the time

interval.

To assess the robustness of our conclusion we performed two experiments, which could

be called temporal and spatial subsampling. In the first experiment, we study the depen-
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Figure 5.6: Normal quantile–quantile plots for scores ξ1, ξ2, ξ3 estimated using hµ = 15
and hc = 15.

dence of the trend on the time interval length. To do this, we fix the interval length, L, and

determine the trend for all possible intervals. Since the observations must be sequential,

the number of possible intervals is limited, M = T − L + 1. The variability of the trend

parameter is shown in Fig. 5.7 (a). While the average trend parameter is uniformly less

than the final estimator, the variability is very high if L ≤ 400. This indicates, that if the

time interval is less than about 30 years, the sample may not contain enough information

to allow us to reach definite conclusions. In the second experiment, we use the whole time

interval (654 months), but we randomly select subsamples of locations of a specified size.

For each subsample size (e.g. 60), we draw 103 subsamples without replacement. The dis-

tribution of the values of β2 as a function of the subsample size is given in Fig. 5.7 (c).

While the average trend parameter is consistent with our final estimator, the variability is

high for small samples. If the sample size is greater than 65, we practically always obtain

a negative trend. However, for sample size smaller than 50, there is a good chance that

a positive trend will be obtained, if some specific locations are chosen. This phenomenon

has been a source of much debate in the space physics community. Studies of this type

have often been based on a handful of stations from a specific region because most of the

foF2 series are of poor quality and have limited temporal coverage. In particular, studies

based on individual records from the Asian part of Russia (east of 30◦ longitude) indicated
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a positive trend, Bremer (1998). Finally, we note that there is a clear relationship between

the time interval length and the number of stations that can be used. The distribution of

the number of stations as a function of the length is shown in Fig. 5.7 (b). We see that if

the time interval is about 400 months, about 70 stations are available. This establishing a

convincing connection between the two experiments. Our analysis indicates that a negative

trend in the Northern Hemisphere will be obtained provided the time interval is longer than

35 years (about 3 solar cycles) and at least 70 stations are used.
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Figure 5.7: (a) Distribution of the trend parameter as a function of the interval length, (b)
the number of stations as a function of the interval length. (c) distribution of the trend
parameter as a function of the number of stations. Light gray - full region, dark gray -
central 50 percent, dotted line - median, blue solid line - average. Bold black line is the
final estimator.

5.5 Correlation between scores

We first verify that if the covariance function is separable, i.e. if (5.3) holds, then

assumption (5.2) holds. Indeed, since the FPC’s vi are the eigenfunctions of the covariance
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kernel c(·, ·), we have

E[ζj(s)ζi(s
′)] = E

[∫
(X(s; t) − µ(t)) vj(t)dt

∫ (
X(s′; t′)− µ(t′)

)
vi(t

′)dt′
]

=

∫∫
Cov

(
X(s, t),X(s′, t′)

)
vj(t)vi(t

′)dtdt′

=

∫∫
Σ(s, s′)c(t, t′)vj(t)vi(t

′)dtdt′

= Σ(s, s′)

∫ {∫
c(t, t′)vi(t

′)dt′
}
vj(t)dt

= Σ(s, s′)

∫
λivi(t)vj(t)dt

= λiδijΣ(s, s
′),

where δij is Kronecker’s delta.

Now we explain a data driven approach to checking assumption (5.2). Recall that

ξj = [ξj(s1), . . . , ξj(sN )]
T is a zero mean random vector with the covariance matrix Σj .

Consider the N × N cross–covariance matrix Σjj′ = E[ξjξj′]. The matrix Σjj′ does not

need to be positive definite. We want to test

H0 : Σjj′ = 0, vs. HA : Σjj′ 6= 0.

This can be done assuming that Σjj′ is isotropic, i.e that Σjj′(sk, sℓ) = Σjj′(dkℓ), where dkℓ

is the chordal distance between locations sk and sℓ. To estimate Σjj′ we use the standard

binning approach:

Σ̂jj′(d) =
1

p(d)

∑

P (d)

ξj(sk)ξj′(sℓ), (5.23)

where P (d) = {(sk, sℓ) : ‖sk − sℓ‖ = d; k, ℓ = 1, . . . , N} and p(d) is the number of distinct

pairs. We call Σ̂jj′(d) the correlogram. Precise estimation of the confidence intervals for

Σ̂jj′(d) is a difficult task. Thus, we take a simplified approach which nevertheless pro-

vides useful information. It can be argued that under suitable mixing conditions Σ̂jj′(d)

is approximately normally distributed, see for example chapter 2.4.1 in Cressie (1993) and

references therein. Let Σ̂jj′ = [Σ̂jj′(d1), . . . Σ̂jj′(dH)]
T , be a vector of length H. Then
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Var(Σ̂jj′) is a H × H positive definite covariance matrix. To find the confidence bounds

we need to estimate the diagonal elements of Var(Σ̂jj′). We estimate the diagonal elements

using the sample variance estimator:

Var(Σ̂jj′(di)) ≈
1

p(di)− 1

∑

P (di)

(
ξj(sk)ξj′(sℓ)− Σ̂jj′(di)

)2
,

Now the pointwise confidence bounds can be constructed in a standard way. The estimated

correlograms and the corresponding pointwise 95% confidence bounds for different pairs j, j′

are shown in Fig. 5.8.

The pointwise confidence intervals cover the zero line almost entirely which shows that

the difference between the estimated correlograms and zero is not statistically significant.
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Figure 5.8: Black lines represent estimated correlograms and gray regions represent the 95%
pointwise confidence bounds.

5.6 Estimation of the covariance structure

We begin with the estimation of the vj(t). Since the vj(t) are the eigenfunctions of the

covariance operator, it is enough to obtain an estimate of the covariance surface, and then

numerically solve the eigenfunction equations. We emphasize that since many functions are

not observed over long temporal segments, the approaches developed in Chapter 2 cannot

be used, as they involve various integrals over the whole temporal domain. Our objective
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is thus to estimate

c(t, t′) = Cov(X(t),X(t′)).

The elements of the covariance function c(t, t′) for spatially correlated functional data are

estimated in two steps. In the first first step, which takes into account spatial correlations,

we obtain a preliminary estimator c̃(ti, ti′) which is noisy and contains missing values. The

second step is smoothing.

To obtain the preliminary estimator, we perform the following procedure. For fixed i

and i′ define the scalar field

ψ(s) = [X(s; ti)− µ̂(ti)] [X(s; ti′)− µ̂(ti′)] .

The estimation of c̃(ti, ti′) is thus reduced to the estimation of the mean (independent of s) of

the scalar spatial process ψ(·) based on the pseudo–observations ψ(s1), . . . , ψ(sN(i,i′)), where

N(i, i′) is the number of records available simultaneously at times ti and ti′ . To estimate

µψ = Eψ(s) as a weighted average of the ψ(sk), the covariance matrix of the ψ(sk) must be

estimated. This can be accomplished using either parametric modeling for large samples, or

the nonparametric approach developed in Chapter 4, for small samples (N(i, j) ≤ 20). In

this paper we use only parametric modeling with the exponential covariance. If the number

of observations in the the ψ(sk) is less than 20, we do not perform estimation. This is

admissible because of the second step. We point out that the first step is computationally

very expensive, but possible on a parallel machine.

Now we explain smoothing of the preliminary estimator. The core of the covariance

estimation methodology is discussed in Staniswalis and Lee (1998), Yao et al. (2003) and

Yao et al. (2005). In the presence of measurement error, the diagonal elements are contam-

inated by the noise variance and should not be included as input for the smoothing step.

The estimator of c(t, t′) thus is

ĉ(t, t′) = argmin
u

∑

1≤i 6=i′≤T

κc

(
t− ti
hc

,
t′ − ti′

hc

){
c̃(ti, ti′)− f(u, t, t′, ti, ti′)

}2
, (5.24)
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where c̃(ti, ti′) is the estimator obtained in step one, and

f(u, t, t′, ti, ti′) = u0 + u1(t− ti) + u2(t
′ − ti′), u = [u0, u1, u2]

T .

The choice of the kernel κc is not crucial, but the selection of the bandwidth hc requires

attention. The natural way to choose hc is by using leave one curve out cross–validation.

Unfortunately, due to extreme computational cost of the first step this type of cross valida-

tion is not possible at this time. We recommend to simply try several different bandwidths.

Notice that preliminary estimator does not depend on hc, thus this procedure is computa-

tionally fast. The conclusions reported in Section 5.4 do not depend on the choice of hc

as long as this bandwidth is reasonable. We used bandwidths corresponding to effective

averaging over periods from half a year to two years, which is unlikely to effect decadal

trends.

To asses the significance of the linear trend, the estimation of the score covariances

(5.11) is required. Estimation of the matrices Σj for the ionosonde data is not straight-

forward. When a curve is complete or almost complete numerical integration in ζj(s) =

〈X(s) − µ, vj〉 works very well. But when huge parts of a curve are missing, numerical

integration leads to a very poor estimate of a score. One possible remedy is to use the

conditional estimation advocated by Yao et al. (2005). Unfortunately, for ionosonde data

this approach performs poorly as well. We believe that the conditional estimation does

not work because observations are not missing at random. For the ionosonde data, using

visual validation, we found that if the number of observation per curve is bigger than 200

(about 1/3 of the maximum number of monthly observations), then the score estimates,

both obtained by numerical integration and the conditional estimation lead to predicted

curves µ̂(t) +
p∑
j=1

ξj(s)vj(t) which are close to the observed curves over the segments for

which the latter are available. Fig. 5.5 (bottom) is an example of a situation when this

is not the case. Thus, for accurate estimation of the score covariances we use only scores

estimated for curves with more 200 observations per curve. The size of the selected spatial

fields ζj is only 55 among 85 possible locations.
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Once the locations have been selected, we perform estimation of the covariance using

the semivariogram method. Namely, we estimate the semi–variogram

2γj(d) =
1

p(d)

∑

P (d)

(ζj(sk)− ζj(sℓ))
2,

where P (d) = {(sk, sℓ) : ‖sk − sℓ‖ = d} and p(d) is the cardinality of P (d). The points with

d = 0 are not included. We emphasize that not all N locations sk are used, only those which

have more than 200 temporal measurements. We then fit the empirical semivariogram to

some valid parametric model, γ̃j(d). The elements of the score covariances are calculated

as

Σj(k, ℓ) = γ̃j(0) − γ̃j(dkℓ), 1 ≤ k, ℓ ≤ N.

Finally, we note that the measurement noise variance can be estimated using Eq. (2) in

Yao et al. (2005). We found that for the ionosonde data the contribution of the measurement

noise is completely negligible. We thus omit it in numerical calculations, but preserve the

noise variance in formulas to enhance their broader applicability.

5.7 Covariances of the estimated mean function

Everywhere below we assume that the sampling variability of the weights wk(t) can be

neglected. Without this assumptions it is difficult to derive usable expressions.

We introduce the following vectors and matrices, with their dimensions given in paren-

thesis to facilitate the understanding:

µw =

[
N1∑

k=1

wk(t1)X(sk; t1), . . . ,

NT∑

k=1

wk(tT )X(sk; tT )

]T
, (T × 1);

m(t) = [m0(t),m1(t)]
T , (2× 1)

Z(t) =




1 t− t1
...

...

1 t− tT



, (T × 2);
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K(t) = diag [κ((t− t1)/h), . . . , κ((t − tT )/h)] , (T × T ).

Note that K(t), Z(t) and m(t) depend on continuous t, while µw is a vector of a fixed

length.

The solution to (5.7) has the form

m̂(t) = [ZT (t)K(t)Z(t)]−1ZT (t)K(t)µw, (5.25)

with the covariance matrix

Cov(m̂)(t, t′) = [ZT (t)K(t)Z(t)]−1ZT (t)K(t)Var(µw)K(t′)Z(t′)[ZT (t′)K(t′)Z(t′)]−1.

(5.26)

Thus the covariances of the mean function are

Cov(µ̂)(t, t′) = eT1 Cov(m̂)(t, t′)e1, (5.27)

where e1 = [1, 0]T .

The only factor in (5.26) that requires attention is Var(µw) which is a T × T matrix.

To calculate it in a general setting with measurement error we use model (5.1). Treating

the weights wk as fixed, we obtain

Cov(µw(ti),µw(ti′))

= Cov




Ni∑

k=1

wk(ti)X(sk; ti) ,

Ni′∑

ℓ=1

wℓ(ti′)X(sℓ; ti′)




=

Ni∑

k=1

Ni′∑

ℓ=1

wk(ti)wℓ(ti′)E







∞∑

j=1

ζj(sk)vj(ti) + θ(ti)









∞∑

j′=1

ζj′(sℓ)vj′(ti) + θ(ti′)








=

Ni∑

k=1

Ni′∑

ℓ=1

wk(ti)wℓ(ti′)





∞∑

j=1

E [ζj(sk)ζj(sℓ)] vj(ti)vj(ti′)



 + δii′σ

2
θ

Ni∑

k=1

w2
k(ti), (5.28)

where the last equality follows from (5.2).

Formulas (5.28) and (5.26) are computationally intensive. By comparing the values for
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selected times t, t′, we found that practically the same values are obtained by replacing the

smoothing matrices by identity matrices and replacing the weights wk(ti) by the universal

weights wk given by (5.5). Such a simplification leads to the approximations

Cov(µ̂)(t, t′) =
∞∑

j=1

wTΣjwvj(t)vj(t
′), t 6= t′

Var(µ̂)(t, t) =

∞∑

j=1

wTΣjwv
2
j (t) + σ2θw

Tw, (5.29)

Only the first few, p, FPC’s in the infinite sums in (5.28) and (5.29) are used in practice.

Usually this number is selected to capture the desired level of variability. Inserting (5.29)

so truncated into (5.17), leads to (5.18).



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Results reported in this dissertation make contributions both into statistical methodol-

ogy and space physics applications. Specifically, we introduced a new statistical framework

for analysis and testing of complete and incomplete spatially correlated functional data. Us-

ing this framework we answered a very important space physics question regarding global

changes in the ionosphere. We found that the critical frequency, foF2, is decreasing which

means that the temperature of the inosphere is also decreasing.

Now I describe several projects which I would like to address in the very near future.

1. In Chapter 3 we introduced the test for testing the equality of two functional means

when curves are spatially correlated. One possible extension of this work would be to

generalize testing procedure to test multiple hypothesis:

H0 :µ1(t) = µ2(t) = . . . = µN (t),

HA :µi(t) 6= µj(t), for some i, j.

2. We are planning to generalize our estimation procedure to let the mean function be

space dependent. This problem is not very difficult when there are repeated measure-

ments (curves) at each location and it could potentially became a project for a master

thesis. But when at each location there is only one curve this problem become much

more complicated, one possible remedy is to restrict µ(s; t) to some parametric form.

Other possibilities still need to be explored.

3. The core of the third project is to create an automatic procedure for selecting spatial

regions where the mean functions or other quantities such as linear trends are the

same. This project is rather long and perhaps in combination with important applied

problem can become a core of a PhD dissertation.
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