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ABSTRACT

Enhancement of Random Forests

Using Trees with Oblique Splits

by

Andrejus Parfionovas, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Adele Cutler
Department: Mathematics and Statistics

This work presents an enhancement to the classification tree algorithm which

forms the basis for Random Forests. Differently from the classical tree-based methods

that focus on one variable at a time to separate the observations, the new algorithm

performs the search for the best split in two-dimensional space using a linear combi-

nation of variables. Besides the classification, the method can be used to determine

variables interaction and perform feature extraction. Theoretical investigations and

numerical simulations were used to analyze the properties and performance of the

new approach. Comparison with other popular classification methods was performed

using simulated and real data examples. The algorithm was implemented as an ex-

tension package for the statistical computing environment R and made available for

free download under the GNU General Public License.

(120 pages)
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PUBLIC ABSTRACT

Enhancement of Random Forests

Using Trees with Oblique Splits

by

Andrejus Parfionovas, Doctor of Philosophy

Utah State University, 2013

Statistical classification is widely used in many areas where there is a need to

make a data-driven decision, or to classify complicated cases or objects. For instance:

disease diagnostics (is a patient sick or healthy, based on the blood test results? );

weather forecasting (will there be a storm tomorrow, based on today’s atmospheric

pressure, air temperature, and wind velocity? ); speech recognition (what was said

over the phone, based on the caller’s voice level and articulation); spam detection

(can the unsolicited commercial e-mails be identified by their content? ); and so on.

Classification trees help to answer such questions by constructing a tree-like

structure, where the features of the objects are analyzed consequently one at a time

in a step-by-step fashion, e.g., if a patient is coughing – measure his/her temperature,

if the temperature is above 100.4 ◦F (38.0 ◦C) – listen to the lungs, if there are crackles

or rattling noises – suspect pneumonia. The classification results become more reliable

if the decision is made by aggregating many trees created from randomly sampled data

into a Random Forest, similarly to consulting several doctors with different training

backgrounds before stating a subtle diagnosis.
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In this work the tree classification algorithm was enhanced with the ability to con-

sider the objects’ features in pairs, similarly to considering a patient’s body mass index

(weight together with height) before diagnosing obesity; or considering a customer’s

debt-to-income ratio (income together with debt) before approving him/her for a loan.

The trees created with the new method are called oblique, because they separate the

objects with oblique lines when looking at the pairwise features plots.

Since the new method is able to focus on pairs of features, it can be used to

determine which of the pairs are more useful for classification (chosen more often

than others), how the features relate and interact with each other.

This work contains theoretical argumentation for the new method, as well as

the detailed description of the classification algorithm, which was implemented in a

computer software package (download links are provided). The properties and per-

formance of oblique trees were investigated using numerical simulations and real data

examples. Comparison with other popular classification methods was also performed.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Statistical classification can be viewed as a part of statistical learning and is

widely used for solving pattern recognition, prediction and clustering problems. In

this section we describe the general task of classification and different statistical ap-

proaches starting with traditional methods, such as discriminant analysis and logistic

regression. Next, we will talk about innovative machine learning algorithms: artifi-

cial neural networks, adaptive boosting, k-nearest neighbors, support vector machines.

Special attention is paid to the tree-based methods such as CART and random forests.

1.1 Classification Problem

Suppose we have a set (population) of objects (observations) that are (or may be)

distributed between a number of mutually disjoint classes. We define the problem of

classification as a formal task of constructing a rule (algorithm) which learns (trains)

using information1 from a given representative sample (training dataset) to assign a

class label to an unlabeled observation from the original population. The learning

process can be either supervised or unsupervised. The Supervised learning uses train-

ing data with labels, which allows to employ all sorts of penalty/reward strategies

during the learning process. The Unsupervised learning is looking for a hidden struc-

ture in unlabeled data, and is usually referred as clustering or blind signal separation.

In this work we will consider classification problems in terms of supervised learning.

Different classification algorithms use different approaches, e.g., make different

distributional assumptions, use different attributes of the data, etc., which may lead

1Values of the attributes (inputs or predictor variables) of the observations.
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to different classification results. To verify the performance of a classification method,

we use another representative (testing) sample to estimate the probability of misclas-

sification. Standard methods of comparison using misclassification rates will allow us

to compare the performance of different algorithms applied to different datasets.

Let us now formulate the classification problem using mathematical notation.

Suppose there is a set (population) of objects, from which we draw a simple random

sample of size n. Each observation is an m-dimensional vector xi = (xi1, xi2, . . . , xim)T ,

where i = 1, 2, . . . , n. We can view xi as a realization of a random variable X =

(X1, X2, . . . , Xm). The class label for each sample observation xi is known (since

this is a supervised learning situation) and denoted by yi, which can be viewed as a

realization of a nominal2 random variable Y , taking values from a set {1, 2, . . . , L}.

The classification task now is to construct a rule (function or algorithm) that will

estimate class the label ŷj for any unlabeled observation xj from the original pop-

ulation. Definitely, one can come up with many different classification algorithms,

say for example, “classify every observation as belonging to class one,” or “classify

observations by rolling an L-sided die.” In practice, however, such classifications tech-

niques usually will be of no use. In the next sections we will consider more reasonable

classification techniques developed by imposing certain realistic assumptions.

1.2 Traditional Statistical Approaches

Most of the classification methods developed in the statistical community make

certain distributional assumptions of the data. We will review the most popular ones.

Linear Discriminant Analysis (LDA) is a classification method that uses a

linear combination of features to separate the classes. For simplicity, suppose the

observations come only from two classes (L = 2), each with their own multivariate

2Class labels cannot be ordered or compared. Otherwise this becomes a regression task.
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Gaussian distribution with a common covariance matrix, Σ, and different means µl:

fl(x) =
exp

{
−1

2
(x− µl)

TΣ−1(x− µl)
}

(2π)m/2|Σ|1/2
,

where x,µl ∈ Rm, l = 1, 2. The prior probabilities πl for an observation to belong to

class l are estimated by the proportion of class-l observations: nl/n, where n is the

total number of observations in the sample, nl is the number of observations of class l

in the sample. Class labels yi are estimated by ŷi. Let us denote by P (ŷi = 2|yi = 1)

the probability of misclassifying the i-th observation as being from class 2 when

it actually comes from class 1. Similarly the probability of misclassifying the i-th

observation to class 1 when it really comes from class 2 is denoted by P (ŷi = 1|yi = 2).

It then can be shown (Hastie et al., 2001) that the overall misclassification rate

P (ŷi = 2|yi = 1)π1 + P (ŷi = 1|yi = 2)π2 is minimized when the decision boundary

between the two classes is described with a linear discriminant function

δl(x) = xTΣ−1µl −
1

2
µT

l Σ−1µl + log(πl), l = 1, 2.

By equating δ1(x) = δ2(x), the boundary equation can be written as:

(1.1) log

(
π1

π2

)
=

1

2

(
µT

1 Σ−1µ1 − µT
2 Σ−1µ2

)
− xTΣ−1 (µ1 − µ2) .

The main drawback of this method is that in practice the normality assumption

does not always hold. Even if the normality assumption holds, if the covariance

matrices for the groups are different, the linear boundary is not optimal. One must

also ensure that the variables used to discriminate between the groups are not highly

correlated with each other, otherwise the covariance matrix becomes ill-conditioned

and cannot easily be inverted in (1.1).
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Logistic Regression (LR) predicts the probability for an object to belong to

class l, by applying a logistic function f(x) = (1 + e−x)
−1

to a linear combination of

the input variables. Just like for the LDA case, the boundary between classes will

be linear. But differently from LDA, the class posterior probabilities are calculated

without estimating individual density functions, and thus without requiring the as-

sumption of normality. Logistic regression does not assume homogeneity of variances

or covariances. However, the log odds (logit) relationship to predictor variables is

assumed to be linear:

logit (pl(x)) = ln

(
pl(x)

1 − pl(x)

)
= β0 + βTx,

where pl(x) = P (Y = l|X = x), l = {1, 2}, and parameters β = (β1, β2, . . . , βm)T

and β0 are estimated from the data. Although originally developed for a dichotomous

output, LR can be generalized for the multiclass case (Hastie et al., 2001). The

parameters of the model (β0 and β) are estimated by maximizing the log-likelihood

function:

L =
n∑

i=1

ln(pyi(xi)) =
n∑

i=1

[
yi(β0 + βTxi) − ln

(
1 + expβ0+βTxi

)]
.

For a small number of classes, logistic regression is more robust towards the

presence of categorical predictors than LDA (Pohar et al., 2004). It also requires

fewer assumptions than LDA. However, if the normality assumptions are met, LDA

becomes more powerful than LR. One common disadvantage of both methods is that

a strong correlation between the input variables may make some of them appear

insignificant. Therefore, a proper model selection tool must then be used. An even

bigger disadvantage is that both methods use linear boundaries to separate classes,

which may not always be appropriate.
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1.3 Machine Learning Algorithms

The area of machine learning algorithms is sometimes viewed as a field of arti-

ficial intelligence, since its basic idea is to construct a method capable of inductive

reasoning, i.e., making a general inference about the population from a premise about

a sample (training dataset). The general algorithm usually involves a training (learn-

ing) phase, when a model is being fit to the training data, and a testing phase, when

the performance of the method is being evaluated on a test dataset. The results ob-

tained during the testing phase should not be used for adjusting the model because of

the risk of overfitting. For some methods, overfitting may occur during the training

phase. To avoid this, the model’s complexity should be controlled and/or the size of

the training dataset must be increased.

Below, we describe several widely used machine learning algorithms, which later

will be used as the benchmark methods.

k-Nearest Neighbors (k-NN) is a non-parametric classifier which uses the

training dataset directly without a training phase. A given observation xi is classified

based on the classes of the k closest points (nearest neighbors), which come from the

training dataset. The majority of the votes of the k nearest neighbors determines the

class label ŷi, ties are broken at random (Hastie et al., 2001). The main parameter of

the method is the number of nearest neighbors (k), which is chosen arbitrarily. The

distance metric used to determine the closest points does not necessarily need to be

Euclidean. This allows the method to be applied to non–numeric variables.

This method is appealing because it makes no assumptions about the data. How-

ever, the nearest neighbor rule performs poorly when the number of predictor vari-

ables gets large – the so called “curse of dimensionality” (Domeniconi and Gunopulos,

2007). The risk of overfitting and the high computational cost must also be taken

into consideration. The computational cost is high mainly because the entire train-
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ing dataset must be retained for prediction and distances must be computed to all

observations in the training set in order to determine nearest neighbors.

Artificial Neural Networks (ANN) are mathematical models created by simu-

lating the topology and functional capabilities of the nervous systems of living organ-

isms (i.e., the circuit of biological neutrons of a neural system). The model consists

of a number of simple processing elements (neurons) whose behavior is described by

a non-linear activation function of the input arguments (signals). The output of the

function might serve as an input for one or more other neurons, thus creating a com-

plex structure otherwise known as a neural network (NN). The question of interest is

how to find a structure of the network that would be able to model the relationship

between the input and output data in a proper way for pattern recognition, discrim-

inant analysis, clustering, or classification. Finding a suitable structure of the NN

is a nonlinear task of nonlinear optimization with respect to a cost function. The

optimization of the NN is done through a training (learning) process using a back-

propagation method (Rumelhart et al., 1986). The basic idea is to start with, say,

randomly assigned weights of the neurons in the NN, compare the network’s output

to the known class (teacher’s output), adjust the neurons’ weights according to the

gradient descent learning rule, and keep doing that until the stopping criterion is met

(either all observations were classified correctly, or a certain number of iterations was

reached).

Some of the drawbacks of NN include a chance of finding local minima (non-

optimal solutions), overfitting, and sometimes slow convergence to the solution. The

main drawback of the method is its non-robustness: performance highly depends on

the structure of the network and the functionality of a single neuron. Thus, for a

particular problem it is important to choose a proper topology, cost, and activation

function before training the network (Duin, 1996).



7

Adaptive Boosting (adaBoost) is a general name of an iterative adaptive meta-

algorithm which uses an arbitrary weak classifier3 a number of times, each time in-

creasing the weights of the misclassified observations and/or decreasing the weights of

correctly classified ones (Freund and Schapire, 1999). By putting more emphasis on

the misclassified observations, the algorithm is adapting to the data structure, which

improves the performance. The typical algorithm for a binary classification task (also

known as discrete adaBoost) with class labels y ∈ {−1, 1}, looks as follows:

1. Start with assigning to each observation xi equal weights ω1(i) =
1

n
, where

i = 1, . . . , n, and n is the sample size. Then for each iteration j repeat the

following steps:

2. Fit a weak classifier of your choice Gj(·) to the data and compute the objective

function (weighted error):

εj =

∑n
i=1 I{yi ̸= Gj(xi)} · ωj(i)∑n

i=1 ωj(i)
,

where I{yi ̸= Gj(xi)} = 1, when yi ̸= Gj(xi), and 0 otherwise (i.e., I is the

indicator function).

3. If εj is small enough (e.g., less than 0.5), then stop. Otherwise, go to the next

step.

4. For each misclassified observation xi update the weight ωj+1(i) =
1 − εj
εj

ωj(i)

(leave ωj+1(i) = ωj(i) if it is classified correctly).

5. Go back to step 2.

3The general concept of a weak classifier is that it should perform slightly better than random
guessing.
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The resultant classifier G∗ is obtained by weighting the weak classifiers Gj selected

during the boosting procedure:

G∗(xi) = sign

[∑
j

Gj(xi) · ln
1 − εj
εj

]
,

where i = 1, 2, . . . , n, and sign means the sign of the expression, i.e. +1 or −1. The

modification of the algorithm to fit a real-valued prediction is known as real adaBoost

(Friedman et al., 2000).

The performance of the method highly depends on the choice of the base classifier;

overfitting may occur if the weak learner is too complex. It is also sensitive to noise, as

it may over-emphasize random fluctuations and perform poorly in later classification

(Rätsch et al., 1998).

Support Vector Machines (SVM) were first implemented as a nonlinear gen-

eralization of the generalized portrait method by Vapnik and Lerner (1963). The

basic idea of the method is to convert the original dataset into a higher dimension to

find a separating hyperplane to maximize the distance between the hyperplane and

the nearest training datapoints (margin). Later a modification of the method to fit

a nonlinear separator was proposed (Boser et al., 1992).

Despite a number of advantages, one of the drawbacks of the method is that it

cannot be directly applied for a problem with more than two classes. In this case one

has to use either the “one-versus-all” or “one-versus-one” approach: the first separates

each one of the labels from the rest, the latter distinguishes between every pair of

classes. Both of them, however, have their own shortcomings: the first performs badly

when the data are unbalanced, the latter becomes too slow and computationally

expensive (Navia-Vázquez, 2007). In the case of a two-class problem SVM may

also perform badly if the number of input variables is large, the so called “curse of
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dimensionality” (Hastie et al., 2001). The classifier also lacks interpretability.

1.4 Classification Trees

Statistical learning theory defines classification trees as a supervised learning

algorithm, which specifies the classification procedure as a set of logical conditions

imposed on the input variables. The variables are usually considered one at a time

in a sequential order, which allows presentation of the classification in a convenient

form of a graph with a tree structure. A step-by-step tree classification procedure

is demonstrated in Fig 1.1. The data come from Anderson (1935) and contain 50

records from each of three species (L = 3) of iris flowers.4 The predictor variables

originally include the length and the width of the flowers’ sepals and petals. For

simplicity, however, we currently present only two predictors: sepal length and sepal

width.

Prediction is based on the values of the predictor variables satisfying the condi-

tions at the intermediate nodes of the tree (e.g. xi < 0, or xj = 3). The branches of

the tree represent intermediate decisions, which may lead either to another condition

(intermediate node), or a conclusion about the values of a class label y (terminal

node) (Hastie et al., 2001). An important feature of such a hierarchical approach

is that each intermediate decision is made using only one variable at a time. This

is one of the main differences compared to the classical statistical approaches (such

as LR or LDA), which provide us with the decision, considering all the parameters

simultaneously.

Also, it is worth mentioning that although the use of heuristic tree-based classi-

fication structures dates back to ancient times (e.g. Aristotle’s animal classification

system), its comprehensive scientific background remained undeveloped until the end

4Also known as Fisher’s iris dataset, due to Fisher (1936), who made the data widely known.
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Fig. 1.1: Stepwise construction of a tree classifier for Fisher-Anderson’s iris dataset.
Observations satisfying the node condition follow the left branch, or right otherwise.
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of the 20th century, when computers became sufficiently powerful to apply the method

for practical purposes. Because of that, tree-based classification techniques have been

developing side by side in both statistics [Morgan and Sonquist (1963), Kass (1980),

Breiman et al. (1984)] and computer science [Quinlan (1986), Kröger (1996)], which

has resulted not only in a different terminology, but also served for applying the

methods to quite different problems, such as prediction, feature selection, and data

analysis. It is important to keep that in mind, and view each modification of the

method in the context of the task it was designed to solve.

Random Forest is a natural development of tree classification, pioneered by

Breiman (2001). The basic idea behind the method is to use an ensemble of classifi-

cation trees which classify by majority voting. Each tree is fit to a bootstrap sample

from the data, a process called bootstrap aggregation (bagging). Instead of finding

the best possible split for all m variables, as we would do for a single tree, Random

Forest chooses mtry variables (1 ≤ mtry ≤ m) at random and finds the best split for

them. This is done independently at each node.

It has been shown by Breiman (1996) that in a regression context, using bagging

for an unbiased classifier with a high variance (classification tree is one example of

such classifier), helps to reduce the prediction variance, without introducing additional

bias. In addition to that, Random Forests can be used for estimating the importance

of the variables, their relationship (correlation) and interaction, proximity-based clus-

tering, etc. It should be mentioned, however, that by being combined in a forest the

trees loose their interpretability and become less intuitive.

1.5 Dissertation Overview

This dissertation is organized as follows: Chapter 1 introduces the general ideas of

the classification problem, describes traditional and modern classification approaches,
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and summarizes their strong and weak points.

In Chapter 2, a new approach is introduced, a theoretical description of its task

is presented, and the detailed algorithm of the solution is provided.

The algorithm has been implemented as a set of R functions, which are described

in Chapter 3. Instructions on installation and usage are provided. The source code

of the functions is attached in the appendices.

Chapter 4 explores the properties and performance of the new method using

both simulated and real data examples of different size, dimensionality, and number

of classes. The area of applicability of the new method is outlined.

Chapter 5 proposes the application of the new method to the problem of vari-

able selection and interaction detection. A way of visualizing information about the

variables is suggested.

The conclusions and possible areas for further investigation are summarized in

Chapter 6.

Finally, the appendices provide the code of the new algorithm, making it available

for other researchers and developers.
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CHAPTER 2

CLASSIFICATION TREES WITH OBLIQUE SPLITS

One of the limitations of the classical tree classification techniques is that the de-

cisions on splitting the data at each step are made using information only from a single

variable at a time. Thus, a single split cannot reflect possible variable interaction,

which may be useful in data analysis and/or variable selection. The consideration of

variable interaction may also improve the classification performance by making the

class separation boundary more flexible to accommodate datasets with a complicated

structure. The main goal of this work is to propose a modification for a tree-based

classifier, which would consider the interaction between variables by splitting the data

in a two-dimensional subspace.

It should be mentioned that the idea of using linear combinations of variables

in a tree classifier is not new. In one of the earliest works in this area, Brodley and

Utgoff (1992) considered four different ways to navigate through the iterative process

of searching the variables’ coefficients to perform a multivariate split. Their meth-

ods include: (a) minimization of the mean-squared error over the training dataset

(recursive least square algorithm), (b) minimization of the missclassification rate of

the training dataset (pocket algorithm), (c) error correction rule which updates the

variables’ coefficients so that less attention is paid to large misclassification errors

(thermal training), and (d) minimization of the impurity of the multivariate split

(CART coefficient learning method). Breiman (2001) introduced the Forest-RC pro-

cedure, where the search for the best split is performed over a linear combination

of two (or more) randomly selected variables with random coefficients uniformly dis-
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tributed on the interval [-1, 1]. Kim and Loh (2001) proposed to use LDA to find

the best split among the principal components (linear transformations of variables).

Truong (2009) suggested to construct multivariate oblique trees by applying logistic

regression to the splits with low values of impurity (ideal splits), which can be iden-

tified by performing a number of two-class separations at each node. Another recent

approach that follows the path of linear discriminative models to construct splits for

multivariate trees was employed by Menze et al. (2011) using ridge regression at each

node.

Differently from the above-mentioned methods, our approach considers all possi-

ble pairwise combinations of variables at each node. It is also free from the parametric

assumptions and attributed drawbacks. Below we present a detailed description of

our method.

2.1 Theoretical Investigation

Consider a set of n points (observations) xi = (xi1, xi2), i = 1, 2 . . . n in R2 space,

and the appropriate class labels yi ∈ {1, 2, . . . , L}. A pair of numbers (m, b) can be

used to construct a linear boundary, x2 = mx1 + b, which separates R2 into two

complementary regions:

R2+
mb = {(x1, x2) : mx1 + b− x2 ≥ 0}

and

R2−
mb = {(x1, x2) : mx1 + b− x2 < 0} = R2 \R2+

mb.
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Each of these regions can be characterized by the proportion of the points xi belonging

to different classes, according to yi:

(2.1) p̂+l =
number of {i : xi ∈ R2+

mb AND yi = l}
number of {i : xi ∈ R2+

mb}
, l = 1, . . . , L,

(2.2) p̂−l =
number of {i : xi ∈ R2−

mb AND yi = l}
number of {i : xi ∈ R2−

mb}
, l = 1, . . . , L.

Based on that, we define the Gini index as an impurity criterion for each of the

regions:

(2.3) Gini+ =
L∑
l=1

p̂+l
(
1 − p̂+l

)
,

(2.4) Gini− =
L∑

k=1

p̂−l
(
1 − p̂−l

)
.

The goodness-of-split criterion is defined as a weighted average of the Gini indices

(2.3) and (2.4):

(2.5)
1

n

[
number of {i : xi ∈ R2+

ab } ·Gini+ + number of {i : xi ∈ R2−
ab } ·Gini−

]
.

The minimization of (2.5) with respect to the pair (m, b), would give us the best

binary linear separator x2 = mx1 + b in terms of the split’s impurity. The problem,

however, has no simple analytical solution, and is complicated by local minima, so

we minimize (2.5) using an optimized exhaustive search algorithm, described in the

following section.
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2.2 Algorithm Description

As before, consider an exhaustive search for the best linear separator x2 = mx1+b

in R2 space for n points xi = (xi1, xi2), that belong to L classes, where the class of

point xi is denoted by yi (i = 1, 2, . . . , n). For simplicity, let L = 2 (the case can

be easily extended to a bigger number of classes). Also, suppose no two points are

identical, since this leads to an undefined slope of the line going through these points.

When such points occur in practice, we add a tiny amount of random noise to separate

them.

We are using the fact that in the one-dimensional case, the search for the best

binary split using the Gini index as an impurity criterion has been already devel-

oped and efficiently implemented in standard tree classification algorithms such as

C4.5 (Quinlan, 1993) and CART (Breiman et al., 1984). The original way is quite

complicated and proprietary. A simple and relatively efficient way is to move across

the sorted values of the variable, updating the values of equations (2.3) and (2.4) as

the split moves. Our task then may be considered solved if we manage to show how

to reduce the search for a binary split from R2 to R1. To do that, notice that in

computing the Gini index for a given binary split one needs no information about the

two–dimensional structure of the data in the child nodes.

In general, computing the Gini index for a linear separator x2 = mx1 +b requires

knowing of how many data points of each class fall on each side of the separator.

This can be easily determined by projecting the data in a direction parallel to the

linear separator, i.e., projecting onto a line that is perpendicular to the separator.

For separator x2 = mx1 + b we can project onto the line x2 = −x1

m
(see Fig. 2.1).

Once the data have been projected, the Gini calculation becomes one-dimensional.

In fact, this projection allows us to compute the Gini index for any separator that

is parallel to x2 = mx1 + b, so the best separator in this family can be obtained by
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optimizing Gini in the one–dimensional projection. This gives the best separator for

the given value m.

Fig. 2.1: Projection of the data points onto the line perpendicular to the linear
separator x2 = mx1 + b.

Our goal is to find the best separator over all possible choices of both m and b.

Searching over m involves looking at lines with all possible slopes, i.e., rotating the

line through 180◦. Notice that as the line x2 = mx1 + b rotates, the projected data

points will only give rise to a new Gini index when they change their order. The

change of order occurs when two observations (xi1, xi2) and (xj1, xj2) are projected

to the same point. So if we sort the pairs i, j in order of the angle θij they make to

the horizontal (see Fig. 2.2), then one can move through the list of θ’s to determine

which observations will switch positions.

Notice that there is a finite number of linear separators (projection axis x2 =

mx1 + b) that result in different orderings of the data on the line x2 = −x1

m
. In

general, for n points there exist n(n− 1)/2 possible projection lines unique to within

the order of the projected points (number of all possible pairs between the n points).

Each ordering may have (n − 1) possible splits unique to within the weighted Gini

coefficient (2.5). This means that a brute–force exhaustive search for the best split
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Fig. 2.2: Angle θij corresponding to the projection line going through two observa-
tions.

among n points in R2 space requires (n−1)n(n−1)/2 Gini calculations, each of order

O(n), so in general this would be an order O(n4) algorithm.1

In this work, however, we propose an optimization to speed up the search process.

Namely, we use the fact that during the process of rotating the projection axis, each

new ordering of the projected points differs from the previous one by the order of

only two consecutive data points that have been switched. This means that the only

new way of splitting the dataset is by putting a split between the points for which

the order has been changed. In total, the weighted Gini coefficient (2.5) has to be

calculated (n−1) times for the very first vertical projection, and then once for each of

the n(n−1)
2

switched pairs of points. The algorithm can be simplified even more, since

every time the order of two points (xi and xj) has being changed, there is no need

to re-calculate Gini from scratch, but only update the values of (2.1) and (2.2) for

the appropriate classes (l = yi and l = yj), depending on which points were put from

one side of the split to the other. The complexity of such a Gini update is constant

(order O(1)) no matter how many observations there are. This reduces the entire

1The Big-O notation defines f(n) = O(g(n)) if there are positive constants c and k, such that
0 ≤ f(n) ≤ cg(n) for all n ≥ k, where c and k are fixed for the given f and must not depend on n
(Knuth, 1976). It is generally used to describe the complexity of an algorithm, e.g., O(n2) means
an algorithm should take approximately n2 times longer working on a n-times bigger dataset.
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complexity of the algorithm to O(n2). Also, there is no need to recompute Gini if the

rotation of the projection line switches points from the same class.

The entire algorithm of finding the best linear separator for n points in two–

dimensional space R2 can now be described as follows:2

1. Compute all non-infinite slopes between pairs of data points and arrange them

in descending order. If two or more pairs of points have the same slope, we add

a tiny amount of random noise to their coordinates to make all slopes unique.

This is also used to break ties when ordering observations at step (2) if two or

more points have the same x1 coordinate. For further calculations, however,

keep the original coordinates.

2. Make a list of orderings for the observations according to their first coordinate

(projection onto the x1 axis). For each possible split between consecutive values

of x1, compute the number of points for each class to the left of the split.3 Save

it for further Gini calculations.

3. Consider a split separating one point on the left and the remaining n−1 points

on the right. Compute Gini indices (2.3) and (2.4) for this split and set the

appropriate goodness-of-split criterion (2.5) as currently the best.

4. For every other split (with 2, 3, . . . , (n − 1) points on the left) compute the

goodness-of-split criterion (2.5). If any is smaller than the current best, update

the current best and save the coordinates of the corresponding points.

5. Using the list of slopes computed at step (1) choose the pair of points (xi1, xi2)

and (xj1, xj2) with the highest slope. This will be the first pair of points that

2See Appendix C for the C code implementation.
3The number of points to the right can be calculated by using the totals.
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change their order as the projection line starts rotating clockwise from the

vertical.

6. Update the list of orderings computed at step (2) for the switched observations.

7. If observations i and j belong to the same class, i.e., yi = yj, go to step (9).

Otherwise, since the observations i and j change their order, the possible split

between them (and only between them) may result in different Gini criteria

(2.3) and (2.4). This may affect the goodness-of-split criterion (2.5). To check

that, we adjust the number of points that were computed at step (2) for the

classes yi and yj to the left of the split (reduce by one for the point that switched

to the right, increase by one for the point that switched to the left).

8. Using the results from the previous step, recompute Gini indices (2.3) and

(2.4) considering the split between the switched points (xi1, xi2) and (xj1, xj2).

Find the appropriate goodness-of-split criterion (2.5). If it is smaller than the

current best, update the current best and compute the parameters (slope and

intercept) of the oblique split line. Slope equals the average of the slope between

the current points (xi and xj) and the next largest slope according to the list

from step (1). Intercept equals xm2 − slope · xm1, where xm = (xm1, xm2) is the

midpoint between xi and xj. If the split line is vertical, use ∞ as the slope,

and xm1 as the intercept.

9. Repeat steps (6)–(8) for the next largest slope in the list from step (1) until the

best goodness-of-split criterion (2.5) is reached.

The algorithm described above is defined for observations in R2. For multidimen-

sional datasets we repeat the procedure for all pairs of variables (exhaustive search),

or a random subset of pairs. The entire algorithm now looks as follows:
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1. Pick two variables (at random, or systematically for an exhaustive search).

2. Find the best split in R2 space to separate classes (see above).

3. Perform steps (1)–(2) for each possible pair of variables (in the case of exhaustive

search), or for a smaller, arbitrarily chosen number of times in the case of a

random search.

4. After finding the best separating pair of variables, split the dataset and start

over at step 1 for each of the descendant nodes, until the nodes are pure.

As a result, we obtain a binary decision tree, each node of which tests a condition

xi < mxj + b (xi < b for the vertical lines) to split the data. Since graphically the

separator is generally an oblique line (see Fig. 2.1), we call such splits oblique, in

contrast to the classical one-variable splits, which in two-dimensional space would

look like lines orthogonal to a chosen variable. Decision trees having oblique splits in

the nodes we call oblique trees. Following the concept of the Random Forest, we define

oblique forest as an ensemble of T oblique trees trained on a bootstrap sample from

the training dataset. Once the trees are trained (the forest is grown), the classification

of a new observation is performed by majority voting.

2.3 The Role of the Splitting Criterion

As was mentioned in Section 2.1, the Gini impurity measure is used in the oblique

tree algorithm as the criterion to make the decision on how to split the dataset at

each node. The use of Gini as a splitting criterion has a number of advantages:

Interpretability: Gini has an intuitively simple meaning as a measure of impu-

rity: it is minimal when the node is pure (all observations belong to the same class),

and is maximal when the node contains equal number of observations from each class.
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Computational efficiency: Gini is fast and easy to calculate knowing only the

number of points for each class on both sides of the split.

Robustness: Gini is a non-parametric measure which makes no assumptions of

the data structure or distribution.

There are, however, certain weaknesses in using Gini as a goodness-of-split cri-

terion. The following two seem to influence the classification performance the most.

First of all, even though Gini defines the best split for each particular node, it

may not guarantee that the overall solution will be optimal (see the Orthogonal XOR

example in Section 4.1). Algorithms that have this property are usually referred to

as “greedy” (the terms “myopic” or “short-sighted” are also used sometimes). There

are numbers of works aimed to overcome this property by exploring it from different

perspectives, to mention a few: Alkhalid et al. (2011) studied 16 different greedy

algorithms for decision tree construction (including Gini-based criteria). A dynamic

programming based algorithm was used as a reference point for comparison. Murthy

and Salzberg (2007) explored the modification of the greedy search with a limited

lookahead approach. Kononenko et al. (1997) implemented a system for top-down

induction of decision trees using the idea of weighting the variables according to how

well they distinguish observations that are “near to each other.” The researches,

however, are still facing challenges in this area, e.g. Murthy and Salzberg (2007)

have found that “limited lookahead search often produced trees that were worse than

the greedy trees in terms of prediction accuracy, tree size as well as depth.” The

experimental results of Kononenko et al. (1997) also show that “in the majority of

real world problems the myopia has no or only marginal effect.” Nevertheless, the

authors consider it “unreasonable to try only myopic algorithm unless it is known

in advance that in the dataset there are no strong conditional dependencies between

attributes.” Further research, which goes beyond the scope of this work, is definitely
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necessary this area.

The other weakness of Gini is the bias towards choosing continuous variables

as opposed to categorical variables, as well as towards multilevel categorical vari-

ables versus binary ones. This property was first noticed by Breiman et al. (1984):

“variables selection is biased in favor of those variables having more values and thus

offering more splits” (p. 42). Numbers of attempts to avoid the biased selection have

been proposed: Kim and Loh (2001) proposed to use of p-values from association

tests (ANOVA F -test for continuous, and χ2-test for categorical) to select variables

and a bootstrap bias correction. Dobra and Gehrke (2001) used p-values for the split

criteria under the Null that the distribution of the class label obeys a multinomial

distribution. Strobl et al. (2007) derived the exact distribution of the maximally

selected Gini gain in the context of binary classification using continuous predictors,

and suggested to use the resulting p-values as an unbiased split selection criterion.

Each of the above-mentioned approaches holds their pros and cons, and no universally

satisfactory solution has been found yet.
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CHAPTER 3

SOFTWARE DESCRIPTION

This chapter describes a set of functions for training and fitting an oblique tree

to a given dataset using the R environment for statistical computation and graphics.

Instructions on installation and usage are provided. The code for each function is

available in the appendices. The source files are also available online.1

3.1 Installation and Loading

Before installing the oblique trees package, the software environment R must be

installed.2 The package can be used exactly in the same way on computers with either

Microsoft Windows or GNU/Linux (Debian, Redhat, Suse, Ubuntu, etc.) operating

systems. The installation process, however, is slightly different. Below we provide

step-by-step instructions for either case.

Windows Users:

1. Download the binary archive package.3

2. Start the R software.

3. From the menu “Packages” choose “Install package(s) from local zip files. . .”

4. Locate and open the downloaded file. The rest will be done automatically.

1https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/
2For download and installation notes visit http://cran.r-project.org/
3https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/install/obliquetrees 1.2-1.zip
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Linux Users:

1. Download the latest source archive package.4

2. Start the terminal in the directory where you have downloaded the file.

3. Run the following command in the command line prompt using administrative

(root) privileges:

R CMD INSTALL obliquetrees_1.2-1.tar.gz

Once the installation is complete, you may start the R software and type:

> library("oliquetrees")

This will load the library for the current session, making the following functions

available for use: oblq.tree, predict.oblq, get.obl.node, and plot.oblq. Below

we provide the detailed description and usage instructions for these functions.

3.2 Training Function (oblq.tree)

Usage

To grow an oblique tree from the training dataset train.data type:

> oblq.tree(train.data, m.try = 0, min.n = 2, r.seed = 0)

The arguments (parameters) m.try, min.n and r.seed are optional and can be

omitted. Their meaning is described below. The value of the function (a data-frame

describing the tree) will be returned to the console. To be used for prediction it

should be assigned to a variable:

> my.tree <- oblq.tree(train.data)

The code of the function is available in Appendix A.

4https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/install/obliquetrees 1.2-1.tar.gz
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Arguments

The arguments of the function oblq.tree are defined as follows:

train.data: a matrix or a data frame where the rows correspond to observations and

columns representing variables. The last column must contain the class labels

(yi). Class labels should be consecutive integer numbers or integer factors i.e.,

1, 2, . . . ,m. If one or more numbers are omitted, e.g., {1, 4, 5}, the program will

assume there are 5 classes with classes 2 and 3 having no observations, which

may slow down the algorithm performance, since extra memory will be reserved

for non-existing classes.

m.try: an optional parameter (integer) which specifies how many possible variable

combinations should be tried for each split. The default value 0 will force

all possible combinations (m(m−1)
2

, where m is the number of variables). If

m.try ̸= 0 then the variables for the splits will be chosen randomly m.try times.

This might be useful when either the number of variables and/or observations

is too large, or when the computer is too slow.

min.n: an optional parameter (integer) which specifies the minimal number of obser-

vations that must be in a non-pure node in order for the algorithm to perform

a split. The default value is 2. If min.n > 2 then a non-pure node with fewer

than min.n points will become terminal, and the class label for it will be set

according to the majority of the points. Ties are broken at random. Setting

the value of min.n > 2 may help to avoid overfitting when using a single tree

for classification (Khoshgoftaar and Allen, 2001).

r.seed: an optional parameter (integer) which fixes the randomization seed in order

to get reproducible results at each run (random numbers are used for breaking

ties and separating the overlapping data points). The default value is 0, which
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seeds the pseudorandom generator with a current time value to ensure that

different numbers are generated each time the program is executed.

Value

The value of the function is a data-frame with the rows corresponding to the

nodes of the tree. Each node has the following values:

x, y: the indices of variables on which the split is performed, corresponding to the

appropriate columns of the original data train.data.

slope, intercept: the parameters of the node splitting condition:

(3.1) train.data[,x] * slope + intercept > train.data[,y]

when slope < ∞, or

(3.2) train.data[,x] < intercept

when slope = ∞.

left.node: the row number of the data-frame (child node of the tree) to follow if

the observations satisfy the node splitting condition (3.1 or 3.2). If the node

is terminal, left.node value is undefined (NA) and the class label for the

observations is assigned to left.class.

right.node: the row number of the data-frame (child node of the tree) to follow if

the observations do not satisfy the node splitting condition (3.1 or 3.2). If the

node is terminal, right.node value is undefined (NA) and the class label for

the observations is assigned to right.class.
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left.class: the class label to assign for observations that satisfy the condition (3.1

or 3.2) if the node is terminal (NA otherwise).

right.class: the class label to assign for observations that do not satisfy the con-

dition (3.1 or 3.2) if the node is terminal (NA otherwise).

3.3 Prediction Function (predict.oblq)

Usage

After an oblique tree my.tree has been grown, it can be applied to the testing

dataset test.data by typing:

> predict.oblq(test.data, my.tree)

The value of the function (a vector of predicted values) will be returned to the

console. If desired, the value can be assigned to a variable:

> my.prediction <- predict.oblq(test.data, my.tree)

The code of the function is available in Appendix B.

Arguments

The function requires two arguments:

test.data: a matrix with rows corresponding to the observations, and columns rep-

resenting the variables. No class labels (yi) are required as opposed to the

training dataset. The columns (variables) must exactly be in the same order as

they were in the training matrix.

my.tree: a valid oblique tree data-frame (output of the function oblq.tree).
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Value

The value of the function is a vector of class labels for each observation in the

testing dataset.

3.4 Wrapper Function (get.obl.node)

Usage

The function get.obl.node is not intended to be used directly by the user. Its

purpose is to call an external C function (Appendix D) through the native R interface.

It is called internally from the training function (oblq.tree) every time a node of

the tree is constructed. The code of the function is available in Appendix C.

Arguments

The function requires four arguments:

max class: the highest value of the class label of the points in the current node

(integer). In general it may be smaller than the total number of classes in

the entire dataset, but at least as big as the number of different classes in the

current node.

x1, x2: two vectors of length n of obs representing two variables (selected by the al-

gorithm) for the observations in the current node (correspond to train.data[,x]

and train.data[,y] in the oblq.tree function).

clabels: the class labels of of the observations in the current node.

rand.seed: an optional parameter (integer) which fixes the randomization seed in

order to get reproducible results at each run (random numbers are used for

breaking ties and choosing the slope of the splitting line). The default value
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is 0, which seeds the pseudorandom generator with a current time value to

ensure that a different pseudo-random list of numbers is generated each time

the program is executed.

Value

The value of the function is a dataset describing the constructed split.

slope, intercept: the parameters of the node splitting condition (3.1 and 3.2).

left.class: the class label to assign for observations that satisfy the node splitting

condition 3.1 or 3.2 if the node is pure after splitting.

right.class: the class label to assign for observations that do not satisfy the node

condition 3.1 or 3.2 if the node is pure after splitting.

left.Gini: the value of the Gini index for the observations that satisfy the node

splitting condition 3.1 or 3.2 if the node is pure after splitting according to 2.4.

right.Gini: the value of the Gini index for the observations that do not satisfy the

node condition 3.1 or 3.2 if the node is pure after splitting according to 2.3.

Gini: the weighted Gini index, which is combined from left.Gini and right.Gini

according to 2.5.

3.5 Dendrogram Plotting Function (plot.oblq)

Usage

After an oblique tree my.tree has been grown, it can be visualized as a dendro-

gram by typing:

> plot.oblq(my.tree, labels.on=FALSE, main=NA, cex=1)
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The arguments (parameters) labels.on, main, and cex are optional and can be

omitted. Their meaning is described below. The code of the function is available in

Appendix E.

Arguments

The arguments of the function plot.oblq are defined as follows:

my.tree: a valid oblique tree data-frame (output of the function oblq.tree).

labels.on: an optional parameter (boolean), which specifies whether the nodes of

the tree should be labeled with their splitting conditions.

main: an optional parameter (text), which is used to set an overall title for the plot.

By default the graph will be titled with the my.tree object’s name.

cex: an optional numeric parameter, which specifies the amount by which labeling

text should be scaled relative to the default.

3.6 Usage Example

The following example demonstrates the application of the oblique tree classifier

to Fisher-Anderson’s iris dataset. Let us generate a training dataset by taking a

simple random sample of size 100 without replacement from the original data (150

observations). Use this sample to train an oblique tree and fit it to the remaining 50

observations. The tree dendrogram is presented on Fig. 3.6. Finally, let us compute

the percent misclassification rate by comparing the true and predicted values. Below

is the corresponding listing of the R program. This code is also available online.5

> library("obliquetrees") # load the package library

> data(iris) # attach the native R dataset

5https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/examples/
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> y <- as.numeric( iris[,5]) # convert the class labels into integers

> dataset <- cbind(iris[,-5], y) # combine the proper training dataset

> set.seed(1) # set the randomization seed to get reproducible sample

> tr.index <- sample(c(1:150), 100) # create random sample of 100 obs.

> my.tree <- oblq.tree(dataset[tr.index,], r.seed=1) # get the tree

> my.tree

x y slope intercept left.node right.node left.class right.class

1 1 2 0.8912004 -1.761442 2 NA NA 1

2 2 4 0.1489266 1.325559 3 NA NA 3

3 1 3 -0.2500000 6.675000 NA NA 2 3

> plot.oblq(my.tree, labels.on=TRUE, main="Oblique Iris Tree")

> pred.y <- predict.oblq(dataset[-tr.index,], my.tree) # get prediction

> 100 * mean(pred.y != y[-tr.index]) # get the % misclassification rate

[1] 2

Oblique Iris Tree

0.891 x1 − 1.761 < x2

0.149 x2 + 1.326 < x4

−0.25 x1 + 6.675 < x3

2 3

3

1

Fig. 3.1: An oblique tree dendrogram for Fisher-Anderson’s iris dataset. Observations
satisfying the node condition follow the left branch, or right otherwise.
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3.7 Disambiguation

The Comprehensive R Archive Network (CRAN) contains a similarly named R

package oblique.tree6 by (Truong, 2009) published on June 3, 2009. The package

itself and the underlying algorithm of constructing oblique classification trees using

logistic regression is different from the one described in this dissertation and was

developed independently. The similarity of names is coincidental and purely unin-

tentional, as the working draft of the current algorithm and its name was in use long

before (Truong, 2009) was published. A simple example (including the appropriate

R code) is presented in Appendix F to show the two methods are different. No com-

prehensive study of superiority was performed due to the time constrains, since the

current work was in the terminal stage by the time we learned about Truong’s work.

6http://cran.r-project.org/web/packages/oblique.tree/index.html
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CHAPTER 4

PROPERTIES AND PERFORMANCE

In order to explore the performance of classification trees with oblique splits

(oblique trees), we have conducted a number of experiments using both simulation and

real data examples. Performance of the oblique trees was compared to other widely

used statistical classification methods: classical random forests with orthogonal trees,

adaBoost, artificial neural network, and support vector machines.

4.1 Simulated Data Examples

Our first set of experiments is aimed at comparing the performance of random

forests when using trees with the classical orthogonal splits versus trees with oblique

splits. A simple two–dimensional uniform random variable (X1, X2) ∼ U [(−10, 10)×

(−10, 10)] was chosen as an input variable. The response variable y was a binary class

label, taking values 1 or 2 according to one of the three patterns, so-called orthogonal

XOR, diagonal XOR and the mixed XOR case (see Fig. 4.1).

Fig. 4.1: Visualization of data patterns for 2 classes: yi=1 (white) and yi=2 (black).
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These three patterns were chosen to give some simple, yet non-trivial data struc-

tures that could possibly be classified using solely orthogonal (Fig. 4.1a), solely

diagonal (Fig. 4.1b), and both orthogonal and diagonal splits (Fig. 4.1c). We used

500 points training dataset to train two ensemble classifiers (forests): one with clas-

sical (orthogonal) trees, another with oblique trees. Test dataset (2000 points) was

used to compare the performance of the methods by varying the numbers of trees in

the forests. The exact steps of the experiment are as follows:

1. Generate the test dataset with 2000 observations.

2. Generate the training dataset with 500 observations.

3. Generate 100 bootstrap samples from the training dataset.

4. Train an orthogonal tree on each of the bootstrap samples from step (3) to get a

forest of 100 trees. Classify the test dataset from step (1) using majority voting

with 5, 10, 15, . . . , 100 trees, respectively. Compute the misclassification rate.

5. Train an oblique tree on each of the bootstrap samples from step (3) to get a

forest of 100 trees. Classify the test dataset from step (1) using majority voting

with 5, 10, . . . , 100 trees, respectively. Compute the misclassification rate.

6. Plot the misclassification rate versus the number of trees (ntr) for both orthog-

onal and oblique forests.

7. Repeat steps (2)–(6) ten times.

8. Compute the average misclassification rate for the forests of different sizes (sep-

arately for orthogonal and oblique trees).
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Below, we discuss the results of the experiments for each type of data in greater

detail. The R code that produces reproducible results using package version 1.0-3 is

available in Appendix G. The code is also available online.1

4.1.1 Orthogonal XOR

The class label for the i-th point is defined as yi = 1, if x1ix2i > 0, and yi = 2

otherwise (see Fig. 4.1a). One can see that the classes can be perfectly separated

using two orthogonal splits along the coordinate axes. Thus, classical trees may have

an advantage in this case. The comparison of the misclassification rate for both

orthogonal and oblique forests is summarized in Fig. 4.2.

Fig. 4.2: Individual (light) and average (dark) misclassification rates for orthogonal

XOR data using orthogonal (-×-) and oblique (-◦-) forests of different sizes.

The forests with orthogonal trees demonstrate consistently smaller misclassifica-

tion rates than the forests with oblique trees (0.5% versus 2.5% approximately). The

1https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/examples/
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variance of the misclassification rate is also smaller for the orthogonal forest.

To confirm our findings, the original experiment was repeated 100 times limiting

the total number of trees in the forests to 50, because the misclassification rates for

both methods appears to stabilize after approximately 40 to 50 trees. The results are

summarized in Fig. 4.3 using boxplots, because a plot with 100 lines would make the

graph unreadable.

Fig. 4.3: Misclassification rates in 100 experiments for orthogonal XOR data using
forests with different numbers of orthogonal (dark) and oblique (white) trees.

As one can see, the forests with orthogonal trees demonstrate better performance

on the orthogonal XOR dataset. It may seem counterintuitive, as orthogonal splits

might in fact be viewed as a special case of oblique splits and thus oblique splits

should have all the advantages of the former. The answer here lies in the nature of

the splitting criterion being used, as was mentioned in Section 2.3. During the first

split in the current example a classical (orthogonal) tree algorithm will find all the

splits of the original data almost equivalent in terms of the Gini coefficient. So it will

be forced to choose one of them. However, after an arbitrary orthogonal split, the
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data in one of the child nodes become perfectly separable (thanks to the structure of

the data, see Fig. 4.4a), which leads eventually to the desired solution. The situation

becomes quite different if we allow oblique splits. Because of the available flexibility,

this method finds the best split at the current step, which is not really the best in

the long run (Fig. 4.4b), since the splitting criterion is “greedy.”
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Fig. 4.4: A typical example of the first splits on XOR data using (a) orthogonal and

(b) oblique separators.

In other words, the limitation of orthogonal splits appears to become an advan-

tage due to the specific data structure, since the splits are forced to be orthogonal. If

so, we should expect that datasets with a non-orthogonal structure will not give such

an advantage to a classical (orthogonal) tree. To verify that, we have considered the

following example.

4.1.2 Diagonal XOR

In this example the class label for the i-th point is defined as yi = 1, if x2i > |x1i|
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or x2i < −|x1i|, otherwise yi = 2 (Fig. 4.1b). The comparison of the misclassification

rate for both orthogonal and oblique separation methods reveals the dominance of

the oblique trees over the orthogonal ones (Fig. 4.5).

Fig. 4.5: Individual (light) and average (dark) misclassification rates for diagonal

XOR data using orthogonal (-×-) and oblique (-◦-) forests of different sizes.

As in the case with orthogonal XOR data, we repeated the experiment 100 times

with the forest size from 5 to 50 trees (the misclassification rate does not improve much

with more trees). The results, summarized as boxplots in Fig. 4.6, demonstrate that

in case of diagonally class structure the forests with oblique trees perform better than

with orthogonal ones in terms of misclassification rate (4% versus 8% approximately).

The variance of the misclassification rate for the oblique forest is also smaller.

One may argue that this example is artificially designed for the benefit of trees

with oblique splits without leaving any chance for the method which uses orthogonal

splits. So, to have a fair comparison, the dataset in our next example is designed to

exploit both types of splits.
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Fig. 4.6: Misclassification rates in 100 experiments for diagonal XOR data using

forests with different numbers of orthogonal (dark) and oblique (white) trees.

4.1.3 Mixed XOR

To compare the performance of the oblique and orthogonal splits without favoring

either of them, we used a dataset having both orthogonal and oblique structures:

yi = 2, if (x2i > x1i) ∩ (x1i > 0) ∪ (x1i > x2i) ∩ (x1i < 0), when x2i > 0, or

(−x2i > x1i) ∩ (x1i > 0) ∪ (x1i < x2i) ∩ (x1i < 0), when x2i < 0. In all other cases

yi = 1. The R code for generating the class label y is provided in Appendix G.

The boundaries between the two classes, as one can see on Fig. 4.1c, consist of one

vertical, one horizontal, and two diagonal lines.

The results (Fig. 4.7) remind those from the previous example (diagonal XOR)

with the oblique trees having smaller misclassification rate than the orthogonal trees

(3.5% versus 5.5% approximately). The variance of the misclassification rate is also

smaller for the oblique forest (see the boxplots of 100 experiments on Fig 4.8).
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Fig. 4.7: Individual (light) and average (dark) misclassification rates for mixed XOR

data using orthogonal (-×-) and oblique (-◦-) forests of different sizes.

Fig. 4.8: Misclassification rates in 100 experiments for mixed XOR data using forests

with different numbers of orthogonal (dark) and oblique (white) trees.
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Below we explore the performance of oblique trees on several datasets (both

artificial and real-life) used for classification purposes by other researchers.

4.1.4 Banana dataset

This publicly available dataset, as defined by Rätsch et al. (1998), consists of

two independent input variables (x1, x2) generated from several nonlinearly trans-

formed Gaussian and uniform spots, which are additionally disturbed by uniformly

distributed noise, with a single binary response y. The data were normalized to have

zero mean and standard deviation one. A typical scatterplot of a training sample is

shown in Fig. 4.9.

Fig. 4.9: A scatterplot of the banana training dataset. Two classes demonstrate

nonlinear structure of the data in two-dimensional space.

The authors originally used several different classifiers: artificial neural network

(ANN) with radial basis activation function (RBF), support vector machine with
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RBF–kernel, adaBoost and its modifications: regularized adaBoost, and regularized

linear/quadratic programming (LP/QP) adaBoost [see Rätsch et al. (1998) for more

details]. There were 100 randomly-generated training datasets with 400 observations

each, and a single test dataset with 4,900 points. For every training dataset each

classifier was trained, and its performance was every time evaluated using the test

dataset. The misclassification rates were averaged for each of the classifier over the 100

trainings, and the appropriate means and standard deviations (SD) were computed.

Using exactly the same data we repeated the experiment using random forests and

oblique forest using different numbers of trees (T = 10, 30, 50, 100, and 200). The

rates of misclassification and their standard deviations are summarized in Table 4.1.

Table 4.1: Averaged misclassification rates for the banana dataset. The top results
come from Rätsch et al. (1998).

Method of Classification Error Rate (%) SD

RBF–Network (ANN) 10.76 0.42
AdaBoost 12.26 0.67
AdaBoost Reg 10.85 0.42
LP Reg–AdaBoost 10.73 0.43
QP Reg–AdaBoost 10.90 0.46
SVM with RBF–Kernel 11.53 0.66
Random Forest
(orthogonal splits)
10 trees 13.75 0.81
30 trees 13.26 0.80
50 trees 13.09 0.76
100 trees 13.08 0.76
200 trees 13.01 0.74
Oblique Trees Forest
10 trees 12.47 0.76
30 trees 11.68 0.71
50 trees 11.59 0.69
100 trees 11.48 0.68
200 trees 11.43 0.66
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As we can see, the oblique forest in this case shows lower misclassification rate

than the random forest with classical (orthogonal) splits, despite the number of trees.

The SD of the misclassification rate is also smaller for the oblique forest. When

compared to other methods (Rätsch et al., 1998) we can see that standard adaBoost

and SVM with RBF–kernel performed slightly worse than the forest with oblique

trees, while neural network and regularized types of adaBoost performed slightly

better (the misclassification rate differed less than 0.7% in each case).

4.2 Real Data Examples

In addition to the simulated examples, we have also used a number of real

datasets to compare the performance of the oblique trees to the classification methods

described in Chapter 1. Following the study of Rätsch et al. (1998) we compared

the performance of the forest with oblique trees and the classical RF to the most

progressive methods of classification (support vector machine, neural network, and

adaBoost). The data were obtained online at the Fraunhofer Benchmark Repository2

and are already separated into training and testing datasets. All the observations are

normalized to have zero mean and standard deviation one.

4.2.1 Thyroid

This dataset consists of 215 observations and has 5 continuous input variables:

1. T3-resin uptake test (a percentage).

2. Total serum thyroxin.

3. Total serum triiodothyronine.

4. Basal thyroid-stimulating hormone (TSH).

2The web-page of the repository has recently become unavailable at its original lo-
cation, however the copy of it can still be accessed through the Internet Web Archive:
http://web.archive.org/web/*/http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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5. Maximal absolute difference of TSH value after the injection of 200 mg of a

thyrotropin-releasing hormone as compared to the basal value.

The response diagnostic variable y is binary. The classifiers were trained on a

randomly selected dataset of 140 observations, and then tested on 75 test points. The

results of one hundred such repetitions are summarized in Table 4.2.

Table 4.2: Averaged misclassification rates for the thyroid dataset. The top results
come from Rätsch et al. (1998).

Method of Classification Error Rate (%) SD

RBF–Network (ANN) 4.52 2.12
AdaBoost 4.40 2.18
AdaBoost Reg 4.55 2.19
LP Reg–AdaBoost 4.59 2.22
QP Reg–AdaBoost 4.35 2.18
SVM with RBF–Kernel 4.80 2.19
Random Forest
(orthogonal splits)
10 trees 5.21 2.35
30 trees 5.19 2.48
50 trees 4.76 2.39
100 trees 4.63 2.32
200 trees 4.45 2.27
Oblique Trees Forest
10 trees 6.99 3.26
30 trees 6.01 2.54
50 trees 5.73 2.55
100 trees 5.59 2.54
200 trees 5.64 2.42

In this example random forest with 200 trees with orthogonal splits has showed

comparable performance with the other methods from Rätsch et al. (1998). Among

themselves the forests demonstrated slightly better performance (around 1%) when

using orthogonal splits rather than oblique ones for every number of trees. According

to our experience with the simulated data, this might be a sign of an orthogonal
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structure of the data (see Fig. 4.10). The pairwise scatterplot suggests that for

the variables x2 (total serum thyroxin), x3 (total serum triiodothyronine), and x4

(thyroid-stimulating hormone) orthogonal splits might be preferable.

Fig. 4.10: Pairwise scatterplot of the thyroid dataset (5 variables).

4.2.2 Diabetes

These data describe 768 Pima Indian female patients with 8 continuous variables:

1. Number of times a patient was pregnant.
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2. Plasma glucose concentration after 2 hours in an oral glucose tolerance test.

3. Diastolic blood pressure.

4. Triceps skin fold thickness.

5. Two-hour serum insulin.

6. Body mass index.

7. Diabetes pedigree function.

8. Age (no younger than 21 years old).

The diagnostic response variable is binary. Each method was trained on a represen-

tative sample of 468, and tested on the remaining 300 observations. The error rates

of one hundred such repetitions are summarized in Table 4.3.

Table 4.3: Averaged misclassification rates for the diabetes dataset. The top results
come from Rätsch et al. (1998).

Method of Classification Error Rate (%) SD

RBF–Network (ANN) 24.29 1.88
AdaBoost 26.47 2.29
AdaBoost Reg 23.79 1.80
LP Reg–AdaBoost 24.11 1.90
QP Reg–AdaBoost 25.39 2.20
SVM with RBF–Kernel 23.53 1.73
Random Forest
(orthogonal splits)
10 trees 26.36 2.17
30 trees 24.81 1.76
50 trees 24.49 1.72
100 trees 24.36 1.62
200 trees 24.29 1.68
Oblique Trees Forest
10 trees 25.97 1.73
30 trees 24.60 1.72
50 trees 24.31 1.53
100 trees 24.12 1.56
200 trees 24.15 1.60
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As we can see, in this example all the methods demonstrated very similar results:

misclassification rate around 24%, with SVM showing the best result: 23.53%. Dif-

ferently from the previous example (thyroid dataset) this time the misclassification

rate of the forests with oblique trees was slightly, but consistently lower than with

orthogonal ones for any number of trees.

4.2.3 Heart Disease

This is another dataset with a binary response y (angiographic disease status).

There are 270 observations described by 13 variables (continuous and categorical):

1. Age in years.

2. Sex (male or female).

3. Chest pain type (typical angina, atypical angina, non-anginal pain, or asymp-

tomatic).

4. Resting blood pressure on admission to the hospital.

5. Serum cholesterol.

6. Fasting blood sugar level (above or below 120 mg/dl).

7. Resting electrocardiographic results (normal, having ST-T wave abnormality,

showing probable or definite left ventricular hypertrophy).

8. Maximum heart rate achieved.

9. Exercise induced angina (present or absent).

10. ST depression induced by exercise relative to rest.

11. The slope of the peak exercise ST segment (upsloping, flat, or downsloping).

12. Number of major vessels (0-3) colored by flourosopy.

13. Heart rate defect (normal, fixed defect, or reversible defect).

Each method was trained on a random sample of 170, and then tested on the

remaining 100 observations. One hundred such repetitions were performed and the
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error rates were summarized in Table 4.4.

Table 4.4: Averaged misclassification rates for the heart disease dataset. The top
results come from Rätsch et al. (1998).

Method of Classification Error Rate (%) SD

RBF–Network (ANN) 17.55 3.25
AdaBoost 20.29 3.44
AdaBoost Reg 16.47 3.51
LP Reg–AdaBoost 17.49 3.53
QP Reg–AdaBoost 17.17 3.44
SVM with RBF–Kernel 15.95 3.26
Random Forest
(orthogonal splits)
10 trees 20.24 3.44
30 trees 19.09 3.75
50 trees 18.19 3.81
100 trees 17.69 3.69
200 trees 17.73 3.56
Oblique Trees Forest
10 trees 20.26 3.75
30 trees 18.18 3.78
50 trees 17.64 3.74
100 trees 17.30 3.68
200 trees 17.08 3.63

As we can see, just like in the previous example (diabetes dataset) the mis-

classification rate of the forest with oblique trees was slightly lower than with the

orthogonal ones. As for the other methods used by Rätsch et al. (1998), only SVM

and the regularized adaBoost on average could outperform oblique forest by 1.13%

and 0.61%, respectively.

The next four examples are based on the datasets that were originally used by

Breiman (2001) to compare classification performance of random forests to adaBoost.

The original testing procedure was to choose 90% of the data on random for the

training set, and train RF twice using different values of parameter mtry (first time
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with mtry = 1, the second time with mtry = int(log2M + 1), where M = 34 is the

number of variables). One hundred random classification trees were grown to make

a forest, which was tested on the remaining 10% of the data. This was repeated 100

times and the test set errors were averaged. The same procedure was followed for the

adaBoost runs which are based on combining 50 trees. In our experiments the test

dataset was created by sampling 90% of the original data without replacement, but

making sure that all the classes of y were present in the sample. Forests of 10, 30,

50, 100, and 200 oblique trees were trained, and then tested on the remaining 10%

of the data. The same datasets were used to train and test classical (orthogonal) RF

with the corresponding number of trees. After one hundred repetitions the appro-

priate misclassification rates were averaged, and the standard deviations (SD) were

computed.

4.2.4 Ionosphere

This dataset describes the classification of radar returns from the ionosphere,

which was collected by a system in Goose Bay (Labrador) and is available at the

UCI Machine Learning Repository.3 It consists of 351 observations with 33 variables4

(1 binary and 32 continuous), and a binary response y, showing whether there was

evidence of some type of structure in the ionosphere or not.

The performance of the classifiers are summarized in Table 4.5. The results from

the top part of the table come from Breiman (2001). As we can see, the forest of

oblique trees shows lower misclassification rates (for any number of trees) compared

to the RF with classical (orthogonal) splits. The variance of the misclassification rate

was also also smaller for the oblique trees forest. As for the other methods: SVM

3http://archive.ics.uci.edu/ml/datasets/ionosphere
4The obtained dataset actually contained one more variable, which was constantly equal to zero,

so it was eliminated.
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performed slightly better than the oblique trees forest, while adaBoost was slightly

worse than orthogonal RF. A single-layered neural network was almost as bad as a

single orthogonal tree.

Table 4.5: Averaged misclassification rates for the ionosphere dataset. The top part
comes from Breiman (2001).

Method of Classification Number of Units Error Rate SD
(trees/neurons) (%)

AdaBoost 50 6.4 NA
Random Forest (RF) 100 7.1 NA
Single Orthogonal Tree 1 12.7 NA
Random Forest 10 7.03 3.60
(orthogonal splits) 30 6.26 3.91

50 6.23 3.88
100 6.03 3.47
200 6.20 3.94

Oblique Trees Forest 10 6.51 4.02
30 6.11 3.83
50 5.91 3.84
100 5.86 3.84
200 5.66 3.79

SVM (radial basis kernel) 5.38 3.13
Neural Network 5 11.70 4.84
(single hidden layer) 10 10.78 5.31

20 10.53 4.77
25 10.78 4.56

4.2.5 Liver Disorder

This dataset originally comes from BUPA Medical Research Ltd., and is publicly

available at the UCI Machine Learning Repository.5 There are 345 observations (male

subjects) with 6 continuous predictor variables, of which the first 5 are different blood

test characteristics, measuring the following:

5http://archive.ics.uci.edu/ml/datasets/Liver+Disorders
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1. Mean corpuscular volume of red blood cells.

2. Alkaline phosphatase.

3. Alamine aminotransferase.

4. Aspartate aminotransferase.

5. Gamma-glutamyl transpeptidase.

The 6-th variable stands for the number of drinks (half-pint equivalents of alcoholic

beverages) drunk per day. The output variable y is binary (presence/absence of liver

disorder). The results of the classification are summarized in Table 4.6, with the top

part coming from Breiman (2001).

Table 4.6: Averaged misclassification rates for the liver dataset. The top part comes
from Breiman (2001).

Method of Classification Number of Units Error Rate SD
(trees/neurons) (%)

AdaBoost 50 30.7 NA
Random Forest (RF) 100 25.1 NA
Single Orthogonal Tree 1 40.6 NA
Random Forest 10 30.26 8.06
(orthogonal splits) 30 27.47 7.17

50 26.12 7.09
100 25.53 7.52
200 25.50 7.12

Oblique Trees Forest 10 30.29 7.63
30 27.76 6.91
50 27.12 7.58
100 26.09 7.26
200 26.56 7.29

SVM (radial basis kernel) 30.15 8.40
Neural Network 5 36.68 10.74
(single hidden layer) 10 32.82 9.02

20 32.38 7.53
30 33.68 8.24
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Here we can see that forests classifiers with either orthogonal or oblique trees

outperformed adaBoost and SVM almost by 5%, and outperformed the neural net-

work by more than 7%. Among themselves classical orthogonal trees showed slightly

better performance (within 1%). However, taking into account high variability in

terms of SD, the difference between oblique and orthogonal trees in this case can

hardly be considered significant.

4.2.6 Ecoli

This dataset contains protein localization sites of Gram-negative bacteria Es-

cherichia coli. The data are publicly available at the UCI Machine Learning Reposi-

tory.6 There are 336 observations with 5 continuous and 2 binary variables:

1. McGeoch’s method for signal sequence recognition,

2. Von Heijne’s method for signal sequence recognition,

3. Von Heijne’s Signal Peptidase II consensus sequence score,

4. Presence of charge on N-terminus of predicted lipoproteins (binary),

5. Score of discriminant analysis of the amino acid content of outer membrane and

periplasmic proteins,

6. Score of the ALOM membrane spanning region prediction program.

The response variable y has 8 classes. The results of our experiments are summarized

in Table 4.7, with the top part coming from Breiman (2001).

As we can see, RF with only 30 orthogonal trees was able to outperform adaBoost

and SVM (misclassification rate of 13.7% versus 14.8% and 14.32% respectively).

However oblique trees could not reach that level even with 200 trees (error rate

15.5%). The SD for the misclassification rate was also constantly smaller for the

orthogonal trees.

6http://archive.ics.uci.edu/ml/datasets/Ecoli
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Table 4.7: Averaged misclassification rates for the ecoli dataset. The top part comes
from Breiman (2001).

Method of Classification Number of Units Error Rate SD
(trees/neurons) (%)

AdaBoost 50 14.8 NA
Random Forest (RF) 100 12.8 NA
Single Orthogonal Tree 1 24.5 NA
Random Forest 10 15.94 6.56
(orthogonal splits) 30 13.71 5.26

50 12.97 5.72
100 12.68 5.63
200 12.29 5.55

Oblique Trees Forest 10 20.35 10.77
30 17.82 9.57
50 16.53 8.03
100 15.54 7.07
200 15.50 7.66

SVM (radial basis kernel) 14.32 7.46
Neural Network 5 18.71 7.05
(single hidden layer) 10 19.38 6.12

20 21.15 6.42
30 22.21 7.62

The possible reason for this might come from the fact that the data are highly

unbalanced: two out of eight classes had only two observations, and another had five.

With such a small number of observations in two-dimensional space the data become

too sparse, hence allowing more options for placing an oblique split. The current

version of our algorithm places the oblique split line by choosing the average slope

among available ones. However, such choice may not be optimal. Possible workaround

could be to assign a random slope from the possible, but this may further increase

the misclassification variance and require more trees to get sensible predictions.

4.2.7 Vowels

This is another dataset (the first was ecoli) with a large number of response classes
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(11 steady state vowels of British English). Differently from the ecoli example, this

case is well-balanced: there are 90 data points in each class, making it 990 observations

total. Each observation is described with 10 continuous variables, characterizing

different parameters of utterance. The data are publicly available at the UCI Machine

Learning Repository.7 The results of our experiments are summarized in Table 4.8.

Table 4.8: Averaged misclassification rates for the vowels dataset. The top part comes
from Breiman (2001).

Method of Classification Number of Units Error Rate SD
(trees/neurons) (%)

AdaBoost 50 4.1 NA
Random Forest (RF) 100 3.4 NA
Single Tree 1 30.4 NA
Random Forest 10 8.36 2.81
(orthogonal splits) 30 5.04 2.34

50 4.20 2.20
100 3.94 2.19
200 3.64 1.93

Oblique Trees Forest 10 10.81 3.15
30 7.55 2.65
50 6.88 2.47
100 6.58 2.41
200 6.46 2.51

SVM (radial basis kernel) 5.70 2.47
Neural Network 5 32.81 8.25
(single hidden layer) 10 22.24 5.66

20 15.14 4.14
30 12.17 4.02
40 10.12 4.04

RF with orthogonal trees showed the best performance; neural network showed

the worst. Oblique trees were outperformed by SVM and adaBoost. This case is also

interesting because differently from the other real-life examples, the misclassification

7http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-
+Deterding+Data)
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rate of the forests with oblique trees was more than one SD bigger than that of

the orthogonal RF. In terms of the error rates it is similar to the situation with

the orthogonal XOR dataset (Fig. 4.3). However, the visual analysis of the pairwise

scatterplots showed no orthogonal structure in the data. By looking at this and the

previous example (ecoli dataset) it appears that oblique trees forest has difficulties

with a large number of output classes (11 and 8, respectively).

4.3 Performance Summary

For the relative comparison of the algorithms’ performance, we summarized the

results of the aforementioned examples in Table 4.9. We could not determine a single

winner, since no method was uniformly the best. Within the set of studied examples

both SVM and orthogonal RF performed the best. The oblique trees forest followed

the leaders. Neural network and adaBoost performed the worst. It should be noticed

that every method usually performs better on some datasets, and worse on the others.

Table 4.9: Summary of the performance of different classification methods.

Dataset Number Classes Other Ada- Neural SVM RF Oblique
of x’s of y details Boost Net (orth.) Forest

Banana 2 2 fair good fair bad fair
Thyroid 5 2 outliers good good good good fair
Diabetes 8 2 outliers bad fair good fair fair
Heart 13 2 outliers bad fair good fair fair
Iono 33 2 fair bad good fair good
Liver 6 2 outliers bad bad fair good good
Ecoli 7 8 unbal. fair bad fair good bad
Vowels 10 11 fair bad bad good bad

The following example and the rest part of this work is used to explore such

aspects of oblique trees as data visualization and variable selection.
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4.4 Iris Data Structure

The purpose of this example is to demonstrate the use of the oblique trees to

provide a meaningful interpretation of the data structure by capturing its patterns and

identifying interaction between variables. We use already familiar Fisher-Anderson’s

data: 50 samples from each of 3 species of iris flowers. The predictor variables include

the length and width of the flowers’ sepals and petals.

Fig. 4.11: Classification of Fisher-Anderson’s iris data using orthogonal tree.

The classification result using classical trees with orthogonal splits is shown in

Fig. 4.11. As one can see, it is not very informative, and does not provide any useful
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insight about the data structure, merely the separation between the three classes.

The tree with oblique splits, on the other hand (Fig. 4.12), demonstrates the

structure of the data by locating the pairs of variables that enable a better separation.

It also chooses the separation boundaries in a more “intuitive” way. The choice of

the variables made by the oblique separator might be used as a variable selection tool

for high-dimensional datasets. This is further explored in the next chapter.

Fig. 4.12: Classification of Fisher-Anderson’s Iris data using the oblique tree classifier.
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CHAPTER 5

VARIABLE SELECTION AND INTERACTION

Since the trees with oblique splits use two variables at a time to separate the

observations into classes, it naturally suggests that the choice of such pairs may be

caused by the variables’ interaction, associated with the class labels. This chapter

describes the study of this aspect of oblique trees and demonstrates the application

of oblique trees to variable selection.

5.1 Variable Selection Task

Statistical data analysis often faces the problem of selecting a subset of the

variables being studied, also known as feature (predictor) extraction or reduction of

dimensionality. Variable selection might arise for a number of reasons. Most often,

the researcher wants to find out the variables that have legitimate predictive power.

Sometimes the model, e.g., a linear regression, requires the number of variables not

to exceed the number of observations. Also, as the number of dimensions of the input

variables increases linearly, the associated volume increases exponentially, causing

undesirable obstacles, such as lack of convergence or infinite variance (the so called

“curse of dimensionality” problem).

When reducing the dimensionality of the data, one must balance conflicting

objectives, since excluding too many variables usually reduces the accuracy of the

model. Usually, “the best” subset is defined as a set of variables that truly should be

in the model. The problem, however, is that it is generally unknown how to find out

which ones these are, so there is a number of various heuristics (exhaustive search,
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forward/backward selection, leaps and bounds, etc.), which are based on estimating

a measure of the difference between a given and the “true” model, such as Root mean

square error (RMSE), adjusted R-square, coefficient of determination, Mallows’ Cp,

Akaike information criterion (AIC), etc. Different algorithms have been developed in

this area. Here we describe some of them:

Exhaustive Search: A straightforward approach that tests all possible subsets

of the variables. It guarantees to find the solution to minimize the given criterion,

however it can only be used with a reasonably small number of variables.

Forward Selection: The selection starts with the variable that has the highest

correlation with the response. Other variables are being consequently added until

the desired accuracy of the model is reached. The order in which the variable are

chosen is determined by their partial correlation with the response y, controlling for

variables already in the model. This method can be easily used for a large number

of predictors, however it is an example of a greedy algorithm, i.e., it finds a local

optimum at each step and does not guarantee the overall optimum.

Backward Elimination: This method is similar in essence to Forward Selec-

tion, however, it starts with all variables included in the model, and then eliminates

one variable at a time. The choice of the variable being selected depends on the nu-

merical criterion (e.g., predictive error sum of squares). The result in general will be

different from the Forward Selection method. This method, however, requires fewer

variables than observations (m < n).

Stepwise Method: This is a combination of the previous two methods, in

a sense that a variable that has been added to the model may later be removed.

Although intuitively quite appealing, the algorithm may not converge, and we will

have to stop after reaching a certain number of steps.

Leaps and Bounds: This method is based on the fact that the Residual Sum
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of Squares (RSS) of a set A of predictors is less than or equal to the RSS of any subset

of predictors B ⊂ A. This helps to reduce the number of subsets being evaluated

(Furnival and Wilson, 1974). The Leaps and Bounds method, just like Backward

Elimination, requires fewer variables than observations (m < n).

All the algorithms described above will generally produce different results. The

problem becomes more complicated when the variables are correlated, or when there

is an interaction between them.

5.2 Variable Interaction

In the context of classification, we use interaction as a term to describe the

situation when the combined effect of two or more predictor variables on the response

variable is not additive, i.e., not just a sum of their separate effects. For example,

sport activities and alcohol consumption are two factors that have opposite effects on

health (response). Contrary to popular belief, being combined together they don’t

cancel each other, but involve in interaction, and may cause devastating effects on

blood viscosity (El-Sayed et al., 2005).

For a continuous response the interaction between continuous variables is usually

studied using multiple regression analysis with the product terms. The original ran-

dom forests algorithm has its own tool to determine variable interaction. It uses the

assumption that if two variables, say variables i and j interact, then a split on one of

them (say variable i) makes a split on another one (variable j) either systematically

less or more likely (Breiman, 2001).

For oblique trees we can count how often each pair of variables has been chosen

as the best variables on which to split. One of the difficulties we are facing here is

that the nodes of a tree are not equally important, since the nodes that are closer

to the root of the tree are constructed on a larger number of points than those near
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the bottom of the tree. To overcome this difficulty and to simplify things as much as

possible, let us consider a forest of t independent trees with a single oblique split (the

number of trees should be considerably greater than the number of variables T ≫ m).

By counting the number of trees that use each pair of variables, we construct the

following matrix of raw scores M:

(5.1) M =



0 M12 M13 . . . M1m

M21 0 M + 23 . . . M2m

. . . . . . . . . . . .

Mm1 Mm2 Mm3 . . . 0


,

where Mij is the number of single node trees that choose to split on variables i

and j. By adding the elements which represent the same pair we obtain the observed

frequency for each pair: Oij = Oji = Mij + Mji. There are m2−m
2

= m(m−1)
2

such

unique frequencies, since all Oii = 0 are ignored, and Oij = Oji. Several cases, as well

as their combinations, are possible then:

1. If no variables have particular effect on the predictor, then each pair of variables

is equally likely to be selected with no preference over each other. The expected

frequency for each pair (i < j) can then be defined as

Eij =
T

m(m−1)
2

=
2T

m(m− 1)
.

2. If a certain variable i does have an effect on the predictor, but no interaction, then

it will be selected more often, thus increasing the frequencies Oij for i < j.

3. If a certain pair of variables i and j interact with respect to the response, then

the frequency of Oij will increase.
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This setup makes it reasonable to apply Pearson’s chi-square goodness of fit test

in order to determine whether the observed frequency is equal to the expected:

H0: oij = eij for all i < j (i, j = 1, 2, . . . ,m)

HA: oij ̸= eij for some i < j (i, j = 1, 2, . . . ,m)

Under the null hypothesis, the test statistic:

(5.2) χ2 =
∑
i<j

(oij − eij)
2

eij

weakly converges to a χ2 distribution with m(m−1)
2

− 1 degrees of freedom as T → ∞.

As an example, consider a dataset of 200 observations with 4 independent iden-

tically distributed (i.i.d.) input variables Xi ∼ N(0, 1), i = 1, . . . , 4. The output

variable Y is a Bernoulli trial taking values 0 and 1 with probability p = 0.5. After

growing a forest of 50 oblique trees with only one node each, the appropriate frequen-

cies have been recorded (Table 5.1).

Table 5.1: Frequencies for the pairs of non-interacting variables selected by 50 single-
node oblique trees.

Pair of variables 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4
Observed frequency (oij) 5 14 8 7 8 8

Since there are six different pairs, the expected frequency for each pair is eij =

50

6
≈ 8.33. The chi-squared test statistic (5.2) is χ2 = 5.44 with 5 degrees of freedom,

which gives a p-value of 0.365 (do not reject H0).

Now, for the same predictor variables, suppose the output variable Y = 1 if the

product X1X3 is greater than zero, and Y = 0 otherwise. Let us grow a larger forest
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(150 trees) and record the frequencies of the selected variables (Table 5.2).

Table 5.2: Frequencies for the pairs of variables selected by 150 single-node oblique
trees for data with an interaction between variable 1 and variable 3.

Pair of variables 1, 2 1, 3 1, 4 2, 3 2, 4 3, 4
Observed frequency (oij) 8 105 9 11 7 10

The chi-squared test statistic (5.2) in this case is χ2 = 307.6 with 5 degrees of

freedom, which gives a p-value close to zero (safely reject H0).

5.3 Visualization

In practice, it might be useful not only to reject the hypothesis about the vari-

ables’ interaction, but also to identify which particular pair is responsible for any

interaction effect. For a large number of variables, a multiple comparison could

be quite challenging. A simple and intuitive tool for spotting interacting variables

can be constructed by visualizing the elements of matrix M (5.1) as a heatmap, a

graphical array of m × m squares, which code the values of the corresponding ele-

ments by color. For instance, Fig. 5.1a shows the heatmap of the matrix obtained

from 50 trees constructed for a dataset of 100 points with 6 i.i.d. input variables

Xi ∼ N(0, 1), i = 1, . . . , 6, and the output variable Y = 1 if the product X2X4 > 0,

and Y = 0 otherwise. The interacting variables are seen as the darkest squares. Part

(b) of Fig. 5.1 shows the heatmap of the matrix obtained from 50 trees constructed

for the same dataset, but with the output variable Y = 1 if X2 > 0, otherwise Y = 0.

For a real-life application let us consider the ionosphere dataset described in

Chapter 3. This dataset was chosen because searching for variable importance and

interaction among 34 variables is not a trivial task. As before two categorical variables
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Fig. 5.1: Visualization of the variable importance using the matrix M from the forest
with 50 oblique trees trained on data with: (a) interaction between x2 and x4, and
(b) single variable x2 importance.

were excluded, since the idea of oblique trees can be only applied to continuous

variables. The experiment goes as follows:

1. Generate 1000 bootstrap samples from the original dataset.

2. Construct one single-node oblique tree for each of the samples from step (1).

3. Construct the matrix M by counting the pairs of variables used in each tree.

The heatmap of the matrix M is shown on Fig. 5.2a, suggesting an interaction

between the pairs (1, 2), (3, 4), (3, 6), (5, 6), and perhaps (3, 12). As an alternative

visualization we may suggest to draw a heatmap of the observed frequencies Oij =

Oji = Mij + Mji after applying logarithmic transformation ln(Oij + 1) to intensify

less visible values. The new image (see Fig. 5.2b1) suggests a possible main effect of

the third variable.

1Color-intervals include left end-point of the continuous interval, and not the right one.
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Fig. 5.2: Visualization of the variable importance from the forest with 500 oblique
trees for the ionosphere dataset using (a) the matrix of raw integer scores M, and (b)
the matrix of rescaled observed continuous frequencies ln(Oij + 1).

To make the visualization consistent with Pearson’s Chi-square test under a

different null hypothesis (i.e., assuming different expected frequencies Eij), it might

be useful to remove the marginal frequencies and plot the heatmap of the differences

Oij −Eij. In general, there will be both a main effect and an interaction. To find out

whether the interaction exists, the main effect should be removed. This opens space

for future research.
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CHAPTER 6

SUMMARY

6.1 Conclusions

This work focuses on altering the algorithm of ordinary classification trees by

allowing the feature partitioning algorithm to operate over a two-dimensional space

of features. We proposed and implemented an efficient algorithm for finding the best

split (in terms of the Gini criterion) for a multi-class dataset in a two-dimensional

space. The benefits of the new method include:

Accuracy of classification performance: Using a number of examples with both

simulated and actual real-life datasets we have shown that a forest constructed

using trees with oblique splits provides a viable alternative to other leading

classification methods. In Table 4.9 we have shown that the performance of

the classification methods depends heavily on the given dataset, i.e., a method

performing well on one dataset may fail on another. Our set of examples could

not reveal a single leader among the methods, but it appears that support vector

machines, random forests, and oblique trees are the top three choices.

Insight of the data structure: The oblique splits may help to visualize the struc-

ture of complex datasets, which can serve as a tool for exploratory data analysis.

Variable importance and interaction: Two-dimensional oblique splits provide a

natural way of evaluating variable importance and interaction, which can be

visualized graphically, or further explored using statistical tests.



68

6.2 Further Studies

During the course of the work we formulated several questions regarding the

oblique trees algorithm, which open possibilities for further investigations. We sum-

marize them below.

1. Is it possible to extend the algorithm to allow categorical input variables? Is

there an efficient way to find an optimal split in two-dimensional space created

by (a) two categorical variables, (b) a categorical and continuous variable?

2. In the case of missing data, should the algorithm ignore or impute them? What

imputation method would be the most appropriate?

3. What non-greedy goodness-of-split criterion may serve as an alternative to Gini,

considering the computational complexity in two-dimensional space?

4. Considering the heatmaps for variable importance, what is the best way to

remove the main variable effect from its interaction with other variables?

Finally, it would be interesting to conduct another comparative study to compare

the performance of our method with other multivariate decision trees.
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2–5.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. Annual ACM Workshop on COLT, 5, 144–152.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24, 123–140.

Breiman, L. (2001). Random forests. Mach. Learn., 45, 5–32.

Breiman, L., Friedman, J. H., Olshen, R.A. and Stone, C. J. (1984). Classification

and Regression Trees. Wadsworth, Belmont, CA. Since 1993 this book has been

published by Chapman and Hall, New York.

Brodley, C.E. and Utgoff, P.E. (1992). Multivariate decision trees. Technical Report

92-82. Department of Computer Science, University of Massachusetts, Amherst,

Massachusetts 01003 USA.

Dobra, A. and Gehrke, J. (2001). Bias correction in classification tree construction.

In Proceedings of the Eighteenth International Conference on Machine Learning,

San Francisco, CA, USA, ICML ’01, pp. 90–97. Morgan Kaufmann Publishers Inc.



70

Domeniconi, C. and Gunopulos, D. (2007). Local feature selection for classification.

In Computational Methods of Feature Selection (eds L. Huan and H. Motoda).

Chapman and Hall/CRC Press, Boca Raton, FL.

Duin, R. P. W. (1996). A note on comparing classifiers. Pattern Recognition Letters,

17, 529–536.

El-Sayed, M. S., Ali, N. and El-Sayed, A. Z. (2005). Interaction between alcohol and

exercise: physiological and haematological implications. Sport. Med., 35, 257–269.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals Eugen., 7, 179–188.

Freund, Y. and Schapire, R. E. (1999). A short introduction to boosting. J. Jap.

Soc. Artif. Intelligence, 14, number 5, 771–780.

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a

statistical view of boosting (with discussion). Annals Stat., 28, 307–337.

Furnival, G. M. and Wilson, R. W. (1974). Regression by leaps and bounds. Tech-

nometrics, 16, 499–511.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of

categorical data. J. App. Stat., 29, 119–127.

Khoshgoftaar, T. M. and Allen, E. B. (2001). Controlling overfitting in classification-

tree models of software quality. Empir. Softw. Eng., 6, 59–79.

Kim, H. and Loh, W.-Y. (2001). Classification trees with unbiased multiway splits.

J. Amer. Statist. Assoc., 96, 598–604.



71

Knuth, D. E. (1976). Big omicron and big omega and big theta. SIGACT News,

8(2), 18–24.

Kononenko, I., Simec, E. and Robnik-Sikonja, M. (1997). Overcoming the myopia of

inductive learning algorithms with relieff. Appl. Intelligence, 7, 39–55.
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APPENDIX A

TRAINING FUNCTION CODE

Below is the R source code of the function oblq.tree (package version 1.2-1).

The function implements the algorithm of training a classification tree with oblique

splits using a given training dataset. The detailed description and usage instructions

are provided in in Section 3.2.

oblq.tree = function(train.data,

m.try = 0,

min.n = 2,

r.seed = 0)

{# m.try is not required in 2D space (x is always x, y is always y)

n.obs <- nrow(train.data)

n.vars <- ncol(train.data) - 1

cats <- as.logical(lapply(train.data, is.factor))

train.data <- apply(train.data, 2, as.numeric)

if (min.n < 2) min.n <- 2

maxClass <- max( train.data[,n.vars + 1] )

# create a true/false matrix, where the i-th

# column tells which cases belong to i=th split

data.ind <- c(1:n.obs) # names of the observations

node.ind <- matrix(rep(TRUE, n.obs), nrow = n.obs, ncol = 1)

my.tree <- data.frame(x = 0,

y = 0,

slope = 0,

intercept = 0,
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left.node = NA,

right.node = NA,

left.class = NA,

right.class = NA

)

# INITIALIZE THE VARIABLES

cur.node <- 1 # which node we are currently at

node.counter <- 1 # how many nodes have been created

the.best.split <- data.frame(x = 0,

y = 0,

slope = 0,

intercept = 0,

left.class = NA,

right.class = NA,

left.Gini = 1,

right.Gini = 1,

Gini = 1

)

left.ind <- 0 # which observations go to the left node spit

right.ind <- 0 # which go to the right

# what pairs of variables will be tested for the best split

if(m.try == 0){ # then use all possible distinct pairs of variables

pairs2test <- cbind(1, 2:(n.vars) )

for (ii in 2:(n.vars - 1) ) {

pairs2test <- rbind(pairs2test, cbind(ii, (ii + 1):n.vars) )

}

m.try <- (n.vars - 1) * (n.vars / 2)

try.random <- FALSE
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}

else {

try.random = TRUE

pairs2test = matrix(0, nrow = m.try, ncol = 2)

}

while(cur.node <= node.counter){

# MAIN CYCLE FOR CREATING NODES IN THE TREE

the.best.split$Gini = 1

for (iii in 1:m.try ){

# get 2 variables

if(n.vars == 2){

# if there are only two variables

# then use them as they are

x <- 1

y <- 2

}

else {

if (try.random) {

# try on random

pairs2test[iii,] = sample(n.vars, 2, replace = FALSE)

}

x <- pairs2test[iii, 1]

y <- pairs2test[iii, 2]

}

# get the index of observations which

# will be used in the current node

ind <- node.ind[,cur.node]

my.data <- data.frame( train.data[ind, c(x, y, (n.vars + 1))] )
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names(my.data) <- c("x", "y", "class") # assign the names

# get the split by calling the external function

my.node <- get.obl.node(maxClass,

my.data$x,

my.data$y,

cats[x],

cats[y],

my.data$class,

r.seed)

# distribute the observations to the child nodes:

if(my.node$slope == Inf)

{

tmp.left.ind <- (my.data$x < my.node$intercept) # <=

tmp.right.ind <- (my.data$x > my.node$intercept) # >=

}

else {

tmp.left.ind <- (my.data$x * my.node$slope +

my.node$intercept > my.data$y) # >=

tmp.right.ind <- (my.data$x * my.node$slope +

my.node$intercept < my.data$y) # <=

}

tmp.left <- data.ind[ind][tmp.left.ind]

tmp.right <- data.ind[ind][tmp.right.ind]

# check the ’left’ node

if(my.node$left.Gini == 0){

# what is the class label on the left (if pure)

pure.left <- (my.data$class[tmp.left.ind])[1]

if(is.na(pure.left)){
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right.tmp <- (my.data$class[tmp.right.ind])[1]

if(is.na(right.tmp)) {

pure.left <- moda(my.data$class[!tmp.right.ind])

}

else {

not.right <- my.data$class[!tmp.right.ind]

pure.left <- moda(not.right[ not.right !=right.tmp])

}

}

}

else {

pure.left <- moda(my.data$class[!tmp.right.ind])

}

# checking the ’right’ node

if(my.node$right.Gini == 0) {

# what is the class label on the left (if pure)

pure.right <- (my.data$class[tmp.right.ind])[1]

if(is.na(pure.right)) {

pure.right <- moda(my.data$class[my.data$class!=pure.left])

}

else{

if(pure.right==pure.left) {

pure.left <- moda(my.data$class[my.data$class!=pure.right])

}

}

}

else {

pure.right <- moda(my.data$class[my.data$class!=pure.left])
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}

# construct the split:

my.split <- data.frame(x = x,

y = y,

slope = my.node$slope,

intercept = my.node$intercept,

left.class = pure.left,

right.class = pure.right,

left.Gini = my.node$left.Gini,

right.Gini = my.node$right.Gini,

Gini = my.node$Gini)

if( my.split$Gini < the.best.split$Gini ){

# if the generated split has lower Gini value,

# then keep it as the best split

the.best.split <- my.split

left.ind <- tmp.left

right.ind <- tmp.right

left.n <- sum(tmp.left.ind)

right.n <- sum(tmp.right.ind)

}

} # end of m.try cycle

# after we got the best split

# copy x,y, slope, intercept to the tree node

my.tree[cur.node,1:4] <- the.best.split[1:4]

# if not pure - see what observations go to the next node

if( (the.best.split$left.Gini != 0) & ( left.n >= min.n) ){

node.counter <- node.counter + 1

my.tree$left.node[cur.node] <- node.counter
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node.ind <- cbind(node.ind, rep(FALSE, n.obs))

node.ind[left.ind,node.counter] <- TRUE

}

else

my.tree$left.class[cur.node] <- the.best.split$left.class

if( (the.best.split$right.Gini != 0) & ( right.n >= min.n)){

node.counter = node.counter + 1

my.tree$right.node[cur.node] <- node.counter

node.ind = cbind(node.ind, rep(FALSE, n.obs))

node.ind[right.ind, node.counter] <- TRUE

}

else {

my.tree$right.class[cur.node] <- the.best.split$right.class

}

cur.node <- cur.node+1 # proceed to the next node

}# END OF THE MAIN WHILE CYCLE

my.tree # return the tree to the user

} # end of ’obliq.tree’ function
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APPENDIX B

PREDICTION FUNCTION CODE

Below is the R source code of the function predict.oblq (package version 1.2-1).

The function implements the algorithm of classifying the observations from a given

dataset according to the given oblique tree. The detailed description and usage in-

structions are provided in Section 3.3.

predict.oblq = function(dataset, # a matrix of observations

my.tree) # a trained oblique tree

{ # get the total number of classes

classes <- levels(factor(c(my.tree$left.class, my.tree$right.class)))

# get the number of observations in the dataset

n <- nrow(dataset)

predicted <- rep(0, n)

for (i in 1:n){

node <- 1

point.class <- 0

while(!is.na(node)){

test.point = dataset[i, c(my.tree$x[node], my.tree$y[node])]

if(my.tree$slope[node] == Inf){ # in case of a vertical split

if( test.point[1] < my.tree$intercept[node] ){

predicted[i] <- my.tree$left.class[node];

node <- my.tree$left.node[node]

}

else {

predicted[i] <- my.tree$right.class[node];
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node <- my.tree$right.node[node]

}

}

else {

if(test.point[1] * my.tree$slope[node] +

my.tree$intercept[node] > test.point[2]

){

predicted[i] <- my.tree$left.class[node]

node <- my.tree$left.node[node]

}

else {

predicted[i] <- my.tree$right.class[node];

node <- my.tree$right.node[node]

}

}

}

}

predicted # returned value

} # end of the ’predict.oblq’ function
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APPENDIX C

WRAPPER FUNCTION CODE

Below is the R source code of the function get.obl.node (package version 1.2-

1). The function converts the data from R to C format, calls a C function, then

converts the returned values from C to R format, and returns to the main program.

The detailed description and usage instructions are provided in in Section 3.4.

get.obl.node = function(max_class, # the highest value of

# the class label (integer)

x1, x2, # vectors of the variables

factor1, factor2, # whether vars are categorical

clabels, # class labels (factors or integers)

rand.seed = 0) # random seed

{ # get the number of obervations

n <- length(x1)

sd.x <- sd(x1)/50

sd.y <- sd(x2)/50

if(sd.x == 0)

sd.x <- 0.0001

if(sd.y == 0)

sd.y <- 0.0001

# create noise

noise1 <- runif(n, -sd.x, sd.x)

noise2 <- runif(n, -sd.y, sd.y)

if(factor1){ # if the variable is categorical

x1 <- x1 + noise1 # then add the noise
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noise1 <- noise1 - noise1

}

if(factor2){ # if the variable is categorical

x2 <- x2 + noise2 # then add the noise

noise2 <- noise2 - noise2

}

# call the C function and store the result

tmp <- .C("GetObliqueNode",

# passing parameters as doubles

# for 32 and 64 bits compatibility

nn = as.double(n),

mc = as.double(max_class),

x = as.double(x1),

y = as.double(x2),

xnoise = as.double(noise1),

ynoise = as.double(noise2),

classes = as.double(clabels),

seed = as.double(rand.seed),

# values to be returned:

slp = 0, # slope of the splitting line

icept = 0, # intercept of the splitting line

lClass = 0, # label of the ’left’ class

rClass = 0, # label of the ’right’ class

leftG = 0, # Gini of the ’left’ side

rightG = 0, # Gini of the ’right’ side

G = 1 # combined Gini value

)

# return values as a node for the tree:
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data.frame(slope = tmp$slp,

intercept = tmp$icept,

left.class = as.integer(tmp$lClass),

right.class = as.integer(tmp$rClass),

left.Gini = tmp$leftG,

right.Gini = tmp$rightG,

Gini = tmp$G

)

}# end of the ’get oblique node’ function
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APPENDIX D

CORE ALGORITHM CODE

The following source code in C implements the algorithm for finding the best

linear split (in terms of the Gini impurity criterion) in two-dimensional space to

separate n points that belong to K classes. The code is used by the wrapper function

get.obl.node (package version 1.2-1).

// compile with option -std=c99

// uses quicksort

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <float.h>

#include <R.h>

//the date will be placed in the structure defined below

struct data {

int dataSize; // number of observations

double *x; // Coordinates of x variable of length n

double *y; // Coordinates of y variable of length n

int *clas; // Class label. Shouldn’t be pure.

int *order; //the order of the projected datapoints

};

// the following is a structure to define splits

struct split {

double slope;
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double intercept;

double leftClass;

double rightClass;

double leftGini;

double rightGini;

double Gini;

double noise;

};

//the following structure defines swtiching

struct switchPoints {

int a; // what to switch

int b; // with what

double trueslope; // computed for original variables

double noisyslope; // computed for noisy variables

};

void orderAsc(double *x, // variable used for sorting

double *y, // second var., following x

double *noisex, // noise for x

int *clas, // class label, follows x

int n) // n - length of the vectors

{ int ibnd;

if ((n) < 2)

return ;// there must be at least 2 points

ibnd = (n) - 1;

do {

int ixch = - 1;

int j;

for (j = 0; j < ibnd; j++) {
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if (x[j] + noisex[j] > x[j + 1] +noisex[j + 1]) {

double temp = x[j];

// change x

x[j] = x[j + 1];

x[j + 1] = temp;

//change y

temp = y[j];

y[j] = y[j + 1];

y[j + 1] = temp;

//change noise

temp = noisex[j];

noisex[j] = noisex[j + 1];

noisex[j + 1] = temp;

//change class

int ctemp = clas[j];

clas[j] = clas[j + 1];

clas[j + 1] = ctemp;

ixch = j;

}

}

ibnd = ixch;

}

while (ibnd != - 1);

}

void GetObliqueNode(double *nn, // number of observations

double *mc, // maximal class label

double *x, // will be converted to int

double *y, // will be converted to int
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double *xnoise, // random noise for x

double *ynoise, // random nosie for y

double *classes,// will be converted to int

double *seed, // random seed(if 0, use time)

double *slp, // slope

double *icept, // intercept

double *lClass, // left class

double *rClass, // right class

double *leftG, // left Gini

double *rightG, // right Gini

double *G) // combined Gini

{

int proceedGiniCalculation = 1; // boolean 1=TRUE, 0=FALSE

// define an array whose 0-th element contains the

// number of classes and each other tell teh number of obs,

// belonging to this class

int n = (int)nn[0];

int maxClass = (int)mc[0];

int nnn = maxClass + 1;

int *NofClasses = (int*)calloc(nnn, sizeof(int));

NofClasses[0] = 0;

int *order = (int*)calloc(n, sizeof(int));

int *clas = (int*)calloc(n, sizeof(int));

// initialize the random numbers generator

if((int)seed[0])

srand( (int)seed[0] );

else

srand( (int)time(NULL) );
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// get the order of observations

for (int i = 1; i <= n; i++) {

order[i - 1] = i - 1; // from 0 to n-1

clas[i - 1] = (int)classes[i - 1]; // make an integer

NofClasses[clas[i - 1]]++;

};

for (int i = 1; i <= maxClass; i++) {

if (NofClasses[i] > 0){

// if there were any observations of this class, then

// increase the total counter of classes

NofClasses[0]++;

};

};

int howManySplits = n - 1; //in each projections to check

// create an object to store our data there

struct data myData = { n, x, y, clas, order };

// to determine the order we need to sort myData

// in the increasing order of x

orderAsc(myData.x, myData.y, xnoise, myData.clas, myData.dataSize);

// how many switching there could be

const int k = n *(n - 1) / 2;

// define what variables will be switched

//(1st column with 2nd column)

// 3rd column is the slope between the points

// (determines the order of switching)

struct switchPoints *switching = (struct switchPoints*)

calloc(k,

sizeof(struct switchPoints));
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//index of myData.order

int *orderIndex = (int*)calloc(n, sizeof(int));

int kkk = 0;

for (int i = 0; i < n - 1; i++) {

// gets the slope between all pairs

for (int j = i + 1; j < n; j++) {

switching[kkk].a = myData.order[i];

switching[kkk].b = myData.order[j];

double numerator = myData.y[j] - myData.y[i];

double denominator = myData.x[j] - myData.x[i];

if ((numerator == 0) && (denominator == 0)) {

switching[kkk].trueslope = 0;

}

else {

switching[kkk].trueslope = (double) numerator / denominator;

}

switching[kkk].noisyslope = (double)(numerator + ynoise[j] - ynoise[i])/

(denominator + xnoise[j] - xnoise[i]);

if(switching[kkk].trueslope == (double)-1/0)

switching[kkk].trueslope = (double)1/0;

kkk++;

};

// fill in the order index from to n-1

orderIndex[i] = i;

};

struct split tmpSplit = {

0, 0, // slope, intercept,

0, 0, //left and right classes undefined



92

1, 1, 1, //Gini (left, right, both)

0 // noise to break the ties

};

struct split mySplit = {

0, 0, // slope, intercept,

0, 0, //left and right classes undefined

1, 1, 1, //Gini (left, right, both)

0 // noise to break the ties

};

int *switchingOrder = (int*)calloc(k, sizeof(int));

double *switchingTemp = (double*)calloc(k, sizeof(double));

for (int i = 0; i < k; i++) {

switchingOrder[i] = i;

switchingTemp[i] = switching[i].noisyslope;

};

// order switchingOrder accordying to switching[,3]

R_qsort_I(switchingTemp, switchingOrder, 1, k);

// the following tells how many points of each class

// there are to the left of i-th split

int *LeftN = (int*)calloc((n) *nnn, sizeof(int));

//zero indeces stay blank

for (int col = 1; col < n; col++) {

for (int row = 1; row <= maxClass; row++) {

LeftN[col * nnn + row] = LeftN[(col - 1) * nnn + row] +

(int)(myData.clas[col - 1] == row);

// if the point has same class as the current row, then ++

};

};
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// ### main loop ############################

for (int i = 0; i <= k; i++) {

// numbering like in R (i<=k number of switchings)

int switch1;

int switch2;

int where2split = 1;

if (i > 0) {

// need to switch for non-vertica1 (non-first) projections

switch1 = switching[switchingOrder[i - 1]].a;

switch2 = switching[switchingOrder[i - 1]].b;

int tmp = myData.order[switch1];

if (myData.clas[switch1] != myData.clas[switch2]) {

LeftN[(myData.order[switch1] + 1) * nnn +

myData.clas[switch1]]--;

LeftN[(myData.order[switch1] + 1) * nnn +

myData.clas[switch2]]++;

}

myData.order[switch1] = myData.order[switch2];

myData.order[switch2] = tmp;

//switch the order index

orderIndex[myData.order[switch2]] = switch2;

orderIndex[myData.order[switch1]] = switch1;

if (myData.clas[switch1] == myData.clas[switch2])

proceedGiniCalculation = 0; // FALSE

else {

proceedGiniCalculation = 1; // TRUE

where2split = myData.order[switch2] + 1;

howManySplits = 1;
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// use where2split instead of where2look4split (start point)

// look only between switched variables

};

} // order has been changed

if (proceedGiniCalculation) {

//get best-Gini split in current projection

for (int n1 = where2split;

n1 < (where2split +

howManySplits); n1++) {

// try all possible splits for a given projection

int n2 = n - n1;

// how do we split the cases

double GiniLeft = 0;

double GiniRight = 0;

for (int jj = 1; jj <= maxClass; jj++) {

GiniLeft += (1-(double)LeftN[n1 * nnn + jj] / n1)*

(double)LeftN[n1*nnn + jj] / n1;

GiniRight += (1-(double)(NofClasses[jj] - LeftN[n1 *

nnn + jj]) / n2) * (double)(NofClasses[jj]

- LeftN[n1 *nnn + jj]) / n2;

};

tmpSplit.leftGini = GiniLeft;

tmpSplit.rightGini = GiniRight;

tmpSplit.Gini = (tmpSplit.leftGini *n1 +

tmpSplit.rightGini * n2) / n;

tmpSplit.noise = 0.00001 *(double)rand() / RAND_MAX;

if ((tmpSplit.Gini + tmpSplit.noise) < (mySplit.Gini +

mySplit.noise)){
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// if it is better (Gini is smaller)

// then compute slope and intercept

if ((0 < i) && (i < k)) {

//most of the time it’s the average between two slopes:

if((switching[switchingOrder[i - 1]].trueslope < (double)1/0) &&

(switching[switchingOrder[i]].trueslope < (double)1/0) ) {

tmpSplit.slope = switching[switchingOrder[i - 1]].trueslope

+ rand() *

( switching[switchingOrder[i]].trueslope -

switching[switchingOrder[i - 1]].trueslope)

/ RAND_MAX;

tmpSplit.intercept = (myData.y[orderIndex[n1 - 1]] +

myData.y[orderIndex[n1]] -

tmpSplit.slope *

(myData.x[orderIndex[n1 - 1]] +

myData.x[orderIndex[n1]])) / 2;

}

if(switching[switchingOrder[i - 1]].trueslope == (double)1/0) {

tmpSplit.slope = (double)1/0;

tmpSplit.intercept = (myData.x[n1 - 1] +

myData.x[n1]) / 2;

}

if((switching[switchingOrder[i - 1]].trueslope < (double)1/0) &&

(switching[switchingOrder[i]].trueslope == (double)1/0) ) {

tmpSplit.slope = 2 * switching[switchingOrder[i -

1]].trueslope;

tmpSplit.intercept = (myData.y[orderIndex[n1 - 1]] +

myData.y[orderIndex[n1]] -
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tmpSplit.slope *

(myData.x[orderIndex[n1 - 1]] +

myData.x[orderIndex[n1]])

) / 2;

}

}

else {

//if it’s the first or last point -

// compute slope in a different way

if (i == 0) {

tmpSplit.slope = (double)1 / 0;

tmpSplit.intercept = (myData.x[n1 - 1] +

myData.x[n1]) / 2;

}

else {

// i == k

if (switching[switchingOrder[i - 1]].trueslope == (double)1/0) {

tmpSplit.slope = (double)1 / 0;

tmpSplit.intercept = (myData.x[n1 - 1] +

myData.x[n1]) / 2;

} // for a vertical line

// intercept becomes an x-intercept

else {

tmpSplit.slope = 2 * switching[switchingOrder[i -

1]].trueslope;

tmpSplit.intercept = (myData.y[orderIndex[n1 - 1]] +

myData.y[orderIndex[n1]] -

tmpSplit.slope *
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(myData.x[orderIndex[n1 - 1]] +

myData.x[orderIndex[n1]])

) / 2;

};

};

};

// if a node is pure - get the class label for it

if (tmpSplit.leftGini == 0) {

if (i == 0) {

tmpSplit.leftClass = myData.clas[n1 - 1];

}

else {

tmpSplit.leftClass = myData.clas[switch1];

};

};

if (tmpSplit.rightGini == 0) {

if (i == 0) {

tmpSplit.rightClass = myData.clas[n1];

}

else {

tmpSplit.rightClass = myData.clas[switch2];

};

};

mySplit = tmpSplit;

} //got slope and intercept

}

//end of FOR n1; we should get the best splits

// for a given projection line
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} // end of (if proceed gini = true)

} // done for all projections (main loop)

// ### end of the main loop ############################

// return the values to R

*slp = mySplit.slope;

*icept = mySplit.intercept;

*lClass = mySplit.leftClass;

*rClass = mySplit.rightClass;

*leftG = mySplit.leftGini;

*rightG = mySplit.rightGini;

*G = mySplit.Gini;

// free the memory

free(LeftN);

free(switchingOrder);

free(switchingTemp);

free(switching);

free(orderIndex);

free(NofClasses);

free(order);

free(clas);

} // end of Get Oblique Node
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APPENDIX E

DENDROGRAM FUNCTION CODE

Below is the R source code of the function plot.oblq (package version 1.2-1).

The function visualizes the oblique tree by plotting its dendrogram. The detailed

description and usage instructions are provided in Section 3.5.

plot.oblq = function(the.tree, # a trained oblique tree

labels.on = FALSE, # turn on/off the text labels

main = NA, # main title of the plot

cex = 1) # scaling factor for text labels

{# disable the box around the plot

par(bty = "n")

if(is.na(main))

caption <- substitute(the.tree)

else

caption <- main

plot( c(0,100), c(0,100),

type = "n", xlab = "", ylab = "",

axes = FALSE, main = caption)

stepDown <- floor( 91 / tree.depth(the.tree) )

plot.oblq.node(the.tree, 1, 1, 50, down = stepDown,

labs.on = labels.on, text.size = cex)

}# end of ’plot.oblq’ function

tree.depth = function(my.tree)

{ # compute the depth of the oblique tree

node <- nrow(my.tree)
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depth <- 1

if(node > 1) {

while(TRUE){

tmp <- which(my.tree$left.node == node)

if(length(tmp) == 0)

tmp <- which(my.tree$right.node == node)

node <- tmp

depth <- depth + 1

if(node == 1)

break()

}

}

depth

}# end of ’tree.depth’ function

plot.oblq.node = function(from.tree,

node,

i,

midX,

down,

labs.on,

text.size)

{ # compute the location to plot the node

midY <- 95 - (i - 1) * down

fork <- 45 / (2^i)

lines(c(midX - fork, midX + fork), c(midY, midY))

label <- ""

if(labs.on) { # print the node labels

if(from.tree$slope[node]==Inf){
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label <- paste("x", from.tree$x[node] , " > ",

round(from.tree$intercept[node], 3), sep="")

}

else {

if(from.tree$slope[node] == 0) {

label <- paste( "x", from.tree$y[node], " > ",

round(from.tree$intercept[node], 3), sep="")

}

else {

if(from.tree$intercept[node] == 0) {

label <- paste(round(from.tree$slope[node], 3),

" x", from.tree$x[node],

" < x", from.tree$y[node], sep="")

}

else {

if(from.tree$slope[node] == 1)

A <- "x"

else

A <- paste(round(from.tree$slope[node], 3), "x")

B <- from.tree$x[node]

if(from.tree$intercept[node] > 0)

C <- paste(" +", round(from.tree$intercept[node], 3))

else

C <- paste(" -", abs(round(from.tree$intercept[node], 3)))

label <- paste(A, B, C, " < x", from.tree$y[node], sep="")

}

}

}
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text(midX, midY, label, pos=3, cex=text.size)

} # end of text labels

lines(rep(midX - fork, 2), c(midY, midY - down))

lines(rep(midX + fork, 2), c(midY, midY - down))

if(is.na(from.tree$left.node[node])) {

text(midX - fork, midY - down,

from.tree$left.class[node],

pos = 1, cex = text.size

)

}

else

plot.oblq.node(from.tree, from.tree$left.node[node],

i+1, midX-fork, down, labs.on, text.size)

if( is.na(from.tree$right.node[node]) ){

text(midX + fork, midY - down,

from.tree$right.class[node],

pos = 1, cex = text.size

)

}

else

plot.oblq.node(from.tree, from.tree$right.node[node],

i+1, midX+fork, down, labs.on, text.size)

}# end of ’plot.oblq.node’ function
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APPENDIX F

DISAMBIGUATION EXAMPLE

The following simple R source code demonstrates the differences in constructing

oblique trees performed by similarly named R packages obliquetrees presented in

this work, and oblique.tree presented by Truong (2009). The example uses Fisher-

Anderson’s iris dataset to fit and plot dendrograms of two oblique trees (one for each

method). The comparison was performed using oblique.tree package (version 1.1)

and obliquetrees package (version 1.2-1) under R 32-bit version 2.11.1 for Windows.

library(oblique.tree) # load Truong package

library(obliquetrees) # load our package

data(iris) # attach the Fisher’s Iris dataset (native to R)

y <- as.factor(as.numeric( iris[,5])) # convert class labels into integers

dataset <- cbind(iris[,-5], y) # combine the proper training dataset

set.seed(1) # set the random seed to get representable results

our.tree <- oblq.tree(dataset, r.seed = 1)

truong.tree <- oblique.tree(formula = y~., data = dataset,

oblique.splits = "on")

par(mfrow=c(1,2)) # set up graphing window

plot.oblq(our.tree, labels.on=TRUE, main="") # plot our oblique tree

plot(truong.tree, type="uniform") # plot Truong’s oblique tree

text(truong.tree) # add text labels
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Fig. F.1: Dendrogram for oblique tree trained on Fisher-Anderson’s iris dataset using
package obliquetrees version 1.2-1.
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Fig. F.2: Dendrogram for oblique tree trained on Fisher-Anderson’s iris dataset using
package oblique.tree version 1.1.
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APPENDIX G

REPRODUCIBLE XOR SIMULATIONS

Below is the R source code for the XOR simulations described in Section 4.1.

The code is also available for download online.1 Please note, that this example uses

the package version 1.0-3, the results of the later versions may slightly differ.

library(rpart) # loads library for the orthogonal trees

library(obliquetree) # loads the library for oblique trees (version 1.0-3)

n.vars <- 2 # specifies the number of variables

test.n <- 2000 # specifies the sample size for testing dataset

train.n <- 500 # specifies the sample size for training dataset

# specifies the number of trees in a forest

n.of.trees <- 100 # alternative value 50

# specifies the number of experiments

n.of.reps <- 10 # alternative value 100

# breaks down the number of trees with increments of 5

number.of.trees <- seq(5, n.of.trees, by = 5)

# matrix to store the misclassification rates

oblq.err.rate <- matrix(0, nrow = n.of.reps,

ncol = length(number.of.trees))

orth.err.rate <- matrix(0, nrow = n.of.reps,

ncol = length(number.of.trees))

# # # GENERATE TEST DATA # # #

set.seed(0)

# generate uniformly distributed data

1https://sites.google.com/a/aggiemail.usu.edu/oblique-trees/examples/
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test.data <- matrix( runif((n.vars * test.n),-10, 10),

nrow=test.n, ncol=n.vars )

# generate the class labels with the orthogonal XOR structure:

classes <- as.numeric( test.data[, 1] * test.data[, 2] > 0 ) + 1

# to generate the class labels with the diagonal XOR structure use:

# classes <- as.numeric( ((test.data[, 1] - test.data[, 2] > 1) &

# ((test.data[, 1] + test.data[, 2] < 1))) |

# ((test.data[, 1] - test.data[, 2] < 1) &

# ((test.data[, 1] + test.data[, 2] > 1)))

# ) + 1

# to generate the class labels with the mixture of XORs use:

# classes <- as.numeric( (test.data[, 2] > 0) & (

# (test.data[, 2] > test.data[, 1]) &

# (test.data[, 1] > 0) |

# (test.data[, 1] < 0) &

# (test.data[, 1] > test.data[, 2]) ) |

# (test.data[, 2] < 0) & (

# (-test.data[, 2] > test.data[, 1]) &

# (test.data[, 1] > 0) |

# (test.data[, 1] < 0) &

# (test.data[, 1] < test.data[, 2]) )

# ) + 1

test.data <- cbind(test.data, classes)

# # # GENERATE TRAINING DATA # # #

for(j in 1:n.of.reps) {

set.seed(j)

oblique.predicted <- matrix(0, nrow = n.of.trees, ncol = test.n)

rpart.predicted <- matrix(0, nrow = n.of.trees, ncol = test.n)
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train.data <- matrix( runif(train.n * n.vars, -10, 10),

nrow = train.n, ncol = n.vars)

# generate class labels with the orthogonal XOR structure:

classes <- as.numeric( train.data[, 1] * train.data[, 2] > 0 ) + 1

# to generate the class labels with the diagonal XOR structure use:

# classes <- as.numeric(((train.data[, 1] - train.data[, 2] > 1) &

# ((train.data[, 1] + train.data[, 2] < 1))) |

# ((train.data[, 1] - train.data[, 2] < 1) &

# ((train.data[, 1] + train.data[, 2] > 1)))

# ) + 1

# to generate the class labels with the mixture of XORs use:

# classes <- as.numeric( (train.data[, 2] > 0) & (

# (train.data[, 2] > train.data[, 1]) &

# (train.data[, 1] > 0) |

# (train.data[, 1] < 0) &

# (train.data[, 1] > train.data[, 2]) ) |

# (train.data[, 2] < 0) & (

# (-train.data[, 2] > train.data[, 1]) &

# (train.data[, 1] > 0) |

# (train.data[, 1] < 0) &

# (train.data[, 1] < train.data[, 2]) )

# ) + 1

train.data <- cbind(train.data, classes)

for(i in 1:n.of.trees) {

which <- sample( 1:nrow(train.data), train.n, replace=TRUE)

bs.data <- train.data[which, ]

# # # # # TRAIN THE TREES

trained.oblique.tree <- oblique.tree(bs.data,
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m.try = 0, r.seed = j)

trained.rpart.tree <- rpart(classes~.,

data=as.data.frame(bs.data),

method = "class", minsplit = 2)

# # # # # CLASSIFY USING TRAINED TREES

oblique.predicted[i,] <- predict.obl(test.data,

trained.oblique.tree)

rpart.predicted[i,] <- as.numeric(predict(trained.rpart.tree,

newdata = as.data.frame(

test.data),

type = "class"))

}

for(i in 1:length(number.of.trees)) {

oblq.err.rate[j, i] <- 100 * mean(test.data[,(n.vars + 1)] !=

round(apply(

oblique.predicted[1:number.of.trees[i], ],

2, sum) / number.of.trees[i]) )

orth.err.rate[j, i] <- 100 * mean(test.data[, (n.vars + 1)] !=

round(apply(

rpart.predicted[1:number.of.trees[i], ],

2, sum) / number.of.trees[i]) )

}

}

# # # SUMMARIZE AND PLOT THE RESULTS # # #

par(mfrow = c(1,2))

plot(c(5, n.of.trees), c(0, 11), t = "n", xlab = "number of trees",

ylab="misclassification rate (%)")

for(j in 1:n.of.reps) {
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lines(number.of.trees, oblq.err.rate[j, ], type = "l",

pch = 21, lwd = 2, col="gray")

lines(number.of.trees, orth.err.rate[j, ], type = "l",

pch = 4, lwd = 2, col = "pink")

}

# add the average misclassification rates

lines(number.of.trees, apply(oblq.err.rate, 2, mean), type = "b",

pch = 21, lwd = 2)

lines(number.of.trees, apply(orth.err.rate, 2, mean), type = "b",

pch = 4, lwd = 2, col = "red")

# plot the boxplots

boxplot( data.frame(orth.err.rate[, 1], oblq.err.rate[, 1],

orth.err.rate[, 5], oblq.err.rate[, 5],

orth.err.rate[, 10], oblq.err.rate[, 10]),

col=rep(c("red", "white"), 3),

names=c("5 orth. trees", "5 oblq. trees",

"25 orth. trees", "25 oblq. trees",

"50 orth. trees", "50 oblq. trees"),

ylim=c(0,11),

main="Misclassification Rate (%)"

)
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