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Abstract

Statistical Algorithms for Optimal Experimental Design with Correlated Observations

by

Chang Li, Doctor of Philosophy

Utah State University, 2013

Major Professor: Daniel C. Coster
Department: Mathematics and Statistics

This research is in three parts with different although related objectives. The first part

developed an efficient, modified simulated annealing algorithm to solve the D-optimal (de-

terminant maximization) design problem for 2-way polynomial regression with correlated

observations. Much of the previous work in D-optimal design for regression models with

correlated errors focused on polynomial models with a single predictor variable, in large

part because of the intractability of an analytic solution. In this research, we present an

improved simulated annealing algorithm, providing practical approaches to specifications

of the annealing cooling parameters, thresholds, and search neighborhoods for the pertur-

bation scheme, which finds approximate D-optimal designs for 2-way polynomial regression

for a variety of specific correlation structures with a given correlation coefficient. Results

in each correlated-errors case are compared with the best design selected from the class of

designs that are known to be D-optimal in the uncorrelated case: annealing results had gen-

erally higher D-efficiency than the best comparison design, especially when the correlation

parameter was well away from 0.

The second research objective, using Balanced Incomplete Block Designs (BIBDs),

was to construct weakly universal optimal block designs for the nearest neighbor correlation

structure and multiple block sizes, for the hub correlation structure with any block size, and
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for circulant correlation with odd block size. We also constructed approximately weakly

universal optimal block designs for the block-structured correlation.

Lastly, we developed an improved Particle Swarm Optimization(PSO) algorithm with

time varying parameters, and solved D-optimal design for linear regression with it. Then

based on that improved algorithm, we combined the nonlinear regression problem and

decision making, and developed a nested PSO algorithm that finds (nearly) optimal ex-

perimental designs with each of the pessimistic criterion, index of optimism criterion, and

regret criterion for the Michaelis-Menten model and logistic regression model.

(79 pages)
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Public Abstract

Statistical Algorithms for Optimal Experimental Design with Correlated Observations

by

Chang Li, Doctor of Philosophy

Utah State University, 2013

Major Professor: Daniel C. Coster
Department: Mathematics and Statistics

The first part of my dissertation demonstrates that a modified simulated annealing

algorithm can successfully determine highly efficient D-optimal designs for second order

polynomial regression for a variety of correlated error structures.

In the second part, I solved weak universal optimal block designs for the nearest

neighbor correlation structure and multiple block sizes, for the hub correlation structure

with any block size, and for circulant correlation with odd block size.

In the third part, we propose an improved Particle Swarm Optimization (PSO) al-

gorithm with time varying parameters. Then combining the theorem of decision making

and PSO, we innovated nested PSO algorithms with all of these three criteria and make

comparison among the quality of solutions found from the three criteria.
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Chapter 1

Introduction

This research is in optimal experimental design: specifically, finding solutions to the

mathematically intractable and computationally intensive problem of finite sample size

optimal design when observations are correlated rather than independent. Such optimal

experiments are of increasing practical relevance in applied science when responses are

known to be correlated and there is a demand for statistical accuracy (i.e., optimality)

from experiments that are expensive and time consuming to perform. Examples would

include genome mapping experiments and microarray analysis, where genetic association

automatically dictates dependence among observations, and biological engineering requiring

small but precise experiments.

Three separate, although related, research objectives were developed. The first re-

quired the development and implementation of an efficient simulated annealing (SA) al-

gorithm with an original modification to solve the D-optimal (determinant maximization)

design problem for multi-way polynomial regression with correlated observations, an impor-

tant extension of standard (uncorrelated) response surface methodology to the correlated

errors case.

The creative part of this modified simulated annealing algorithm required the division

of the underlying perturbation scheme into more tractable sub-parts resulting in a more

dynamic scheme and a better defined threshold for searching in the neighborhood of the

target (optimal) solution. This improved algorithm overcomes the limitation of standard

optimization hill-climbing algorithms by allowing the search process to extend beyond lo-

cal optima. The algorithm has been implemented successfully for multiple specifications

of correlation structures, including cyclic, hub, and nearest neighbor (defined elsewhere)

structures.
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The second objective of this research continued with the common theme of optimal

design with correlated observations but focused on the design objective of weak universal

optimality in block-treatment designs. In particular, and in contrast to traditional uncor-

related optimal design, the order of observations within blocks is critical for optimality. An

efficient way to construct weakly universal optimal block designs with various correlation

structures and block sizes is presented along with proofs that the conditionals for optimality

are satisfied.

The third research objective combined decision making theory and Particle Swarm

Optimization (PSO) and featured nested PSO algorithms and three criterion functions with

application to the Michaelis-Menten model and the two parameter logistic regression model.

Comparisons were made among the quality of solutions found from the three criteria. The

three criteria reflect different levels of “optimism” and “pessimism” associated with the

decision making process in the PSO algorithm and may be adjusted to achieve different

solutions to the design problem. For example, when using the “index of optimism” criterion,

the settings of 0.3 (the decision maker is relatively pessimistic), 0.5 (the decision maker

compromises between the pessimistic and optimistic case) and 0.7 (the decision maker is

relatively optimistic) were used, respectively, and solution quality compared on the design

objective function.

A more complete specification of the three research objectives and accompanying liter-

ature review follows in Chapter 2. Chapter 3 presents results for the first research objective

involving the SA algorithm and D-optimality, Chapter 4 contains theory and applications

for the second research objective, and Chapter 5 deals with the PSO algorithm and results

for two types of models. Discussion and suggestions for future research are in Chapter 6.

Appendices contain annotated examples of Matlab code used to produce numerical results.
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Chapter 2

Research Problems and Literature Review

2.1 D-optimality for Polynomial Regression with Correlated Observations

D-optimality is a popular criterion for optimal experimental design. Consider the

model for polynomial regression as in [1]

yi = fi(x)′β + εi (2.1)

where i=1. . . n, β is a k-vector of parameters, and fi(x) = (f1i(x), f2i(x), . . . fki(x)) is

a k vector of polynomial functions of x, and n is the number of observations.Our purpose

is to estimate the coefficient vector β, or part of the vector β of primary interest.

In some experimental settings, the observations may be correlated according to vari-

ous structures or patterns.Motivation for this research in optimal designs with correlated

observations can be found in [2]. [3] introduced optimal design with correlated observations

in detail.

The simulated annealing (SA) algorithm is a probabilistic “hill climbing” algorithm

for optimization in the absence of an analytical solution. This algorithm derives from the

principle of annealing metal: heat the metal to a high temperature first, then decrease the

temperature slowly. As the temperature is decreased, the molecules in the metal tend from

unordered to ordered.

The probabilistic feature of the SA algorithm mimics this behavior in metal by allowing

transitions to less ideal “solutions” during the cooling stage which, in turn, provides for the

opportunity to leave local optimal, something deterministic algorithms may fail to do.

[4] proposed a simulated annealing algorithm for D-optimal design with uncorrelated

observations. The simulated annealing algorithm with a reheating process is introduced in
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[5] and [6]. In [7], Zhu solved the 1-way D-optimal design for polynomial regression with

correlated observations using a simulated annealing algorithm. [8] produced D-optimal

designs with block effects, which can be considered as a special case of the D-optimal design

problem with correlated observations, since the block effects can be incorporated into the

correlation structure.

Most previous work only considered the simplest case, that is, optimal design for

1-way polynomial regression. However, in real world problems, the response variable is

usually influenced by multiple effects and their interactions. This kind of problem is more

complicated, and has not been solved by existing algorithms or their generalizations.

2.1.1 Model:

The full model for second order 2-way polynomial regression is presented in [9] and

[10]. The model for the second order 2-way polynomial regression is:

yi = β0 + β1x1i + β2x2i + β3x
2
1i + β4x

2
2i + β5x1ix2i + εi (2.2)

where i=1,2 . . . n, and each of the x1i and x2i are in [-1,1], where εi has mean 0,

variance σ2 but are not necessarily independent.

The design matrix is: X = (xij)n×6, The first column is all 1’s, the other 5 columns

correspond to the values of X1, X2, X
2
1 , X

2
2 , X1X2, respectively . That is, each column of X

corresponds to one design variable (or their square or interaction effect) in the model.

D-optimality aims to maximize of the determinant of the information matrix, where

the information matrix for these models is:

M = X ′V −1X (2.3)

where

V = cov(Y ) = σ2(ρij)n×n (2.4)
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is the variance covariance matrix of the errors. Some common correlation structures

for V are introduced below.

2.1.2 Correlation structures

We define commonly used correlation structures below for a single correlation param-

eter ρ: 2.2(i) Circulant correlation: see [1]:

cov(yi, yj) =


σ2 i=j

ρσ2 |i− j|=1 or |i− j|=n-1

0 otherwise

The correlation matrix is of the form:

R =



1 ρ 0 0 ... ρ

ρ 1 ρ 0 ... 0

0 ρ 1 ρ ... 0

. . . .

. . . .

. . . .

ρ 0 0 0 ... 1


2.2(ii) Nearest Neighbor correlation: see [8]:

cov(yi, yj) =


σ2 i=j

ρσ2 |i− j|=1

0 otherwise

The correlation matrix is of the form:
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R =



1 ρ 0 0 ... 0

ρ 1 ρ 0 ... 0

0 ρ 1 ρ ... 0

. . . .

. . . .

. . . .

0 0 0 0 ... 1


2.2(iii) Autoregressive correlation: see [2]:

cov(yi, yj) = σ2ρ|i−j|, where i, j = 1, 2. . .n.

2.2(iv) Completely symmetric block structure: see [11]:



R R12 ... R1b

R21 R ... R2b

. . . .

. . . .

. . . .

0 0 ... R


(2.5)

Here R is a k × k matrix with the elements on the main diagonal =1, and all other

elements=ρ, (k is the common block size). ρ is the correlation coefficient for the observations

in the same block. Rij is a k × k block with all elements =ρij . In this paper we take all of

the ρij equal to the same coefficient ρ′.

Note that one commonly used block correlation structure is proposed by [12]:

cov(Y ) = σ2(Ib ⊗ V ) (2.6)

with V = (1 − ρ)Ik + ρJk. Here Jk is the k × k matrix with all of the elements =1.

This is a special case of 2.2(iv) with Rij=0.
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Hub correlation is presented in [1]. The correlation structure is a k × k matrix :

R =



1 ρ ρ ρ ... ρ

ρ 1 0 0 ... 0

ρ 0 1 0 ... 0

. . . .

. . . .

. . . .

ρ 0 0 0 ... 1


2.2 weak universal optimal block design

[13] present the definition of and a sufficient condition for weak universal optimality

in balanced block design with correlated observations. The definition is: X∗∗ is weakly

universal optimal relative to X∗ for covariance matrix V if it minimize Ψ(D(X∗, V )) over

X∗ for every convex Ψ invariant under permutation of coordinates and such that

Ψ(bD) > Ψ(D),∀b > 1

where X∗ is a set of eligible designs, usually it is all of the BIBDs with certain parameters.

Their sufficient condition is: X∗∗ is weakly universally optimal relative to X∗ for

covariance matrix V if

(i) D(X∗∗, V ) is completely symmetric (CS)

(ii)trace(D(X∗∗, V )) = minX∗∈X∗trace(D(X∗, V )) (2.7)

Note that (ii) is also known as A-optimality criterion. A matrix is completely sym-

metric (CS) if it is in the form aIk + bJk, here a and b are scalars, and Jk is a k× k matrix

with all elements=1. [13] also define for X∗ in X∗, D(X∗, V ) = cov(t̂0|V ), where t0 is the

unique minimum variance linear unbiased estimator (BLUE) of t under V = V0, which is
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usually known as the least squares (LS) estimator. cov(t̂0|V ) is the covariance matrix of

the least squares (LS) estimator t0 under design X∗ and covariance matrix V.

For a block design with correlated observations, we usually have V = cov(Y ) = σ2Ib⊗

R. The matrix R depends on the correlations among observations in each block.

Balanced Incomplete Block Designs (BIBD) provide a foundation for this research

about weak universal optimal block designs. A BIBD is a block design with v treatments,

b blocks, each block having size k. Incomplete means k < v, and balanced means each

treatment appears once in each of r blocks, and each pair of treatments appear together in

the same number of blocks, this number is denoted by λ. For a BIBD, the parameters v, k,

b, r and λ satisfy:

vr = kb (2.8)

and

λ =
r(k − 1)

v − 1
(2.9)

The construction of all kinds of BIBDs is discussed in detail in [14], and these construc-

tion is our foundation of weak universal optimal block designs. Some other foundational

results about the construction of BIBD’s with block size k=3 or 4 are presented by [15], [16],

[8] and [17]. In several former papers and books, like [15] and [14], a BIBD is represented

by triple parameters (v,k,λ), and denoted by (v,k,λ)-BIBD. In this paper we keep on this

notation.

An example of BIBD: If we take k=4, v=5, then by formula (8) and(9),

we can take r=4, b=5 and λ = 3. The BIBD can be constructed in this way:

(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 1), (4, 5, 1, 2), (5, 1, 2, 3). (2.10)

The application of BIBD in real world is introduced in chapter 14 of [18]. BIBD is

especially useful when the block size is fixed or limited. For example, if we want to do an

experiment of eye-drops to several persons, and take the eyes of each person as a block, then

the block size can only be two. Or if we want to do an experiment of several detergents,
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but we only have 3 operators, and the speed of washing is the same in any one session but

differ from session to session, then the block size can only be 3.

Optimal block designs have been studied in many papers. [19] introduced optimal

block designs with correlated observations under various circumstances. [1] introduced the

weak universal optimal block design with a circulant correlation matrix in each block. The

circulant correlation matrix is in the form:

R =



1 ρ 0 0 ... ρ

ρ 1 ρ 0 ... 0

0 ρ 1 ρ ... 0

. . . .

. . . .

. . . .

ρ 0 0 0 ... 1



(2.11)

The core of Zhu’s research is the Theorem 3 in section 2 of that paper. In that section,

he proposed the formula for the computation of the covariance matrix:

cov(Q) = k2
b∑

j=1

P ′j(Ik −
1

k
Jk)R(Ik −

1

k
Jk)Pj (2.12)

Here Q is the matrix of the adjusted treatment total of each treatment, Pj , j = 1, 2 . . . b

is a k× v matrix : (Pj)li = 1 iff i is on the lth position of the jth block. For example: if the
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elements in order in block j is (1,2, . . . k). Then

Pj =



1 0 ... 0 0 ... 0

0 1 ... 0 0 ... 0

. . . . 0 ... 0

. . . . 0 ... 0

. . . . 0 ... 0

0 0 ... 0 0 ... 0

0 0 ... 1 0 ... 0



(2.13)

Another example: if the elements in order in block j is (v,v-1, . . . v-k+1). Then

Pj =



0 0 ... 0 0 ... 1

0 ... 0 0 ... 1 0

. . . . . ... .

. . . . . ... .

. . . . . ... .

0 0 ... 0 0 ... 0

0 0 ... 0 1 ... 0



(2.14)

That is, each row of Pj has one 1 and (v-1) 0’s. k columns of Pj has one 1 and (k-1)

0’s, and other (v-k) columns are all zeros.

Zhu uses cov(Q) to represent the covariance matrix of the LS estimator instead of

cov(t̂0|V ), and in this paper we retain his notation. From the construction of Pj , we can

see it has k elements = 1, and other elements = 0. The core of the right side of the formula

is (denote it as W):

W = (Ik −
1

k
Jk)R(Ik −

1

k
Jk) (2.15)
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As above, Jk is a k× k matrix of all ones, and R is a k× k matrix defined by (4). Zhu

also showed that

cov(Qi, Qi′) = k2
∑
i,i′∈Bj

wh(i,j)h(i′,j) (2.16)

if i, i′ are in the same block j. Here w is the element in matrix W, Bj is block j, and

h(i,j)=` (` =1,2 . . . k) if i is on the `th position of the jth block. Consequently, cov(Q) is a

v × v matrix since there are v treatments.

In section 3, [7] introduced the construction of weak universal optimal block designs

with a circulant correlation matrix with block size=3 based on the Steiner triple system

introduced in [20].

2.3 Particle Swarm Optimization algorithm in experimental design and deci-

sion making

Particle Swarm Optimization is a heuristic search method proposed by [21]. This

algorithm is a bionic algorithm which simulates the preying behavior of a bird flock. In

the Particle Swarm Optimization algorithm, each solution of the optimization problem

is considered to be a “bird” in the search space, and we call it a“particle”. The whole

population of the solution is termed as a “swarm,” and all of the particles are searched

by following the current best particle in the swarm. Each particle has a an associated

optimization function, which determines the particle’s fitness value, and a velocity, which

determines the direction and distance of the search. As the PSO algorithm proceeds, for

each particle, we track two “best” values: the first value is the best for the individual

particle by itself so far, which is denoted by “pbest”; the second value is the best solution

from the whole population so far, denoted by “gbest”. When the algorithm terminates,

gbest is the declared to be the solution of our problem.

Associated with each particle is a velocity, v, and position, x. The velocity and position

of each particle are updated from iteration i to i+1 by:

vi+1 = ωvi + c1rand(pbesti − xi) + c2rand(gbest− xi) (2.17)
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xi+1 = xi + vi (2.18)

Here vi is the velocity of the particle in the ith iteration, xi is the position of the

particle in the ith iteration. ω is called the inertia weight. pbesti and gbest are the local

best position for particle i and global best position for all of the particles, respectively. Term

“rand” is a random number in [0,1], while c1, c2 are “learning factors”, with c1 termed the

” cognitive learning factor” , and c2 the ” social learning factor”( [21]).

From the formulas, we can see the update of v is composed of three parts: the first

part is the inertia velocity before the change; the second part is the cognitive learning part,

which represents the learning process of the particle from its own experience; the third part

is the social learning part, which represents the learning process of the particle from the

experience of other particles.

2.3.1 Experimental design and the Fisher information matrix

An experimental design ξ which has n support points can be written in the form:

ξ =

x1 x2 · · · xn

ξ1 ξ2 · · · ξn


Here xi, i = 1 . . . n are the values of the support points within the allowed design region,

and ξi are the weights, which sum to 1, and represent the relative frequency of observations

at the corresponding design point.

The general form of the regression model can be written as y=f(θ , ξ)+ε. Here f(θ , ξ)

can be either linear or nonlinear function, θ is the vector of unknown parameters, and ξ is

the vector of design( includes the information for both weight and the value of the support

point). The range of θ is Θ, and the range of ξ is Ξ. The value of a design is computed

from the Fisher information matrix, which is usually obtained as the negative of the matrix

of the second derivatives (with respect to θ) of the log likelihood function.

In many case, the Fisher information matrix involves the unknown parameter θ, and
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is denoted by I(θ, ξ). One popular criterion is to minimize the function log|I−1(θ, ξ)|. In

this context, log|I−1(θ, ξ)| is considered to be a loss function.

2.3.2 Models with unknown parameters

One typical example of regression with a Fisher information matrix involving unknown

parameters is the Michaelis-Menten model, which is presented by [22]:

y =
ax

b+ x
+ ε, x > 0 (2.19)

For which the information matrix at a point x is defined by

M(x, θ) = (
ax

b+ x
)2

 1
a2

− 1
a(b+x)

− 1
a(b+x)

1
(b+x)2

 (2.20)

And the information matrix for a design ξ is

I(θ, ξ) =
k∑
i=1

ξiM(xi, θ) (2.21)

Here ξi is the mass function at xi .

For the Michaelis-Menten model on design space X = [0, x̃] , [22] showed that an

optimal design is supported at 2 support points, and one of which is x̃. So ξ is a vector

(x1, ξ1)′.

Another typical example is two parameter logistic regression model ([23]), in which the

probability of response is assumed to be p(x; θ) = 1/(1 + exp(−b(x− a))). Here θ = (a, b)T

is the unknown parameter vector.

The information matrix of this model is:

∫  b2p(x, θ)(1− p(x, θ)) −b(x− a)p(x, θ)(1− p(x, θ))

−b(x− a)p(x, θ)(1− p(x, θ)) (x− a)2p(x, θ)(1− p(x, θ))

 dξ(x) (2.22)
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2.3.3 Essential elements of decision making

A decision making problem is composed of four elements ([24]):

(i) a number of actions to be taken;

(ii)a number of states which can not be controlled by the decision maker;

(iii)objective function: payoff function or loss function which depends on both an action

and a state (our objective is to maximize the payoff function or minimize the loss function);

(iv) criterion: by certain criterion, the decision maker decide which action to take.

In the function log|I−1(θ, ξ)|, θ is in the set of states which are out of our control and

design ξ is an action to be taken.

2.3.4 Optimization criterion for decision making

Decision-making with loss functions is proposed in several papers, like [25]. Clearly,

our objective is to minimize the loss functions. Based on the loss function, there are several

popular criterion for decision making:

(i) Pessimistic criterion: The pessimistic decision maker always considers the worst

case, that is, suppose θ will maximize the loss function. The decision maker will take the

action that minimizes the loss function on the worst case. This criterion is also known as

minimax criterion. The formula for this criterion is:

minξ(maxθ∈Θlog|I−1(θ, ξ)|) (2.23)

(ii) Index of optimism criterion: usually the decision maker will trade off from optimism

and pessimistic in decision making. This derives index of optimism criterion which take the

weighted average of maximum and minimum of the loss function. The weight is called index

of optimism, which is between 0 and 1. It reflects the content of optimism of the decision

maker. The formula for this criterion is:

minξ[(1− α)maxθ∈Θlog|I−1(θ, ξ)|+ αminθ∈Θlog|I−1(θ, ξ)|] (2.24)
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Here α is the index of optimism.

(iii) Minimax regret criterion: in this criterion, our objective is to minimize the max-

imum possible regret value. The regret value is defined by the difference between the loss

under certain action and the minimum loss possible under the same state. The formula for

this criterion is:

minξmaxθ∈ΘRV (θ, ξ) (2.25)

Here RV (θ, ξ) = log|I−1(θ, ξ)| −minξlog|I−1(θ, ξ)|

The significance for criterion (ii) and (iii) are: usually the decision maker will trade off

from optimism and pessimism in decision making. This derives index of optimism criterion

which take the weighted average of maximum and minimum of the possible loss. The weight

is called index of optimism, which reflects the content of optimism of the decision maker.

Some times after the decision maker made a decision, he or she may regret when cer-

tain states appear. In this case we want to minimize the maximum regret value, which

is the distance between the loss value of the action he take and the minimum loss value

possible in the relevant state. Regret value is also called opportunity costs, represent regret

in the sense of lost opportunities.
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Chapter 3

Simulated Annealing Algorithm for D-optimal Design

In my dissertation, a modified, improved simulated annealing algorithm to approxi-

mately solve for D-optimal design for 2-way polynomial regression with correlated observa-

tions is proposed. This algorithm is applicable to any number of observations, not neces-

sarily a multiple of the dimension of the parameter vector. It conquers the shortcoming of

previous work, which mainly concentrated on the case that n (the number of observations)

is a multiple of k (the number of the coefficients to be estimated, or equivalently, the dimen-

sion of the parameter β). We also provide a reinforced version of our simulated annealing

algorithm with a reheating process.

3.1 Improved simulated annealing algorithm for 2-way second-order polyno-

mial regression with correlated observations

3.1.1 Research Objective:

D-optimal design for polynomial regression with uncorrelated observations is presented

in [26] and [27].

In [27], the authors found the D-optimal design for 2-way (i.e., 2 predictors, X1 and

X2) 2nd-degree (i.e., a model including quadratic and cross-product terms in each of X1 and

X2) polynomial regression with uncorrelated observations based on 9 factorial points (the

combination of -1, 0 1) in detail. The method of Box and Draper provides a convenient way

to approximate the maximum value of the determinant of the information matrix |X ′X|.

One way to approximately solve the D-optimal design problem to polynomial regression

with correlated observations is to use the best D-optimal design for polynomial regression

with uncorrelated observations but for the specified correlation structures. We call this the
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“uncorrelated method.”

However, the uncorrelated method will seldom find the globally D-optimal design for

any specific correlation structure because the support points are unlikely to be in -1, 0, 1

and the order of the observations themselves will impact the D-criterion.

“uncorrelated method” usually can not get ideal result. For example, for the circulant

correlation structure with n=9, when ρ = 0.4, the “best” determinant of “uncorrelated

method” is 10688, while the “best” determinant of our improved simulated annealing algo-

rithm is 68277. What this means is that much greater D-efficiency (ratio of the maximized

determinants) is available using our methods versus the “uncorrelated method” approach.

We use the “uncorrelated method” as a benchmark for the potential or realized improve-

ments obtained from our SA algorithm. In practice, if an experimenter has some idea of

the magnitude of the correlation, ρ, and the structure of the dependency (circulant, hub,

nearest neighbor, and so on), our best designs will be more efficient and lead to more precise

estimation of model parameters and model predictions.

3.2 The Principle of Simulated Annealing

The simulated annealing (SA) algorithm belongs to a class of heuristic probabilistic

hill-climbing algorithms, see [7] and [4]. The SA algorithm attempts to globally maximize an

energy function E(X) for X in a specified state space (a design region for our D-optimality

problem), by moving about the state space according to a transition mechanism defined

by random perturbations of the current solution, Xc, to a new candidate solution, Xn.

Let dE = E(Xn) − E(Xc), if dE > 0, accept Xn as the current solution. Otherwise,

accept Xn as the current solution with probability exp(dE/Tc), where Tc is the current

value of a temperature control parameter, T. Thus, there is positive probability that the

algorithm will move to a poorer design, which is the key feature of the SA search algorithm,

as it provides for the possibility that the algorithm will escape a local maximum. As the

algorithm proceeds, the temperature decreases, making it less likely that designs with lower

energy will be accepted. Convergence of the SA algorithm to a highly efficient design (a

globally optimal solution is never guaranteed to be found), depends on the convergence to
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a stationary distribution of the underlying Markov chain, which typically requires a large

number of iterations as well as a suitably chosen transition scheme over the state space.

3.2.1 Simulated Annealing Algorithm for D-optimal Design for 2-Way Poly-

nomial Regression

For 2-way polynomial regression, the n × 6 design matrix is fully determined by the

values of X1 and X2, each in [-1, 1]. Therefore, at each iteration of our simulated annealing

algorithm, a new design matrix is obtained by perturbing the current values of X1 and X2.

We denote the current values of X1 and X2 by X1c and X2c and new values by X1n and

X2n, respectively.

In many applications of simulated annealing, the values of only one current design point

are perturbed (by some random mechanism) at each iteration, and typically a systematic

pass is made through all design points in this manner, and the process repeated until

“convergence” is achieved according to a specified stopping condition. Alternatively, all

design points are perturbed simultaneously. However, both of these traditional methods

were found to be inefficient for our D-optimal design with correlated errors. Thus, we used

a modification that improved convergence and solution quality. Our modification was to

divide the design points into three parts, of equal or nearly equal size, and perturb all points

in each part in an “inner” loop, while systematically doing this for each of the three parts.

This represented a middle ground for the perturbation scheme between the two traditional

perturbation methods, one at each extreme, as described above.

Our modified simulated annealing algorithm was as follows:

Step 1: Initialize starting temperature, T0, finishing temperature Tf , temperature

reduction coefficient r, perturbation neighborhood control parameter g0, and initial design

matrix X0. Control parameter gc is chosen from [0, 1] and is used to adjust the size of

the perturbations as the algorithm proceeds. Calculate the energy function of the current

design, E(Xc) = Det(X ′V −1X).

Divide the n design points (rows of X) into three parts. If n = 3k, for some positive

integer k, then each part has = n/3 design points. If n = 3k+1, the first two parts have
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k design points and the third part has k+1. Similarly, if n = 3k+2, the first part has k

points, and the other two have k+1 design points.

Step 2: Outer Loop:

Cycle through each of the 3 parts of X systematically, repeating the following inner

loop:

Inner Loop:

(i) Let Z1 and Z2 be n x 1 vectors with each element of Zi (i = 1,2) sampled at random

from [-1, 1] for those design points belonging to the current part of X under consideration.

All remaining elements of Zi are set equal to 0.

(ii) Generate new candidate design points X1n = X1c + gZ1 and X2n = X2c + gZ2. If

any element of X1n or X2n falls outside [-1, 1], set the value to the closest boundary value

of the design region.

(iii) Determine E(Xn).

(iv) If dE = E(Xn)−E(Xc) > 0, accept the new design by settingXc = Xn. Otherwise,

compare exp(dE/T ) with a random number chosen uniformly from [0,1] multiply by a

coefficient 1.01c. If exp(dE/T ) is greater than this number, we set Xc = Xn. If not, keep

the Xc unchanged . Step 3: If Tc < Tf , stop. Otherwise, increment the counter c to c+1,

set Tc = rTc−1, gc = rgc−1, c=c+1 and return to Step 2.

Reheating: the annealing algorithm is often reinforced by using “reheating.” Specifi-

cally, after the usual stopping condition based on the temperature is reached in Step 3, the

process is repeated, often several times, by reheating to the original starting temperature,

and continuing at Step 2. In Table 6.6, we present results of the algorithm for n = 12 and

three correlation structures without and with reheating.

Reduction Control Parameter r: this tuning parameter is chosen by the user, but is

often set about 0.98 - 0.99 for geometric rate of reduction in the temperature.

Perturbation Control Parameter g: Typically, g0 is set close to 1, allowing large per-

turbations in design points at early iterations. As solution quality improves and the tem-

perature decreases, gc also decreases, localizing perturbations to a smaller neighborhood
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of the current design which is more likely to be close to a global optimum when iteration

counter c is large.

3.3 Improvements from this algorithm compared with a standard simulated

annealing algorithm

1. There are 2 vectors, X1c and X2c, to be changed. In this case, the standard

simulated annealing algorithm , which treats the perturbation vector Z as a whole, does not

produce satisfactory results. In our modified algorithm, we divide the Z (and consequently

the perturbation process) into 3 parts, and make perturbations part by part. This method

ensures that we do not miss any corner of the design region, and is much more precise than

the usual annealing method. Additionally, this part-by-part perturbation scheme allows the

number of observations to be any number, not necessarily to be multiple of the number of

coefficients. This makes our algorithm more flexible since it can be applied to experiments

with any number of observations.

2. We shrink the search neighborhood and increase the threshold for accepting a

perturbation each time we lower the temperature. That is,when the temperature is high,

we search in a wide neighborhood and are more likely to jump out of the local optimum. At

each time we lower the temperature,we make the perturbation neighborhood smaller and

make the acceptance threshold higher so it becomes harder to leave a local optimum. We

implement this approach by multiplying the scale number g by the reduction coefficient r

and multiplying the random number to be compared with dE by a coefficient, 1.01c at each

time we decrease the temperature. Here c initially is 0, and will increase by 1 each time we

decrease the temperature.

This approach is in accordance with the idea of simulated annealing, that is: when

the temperature becomes lower, the “molecules” are less active and tend to an equilibrium

stabilization. This modification resulted in improved relative efficiency of the final design.

3. In each part of step 3, we repeat the iterations until the improvement is less than

a small threshold value multiple times. This guarantees we go to the next step only when

the improvement is negligible and none in the current step. In other words, we do not
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miss any valuable improvement. We take the threshold as 0.02× determinant of the current

information matrix as the threshold value.

3.4 Results and comparison with D-optimal design for 2-way second-order

polynomial regression with uncorrelated observations

In this paper, we use the D-optimal designs in [10] to compute |X ′V −1X|, and compare

them with the results from our simulated annealing algorithm.

Since the most often used correlation parameters are 0.1 and 0.4, in the tables below,

we mainly use these 2 parameters in the computation and comparison. In table 8, we list

the result for circulant correlation structure with various ρ and n.

In Table 3.1 through Table 3.4, we present the comparisons of the simulated annealing

results and the “uncorrelated method” when observations number n is a multiple of 6 using

each of the autoregressive, circulant, nearest neighbor and block correlation structures. Ta-

bles 3.1-3.3 present results of the SA algorithm for the autoregressive, circulant and nearest

neighbor structure for designs of size 6, 12 and 18 and correlation parameter of 0.1 and

0.4, and Table 3.4 presents results of the SA algorithm for the block structure for designs

of size 12 and correlation parameter of 0.1 and 0.4, along with comparisons with the best

“uncorrelated method” design.

Table 3.1: 2-way polynomial regression with autoregressive correlation

n ρ Uncorrelated Determinant Annealing Determinant

6 0.1 281.5 281.2

6 0.4 732.4 751.8

12 0.1 17368.0 17769.0

12 0.4 43921.0 45108.0

18 0.1 258700.0 272620.0

18 0.4 399710.0 889690.0



22

Table 3.2: 2-way polynomial regression with circulant correlation

n ρ Uncorrelated Determinant Annealing Determinant

6 0.1 269.3 279.0

6 0.4 1007.8 1047.0

12 0.1 17413.0 17815.0

12 0.4 64500.0 65894.0

18 0.1 198120.0 206010

18 0.4 705880.0 1091400

Table 3.3: 2-way polynomial regression with nearest neighbor correlation

n ρ Uncorrelated Determinant Annealing Determinant

6 0.1 281.7 279.1

6 0.4 732.5 742.5

12 0.1 26325.0 32901.0

12 0.4 50901.0 74276.0

18 0.1 198350.0 206010.0

18 0.4 734690.0 1175800.0

Table 3.4: 2-way polynomial regression with block correlation

n ρ Uncorrelated Determinant Annealing Determinant

12 0.1 25088.0 21138.0

12 0.4 39018.0 39870.0

From these tables,we see that when ρ=0.1, the determinants obtained by simulated an-

nealing and the uncorrelated method are similar. However, when ρ=0.4, the determinants

from the simulated annealing algorithm are much higher than the results of the uncorre-

lated method. When n gets larger (especially when n=18), the ratio increases to well above
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1, so the D-efficiency of the annealing design is relatively much better than that of the

“uncorrelated method.”

For the case that the observations number n is not a multiple of the dimension of the

parameter vector, we take n=7 in Table 3.5. We find in all of these cases, the results of the

simulated annealing algorithm are much better than the results of the uncorrelated method.

Table 3.5: 2-way polynomial regression with n=7

Correlation

Structure
ρ Uncorrelated Determinant Annealing Determinant

Nearest

Neighbor
0.1 962.3 1036.8

Nearest

Neighbor
0.4 2655.1 3213.2

Circular 0.1 975.7 1027.2

Circular 0.4 3545.5 3631.6

Auto

Regress
0.1 951.3 1028.1

Auto

Regress
0.4 1757.5 2382.4

Table 3.6 provides the comparison of reheated simulated annealing with non-reheated simu-

lated annealing. From this table, we can see that with the addition of the reheating process,

the results are much better than the non-reheating process.

Table 3.6: 2-way polynomial regression with n=12, compare reheated simulated an-
nealing with non-reheated simulated annealing

Correlation Structure ρ Non-reheated Determinant Reheated Determinant

Nearest Neighbor 0.4 264350 317470

Circular 0.4 294140 529960

Auto Regress 0.4 55234 67548
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We also present a comparison of the support points for the circulant correlation structure

with n=9 in table 3.7:

Table 3.7: Comparison of support points between simulated annealing and uncorre-
lated method for circulant correlation

Support Point Uncorrelated ρ =0.1 ρ =0.2 ρ =0.4

1 -1, -1 -1, -1 -1, -1 -1, -1

2 -1, 0 -1, -0.05 -1, 0 -1, 0.42

3 -1, 1 -1, 1 -1,1 -1,1

4 0, 0 -0.14, 0.06 -0.24, 1 -0,05, -0.01

5 0, 1 0 , 1 0.07 , -0.15 0,1

6 0, -1 0.03, -1 0.23, 1 0.38, -1

7 1, 1 1 , 1 1, 0,25 1,1

8 1, -1 1, -1 1,-1 1,-1

9 1, 0 1, -0.0088 1 , 1 1, -0.08

Uncorrelated

Determinant
4542.7 4600.5 10688.0

From the above table, we can see for ρ=0.1, the support points of the simulated annealing

results are very close to uncorrelated method. When ρ becomes larger, the support points

of simulated annealing have larger separation from the uncorrelated method support points.

Table 3.8 is circulant correlation structure with various ρ and n.

Table 3.8: Circulant correlation structure with various ρ and n

@
@

@
@@

ρ

n
6 7 8 9 10 11 12

0.1 268.9 1077.5 2523.2 4417.6 6738.3 16975.0 17413.0

0.2 340.6 1261.1 3666.9 7672.5 16211.0 21788.0 47836.0

0.3 479.6 1958.1 5540.0 16406.0 31880.0 6.89220 109250.0

0.4 1038.6 4046.7 13514.0 68277.0 133670.0 268800.0 516290.0
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Chapter 4

Construction of Weak Universal Optimal Block Design

Balanced block designs and in particular balanced incomplete block designs (BIBDs)

have been in widespread use in agricultural, ecological, pharmaceutical, and industrial re-

search for many years. This is - in part - a consequence of the need for efficient estimation

of treatment effects in settings where blocking of experimental units is expected to be useful

for improved precision but physical constraints on the available experimental units dictates

block sizes less than the number of treatments (incomplete blocks). The “balance” achieved

in these designs is reflected in the fact that treatment effects are still estimated with equal

precision (equal variance) after adjustment for block effects. Typically, treatments are as-

signed “at random” to units within each block, as the order of observations does not impact

the variance of treatment effects. However, this “balance” characteristic is only true for

BIBDs with uncorrelated observations. With correlated observations within each block, the

order of the observations matters and this order impacts variance and hence any notion of

“balance”. Thus, there is need of research into construction of these useful designs when

any one of a number of different correlation structures might exist within each block of

units.

[1] is one providing a foundation in the research about the construction of weak uni-

versal optimal block designs in the presence of correlations. However, some shortcomings

of Zhu’s results are:

1. Other correlation structures and block sizes might be more applicable. Zhu’s re-

search is limited to the construction of weak universal optimal block designs for a circulant

correlation matrix with block size k=3. This is the simplest case because for a circulant

correlation matrix with k=3, the requirement that the correlation between treatments in

each block be the same is automatically satised (i.e., the correlation structure is also known
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as “complete symmetric”).

Additionally, since Zhu’s method is based on a specific property of Steiner triple sys-

tems, this construction approach does not generalize to other correlation structures and

block sizes.

2. For circulant correlation matrix, from (2.15) (see chaper 2) Zhu obtained that

W = R − 1
k (1 + 2ρ)Jk. However, this holds only for the circulant structure. For other

kinds of correlation matrix, the matrix structure of formula (2.12) is more complex, and

covariance matrix for the adjusted treatment means (cov(Q)) depends on the order (or

arrangement) of the treatments in each block.

To solve these problems, in this section, we introduce an efficient way to construct

weak universal optimal block designs with various correlation structures and block sizes.

First, I get lemma 1:

Lemma1: For any BIBD, the condition (ii) of weak universal optimal design (A-

optimality criterion) is satisfied.

Proof: Based on (16), we have cov(Qi, Qi) = k2
∑

i∈Bj
w`` if i is on the `th position of

the jth block. So

trace(cov(Q)) =
∑
i=1...v

k2
∑
i∈Bj

w`` (4.1)

Notice that the element w`` on the diagonal of W correspond to the position ` of each

block. That is, once the position ` (no matter in which block) is occupied by an element

(no matter which one), w`` is added in the formula (4.1) once. Since there are b blocks,

each position ` is occupied b times. That is, each element w`` is added in (4.1) exactly b

times, no matter how do we arrange the treatments. So finally we have trace(cov(Q)) =

bk2
∑

`=1...k w``.

It means under the A optimality criterion, all of the BIBDs with the same parameters

are equally good. So the condition (ii) for weak universal optimal is satisfied since the trace

of any design based on BIBD attains the minimum.

Since all of our constructions are based on BIBD, based on lemma 1, we only have to

prove our designs satisfy condition (i) in the proofs below. The main idea is to construct
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a block group based on each block of the original BIBDs. We split each W to three parts:

one part is a constant times J, another part is R, yet another part is an irregular matrix.

Our construction will make Nii′ equals a constant for any i and i′, and find a tricky way to

make T satisfy the condition (i).

Here Nii′ is the number of times that treatment i and i′ are in the same block and are

correlated. In the proof, we show cov(Qi, Qi′) is a constant for either i = i′ or i 6= i′.

Since the parameter λ and r of the BIBDs will be changed after our design, in this

paper, we always denote the parameter before our design as λ′ and r′, and the parameter

after our design as λ and r.

4.1 Weak universal optimal block design for nearest neighbor correlation with

block size 3 to 6

Design 2.1: Weak universal optimal block design for nearest neighbor correlation with

block size 3 to 6

For block size k=3, construct a (v, 3, λ′)-BIBD by the method in [8]. In each block B,

denote the 3 treatments in the block in order as (1,2, 3). Then we generate another 2 blocks

based on the original one: B2 = (1; 3; 2);B3 = (2; 1; 3). The result is a (v, 3, 3λ′)-BIBD

design.

For k=4, construct a (v, 4, λ′)-BIBD by the process in [15]. Then in each block B,

denote the 4 treatments in the block in order as (1,2, 3,4). Then we generate another

block based on the original one in this order: block B′ = (2, 4, 1, 3). The result is a (v, 4,

2λ′)-BIBD design.

For k=5, based on a (v, 5, λ′)-BIBD constructed in [14], for each block B, denote

the 5 treatments in the block in order as (1,2,3,4,5). Then we generate another 4 blocks

based on the original one in this order: block B2 = (1, 4, 2, 5, 3), B3 = (3, 1, 5, 2, 4), B4 =

(2, 1, 4, 3, 5), B5 = (4, 5, 1, 3, 2). This result is a (v, 5,5λ′)-BIBD design.

For k=6, based on a (v, 6, λ′)-BIBD constructed in [14], for each block B, note the 6

treatments in the block in order as (1,2,3,4,5,6). Then we generate another 2 blocks based

on the original one in this order: block B2 = (2, 4, 6, 1, 3, 5), B3 = (3, 6, 2, 5, 1, 4). This result
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is a (v, 6, 3λ′)-BIBD design.

For each block size, we call the original block and blocks constructed based on it as a

“block group.”

Theorem 2.1: Design 2.1 is a weak universal optimal block design for all of the BIBDs

with the same k and r value. Proof: Expanding formula (2.15), we obtain:

W = (R− 1

k
(RJ + JR) +

1

k2
JRJ) = R− 2 + 2ρ

k
J +

k + 2(k − 1)ρ

k2
J − 1

k
T

= R− k + 2ρ

k2
J − 1

k
T

(4.2)

Here T is a k× k matrix of the form: a (k− 2)× (k− 2) matrix=2ρJ in the middle, 0

on the four corners, and (k-2) repetitions of ρ on each of the the four sides (except the four

corners). That is,

T =



0 ρ ... ρ 0

ρ 2ρ ... 2ρ ρ

. . . . .

. . . . .

. . . . .

ρ 2ρ ... 2ρ ρ

0 ρ ... 2ρ 0



(4.3)

Let the middle term in (4.2) be W ′, so W = R+W ′− 1
kT . Next we analyze each part,

W ′ and T, of W.

From (16), we have

cov(Qi, Qi′) = k2
∑
i,i′∈Bj

w′h(i,j)h(i′,j) + k2
∑
i,i′∈Bj

rh(i,j)h(i′,j) − k
∑
i,i′∈Bj

th(i,j)h(i′,j) (4.4)

Here w′ is an element in matrix W ′, t is the element in matrix T, Bj is block j, and

h(i,j)=`(` = 1, 2 . . . k) if i is on the `th position of the jth block. The first part of the value

of cov(Qi, Qi′) , which is based on W ′, is only a function of λ, and does not depend on the
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arrangement of the treatments in blocks. Here Nii′ is the number of times that treatment

i and i′ are in the same block and are correlated.

In contrast, the second part of the value of cov(Qi, Qi′) , which is based on R and T,

is related to the arrangement of the treatments in blocks. Thus the second part which is

based on R and T needs specific attention.

The key step of the proof is to show that under our construction,
∑

i,i′∈Bj
rh(i,j)h(i′,j)

and
∑

i,i′∈Bj
th(i,j)h(i′,j) are constants and independent of the arrangement of treatments

in each block. We will show in both cases
∑

i,i′∈Bj
rh(i,j)h(i′,j) and

∑
i,i′∈Bj

th(i,j)h(i′,j) are

constants and independent of the arrangement of treatments in each block.

Computing cov(Qi, Qi′):

Case 1: k is even: Suppose k=2n.

Suppose the replication of each treatment for the original BIBD is r′, then the repli-

cation of each treatment for our construction is r = kr′/2. From the construction of the

block, we can see Nii′ = λ′ (so
∑

i,i′∈Bj
rh(i,j)h(i′,j) is a constant), λ = λ′k/2.

(i) i = i′. From our construction, each treatment appears in the head or tail of T

once (under this condition th(i,j)h(i′,j) = 0), and appears in the middle of T (k/2-1) times

(under this condition th(i,j)h(i′,j) = 2ρ). So from the structure of the matrix T, for each

block group,
∑

i,i′∈Bj
th(i,j)h(i′,j) = 2(n − 1)ρ = (k − 2)ρ. Since each treatment is included

in r′ block groups, totally
∑

i,i′∈Bj
th(i,j)h(i′,j) = (k − 2)r′ρ = k−2

k rρ.

Thus, from (2.12) and (2.16), and since each treatment appears in exactly r blocks,

and cov(Q) is a v × v matrix, we have

cov(Qi, Qi) = k2[r(1− k + 2ρ

k2
)]− k × k − 2

k
rρ] = r(k2 − k − kρ) (4.5)

That is, all of the elements on the main diagonal of cov(Q) are of the same value.

(ii) i 6= i′. If the sum of the position order number of a pair of treatments is 2k+1(

like they are on position k and k+1, k-1 and k+2), we say they are symmetric to the

middle. If a pair of treatments are symmetric to the middle, then they will appear in the

middle of T (n-1) times (under this condition th(i,j)h(i′,j) = 2ρ), and appear in the corner
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of T once (under this condition th(i,j)h(i′,j) = 0); if a pair of treatments are not symmetric

to the middle, then they will appear on the side but not corner of T twice (under this

condition th(i,j)h(i′,j) = ρ),, and appear in the middle of T (n-2) times (under this condition

th(i,j)h(i′,j) = 2ρ),. So from the structure of the matrix T, we can see for each block group,∑
i,i′∈Bj

th(i,j)h(i′,j) = 2(n− 1)ρ = (k − 2)ρ. Then

cov(Qi, Q
′
i) = λ′[k2 × ρ− k2 × k

2
× k + 2ρ

k2
− k × (k − 2)ρ] = λ′(kρ− k2/2) (4.6)

is a constant (since k and ρ are constants) for i 6= i′. That is, all of the elements that

are not on the main diagonal of cov(Q) are of the same value.

Combining (4.5) and (4.6), condition (i) for weak universal optimality is satisfied.

Case2: k is odd. Suppose the replicates of each treatment for the original BIBD is

r′, then the replication of each treatment for our construction is kr′. We denote it as r=

kr′ . From the construction of the block, we can see Nii′ = 2λ′ (so
∑

i,i′∈Bj
rh(i,j)h(i′,j) is a

constant), λ = kλ′.

(i) i = i′. From our construction, each treatment appears in the head or tail of T twice

(under this condition th(i,j)h(i′,j) = 0), and appears in the middle of T (k-2) times (under

this condition th(i,j)h(i′,j) = 2ρ). So from the structure of the matrix T, we can see for each

block group,
∑

i,i′∈Bj
th(i,j)h(i′,j) = 2(k − 2)ρ. Since each treatment is included in r′ block

groups, totally
∑

i,i′∈Bj
th(i,j)h(i′,j) = 2(k − 2)r′ρ = 2k−4

k rρ.

So from (2.12) and (2.16), and notice each treatment appears in exactly r blocks, and

cov(Q) is a v × v matrix, we have

cov(Qi, Qi) = k2[r(1− k + 2ρ

k2
)− 2k − 4

k2
rρ] = r[k2 − k − 2(k − 1)ρ)] (4.7)

That is, all of the elements on the main diagonal of cov(Q) are of the same value.
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By the same argumentation as k is even, under the A optimality criterion, all of the

BIBDs with the same parameter r and k are equally good. So condition (ii) for weak

universal optimal is satisfied since the trace of our design attains this same minimum.

(ii) i 6= i′. From our construction each pair of treatments will appear in the middle

of T (k-3) times (under this condition th(i,j)h(i′,j) = 2ρ), in the corner of T once (under

this condition th(i,j)h(i′,j) = 0), and on the side but not corner of T twice (under this

condition th(i,j)h(i′,j) = ρ). So from the structure of the matrix T, we can see for each block,∑
i,i′∈Bj

th(i,j)h(i′,j) = 2(k − 2)ρ.

cov(Qi, Q
′
i) = λ′[k2 × 2ρ− k2 × k × k + 2ρ

k2
− k × 2(k − 2)ρ] = λ′(−k2 + 2kρ) (4.8)

is a constant(since k and ρ are constants) for i 6= i′. That is, all of the elements that are

not on the main diagonal of cov(Q) are of the same value.

Combining (4.7) and (4.8), condition (i) for weak universal optimality is satisfied. The

proof is completed.

For example, for k=4, v=5, based on the BIBD in formula (10) our design will generate

one block based on each original block in this way: (2,4,1,3), (3,5,2,4), (4,1,3,5), (5,2,4,1),

(1,3,5,2).

If we take ρ = 0.4, by formula

W = (R− 1

k
(RJ + JR) +

1

k2
JRJ) = R− 2 + 2ρ

k
J +

k + 2(k − 1)ρ

k2
J − 1

k
T

= R− k + 2ρ

k2
J − 1

k
T

(4.9)

We get

W = (R− 1

4
(RJ + JR) +

1

16
JRJ) = R− 1 + ρ

2
J +

4 + 6ρ

16
J − 1

4
T (4.10)
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Here

T =



0 0.4 0.4 0

0.4 0.8 0.8 0.4

0.4 0.8 0.8 0.4

0 0.4 0.4 0


(4.11)

By the computation in MATLAB, we get

W =



0.7 0 −0.4 −0.3

0 0.5 −0.1 −0.4

−0.4 −0.1 0.5 0

−0.3 −0.4 0 0.7


(4.12)

cov(Q) =



83.2 −19.2 −19.2 −19.2 −19.2

−19.2 83.2 −19.2 −19.2 −19.2

−19.2 −19.2 83.2 −19.2 −19.2

−19.2 −19.2 −19.2 83.2 −19.2

−19.2 −19.2 −19.2 −19.2 83.2


(4.13)

4.2 Weak universal optimal block design for hub correlation for any block size

Hub correlation is presented in [1]. The correlation structure is a k × k matrix:

R =



1 ρ ρ ρ ... ρ

ρ 1 0 0 ... 0

ρ 0 1 0 ... 0

. . . .

. . . .

. . . .

ρ 0 0 0 ... 1


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For a (v,k, λ′)-BIBD, we can always construct a weak universal optimal block design

with λ = kλ′. The basic idea is expanding each block to a block group with k blocks.

Design 3.1: Based on a (v,k, λ′)-BIBD constructed by [14], in each block, denote the

k treatments in the block in the order (1,2 . . . k), then we construct k-1 blocks based on the

original one, in the ith (i=2 . . . k) block, the element i is on the top, and other elements

can be in any order. We refer to these k blocks as a “block group.”

Theorem 3.1: Design 3.1 is a weak universal optimal block design for BIBD’s with

the same parameters.

Proof: Suppose the replication of each treatment for the original BIBD is r′, then the

replication of each treatment for our construction is r = kr′. We denote it as r. Clearly r is

multiple of k. From the construction of the block group, we can see that Nii′ = 2λ′, λ = kλ′.

Expanding formula (15), we obtain

W = (R− 1

k
(RJ + JR) +

1

k2
JRJ) = R− 2 + 2ρ

k
J +

k + 2(k − 1)ρ

k2
J − 1

k
T

= R− k + 2ρ

k2
J − 1

k
T

(4.14)

T =



(2k − 4)ρ (k − 2)ρ (k − 2)ρ (k − 2)ρ ... (k − 2)ρ

(k − 2)ρ 0 0 0 ... 0

. . . .

. . . .

. . . .

(k − 2)ρ 0 0 0 ... 0


Let the middle term be W ′, so W = R+W ′ − 1

kT . Next we analyze each part, R, W ′

and T, of W. From (2.7), we have

cov(Qi, Qi′) = k2
∑
i,i′∈Bj

w′h(i,j)h(i′,j) + k2
∑
i,i′∈Bj

rh(i,j)h(i′,j) − k
∑
i,i′∈Bj

th(i,j)h(i′,j) (4.15)

Here w′ is an element in matrix W ′, r is the element in matrix R, t is the element
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in matrix T, Bj is block j, and h(i,j)=ell (l=1,2 . . . k) if i is on the `th position of the jth

block. The first part of the value of cov(Qi, Qi′) , which is based on W ′, is only a function

of λ, and does not depend on the arrangement of the treatments in blocks. In contrast,

the second part of the value of cov(Qi, Qi′) , which is based on R and T, is related to

the arrangement of the treatments in blocks. Thus the second part which is based on R

and T needs specific attention. So the key step of the proof is to show that under our

construction,
∑

i,i′∈Bj
rh(i,j)h(i′,j) and

∑
i,i′∈Bj

th(i,j)h(i′,j) are constants and independent of

the arrangement of treatments in each block.

From (2.16), let’s compute cov(Qi, Qi′).

If i = i′, notice that in our design 3.1, for each treatment, if it appears on the top in

one block, then it appears in other places in the other k-1 blocks of the same block group.

Since each treatment is included in r′ block groups, in total

∑
i,i′∈Bj

th(i,j)h(i′,j) = λ′[(2k − 4)r′ρ] = λ′
2k − 4

k
rρ (4.16)

for i=1. . . v.

So from (2.12) and (2.16), and notice each treatment appears in exactly r blocks, and

cov(Q) is a v × v matrix, we have

cov(Qi, Qi) = k2[r(1− k + 2ρ

k2
)− 2k − 4

k2
rρ] = r[k2 − k − 2(k − 1)ρ)] (4.17)

That is, all of the elements on the main diagonal of cov(Q) are of the same value.

Next step is computing cov(Qi, Qi′) for the case i 6= i′.

Notice that in our design 3.1, for each group of k blocks, each treatment appears on

the top once, so Nii′ = 2. Thus in each block group,
∑
th(i,j)h(i,j) is composed of k elements,

(k − 2)ρ appearing twice and 0 appearing (k-2) times. That is,
∑
th(i,j)h(i′,j) = 2(k − 2)ρ.

So we have

cov(Qi, Qi′) = λ′[k2 × 2ρ− k2 × k × k + 2ρ

k2
− k × 2(k − 2)ρ] = λ′(−k2 + 2kρ) (4.18)
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is a constant(since k and ρ are constants) for i 6= i′. That is, all of the treatments that are

not on the main diagonal of cov(Q) are of the same value.

Combining (4.17) and (4.18), condition (i) for weak universal optimality is satisfied.

The proof is completed.

We confirm our formulas in the proof of theorem 3.1 with block size=4. From those

formula,we get trace(cov(Q)) = (48−24ρ)b and cov(Qi, Q
′
i) = 32ρ−32(1 +ρ) + 4(4 + 6ρ)−

4× 4ρ = −16 + 8ρ.

These results coincide with those from Matlab.

Based on the BIBD in formula (10) with k=4 and v=5, our design will generate 3 blocks

based on each original block in this way: (2,4,1,3), (3,1,2,4), (4,1,2,3); (3,5,2,4), (5,3,2,4),

(4,5,3,2); (4,1,3,5), (1,5,3,4), (5,4,3,1); (5,2,4,1), (1,2,4,5), (2,1,4,5); (1,3,5,2). (3,2,1,5),

(2,3,1,5).

By the computation in MATLAB, we get

W =



0.3 −.0.1 −0.1 −0.1

−0.1 0.7 −0.3 −0.3

−0.1 −0.3 0.7 −0.3

−0.1 −0.3 −0.3 0.7


(4.19)

cov(Q) =



38.4 −38.4 −38.4 −38.4 −38.4

−38.4 38.4 −38.4 −38.4 −38.4

−38.4 −38.4 38.4 −38.4 −38.4

−38.4 −38.4 −38.4 38.4 −38.4

−38.4 −38.4 −38.4 −38.4 38.4


(4.20)

4.3 Weak universal optimal block design for circulant correlation with odd

block size

Circulant correlation is introduced in [1]. The correlation matrix is of the form:



36

R =



1 ρ 0 0 ... ρ

ρ 1 ρ 0 ... 0

0 ρ 1 ρ ... 0

. . . .

. . . .

. . . .

ρ 0 0 0 ... 1


Design 4.1 Weak universal optimal block design for circulant correlation with odd block

size:

Based on a (v,k, λ′)-BIBD constructed in [14] with odd block size k (suppose k=2n-1)

in each block, denote the k treatments in the block in the order (1,2 . . . 2n-1), then we

construct k−1
2 − 1 additional blocks, each block constructed based on the previous block.

In the ith block, take the (n-1) treatments in the even positions ( positions 2,4,6 . . . 2n-2)

of the (i-1)th block and put them in order to the first n-1 positions, and put the remaining

n treatments in the same order to the remaining positions.

For example, for k=5, based on a (v,5,λ′)-BIBD, for each block B, denote the 5 treat-

ments in the block in order as (1,2,3,4,5). Then we generate another one block based on the

original one in this order: block B2 = (2, 4, 1, 3, 5), This result is a (v, 5,2λ′)-BIBD design.

For k=7, based on a (v,5,λ′)-BIBD, for each block B, denote the 7 treatments in the block

in order as (1,2,3,4,5,6,7). Then we generate another 2 blocks based on the original one in

this order: block B2 = (2, 4, 6, 1, 3, 5, 7), , B3 = (4, 1, 5, 2, 6, 3, 7),This result is a (v, 7,3λ′)-

BIBD design.

Theorem 4.1: Design 4.1 is a weak universal optimal block designfor all of the BIBDs

with the same r value.

Proof: Suppose the replication of each treatments for the original BIBD is r′, then the

replication of each treatments for our construction is (k−1)r′

2 . We denote it as r. From the

construction of the block, we can see λ = k−1
2 λ′, .
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Expanding formula (2.15), we obtain:

W = (R− 1

k
(RJ + JR) +

1

k2
JRJ) = R− 2 + 4ρ

k
J +

k + 2kρ

k2
J = R− 1 + 2ρ

k
J (4.21)

Let the last terms be W ′, so W = R−W ′ From (16), we have

cov(Qi, Qi′) = k2
∑
i,i′∈Bj

rh(i,j)h(i′,j) − k2
∑
i,i′∈Bj

w′h(i,j)h(i′,j) (4.22)

Here w′ is an treatment in matrix W ′, r is the treatment in matrix R, Bj is block j,

and h(i,j)=l(l=1,2 . . . k) if i is on the lth position of the jth block.

The second part of the value of cov(Qi, Qi′) , which is based on W ′, is only a function

of λ, and does not depend on the arrangement of the treatments in blocks. In contrast, the

first part of the value of cov(Qi, Qi′) , which is based on R is related to the arrangement of

the treatments in blocks.

Our purpose is to show that under our construction,
∑

i,i′∈Bj
rh(i,j)h(i′,j) are constants,

that is, Nii′ is a constant for any i and i′. Here Nii′ is the number of times that treatment

i and i′ are in the same block and are correlated.

We will begin our proof with treatment n. Since all of the treatments are cyclic

symmetric, the analysis of n can be applied to any other treatment.

Let’s consider the circulant distance of n and other treatments. In the original block,

the distance between treatment n and n-1 and the distance between treatment n and n+1

is 1, the distance between treatment n and n-2 and the distance between treatment n and

n+2 is 2, . . . the distance between treatment n and 1 and the distance between treatment

n and 2n-1 is n-1.
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After the construction, the distance between treatment n and n-1 and the distance

between treatment n and n+1 is (n-1) ( that is, the farthest distance), the distance between

treatment n and n-2 and the distance between treatment n and n+2 is 1, . . . the distance

between treatment n and 1 and the distance between treatment n and 2n-1 is n-2. That

is, except n+1 and n-1, the distance between n and any other treatments gets closer by 1

unit. Since we repeat this process k−1
2 − 1 = n − 2 times, this construction can guarantee

n and other treatments will be neighbor circularly exactly once. So Nii′ = 1 under our

construction.

Computing cov(Qi, Qi) : (i) i = i′.

From (2.12) and (2.16), and since each treatment appears in exactly r blocks, and

cov(Q) is a v × v matrix, we have

cov(Qi, Qi) = k2r − k2 × r × 1 + 2ρ

k
= r(k2 − k − 2kρ) (4.23)

That is, all of the values on the main diagonal of cov(Q) are of the same value.

(ii) i 6= i′.

cov(Qi, Q
′
i) = λ′(k2 × ρ− k2 × k − 1

2
× 1 + 2ρ

k
) = λ′(kρ+

k − k2

2
) (4.24)

is a constant(since k and ρ are constants) for i 6= i′. That is, all of the treatments that

are not on the main diagonal of cov(Q) are of the same value.

Combining (4.23) and (4.24), condition (i) for weak universal optimal is satisfied.

For example, if we take k=5, v=6, then we can take r=5, b=6 and λ = 4. The BIBD

can be constructed in this way: (1,2,3,4,5), (2,3,4,5,6), (3,4,5,6,1), (4,5,6,1,2), (5,6,1,2,3),

(6,1,2,3,4).

Then for circulant correlation, our design will generate one block based on each original

block in this way: (2,4,1,3,5), (3,5,2,4,6), (4,6,3,5,1), (5,1,4,6,2), (6,2,5,1,3), (1,3,6,2,4).
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By the computation in MATLAB, we get

W =



0.6625 0.0625 −0.3375 −0.3375 0.0625

0.0625 0.6625 0.0625 −0.3375 −0.3375

−0.3375 0.0625 0.6625 0.0625 −0.3375

−0.3375 −0.3375 0.0625 0.6625 0.0625

0.0625 −0.3375 −0.3375 0.0625 0.6625


(4.25)

cov(Q) =



80 −32 −32 −32 −32 −32

−32 80 −32 −32 −32 −32

−32 −32 80 −32 −32 −32

−32 −32 −32 80 −32 −32

−32 −32 −32 −32 80 −32

−32 −32 −32 −32 −32 80


(4.26)

4.4 Weak universal optimal block design for block-structured correlation

Theorem 5.1 For any kind of block-structured correlation, any BIBD is a weak universal

optimal block design.

Proof: For the blocks not on the diagonal, we have

W = (Ik −
1

k
Jk)ρijJk(Ik −

1

k
Jk) = 0 (4.27)

For the blocks on the diagonal, we have

W = (Ik −
1

k
Jk)R(Ik −

1

k
Jk) = R− 1

k
(1 + (k − 1)ρ)Jk (4.28)



40

So from (2.12), we have cov(Qi, Qi) = r(1− 1+(k−1)ρ
k ).

For cov(Qi, Qi′) for the case i 6= i′, we have

cov(Qi, Q
′
i) = λk2ρ− λk[1 + (k − 1)ρ] (4.29)

is a constant for i 6= i′.

So the condition (i) for weak universal optimal is satisfied.

In fact, if we change the matrix R to the other correlation structures considered, we

can see our designs in section 2 also work for this block-structured correlation, since the

matrix that is not on the main diagonal contributes nothing to cov(Q).
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Chapter 5

Combinatorial Particle Swarm Optimization for

Experimental Design

5.1 Motivation

An immediate limitation of the methods of Chapters 3 and 4 is that the models are

linear - that is, linear in the parameters. When models are nonlinear in the parameters,

and the design objective function remains maximization of the (Fisher) information matrix,

the problem becomes theoretically intractable because the information matrix is - itself - a

function of the unknown parameters. Traditionally, non-linear optimal design methods have

been sequential ([10]) in nature, using current results from partial experiments to improve

the selection of the next design point. This has practical limitations. A second limitation

of the methods of Chapters 3 and 4 is that the designs are exact -they have integer weights

on selected design points/treatments. If the design size changes, both the support points

and the weights of those points would change.

Given these two limitations, our third research objective was to develop an algorithm

that could overcome both the linear model and the integer weight limitations and produce

reasonable if not optimal designs, still with the objective of maximizing the (Fisher) infor-

mation of some function of this information matrix. To this end, we implemented modified

and nested Particle Swarm Optimization (PSO) algorithms with multiple decision making

criteria to determine the gain in efficiency that might be achieved. Examples of potential

improvements are presented using two types of non-linear models: the Michaelis-Menton

model andte 2-parameter logistic regression model.

Application of the basic Particle Swarm Optimization algorithm to maximization and

minimization problems and a nested PSO algorithm for the pessimistic criterion are pre-
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sented by [28]. Chen’s paper is a milestone in the research of applying particle swarm opti-

mization to experimental design. The combination of decision making and particle swarm

optimization in engineering has been studied in several previous papers, see for example

[29] and [30].

However, the combination of PSO algorithm and other decision making criteria, in-

cluding the index of optimism criterion and minimax regret criterion, are seldom considered

in previous research.

In this research section, we propose an improved algorithm by combining the PSO

algorithm and various decision making criteria, and use time varying parameters proposed

by [31], [32], and [33] to find efficient designs for non-linear models and to compare the

results of the PSO methodology to that of the simulated annealing algorithm to determine

which method might provide the better results even when the models are linear.

5.2 Main improvement of our algorithm

(i) [32] introduced the time varying formula for c1 and c2:

c1 = (cupper − clow)× maxiter − iter
maxiter

+ clow (5.1)

c2 = (cupper − clow)× iter

maxiter
+ clow (5.2)

Here iter is the current number of iteration and maxiter is the maximum number of itera-

tions. cupper and clow are the upper and lower bounds of the learning factors, respectively.

In this algorithm, following the result of [32], we take cupper = 2, clow = 0.75.

Consequently, as the PSO algorithm proceeds, the cognitive learning factor is linearly

decreased and the social learning factor is linearly increased.

(ii) [33] proposed the time varying formula for ω:

ω = (ω1 − ω2)× maxiter − iter
maxiter

+ ω2 (5.3)
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ω1 and ω1 are the upper and lower bounds of ω, respectively. In our algorithm, following

the result of [33], we usually set ω1 = 0.9, ω2 = 0.4.

We use improvements (i) and (ii) because this approach is in accordance with the idea

of particle swarm optimization: at the beginning, each bird has a large cognitive learning

factor and small social learning factor, and each bird searches mainly by its own experience.

After a period of time, as each bird gets more and more knowledge from the bird population,

it relies increasingly on the social knowledge for its search. In addition, the effect of inertia

velocity will decrease over time since the particles get more and more information from

cognitive learning and social learning in the process of searching, so they rely increasingly

on their learning instead of the inertia.

After applying these improvement, we get the improved pso algorithms:

5.3 Basic algorithm for minimization/ maximization problem

Initialization process

1.1. For each of the n particles, initialize particle position xi and velocity vi with random

values.

1.2. Evaluate the fitness value of each particle according to the objective function.

update process:

2.1. Update the velocity of particles by formula (2.17). Here vi are limited to an interval

[vmin, vmax]. If any value of vi is out of the bounds, then we will take the corresponding

upper bound or lower bound.

2.2. Based on the velocity, update the position of particles by formula (2.18)

2.3. update the fitness value, then update pbest and gbest based on that.

If the stopping criteria is satisfied, output the pbest and gbest.

If not, update c1, c2 and ω by formula (5.1), (5.2) and (5.3), and repeat the update process

2.1.

Clearly, this basic algorithm can be used to solve either minimization or maximization

problem. For minimization problem, the update process of pbest and gbest in 2.3 is: for

each particle, if the updated fitness value < the fitness value of current pbest, then pbest
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is updated to the new solution; otherwise, pbest remains unchanged. gbest is the particle

pbest for the particle that achieves the minimum of the pbest fitness values over the whole

population of particles.

For maximization problem, the update process of pbest and gbest in 2.3 is: for each

particle,if the updated fitness value > the fitness value of current pbest, then pbest is

updated to the new solution; otherwise, pbest keeps unchanged. gbest is the particle which

take maximum of the fitness value of pbest.

This algorithm is an efficient way to obtain D-optimal design for linear regression,

especially when the observations are correlated. The model for linear regression can be

written as in [7]

yi = fi(x)′β + εi (5.4)

where i=1. . . n, β is a k vector of parameters, and fi(x) = (f1i(x), f2i(x), . . . fki(x)) is

a k vector of polynomial functions of x, and n is the number of observations. The design

matrix is: X = (xij)n×d, and D-optimality aims to maximize of the determinant of the

information matrix, where the information matrix for these models is:

I = X ′V −1X (5.5)

V = cov(Y ) = σ2(ρij)n×n (5.6)

is the variance covariance matrix of the errors. In the linear regression, the swarm is the

design matrix.

5.4 Nested PSO algorithms and their application

For regression with Fisher information matrix involving unknown parameters, we need

two “swarms” of particles (one is ξ, another is θ), and solve it by using a nested PSO

algorithm. These two swarms of particles are used in different layers of iterations. In each

layer, the fitness value is determined by one of the two swarms of particles. For convenience,
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we note the two swarms corresponding to ξ and θ as swarm 1 and swarm 2, the position as

xi and yi, and the velocity as xvi yvi, respectively.

5.4.1 pso algorithm for pessimistic(minimax) criterion

define factions(θ, ξ) = maxθ∈Θ(log|I−1(θ, ξ)|)). Then this optimization problem is

to find minξfactions(θ, ξ). Clearly factions(θ, ξ) is based on the particle swarm θ, and

minξfactions(θ, ξ) is based on the particle swarm ξ.

Initialization process

1.1. For each of the n particles in each of the two swarms ξ, and θ, initialize particle position

xi, yi and velocity xvi, yvi with random vectors.

1.2. evaluate the fitness value factions(x) of each particle according to the objective function

by basic algorithm . Then compute the local and global best position based on that.

update process:

2.1. update velocity xvi of particles in swarm 1 by formula (2.17). Here xvi are limited

into an interval [vmin, vmax]. If any value of vi is out of the bound, then we will take

corresponding upper bound or lower bound.

2.2. based on the velocity, update the position of particles in swarm 1 by formula (2.18)

2.3. based on the new position, update the fitness value factions(x) by basic algorithm.

Then update pbest and gbest based on that.

If the stopping criteria is satisfied, output the gbest and related fitness value. If not,

update c1, c2 and ω by formula (5.1), (5.2) and (5.3), and repeat the update process.

From the algorithm, we can see the process of evaluating factions(x) is the inner circu-

lation, the process of evaluating minξfactions(θ, ξ) is the outer circulation.

5.4.2 pso algorithm for index of optimism criterion

define factions(θ, ξ) = (1−α)maxθ∈Θlog|I−1(θ, ξ)|+αminθ∈Θlog|I−1(θ, ξ)|. Our object

is to find minξfactions(θ, ξ).

Initialization process:

1.1. For each of the n particles in each of the 2 swarms ξ, and θ, initialize particle position
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xi, yi and velocity xvi, yvi with random vectors.

1.2. evaluate the fitness value maxθ∈Θlog|I−1(θ, ξ)| and minθ∈Θlog|I−1(θ, ξ)| by basic al-

gorithm. Then initialize the factions(x) and local and global best position.

The update process is similar to pso algorithm for pessimistic(minimax) criterion.

The only difference is in the update process, we will compute both maxθ∈Θlog|I−1(θ, ξ)|

and minθ∈Θlog|I−1(θ, ξ)| by basic PSO algorithm and take the weighted average of them

as the fitness value.

5.4.3 pso algorithm for minimax regret criterion

define RV (θ, ξ) = log|I−1(θ, ξ)| −minξlog|I−1(θ, ξ)|. Then this optimization problem

is to find minξmaxθ∈ΘRV (θ, ξ). So this is a 3-fold nested algorithm.

Initialization process:

1.1. For each of the n particles in each of the 2 swarms ξ, and θ, initialize particle position

xi, yi and velocity xvi, yvi with random vectors.

1.2. compute the fitness value minξlog|I−1(θ, ξ)| by basic algorithm. Based on that, com-

pute RV (θ, ξ). Then initialize the local and global best position based on that.

update process:

2.1. update velocity yvi of particles in swarm 2 by formula (2.17)

2.2. based on the velocity, update the position of particles in swarm 2 by formula (2.18)

2.3 update the fitness value maxθ∈ΘRV (θ, ξ)) by basic algorithm.

2.4. update velocity xvi of particles in swarm 1 by formula (2.17)

2.5. based on the velocity, update the position of particles by in swarm 1 formula (2.18)

2.6. update the fitness value( the loss function) minξmaxθ∈ΘRV (θ, ξ) by basic algorithm.

Then update pbest and gbest based on that.

If the stopping criteria is satisfied, output the gbest and related fitness value. If not,

update c1, c2 and ω by formula (5.1), (5.2), and (5.3), and repeat the update process.

5.5 Result and comparison

From table 5.1 and 5.2, we see that when ρ=0.1, the determinants obtained by
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simulated annealing is a little higher than the result of PSO method. However, when

ρ=0.4, the determinants from the PSO algorithm are much higher than the results of the

simulated annealing.

Table 5.1: Basic PSO for linear regression with circulant correlation structure

n ρ Annealing Determinant PSO Determinant

6 0.1 37.5 33.9

6 0.4 100 114.3

Table 5.2: Basic PSO for linear regression with nearest neighbor correlation structure

n ρ Annealing Determinant PSO Determinant

6 0.1 37.2 33.5

6 0.4 74.9 84.3

From tables 5.3 and 5.4, we see the gbest of index of optimism criterion is better than that

of the pessimistic criterion and minimax regret criterion, and gbest is inversely proportional

to α. That is because the pessimistic criterion always consider the worst case, but index of

optimism criterion takes a trade off between optimistic case and pessimistic case. When α

increase, the extent of optimistic get larger, so the loss function get smaller( and therefore

better).
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Table 5.3: Different criterion with Michaelis-Menten model

criterion gbest support point 1 and weight support point 2 and weight

Pessimistic 8.9996 50.1889 0.5007 200 0.4993

Index of optimism

with α=0.7
5.6371 28.9594 0.5140 200 0.4860

Index of optimism

with α=0.5
6.1237 91.5995 0.2158 200 0.7842

Index of optimism

with α=0.3
7.5770 118.1915 0.1648 200 0.8352

Minimax regret 7.7660 39.5151 0.5648 200 0.4352

Table 5.4: Different criterion with two parameter logistic regression model

criterion gbest support points

Pessimistic 4.1104 -0.3384 1.0064 1.6533 2.6503

Index of optimism

with α=0.7
3.3675 0.0227 0.5731 0.3514 -0.4051

Index of optimism

with α=0.5
3.4405 -0.4583 0.6799 0.0676 2.2800

Index of optimism

with α=0.3
3.6436 2.5594 1.6075 2.2055 -0.2563

Minimax regret 3.3282 0.6467 1.4097 -0.2367 0.5244
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Chapter 6

Discussion

The first part of my dissertation demonstrates that a modified simulated annealing

algorithm can successfully determine highly efficient D-optimal designs for second order

polynomial regression on [−1, 1]2 for a variety of correlated error structures and with the

design size, n, not limited to a multiple of the number of regression parameters. The

combination of (i) a ”middle ground” perturbation scheme, (ii) the use of a parameter

that controls the size of the neighborhood for the perturbations, and (iii) re-heating, leads

to designs that - while not likely globally optimal - are better than those obtained by

searching among the set of designs known to be D-optimal for the uncorrelated errors case.

In particular, when the true correlation parameter is well away from 0, the final SA design

has much greater relative efficiency than the ”best uncorrelated” comparison design.

The SA algorithm needs only a well-defined energy function to maximize, here the

determinant of the information matrix. Thus, the same algorithm may be used for other

design optimality criteria, for example, A- and E-optimality. In the absence of exact ana-

lytic optimal designs when errors are correlated, the SA algorithm is an attractive, easily

implemented method to find highly efficient designs. Extensions to higher degree polyno-

mial regression models are immediate, except for the likely need for longer run times and

slower reduction of the temperature to allow for more effective searching over a larger design

region.

Limitations of this approach are apparent. First, the value of the correlation parameter

is specified in our examples as is the correlation structure itself. While the trend in improved

D-efficiency as the correlation moves further from 0 and the n-size increases is generally

apparent, and the final design points depart more from the usual vertices of the design region

used in the optimal uncorrelated case, whether the final SA design will be of practical value
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for the experimenter depends on the correlation parameter, which is usually unknown. If the

true correlation is close to 0, the uncorrelated errors optimal designs are likely satisfactory,

but there is potential for gain when this is not so.

In the second part, I solved weak universal optimal block designs for the nearest neigh-

bor correlation structure and multiple block sizes, for the hub correlation structure with any

block size, and for circulant correlation with odd block size. For circulant correlation with

even block size and nearest neighbor correlation with block size more than 6, the problem

becomes more complicated. How to make a general construction to a weak universal optimal

block design for circulant correlation with even block size and nearest neighbor correlation

with block size more than 6 is still a open question.

In the third part, combining the theorem of decision making and pso, we propose

nested pso algorithms with all of these three criteria applied to the Michaelis-Menten model

and the two parameter logistic regression model and make comparison among the quality

of solutions found from the three criteria. For index of optimism criterion, we set the index

of optimism=0.3 (the decision maker is relatively pessimistic), 0.5 (the decision maker

compromises between the pessimistic and optimistic case) and 0.7 (the decision maker is

relatively optimistic) respectively.

Comparison of PSO and simulated annealing:

Simulated annealing algorithm is an efficient way to solve unweighted optimal design

with 2 way linear regression. Specifically, for matrix with variable in high dimension (in

our section 1 the variable is usually 2 12 ×1 vectors or even more complicated), simulated

annealing is more efficient than other algorithms, like PSO. That is because our improved

simulated annealing algorithm allows us to improve the solution part by part, so we do not

miss any corner of the design region. On the other side, PSO is not very good at solving

problems with complicated matrix.

However, PSO algorithm is a efficient way to solve nonlinear and weighted optimal de-

sign, which can not be solved by simulated annealing. For matrix with variable in relatively

low dimension (like for 1-way polynomial regression, the variable is a 6×1 vector), the PSO
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algorithm usually can get result that is a little better than simulated annealing.
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Appendix A

TYPICAL CODES AND COMMENTS

A.1 A Simulated Annealing Algorithm for D-optimal Design for 2-Way Poly-

nomial Regression with Correlated Observations

% Simulated annealing in matlab

n=12 %determine the number of observations

Z1=unifrnd(-1,1,n,1);

Z2=Z1.^2;

Z3= unifrnd(-1,1,n,1);

Z4=Z3.^2;

Z5=Z1.*Z3

Z=[Z1 Z2 Z3 Z4 Z5]; %initialize the matrix

V=eye(n);

m(1:n-1)=0.1;

V1=diag(m,-1);

V2=diag(m,1);

V=V+V1+V2;

V(n,1)=0.1;

V(1,n)=0.1; %V is the corrlation matrix

X=zeros(n,5,100);

O=ones(n,1);

for j=1:100
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X(:,:,j)=Z;

Xc= X(:,:,1);

end

Xc=[O Xc]; %Xc is the design matrix

Tstart= 50; % Start temperature

Tend= 1; % Stop temperature

r= 0.99;

g=0.3;

k=1.01;

c=0;

T= Tstart;

while T >= Tend % The outer loop

result= ones(1,100);

for i=3: 100 % the inner loop 1

Z=zeros(n,1); %Z is the vector of perturbation

for j=1:4

Z(j)=g*random(’unif’,-1, 1,1,1); % We do perturbation part by part

end

X1= Xc(:,2)+Z;

X2=X1.^2;

Z=zeros(n,1);

for j=1:4

Z(j)=g*random(’unif’,-1, 1,1,1);

end

X3= Xc(:,4)+Z;
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X4=X3.^2;

X5=X1.*X3;

X(:,:,i+1) = [X1 X2 X3 X4 X5];

Xn=[O X(:,:,i+1)]; % Xn is new candidate design matrix

dE=det(Xn’*inv(V)* Xn)-det(Xc’*inv(V)*Xc);

result(i)= (abs(det(Xn’*inv(V)* Xn))<1.02*abs(det(Xc’*inv(V)*Xc)));

if result(i-2)+ result(i-1)+ result(i)==0 %we repeat the iterations until the improvement

is less than the threshold value 3 times.

break

end

Xn(find(Xn>1))=1;

Xn(find(Xn<-1))=-1; % the boundary of Xn is [-1,1].

if dE>0

Xc= Xn;

elseif exp(dE/T ) >1.01^c* random(’unif’,0,1)

%1.01^c is the threshold value.

Xc= Xn;

end

end

result= ones(1,100);

for i=3: 100 % inner loop 2

Z=zeros(n,1);

for j=5:8
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Z(j)=g*random(’unif’,-1, 1,1,1);

end

X1= Xc(:,2)+Z;

X2=X1.^2;

Z=zeros(n,1);

for j=5:8

Z(j)=g*random(’unif’,-1, 1,1,1);

end

X3= Xc(:,4)+Z;

X4=X3.^2;

X5=X1.*X3;

X(:,:,i+1) = [X1 X2 X3 X4 X5];

Xn=[O X(:,:,i+1)];

dE=det(Xn’*inv(V)* Xn)-det(Xc’*inv(V)*Xc);

result(i)= (abs(det(Xn’*inv(V)* Xn))<1.02*abs(det(Xc’*inv(V)*Xc)));

if result(i-2)+ result(i-1)+ result(i)==0

break

end

Xn(find(Xn>1))=1;

Xn(find(Xn<-1))=-1;

if dE>0

Xc= Xn;

elseif exp(dE/T ) >1.01^c* random(’unif’,0,1)
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Xc= Xn;

end

end

result= ones(1,100);

for i=3: 100 % inner loop 3

Z=zeros(n,1);

for j=9:12

Z(j)=g*random(’unif’,-1, 1,1,1);

end

X1= Xc(:,2)+Z;

X2=X1.^2;

Z=zeros(n,1);

for j=9:11

Z(j)=g*random(’unif’,-1, 1,1,1);

end

X3= Xc(:,4)+Z;

X4=X3.^2;

X5=X1.*X3;

X(:,:,i+1) = [X1 X2 X3 X4 X5];

Xn=[O X(:,:,i+1)];

dE=det(Xn’*inv(V)* Xn)-det(Xc’*inv(V)*Xc);

result(i)= (abs(det(Xn’*inv(V)* Xn))<1.02*abs(det(Xc’*inv(V)*Xc)));



60

if result(i-2)+ result(i-1)+ result(i)==0

break

end

Xn(find(Xn>1))=1;

Xn(find(Xn<-1))=-1;

if dE>0

Xc= Xn;

elseif exp(dE/T ) >1.01^c* random(’unif’,0,1)

Xc= Xn;

end

end

T = r * T ; %lower the temperatures

g=0.99*g;

c=c+1;

end % We make make the perturbation neighborhood smaller and

the acceptance threshold higher at each time we lower the temperature so it

becomes harder to leave a local optimum.

det(Xc’*inv(V)*Xc)

Xc

A.2 Uncorrelated method

V=eye(12);

W=zeros(12);

for i=1:11

m=zeros(1,i);
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m(1:i)=0.4^(12-i)

W=diag(m,12-i);

V=V+W;

end

V=V+V’-eye(12); %V is the correlation matrix

X=zeros(5,12);

O=ones(1,12);

X(1,:)= [-1 -1 -1 0 0 0 1 1 1 -1 -1 1 ];

X(2,:)= X(1,:).^2;

X(3,:)= [-1 0 1 -1 0 1 -1 0 1 -1 1 -1 ]; % take the value given by Box et al.

X(4,:)= X(3,:).^2;

X(5,:)= X(1,:).* X(3,:);

D=det([O; X(1,:); X(3,:); X(2,:); X(4,:) ; X(5,:)]* inv(V)*

[ O; X(1,:); X(3,:); X(2,:); X(4,:) ; X(5,:)]’);

% apply these values to correlated case

D

A.3 PSO algorithm for pessimistic(minimax) criterion for logistic model

% X is particle position, Y is theta.

max_iterations=50;

no_of_particles=50;

X= zeros(50,7);

Xv=zeros(no_of_particles,7); );

%X is a group of vectors including

the information of our design, the first
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4 elements are support points and the last 3 are weight.

Y= zeros(no_of_particles,2);

Yv=zeros(no_of_particles,2); % Y is the unknown parameters.

p_currentY=zeros(1,2);

p_currentX=zeros(1,7

c_upper=2;

c_low=0.75;

%initialise the particles and velocity components

fval=zeros(no_of_particles,1);

for x = 1: no_of_particles

X(x,:) = [unifrnd(-0.5, 3,4,1); unifrnd(0.23,0.26,3,1) ];

Xv(x,:) =[unifrnd(-0.5, 3,4,1); unifrnd(0.23,0.26,3,1) ];

% initialize the position and velocity of the swarm of X.

p_bestX= X(x,:);

current_fitness(x) = 1;

p_best_fitness(x) = 1;

end

%decide on the global best among all the particles

[g_best_val,g_best_index] = min(current_fitness);

g_bestX= X(g_best_index,:);

%main outer particle swarm loop

for count = 1:50
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% c1, c2 and k are time varying parameters,

we update them in every iteration of our outer loop.

c1= (c_upper - c_low)*(max_iterations-count)/ max_iterations+c_low;

c2=(c_upper - c_low)* count/ max_iterations+c_low;

k=0.5*(max_iterations-count)/ max_iterations+0.4;

for x= 1:no_of_particles

%inner particle swarm loop

for i= 1:no_of_particles

Y(i,:) = [unifrnd(0, 2.5,1,1); unifrnd(1, 3,1,1) ];

Yv(i,:) = [unifrnd(-.5, .1,1,1); unifrnd(-.5, 1,1,1) ];

% initialize the position and velocity of the swarm of Y

p_bestY= Y(i,:);

current_fitness(i) = 1;

p_best_fitness(i) = 1;

end

%decide on the global best among all the particles

[g_best_val,g_best_index] = max(current_fitness);

g_bestY= Y(g_best_index,:);

g=0.9;

for count = 1:30

c1= (c_upper - c_low)*(max_iterations-count)/ max_iterations+c_low;

c2=(c_upper - c_low)* count/ max_iterations+c_low;
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g=0.9;

for i= 1:no_of_particles

P1 =1/(1+exp(-Y(i,2)*(X(x,1)-Y(i,1))));

M1=[Y(i,2)^2* P1*(1- P1), -Y(i,2)*(X(x,1)-Y(i,1)) * P1*(1- P1);

-Y(i,2)*(X(x,1)-Y(i,1)) * P1*(1- P1), (X(x,1)-Y(i,1))^2* P1*(1- P1)];

P2 =1/(1+exp(-Y(i,2)*(X(x,2)-Y(i,1))));

M2=[Y(i,2)^2* P2*(1- P2), -Y(i,2)*(X(x,2)-Y(i,1)) * P2*(1- P2);

-Y(i,2)*(X(x,2)-Y(i,1)) * P2*(1- P2), (X(x,2)-Y(i,1))^2* P2*(1- P2)];

P3 =1/(1+exp(-Y(i,2)*(X(x,3)-Y(i,1))));

M3=[Y(i,2)^2* P3*(1- P3), -Y(i,2)*(X(x,3)-Y(i,1)) * P3*(1- P3);

-Y(i,2)*(X(x,3)-Y(i,1)) * P3*(1- P3), (X(x,3)-Y(i,1))^2* P3*(1- P3)];

P4=1/(1+exp(-Y(i,2)*(X(x,4)-Y(i,1))));

M4=[Y(i,2)^2* P4*(1- P4), -Y(i,2)*(X(x,4)-Y(i,1)) * P4*(1- P4);

-Y(i,2)*(X(x,4)-Y(i,1)) * P4*(1- P4), (X(x,4)-Y(i,1))^2* P4*(1- P4)];

M5= X(x,5)* M1+ X(x,6)* M2+X(x,7)* M3+ (1- X(x,5)- X(x,6)- X(x,7)) * M4;

%M5 is the information matrix

current_fitness(i) =log(det(inv(M5)));

if current_fitness(i) > p_best_fitness(i) % in pessimism criterion, we suppose

the unknown parameters will maximize our loss function, so the inner loop

is used to solve or maximization problem.
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p_best_fitness(i) = current_fitness(i);

p_bestY= Y(i,:);

end

[g_best_val,g_best_index] = max(current_fitness);

g_bestY= Y(g_best_index,:);

end %this end correspond to for i= 1:no_of_particles

for i= 1:no_of_particles % update process of the unknown parameters Y.

p_currentY= Y(i,:);

%Update of the velocity of Y. If the velocity get out of the bound,

then we either take the boundary number or keep it unchanged.

bv= g*Yv(i, :) + c1*rand*(p_bestY-p_currentY) + c2*rand*(g_bestY-p_currentY);

if length(find(bv<-.2))+ length(find(bv>1))>0

Yv(i,:) = Yv(i, :);

else

Yv(i, :)= bv;

end

%update process of the position of Y.

b=(p_currentY+Yv(i,:));

if b(1)<0 | b(1) >2.5

Y(i,:) = p_currentY;
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elseif b(2) <1 | b(2)>3

Y(i,:) = p_currentY;

else

Y(i,:) = p_currentY+Yv(i,:) ;

end

end

if g>0.4

g=0.99*g;

else

g=g;

end

end%this end correspond to for count = 1:30

fval(x)= current_fitness(g_best_index);

end

for x = 1:no_of_particles

%we take X( the design vectors) to minimize the maximize our loss function,

so the outer loop is used to solve minimization problem.

current_fitness(x) = fval(x);

if current_fitness(x) <p_best_fitness(x)

p_best_fitness(x) = current_fitness(x);

p_bestX= X(x,:);
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end

[g_best_val,g_best_index] = min(current_fitness);

g_bestX= X(g_best_index,:);

end %this end correspond to for x = 1:no_of_particles

%Update of the velocity of X. If the velocity get out of the bound,

then we will take the boundary number.

for x = 1:no_of_particles

p_currentX= X(x,:);

av=k*Xv(x, 1:4) + c1*rand*(p_bestX(1:4)-p_currentX(1:4)) + c2*rand*(g_bestX(1:4)-p_currentX(1:4));

cv=k*Xv(x, 5:7) + c1*rand*(p_bestX(5:7)-p_currentX(5:7)) + c2*rand*(g_bestX(5:7)-p_currentX(5:7));

cv(find(cv<-.1))=-.1;

cv(find(cv> .1))=.1;

av(find(av<-.5))=-.5;

av(find(av> 1))=1;

Xv(x, :)= [av cv];

%update process of the position of X.

a1=p_currentX(1:4)+Xv(x,1:4);

a2=p_currentX(5:7)+Xv(x,5:7);

if length(find(a1>3))+ length(find(a1<-.5))+ length(find(a1>.26))+ length(find(a2<.23)) >0

X(x,:) = p_currentX;

else
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X(x,:) = [a1 a2];

end

end

end

g_bestX % this is the final result.

current_fitness(g_best_index)
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