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FIG. 5-35.  Spherical collection of 12,820 particles with a random microstructure. 
 

 
FIG. 5-36.  Spherical collection of 12,820 particles with an ordered bcc microstructure. 
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FIG. 5-37.  Disk-shaped collections of 1191 particles (10 percent packing fraction, left) and 5885 particles 
(50 percent packing fraction, right) with random microstructures. 
 

   
 
FIG. 5-38.  Disk-shaped collections of 1177 particles (10 percent packing fraction, left) and 5637 particles 
(50 percent packing fraction, right) with ordered bcc microstructures. 
 
 

As an example of the difference in computation times between multiple-scatterer and single-

scatterer simulations, the computation time for the multiple-scatterer simulation required 33.34 hours, 

whereas the single-scatterer simulation required 0.25 hours (5637-particle pack, nmax = 3).  Although higher 

nmax values are desirable for convergence, the long computation time limited the nmax to three or less. 

Figures 5-39 and 5-40 display comparisons between spectra from multiple-scattering and single-

scattering computations.  The spectra are plotted as functions of actual frequencies (0-2.0 MHz) that are  

used in ultrasonic inspection and evaluation of materials.  Equivalent kd values (where d is the particle 

diameter) for 2.0 MHz are 1.73 for the longitudinal field and 12.6 for the shear fields. 
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FIG. 5-39.  Comparison of longitudinal field power spectra for multiple-scattering vs single-scattering 
computations for a bcc crystal with 50 percent volume packing fraction. 
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FIG. 5-40.  Comparison of shear-electric field power spectra for multiple-scattering vs single-scattering 
computations for a bcc crystal with 50 percent volume packing fraction. 
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The spectra in Figures 5-39 and 5-40 show the single-scatterer approximation captures the general 

features of the ultrasonic spectra reasonably well.  Although there are some differences in fine detail, the 

match is good, especially at low frequencies (< 0.5 MHz).  Of most importance is the single-scatterer 

approximation shortens the computation time by about 100 times, and works just as fast for random as for 

ordered particle packings. 

Since single-scatterer computations are not limited by iterative or addition theorem convergence, 

the optimal choice for nmax is governed by spectral convergence.  To test the nmax criterium necessary for 

convergence of the single-scattering computations, scattering computations were performed for a single 

200-µm NaCl sphere in the rubber matrix and run to high nmax values.  Figure 5-41 shows the results of this 

test.  The main conclusion is single-sphere scattering converges by nmax = 6 for ultrasonic frequencies of 

practical use in these materials—0-1.0 MHz.  Extending the nmax value to 7 widens the spectral region of 

convergence to 0-1.5 MHz. 
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FIG. 5-41.  Shear-electric field power spectra for scattering from a single 200-µm NaCl sphere in a rubber 
matrix, showing convergence behavior for various nmax values. 
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For the small particle configurations examined in Section 5-B, the fields were evaluated at a single 

point located a large distance from the pack equal to the longest wavelength associated with the lowest 

frequency.  This was done to eliminate phase interference effects in the spectra due to the interplay between 

the field wavelength and evaluation point distance.  For the larger particle packs of the particle-filled rubber 

simulations, placing the evaluation point a distance from the particle pack introduced additional spurious 

effects in the spectra due to the overall shape of the conglomeration (i.e., the particle pack shape in toto—

disk, sphere, etc.—introduces a unique scattering signature onto the spectra). 

To eliminate this shape effect the evaluation point was placed close (1.25 mm) to the disk’s 

circular face.  Although this eliminated the particle pack shape effects, it reintroduced interference effects 

arising from the relationship between the field wavelengths and evaluation distance.  These interference 

effects manifested themselves as a periodicity in the spectra analogous to interference fringes.  To reduce 

this effect, the fields were evaluated over several spatially separated points.  Figure 5-42 shows spectra 

from a single point, from a cross-shaped configuration of nine points, and from a square grid of 25 points.  

Each of the evaluation point configurations was 1.25 mm from the disk. 
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FIG. 5-42.  Comparison of longitudinal field power spectra evaluated at a point, at a cross comprised of 
nine points, and at a square grid comprised of 25 points. 
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 As can be seen in Figure 5-42, evaluating all of the fields at a single point produces position-

dependent structure in the spectrum.  The use of multiple evaluation points, however, clearly resolves the 

interference effects in the spectra and removes the position bias associated with using a single evaluation 

point.  Interestingly, the 9-point cross configuration is almost as good at removing the interference effects 

as the 25-point square grid.  This is probably due to the cross being able to span the same spatial distance as 

the grid but without requiring as many points.  Although the 25-point grid was very good at averaging out 

the position-dependent spectral structure, it proved to be too time-consuming to implement.  Instead, the 9-

point cross proved to be a good compromise between computation time and position bias. 

The testing of a simulated particle-filled rubber provided insight into the most efficient and 

accurate method for modeling its ultrasonic properties.  For particle packs up to 50 percent particle volume 

fraction, the single-scatterer approximation works just as well as the current multiple-scattering 

computations.  Additionally, the single-scattering calculations converge at low nmax (≈ 7) for most of the 

frequency range for practical ultrasonic measurements.  Finally, evaluating the fields at a single point 

introduces position-dependent interference effects that can be reduced by evaluating the fields over a grid 

or cross configuration of points. 

 
D.  Electromagnetic wave scattering in the frequency domain 
 

Frequency domain models for electromagnetic wave scattering were constructed by appropriately 

modifying the scattering equations and material properties in the elastic wave models.  Instead of 

calculating three fields (longitudinal, shear-electric, and shear-magnetic) as in the elastic wave model, only 

two fields (electric and magnetic) require computation in the electromagnetic case.  For material properties, 

the Lame elastic constants (λ and µ) are replaced with the dielectric permittivity (ε) and magnetic 

susceptibility (µMAGNETIC).  These properties, as well as particle size, were varied to simulate a variety of 

particulate systems.  All of the simulations were of the 91-particle bcc configuration pictured in Figure 5-29 

or of larger bcc lattices.  Spectra were computed for both the individual field components and for the total 

energy of the wave (the amplitude of the Poynting vector). 



 

145

Like the elastic wave simulations, multiple-scattering computations for electromagnetic waves 

were nearly identical to single-scattering computations.  The electromagnetic simulations, however, 

displayed much better iteration convergence for multiple scattering than the more complex elastic wave 

simulations.  Most of the electromagnetic computations converged within 10 iterations for the frequency 

ranges and nmax values tested.  Iterative nonconvergence was observed for only close particle packings (50-

60 percent particle volume), high nmax (≥ 8), and high electromagnetic property contrasts (for example, 

water droplets in air).  However, the nonconvergence covered only a small percent of the spectral 

frequencies (about one percent) as compared to the elastic wave simulations (up to 42 percent). 

A striking feature of the electromagnetic wave simulations was the appearance of band gaps in the 

spectra.  The frequency position of these band gaps was a function of the bcc lattice constant and not of the 

particle diameter, indicating they were photonic band gaps arising from interference and localization effects 

in the lattice.  The lattice constants were a function of the particle volume fraction, and are listed in Table 

5-5 for six volume fraction values. 

Figure 5-43 is the total energy spectrum of 1.0-µm diameter quartz spheres in an ice matrix, 

plotted with respect to wavelength.  The frequency range tested was in the optical (infrared and visible) 

region of the electromagnetic spectrum, and varied from 10-1000 THz (0.3-30 µm wavelength in air or 

vacuum).  The optical properties were obtained from two well-known physics textbooks.196,197  The six 

plots represent 91-particle bcc lattices with various particle volume fractions. 

 
TABLE 5-5.  Lattice constants for each of the particle volume fractions in the 91-particle bcc lattice 
simulations. 

 
Particle Volume Fraction (percent) Lattice Constant (µm) 

10 2.188 

20 1.736 

30 1.517 

40 1.378 

50 1.279 

60 1.204 
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FIG. 5-43.  Simulated total energy spectrum vs wavelength for light passing through a 91-particle bcc 
lattice of 1.0-µm quartz particles in ice. 
 
 

It is clear from Figure 5-43 the position of the band gap regions vary with particle volume fraction 

and therefore with lattice constant.  Replotting the quartz-ice spectrum as a function of ka, where k is the 

wave vector and a is the lattice constant, reveals a direct relationship between the band gaps and lattice 

constants (Figure 5-44).  The band gap at ka = 14 is particularly consistent for the six particle 

configurations (lattice constants), and it appears a band gap at approximately ka = 47 is also a general 

feature of the spectra as well.  The ka = 14 band gap is close to the value of 4.5π, indicating this band gap is 

occurring where the wavelength is equal to 0.44 times the lattice constant.  Experimental data from bcc 

colloidal crystals show strong band gaps near wavelengths of 0.7, 0.8, and 0.88 a.198  The colloidal crystals, 

however, had a very low particle volume fraction of 1.3 percent, and photonic band gaps have been shown 

to have a very strong dependence on the ratio between particle radius and lattice constant (r/a).199  For two-

dimensional lattices of dielectric columns, as r/a increases the wavelength of photonic band gap decreases, 

which is consistent with our simulation results and the experimental results of reference 198. 



 

147

0 20 40 60
ka

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E0

1.0E1

1.0E2
To

ta
l E

ne
rg

y
10% particle vol.
20% particle vol.
30% particle vol.
40% particle vol.
50% particle vol.
60% particle vol.

Quartz in Ice
91-Particle bcc Lattice
Electromagnetic Field
nmax = 8

 
FIG. 5-44.  Simulated total energy spectrum vs parameter ka for light passing through a 91-particle bcc 
lattice of 1.0-µm quartz particles in ice. 
 
 

Although the quartz-in-ice simulations are at optical frequencies and micrometer scales, they 

could be readily rescaled to microwave frequencies (1-100 GHz) and centimeter scales (1.0-cm diameter 

particles).  Figures 5-43 and 5-44 would therefore be applicable to these longer wavelengths and larger 

particle sizes if the optical properties of ice and quartz were assumed to be constant into the microwave 

bands.  However, this is not a good assumption.  The electromagnetic properties of water and ice change 

appreciably with frequency, and therefore have to be accurately modeled in order to obtain reliable results 

for microwaves.  

 Since the microwave properties of quartz were difficult to find, water droplets in air were modeled 

to test the electromagnetic simulations at microwave frequencies.  The particles were 1.0-cm diameter 

water droplets arranged in a 91-particle bcc lattice.  Although a random lattice would have been more 

appropriate for modeling atmospheric precipitation such as rain, the bcc lattice was convenient due to the 

translational order and nearest-neighbor approximation providing a considerable reduction in computation 
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time.  The frequency range of the simulations was 1-100 GHz.  The microwave properties of the water 

droplets were modeled as a function of frequency using the Cole-Cole equation.200

 Figures 5-45 and 5-46 display the computed spectra for water drop configurations at various 

particle concentrations.  Due to the difference in electromagnetic properties, the spectra do not look like 

those of the quartz-ice configurations in Figures 5-43 and 5-44, but rather exhibit much more fine structure 

and sharp peaks.  The existence of photonic band gaps is also not apparent from the results in Figures 5-45 

and 5-46.  Although several absorption-like structures exist in the ka =4-14 region in Figure 5-46, an 

expanded view of this region (Figure 5-47) shows they do not overlap or trend with particle concentration 

(lattice constant) as in Figure 5-44. 

  The excellent iteration convergence and prediction of photonic band gap structures by the 

electromagnetic simulations are encouraging.  However, it must still be realized the simulations are 

essentially operating in the single-scattering approximation since the multiple-scattering calculations do not 

differ significantly from the single-scattering calculations.  The insufficiency of convergence for the 

translation coefficients remains a major problem, as does the inefficiency of the computations. 
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FIG. 5-45.  Simulated total energy spectrum vs wavelength for microwaves passing through a 91-particle 
bcc lattice of 1.0-cm water particles in air. 
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FIG. 5-46.  Simulated total energy spectrum vs parameter ka for microwaves passing through a 91-particle 
bcc lattice of 1.0-cm water particles in air. 
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FIG. 5-47.  Close-up of simulated total energy spectrum for microwaves passing through a 91-particle bcc 
lattice of 1.0-cm water particles in air. 
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CHAPTER 6 
 

DISCUSSION 
 
 
A.  Prediction of real wave propagation behavior 
 

One method for determining the fidelity and accuracy of scattering models is to determine if they 

can predict physically realistic phenomena.  Although not quantitative, such an approach can provide 

information on the model’s qualitative correctness (i.e., the soundness of the basic equations and 

algorithmic approach of the model). 

The results of the elastic and electromagnetic scattering computations exhibit such real world 

phenomena.  The spatial domain images for elastic wave scattering reveal focusing effects for longitudinal 

waves (Figures 5-1 and 5-4), mode conversion and a higher degree of sideward scattering for shear waves 

(Figure 5-2), changes in the field wavelength as it passes through media of different elastic properties 

(Figures 5-8 and 5-9), and amplification of fields in localized regions of disorder (Figures 5-8 and 5-9).  

Such effects are based on common acoustic (or wave propagation) principles, and their prediction by the 

elastic wave models is reassuring evidence the models are functioning in a qualitatively correct manner. 

Of even greater interest is the appearance of photonic band gaps in frequency domain spectra of 

the electromagnetic scattering models.  Photonic crystals, also called photonic band gap materials, have 

been identified and studied only in the last 15 years.199  They are inhomogeneous materials comprised of an 

ordered lattice of microscopic particles, inclusions, or columns embedded in an optical medium.  The 

ordering of the inhomogeneities gives photonic crystals amazing properties such as near perfect reflectivity, 

suppression of spontaneous emission, photon localization, and the ability to guide and channel the path of 

light.  These properties arise from band gaps that forbid the propagation of light at certain wavelengths.  

These photonic band gaps are analogous to the electronic band gaps in semiconductors and lie in the 

infrared and visible parts of the spectrum. 

The electromagnetic scattering models predicted band gaps for crystalline bcc particle 

configurations.  The band gaps were direct functions of the crystal’s lattice constant, indicating they arise 

from the crystalline arrangement of the particles (Figure 5-44).  The band gap positions predicted by the 

scattering models lie close to those found experimentally in colloidal crystals.  Discrepancies between the 
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simulated and observed band gap positions can be attributed to the differences in particle concentration 

between the simulated and experimental photonic crystals, which will shift the band positions closer due to 

the dispersion relationships.199

The ability of the multipole-based scattering models to predict both conventional wave 

propagation phenomena (focusing, mode conversion, etc.) and exotic wave propagation phenomena 

(localization, photonic band gaps, etc.) is solid evidence the models are working correctly at a qualitative 

level.  The models, however, appear to have deficiencies which prevent them from operating at a 

quantitative level.  These deficiencies will now be explored in the following section. 

 
B.  Deviations from real wave propagation behavior 
 
1.  Additive effect of scattering from increasing numbers of particles 
 

The VMIST algorithms employ the principle of superposition to derive the total wave field after 

interacting with the particle dispersion.  The incident plane wave and scattered wave fields from all of the 

particles are added linearly to arrive at the final field amplitude.  Linear superposition predicts both 

constructive and destructive interference would alter the wave fields in a physically realistic manner to 

produce results that would be consistent with natural laws such as conservation of energy.  Therefore, the 

incident plane wave was not artificially attenuated in any fashion by the algorithm when it interacted with 

each of the particles, regardless of how far into the dispersion the particle was.  Again, the principle of 

superposition and the multiple-scattering interactions should take care of the amplitudes in a physically 

meaningful manner. 

The results of the scattering simulations demonstrated the VMIST models could not achieve full 

convergence (specifically, addition theorem convergence) with realistic computation times and nmax values 

to enable superposition to function properly.  For example, Figure 6-1 displays the maximum spectral 

amplitude as a function of particle number for the composite simulations of 200-µm NaCl particles in a 

rubber matrix.  Since the size of the disk-shaped sample remained constant, the particle numbers varied due 

to changes in the particle volume fraction (10 percent, 30 percent, and 50 percent).  Figure 6-1 clearly 

shows the wave field amplitudes increase linearly with particle number.  This result is strongly counter- 
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FIG. 6-1.  Maximum spectral power as a function of particle number for composite material simulations. 
 
  
intuitive since back and side scattering from the particles should lead to an overall decrease in field 

amplitude with increasing particle number. 

It is evident from Figure 6-1 the forward scattering is additive as a function of particle number.  

On introspection this result should be obvious with the use of a single-scatterer approximation.  Since the 

incident waves are not attenuated or modified in the simulations (except for phase), all of the particles see 

the same incident wave field where the amplitude is only controlled by the phase of the incident wave at the 

particle position.  For long wavelengths, as in the composite simulations, all of the particles therefore have 

approximately the same forward scattering amplitudes.  Since these forward scattering contributions are 

added linearly, as the number of particles increases, so does the amount of contribution to the fields from 

forward scattering in a direct linear fashion.  This is why the single-scatterer approximation fails for 

dispersions with even modest (>15 percent) particle volume fractions.1,2

Similar additive effects are seen for the multiple-scattering computations (e.g., Figures 5-31 and 5-

32), indicating that the VMIST algorithm is not calculating a large enough multiple-scattering contribution 



 

153

to destructively interfere with the incident and singly scattered waves.  Note an incorrect computation of 

the phase of the multiply scattered fields could have an equivalent or greater effect as an incorrect 

computation of amplitude.  The evidence strongly suggests the vector multipole-based iterative scattering 

method cannot sufficiently simulate multiple scattering in particulate dispersions for reasonable 

computation times (i.e., low nmax values) without significant efficiency improvements.  The next section 

provides further evidence for this conclusion and an explanation why the VMIST models are not 

performing at a quantitative level at low (≤16) nmax values.   

 
2.  Similarity between single-scattering and multiple-scattering models 
 
 One of the more surprising and perplexing results from the scattering simulations was no 

significant difference existed between computations employing a single-scatterer approximation and full 

multiple scattering.  This result held for small (4-particle), large (91-particle), and very large (5,637-

particle) simulations, and was also independent of particle concentration (tested for particle volume 

fractions up to 60 percent).   

One explanation for these results is the multiple-scattering contributions are naturally much 

smaller than the single-scattering contributions.  This is probably true for dilute packings, but cannot be 

valid for dense packings where wave propagation should assume diffusive characteristics.  A more 

probable explanation is the multiple-scattering contributions are very small since the simulations are 

running with insufficient nmax values for convergence of the addition theorems.  This explanation would 

hold even if the translated field amplitudes were of the same order of magnitude as the convergent values 

since the phase of the translated fields (i.e., direction) is just as influential in wave interference and 

superposition effects. 

Interestingly, the similarity between the single and multiple-scattering computations may be 

attributable to the same lack of multiply scattered waves that causes an unnatural additive effect on the 

scattering [see Section 6-B(1)].  Without the destructive interference of multiple scattering, each particle 

experiences the same incident wave (varied only by phase).  The strongest fields, aside from the incident 

wave, are therefore the first, singly scattered waves.  Due to the lack of destructive interference by multiple 

scattering, these fields themselves are not diminished as they propagate through the particle dispersion.  





 

159

Table 7-2 lists some of the fields of study applicable to the particulate systems listed in Table 7-1 

and categorized by matrix state.  These fields encompass a wide breadth of disciplines and interests. 

In its present form VMIST can be applied to many of the physical systems listed in Table 7.1.  In 

particular, VMIST is currently structured to model solid particles in a solid matrix for elastic waves, and 

dielectric particles in a dielectric matrix for electromagnetic waves.  Although the VMIST algorithm would 

have to be modified for other forms of matter, the changes would not be extensive or difficult.  For 

example, the current VMIST simulations encounter problems for elastic waves in fluids (gases and solids) 

since the shear velocity in these materials is zero.  This corresponds to an infinite wave vector kS.  This is 

physically realistic since it mathematically forces the spherical Bessel and Hankel functions to go to zero in 

the shear field solutions.  However, the VMIST code cannot handle an infinite value for kS because it leads 

to an infinite computation in the spherical Bessel function subroutine.  Even modestly large kS values give 

rise to unacceptable computation times.  Instead, the boundary condition solutions in the code must be 

changed by omitting those terms that contain kS (in fact, all computations involving kS must be modified or 

omitted).  Similar modifications would be necessary for electromagnetic scattering of conductive or 

magnetic materials.  

Table 7-3 lists specific applications for particulate scattering models, the corresponding 

experimental or measurement methods for the material systems, and references for these applications.  The 

references listed are intended only to be representative, not exhaustive, of the extensive knowledge base 

that exists on the applications of electromagnetic and elastic wave scattering. 

 
TABLE 7-2.  Scientific and technological fields of study applicable to particulate systems. 
 

 
Matrix 

 
Gas Liquid Solid 

Field of study 

 
Meteorology 
Climatology 
Planetology 
Astrophysics 

 

 
Chemistry 

Chemical processing 
Food science 

Oceanography 
 

 
Materials science 

Medicine 
Biophysics 
Geophysics 
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TABLE 7-3.  Specific applications of particulate scattering models that could benefit from the VMIST 
approach. 
 

Field Application 
 

Measurement Method References 

Particulate composites (particle-
filled plastics and rubber, concrete, 
ceramics) 

Ultrasound 
Microwaves 
Eddy current methods 

201-206 

Detection and quantification of 
porosity, voids, and inclusions in 
materials 

Ultrasound 
Microwaves 
Eddy current methods 

207-214 

Nondestructive 
Evaluation 

Process control of suspensions 
(paints, precipitates, etc.) 

Ultrasound 
Optical scattering 
 

215-229 

Photonic and acoustic band gap 
materials 

Microwaves 
Infrared and visible light 
Ultrasound 

69, 199, 
230-245 

Composites, nanocomposites, and 
metal foams 

Ultrasound 
Microwaves 
Diffuse visible and IR scattering 

201-206, 
246-249 

Materials 
Engineering 
and Design 

Multiphase suspensions (colloidal 
systems, electrorheological 
materials, liquid crystals, etc.)  

Coupled electromagnetic, 
acoustic, and mechanical fields 

215-229 

Milk, oils, processed foods, and 
other suspensions 

Ultrasound 
Optical scattering 

186, 187, 
250, 251 

Fruits, vegetables, and meat Ultrasound and acoustics 
 

186, 252, 
253 

Soil characterization Acoustics 
Microwaves 

254 

Remote sensing of forest, crop, 
and vegetation health 

Optical scattering 255-260 

Agriculture, 
Forestry, and 
Natural 
Resources 

Fish schools Sonar 
 

186, 187 

Biophysics and 
Medical 
Physics 

Cell, tissue, and organ 
characterization 
Blood and contrast agent scattering 

Ultrasound 
Optical tomography 
Diffuse visible and IR scattering 

261-274 

Geophysics Rocks and geologic formations 
Marine sediments 
Soils 

Seismic and sonar exploration 
Subsurface radar 
EM and resistivity tomography 

142-144, 
275-289 

Oceanography Ocean acoustics 
Plankton research 

Sonar 
Surface optical scattering 
 

176, 177, 
290-309 

Meteorology Cloud, fog, and precipitation 
scattering 
Dust and aerosol scattering 

Microwave radar 
IR, visible, and UV scattering 
 

310-316 

Astrophysics Dusty plasmas 
Interstellar dust clouds 
Planetary atmospheres 

Electromagnetic radiation 317-327 
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CHAPTER 8 
 

FUTURE DIRECTIONS 
 
 
A.  Efficiency improvements 
 

A major conclusion of this research is the use of addition theorems for the translation of vector 

spherical wave functions is too inefficient (or inaccurate) for the practical modeling of multiple scattering 

with the use of current desktop computers.   One method for avoiding the use of addition theorems has 

already been investigated in a preliminary fashion.  This is the single-scatterer approximation, and it 

appears to be valid for scattering in particle dispersions as long as the material property contrast between 

particle and matrix is not too great, the particle volume fraction is low, or the number of particles is small.  

However, the single-scatterer approximation is not a general approach, and cannot be used for closely 

packed, strongly scattering particulate media. 

The nearest-neighbor approximation addresses the addition theorem efficiency problem by 

minimizing the computation of translation coefficients.  This approximation is not an effective efficiency 

measure, however, for resolution of the slow addition theorem convergence since the computation time 

scales only as the particle number squared (p2), but as the fourth (or greater) power of the maximum 

multipole order (nmax
≥4).  Since the convergence of the addition theorems will, at the least, require nmax 

values a magnitude larger than currently practical, the computation time will increase by 104-105 times.  A 

nearest-neighbor approximation will at most provide a 102 decrease in computation time for a 103-particle 

dispersion (using the 10 nearest neighbors to each particle).  For ordered particle arrays, translational 

symmetry can provide another 10-fold decrease in time, but still leaves nmax the dominant parameter 

controlling the computation speed. 

Other approaches have also been considered for either reducing or completely avoiding the 

addition theorem computations.  These include: 

• Asymptotic approaches for close particle pairs. 

• Long-wavelength approximation. 

• Simplification of addition theorem translations using coordinate rotations. 
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• Convergence acceleration methods. 

• Statistical wave propagation methods. 

Asymptotic methods model the interactions between close particle pairs by approximating the 

spherical surfaces of the particles (Figure 8-1, black circles) as parabolic surfaces (Figure 8-1, blue curves).  

The method assumes adjacent particle interactions will dominate, and therefore approximate, the 

microstructure’s effect on the overall field properties.  This method has been successfully employed in 

mechanical property (static elastic) models for particulates.328  The paraboloid approximation leads to 

simpler analytic expressions for the elastic field interactions that decrease the computation time by several 

orders of magnitude.  Asymptotic solutions for dynamic (wave) fields have not yet been attempted, but the 

substantial benefits that have been realized by incorporating asymptotic solutions in static field models 

warrants further investigation into their suitability for wave propagation models. 

In the long-wavelength approximation, the wavelength of the elastic and electromagnetic waves 

are much greater than the diameters and separations of the particles.  For this approximation, both elastic 

and electromagnetic waves can be treated as static fields.  As the testing in this research indicates, both the 

scalar and vector addition theorems are more accurate and quickly computed for low frequencies (long 

wavelengths).  At the static limit where the frequency drops to zero and the wavelength increases to infinity  
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FIG. 8-1.  Asymptotic solutions using parabolic surfaces (blue) as first order approximations to spherical 
interactions. 
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(i.e., k→0), the spherical Bessel and Neumann functions [and therefore the spherical Hankel functions, 

which are just a combination of  and ] become simple power-law functions of r:)(krjn )(kryn
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Eqs. 8.1 and 8.2 transform the addition theorems from a wave function form containing spherical 

Bessel functions to a static field form containing powers of r.  This simplification significantly increases 

the computational speed and accuracy of the boundary condition solutions and addition theorems, as 

evidenced by the use of this method for the modeling of static elastic fields in particulate media containing 

104-105 particles.329  The method eliminates the computation of spherical Bessel functions and the 

inaccuracies of using the wave function form of the addition theorems.  Although we lose the generality 

that was one of the goals of this research by going to a long-wavelength approximation, this approach could 

be a useful intermediate step in developing a more efficient multiple-scattering method. 

 Finally, it has been shown the addition theorems can be modestly simplified by restricting the 

translations to along the z axis.70  This would moderately improve the computational efficiency, and 

possibly accuracy, of the addition theorems.  However, for random particle packings where the majority of 

particles are not ordered along parallel axes, extra calculations would be necessary to rotate the multipole 

fields for each particle pair using Wigner D-functions.47  It is currently not known whether the 

improvement in addition theorem computation would make up for these extra calculations.  Mathematical 

methods for accelerating the convergence of the addition theorems, such as transforming the summations 

into integrals and solving, may also be a possibility. 

 Other methods of interest for future research and that avoid the use of addition theorem 

expansions include path integral and Monte Carlo random walk methods for modeling wave diffusion.  In 

the random walk method, the multipole single-scatterer solutions determine the scattering angle and 
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amplitude probabilities.  They have been successfully employed in light scattering and radiative transfer 

models for clouds.330

 
B.  Fidelity improvements 
 

Fidelity improvements would comprise modeling the microstructure of particulate materials more 

realistically.  These improvements include more faithful models of random particle arrangements, material 

properties, particle shapes, and particle structure.   

Algorithms and statistical methods for constructing three-dimensional particle packs for close-

packed particulates with uniform particle sizes have been developed in the ceramics and composites 

communities.331-339  However, such models are often not applicable to particulates with large particle size 

distributions.  Careful design of particle packing models are crucial, however, to avoid introducing 

periodicities or artificial structures not seen in truly random, real-world particulates.  Such care is necessary 

for predicting the properties of such materials.340  One such particle packing approach builds the particle 

microstructure using a Monte Carlo particle-dropping method.341  To model particle sizes that may differ by 

up to 100 times, the approach uses a concentric can model that builds the microstructure by filling the large 

cans with only large particles and the small cans with only small particles.  This eliminates the need to 

model the large number of small particles that fill in the interstices between the large particles. 

A different approach to specifying the particle pack microstructure is to reconstruct it from 

observations of real materials.342-344  Such an approach would provide microstructural models based on 

images acquired from two-dimensional slices of the material of interest, and would also be a good check 

for particle packing programs as described above.  Particle packing programs are still necessary, however, 

since the reconstructions are computationally intensive, imperfect, and cannot provide microstructures for a 

wide range of materials without representative samples and testing. 

More accurate and extended models also need to be developed for material properties not 

addressed by the present work.  These properties include conductive particles for electromagnetic 

scattering, and viscoelastic properties for elastic wave scattering.  Both would entail the use of complex 

wave vectors, with a complex permittivity for electromagnetic scattering, and complex Lamé constants for 

elastic wave scattering.  Foreseeing this need, the VMIST programs were written to accommodate complex 
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variables in the scattering computations.  The use of complex variables does not impact the current 

computational efficiencies, however. 

To represent true particle shapes we need to model nonspherical particle shapes.  The first 

approximation to nonspherical particles is the spheroid (Figure 8-2).  A spheroid is capable of modeling 

both highly elongated, needle-like particles (prolate spheroids) and highly flattened, pancake-like particles 

(oblate spheroids).  This would allow the modeling of many particle types such as the long needle-like 

crystals of many minerals or compounds, or the flat flake-like crystals of clays or snowflakes. 

An advantage of using spheroidal particle models is the Helmholtz wave equation is separable in 

spheroidal coordinate systems.345-349  (The Helmholtz equation is also separable in cylindrical and 

ellipsoidal coordinate systems as well.346)  It is therefore possible to construct solutions for scattering from 

spheroidal particles.  As in the spherical particle case, such solutions consist of expansions of spherical 

harmonics (spheroidal angular functions) and spherical Bessel functions (spheroidal radial functions).  

Although more complex, these functions offer complete solutions to the scattering problem. 

A sizable number of references have covered electromagnetic scattering from spheroids, with a 

large emphasis on light scattering.350-378  Spheroidal models have been used for various particulate media 

including biological cells, soils, atmospheric dust, clouds, and interstellar grains.  Electromagnetic 

scattering from collections of spheroidal particles has also been modeled, necessitating the derivation of 

both translational and rotational addition theorems for spheroidal wave functions.379-387  The scattering of  

 
 

 
 
 
FIG. 8-2.  Dispersion of long, needle-shaped and flat, plate-shaped spheroidal particles. 
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elastic waves from spheroids has been researched less, but the literature includes scattering from spheroidal 

cavities and rigid particles.388-393

 Spheroidal particle and void representations would be very useful for a number of modeling 

applications.  For example, the open-cell structure of a metal foam or porous rock, Figure 8-3 (a), could be 

simulated using a network of spheroids, Figure 8-3 (b).  Specific rock pore models would include those for 

rocks with flat, layered structure such as shale or slate, Figure 8-4 (a), or for rocks with equiaxial grains 

such as sandstone, Figure 8-4 (b).  Spheroids would also be very useful for modeling plant and animal cells 

with either columnar (elongated) or squamous (flattened) shapes. 

The next level of increasing nonsphericity would be the modeling of ellipsoidal particles with the 

use of ellipsoidal wave functions.  Expressing the Helmholtz equation in ellipsoidal coordinates yields the 

ellipsoidal wave equation, also called the Lamé wave equation.  This is the most general equation that can 

be derived from the Helmholtz equation in confocal coordinates and that can be solved by separation of 

variables.  The solutions are ellipsoidal (or Lamé) wave functions, and are also referred to as ellipsoidal 

harmonics.42  Although enticing because of their generality, ellipsoidal wave functions are very complex 

and difficult to evaluate analytically.  Only a few hardy pioneers have had the fortitude to research and 

apply ellipsoidal wave functions in scattering and electromagnetic problems.394-400

 
 

   
 

(a)      (b) 
 
 
FIG. 8-3.  Open-cell porous microstructure for rocks and metal foams (a), and scattering model 
representation using spheroids for the pore spaces (b). 
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(a)     (b) 
 
FIG. 8-4.  Porous rock representations using spheroids for the pore spaces, (a) for shales and slates, and (b) 
for sandstones. 
 

The modeling of particles of arbitrary, nonsymmetric shape is particularly challenging, but has 

been achieved with a variety of methods.  Perturbation approaches have been developed which treat 

nonsphericity as a perturbation from spherical particles, and scattering solutions have been derived.401-405  

Elliptic cylinders have been used for particle shapes since the Helmholtz equation is also separable in 

elliptic cylindrical coordinates.406  Particle symmetries have also been investigated, as well as modeling the 

shape of a particle as a spherical harmonic expansion superimposed on a sphere (for example, a cuboid 

would be comprised of spherical harmonic terms ),(4,4 ϕθY , ),(8,8 ϕθY  and so on).407-409  Figure 8-5 

shows in two dimensions how such successive multipole terms can be used to construct a cubic particle.  

Accurate modeling of irregularly shaped particles is important since it has been shown light scattering from 

simple shapes (spheres, spheroids, and cylinders) can deviate significantly from that of hexagonal ice 

crystals, particle clusters, and other atmospheric aerosols.410

Since the Helmholtz equation is separable in cylindrical coordinates, multipole methods have been 

employed in the modeling of fiber-reinforced composites.411-415  These methods have only addressed 

unidirectional composites, however, where all of the fibers are parallel.  Translation of the fields between 

parallel fibers is relatively straightforward with the use of addition theorems for regular (cylindrical) Bessel 

functions.   Additionally, the parallel fiber model reduces to a two-dimensional problem.  Most 
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5 Multipole Terms 20 Multipole Terms1 Multipole Term  

 
FIG. 8-5.  Construction of a cubic particle (red line) from a spherical harmonic multipole expansion of 

),(4,4 ϕθ×× nnY  terms. 
 
 
manufactured fiber composites, unfortunately, are not unidirectional but rather have cross-ply and three-

dimensional weave structures (Figure 8-6).  Modeling such microstructures with multipoles would require a 

mathematical method for translating fields between nonparallel fibers (Figure 8-7).  Surprisingly, literature 

searches for a translational + rotational addition theorem that would translate fields between skewed 

cylinders have not yielded any results to date.  Additionally, current multipole methods can only model 

straight fibers of infinite length.  Modeling methods for curved and finite fibers would be very useful for 

simulating composites with defects such as fiber breaks and fiber wrinkles. 

 

 
 
 

(a)     (b) 
 
FIG. 8-6.  Idealized microstructures for cross-ply (a) and 3-D weave (b) fiber-reinforced composites. 
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FIG. 8-7.  Nonparallel fiber geometry requiring translation and rotation of multipole fields from one fiber 
to another. 
 

The final level of fidelity that can be addressed by scattering models is the representation of 

particles with an inhomogeneous internal structure.  This includes layered and multilayered particles, 

particles with anisotropic or heterogeneous properties, and particles with internal inclusions.416-435  Again, 

as with spheroidal scattering, most of the research has been performed for light scattering.416-432  One paper, 

however, looks at the scattering of elastic waves from a partially-filled cavity.433  Quite recently, 

simulations of light scattering from layered particles has focused on the photonic band gap nature of the 

scattering.434,435

 
C.  A unified approach to multipole fields in particulate media 
 

As mentioned in Section 8-A, in the long-wavelength limit (k→0) both the elastic wave and 

electromagnetic scattering models become models for the static properties of the medium.  These static 

models are of great interest since the understanding and prediction of electrical and mechanical properties 

in particulate materials has direct application to material strength, durability, performance, service life, and 

failure.  Also, in concert with the wave scattering models, they would provide a more complete and unified 

description of particulate material properties and behavior.  They would additionally comprise a good test 

for the general approach in the k→0 limiting case. 

Models for electrical conduction in collections of spheres have a venerable history, starting with 

Maxwell and Rayleigh in the 19th century, and developed further by McPhedran and McKenzie and others 

in the later half of the 20th century.436-442  The principal method employed for solving the electrical 
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conduction problem involves multipole expansions of the potential in a lattice of particles.  The periodicity 

of the lattice allows solution of the problem analytically. 

The same multipole expansions of the potentials can also be used to model the electrostatic fields 

in particulate media.443-446  For random media, Davis rederived the translational addition theorem for static 

scalar fields using an integral method, and employed an iterative solution for the electrostatic field that was 

used as the blueprint for the scattering models in this work.443  With extension to static vector fields, the 

multipole method has also been applied to elastostatic fields.328,329,447  The use of elastostatic models for 

composites and other particulate materials are of keen interest to engineers who want to predict the 

mechanical properties of these materials as a function of microstructure. 

Models for thermal properties and heat conduction in particulate media have also been developed 

using multipole approaches.448,449  Again, these approaches start from the lattice approximation, but could 

also be generalized to random dispersions of particles. 

Although it has been shown the translational addition theorems converge too slowly and are too 

computationally inefficient for current wave scattering models, addition theorems for static models do not 

share this fate since the spherical Bessel functions in the wave models are replaced with power-law and 

inverse-power-law functions of r.  These functions do not have the convergence problems the spherical 

Bessel functions do, and convergence of the addition theorems are both quicker and more computationally 

efficient.329  Extending the VMIST wave scattering models to static fields would therefore be a 

straightforward exercise, and may allow the computation of both low-frequency waves and static fields in a 

unified approach. 

Additionally, the ability to model material properties on a continuum from static behavior to 

dynamic behavior would have substantial technical benefit.  Often, the wave propagation properties of a 

material differ from its static properties, which is a problem for nondestructive characterization methods 

that seek to determine a material’s physical state and properties from the wave properties.  A continuum 

model, however, would allow such a determination by providing the missing link between static material 

properties (e.g., mechanical) with dynamic material properties (e.g., ultrasonic). 
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Finally, the VMIST approach could be expanded to encompass tensor as well as vector and scalar 

fields.  One application of tensor fields has already been mentioned in Section 3-C with regards to stress 

and strain fields.  Tensor fields might be more appropriate descriptions for stress and strain in anisotropic 

materials, and expansions of tensor spherical harmonics have already been used to describe crystal 

orientation effects in seismic wave propagation through rocks.450  The other physical application of tensor 

fields is gravitational radiation.  Again, tensor spherical harmonics have been formulated for gravity 

waves.46,451  Although one is hard put to imagine a multiple-scattering scenario for gravity waves, one 

possible application of a gravity wave scattering or interaction model is in the design of novel gravitational 

radiation detectors that convert gravity waves to acoustic vibrations in solid materials.452  
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CHAPTER 9 
 

CONCLUSIONS 
 
 

The goal of this dissertation was to develop and test ab initio computational models for the 

multiple scattering of elastic and electromagnetic waves in particulate media.  The purposes for such 

models would be to (1) determine how the structure of a particle-filled medium influences the propagation 

and scattering of elastic and electromagnetic waves; (2) predict the structure and properties of a particle-

filled medium from the measured wave properties; and (3) design particle-filled materials with new or 

enhanced properties for technological applications.  This work was limited to the development of forward 

models—models that describe the interaction of waves in a given particle-filled microstructure.  However, 

having the capability to predict how waves interact in a particle-filled medium (the forward model) is the 

first step in developing models that can predict the properties and structure of a medium from the measured 

wave properties (the inverse model). 

The approach for developing the computational models was comprised of the following steps: 

1. Recast the fundamental Maxwell and Navier equations as vector Helmholtz equations and define 

vector multipole functions appropriate for solution of both equations in a spherical coordinate 

system. 

2. Solve the equations for single-particle scattering using boundary conditions and orthogonality of 

the vector multipoles. 

3. Derive translational addition theorems that allow the scattered wave fields from one particle to be 

recast in the coordinate system of a second particle.  This allows the waves to be translated from 

one particle to another, which is necessary for a first-principles computation of multiple scattering. 

4. Design an algorithm to account for all particle-particle interactions in the computations by 

iterating through the particle configuration. 

5. Test the derived translational addition theorems for computational efficiency, accuracy, and 

convergence, and compare to previously published theorems in the literature. 

6. Test the multiple-scattering simulations with a variety of particle numbers and configurations, and 

identify areas for improvement in the models. 
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7. Compare multiple-scattering simulation results with those using single-scatterer and nearest-

neighbor approximations. 

The original and significant contributions of the presented work consist of (1) review and 

reformulation of current theory to achieve greater consistency, elegance, and accuracy; (2) extension of 

current capabilities to create scattering models with increased generality and greater utility; and (3) 

quantitative testing of the multiple-scattering theory and identification of deficiencies.  

The mathematical foundations and theory for the iterative solution of multiple scattering in a 

particle-filled medium were investigated, and many areas for improvement were discovered.  First, several 

different forms of vector spherical wave functions have been employed in the past to solve spherically 

symmetric scattering problems.  This work has shown the choice of vector spherical wave functions is 

important in simplifying the problem and in deriving the correct form of the translational addition 

theorems.  To address this issue, modified vector wave functions were presented, compared to those 

previously used, and implemented in this work.  

Second, the solution of the boundary conditions for the scattering from a single sphere has often 

been given cursory treatment in the literature, and yet contains pitfalls and apparent inconsistencies if not 

properly addressed, specifically in the application of orthogonality to simplify the equations.  This issue 

was resolved by showing how the boundary condition solutions can be elegantly solved in vector form with 

the use of the orthogonality of the pure-orbital vector spherical harmonics. 

Recasting the equations with spherical wave functions built from pure-orbital vector spherical 

harmonics provided several advantages, both in the solution of the boundary condition equations and in the 

derivation of the translational addition theorems.  The pure-orbital vector spherical harmonics provide a set 

of vector spherical wave functions that simplify both single sphere scattering and multiple scattering with 

addition theorems.  It was shown the boundary conditions for electromagnetic scattering could be readily 

solved by retaining the vector form of the equations, and by applying orthogonality of the vector spherical 

harmonics.  This same method also works for the displacement boundary conditions for acoustic scattering.  

The stress boundary conditions, however, are tensor equations of second and fourth-rank tensors, and a 

rigorous method for solving them with vector spherical harmonic orthogonality has not yet been found. 
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Third, various forms of translational addition theorems have been published with differing 

computational results.  Some of these theorems produce poor results and their correctness is suspect.  Such 

results can introduce significant error into multiple-scattering solutions.  To resolve this issue, the addition 

theorems were rederived in pure-orbital vector spherical harmonic form with an integral approach.  A test 

procedure was also devised to assess the accuracy and convergence of the translation coefficients 

independent of either single-scattering or multiple-scattering convergence. 

The results confirmed the pure-orbital addition theorems were numerically equivalent to the most 

well known theorems in the literature.  The results also showed, however, some published theorems are 

incorrect and do not converge.  The pure-orbital addition theorems were shown to converge much more 

slowly than reported in the literature.  Their convergence was comparable, however, to partial wave 

expansions for vector plane waves.  Addition theorem translation coefficients have therefore been severely 

underestimated in previous articles.  The convergence of the theorems for some geometries was also shown 

to exhibit extensive flat or plateau-like regions across wide nmax values.  These plateau regions can give 

false impressions of convergence when encountered in multiple-scattering computations, and may 

contribute to inaccuracies in the model results. 

Using the above mathematical tools, elastic and electromagnetic wave scattering models were 

constructed to simulate the scattered wave fields as a function of both frequency and spatial distribution 

from an ensemble of particles.  Numerous simulations were generated for particle configurations ranging 

from four to 5,000 particles, and with both ordered and disordered arrangements.  The results correctly 

predicted many physical phenomena including focusing effects, shear wave scattering behavior, 

wavelength changes in various materials, and the formation of photonic band gaps.  The models can 

therefore be considered valid at a qualitative level 

The computations performed in this work were not quantitatively accurate, however.  The lack of 

addition theorem convergence was shown to produce physically unrealistic results.  Specifically, the 

multiple-scattering contributions were much smaller than the single-scattering contributions, even for dense 

dispersions of up to 60 percent particle volume.  The inability to accurately calculate the multiple-scattering 

contribution also resulted in an unrealistic increase in forward scattering with particle number.  Without 
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sufficient multiple scattering to destructively interfere with the incident and singly scattered waves, the 

amplitudes of the transmitted waves increased linearly with particle number and therefore violated 

conservation of energy.   

The testing performed with both the translational addition theorems and scattering models have 

revealed nonconvergence of the addition theorems is the most critical problem for the multiple-scattering 

simulations.  This problem has not been identified or addressed in the published literature due to the lack of 

real testing for the translational addition theorems independent of scattering, and due to their plateau-like 

convergence behavior for wide nmax ranges and various geometries. 

In addition to the lack of convergence for the translational addition theorems at computationally 

practical values for nmax, the primary computational problems encountered in the development and testing 

of the particulate media scattering models were the overall slowness and inefficiency of the computations, 

and the rapid scaling of computation time with particle number and nmax.  These problems remain 

unresolved, and yet their solutions are critical for the successful development of multipole-based multiple-

scattering models. 

An estimated increase of 108-109 in computation speed will be required to accurately model 

multiple scattering in physically realistic particulate media.  Such an estimate is based on a 104-105 increase 

to achieve addition theorem convergence (Section 8-A), and a 104 increase to expand the multiple-

scattering simulations from small particle clusters (<100 particles) to physically representative particulate 

systems (104 particles).  Although at first overwhelming, such increases appear reachable.  A factor of 106 

increase in computation speed is currently practical using a combination of technology enhancements 

(parallel processing, supercomputer clusters, etc.), readily attainable improvements to computational 

algorithms (algorithmic streamlining, recursion methods, etc.), and implementation of the nearest-neighbor 

scattering approximation.  Use of the nearest-neighbor scattering approximation alone has allowed the 

multiple-scattering simulation of a 5000-particle system (Section 5-C) at low nmax values (nmax ≤ 4).  

Additional increases from development of asymptotic methods, convergence acceleration methods, and 

other efficiency improvements could reasonably bridge the remaining 102-103 gap in computation speed.  



 

176

Given these estimates, it is realistic to expect a more fundamental approach to multiple scattering in particle 

packs, such as the VMIST approach, will be realized in the foreseeable future. 
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