
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2013 

Clonal Diversity of Quaking Aspen (Clonal Diversity of Quaking Aspen (Populus tremuloidesPopulus tremuloides): How ): How 

Multiple Clones May Add to Theresilience and Persistence of This Multiple Clones May Add to Theresilience and Persistence of This 

Forest Type Forest Type 

Richard Scott Gardner 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Other Environmental Sciences Commons 

Recommended Citation Recommended Citation 
Gardner, Richard Scott, "Clonal Diversity of Quaking Aspen (Populus tremuloides): How Multiple Clones 
May Add to Theresilience and Persistence of This Forest Type" (2013). All Graduate Theses and 
Dissertations. 1729. 
https://digitalcommons.usu.edu/etd/1729 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.usu.edu%2Fetd%2F1729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1729?utm_source=digitalcommons.usu.edu%2Fetd%2F1729&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 
CLONAL DIVERSITY OF QUAKING ASPEN (POPULUS TREMULOIDES): HOW MULTIPLE 

 
CLONES MAY ADD TO THERESILIENCE AND PERSISTENCE OF THIS FOREST TYPE 

 
by 

 
Richard S. Gardner 

 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree 

 
of 
 

MASTER OF SCIENCE 
 

in 
 

Forestry 
 
 
 

Approved: 
 
 
________________________________                 ________________________________ 
Dr. Karen E. Mock      Dr. James N. Long 
Major Professor                         Committee Member 
 
 
________________________________                 _______________________________ 
Dr. Zhao Ma               Dr. Douglas J. Shinneman 
Committee Member     Committee Member 
       

 
________________________________ 

Mark R. McLellan 
Vice President for Research and 

Dean of the School of Graduate Studies 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2013



ii 

 

 

 

 

 

 

 

 

 

 

Copyright 
©

 Richard Scott Gardner 2013 

All Rights Reserved 



iii 

ABSTRACT 

Clonal Diversity of Quaking Aspen (Populus tremuloides): How Multiple Clones May 

Add to the Resilience and Persistence of This Forest Type  

 

by 

 

Richard S. Gardner, Master of Science 

Utah State University, 2013 

 

Major Professor: Dr. Karen E. Mock 

Department: Wildland Resources 

 

 

 Conservation and restoration of quaking aspen in the western United States 

requires an understanding of how and when aspen clones became established, how clones 

adapt to environmental challenges, and how individual clones interact within stands.  I 

used molecular tools to identify individual clones in a natural population of aspen in 

southern Utah and detected high and low levels of clonal diversity within stands.  Stands 

with high clonal diversity were located in areas with a more frequent fire history, 

indicating that fires may have prepared sites for seed germination and establishment over 

time.  Conversely, areas of low clonal diversity corresponded to areas with less frequent 

fire.  The same molecular tools were then used to investigate clonal 

interactions/succession over relatively recent time.  For this portion of the study I 

sampled small, medium, and large aspen ramets (stems) at 25 subplots within spatially 

separated one-hectare plots, and mapped the clonal identities.  I found that approximately 

25% of the clones appeared to be spreading into adjacent clones, while 75% of the clones 
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had a stationary pattern.  In the final portion of the study, I again used molecular tools to 

identify aspen clones and investigated tradeoffs between growth and defense chemistry in 

mature, naturally-occurring trees.  Growth was estimated using a ten-year basal area 

increment, and the percent dry weight of salicortin, tremulacin, and condensed tannins 

was measured in the same trees.  Overall I discovered evidence for a tradeoff between 

growth and salicortin/tremulacin, and a marginally significant but positive relationship 

between growth and condensed tannins. 

(90 pages) 
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PUBLIC ABSTRACT 

 

 

Clonal Diversity of Quaking Aspen (Populus tremuloides): How Multiple Clones may 

add to the Resilience and Persistence of this Forest Type  

by 

Richard S. Gardner 

 

 

 Aspen forests and woodlands are widespread across the western United States and 

are a primary component of many ecosystems in the west.  Aspen is a clonal species, with 

reproduction occurring both by root sprouting (suckering) and seeding.  Traditionally, 

western aspen forests were thought to consist almost entirely of large clones established 

several thousands of years ago, with seeding events being rare and ecologically 

negligible. Although clones in the western US can grow to be many acres, recent studies 

have demonstrated a far greater proportion of small clones than had been previously 

thought to exist.  In this study I wanted to answer some important questions about how 

local conditions may lead to the recent establishment of these small clones, how clones 

interact with one another in genetically diverse stands, and how individual clones cope 

with environmental pressures over time. 

 In the first portion of my study, I used genetic tools to identify clones across 

Cedar Mountain, Utah (~10 miles southeast of Cedar City) and found areas of high and 

low clonal diversity (a greater number of individual clones in a stand would lead to 

higher clonal diversity).  Areas of high clonal diversity occurred in areas where fires have 

been more frequent over recent time, suggesting that fire may play a role in preparing 

landscapes for aspen seedlings to germinate and become established.   
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 In another portion of the Cedar Mountain study I showed at how adjacent aspen 

clones interact with one another.  In particular I determined how frequently clones 

seemed to be spreading into adjacent clones (versus having stable boundaries). I found 

that approximately a quarter of the clones seemed to be spreading into surrounding 

clones, and three-quarters of the clones displayed more stationary behavior.  These 

findings suggest that the process of clonal displacement and replacement within stands 

may be quite slow but does occur. 

 The third portion of my thesis addressed ecological tradeoffs that might occur in 

aspen. Aspen leaves are consumed by many species of insects, and must cope with this 

pressure over their lifetimes.  Alternative ways of coping with herbivory include resisting 

attacks by producing defense chemicals to reduce attacks or growing new tissues 

vigorously following herbivory. Previous greenhouse studies have shown that aspen 

experiences tradeoffs between resistance (defense chemistry) and resilience (growth 

following attack) in experimental settings, and I wanted to determine if these tradeoffs 

were also present in mature, naturally-occurring aspen forests. I did detect a tradeoff 

between a particularly effective group of defense chemicals and growth, and the tradeoff  

varied among individual aspen clones.  I also found that individual clones differed with 

respect to the concentration of all defense chemicals and also with respect to growth.   

 The findings of this study may help influence management decisions when 

objectives are to promote aspen stand resilience and persistence over time.  Forest 

managers can create conditions favorable to seedling establishment and the promote 

establishment of new clones which will likely increase the chances for some clones to 

tolerate changing conditions over time.  The establishment and maintenance of clonal 
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diversity should also provide forest resilience, both in terms of ecosystem function and 

adaptation to changing conditions. 
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CHAPTER 1 

INTRODUCTION 

 Quaking aspen (Populus tremuloides) is one of the most widespread tree species 

in North America (Little, 1971), and over much of its range is ecologically, 

economically, and socially important (DeByle and Winokur, 1985).  Isolated incidents of 

declining health and mortality in aspen have been observed in the interior western United 

States (Worrall et al., 2008, 2010), and climate change is projected to have further 

negative effects on aspen coverage in the west (Rehfeldt et al., 2009).  Conservation and 

restoration efforts have already been occurring where aspen has particularly high 

ecological and economical value.  Much of the emphasis of aspen restoration has focused 

on stimulating the growth of new stems (DeByle and Winokur, 1985), relief from 

ungulate browsing (Kay and Bartos, 2000) and reducing succession to conifers (Bartos, 

2001).  Although these restoration methods are likely to promote positive short-term 

results, they largely ignore adaptive potential and resilience in the face of future 

environmental hardships. 

Our current understanding of aspen regeneration ecology in the western United 

States is changing (Long and Mock, 2012) and this recent awareness may lead to 

improved conservation efforts in aspen dominated ecosystems. Historically, it has been 

assumed that western aspen stands consist of one or few clones, and conditions necessary 

for sexual regeneration are generally not present. Recent discoveries have challenged 

these assumptions, and aspen in the west have been found to be clonally diverse
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(DeWoody et al., 2008, 2009; Mock et al., 2008) and undergoing sexual reproduction 

recent time (Elliott and Baker, 2004; Kay, 1993; Romme et al., 1997). 

 The discovery of more clonally diverse stands in the Mountain West raises 

questions about clonal establishment and the ecological implications of clonal diversity in 

aspen stands.  Stands with a greater number of clones are expected to add to the 

phenotypic diversity and potential resilience to changing conditions.  Identifying site 

conditions which lead to successful seedling establishment could inform management 

actions to create favorable conditions for seedling establishment and persistence.   

In this thesis I characterized patterns of aspen clonal richness in southern Utah, 

and determined whether locations with significantly higher levels of clonal diversity also 

had a history of greater fire frequency. I then investigated how multiple clones interact in 

clonally diverse stands, asking whether some clones seem to be replacing others over 

relatively recent time.  Finally, I investigated whether naturally-occurring aspen display a 

tradeoff between growth and defense chemistry, two contrasting strategies for dealing 

with herbivory. 
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CHAPTER 2 

LINKING PATTERN AND PROCESS: ASPEN (Populus tremuloides Michx.) 

CLONAL DIVERSITY AND LANDSCAPE HISTORY 
1 

 

ABSTRACT 

 Recent studies suggest that clonal diversity in Western aspen (Populus 

tremuloides) is far greater than once presumed, raising questions about when and how 

clones establish and what clonal diversity may mean ecologically.  In this study we found 

areas of significantly high and low levels of clonal diversity in aspen stands of 

southeastern Utah, a location near the geographic fringe of the species distribution; areas 

where stands are assumed to be dominated by large clones.  Recent fire was more 

common in areas where we discovered greater clonal richness, and relatively few fires 

were reported in areas with lower clonal richness.  In study plots where multiple clones 

existed we detected evidence of clonal boundary stability, although approximately one 

quarter of the clones showed evidence of encroaching into neighboring clones.  Clonal 

boundary stability and clonal encroachment represent potentially contrasting and 

complex successional dynamics. Clonal boundary stability would prevent competitive 

loss of clonal richness in a stand, but may result in a loss of aspen coverage as clones 

succumb to stressful conditions.  While clonal encroachment may result in a reduction of 

diversity over time, this phenomenon may allow more competitive clones to persist 

throughout a range of environmental challenges. 

 

1
 This chapter is co-authored by Richard S. Gardner and Karen E. Mock
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1. Introduction 

Recent studies have shown that aspen stands in the Intermountain West have 

substantially higher clonal diversity than previously assumed (DeWoody et al., 2008, 

2009; Mock et al., 2008), a finding that could fundamentally change our understanding of 

aspen ecology (Long and Mock, 2012).  Even in landscapes dominated by large clones 

(e.g.,  Fishlake National Forest in Central Utah, home of the enormous Pando Clone) 

patches of high clonal diversity exist (DeWoody et al., 2008; Mock et al., 2008).  Clonal 

richness has inherent ecological and evolutionary value; stands with a greater number of 

clones are likely to contain a variety of phenotypes (Kanaga et al., 2008; Osier and 

Lindroth, 2006; Stevens et al., 2007), providing increased ecological amplitude and 

increased potential for adaptation to future environmental challenges.  The spatial 

clustering of small clones (Mock et al., 2008) suggests that conditions sufficient for genet 

establishment and persistence vary across landscapes and may be occurring over a 

relatively recent time scale. Understanding the landscape processes underlying these 

patterns of genet richness in western landscapes could inform management practices 

directed toward aspen restoration and resiliency. 

 Widespread and successful genet establishment events have occurred in the past 

century in western landscapes (Elliott and Baker, 2004; Romme et al., 1997, 2005).  As a 

dramatic example, the Yellowstone fires of 1988 led to successful establishment in some 

locations of thousands of seedlings per hectare (Kay, 1993), and although high levels of 

genet mortality occurred following the Yellowstone fires, some individuals remained 

vigorous and were greater than 2 meters tall 5 years after the fires (Romme et al., 2005).  

Aspen recruitment events appear to follow a pattern described in other clonal species 
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(Eriksson, 1992, 1993; Silvertown, 2008), with high levels of genet establishment, each 

with few ramets, followed by a decline in the number of genets over time, with an 

increase in ramets per genet. 

We hypothesize that the configuration of genet (clonal) diversity within stands is 

the result of “windows of opportunity,” where a viable seed source, site preparation, and 

subsequent years of adequate moisture occurred simultaneously (Jelinski and Cheliak, 

1992; Eriksson, 1993). While clonal age cannot yet be determined with precision and 

clonal size does not correlate with clonal age at a coarse temporal scale (Ally et al., 

2010), seeding events necessarily result in small clones which expand at varying rates 

over time.  Thus, patches of high clonal richness within a matrix of larger clones may be 

the result of seeding events in the past century.  Alternatively, such a pattern may result 

from the long term persistence of clones that expand relatively slowly and unevenly, 

perhaps due to ecological conditions limiting the expansion of clones. 

The first objective of this study was to determine whether patterns of clonal 

diversity correspond spatially with areas prone to fires, since fires often create conditions 

favorable for aspen seed germination (McDonough, 1979).  Such a correlation would 

suggest that areas of high clonal richness are indicative of past seeding events following 

fires.  Our second objective was to characterize clonal interactions within stands.  Once 

clones become established, they are expected to compete for resources, resulting in the 

loss of some clones and the expansion of others.  Thus, in the absence of stand-replacing 

disturbance, we expect clonal succession (more adapted clones replacing less adapted 

ones) to reduce clonal diversity over time and the rate of this succession would reflect the 

rate of loss of genetic diversity.  These dynamics may be particularly important in 
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western landscapes, where clones can become very large.  If clonal succession is rapid, 

we expect to see a change in the vertical composition of clonal diversity – i.e. the 

understory aspen may be a different clone than the overstory aspen as one clone advances 

and occupies the area of an adjacent clone.  Alternatively, if clonal composition is rather 

stable over time, we expect understory clones to be the same clone as those in overstory 

positions. 

 

2.  Methods 

2.1. Study site description 

 This study took place on Cedar Mountain, Utah (Fig. 2.1), located approximately 

10 kilometers south-southeast of Cedar City, Utah, USA, in southern Iron and northern 

Washington counties (37° 38’ 15’’ N, 113° 01’ 39’’ W).  The forest type across the 

plateau is mostly pure aspen, with minor components of mixed aspen and conifer 

(Douglas-fir (Pseudotsuga menzesii) at lower elevations, and true fir (Abies concolor) 

and Engelman spruce (Picea engelmanii) at upper elevations). With the exception of the 

extreme eastern portion of the plateau (Webster Flat, which is managed by the US Forest 

Service), Cedar Mountain is privately owned, and the plateau has a history of seasonal 

livestock grazing of sheep and cattle.  Although livestock grazing exists throughout the 

study area, Webster Flat likely has policies different from the rest of the plateau, which 

may have an effect on vegetation dynamics.  Fire occurrence on Cedar Mountain is 

relatively infrequent, but the eastern side has experienced the highest number of fire 

events over the last 20 years, based on fire history records obtained from the Wildland 

Fire Occurance Database (Brady, 2012).  One substantial fire (The C Trail fire) occurred 
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on the northwest edge of Cedar Mountain in June 2002, burning approximately 320 acres 

and lasting for approximately 3 months. 

 

Fig. 2.1. The Cedar Mountain study area. 

 

2.2. Field methods 

 

2.2.1. Clonal richness 

 Sample points were generated by projecting a 900 meter hexagonal grid over the 

Cedar Mountain study area.  We preserved only those points that fell within aspen 

coverage according to Southwest Regional Gap Analysis data (Lowry et al., 2007), 

resulting in 134 points.  Of the 134 points, 90 were randomly selected to represent our 
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area of inference, and after access was granted by landowners and ground-truthing each 

point for aspen coverage, a final 83 points remained. 

 One-hectare plots (100m x 100m) were centered at each of the 83 sample points 

across the Cedar Mountain Plateau.  At each plot, 9 evenly spaced (50 meters apart) 

subsample locations were established in a 3x3 matrix.  At each subsample location tissue 

samples (either leaf or cambium) were obtained from overstory and understory ramets 

within 10 meters of the center of each subsample location.  Tissue samples were 

preserved in labeled paper coin envelopes and submerged in silica gel desiccant, and GPS 

coordinates were collected at each sample site using hand held GPS units (UTM 

coordinate system and NAD83 map datum). 

 

2.2.2. Clonal Boundary Interactions 

 From the 83 plots described above, 17 were sampled to investigate clonal 

boundary interactions.  The 17 plots were selected on the basis of 1) having multiple size 

classes of ramets, 2) having at least two genotypes detected in the genetic analysis (see 

subsection 2.3. Clonal ID), and 3) attempting to distribute sample locations across the 

entire plateau at Cedar Mountain.  Within each of the 17 plots, a square grid of 25 sub-

plots (20 meters apart, each with a five meter radius) was established.  The 20 meter 

spacing was influenced by the results of the Mock et al. (2008) study, where two size 

classes of ramets (overstory and understory) were sampled at 50 meter spacing; in this 

study we were interested in detecting clonal distributions at finer horizontal and vertical 

scales.  At each subplot, leaf tissue was collected from ramets in each of three size classes 

(when present): an overstory ramet (>12.5cm dbh), a mid-story ramet (2.5-12.5cm dbh), 
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and an understory ramet (<2.5cm dbh).  Leaf tissue samples were preserved in paper coin 

envelopes containing silica gel desiccant and taken to the lab for genotyping. 

 

2.3. Analytical methods 

 

2.3.1. Clonal identity methods 

 DNA was extracted from leaf and cambium samples using a QIAGEN DNEasy 

96 Plant Kit following the manufacturer’s protocols.  Six highly variable microsatellite 

loci were amplified in each sample following Mock et al. (2008): GCPM970, PMGC433, 

PTR14, PMGC2571, WPMS15, WPMS14.  Microsatellite alleles were scored using the 

program Genemapper v4.0 (Applied Biosystems, Inc.).  Individual samples differing by 

just one allele were considered the same genet.   A probability of identity (PI) analysis 

was conducted on all diploid samples using the GenAlEx v6 (Peakall and Smouse, 2006) 

add-in for Microsoft Excel version 2010 to assess the power of these six loci to identify 

individuals.  A PI analysis reports the probability of two randomly selected genets from a 

population having the same multi-locus genotype.  This statistic takes into account the 

allele frequencies in the population and the number of loci investigated per individual.  

Low PI values (0.01 – 0.0001) indicate a high likelihood of accurate detection of 

individuals (Waits et al., 2001).  

 

2.3.2. Clonal Richness and Fire Occurrence 

 Clonal richness values were calculated for each of the 83 plots by dividing the 

number of individual clones by the total number of samples collected at each plot 

(maximum of 9 samples).  Clonal richness values were then mapped (Fig. 2.2) using 
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ESRI ArcGIS Desktop v10.  We used the ArcGIS Desktop Hot Spot Analysis, with the 

Getis-Ord GI* spatial statistic (Getis and Ord, 2010), to determine whether any 

significant ‘hot spots’ existed within the study area.  The Moran’s Spatial Autocorrelation 

tool in ArcGIS Desktop v10 was used to determine the most appropriate distance to 

compare a given point to its neighbors in the Hot Spot Analysis (Fig 2.4).  The Spatial 

Autocorrelation tool plots z-scores between given richness values over a range of 

distances; the highest z-score reported over a range of distances (2,400 meters for this 

analysis) can then be used for comparisons in the Hot Spot Analysis. 

The significance values from the Hot Spot Analysis were plotted against fire 

frequency data obtained from the Wildland Fire Occurrence Database (Brady, 2012).  

The Wildland Fire Occurrence Database consists of point-specific data where fires 

occurred over a 20-year period.  We made the assumption that fire frequency over the last 

20 years could be used as an indicator of fire frequency over longer periods of time.  

Point fire data were used in this study (over perimeter fire data) due to the lack of 

perimeter data available for private lands. 

 

2.3.3. Clonal Boundary Interactions 

 Genotypes were mapped to their respective sample locations using ArcGIS 

Desktop v10; understory, mid-canopy, and overstory samples were assigned unique 

symbology within each subplot (Fig. 2.4, Fig. 2.5, and Appendix A). To summarize the 

patterns found in the clonal boundary plot maps, we created a set of rules based on the 

resolution of the sampling design and the genetic spatial patterns detected in the 17 plots  
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Fig. 2.2. Map of clonal richness for each of the 83 plots, showing uneven levels of aspen 

clonal richness across the study area, but generally low clonal diversity overall.  
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Fig. 2.3. Results of the Hot Spot Analysis of genetic richness values at Cedar Mountain, 

showing clustering of high levels of aspen clonal richness to the east and north, and 

clusters of low levels to the south and center.  Fire frequency is higher in areas with 

clustering of plots with higher clonal diversity.   
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we studied for clonal interactions.  These rules conservatively characterized the patterns 

of our data, as we excluded roughly half of the clones detected because they did not meet 

our criteria for having enough data.  For clones in a plot to be considered ‘spreading’ into 

neighboring clones they met the following criteria: 1) they must be present in at least four 

subplots (in any size class), 2) they must have at least eight potential subplots to where 

detection of understory ‘spreading’ is possible (i.e. a different clone was present in the 

overstory in either the largest or mid-size class), and 3) they are found as ‘spreading’ in at 

least two sub-plots.  A table summarizing the clonal distribution and evidence of clonal 

encroachment is summarized in Appendix B. 

 

3.  Results 

3.1.1 Clonal Identification 

A total of 80 clones were detected across the study area. The PI analysis indicated 

that six microsatellite loci were sufficient to identify individual genets in this population 

with reasonable accuracy; P(ID)= 6.5E-05. 

 

3.1.2 Clonal Richness 

 There was pronounced heterogeneity across Cedar Mountain with respect to 

clonal richness (Fig. 2.2), with a clustering of significantly higher diversity in the eastern 

part of the plateau and a clustering of significantly lower diversity in the central and 

southern portions (Fig. 2.3).  Table 1 lists the genetic richness and z-scores for all 83 

plots on Cedar Mountain.  The eastern portion of the plateau also had more frequent fires. 
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Table 2.1  

Clonal richness and z-scores for all 83 plots.  Clonal richness scores are derived from the 

number of clones detected, divided by the number of ramets sampled per plot (maximum 

of nine).  Z-score signs represent clustering of high (positive) and low (negative) clonal 

richness and p-values indicate significance levels for clustering. 

Plot # 

Clonal 

Richness 

Value z-score 

p-

value Plot # 

Clonal 

Richness 

Value z-score p-value 

001 0.222 -0.857 0.391 072 0.111 -0.789 0.430 

002 0.111 -0.550 0.582 073 0.111 -0.455 0.649 

003 0.333 -0.550 0.582 076 0.429 2.748 0.006 

007 0.429 -0.866 0.386 078 0.429 3.323 0.001 

008 0.111 -0.837 0.403 082 0.250 -0.153 0.878 

011 0.400 -1.146 0.252 083 0.222 1.565 0.117 

012 0.222 -1.146 0.252 084 0.444 4.491 0.001 

013 0.167 -0.445 0.657 086 0.400 2.143 0.032 

015 0.286 -0.693 0.488 088 0.111 0.164 0.870 

016 0.111 -1.003 0.316 090 0.556 -0.519 0.604 

018 0.250 -0.837 0.403 091 0.714 2.584 0.010 

021 0.250 -1.381 0.167 093 0.556 -0.320 0.749 

022 0.400 -0.643 0.521 094 0.333 0.262 0.793 

023 0.333 -2.138 0.033 095 0.286 0.952 0.341 

027 0.111 -2.138 0.033 096 0.556 0.778 0.437 

028 0.125 -0.880 0.379 097 0.429 0.613 0.540 

029 0.250 -0.688 0.491 098 0.143 1.414 0.157 

030 0.125 -2.107 0.035 100 0.625 1.953 0.051 

031 0.500 -0.007 0.994 101 0.600 3.186 0.001 

033 0.250 -0.435 0.663 102 0.714 3.599 0.001 

034 0.250 -1.067 0.286 105 0.111 0.697 0.486 

036 0.333 -1.042 0.297 106 0.333 0.402 0.688 

038 0.286 -0.525 0.599 107 0.286 0.605 0.545 

039 0.222 -1.975 0.048 108 0.333 0.806 0.420 

040 0.111 -2.012 0.044 110 0.333 1.549 0.121 

041 0.286 -0.724 0.469 114 0.375 0.674 0.500 

046 0.333 -1.231 0.218 115 0.333 0.605 0.545 

048 0.125 -1.975 0.048 116 0.222 -0.226 0.821 

049 0.222 -1.178 0.239 118 0.333 2.205 0.027 

051 0.444 -1.851 0.064 119 0.333 1.624 0.104 

053 0.111 0.746 0.456 120 0.444 1.859 0.063 

056 0.625 2.722 0.006 121 0.500 0.095 0.924 

057 0.333 -1.013 0.311 123 0.333 -1.071 0.284 

058 0.125 -1.476 0.140 125 0.250 -0.512 0.609 
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059 0.375 -1.646 0.100 126 1.000 2.395 0.017 

061 0.222 -0.565 0.572 128 0.111 -0.832 0.405 

063 0.111 -0.911 0.362 129 0.286 -1.191 0.234 

065 0.500 2.393 0.017 130 0.222 -1.268 0.205 

066 0.571 2.722 0.006 131 0.250 -0.797 0.426 

068 0.750 3.286 0.001 132 0.222 -1.356 0.175 

069 0.111 -1.476 0.140 133 0.286 -1.228 0.220 

070 0.111 -1.506 0.132 

     

3.1.3 Clonal Boundary Interactions 

Eighty individual clones were detected in the 17 plots investigated for clonal 

boundary interactions.  Forty-two clones met our criteria required for assessment of 

clonal encroachment (i.e. present in at least four subplots), and 10 of the 42 clones 

(23.8%) displayed a pattern of clonal encroachment.  Clones meeting the criteria for 

clonal encroachment occurred in nine of the 17 plots and one plot contained two clones 

classified as encroaching.  Figures 4 and 5 illustrate examples of clonal boundary stability 

(Plot 61, Fig. 2.4) and clonal encroachment (Plot 84, Fig. 2.5).  Clone-specific maps of all 

17 plots are presented in Appendix A. 
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Fig. 2.4. Example of a subplot showing clonal boundary stability.  At nearly all subplots, 

the same genotype is represented in all three size classes. 
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Fig. 2.5. Example of a subplot suggesting clonal replacement. The yellow clone exists in 

the understory of four adjacent clones. 
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4.  Discussion 

 Current understanding of western aspen ecology, and subsequently its appropriate 

management, is evolving (Long and Mock, 2012).  Discoveries such as aspen invasion of 

conifer stands (Elliott and Baker, 2004), high levels of clonal diversity within stands 

(Mock et al., 2008; DeWoody et al., 2009), and evidence of recent sexual reproduction 

(Kay, 1993; Romme et al., 1997, 2005) are challenging and expanding current 

management paradigms.  With these paradigm shifts in mind, we sought to describe and 

interpret patterns of clonal diversity in a large study area (Cedar Mountain) in southern 

Utah. 

Our first research objective was to describe patterns of clonal diversity across the 

27,500 hectare study area, and to look for potential spatial relationships between diversity 

and fire history.  We hypothesized that if areas of high clonal diversity and small clonal 

size of western aspen (observed in previous studies by Dewoody and Mock (2008, 2009)) 

were indicative of recent episodes of aspen seedling recruitment, then such areas would 

be spatially correlated with more frequent fire occurrence, because fire positively 

influences seedling establishment and recruitment.  Although there are likely other 

factors affecting clonal establishment over time (i.e. presence of conifers and grazing 

regimes), fire is likely and capable of creating the conditions necessary for seedling 

establishment, is tractable over time, and relatively frequent in our study area.  With the 

lack of fire severity information over time, this study simply considers spatial 

relationships between fire and clonal diversity and is not intended to be corollary or 

causational. 
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We detected clusters of both high and low levels of clonal diversity across Cedar 

Mountain, and high levels of clonal diversity corresponded well to areas with recent fires.  

We suggest that when a site burns periodically, there are more frequent “windows of 

opportunity” for seedling establishment, as described by Eriksson (1993), and Jelinski 

and Cheliak (1992).  The complex post-fire structure of living and dead remnant trees (of 

multiple species) may also enhance opportunities for new clones to establish by providing 

shelter from herbivores and soil desiccation.   

Our second research objective was to determine whether we could detect evidence 

of rapid clonal succession at clonal boundaries in the Cedar Mountain study area.  We 

hypothesized that if some clones were replacing others relatively quickly, we would 

detect clone-specific differences in age classes at sub-plots within one hectare plots 

across Cedar Mountain.  According to this scenario, we would expect to see expanding 

clones represented as small ramets under larger remnant (older) ramets of static clones. 

Alternatively, if clonal succession is occurring relatively slowly, we would expect that 

boundaries between clones would be represented across all ramet size classes (i.e. clones 

would occupy a vertical distribution at all subplots). These scenarios are generally 

consistent with the “guerrilla” vs. “phalanx” patterns described by Cheplik (1997) and 

Namroud et al. (2005), with the added consideration of ramet age classes. 

Overall, 23.8% clones showed evidence of encroachment into neighboring clones.  

These encroaching clones were dispersed across the study area and (with the exception of 

one plot with two encroaching clones) were observed as independent occurrences in eight 

of the study plots.  Stable clonal boundaries can be seen as both a benefit and potentially 

detrimental in the context of succession and stand resilience.  Clonal boundary stability 
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may be due to local adaptation and competitive evenness among genets.  Clonal 

succession, by contrast, is expected to lead to loss of genetic diversity over time in the 

absence of sexual reproduction, and loss of genetic diversity can reduce stand resilience 

in the face of changing environmental conditions. Our findings suggest that clonal 

boundaries are generally stable on Cedar Mountain, but that a small but important 

proportion of clones may be expanding rapidly into adjacent clones.  These results do not 

suggest that genetic diversity is rapidly declining on Cedar Mountain due to clonal 

succession.  However, studies at finer scales assessing clonal boundary changes over time 

may provide more definitive evidence of the rate of these clonal dynamics over time. 

 

5. Conclusions and Implications 

 We found stands with higher clonal richness and small clonal size (more typical 

of aspen in eastern landscapes, as described by Kemperman and Barnes (1976)) in areas 

that burned more frequently.  In contrast, locations with low clonal diversity and larger 

clonal size were located in areas without frequent fires.  This finding is consistent with 

the interpretation that clusters of high clonal richness are signatures of seedling 

recruitment (e.g. Mock et al., 2008).  Our findings also suggest that most clones have 

stable boundaries, although 24% of the clones appeared to be encroaching into adjacent 

clones. 

Understanding the landscape and biological processes influencing aspen clonal 

diversity and interactions could provide valuable information for land managers.  

Formulating management actions which favor clone establishment over time could result 

in higher clonal richness of aspen stands.  Presuming that clonal diversity is important to 
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resilience of aspen forests in light of changing environmental conditions, we suggest that 

an effort be made to identify and protect seeding events following fires. 

Management actions such as prescribed fire can help create and maintain 

“windows of opportunity” for successful seedling establishment.  Aspen generally 

produce copious amounts of viable seed (McDonough, 1979) that are wind dispersed.  

Preparing bare mineral soil conditions in areas that are likely to support seedling 

establishment (Kay, 1993) could increase the chances of seedlings successfully 

establishing, especially if protected from herbivory. 
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CHAPTER 3 

GROWTH-DEFENSE TRADEOFFS IN POPULATIONS OF ASPEN (Populus 

tremuloides Michx.) IN THE INTERIOR WESTERN UNITED STATES 
1 

 

Abstract- Ecological tradeoffs in aspen have been studied for decades, but a majority of 

these studies have been performed in either common gardens or greenhouses, and have 

involved young genets.  In this study we assessed 18 mature aspen genets in wild 

populations of northern Utah to determine whether tradeoffs between resistance and 

tolerance were ameliorated under field conditions.  The eighteen genets were blocked by 

cytotype, which allowed us to partition the effects of diploid vs. triploid clones.  We 

found evidence of a tradeoff between radial stem growth and foliar dry weight of current 

year foliar phenolic glycosides, and a (marginally) significant positive relationship 

between radial stem growth and the foliar dry weight of condensed tannins.  We also 

found evidence of diploid aspen having lower basal area increment (BAI) than triploids 

as they aged.  In addition to investigating ecological tradeoffs, our results support 

previous greenhouse and common garden studies where individual aspen clones 

displayed significantly different levels of growth, foliar condensed tannins, and foliar 

phenolic glycosides.  There was also evidence that triploid aspen produce significantly 

more phenolic glycosides than diploids, a finding that may be regionally important as 

high levels of triploidy have recently been reported in western aspen. 

 

 

1
 This chapter is co-authored by Richard S. Gardner, R. Justin DeRose, Richard L. 

Lindroth, and Karen E. Mock 
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INTRODUCTION 

A major driving force in the persistence of plants is balancing the allocation of 

available resources between growth and the production of chemical or physical defenses 

(Herms and Mattson, 1992).  Regrowth following herbivory (tolerance) and production of 

defensive compounds or structures (resistance) are two common strategies used by plants 

for coping with herbivory. While each of these strategies can be effective, one may come 

at a direct carbon cost to the other, resulting in negative correlations (tradeoffs) between 

growth and defense (Kozlowski and Pallardy, 1996).  Attempts to explain the tendency of 

particular species, populations, or individuals to invest in growth vs. defense have 

invoked evolutionary histories of both plants and herbivores (Rhoades, 1979; Crawley, 

1983; Rausher, 1992) as well as plant resource availability (Bryant et al., 1983; Coley et 

al., 1985) with the most likely explanations involving elements of both (Hamilton et al., 

2001). 

Plants resist herbivory by producing physical and chemical barriers.  The more 

obvious physical defenses such as trichomes, spines, and thorns reduce the amount of 

herbivory by increasing the handling time of plant tissues or obstructing access 

altogether.  Less obvious are the chemical defenses (plant secondary metabolites or 

PSMs), which can reduce palatability and digestibility, and/or limit herbivore fitness and 

health (Rhoades, 1985; Rausher, 1992).  The production and sequestration of PSMs have 

been directly linked to herbivore resistance (Bryant et al., 1987; Kozlowski, 1992), but 

the production of these compounds draws from the same carbon pool required for 

physical growth and primary metabolism of woody plants.  Therefore, when carbon is 
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limiting, a broad tradeoff exists between growth and defense, and potentially among 

various defense compounds (Kozlowski and Pallardy, 1996; Koricheva et al., 2004).   

The cost of plant defenses has been an active area of ecological research for 

decades. Previous investigations assessing resistance and tolerance tradeoffs in various 

plant species, manifest through correlations between growth and defense compounds, 

have had mixed results, with inconsistencies likely due to species differences (Han and 

Lincoln, 1994; Adler et al., 1995; Leimu and Koricheva, 2006) and methodological 

differences among studies (Hwang and Lindroth, 1997; Stevens et al., 2007).  Nearly all 

of these studies have been conducted in common garden settings, which have allowed 

researchers to partition genetic and environmental influences on the production of 

defense compounds and growth, and have provided valuable insights into growth-defense 

tradeoffs (Han and Lincoln, 1994; Adler et al., 1995; Hwang and Lindroth, 1997; Stevens 

et al., 2007).  However, the controlled setting of a common garden, particularly 

greenhouse studies, may limit inferences to natural settings, where environments are 

more variable over time and multiple interacting stressors may alter ecological 

relationships.  

Ecological tradeoffs between growth and defense have both theoretical and 

practical importance in understanding how plants and animals coexist over time, yet 

empirical knowledge about tradeoffs in natural populations is limited (Leimu and 

Koricheva, 2006).  A more thorough understanding of growth-defense tradeoffs could be 

particularly important on landscapes where dominant and/or foundation species are 

predicted to experience significant changes in distribution. One such species is quaking 

aspen (Populus tremuloides), a member of the Salicaceae family.  Quaking aspen is an 
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ecologically and economically valuable forest species which covers large areas of the 

North American continent and is predicted to undergo large scale distributional shifts and 

a reduction in distribution in the coming decades (Rehfeldt et al., 2009). 

Aspen in the Western U.S. is a tractable species for assessing ecological tradeoffs 

in natural environments because of its tendency to form large clones and the existence of 

pronounced heritable phenotypic differences among clones (Stevens et al., 2007; 

Donaldson and Lindroth, 2007; Kanaga et al., 2008). Clonal trait variation may even 

influence soil chemistry, nutrient cycling, and microbial communities (Madritch et al., 

2009), and has been shown to alter broader community traits (Whitham et al., 2003).  

Mock et al. (2008) note that larger clones in the Interior West tend to be triploid, a 

discovery that may have considerable ecological impacts because polyploid plants often 

show more robust vegetative growth, potentially altering growth-defense dynamics.  

These characteristics provide an opportunity to study extended patterns of tolerance and 

resistance tradeoffs between clones, as well as between cytotypes (diploid vs. triploid). 

Defense chemicals of the Salicaceae family have been studied for over 100 years 

(Boeckler et al., 2011).  Pharmaceutical benefits were the original motivation for 

exploring these secondary compounds, but more recently the focus has shifted toward 

their ecological importance.  Phenolic glycosides (PGs) and condensed tannins (CTs) 

have been identified as being particularly effective at resisting insect herbivory 

(Tahvanainen et al., 1985) and are the only secondary metabolites found in any 

appreciable amounts in plants of the Salicaceae family (Palo, 1984).  Some studies have 

shown that specialist consumers can increase herbivory of plants with higher 

concentrations of phenolics via detoxification or sequestration, but phenolics are still 
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regarded as being highly effective at deterring generalist herbivores (Rhoades, 1985; 

Boeckler et al., 2011).  Common garden studies on aspen have shown that PGs are 

particularly effective at deterring herbivory from both insects and mammals (Boeckler et 

al., 2011).  Similar studies have also shown that CTs are less effective at deterring 

herbivory, but may function to deter fungal (Bailey et al., 2005) pathogens or even 

prevent UV damage (Close and McArthur, 2002).  These compounds can comprise a 

significant proportion of leaf dry weight, often up in the range of 30%. 

In native aspen populations we sought to determine 1) whether there was evidence 

of a tradeoff between growth and chemical defense and 2) whether levels of growth and 

defensive chemistry varied between genotypes or cytotypes.  This assessment of tradeoffs 

in naturally occurring aspen populations provides an important complement to common 

garden studies, as the complexity of field conditions may dampen or exacerbate the 

ecological responses and tradeoffs observed in more controlled settings. 

 

METHODS AND MATERIALS 

Study Site. Our study was conducted at Swan Flat in northern Utah, located within 

the Uintah/Wasatch/Cache National Forest (41°58’05”N 111°29’21”W).  This site 

consists of both pure aspen and mixed aspen-conifer (Abies, Pinus, and Pseudotsuga).  

The average elevation of the site is 2,400 meters and aspen exists on all aspects. This site 

was chosen because it is typical of the semi-arid Intermountain West aspen and because 

of the availability of previous aspen genotypic data from Mock et al. (2008). 
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Fig. 3.1 Map of the Swan Flat study site in northern Utah.  Gray squares represent plots 

in diploid clones (n=9), while black represent plots in triploid clones (n=9).  Within each 

of these plots, 10 ramets were originally sampled (n=180). 
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Study Design. In order to detect clonal influences on tradeoffs, we established 

plots that contained ramets from just one clone.  Previous genetic work by Mock et al. 

(2008) had delineated clonal boundaries of aspen at Swan Flat at a 50m grid scale, 

revealing areas of small and large clones.  We established 18 50m x 50m plots (2,500 m
2
) 

in spring 2008 within areas where large clones were known to be present.  Of the 18 plots 

established, nine were within diploid clones and the other nine plots were within triploid 

clones.  Within each of the 18 plots, 10 ramets were selected randomly, but with an effort 

to sample throughout the entire 2,500 m
2
 area within each of the 18 plots (n=180).  

Ramets measuring 10-15 cm in diameter, measured 1.4m above the soil surface, were 

selected to account for ontological shifts in phytochemistry (Donaldson et al., 2006) and 

growth.  Each ramet was permanently marked with a nail and tag for future 

measurements and sampling. 

Clonal Confirmation Sampling and Analysis. We used microsatellite genotyping 

to assure that all ramets within each plot were members of the same clone.  Leaf tissue 

was collected from each ramet at the time of plot establishment and DNA was extracted 

using Qiagen’s DNeasy 96 Plant Kit
®
.  For each of the 180 samples, microsatellite 

analyses were performed on five highly variable nuclear microsatellite loci (PMGC2571, 

GCPM970, WPMS14, PMGC576, and WPMS20) following protocols for extraction and 

amplification described in Mock et al. (2008).  The microsatellite data were scored using 

the program GeneMapper v4.0. Cytotype (diploid vs. triploid) was established by 

observing three alleles at one or more microsatellite loci and cytotype was confirmed by 

the flow-cytometry method described in Mock et al. (2012).  Three of the 180 ramets 
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were not of the expected clone (based on microsatellite genotyping) and were excluded 

from the remainder of the study. 

Phytochemistry Sampling and Analysis. Leaf samples were collected in summer 

2008 from a random subset of the original 180 ramets (n=98, between 5 and 7 ramets per 

clone) to determine concentrations of defense compounds.  Phytochemical sampling 

required a representative sample of about 20 leaves per ramet, which were collected 

throughout each canopy, to account for any variation in phytochemistry within the 

canopies.  All leaves from a particular ramet were placed into one paper envelope and 

stored in silica gel desiccant.  Once dry, leaves were ground using a Wiley Mill with a 

size 40 mesh.  The PGs salicortin and tremulacin were quantified using thin-layer 

chromatography methods described by Lindroth et al. (1993), using purified aspen PGs as 

standards.  CTs were analyzed using the acid butanol method (Porter et al., 1985), using 

purified CTs from aspen as a standard.   

Dendrochronology Sampling and Analysis. In fall 2008, increment cores were 

collected from 95 of the 98 ramets which had been sampled for phytochemistry and 

clonal ID; three of the ramets were too rotted to obtain cores.  Tree cores were obtained 

using an increment borer at 1.4 m above the soil surface.  Each core was prepared and 

analyzed using standard dendrochronological methods (Stokes and Smiley, 1968).  

Increment cores were glued to mounting blocks with vessels oriented upward and sanded 

with progressively finer grades of sandpaper until annual rings were apparent.  Age of 

ramets and ring widths were measured using a binocular scope; conservative age 

estimates were made for six samples in which the borer missed the pith and had no arc 

for estimating ages.  Hidden and missing rings were revealed using cross-dating 
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techniques (Holmes, 1983) and confirmed by shadowing direct light on the sample for 

detection of latewood vessels (DeRose and Gardner, 2010).  

Although the increment cores obtained from each ramet provided us with a record 

of annual radial growth going back sometimes 100 years or more, the last ten years (1999 

to 2008) of basal area increment was used as the growth metric, to facilitate closer 

correspondence with the sampling season of phytochemistry. Analyzing the cumulative 

growth over the last ten years also smoothed out annual variability of growth. 

 

STATISTICAL ANALYSES 

Clonal Confirmation Sampling and Analysis. A probability of identity (PI) 

analysis was performed on the scored microsatellite data using the GenAlEx v6.1 add-in 

for Microsoft Excel (Peakall and Smouse, 2006).  A PI analysis reports the likelihood of 

two unrelated individuals, selected randomly from the same population, of having the 

same multilocus genotype.  Because PI analysis requires population allele frequency 

estimation based on individual genotypes, and individual allelic composition cannot be 

determined for triploid individuals using microsatellite analysis, only diploid individuals 

were used in calculating the PI.   

Resistance / Tolerance Tradeoffs. A random coefficient model was used to assess 

the effects of the predictor variables on growth (n=97).  This model was appropriate 

given the nested design structure (ramets within clones) and fixed effect predictor 

variables, measured on both categorical and continuous scales.  Ramets were blocked by 

clone as a random variable, since clones sampled represented a random sample from the 

population at Swan Flat, UT.  The independent variables cytotype (categorical: diploid 
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and triploid), % dry wt. of PGs (continuous), % dry wt. of CTs (continuous), and age of 

ramet (continuous) were used to predict the last 10 years of growth.  All predictor 

variables for growth were centered with means equal to zero to standardize intercepts in 

the model.  The variables age and CTs were transformed using natural log to linearize 

their relationships with average growth and to reduce leverage of individual observations.  

The CORR procedure in SAS v9.2 (SAS Institute, 2004) was used to test for 

multicollinearity between predictor variables.  Two-way interactions among predictor 

variables were explored by testing for improved fitting of the model.  The only 

interaction which improved the model fit and remained in the final model was cytotype 

by age, meaning that cytotype explained more of the variability in growth as ramets aged.  

There was no support of random slopes by clone for any continuous scale predictor; 

hence we report results for a fixed slope, random intercept model grouped by cytotype.  

The growth variable was calculated as the area of the last ten years of radial growth, 

centered with means equal to zero to standardized intercepts, and was transformed using 

natural log to meet assumptions of normality of residuals and homogeneity of variance.  

It was necessary to remove one outlier because its growth was an order of magnitude less 

(likely due to a chronic/non-lethal fungal pathogen, observed by very slight incremental 

growth within dark discoloration of the core) than the average and proved to be a 

leverage point.  Data computations were generated using the GLIMMIX procedure in 

SAS/STAT software, Version 9.2 in the SAS System for Windows (SAS Institute, 2004). 

Growth and Chemical Defense Differences by Cytotype. We used the TTEST 

procedure in SAS v9.2 (SAS Institute, 2004) to determine differences by cytotype in 

growth, PGs, and CTs.  Since annual growth was negatively correlated with age (r = -
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0.68), it was necessary to perform a data transformation to account for this relationship; 

multiplying growth by the respective age of each sample nearly eliminated the influence 

of age on growth (r = 0.05) while maintaining the original relationships between predictor 

and response variables.  The natural log of age was used to meet assumptions for 

normality of residuals for the t-test. 

Mean Differences in Growth and Defense Between Genotypes. Three individual 

single- factor analyses of variance (ANOVAs) were conducted to determine if there were 

genotypic differences in PGs, CTs.  As described in the t-test methods, the age- 

transformed growth was used to account for the effect age had on growth.  The ANOVAs 

were conducted in SAS v9.2 using the GLIMMIX procedure (SAS Institute, 2004).  To 

meet assumptions for normality of residuals, natural log transformations were used on the 

variables CTs and growth. 

 

RESULTS 

Resistance / Tolerance Tradeoffs.  Results of the random coefficient model are 

reported in Table 3.1. Our results provide evidence for a tradeoff between growth and 

PGs (correlation estimate of -0.028; p=0.015) and an opposite and less significant 

relationship between CTs and growth (correlation estimate 0.093; p=0.096).  Model fit 

increased when ramets were blocked by clone (Table 3.2), indicating that clonal identity 

helps explain the variation in growth.  Age was a significant predictor of growth, where 

older ramets grew less than younger ramets (correlation estimate 0.378; p<0.001). The 

only significant interaction between predictor variables was age by cytotype, meaning 

that older diploids grew more slowly than triploids as age increased (correlation estimate   
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Table 3.1 Results of the random coefficient model, investigating tradeoffs between 

defense chemistry (independent) and growth (dependent).  

 Parameter 

Estimate 

Standard 

Error 

T-

statistic 
df 

P-

value 

Intercept 3.133  0.063 49.53 16 <0.01 

Diploid -0.035  0.098 -0.35 16 0.726 

Phenolic 

Glycosides 
-0.028  0.011 -2.50 72 0.015 

Condensed 

Tannins (ln) 
0.093  0.055 1.69 72 0.096 

Age of Ramets (ln) -0.378  0.119 -3.85 72 <0.01 

Age of Ramets by 

Diploid Interaction 

(ln) 

-0.379  0.170 -2.23 72 0.029 

 

-0.379; p=0.029), but cytotype alone was not a good predictor of growth (correlation 

estimate-0.035; p=0.726). 

Growth and Defense Differences by Cytotype.  Results for the T-tests are 

presented in Table 3.3 and Fig. 3.2.  These tests revealed no significant differences in 

growth between the means for diploid and triploid samples (t=1.25; p = 0.447).  This 

result agrees with the result of the random coefficient model where cytotype was not a 

significant predictor of growth in the tradeoff model, but in the random coefficient model 

cytotype by age was significant.  Similarly there was no significant difference between 

the mean concentrations of CTs (t= -1.36; p = 0.177) in diploid vs. triploid clones.  There 

was, however, a significant difference between the means for concentrations of PGs by 

cytotype (t= -4.28; P =<0.001), where triploid clones had significantly higher 

concentrations of PGs than diploid clones. 
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Table 3.2 Model fit statistics for the random coefficient model (smaller values indicate a 

more appropriate model).  Including genotype in the model improves the model for three 

of the fit statistics, suggesting genotype helps explain the variance in this growth model. 

 BIC CAIC HQIC 

With Genotype included as random 

effect 

118.12 125.12 112.74 

Without genotype included as random 

effect 

129.69 136.69 119.07 

 

Table 3.3 Results of the T-tests between cytotypes (diploid vs. triploid). 

 
Degrees of 

Freedom 

Equality of  

Variances 
T-statistic P-value 

Growth of Ramets (ln) 92 Yes (P=0.447) 1.25 0.4474 

Phenolic Glycosides 95 Yes (P=0.921) -4.28 <0.001 

Condensed Tannins 

(ln) 
86 No (P=0.037) -1.36 0.177 

 

Growth and Defense Differences Between Genotypes. Results for the ANOVA 

procedures are in Table 3.4 and Fig. 3.3.  Mean levels of growth (f=5.46; p<0.001), PGs 

(f=8.66; p<0.001), and CTs (f=25.46; p<0.001) were significantly different among the 18 

aspen genotypes in this study. 
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Fig. 3.2 Results of T-test of phenolic glycosides by cytotype.  This T-test compared the 

means of the percent dry weight of foliar phenolic glycosides between diploid (2n) and 

triploid (3n) ramets. 

 

Table 3.4  Results of ANOVA tests between clones. 

 Degrees of Freedom F-statistic P-value 

Growth of Ramets 

(ln) 

17 5.46 <0.001 

Phenolic Glycosides 17 8.66 <0.001 

Condensed Tannins 

(ln) 

17 25.46 <0.001 
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Fig. 3.3 Results of ANOVAs for phenolic glycosides, condensed tannins and radial 

growth, showing the significant differences in defense chemicals and growth between 

clones.  
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DISCUSSION 

  Our finding of a negative correlation between PGs and growth provides evidence 

of ecological tradeoffs between growth and defense in natural populations.  This result is 

consistent with those of previous common garden studies, our results even more closely 

matched those where experimental aspen were subjected to limited nutrients (Hwang and 

Lindroth, 1997; Osier and Lindroth, 2006), and providing further evidence that these 

tradeoffs have ecological relevance in a natural setting.  Additionally, although common 

garden studies have shown tradeoffs between growth and defense manifest as overall 

biomass differences in saplings, our results demonstrate that these tradeoffs are also 

operating in mature trees, are persistent over years, and can impact the secondary growth 

of mature stems.  Counter to our hypothesis and previous work on ecological tradeoffs in 

aspen (Hwang and Lindroth, 1997), CTs displayed a marginally significant (p=0.096) 

and positive correlation with growth, suggesting that the carbon required for CT 

production does not come at the expense of growth.  This positive correlation between 

CTs and growth is, however, consistent with the negative tradeoff found between PGs 

and CTs (Fig. 3.4) which has been observed in other wild species (Koricheva et al., 2004) 

and also between constituent and inducible defense chemicals in aspen (Stevens and 

Lindroth, 2005).  PGs and CTs can be both constitutive and induced after herbivory 

(Stevens and Lindroth, 2005); CTs are induced rapidly (on the scale of days) and PGs 

having a more intermediate induction (on the scale of months) (Stevens and Lindroth, 

2005).  Ramets in this study generally have low levels of CTs, but those with higher 
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levels of CTs generally have lower levels of PGs (Fig. 3.4), which could be evidence of a 

tradeoff between the current levels of these two defenses. 

 

Fig. 3.4 Negative correlation between phenolic glycosides and condensed tannins.  In 

most clones with higher levels of CTs, there are lower levels of PGs. 

 

A previously unexplored factor in patterns of ecological tradeoffs and 

morphological or physiological diversity in aspen is triploidy.  Polyploid plants are 

expected to have distinct growth and physiological properties compared to their diploid 

counterparts (Levin, 1983).  If physiological properties are enhanced in triploids, they 

may help explain persistence of aspen in western landscapes where seeding events are 

rare and episodic (Mock et al., 2012).  Genetic assays suggest that larger clones tend to 

be triploid (Mock et al., 2008), a phenomenon suggesting increased growth and/or 

persistence in triploids. Enhanced growth properties of triploid aspen have been of 
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interest to the wood technology industry for over 50 years (Joranson, 1957; van 

Buijtenen, 1957), but the influence of triploidy on the ecology of aspen in western 

landscapes is still relatively unexplored.  From a growth-defense perspective, we 

expected triploid clones to be less well defended than diploids, and we did observe this 

pattern in triploid aspen as they aged, but not in younger ramets.  These findings may 

have implications for the persistence of triploid clones; i.e. if the tradeoff between growth 

and chemical defense is more pronounced in older ramets of triploid clones, maintenance 

of chemical defenses in these clones may require periodic disturbance to maintain 

younger ramet age classes. 

Of the 18 clones in this study, triploids had significantly higher levels of PGs than 

diploids, a finding that seems counter to the growth-defense tradeoff hypothesis since 

these clones did not appear to have increased incremental growth compared to diploid 

clones.  However, there were several aspects of growth which were not measured in our 

study, namely root growth, suckering rates, crown growth, or overall increases in 

biomass.  The finding of elevated PGs in triploid clones may have a biological basis in 

triploidy per se, perhaps due to gene dosage effects or genetic regulatory mechanisms 

unique to triploids.  Alternatively, the elevated PGs in triploids could be a result of 

indirect processes (e.g. disproportionate induction of PGs in triploids due to some other 

triploid-specific trait), or a result of local selection disproportionately impacting triploids. 

This is a finding that should be investigated at a broader geographic scale.  Ploidy in 

western populations of aspen presents us with an entirely new perspective on factors 

contributing to the current and future state of western aspen forests, and management of 
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aspen would likely benefit from more empirical studies which include the effects of 

ploidy on aspen ecology. 

The clonal habit is an essential trait in the ecology of aspen in the Interior West 

and is often underappreciated in management and restoration efforts of aspen dominated 

forests and woodlands (Long and Mock, 2012).  Aspen clones display varied and 

deterministic phenotypic traits (Barnes, 1975; Hwang and Lindroth, 1997; Lindroth, 

2001; Stevens and Lindroth, 2005; Stevens et al., 2007; Kanaga et al., 2008) and many of 

these traits can be directly linked to the resilience of this species, such as growth, drought 

resistance and frost resistance (Kanaga et al., 2008; Schreiber et al., 2011).  Consistent 

with these previous studies, we detected pronounced differences in growth and chemical 

composition among clones as they have been observed in controlled common garden and 

greenhouse settings.  Because both growth and defense chemistry vary by clone, the 

behavior of tradeoffs is likely to be a clone-specific phenomenon, as indicated by our 

improved model fit when ramets were blocked by clone.  In western aspen, where clones 

can be many hectares in size, such clonal differences can be manifest at a very large scale 

within and among stands.   It is important that studies of aspen growth and physiology in 

natural settings carefully account for clonal composition and distribution.  Ecologically, 

our findings add to the growing evidence that clonal diversity is an important component 

of long-term resilience, and we recommend that the promotion and maintenance of clonal 

diversity in western aspen forests become a management goal. 

  



46 

References 

ADLER, L. S., SCHMITT, J., and BOWERS, M. D. 1995. Genetic variation in 

defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on 

the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85. 

BAILEY, J. K., DECKERT, R., SCHWEITZER, J. A., REHILL, B. J., LINDROTH, R. 

L., GEHRING, C., and WHITHAM, T. G. 2005. Host plant genetics affect hidden 

ecological players: links among Populus, condensed tannins, and fungal  

endophyte infection. Can. J. Bot. 83:356–361. 

BARNES, B. V. 1975. Phenotypic variation of trembling aspen in western North 

America. For. Sci. 21:319–328. 

BOECKLER, G. A., GERSHENZON, J., and UNSICKER, S. B. 2011. Phenolic 

glycosides of the Salicaceae and their role as anti-herbivore defenses. 

Phytochemistry 72:1497–1509. 

BRYANT, J. P., CHAPIN III, F. S., and KLEIN, D. R. 1983. Carbon/nutrient balance of 

boreal plants in relation to vertebrate herbivory. Oikos 40:357–368. 

BRYANT, J. P., CLAUSEN, T. P., REICHARDT, P. B., MCCARTHY, M. C., and 

WERNER, R. A. 1987. Effect of nitrogen fertilization upon the secondary 

chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) 

leaves for the large aspen tortrix (Choristoneura conflictana Walker). Oecologia 

73:513–517. 

CLOSE, D. C., and MCARTHUR, C. 2002. Rethinking the role of many plant phenolics 

– protection from photodamage not herbivores? Oikos 99:166–172. 

 



47 

COLEY, P. D., BRYANT, J. P., and CHAPIN, F. S. 1985. Resource availability and 

plant antiherbivore defense. Science 230:895 –899. 

CRAWLEY, M. 1983. Herbivory : The Dynamics of Animal - Plant Interactions. 

Blackwell Scientific Publications, London, Great Britian. 

DEROSE, R. J., and GARDNER, R. S. 2010. Technique to improve visualization of 

elusive tree-ring boundaries in aspen (Populus tremuloides). Tree-Ring Res. 

66:75–78. 

DONALDSON, J. R., and LINDROTH, R. L. 2007. Genetics, environment, and their 

interaction determine efficacy of chemical defense in trembling aspen. 

Ecology 88:729–739. 

DONALDSON, J. R., STEVENS, M. T., BARNHILL, H. R., and LINDROTH, R. L. 

2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). 

J. Chem. Ecol. 32:1415–1429. 

HAMILTON, J. G., ZANGERL, A. R., DELUCIA, E. H., and BERENBAUM, M. R. 

2001. The carbon–nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:86– 

95. 

HAN, K., and LINCOLN, D. E. 1994. The evolution of carbon allocation to plant 

secondary metabolites: a genetic analysis of cost in Diplacus aurantiacus. 

Evolution 48:1550–1563. 

HERMS, D. A., and MATTSON, W. J. 1992. The dilemma of plants: to grow or 

defend. The Quar. Rev. Biol. 67:283–335. 

HOLMES, R. L. 1983. Computer-assisted quality control in tree-ring dating and 

measurement. Tree-ring Bul. 43:69–78. 



48 

HWANG, S. Y., and LINDROTH, R. L. 1997. Clonal variation in foliar chemistry of 

aspen: effects on gypsy moths and forest tent caterpillars. Oecologia 111:99–108. 

JORANSON, P. A. 1957. A field guide to aid in recognition of natural triploid aspen. 

Institute of Paper Chemistry, Lake States Aspen Genetics and Tree Improvement 

Project. Appleton, Wisconsin. 

KANAGA, M. K., RYEL, R. J., MOCK, K. E., and PFRENDER, M. E. 2008. 

Quantitative-genetic variation in morphological and physiological traits within a 

quaking aspen (Populus tremuloides) population. Can. J. For Res. 38:1690–1694. 

KORICHEVA, J., NYKANEN, H., and GIANOLI, E. 2004. Meta-analysis of trade-offs 

among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all. 

Am. Nat. 163:E64–E75. 

KOZLOWSKI, T. 1992. Carbohydrate sources and sinks in woody plants. Bot.  

Rev.58:107–222. 

KOZLOWSKI, T. T., and PALLARDY, S. G. 1996. Physiology of Woody Plants, 

Second Edition, 2nd edition. pp. 159-173. Academic Press, San Diego, California. 

LEIMU, R., and KORICHEVA, J. 2006. A meta‐analysis of tradeoffs between plant 

tolerance and resistance to herbivores: combining the evidence from ecological 

and agricultural studies. Oikos 112:1–9. 

LEVIN, D. A. 1983. Polyploidy and novelty in flowering plants. Am. Nat.122:1–25. 

LINDROTH, R. L. 2001. Adaptations of quaking aspen for defense against damage by 

herbivores and helated environmental agents. USDA Forest Service. RMRS-P- 

18. 

LINDROTH, R. L., KINNEY, K. K., and PLATZ, C. L. 1993. Responses of diciduous 



49 

trees to elevated atmospheric CO2: productivity, phytochemistry, and insect 

performance. Ecology 74:763. 

LONG, J. N., and MOCK, K. 2012. Changing perspectives on regeneration ecology and 

genetic diversity in western quaking aspen: implications for silviculture. Can. J. 

 For. Res. 42:2011–2021. 

MADRITCH, M. D., GREENE, S. L., and LINDROTH, R. L. 2009. Genetic mosaics of 

ecosystem functioning across aspen-dominated landscapes. Oecologia 160:119– 

127. 

MOCK, K. E., CALLAHAN, C. M., ISLAM-FARIDI, M. N., SHAW, J. D., RAI, H. S., 

SANDERSON, S. C., ROWE, C. A., RYEL, R. J., MADRITCH, M. D., 

GARDNER, R. S., and WOLF, P. G. 2012. Widespread triploidy in western 

North American aspen (Populus tremuloides). PLoS ONE 7:e48406. 

MOCK, K. E., ROWE, C. A., HOOTEN, M. B., DEWOODY, J., and HIPKINS, V. D. 

2008. Clonal dynamics in western North American aspen (Populus tremuloides). 

Mol. Ecol. 17:4827–4844. 

OSIER, T. L., and LINDROTH, R. L. 2006. Genotype and environment determine 

allocation to and costs of resistance in quaking aspen. Oecologia 148:293–303. 

PALO, R. T. 1984. Distribution of birch (Betula SPP.), willow (Salix SPP.), and poplar 

(Populus SPP.) secondary metabolites and their potential role as chemical defense 

against herbivores. J. Chem. Ecol. 10:499–520. 

PEAKALL, R., and SMOUSE, P. E. 2006. GenAlEx 6: genetic analysis in Excel. 

Population genetic software for teaching and research. Mol. Ecol. Notes 6:288– 

295. 



50 

PORTER, L. J., HRSTICH, L. N., and CHAN, B. G. 1985. The conversion of 

procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 

 25:223–230. 

RAUSHER, M. D. 1992. Natural selection and the evolution of plant-insect interactions, 

pp. 20–88, in B.D. Roitenberg and M.B.Isman (eds.). Insect Chemical Ecology: 

An Evolutionary Approach. Chapman and Hall, New York, New York. 

REHFELDT, G. E., FERGUSON, D. E., and CROOKSTON, N. L. 2009. Aspen, climate, 

and sudden aspen decline in western USA. For. Ecol. Man. 258:2353–2364. 

RHOADES, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 3- 

54, Herbivores: Their Interaction with Secondary Plant Metabolites. Academic  

Press, New York, New York. 

RHOADES, D. F. 1985. Offensive-defensive interactions between herbivores and plants: 

their relevance in herbivore population dynamics and ecological theory. Am. Nat. 

 125 (2): 205–238. 

SAS INSTITUTE. 2004. SAS User’s Guide (Release 9.2): Statistics SAS Institute, Inc. 

Cary, NC. 

SCHREIBER, S. G., HACKE, U. G., HAMANN, A., and THOMAS, B. R. 2011. Genetic 

variation of hydraulic and wood anatomical traits in hybrid poplar and trembling 

aspen. New Phyt. 190:150–160. 

STEVENS, M., and LINDROTH, R. 2005. Induced resistance in the indeterminate 

growth of aspen (Populus tremuloides). Oecologia 145:297–305. 

STEVENS, M. T., WALLER, D. M., and LINDROTH, R. L. 2007. Resistance and 

tolerance in Populus tremuloides: genetic variation, costs, and environmental 



51 

dependency. Evol. Ecol. 21:829–847. 

STOKES, M. A., and SMILEY, T. L. 1968. An Introduction to Tree-ring Dating. Univ.  

Arizona Press, Tuscon, Arizona. 

TAHVANAINEN, J., JULKUNEN-TIITTO, R., and KETTUNEN, J. 1985. Phenolic 

 glycosides govern the food selection pattern of willow feeding leaf beetles. 

Oecologia 67:52–56. 

VAN BUIJTENEN, J. P. 1957. Naturally occurring triploid quaking aspen in the United 

States, Proceedings [of the] Society of American Foresters Meeting. Syracuse, 

New York. 

WHITHAM, T. G., YOUNG, W. P., MARTINSEN, G. D., GEHRING, C. A., 

 SCHWEITZER, J. A., SHUSTER, S. M., WIMP, G. M., FISCHER, D. G., 

BAILEY, J. K., LINDROTH, R. L., and OTHERS. 2003. Community and 

ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559– 

573. 

  



52 

 CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 Despite the fact that aspen is one of the most widely distributed tree species in 

North America (Little, 1971), it is sensitive to extreme climate events (Worrall et al., 

2010) and in the western United States, is projected to undergo significant range shifts 

and dieback over the next 10 – 20 years (Rehfeldt et al., 2009).  Recent advances in our 

understanding of aspen reproductive ecology (Long and Mock, 2012) could lead to new 

and effective methods of restoring and conserving aspen in the west.  As our knowledge 

of western aspen increases, new questions are emerging about the establishment, 

persistence and interaction of clones over time. In this thesis I assess correspondence 

between aspen clonal diversity and fire frequency, I describe spatial interactions among 

clones within stands, and I assess evidence for tradeoffs in aspen clones between growth 

and chemical defense. These results could add substantially to the effective management 

of aspen forest and woodlands in the west as future climate challenges are encountered. 

 In the first portion of this study (Chapter 2) I found patterns of high and low 

clonal diversity on Cedar Mountain, UT (located about 15 miles southeast of Cedar City, 

UT) and showed that areas with evidence more frequent fires had higher clonal diversity.  

I hypothesize that this relationship is due to an increased frequency of seedling 

establishment following fires.  These results suggest that management influencing fire 

regimes may also influence the frequency of seedling establishment and thus the clonal 

diversity of aspen stands. Increased clonal richness, in turn, is expected to be important in 

species persistence and resilience, as genetic recombination and diversity should enhance 
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evolutionary potential.  In this portion of the study, where I encountered stands with 

multiple clones I determined whether boundaries between clones appeared to be static or 

whether particular clones were expanding over time.  I found that approximately 25% of 

the clones seemed to be advancing into bordering clones.  Such a process would 

eventually be expected to reduce clonal diversity over time, perhaps allowing the 

persistence of the better-adapted clones.   

 In the second portion of this thesis (Chapter 3) I looked for evidence of ecological 

tradeoffs in wild populations of western aspen between growth (a resilience strategy) and 

defense chemistry (resistance).  Such tradeoffs have been detected in greenhouse and 

common garden studies (Stevens et al., 2007), but I wanted to determine whether these 

tradeoffs persist in naturally-occurring populations of mature aspen, or whether complex 

environmental conditions appear to diminish this relationship.  I found that that the 

tradeoff remained intact between phenolic glycosides (a group of defense chemicals that 

have been shown to deter insect herbivory) and growth, but there was a positive and less 

significant relationship between condensed tannins and growth (discussed in detail in 

Chapter 3).  I also detected high levels of variability in this tradeoff among aspen clones, 

which is further evidence of the ability of aspen to display varied phenotypic responses in 

similar stand conditions when clonal diversity is present. 

 The results of this thesis add to the growing body of knowledge surrounding 

aspen ecology and will hopefully influence management decisions in conserving and 

restoring aspen populations in the western United States.  Managing for increased clonal 

diversity at the stand level will likely increase aspen resilience as climates change in the 

coming years. 
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Appendix A Individual maps of each of the 17 plots investigated for clonal replacement.  

Plots with nonaligned subplots are a result of navigating to subplots via compass and 

tape, rather than navigating to pre-determined GPS coordinates. 
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Appendix B Table summarizing clones which are encroaching neighboring clones.  The 

colors are consistent with those on the individual plot maps in Appendix 2.a. Any row 

containing “NA” represents a clone that did not meet the summary requirements defined 

on pages 12-13. 

Plot Color Genet 

# of 

Occurrences 

Potential 

Sites to 

Encroach 

Sites 

Encroached Encroacher 

007 Yellow 4 13 16 4 Yes 

007 Red 12 1 NA NA NA 

007 Orange 13 5 20 1 No 

007 Green 54 10 15 0 No 

011 Red 14 23 2 NA NA 

011 Green 95 2 NA NA NA 

011 Blue 98 1 NA NA NA 

015 Green 36 16 8 2 Yes 

015 Red 51 8 14 0 No 

022 Red 3 7 15 1 No 

022 Yellow 7 1 NA NA NA 

022 Blue 74 13 8 0 No 

022 Green 97 1 NA NA NA 

023 Yellow 55 3 NA NA NA 

023 Turquoise 56 8 18 1 No 

023 Green 65 1 NA NA NA 

023 Red 85 16 9 0 No 

039 Green 47 1 NA NA NA 

039 Blue 71 1 NA NA NA 

039 Red 77 17 6 1 No 

039 Yellow 86 6 18 0 No 

051 Yellow 21 2 NA NA NA 

051 Green 37 1 NA NA NA 

051 Red 90 20 3 1 No 

057 Red 15 18 6 2 Yes 

057 Blue 46 1 NA NA NA 
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057 Yellow 68 6 16 1 No 

057 Green 88 1 NA NA NA 

061 Blue 1 1 NA NA NA 

061 Yellow 5 10 15 0 No 

061 Red 67 15 10 0 No 

068 Purple 27 1 NA NA NA 

068 Turquoise 28 1 NA NA NA 

068 White 30 2 NA NA NA 

068 Yellow 31 1 NA NA NA 

068 Blue 35 10 11 0 No 

068 Orange 72 1 NA NA NA 

068 Black 73 1 NA NA NA 

068 Red 79 8 14 3 Yes 

068 Fuschia 82 1 NA NA NA 

068 Green 87 5 12 0 No 

084 Brown 29 1 NA NA NA 

084 Yellow 38 14 13 4 Yes 

084 Green 43 7 16 1 No 

084 Red 91 3 NA NA NA 

096 Yellow 8 7 19 1 No 

096 Green 32 4 23 2 Yes 

096 Fuschia 33 1 NA NA NA 

096 Turquoise 42 1 NA NA NA 

096 Red 53 10 16 1 No 

096 Blue 61 8 17 0 No 

096 White 89 1 NA NA NA 

097 Red 18 15 12 3 Yes 

097 Green 19 6 23 4 Yes 

097 White 40 1 NA NA NA 

097 Blue 44 1 NA NA NA 

097 Yellow 49 10 16 1 No 
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097 Turquoise 79 1 NA NA NA 

100 Yellow 34 2 NA NA NA 

100 Red 45 4 23 1 No 

100 Green 48 11 14 0 No 

100 Pink 50 1 25 1 No 

100 Turquoise 57 8 19 2 Yes 

100 Black 58 1 25 1 No 

100 Fuschia 63 2 23 0 No 

100 White 78 1 24 NA NA 

100 Purple 92 1 25 1 No 

100 Orange 93 2 NA NA NA 

102 Red 9 8 8 0 No 

102 Yellow 17 5 12 0 No 

102 Fuschia 59 3 12 0 No 

102 Green 66 5 11 0 No 

119 Red 20 4 21 
0 

No 

119 Orange 70 2 NA NA NA 

119 Green 75 14 11 0 No 

119 Turquoise 76 1 NA NA NA 

119 Yellow 80 9 22 4 Yes 

131 Green 2 1 NA NA NA 

131 Yellow 69 1 NA NA NA 

131 Red 84 24 1 NA NA 
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Appendix C  Letters from coauthors on Chapter 2, granting me the permission to publish 

their work in this thesis. 
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