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Figure 7.26: Truth SM angular rate autocorrelation estimates for short term (top) and long term
(bottom)
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Figure 7.27: Translational acceleration disturbance autocorrelation estimates
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Figure 7.28: Rotational acceleration disturbance autocorrelation estimates
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states are approximately stationary. Figures 7.29 and 7.30 show the corresponding autocorrelation

estimates. Two important features are noteworthy. First is the signi�cant di�erence between the

Monte Carlo and LinCov-calculated autocorrelations present in Figure 7.30. This di�erence is easy

to spot. Figure 7.29, however, contains a more subtle feature. Although the match is very good for

the short term, the LinCov-calculated autocorrelation contains a small bias, evident in the long-term

plot. As discussed in [15] section 4.13, a bias in the autocorrelation function suggests a bias in the

random process, which is not consistent with the de�nition of the dispersion states. Although there

exists no formal way of determining if a random process is �stationary enough,� if the bias is small,

then the process can be assumed stationary, and the resultant PSD assumed accurate.

When a random process is far from stationary, it is expected that the calculated autocorre-

lation function will have serious inaccuracies. Two examples of non-stationary states are the inertial

position and angle of the RM. The variances of these states are clearly growing with time as illus-

trated in �gures 7.11 and 7.9. The resulting LinCov-calculated autocorrelation functions in �gures

7.31 and 7.32 are obviously incorrect as they show increasing correlations with respect to the lag.

Thus the PSD estimated from these autocorrelations would be incorrect.

7.2.3 PSD computation

A key element of this research deals with computing estimates of the power spectral density

of the dispersions. As described in section 4.6, the PSD can be computed via three di�erent methods.

The Monte Carlo-based method computes the PSD by averaging modi�ed periodograms of samples

of the random process. This is done under the assumptions of steady-state and stationary conditions.

Under the same assumptions, the LinCov Acorr method estimates the PSD using the DFT of the

windowed autocorrelation function. Under the assumption of a LTI system, the LinCov Transfer

Matrix method directly computes the PSD from the input noise strengths and the dispersion transfer

functions. In this section, PSD estimates for the stationary and approximately stationary states

discussed in the previous section are presented. A non-stationary example is also included to

illustrate an advantage to the LinCov Transfer Matrix method. In all the spectral plots of this

section, a vertical black dashed line represents the lowest resolvable frequency, which corresponds

to the total time period considered for PSD estimation, speci�cally flower = 1/2dtpsd = 0.025Hz.

Figure 7.33 compares the three methods of PSD estimation for the SM inertial attitude and
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Figure 7.29: RM angular rate autocorrelation estimates for long term (top) and short term (bottom)
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Figure 7.30: SM disturbance torque autocorrelation estimates
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Figure 7.31: RM position autocorrelation estimate
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Figure 7.32: RM attitude autocorrelation estimate
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angular rate. The match is excellent for all frequencies below 30Hz. All three methods are able to

resolve the strong 3Hz component. Above 30 Hz, the LinCov Acorr method resolves spectral peaks

at 68 Hz and 160 Hz, the existence of which is supported by the OLTF discussed in section 5.3.2

and displayed in Figure 5.10. While the LinCov Transfer Matrix method also resolves the higher

resonant peaks, the magnitude of the peaks are suppressed, consistent with the transfer function of

the anti-resonance �lter in Figure 5.11.

Figure 7.34 and 7.35 compare the PSD estimates of the translational and rotational acceler-

ation disturbances, both of which are modeled as �rst-order Markov processes. Excellent agreement

between the Monte Carlo and LinCov methods is observed across the entire spectrum.

Figures 7.36 and 7.37 contain the PSD estimates of the states that are approximately sta-

tionary, namely the inertial angular rate of the RM and the SM disturbance torques. In the case of

the SM disturbance torques, the match is excellent across all frequencies. Even though this process

had not reached the steady-state covariance value, it was �close enough� for the Monte Carlo and

LinCov methods to agree. The PSD estimates for the RM angular rate in Figure 7.36 agree well

for the 3Hz and 68Hz resonant peaks with a slight disagreement in the 10-40 Hz range. Above, the

68Hz peak, the Transfer Matrix method falls o� signi�cantly faster than the other methods. This

feature is also observed in Figure 7.33. One probable explanation for the divergence of the methods

at higher frequencies is related to the window function, which is applied in the Monte Carlo and

LinCov Acorr methods. In these methods, the Hamming window is multiplied, element by element,

to the time-domain data. In the case of the Monte Carlo method, the window is applied to each real-

ization of the random process. In the case of the LinCov Acorr method, the window is applied to the

computed autocorrelation function. Multiplication in the time-domain is equivalent to convolution

in the frequency domain. Figure 7.38 shows the Fourier transform of Hamming window with the

magnitude normalized to one. Note that the peak of the curve is 13-15 orders of magnitude above

the sides of the window. In many applications, this level of suppression is su�cient. In this analysis

however, many of the PSDs exhibit a range of values similar to the Hamming window. During the

convolution process, this results in an increase in the noise �oor of the PSD. To illustrate the e�ect,

consider the point in the convolution of the PSD in Figure 7.36 where the Fourier transform of the

Hamming window in centered at 100Hz. At this point, the peak of Figure 7.38 is multiplied by a

number on the order of 10−17. The left side of the curve, however, is multiplied by numbers ranging
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Figure 7.33: SM attitude (top) and angular rate (bottom) PSD
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Figure 7.34: Translational acceleration disturbance PSD
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Figure 7.35: Rotational acceleration disturbance PSD
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Figure 7.36: RM angular rate PSD
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Figure 7.37: SM disturbance torque PSD
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from 10−17 to 10−6, or up 11 orders of magnitude greater. To complete the convolution, all the

multiplications are summed, and the result is an arti�cial increase in the PSD estimate. Although

more in-depth investigation is needed to verify these results, it can be safely concluded that the

e�ects of the window are not negligible in the analysis of this problem. The window e�ects however,

are avoided in the Transfer Matrix method, because the PSD is analytically computed from the

transfer functions of the system.

7.3 Navigation and Control Analysis

Three performance metrics were discussed in section 4.5.2, namely the truth state dispersions

covariance, the navigation state dispersions covariance, and the covariance of the navigation errors.

Often, the navigation state dispersion are not useful for performance analysis and will not be

discussed in this work. The navigation error covariance, however, is very useful in determining the

observability of the navigation states and optimality/tuning of the Kalman �lter. The truth state

dispersions are also useful in the context of this analysis to determine the amount of jitter present
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in the pointing of the SM. An analysis technique applicable to both performance metrics is called

sensitivity analysis. This technique involves calculating the contribution of each error source to the

overall performance metric and is extremely useful in identifying the driving error sources in the

problem. This section will start with a discussion regarding the navigation errors in the context

of Kalman �lter tuning. This is followed by a sensitivity analysis of some key performance-related

states, namely, the RM attitude estimation error and the SM attitude and angular rate dispersions.

Figures 7.39 through 7.42 show the navigation error covariance as compared to the Kalman

�lter's estimate of the same quantity. Consistent with the �ndings of section 7.2.1, the observability

of the star tracker and gyro 1 parameters is poor. Given the y-axis scale of �gures 7.41 and 7.42,

however, there is a very slow downward trend in the covariance of the gyro 1 bias, suggesting that

eventually, this state will become observable. In all examples of the navigation errors, the Kalman

�lter correctly estimates the covariance of the estimation errors. This is expected since the system

is close to linear and the process and measurement noise matrices used in the Kalman �lter are

equal to the true values.

Figure 7.43 separates the contributors to the estimation error of the RM attitude. This is

done by running several LinCov simulations, one for each error source. During each simulation,

a single error source is activated, while the remaining error sources are set to zero. This has the

e�ect of calculating the response of the system to a single error source. Once all of the individual

simulations are run, a �nal simulation is run with all error sources activated. In the end, the RSS

of all of the individual simulations is equal to the response of the �nal simulation.

Prior to the time of the �rst star camera measurement, tstar, the estimation error is domi-

nated by the initial uncertainty in the attitude of the entire system (see top plot). Following the �rst

star camera measurement, the Kalman �lter gradually balances the contribution of the star camera

and gyro 1 measurement noise. After t = 4 seconds, the main contributors to the estimation error

are the star camera and gyro noise, with the star camera bias being the next signi�cant contributor.

Note that, consistent with the observability �ndings discussed earlier, the error contribution of the

star camera bias does not decrease with time, which would be the case if this state was observable.

For the remaining sensitivity analyses in this section, the error sources are divided by sub-

system as detailed in Table 7.1. Figures 7.44 and 7.45 show the error budget for the attitude and

angular rate dispersions, respectively. In both cases, the initial dispersions are dominated almost
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Figure 7.39: RM attitude estimation error 1σ standard deviation showing the initial uncertainty
(top) and the steady-state uncertainty (bottom)
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Figure 7.40: Star camera bias estimation error 1σ standard deviation
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Figure 7.41: Gyro 1 bias estimation error 1σ standard deviation
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Figure 7.42: Gyro 1 scale factor estimation error 1σ standard deviation
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entirely by the translational disturbances. This is due the large center of mass o�set present in

the SM. In the case of the attitude dispersions, the contribution of the initial conditions brie�y ex-

ceeds that of the disturbance. Once the the controller is activated at tstar, both dispersions shrink

rapidly. In the case of the angular rate dispersions, the contribution of the initial conditions tem-

porarily increase following tstar, but return to zero shortly thereafter. After the transient following

tstar, it is clear that the major contributor to both the attitude and angular rate dispersions is the

translational disturbance, which lies nearly directly beneath the total line.

An important time for calculating an error budget is the image acquisition time timage.

This is typically done with a bar plot. Figures 7.46 and 7.47 are a snapshot of the error budget

at this critical time. Both con�rm the conclusion that the translational disturbances are by far

the largest source of error in the system, with the mirror system being the only other signi�cant

contributor. From a designers standpoint, there is no bene�t to improving any of the subsystems

until the sensitivity to translational accelerations is reduced. On the other hand, the requirements

of other subsystem could be relaxed without signi�cantly impacting the performance.

7.4 Spectral Sensitivity Analysis

In the previous section, sensitivity analysis was used to create an error budget, which aids

the designer in identifying the main error contributors in the system. In section 7.2.3, the PSD

was useful in identifying the spectrum of the dispersions. Suppose that for a particular system,

it is desired to understand the portion of the spectrum caused by each of the individual error

sources. This can be obtained by combining the two methods of sensitivity analysis and spectrum

estimation into a single method, named Spectral Sensitivity Analysis. This method is illustrated

for this problem in �gures 7.48 and 7.49 using the LinCov Transfer Matrix method. From these

�gures, it is clear that for frequencies below 10Hz, the translational disturbances are the the largest

contributor by several orders of magnitude. Interestingly, above 10Hz, the contribution of the mirror

system errors exceeds that of the translational disturbances, except for in the vicinity of the 68 Hz

and 160 Hz peaks, where the translational disturbance couple with the the structural resonances.

This same trade-o� between dominant error sources is also observed in the PSD of the SM angular

rate shown in Figure 7.49.

Another important feature shown in 7.49 is the low-frequency behavior of the error sources
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Table 7.1: Subsystem de�nition
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Figure 7.44: SM attitude error budget showing initial uncertainty (top) and steady-state uncertainty
(bottom)
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that induce disturbance torques on the SM. These include the rotational and translational distur-

bances as well as elements of the mirror and actuator systems. Recall that the bandwidth of the

inner loop controller is 11Hz. Thus disturbance torques inside the bandwidth will be attenuated by

the rate-damping controller. This is consistent with the PSD for each of these contributors. The

controller however cannot attenuate error sources that are in the feedback path. A good example of

this type of error source is the star tracker navigation system, which maintains a constant in�uence

across the bandwidth of the rate damping controller.

It is also interesting to observe which error sources couple into the structural modes of the

system at 3Hz, 68Hz, and 160Hz. The translational disturbances strongly couple into every mode.

The coupling of the rotational disturbance also exists, but 10 orders of magnitude lower. The

actuator system error sources couple very softly with the 68Hz and 160Hz modes. On the other

hand, the mirror and star tracker navigation system errors exhibit nulls at the location of the upper

two resonances, due to the e�ects of the anti-resonance �lter.

Two �nal observations are made from �gures 7.48 and 7.49. First is that the sum of the

individual error sources (solid blue line) is equal to the simulation where all sources are active

(dashed blue line). This is due to the principle of superposition which states that for a linear

system, the combined response due to multiple inputs is equal to the sum of the response to each

input. This characteristic is a useful validation of the sensitivity analysis. Finally, when computing

the spectral sensitivity using the LinCov Transfer Matrix method, the sensitivity to initial conditions

is zero. This is consistent with the fact that the Transfer Matrix method computes the steady-state

response to the driving inputs, and does not account for initial conditions.

Another useful application of the spectral sensitivity plot is to determine the error budget for

a certain frequency band. This is particularly useful when a sensor on-board the system is sensitive

to a speci�c band of frequencies. The PSDs in the spectral sensitivity analysis can be integrated

across a speci�ed frequency range to calculate the RMS dispersion in the band of interest. Figures

7.50 and 7.51 illustrate an example of this, where the spectral band considered is from 8Hz to

13Hz. Note that when compared to the sensitivity bar plots of the entire spectrum (�gures 7.46 and

7.47), the mirror system is a much more signi�cant contributor, comparable to the translational

accelerations. Thus to reduce the sensitivity of the system in this frequency band both error sources

must be considered. This type of analysis provides the designer with another powerful tool, created
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from LinCov simulation data, to better understand not only the spectrum of the system, but the

contributors to di�erent parts of the spectrum.
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Figure 7.48: SM attitude dispersion spectral sensitivity (PSD)
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Figure 7.49: SM angular rate dispersion spectral sensitivity (PSD)
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Chapter 8

Conclusions

Prior to the time of this research, the focus in LinCov analysis has been the calculation of

the dispersions from the mean reference trajectory. In all cases, the most important metric has been

the covariance of the dispersion. In a gimbaled pointing system however, the frequency spectrum of

the dispersion is equally important, as it relates to the amount of jitter observed by the sensor. In

addition, �exible structures have not been considered in previous LinCov work, the presence of which

requires control laws that support internal states and actuator command �ltering. The purpose of

this research was to extend linear covariance analysis to support these three advancements-dispersion

frequency spectrum, �exible structures, and internal control law states-and apply these extensions

to the analysis of a gimbaled pointing system.

In chapter 4 of this dissertation, a nonlinear truth model is presented that is capable of

modeling structures with rigid and �exible bodies. This model also de�nes a more �exible form

of the control law, with internal states and associated state dynamics, actuator command �ltering,

and direct sensor feedback. In addition to these new elements, many of previously existing LinCov

elements were included, namely actuator, sensor, and navigation models. The nonlinear truth

model was then linearized about a nominal trajectory, which results in a set of linear di�erential

and update equations describing the deviations from the nominal, from which the covariance of the

dispersions states is derived. Using information available from the LinCov simulation (namely the

state transition matrix and covariance matrix), a method for computing the autocorrelation function

under the assumptions of a stationary random process and LTI system was developed. The PSD

was then computed as the DFT of the windowed autocorrelation function. The LinCov-based PSD

estimate was empirically shown to be equivalent to the Monte Carlo-based Welch method in the

case of a �rst-order Markov process. An additional LinCov-based method was also developed to

analytically compute the PSD from the coe�cient matrices of the augmented system and the input

noise strengths. Under the conditions of a LTI system, this latter method was shown to more

accurately compute the PSD of the dispersion states and did not su�er from window e�ects.
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Chapter 5 focused on developing the structural dynamics model and the navigation and

control algorithms for a gimbaled pointing system. The dynamics model is tailored to a SOFIE-

like instrument but is generic enough to accurately model many types of gimbaled systems. The

structural dynamics model is capable of modeling up to 6 structural modes, 3 translational and 3

rotational, and includes the e�ects of disturbance torques and center of mass o�sets, which couple the

translational and rotational dynamics. This model also supports colored rotational and translational

acceleration noise in the system, the bandwidth of which can be obtained from the host platform

PSD. The developed model was validated via the modern software dynamics package ADAMS. The

navigation algorithm was developed to incorporate measurements from a star tracker and gyro,

corrupted by biases, scale factor, and noise. Propagation of the attitude was done via model

replacement using the gyro measurements. Updates to the attitude were performed using star

tracker measurements. Finally, the controller and anti-resonance �lter were designed with adequate

stability margins using resolver feedback for position control and a second gyro for rate damping.

The product of this chapter is a realistic, closed-loop navigation and control model of a gimbaled

pointing system.

Chapter 6 was included to de�ne, in one location, all of the equations necessary for the

simulation with the corresponding numerical values for system parameters and initial conditions. It

is intended to be a one-stop-shop for all equations and parameters necessary for the simulation.

Chapter 7 contains the analysis of the system dispersions, navigation errors, and dispersion

PSDs. To give meaning to the dispersion analysis results, the mean reference trajectory is analyzed.

This is followed by analysis of the system using conventional Monte-Carlo-based approaches for

dispersion analysis and PSD estimation and compares the results to a LinCov-based analysis of the

same quantities. For all dispersion states, the match between Monte Carlo and LinCov variance

estimates is excellent. The three PSD estimation techniques match perfectly for simple ECRV

states. The match is also good in the lower frequencies for states with more spectral content. At

higher frequencies, however, the di�erent PSDs diverge, presumably due to the e�ects of the data

windowing present in the Monte Carlo and LinCov Acorr methods. The LinCov Transfer Matrix

method does not su�er from window e�ects.

Though not the focus of this research, analysis is done on the observability of several param-

eter states. The conclusion is that, given the low level of dynamics typical of the problem analyzed,
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the star tracker and gyro parameters are not observable. After validating the accuracy of the Lin-

Cov model, it was used to perform sensitivity analysis which creates error budgets for both the

navigation errors and pointing dispersions. These error budgets show a well-balanced navigation

system dominated by star tracker and gyro measurement noise. The pointing errors however are not

well balanced and are dominated almost entirely by translational disturbance accelerations. It was

therefore concluded that, prior to any other subsystem improvement, the sensitivity of the gimbal

system to translational accelerations needs to be reduced. At the end of this chapter, the methods

of sensitivity analysis and PSD estimation are combined to create a new analysis method, named

Spectral Sensitivity Analysis. This new method shows the frequency distribution of the errors

caused by individual error sources. The translational acceleration disturbances dominate over the

lower end of the spectrum. However, when focusing on a speci�c portion of the spectrum, 8 to 13Hz

in this example, the contribution of the mirror system becomes equally important. This becomes an

important tool when considering sensors on-board the gimbal that are sensitive to certain regions

of the spectrum.

In summary, this dissertation has shown that the capabilities of linear covariance analysis

can be extended to analyze a gimbaled pointing system. It was shown that with moderate changes

to the linear covariance equations, controllers with internal states and command �ltering can be

incorporated and their e�ects analyzed. It was also shown that, under similar assumptions used

in conventional Monte Carlo approaches, knowledge of the state transition matrix and covariance

matrix permits the calculation of the autocorrelation function, which can be used to estimate the

PSD. An alternative method to compute the PSD was also presented, based on the transfer matrix

of the LinCov system, which analytically computes the PSD of the dispersion states. These two

methods provide a missing capability to the LinCov tool set and further extends the applicability

of this powerful analysis approach.

During the course of this work, several new areas were identi�ed as potential areas of ad-

vancement. The �rst area of future work relates to developing alternate methods of PSD estimation

from the LinCov simulation. One promising candidate is the use of parametric PSD estimation

algorithms. The LinCov Acorr method used in this work is to window the autocorrelation function,

then estimate the PSD using the DFT, categorized as a non-parametric method. To reduce the

e�ects of the window function, a large number of autocorrelation samples is desired. An alternate
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approach that works well when there is a limited number of samples is to �t the coe�cients of an

assumed model to the samples of the autocorrelation function. Since this method is model-based,

a window need not be used, thus avoiding the associated window-e�ects.

The second area involves incorporating the frequency content of the mean reference trajec-

tory to compute the total PSD of the truth state. As applied to the system in this work, the image

smear that will be produced is a function of the frequency content of attitude dispersion and the

nominal attitude trajectory. In this work, this problem was minimized by allowing the controller

step response to settle before the image acquisition time. But in a rapidly scanning system, this

may not be possible and so the frequency content of the nominal must be considered.

The third area of future work relates to incorporating the frequency content of the Kalman

update. This research focused on the frequency content of the dispersion state dynamics. In some

systems, the Kalman update causes signi�cant frequency content in the performance-related states.

Coa et al. [38] outline a promising approach where the transfer function of a multi-rate system

is computed. Once obtained, the transfer function could be used in the framework of the LinCov

Transfer Matrix method to compute the PSD of the combined propagation and update system.

The fourth and �nal area of future work concerns the friction model used in the gimbaled

point system. The model used in this research assumed viscous friction in the joint between the

steering mirror and the base mass. While this is a very good approximation for some systems,

a higher �delity model that includes the combination of stiction, viscous, and Coulombic friction

would result in a more accurate understanding of the performance of the system.
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