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Abstract

Effects of Communication Delay and Kinematic Variation in Vehicle Platooning

by

Megan R. Emmons, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Vehicle platoons are efficient, closely-spaced groups of autonomously controlled vehi-

cles which interact in a cooperative manner as they travel at high speeds down the road.

Within this thesis, the robustness of a promising control algorithm for vehicle platooning is

explored. The control algorithm was previously demonstrated in a controlled setting which

significantly reduced the challenges facing full-scale implementation, most notably loss of

shared data and imprecision within the data.

As found within this work, transmission loss and imprecise position, velocity, and ac-

celeration data significantly degraded the control algorithm’s performance. The overall

platoon length contracted, inter-vehicle oscillations amplified, and relative energy expendi-

tures increased by a factor of ten. Introducing a measure of each following vehicle’s position

with respect to the lead vehicle into the control algorithm noticeably reduced platoon con-

traction. Utilizing an adaptive gain and performing some signal processing on the data

further improved the platoon’s performance. Combining these modifications with a model

of the proposed communication scheme shows platoons of up to 25 vehicles are feasible.

(90 pages)
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Public Abstract

Effects of Communication Delay and Kinematic Variation in Vehicle Platooning

by

Megan R. Emmons, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Vehicle platoons are efficient, closely-spaced groups of robotically controlled vehicles

which travel at high speeds down the road, similar to carts in a train. Within this thesis, a

promising control algorithm for vehicle platooning is explored. The control algorithm was

previously demonstrated in a sterile setting which significantly reduced the challenges facing

full-scale implementation of platoons, most notably loss of shared data and imprecision

within the data.

As found within this work, transmission loss and imprecise position, velocity, and

acceleration data significantly degraded the control algorithm’s performance. Vehicles in

the platoon became more closely spaced, changed speeds more frequently, and expended far

more energy than necessary. Introducing a measure of each following vehicle’s position with

respect to the lead vehicle into the control algorithm noticeably reduced platoon contrac-

tion. Adjusting the control algorithm’s responsiveness based on what data was successfully

received reduced the speed-variations by vehicles. Finally, using past behavior to predict the

next acceleration reduced the energy used by each vehicle. Combining these modifications

with a model of the proposed communication scheme shows platoons of up to 25 vehicles

are feasible.
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Chapter 1

Introduction

1.1 Project Overview

Distributed multi-agent systems are a challenging, yet promising, class of control sys-

tems engineering. While classic control is limited to single-input, single-output linearized

systems, distributed control is a subset of modern control theory and so accommodates more

complicated systems with multiple inputs, multiple outputs, and a variety of potential non-

linearities. Each member of a multi-agent network is its own system containing sensors, a

control algorithm, and a means of actuation. This swarm approach is more robust because

there is no central controller but presents its own challenges because each agent’s control

algorithm requires information gathered from other members. In this sense, the actions of

each agent must be made using local information, but the actions themselves have a global

impact. The dependence on communicated information from other members introduces

the concept of time-sensitive data and starts placing bounds on swarm size, communication

protocol, and dispersion area. While multi-agent systems have many different classifications

and applications, this work focuses on vehicle platooning.

The general goal of vehicle platooning is to form groups of efficient, closely spaced,

autonomous vehicles which interact in a cooperative manner. The feasibility of this concept

was demonstrated in 1997 when California Partners for Advanced Transportation Technol-

ogy (PATH) demonstrated an eight-vehicle platoon [1]. Although PATH achieved its goals,

the demonstration site was a controlled environment. Their sterile test track eliminated

many of the complications facing full-scale implementation of such a system, most notably

obstacle avoidance and navigation. Both these challenges can be mitigated through the

development of a robust control algorithm.

While stability is a necessary criteria for nearly every control system, guaranteeing
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stability of the individual vehicles’ control algorithms is not sufficient to ensure the platoon

itself is stable. External disturbances, system nonlinearities, and imprecision in sensor

measurements all contribute to small deviations between actual physical properties and

calculated properties. This difference is considered error. When evaluating stability, it

is important to ensure the system’s error is driven to zero as time approaches infinity.

The stability of each vehicle’s control algorithm should adhere to this rule but, because the

system consists of multiple vehicles, additional requirements are necessary to ensure stability

of the entire platoon. For this reason, string stability is instead used when evaluating

proposed control algorithms because it ensures errors decrease as information is propagated

down the platoon, thus ensuring the entire platoon is stable.

Control algorithms have been the primary focus for ensuring string stability within

vehicle platoons but, as Rajamani et al. concluded, string stability can only be achieved

with the inclusion of inter-vehicle communication (IVC) [2]. In other words, platoon ve-

hicles need kinematic information from other vehicles within the platoon. Ensuring fast,

reliable communication will also aid in obstacle avoidance and navigation. Communication

presents additional difficulties, however, because some delay is always present when sending

messages. Part of the delay is due to the physical transmission time and processing of data.

More notably, there is the time needed for a sender to gain access to the designated chan-

nel if the communication protocol involves a random access medium and for the validation

of received data if security measures are implemented. In total, the communication delay

could potentially compromise the string stability of a platoon. X. Liu et al. noted that the

presence of a fixed delay significantly compromised string stability [3]. Wireless networks,

which have random delays and the added challenge of packet losses, will exacerbate the

situation.

All distributed multi-agent systems require communicated information but some sys-

tems are more tolerant of the accompanying delays. In many exploration-based applications,

agents operate in pseudo-discrete-time by simply not acting until they receive complete in-

formation. This is not the case in vehicle platooning. Vehicles are moving at high speeds
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and must act in continuous time. For example, a platoon of vehicles traveling at 60 mph

covers more than 26.5 meters in just one second. According to an evaluation of the proposed

communication protocol for vehicle platooning, the delay of control messages of highest pri-

ority remains on the order of tens of milliseconds [4]. In this time frame, vehicles will

have traveled 0.265 meters, a significant displacement when the spacing between vehicles

is envisioned to be on the order of 0.1 meters for braking concerns [5]. Each vehicles con-

trol algorithm must therefore be robust enough to compensate for these potential delays

yet there are currently no simulations which combine proposed control algorithms with the

anticipated communication protocol.

This work seeks to analyze challenges facing full-scale implementation of vehicle pla-

tooning. Specifically, a flexible simulator is developed so the influence of imprecise kinematic

data on the control algorithm as well as the interaction between control and communication

can be explored for vehicle platooning applications. The rest of this chapter presents some

general background regarding the evolution of vehicle platooning and relevant terminology.

Chapter 2 discusses the communication model in detail and presents key results regarding

successful transmission rates as a function of platoon size and transmission period. The

original PATH control algorithm is presented in Chapter 3. Results from the final vehicle

platooning simulator, which combines the control and communication models, are the fo-

cus of Chapter 4. Chapter 4 also presents proposed modifications to the control algorithm

for improved platoon performance in the presence of transmission loss and imprecise data.

Finally, conclusions and necessary future work are presented in Chapter 5.

1.2 Background

From a control engineering perspective, vehicle platooning is a unique subset of dis-

tributed multi-agent systems. In platooning, vehicles travel along an established path and

exhibit comparatively predictable behavior. These features make platooning simpler than

many other multi-agent systems currently being explored because fewer unknown scenarios

exist but platooning has its own set of challenges: events, such as an emergency braking

scenario, occur at very high-speeds and the consequences of an error are much greater. As
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suggested in the introduction, many multi-agent systems operate in a discrete domain but

high vehicle velocities require vehicles to be continually responsive to their surroundings,

hence platoon vehicles must operate in continuous time. This innate property makes com-

munication delay a serious threat to system safety because vehicles must decide on a course

of action with or without up to date information. Furthermore, like all multi-agent systems,

vehicles are free to make the wrong decision. While the wrong decision may result in the

loss of a single agent in most systems, in vehicle platooning the wrong decision will likely

result in a mass collision of the entire platoon. Despite these challenges, much effort is being

undertaken to find solutions which will lead to a fully implemented platooning system due

to its many potential benefits.

One of the most direct benefits of vehicle platooning is the alleviation of traffic con-

gestion. Over 2.9 billion gallons of fuel were wasted in congested traffic across the nation

in 2012, corresponding to a total financial cost of $121 billion [6]. Forming groups of au-

tonomous vehicles allows for closer vehicle spacing, thus increasing roadway capacity so

more vehicles can utilize existing infrastructure, and decreasing the amount of speed varia-

tions, and hence the occurrence of stop-and-go congestion. Platooning also improves vehicle

efficiency by placing cars into a drafting scenario where each following vehicle benefits from

decreased drag. The reduced speed variation from autonomous control further improves

vehicle efficiency while increasing passenger comfort and lowering the number of traffic

collisions [1, 7].

PATH undertook many of the preliminary investigations into vehicle platooning within

the United States during the early 1990s. This group laid significant groundwork in the

characterization of a hierarchical architecture for automated highway systems, established

terminology, quantified key variables for vehicle modeling, and identified important areas for

research [8]. Early publications from this group even laid out basic guidelines for necessary

communication [9]. Europe’s SARTRE (Safe Road Trains for the Environment) group began

with similar goals as PATH, but their work culminated in a more realistic demonstration.
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Through SARTREs three-year endeavor, four Volvos successfully followed a profes-

sionally driven truck on public roads in Spain [7]. Using wireless communication and an

autonomous controller developed by Ricardo, a global engineering consultant firm, the cars

were able to successfully follow the lead vehicle, sometimes with a gap of no more than

four meters, while traveling at speeds up to 90 km/h in the presence of other roadway

traffic. Although the platoon successfully navigated over 200 km in a single day, little

documentation of the control algorithm employed or the specific scenarios tested has been

published. It does not appear like the platoon formation and lane changing were addressed

autonomously, however. The impact of emergency braking, which will be discussed further

in Chapter 3, also raises questions regarding the ideal vehicle spacing and hence the speed

at which the controller must operate [5]. As the number of platoons increase, there will also

be significantly more traffic on the communication channel. This increased load can dras-

tically increase the time required to successfully transmit a message, and hence destabilize

the control algorithms.

To operate, each vehicle within the platoon must have information regarding the antici-

pated actions of other platoon members. When that information is not successfully received

by a vehicle, the car must still make a decision regarding its next actions. For many situa-

tions, prediction algorithms can be used to form a reasonable approximation of the missing

information. A successful prediction will not account for an emergency which by its nature

implies a drastic change in the situation. If the lead vehicle suddenly brakes and cannot

transmit that action, for example, the following vehicles cannot modify their actions and

so collide. A communication protocol which minimizes the occurrence of dropped trans-

missions is therefore necessary before vehicle platooning can be safely implemented on a

large scale. One of the leading candidates for communication protocols in the United States

is an amendment to the IEEE 802.11 family of standards. This amendment, known as

802.11p or WAVE (Wireless Access in Vehicular Environments), is designed specifically for

vehicular communication and was approved in July 2010 [10]. Established wireless networks

are already governed by IEEE 802.11 and have demonstrated an ability to accommodate a
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large number of users. Building on this platform, WAVE simply modifies the bandwidth

allotments of IEEE 802.11a without altering the protocol which has been so successfully

implemented. While several research papers have proposed the addition of more layers to

WAVE, the research community has been very receptive to the protocol as a foundation for

vehicle platooning. Further details on the IEEE 802.11p protocol can be found in Chapter

2 as it was the chosen protocol for the platooning simulation presented herein.

No protocol exists which will guarantee instantaneous communication. Although IEEE

802.11 is designed to handle a large number of users, sizable delays do occur. In the case of

platoon vehicles, the delay may prevent necessary information from being received by the

time it is needed to modify the control algorithm. Therefore, a control algorithm must be

developed which can tolerate some loss of information. One of the foundational researchers

in the control realm, Rajesh Rajamani, has published an entire textbook dedicated to vehicle

control [11], and helped develop the control algorithm used in the PATH demonstration.

Each vehicle in the PATH demonstration contained a lateral and a longitudinal control to

minimize path deviation and maintain vehicle spacing, respectively. The lateral control can

be addressed locally but the longitudinal controller relies on information from other platoon

vehicles and returns a desired acceleration which the vehicle then tries to match. Within

Rajamani’s control algorithm, it is assumed the lead vehicle knows the exact trajectory

information.

Rajamani’s control algorithm was successful for the PATH demonstrations and con-

tinues to attract current researchers. P. Fernandes and U. Nunes implemented the same

longitudinal control in simulations where they proposed strategies for mitigating commu-

nication delays [12]. Although promising in simulation, the main theme of Fernandes and

Nunes’ work was the introduction of a standard 100 ms delay. As was previously men-

tioned, this long of a delay can have disastrous consequences in an emergency situation.

Nonetheless, their work reveals the robust nature of Rajamani’s controller. That robust-

ness, combined with the physical demonstration, is why the same longitudinal control design

was implemented in this work and will be discussed in more detail in Chapter 3.
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Chapter 2

Communication within Vehicle Platoons

While platooning, vehicles will travel through a wide-range of terrain, from open rural

roads to densely packed urban streets with a corresponding variation in speed. Communi-

cating in this changing environment requires a flexible, high-speed protocol much like the

ad hoc structure of Wireless Land Area Networks (WLANs). An ad hoc network offers the

additional benefit of not requiring large amounts of supplementary infrastructure so vehicle

platooning can be gradually incorporated into existing roadways as planned. Current sup-

porting technology is already available and can successfully accommodate a large number

of users. When vehicular communication emerged as a topic of interest, these factors led

many researchers to recommend the modification of existing wireless protocols for use in

vehicular networks.

WLANS are governed by the IEEE 802.11 family of standards. These standards allot

frequency bands, stipulate channel access protocols, define accepted packet structures, and

specify data rates. Most importantly, 802.11 provides a strong foundation of standards

while permitting evolution to incorporate promising new technologies. As mentioned in

Chapter 1, IEEE recently introduced an amendment to the 802.11 standard, known as

IEEE 802.11p, specifically for applications in vehicular networks.

The goal of this thesis is to model the interactions between communication and con-

trol in vehicle platoons. Many communication experts have developed detailed models for

the IEEE 802.11 family while others have proposed additional layers for the newly intro-

duced IEEE 802.11p protocol [13–18]. This research is important and necessary for vehicle

platooning but such detailed analysis obscures how other subsystems, such as the control al-

gorithms within each vehicle, will be affected by the nature of the communication protocol.

To this end, the model herein focuses only on the physical layer (PHY) and Media Access
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Control (MAC) sublayer of IEEE 802.11p as these two layers are primarily responsible for

data transmissions. The PHY dictates the amount of information added before and after a

transmission for the data to be successfully extracted by the receiver. Meanwhile, the MAC

governs the scheduling of transmissions. These two layers are hence communication factors

which have a large impact on the control algorithms in vehicle platooning.

An overview of the established IEEE 802.11a standard will be presented in this chap-

ter because it serves as the foundation for 802.11p. A general understanding of the layers,

transmission times, and packet sizes for the established standard helps clarify the 802.11p

amendment. The communication model, though targeted toward 802.11p, is flexible enough

to provide a loose model of 802.11a which has more documentation so some model verifi-

cation can be gleaned by comparing throughput results from the simulation to published

literature. In Section 2.2, a brief history and detailed description of the 802.11p amendment

is presented before providing an in depth explanation of the communication simulation. The

chapter concludes with an analysis of the two protocols as implemented in C++ code for

use with the overall vehicle platooning model.

It should be noted that platooning will most likely require a combination of vehicle

to vehicle communication as well as vehicle to infrastructure communication. This work

focuses on vehicle to vehicle communication and assumes the lead vehicle will receive exact

information from the infrastructure regarding desired speed, upcoming vehicle maneuvers,

and potential emergency situations. The platoon is further assumed to act as an isolated ad

hoc network with data being broadcast from one vehicle to the remaining platoon members.

No acknowledgement packets are therefore considered. Instead, if a vehicle successfully gains

access to the communication channel, it is assumed the vehicle can successfully transmit

the desired message to all vehicles and all vehicles receive that message at the same time.

2.1 Discussion of the IEEE 802.11a Standard

IEEE 802.11a uses a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

protocol wherein the Physical layer Convergence Protocol (PLCP) sublayer continually polls

the communication medium to determine whether the channel is busy or idle. The PLCP
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reports the channel status to the Media Access Control (MAC) sublayer which then decides

whether to attempt a transmission. The channel must be sensed idle for a distributed inter-

frame space (DIFS) of 34 µs before the MAC will begin the transmission procedure [19].

When the channel has sensed an idle DIFS, the transmitter uniformly chooses a backoff

time in the interval (0,CW-1) where CW is the current backoff window size. Initially, CW is

equal to the minimum value of 15. Should the transmission be unsuccessful, CW is doubled

until a maximum window size is reached or the transmission is successful. The problem of

CW’s units has not been resolved so the resulting value is scaled to be on the same order

as the other message parts, specifically microseconds. Once the transmitter has waited for

its determined offset period, the transmission begins. First, the preamble and PHY header

are transmitted at the lowest supported data rate of 6 Mbps, thus communicating at a rate

for which all receivers are listening. These two packets contain information about the speed

at which data will be sent, the encryption used on the data, and other message-critical

information so the receiver can successfully extract the data from received communication

packets.

The 802.11a standard does not describe a specific PHY but instead leaves this as a

design option. The majority of physical layers use Frequency Hopping Spread Spectrum

(FHSS), Direct Sequence Spread Spectrum (DSSS), or Orthogonal Frequency Division Mul-

tiplexing (OFDM) [20]. FSSS has some security advantages because the communicated data

changes frequencies; however, coordinating the frequency hopping requires larger headers

and longer synchronization, lowering the overall throughput of the system making large

networks less efficient. If a DSSS Physical layer is chosen, 802.11 Clause 15 allows for ei-

ther Differential Binary Phase-Shift Keying or Differential Quaternary Phase-Shift Keying

modulation which correspond to 1 or 2 Mbps data rates respectively [21]. By contrast, an

OFDM Physical layer provides up to 54 Mbps data rates and allows for multiple subcarriers

making it more suitable for vehicular platooning. Most importantly for this work, the PHY

specified in IEEE 802.11p is OFDM.

Two OFDM Physical layers are available in the IEEE 802.11 standard, both providing
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up to 54 Mbps data rates, but only the Extended Rate PHY (ERP) OFDM Physical layer

is used in 802.11a. As shown in Figure 2.1, the ERP-OFDM PPDU is comprised of a

preamble, header, and data field. Similar to the initial preamble, the PLCP preamble

provides a known, repeating sequence so the receiver can acquire the incoming OFDM

signal and synchronize its demodulator. This training sequence may take up to 16 µs to

complete [21].

Following the preamble, the PLCP begins transmitting the ERP-OFDM header. Figure

2.2 shows the 24 bits which make up this field. The first 4 bits of the header indicate the

modulation and coding rate of the remaining PPDU. After the rate subfield is a reserved

bit which is set to zero as it is not currently used. Next is the 12 bit length subfield which

indicates the number of octets in the actual data message. The parity bit is an even parity

bit based on the preceding 17 bits. Finally, the header sends a string of 6 zeros which

comprise the signal tail subfield. After sending the header, the transmitter switches to the

specified data rate and begins sending the data. The data field itself consists of a service

subfield, the actual data, a tail subfield, and then a series of pad bits. The service field is

currently a string of 16 zeros, the first seven bits are used to synchronize with the receiver

while the remaining nine are currently unused, and is transmitted at the data rate specified

in the ERP-OFDM PPDU header. The data is also sent at this rate and cannot exceed

4095 octets [21]. Finally, the data tail sends a string of 6 bits, all 0, to reset the encoder

then fills in the pad bits. The pad bits subfield is at least six bits long but is the minimum

number of bits needed so the data field is a multiple of the number of bits in a coded OFDM

symbol, namely 48, 96, 192, or 288 [21]. After the data field has been sent, the PLCP sends

a confirmation primitive to the MAC layer and relinquishes control of the channel.

2.2 Wireless Access in Vehicular Environments

Extending the IEEE 802.11 standard into vehicular environments via IEEE 802.11p

was a logical step. It builds on an established, proven foundation and so benefits from

wireless expertise and guarantees vehicles from different manufacturers can interact with

each other and with future infrastructure units. Most importantly, it ensures vehicular
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Fig. 2.1: ERP-OFDM PPDU as specified in the 802.11a standard.

Fig. 2.2: ERP-OFDM PPDU header for 802.11a.
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networks will benefit from ongoing developments in the wireless family. Despite these

advantages, IEEE 802.11 in its original form was unable to handle the longer range of

operation, high vehicle speeds, multipath interference, overlapping networks, and the general

nature of the applications [22] encountered in vehicular environments.

Task group p of the IEEE 802.11 working group began developing an amendment to the

802.11 standard specifically for vehicular environments. The amendment built on the Fed-

eral Communications Commission’s allocation of 75 MHz of bandwidth in the 5.9 GHz band

for dedicated short-range communications (DSRC) in October 1999. The allocation was part

of the National Intelligent Transportation Systems Architecture (NITSA) developed by the

Intelligent Transportation Society of America, the U.S. Department of Transportation, and

other parties tasked with creating an Intelligent Vehicle Highway System, now known as

Intelligent Transportation Systems (ITS) [22]. Specifications for additional necessary layers

were developed by the 1609 working group, also associated with IEEE. Collectively, IEEE

802.11p and IEEE 1609 provide standards for wireless access in vehicular environments

herein referred to as WAVE.

WAVE supports two stack architectures, namely the standard Internet Protocol ver-

sion six and the proprietary WAVE Short-Message-Protocol. Accommodating two stack

structures allows WAVE to provide high-priority, time-sensitive communications along with

less demanding, service-oriented transmissions [22]. Both stacks rely on the same first two

Open Systems Interconnection layers, however. That is, the same physical layer and MAC

are used for all WAVE applications - another reason for focusing this model on the PHY

and MAC sublayer. The upper OSI layers are predominantly contained within the 1609

family while IEEE 802.11p defines the PHY and MAC sublayer for WAVE.

Building on the protocol of 802.11a, the IEEE 802.11p amendment still utilizes a

CSMA/CA MAC but specifies an OFDM physical layer [23]. Only one physical layer is

allowed in WAVE to ensure uniformity in communication, thus simplifying necessary equip-

ment on vehicles. OFDM was chosen for the PHY because it has several benefits for ve-

hicular networking applications: high spectral efficiency because subchannels can overlap,
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resiliency to RF interference, and lower multipath distortion [21]. A total of 64 subcarrier

channels are generated by the OFDM modulation as described in the standard. Of these

64 channels, eleven are guard subcarriers to buffer the edges of the channel, a zero channel

is set aside in the middle of the range to serve as a DC subcarrier, and the remaining 52

subchannels are used for data transmission.

Channel assignment is addressed in higher layers of the OSI. For the model presented in

this work, the primary modification to the PHY and MAC which occurs from the established

802.11a standard to the 802.11p amendment is in the channel bandwidth and data rates.

While 802.11a utilized 20 MHz channels, 802.11p uses 10 MHz channels and half the data

rates provided in 802.11a [22,24]. Therefore, the preamble and header times described in the

previous section are carried into the 802.11p protocol. The only value significantly affected

by the amendment is the maximum data rate being reduced to 27 Mbps.

2.3 Implementation of Protocols in Code

When looking at the challenges of vehicle platooning from a control algorithm perspec-

tive, the primary role of communication is to share accurate kinematic data between vehicles

in a timely manner. Intuitively, increasing the number of vehicles within a platoon will also

increase the communication delay but the exact relationship is not known. It is therefore

advantageous to explore the impact of increasing platoon size on communication delay and

transmission failure rate - data that can then be incorporated into a more complete simu-

lation to investigate the robustness of proposed control algorithms. In that vein, the first

piece of the simulation was the communication protocol itself and focused on allowing an

increasing number of vehicles to attempt transmissions following the WAVE protocol.

As summarized in the previous section, IEEE 802.11p governs the physical layer and

MAC sublayer within WAVE and hence is responsible for the basic transmission of infor-

mation. Further, 802.11p builds on the general 802.11 protocol which uses a carrier-sense,

multiple access with collision avoidance MAC to schedule transmissions and access the com-

munication channel. Although 802.11p specifies an OFDM PHY, from a data transmission

standpoint this only affects the structure of the preamble and header which precede every
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data transmission. Specifically, the Physical Layer Convergence Protocol, which is responsi-

ble for synchronizing the demodulator to the incoming OFDM signal, requires a 12 symbol

preamble. Matching the transmitter and receiver in this manner may take up to 16 µs [21].

The PLCP header occupies 24 bits as previously described. These two components are

fixed requirements of the communication protocol and are independent of the data being

transmitted.

The exact nature of data needed by vehicles is still a subject of much research because

it, in large part, depends on the control algorithm chosen and the security measures imple-

mented. Nonetheless, a reasonable structure can be determined for the sake of simulation.

For this work, it is assumed vehicles will broadcast information about their position, veloc-

ity, and acceleration (PVA). Every control algorithm investigated for this work can operate

using some combination of this information. Reserving 16 bits for each piece of information

comfortably allows for one part in 216 of precision. Each message is also assumed to contain

a status update for the vehicle, vehicle identification number, and message identification

number. The vehicle status is currently unused but can serve as an indicator of whether

a vehicle is entering or leaving the platoon, alert other cars if the vehicle encounters a

mechanical problem which does not immediately impact the integrity of the platoon, or

provide additional services. For the sake of uniformity and to simplify hardware design,

these components are assumed to be 16 bits as well. Combined, a total of 96 bits are

therefore reserved for the actual data.

Following the packet structure dictated by 802.11a, and therefore by 802.11p, 6 bits

are appended to the end of the data making the total data field 96 bits in length. An

additional 90 bits are needed as pad bits to ensure the total data packet is a multiple of an

OFDM symbol, in this case 192 bits. The overall packet structure is shown in Figure 2.3.

The time required to send the 216 bits of data is a function of the data rate indicated in

the header. Recall 802.11p offers a range of data rates from 3 Mbps up to 27 Mbps, half

those available in 802.11a, corresponding to a range in transmission times from 72 µs down

to approximately 8 µs, also shown in Figure 2.3.
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Fig. 2.3: Packet structure for 802.11p model.

Here it is worth emphasizing a few points regarding the data assumptions made within

the simulation. The number of bits contained in a data packet must be a multiple of the

bits in an OFDM symbol, namely 48, 96, or 192 bits. Given the need to communicate some

amount of kinematic information and the appending of at least 12 bits to the end of the data,

a 48-bit message contains insufficient information. Only 36 bits are available so PVA data

would be restricted to 8 bits, leaving at most 12 bits for additional information. This drastic

reduction in data only lowers the entire packet delivery time from 88 µs to approximately

40 µs at 3 Mbps. A more reasonable data packet would be 96 bits. PVA data can return to

a 16-bit representation while still allowing up to 36 bits for sending additional information.

This is reasonable but provides very little improvement in transmission times: at 3 Mbps

the difference between a 192-bit packet and a 96-bit packet is 32 µs, less than 4 µs at

the maximum data rate of 27 Mbps. This scenario of diminishing returns on data rates is

discussed in detail by Y. Xiao and J. Rosdahl [19]. Further, the purpose of the simulations is

to explore the robustness of control algorithms and so the worst-case scenario is presented,

namely the largest data packet and hence the largest delay. For these reasons, the data

packet of Figure 2.3 is used throughout the simulations for timing purposes.

For the simulation, the purpose of the packet structure of Figure 2.3 is to obtain a

total message time which is the combination of the fixed 16 µs preamble as well as the time

required to send the 192-bit data packet. Each car within the platoon attempts to send

one message every communication period. The communication period is directly connected

to the fact that each vehicle must decide on a course of action for the next time interval

and hence, must receive PVA updates from the relevant vehicles prior to this decision. If a

vehicle fails to transmit in the designated communication period, the intended message is
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aborted because the information is now stale. Instead, a new update is scheduled for the

next communication period.

At the beginning of the program, each vehicle in the platoon randomly selects a backoff

time in the interval (0, CW-1) where CW is the current contention window size. CW is

initially set to 15 because no transmissions have yet been rescheduled. If a vehicle fails to

gain control of the channel at the desired time, the transmission is rescheduled using the

same procedure but CW is doubled. CW continues to double with each rescheduling until

a maximum CW of 1023 is reached. This timing is based on IEEE 802.11a [19] but is not

altered in the 802.11p amendment [22]. The uniformly distributed offset times are all scaled

to guarantee the transmission will be attempted at least once in the desired communication

period. Each vehicle will attempt to transmit their message at their offset time beyond the

current time.

Once every vehicle has determined an initial offset time, an event queue is constructed

which contains vehicle identity, event type, transmission attempt, event time, and time for

the initial attempt. A sample event queue for a three car platoon is shown in Table 2.1. The

vehicle identity is simply the vehicle’s location in the platoon with “0” designating the lead

vehicle. Event type is reserved for future explorations but in the current simulation is left as

a “1” to indicate a communication event is scheduled. Initially, the transmission attempt for

every vehicle is set to “0.” This value is incremented each time a transmission is rescheduled

so the appropriate contention window can be used in the rescheduling process. The random

offset time is stored in both the event time and initial attempt columns. Initially these

two columns are identical because no rescheduling has been necessary, but if a rescheduling

occurs, the new transmission time will be stored in the event time column while the initial

attempt column will remain unaltered. The initial attempt column serves as a valuable

Table 2.1: Sample event queue for three car platoon.

vehicle number event type transmission attempt event time initial attempt

1 comm. 0 0.000747554 0.000747554
0 comm. 0 0.000748155 0.000748155
2 comm. 0 0.00079928 0.00079928
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analytical tool; it shows the delay between when a vehicle wants to transmit and when the

transmission is successful.

The rows within the event queue are then arranged chronologically so the first row

contains the earliest transmission. In the case of Table 2.1, the sorting has already occurred.

As the first vehicle in the event queue, Car 1 is clearly the first vehicle attempting a

transmission. Car 1 will monitor the channel prior to its transmission. If no transmission has

occurred within DIFS, defined as 34 µs, of the desired transmission time, Car 1 successfully

sends its message. Because no prior transmissions are scheduled in the scenario presented in

Table 2.1, the channel is sufficiently clear so Car 1 does transmit successfully. When a vehicle

successfully gains control of the communication channel, the channel is then occupied for

the time needed to send the data message. For reasons described previously, every vehicle’s

message requires 88 µs to transmit. If the next transmission is scheduled during this 88 µs

or 34 µs after, that transmission must be rescheduled.

When a message is rescheduled, the transmission attempt is incremented to ensure

the contention window is doubled. A new random offset is then chosen in the range (0,

CW) where CW has been doubled. The offset is scaled as previously then added to the

current time to determine when the next transmission attempt will occur. There is no

guarantee a transmission will be rescheduled into the same communication period. In

the three car platoon example shown in Table 2.1, Car 1 successfully gained control of

the communication channel 747.554 µs into the simulation and begins transmitting. The

channel is therefore occupied from 747.554 µs to 835.554 µs which clearly interferes with

both Car 0 and Car 2. When Car 0 begins preparing to transmit, it detects a busy channel

and so must reschedule. Table 2.2 shows the updated event queue. Note the transmission

attempt has been incremented from 0 to 1 to reflect this need to reschedule. Car 0 has

chosen an offset time of 278.236 µs which is added to the current simulation time of 835.554

µs to generate the event time of 1,113.79 µs shown in Table 2.2. In this simulation scenario,

the communication period is only 1 ms which means Car 0 has rescheduled the transmission

outside the available period. As a result, Car 0 fails to transmit and its message is aborted.
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The simulation time remains at 835.554 µs because Car 0 was unable to transmit during the

communication period. Meanwhile, when Car 2 attempted its transmission at 799.280 µs, it

detected a busy channel as well and so began the rescheduling procedure. Table 2.3 shows

the results of the rescheduling. With a generated offset of 52.875 µs, Car 2 reattempts its

transmission 888.429 µs into the simulation. This time is in the communication period and

so is successful.

As presented in this section, a scheduled message can take three tracks. If the channel is

sufficiently clear, the message will be successfully sent as scheduled like Car 1 in the example;

however, if another transmission is occupying the channel or the previous transmission ends

less than DIFS prior to the scheduled transmission, the message must be rescheduled.

The rescheduled message may still be successful, as was the case for Car 2, or it may fall

outside the communication period and be aborted such as Car 0. A fourth scenario may

theoretically occur. When the communication protocol is implemented, hardware is needed

to acquire access to the communication channel and to detect whether the channel is busy

or idle. This hardware operates by shifting bits and hence requires a finite time before

events can be detected. It is therefore possible that two vehicles will generate a sufficiently

identical offset so as to both attempt transmitting without being aware of the other vehicle’s

transmission. As a result, the two transmission collide and neither is successful. Due to the

high-speed processing available, it is reasonable to assume that channel acquisition occurs

instantaneously, so for a packet collision to occur, the generated offset for each vehicle would

need to be identical. Due to the extremely low probability of such an occurrence, packet

collisions are not investigated in this work. Instead, it is assumed that all vehicles are

instantaneously aware of a transmission.

Table 2.2: Vehicle 0 reschedules transmission out of bounds.

vehicle number event type transmission attempt event time initial attempt

0 comm. 1 0.000748155 0.000748155
2 comm. 0 0.00079928 0.00079928
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Table 2.3: Vehicle 1 successfully reschedules message.

vehicle number event type transmission attempt event time initial attempt

2 comm. 1 0.00079928 0.00079928

2.4 Simulation Analysis

As a newly accepted amendment to the IEEE 802.11 family of standards, there is

little established documentation on the performance of 802.11p available. The protocol

set forth by 802.11p for the PHY and MAC layers is identical to 802.11a with the only

modification being the available data rates [4,22]. This observation is advantageous because

the prevalence of 802.11a has led to well documented models of the protocol’s throughput -

the amount of useable data sent through the channel in a given time window. By modifying

the data rates, hence only changing the message time used in the communication model, a

general representation of 802.11a can be developed. The throughput of the 802.11a model

can then be determined and compared to the results of more detailed communication models.

Referring once again to Figure 2.3, which shows the message packet developed for

802.11p, the 16 µs to transmit the preamble, the 24-bit header, and the 192-bit data packet

all remain the same for 802.11a. The only change is the time required to send the combined

216 bits of data. With a range in data rates from 6 Mbps to 54 Mbps, the total message

time ranges from 52 µs to 20 µs, respectively. The throughput for each of these message

times was calculated to place lower and upper bounds on the throughput for comparison

to other models. For each message time, the number of vehicles was incremented and the

throughput for each car count was averaged over 100 simulations to generate a meaningful

statistical average.

To produce a plot of the lower bound throughput, the message time was set to 52

µs. The number of vehicles attempting to transmit during one communication period was

incremented from 2 to 500. Once again, one hundred simulations were run at each vehicle

count to generate a meaningful statistical average for the number of successful transmissions.

Each transmission contains 192 bits of total data so the throughput, TP, can be determined
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using:

TP =
192 ∗AverageSuccessful

T
, (2.1)

where T is the communication period. The useful payload size is 96 bits per transmission

because this is the amount of actual data supplied to the receiving vehicles. An identical

process is used to generate an upper bound on the throughput once the message time is

modified to 20 µs. Figure 2.4 summarizes the results of both simulations showing the upper

and lower bounds for each communication period, T.

The results obtained from the simulation have the same functional form as those pre-

sented by Y. Xiao and J. Rosdahl for the throughput of 802.11a [19] which helps validate

the simulation model. Figure 2.5 shows a reproduction of the upper throughput limits for

802.11a generated by Xiao and Rosdahl for three communication rates: 6 Mbps, 24 Mbps,

and 54 Mbps. These curves have the general functional form:

y(x) = A(1 +BeCx), (2.2)

where y represents the channel throughput in Mbps and x is the payload size in bytes.

Comparing Figure 2.4 to Figure 2.5 shows a variation in curve shape which is a function

of differences in parameters A, B, and C of (2.2). There are several reasons for this difference.

Most significantly, the throughput analysis by Xiao and Rosdahl did not incorporate a time

out sequence. Rather than have a finite period in which a message had to be scheduled,

their messages were rescheduled as many times as necessary until successful transmission

was achieved. This allowed for a larger number of bytes to be delivered. Additionally,

the payload was adjusted by increasing the data packet size while keeping a fixed number

of transmission nodes. By contrast, the communication model maintained a fixed data

size but increased the number of vehicles attempting to transmit. Adding more vehicles

increased the total attempted payload size but also increased the message overhead because

each vehicle also included an additional preamble and header in its transmission. These

two factors culminated in a lower throughput for the communication model but this is not
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Fig. 2.4: Throughput results from communication model after modifying to resemble the
IEEE 802.11a protocol.

unexpected. The same functional form remains encouraging.

The comparison of throughputs was done as validation for the communication model,

and was successful, but the goal of the communication analysis remains to explore the inter-

action between platoon size and the communication protocol described by 802.11p. To this

end, the effect of platoon size on transmission error rate was studied. This crucial piece be-

gins characterizing how much information each controller will receive in a given time frame.

As a first step, the model was readjusted to represent the 802.11p protocol by returning

the message time to 88 µs. The number of aborted messages were recorded as platoon size

was incremented from 2 to 50 vehicles. For this section, one thousand simulations were

run for each car count to provide reasonable statistical analysis. Figure 2.6(a) summarizes

the results of this analysis for three different communication periods. As expected, a larger

communication period similarly allows for a larger platoon size. Looking toward the in-
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tegration of communication with the control algorithms; however, a large communication

period has downfalls as it corresponds to a larger delay between data updates. Nonetheless,

a communication period of 10 ms comfortably allows for twenty-five vehicles while main-

taining less than 10% error rate as shown in Figure 2.6(b) which zooms in on Figure 2.6(a).

In this scenario, the error rate is purely a result of messages being rescheduled outside

the initial communication period and does not reflect channel interference. The results are

still encouraging, however, because they show from a scheduling perspective, a platoon of

twenty-five vehicles can send kinematic information every 10 ms with 80% success rate.
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Fig. 2.5: Established upper throughput limits for 802.11a.
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(a) Rate of unsuccessful transmissions as a function of platoon size for three different
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(b) Zooming in on the error rate associated with the 10 ms communication period.

Fig. 2.6: The transmission loss rate as a function of platoon size for three communication
periods.
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Chapter 3

Control Algorithm for Vehicle Platooning

To be fully implemented, vehicle platooning requires several levels of control. PATH

broke the algorithms into two general categories: lateral control and longitudinal control.

The lateral control is primarily responsible for modifying the steering wheel angle to main-

tain a vehicle’s lane position. During the PATH field trials, the center of the lane was

marked with small magnets. Fluxgate magnetometers on the vehicle then determined the

vehicle’s position within the lane. Deviations from center were measured and used in the

lateral controller to determine a compensatory angle on the steering wheel. Using this pro-

cess, vehicles within the eight car platoon had less than three inches of error [1]. The lateral

controller can be expanded to address vehicles entering and exiting the platoon with the

inclusion of additional sensors and, most likely, additional communication between vehicles.

These additional features govern the evolution of a platoon over time but are not necessary

for a static platoon, that is a platoon with a fixed number of members. This thesis presumes

the platoon is nearly formed so no vehicles are merging. Vehicles are not necessarily effi-

ciently or safely spaced, however. Under this assumption, the primary concern is achieving,

then maintaining, a pre-determined ideal gap between vehicles. PATH termed this aspect

of vehicle platooning “longitudinal control.”

3.1 Ideal Vehicle Spacing

PATH and SARTRE used vehicle spacings of 6.5 m and 6 m during their respective

demonstrations [1,7]. The gap used by PATH was based on human reaction times although

an autonomous vehicle will be more responsive. Therefore, from the perspective of an au-

tonomous platoon, a 6.5 m spacing is more tolerant of variations in velocity and acceleration

between vehicles but it also, potentially unnecessarily, decreases the improvement to road-
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way capacity and reduces the aerodynamic benefits of platooning. Wind-tunnel tests at

the University of Southern California revealed drag forces were cut in half when vehicles

were spaced about half a car length apart compared to PATH’s 6.5 m spacing. Analy-

ses at University of California Riverside showed the reduced drag corresponded to 20-25%

improvement in fuel economy [1]. NASCAR provides further evidence for the improved ef-

ficiency obtained from reducing vehicle spacing. A new technique, known as push drafting,

emerged on the Talladega course in 2011 and led to improvements of nearly 15 mph. In

push drafting, two cars link up bumper-to-bumper, providing twice the horsepower without

significantly increasing the drag. Engineers from three different racing teams commented

on the dramatic improvement provided by this tightly spaced platoon which essentially

eliminates all drag on the following car [25]. Interestingly, one concern resulting from the

vacuum is overheating of the second car’s engine due to the lack of air flow. As a result,

the second car is often slightly skewed from the first car. This provides some airflow to the

engine at the cost of increased drag on the car.

Improvements in efficiency support decreasing vehicle spacing, but safety concerns also

push for more tightly spaced platoons. The severity of a vehicle collision increases with

the difference in velocities, the relative velocities, between the vehicles. In a platooning

situation, the vehicles will be traveling at nearly identical velocities so the severity of a

collision is relatively minimal unless an emergency braking scenario occurs. At this point,

one vehicle brakes at maximum capacity, causing an abrupt decrease in velocity and maxi-

mizing the difference in velocities between itself and the proceeding vehicle. If enough space

is between the braking vehicle and its follower, the second vehicle can initiate braking in

an effort to match velocities. This behavior is exhibited by human drivers and leads to

larger vehicle spacing. As mentioned, this spacing reduces efficiency and roadway capacity.

On the other end of the spectrum in the emergency braking scenario, vehicles can be very

closely spaced. When the front vehicle fully engages its brakes, the velocity decreases very

little before the following vehicle collides. While this collision may occur at high speeds, the

relative velocities are very minimal so the risk of severe damage to vehicles and passengers
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is similarly minor.

By looking at incident data from California, a threshold difference in velocity of 3.3 m/s

was observed wherein no data existed for lower velocities [26]. In other words, there was zero

damage reported in collisions where vehicles were traveling within 3.3 m/s of each other.

Building on this observation, a conservative difference of 2.5 m/s was used to determine

acceptable vehicle spacing in the work by Jackson [5]. Note, federal regulations require

vehicle bumpers to withstand collisions equivalent to a 5 mph (2.235 m/s) impact with an

equivalently sized, parked vehicle [27]. The models developed revealed a low probability of

damage in collisions with vehicle spacing on the order of 0.1 m when Monte Carlo simulations

were run to introduce variation in braking ability, headway spacing, and initial velocities.

For this particular work, more strict boundaries are placed on vehicles. It is assumed all

vehicles have an identical maximum braking ability of 9.5 m/s2 [5]. When the two vehicles

collide, the difference in velocity upon collision can be determined using:

∆v = at =
√

2(∆s)a, (3.1)

where “∆s” is the initial difference in position and “a” is the deceleration of the first car.

Rearranging Eq. (3.1), the initial vehicle spacing can be found as:

∆s = (∆v)2/2a. (3.2)

Using Jackson’s conservative estimate of 2.5 m/s and a maximum braking capacity of 9.5

m/s2 leads to safe vehicle spacing of 0.57 m, significantly smaller than the 6 m spacing used

in demonstrations. These results do not imply the 6 m spacing is unsafe because Eq. (3.1)

and Eq. (3.2) assume the following vehicle does not attempt to brake. At 0.57 m, this is a

reasonable assumption due to communication and actuation times in automatic systems. If

the vehicles are traveling at 27 m/s (60 mph), they cross the gap of 0.57 m in 0.21 seconds.

However, at 6 m the following vehicle should be aware the preceding vehicle is braking and

so can begin reducing its velocity to mitigate collision damage.
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For safe platooning that better improves efficiency and roadway capacity, this work will

focus on implementing a control algorithm which is string stable and can maintain a vehicle

spacing of 0.1 m. This vehicle spacing requirement is extremely rigid when compared to the

calculated safe gap of 0.57 m, but the computer simulations used to evaluate the control

algorithm are idealized. The exact braking capabilities of a vehicle are not accurately

represented because they depend on the mechanical system of the car as well as roadway

conditions. Actuation delay is also not incorporated into the model for similar reasons. To

account for the influence of these factors, a stricter spacing requirement is used to provide

some safety measure. It should be noted the results presented here and in proceeding

chapters use an ideal gap of 0.1 m but, within the code itself, this vehicle spacing is an

arbitrary constant and can easily be modified if data for different scenarios is desired.

3.2 Longitudinal Control

Deviations from the ideal gap are used to evaluate the stability of control algorithms.

For the platoon itself to be stable, these deviations must decrease with each additional car.

Early PATH work emphasized the need for inter-vehicle communication to guarantee string

stability within the longitudinal control but did not stipulate what information vehicles

needed to share. A large number of control algorithms were proposed in the late 1970s.

Some algorithms attempted to mitigate vehicle nonlinearities [28, 29], while many others

focused on maintaining consistent spacing [30–33]. Despite the theoretical benefits of each

proposed controller, the ultimate goal of vehicle platooning is a physical implementation.

Of the documented control algorithms, one has been field tested. The PATH eight-vehicle

demonstration relied on a robust, sliding-mode control design developed by Rajesh Raja-

mani et al. [2].

ẍ∗i = (1− C1)ẍi−1 + C1ẍ0 − (2ξ − C1(ξ +
√
ξ2 − 1))ωnε̇i (3.3)

−(ξ +
√
ξ2 − 1)ωnC1(ẋi − ẋ0)− ω2

nεi

As seen in Eq. (3.3), each vehicle i={1, 2, ..., N}, where N is the platoon size, uses
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the velocity, ẋ, and acceleration, ẍ, of the preceding, i-1, and lead, 0, vehicle to calculate a

desired acceleration of ẍ∗. The controller bandwidth is ωn and was set as 1/(2πT) in this

paper with T denoting the communication period although the controller was observed to

be relatively robust to deviations in this value given precise kinematic data. The spacing

error for the ith vehicle is denoted by ε so that:

εi = xi − xi−1 + L, (3.4)

ε̇i = ẋi − ẋi−1, (3.5)

where L is the ideal spacing and was set to 0.1 m for reasons presented earlier.

The remaining two variables in the control algorithm of Eq. (3.3) are C1 and ξ. C1 is

a control gain in the interval [0, 1] that reflects the relative weighting of data from the lead

car compared to the preceding car. For example, setting C1 to 0 removes the lead vehicle’s

data from the calculation while a C1 of 1 results in a control algorithm entirely dependent

on the lead vehicle’s data. The tuning of ξ is less prescriptive. As may be expected given

the structure of Eq. (3.3), ξ can be viewed as a damping ratio and takes values in the

interval [1, ∞) with 1 being critically damped.

3.3 Implementation of Longitudinal Control Algorithm

PATH ultimately demonstrated the longitudinal control’s effectiveness at maintaining

a vehicle spacing of 6 m in a controlled setting [1, 2]. The goal of the control simulation is

to recreate the robust algorithm of Eq. (3.3) and explore the consequences of reducing the

vehicle spacing to 0.1 m.

To simulate a platooning environment, the position, velocity, and acceleration of each

vehicle at the current time are stored in an array. This array also includes the kinematic

values which will be implemented at the beginning of the next period. The period in

this simulation is directly connected to the communication period which was the focus of

Chapter 2 because, ultimately, it is the time interval at which vehicles will receive the data
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needed by the control algorithm. Recall, the lead vehicle is assumed to have information

from the infrastructure regarding necessary velocity and acceleration values for the next

period. All following vehicles rely on communicated velocity and acceleration values to

determine a desired acceleration which will ensure the ideal gap is maintained between all

vehicles in the platoon.

At the beginning of the simulation, the lead vehicle is defined to be at a position of 0.

All vehicles are assumed to have negligible length. Although this assumption is unrealistic,

the actual vehicle length will simply shift the spacing of following vehicles, complicating

the presentation but not altering the results. The lead vehicle then receives velocity and

acceleration values from the sub-routines “get velocity” and “get acceleration,” respectively.

The get velocity subroutine is user-defined and intended to provide varying velocity data to

the lead vehicle so the followers’ responses can be observed. For this work, these subroutines

each take the current time and return a velocity and acceleration, with units m/s and m/s2,

respectively. The get velocity function is a simple sinusoid:

ẋ0(t) = 20.0 + sin(t/γ), (3.6)

where t is the current time and γ was initially equal to 5.0. The get acceleration function

uses Newton’s difference quotient to approximate the time derivative of the velocity function

from Eq. (3.6).

ẍ0(t) =
ẋ0(t+ δ)− ẋ0(t− δ)

2δ
(3.7)

A time step of δ is used where δ was set to 1 µs. The lead vehicle’s velocity and acceleration

values at the start of the simulation are also stored as the next velocity and next acceleration

to complete the lead vehicle’s initialization.

Having a user-defined velocity function for the lead vehicle is similar to the current

highway structure wherein speed limits are posted. The get acceleration function follows

directly from the get velocity function through numeric derivation. Although acceleration

plays more of a background role for human drivers, it is necessary to directly incorporate
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the acceleration in this simulation for two reasons. Two vehicles can have identical velocity

at one point in time, with ideal spacing between them, but if the acceleration of the rear

car exceeds that of the lead car, a collision will occur. Therefore, it is important to ensure

vehicles within the platoon are matching accelerations as well as velocities. This necessity

is reflected in the controller’s need for accelerations as seen in Eq. (3.3). Acceleration is

also important in this simulation because it is ultimately the control signal for the longitu-

dinal controller. The amount the gas pedal is compressed or released, and the duration of

that pedal position, changes a vehicle’s acceleration. Human drivers currently adjust the

acceleration to achieve a desired velocity. The longitudinal controller replaces the driver

and so must make its own adjustments of the acceleration. Furthermore, physical limits

on acceleration must be incorporated into the simulation to assess the feasibility of control

algorithms. Large accelerations are not physically possible nor, from a physiological per-

spective, desirable. For this work, it is assumed passengers and vehicles can comfortably

obtain a maximum acceleration of 3 m/s2. Similarly, a comfortable deceleration is set to

3 m/s2. Larger decelerations can be used in an emergency braking scenario but such situ-

ations are not explored in this work. If the lead vehicle’s resulting acceleration exceeds 3

m/s2, the acceleration is instead set to the bound.

Once the lead car has received velocity and acceleration information according to Eqs.

(3.6) and (3.7), each following vehicle is initialized. The following vehicles begin with the

same velocity and same acceleration as the lead vehicle but the initial position is a function

of each vehicle’s relative position within the platoon. For the preliminary investigation,

it was assumed vehicles were ideally spaced. Under this assumption, the position of each

vehicle is determined in a straightforward manner using:

xi(0) = x0(0)− (i ∗ L). (3.8)

Note, Eq. (3.8) assumes negligible vehicle length so ideal gap is 0.1 m for this work. If a

non-zero vehicle length were used, that length could simply be added to the ideal gap term

though this change would merely result in a shift of the following vehicles’ positions but
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would not alter the analysis or results which focus on the gap spacings.

With all the vehicles’ kinematic data initialized, the simulation begins. The lead vehicle

determines its next velocity value using its current velocity and acceleration according to:

ẋi(Tr) = ẋi(t) + ẍi(t) ∗ Tr, (3.9)

where i=0 for the lead vehicle and Tr is a user-defined variable to account for actuation

and processing delays. Tr can be considered a vehicle’s reaction time and allows for more

realistic simulations. For all simulations in this work, Tr was set equal to 1 ms or 1/10th

of the period. The lead vehicle predicts its position at the end of the period based on

its current position, velocity, and acceleration in a similar manner according to the basic

motion law described by:

xi(Tr) = xi(t) + ẋi(t) ∗ Tr +
1

2
ẍi(t) ∗ T 2

r , (3.10)

with i=0 once again.

All following vehicles track the lead vehicle’s motion but also continue moving based

on the old parameters for Tr. After Tr, each following vehicle will have a “next velocity”

and “next position” defined by Eq. (3.9) and Eq. (3.10), respectively. Based on their

position and velocity after Tr, the following vehicles then calculate the acceleration needed

for the remaining time period, R, to achieve the ideal gap per Eq. (3.3). Initially, the

communication is assumed to have zero dropped or distorted packets so the controller

can access the preceding and lead vehicles’ velocity and acceleration data. The important

consequences of dropped or distorted packets are discussed in Chapter 4.

Each following vehicle calculates its next acceleration directly according to Eq. (3.3).

The velocity and acceleration data used in the formula are the values stored as “next velocity”

and “next acceleration” by the respective vehicle. The control algorithm in no way restricts

the desired acceleration so to ensure realistic behavior, the acceleration and deceleration

are bounded.
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At this point, the current simulation time is still zero (t=0). Every vehicle remains at

its initial position with the velocity and acceleration parameters assigned during initializa-

tion. Based on these preliminary values, each vehicle has now calculated its next position,

next velocity, and next acceleration. These “next” parameters are what each vehicle will

have at a time of Tr and govern the behavior of that vehicle for the remaining duration of

the period, R. In other words,

R = T − Tr; (3.11)

so at the end of the period, each following vehicle will have position, velocity, and acceler-

ation given by:

xi(T ) = xi(Tr) + ẋi(Tr) ∗R+
1

2
ẍi(Tr) ∗R2, (3.12)

ẋi(T ) = ẋi(Tr) + ẍi(Tr) ∗R, (3.13)

ẍi(T ) = ẍi(Tr). (3.14)

Meanwhile, the lead car also moves forward, updating its kinematic data. Its position at

the end of the next period is a function of its current position as well as its initial velocity

and acceleration. Specifically:

x0(T ) = x0(t) + ẋ0(t) ∗ T +
1

2
ẍ0(t) ∗ T 2, (3.15)

where t=0 for the first period. Note, this is a different update than for the following vehicles

because it uses the initial kinematic values rather than the predicted values. Unlike the

following vehicles, the lead vehicle’s reaction time, Tr, is not incorporated until the next

time iteration. The velocity and acceleration are calculated from Eq. (3.6) and Eq. (3.7),

respectively, with the next acceleration also being set to the value returned from Eq. (3.7).

After proceeding through the updates described from Eqs. (3.9)-(3.15), every vehicle

has moved through the first period and the current time is equal to T. Vehicle motions for

the remaining simulation time follow the same updating scheme every period. A total of

5000 periods comprised each simulation. The current position, velocity, and acceleration
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for every vehicle is stored for analysis while a visual output is displayed in the computer

console. The visual display simply uses ASCII pound symbols to represent following vehicles

while an asterisk denotes the lead vehicle, allowing for a quick visual of how vehicles are

spaced and whether oscillations are occurring in the vehicles’ positions.

3.4 Validation of Initial Control Algorithm Simulation

The primary validation of the initial control algorithm is it achieves ideal vehicle spac-

ing. Using an update period (T) of 10 ms and a ten-vehicle platoon, all simulations were

ran over 5000 periods. When the following vehicles were initially spaced at ideal gap behind

their predecessor and the lead vehicle followed the varying velocity trajectory described in

Eq. (3.6) with γ=5.0, the maximum spacing error is less than 0.001 m while differences in

the vehicle velocities are on the order of 10−4 m/s. Increasing the initial vehicle spacing to

0.2 m, or 2*ideal gap, results in the relative vehicle spacing shown in Figure 3.1. Vehicles

converge to the ideal gap in under 5 s and maintain this spacing very consistently through

the remainder of the simulation with a few deviations less than 0.001 m in amplitude.

Using γ equal to 5.0 in Eq. (3.6) produced a qualitatively gentle velocity trajectory. It

served as a base evaluation of the control algorithm in Eq. (3.3) and shows the anticipated

behavior of a ten-vehicle platoon. Modifying the value of γ within the get velocity sub-

routine explores the effect of more frequent velocity changes on platoon stability. Changing

γ from 5.0 to 1.0 increases the frequency of speed variation. When ideally spaced upon

initialization, following vehicles are still able to successfully match the lead vehicles velocity

with differences on the order of 10−4 m/s. The spacing error also remains bounded by 0.001

m but the error never fully settles.

Increasing the initial vehicle spacing to 0.2 m reveals the control algorithm is still

able to quickly drive the vehicle spacing toward the desired ideal gap, see Figure 3.2. The

following vehicles reach a spacing of 0.1 m in under 5 s, refer to Figure 3.2(a) which is

nearly indiscernible from Figure 3.1, but oscillations of magnitude 0.001 m remain apparent

for the remainder of the simulation time and are more frequent than when γ=5.0 as shown

in Figure 3.2(b). The analysis presented by Rajamani et al. regarding the controller of
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Fig. 3.1: Relative spacing between each following vehicle and its predecessor when initially
spaced at 0.2 m.

Eq. (3.3) also noted the occurrence of oscillations in vehicle positioning. Over the 7.6 mile

course traveled for the PATH demonstration, vehicles remained within 0.2 m of the desired

6.5 m vehicle spacing [2].

Not surprisingly, the simulations also reveal oscillatory behavior in the vehicle veloci-

ties. The relative velocities between vehicles contained periodic oscillations on the order of

10−4 m/s following an initial convergence approximately 5 s into the simulation as shown

in Figure 3.3.

Modifying γ in Eq. (3.6) so the sinusoidal trajectory has a period of 7.5 s then 5 s,

with γ=0.75 and γ=0.5, respectively, further increases the frequency of the lead vehicles

sinusoidal trajectory. For each new value of γ, the analysis focuses on the steady-state

oscillations and so it is assumed all vehicles are initially ideally spaced. As expected, the
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(a) Convergence of vehicle spacing to an ideal gap of 0.1 m.
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(b) After settling, spacing errors remain bounded by 0.001 m.

Fig. 3.2: Relative spacing when vehicles are initially spaced at 0.2 m and follow a velocity
trajectory of Eq. (3.6) with γ=1.0.
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Fig. 3.3: Relative velocity between vehicles when initially spaced at 0.2 m and following a
lead vehicle with velocity trajectory described by Eq. (3.6) with γ=1.0.

rate of oscillations in both the relative vehicle spacing and relative velocity increased with

increasing frequency in the stipulated velocity trajectory. The magnitude of the oscillations,

however, does not increase. The spacing oscillations remain bounded by 0.001 m when

vehicles were initially spaced at the ideal gap and the lead vehicle was tracking a sinusoidal

velocity with a 5 s period. Meanwhile, the velocity oscillations do not exceed a magnitude

of 10−4 m/s for the same scenario.

The magnitude of the oscillations in the relative vehicle spacing is sufficiently small

compared to the ideal gap so no collisions directly result from this behavior. These oscilla-

tions do reduce the platoon’s efficiency, however. The scale of oscillations, both for positions

and velocities, within the simulation are small but their presence is reflected in the physical

PATH demonstration.

Intuitively, repeated braking and accelerating reduces vehicle fuel efficiency. The exact

impact of this behavior is a function of the vehicle’s mass, the amount of energy converted
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to forward motion, the magnitude of speed variation, etc. As a minimal estimate, it can be

assumed all energy from fuel is converted directly to increasing the vehicle’s kinetic energy

while decreases in velocity are achieved through braking or frictional loss. Therefore, in

the computer simulation, a measure of the minimal energy expenditure for each vehicle can

be calculated with Algorithm (3.1). Each vehicle will have a term E denoting the relative

energy, with units J/kg, expended through the simulation.

Algorithm 3.1 Energy calculation algorithm

for (car=0; car<platoon size; car++)
{

if (vnew(car)> vold(car))
{
Ecar=Ecar+(v2new (car) -v2old (car))
}
}

Algorithm (3.1) provides a measure of the oscillations within the simulation, and hence

a comparative measure of oscillations in a physical platoon. Thus far, four velocity trajecto-

ries have been explored by varying the value of γ in Eq. (3.6) systematically from 5.0 to 1.0,

0.75, then 0.5. The relative energy for each vehicle within the platoon was investigated for

each trajectory when vehicles are initially ideally spaced. Ideal spacing was chosen because

it is desirable to reduce the steady-state oscillations. Naturally, placing vehicles at twice

the ideal gap results in the last vehicle having the largest energy expenditure because that

vehicle must overcome the largest distance for all vehicles to reach ideal spacing.

The oscillations cause each vehicle to expend more energy than its predecessor. Figure

3.4 shows the relative energy expenditure when the leader follows each of the trajectories

explored. The relative energy is obtained by subtracting the lead vehicle’s generalized

energy, which is assumed to be the amount required to travel the given trajectory, from

each following vehicle’s relative energy expenditure. It is worth emphasizing the relative

energy being shown in Figure 3.4 and referenced in this text is a generalized energy and has

units J/kg. It merely provides a measure of the oscillations for the purpose of comparison.
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Fig. 3.4: Ideal relative energy expenditure for platoon with each following vehicle spending
nearly the same energy and less than the lead vehicle.

When following the baseline trajectory of Eq. (3.6), no oscillations were observed in

the vehicles’ relative positions or velocities. As a result, all vehicles use nearly identical

energy resulting in the horizontal line denoted by γ=5.0 in Figure 3.4. By contrast, minor

oscillations were observed when γ was modified to 0.75 and more frequent oscillations oc-

curred at γ=0.5. In both these scenarios, each vehicle’s relative energy expenditure exceed

its predecessor’s. The amount of increase appears linear for the first five platoon vehicles

but then tapers off, though an increase in energy is still occurring.

One of the motivations for implementing vehicle platoons is to increase fuel efficiency

but as Figure 3.4 reveals, oscillations in the following vehicles can reduce these benefits.

Oscillations also pose a possible safety threat. Although the spacing errors within the

simulation were an order of magnitude smaller than the ideal gap and did not directly result

in a collision, the model did not account for all vehicle behavior. Inertia and momentum

within the physical system could potentially amplify oscillations in vehicle positions to the
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point of a collision. In the PATH demonstration, the spacing error was 0.2 m which was

acceptable when desired vehicle spacing was 6.5 m but will not be acceptable when the

ideal gap is reduced to 0.1 m [1].

When the desired acceleration of platoon vehicles is calculated using the control algo-

rithm of Eq. (3.3), vehicles initially spaced at 0.2 m are able to converge to an ideal gap of

0.1 m within 5 s. Vehicles maintain this spacing within ±0.001 m while following a variety of

sinusoidal velocity trajectories. Variations in velocity are on the order of 10−4 m/s. When

the lead vehicle follows the trajectory described in Eq. (3.6), following vehicle positions

and velocities settle to the desired values. As the frequency of the trajectory increases,

oscillations within the following vehicles’ positions and velocities appear and similarly in-

crease. Within the simplified simulation, it is difficult to fully quantify the effect of these

oscillations on the platoon; however, Figure 3.4 shows a generalized energy to quantify the

influence of oscillations. The appearance of larger oscillations in the physical implementa-

tion show these simulated oscillations are a real concern. Modifying the control algorithm

to reduce these oscillations will improve the efficiency benefits of platooning and reduce the

possibility of a collision within the physical system. Chapter 4 will introduce an additional

term to the control algorithm and show the accompanying reduction in oscillations.
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Chapter 4

Combining Communication and Control Models for Vehicle

Platooning

When transmission times were adjusted to match those of IEEE 802.11a, the com-

munication model developed and presented in Chapter 2 produced throughput rates with

the same functional form as the established throughput limits presented by Xiao and Ros-

dahl [19]. Returning the transmission times to model IEEE 802.11p and running simulations

to increase the number of platoon vehicles scheduling transmissions at different communica-

tion periods revealed a 10 ms communication period provided enough time for 25 vehicles to

transmit with less than 20% loss rate. Meanwhile, Chapter 3 investigated the performance

of the control algorithm:

ẍ∗i = (1− C1)ẍi−1 + C1ẍ0 − (2ξ − C1(ξ +
√
ξ2 − 1))ωnε̇i (4.1)

−(ξ +
√
ξ2 − 1)ωnC1(ẋi − ẋ0)− ω2

nεi,

which was implemented in the 1997 eight-vehicle PATH demonstration [2]. Simulations of

this algorithm conducted by PATH prior to the demonstration had the algorithm success-

fully take a platoon from rest to a constant speed and then back to rest. Providing the

lead vehicle with four sinusoidal velocity trajectories, a more severe test than undertaken

by PATH, and assuming all following vehicles received accurate information from the lead

vehicle and preceding vehicle within a 10 ms period, the spacing error and relative velocities

were recorded. When the lead vehicle followed the qualitatively gentle trajectory:

ẋ0(t) = 20 + sin(t/γ), (4.2)

with γ=5.0, following vehicles initially spaced 0.2 m behind their predecessor converged to
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an ideal gap of 0.1 m within 5 s and maintained this spacing with minimal deviation in

both position and velocity. Modifying the velocity trajectory by setting γ to 1.0 introduced

oscillations in the relative spacing and velocity of the following vehicles. Decreasing γ to

0.75, and then to 0.5, increased the frequency of these observed oscillations. Introducing a

relative energy term to quantify the effect of the oscillations revealed each vehicle generally

required more energy than its predecessor. The difference was most pronounced with γ=0.5.

4.1 Analysis of Control Algorithm Robustness in Presence of Dropped Packets

The analysis conducted in Chapter 2 did not include vehicle control, while Chapter

3 assumed ideal communication. Individually, the models developed in these two preced-

ing chapters provide useful platforms to investigate vehicle platooning, and provide results

similar to the above summarizations, but greater insight comes from a more realistic model

which combines communication and control. To develop this hybrid model, an array “suc-

cess” was introduced into the C++ control code to document which vehicles successfully

transmitted during each period. The array is initially a 1xN, all-zero array where N is the

platoon size. Each column corresponds to the vehicle position, i.e. column two records the

transmission success for vehicle two in the platoon.

Prior to moving at the beginning of each 10 ms period, the simulation jumps to the

“packet success” sub-routine. Within this sub-routine, each vehicle in the platoon randomly

generates a number called “test.” If test is greater than a user-defined “error rate,” the

vehicle was able to successfully transmit a data packet during the period. This successful

transmission is represented by placing a “1” into the success array for the vehicle. Recall

the simulation assumes the lead vehicle receives information directly from the infrastructure

so it experiences no communication loss; however, the lead vehicle does not necessarily suc-

cessfully transmit information to the following vehicles as it adheres to the WAVE protocol

which uses a contention-based channel acquisition scheme.

After the success array has been formed, following vehicles begin moving through the

period. Each following vehicle calculates its “next velocity” and “next position” as de-

scribed in the previous chapter but the vehicle’s “next acceleration” depends on the success
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array. For a following vehicle to determine a desired acceleration for the next period per

Eq. (4.1), both the lead vehicle and preceding vehicle must successfully transmit their ve-

locity and acceleration. Hence, the success array must contain a “1” in the lead vehicle

array-element as well as in the preceding vehicle array-element. If the sum of these two

columns within success is greater than one, both the leader and predecessor successfully

transmitted so the vehicle can calculate a desired acceleration using Eq. (4.1). By contrast,

if the sum of the two success columns is less than or equal to one it indicates at least one of

the necessary vehicles failed to transmit. In this scenario, the vehicle maintains its current

acceleration.

The user-defined error rate was increased from 0% to 30% at 10% intervals. The same

analysis from Chapter 3 was repeated at each error rate. When the error rate is 0%, every

vehicle is able to successfully transmit and the results were identical to those obtained in

Chapter 3, as expected, and serve as a baseline. Increasing the error rate to 10% did not

significantly alter the general platoon performance when the lead vehicle followed the initial

velocity trajectory of Eq. (4.2) with γ=5.0. Although one in ten scheduled messages was

unsuccessful, vehicles still converged to the ideal gap in under 5 s after an initial spacing of

twice the ideal gap. No oscillations in the relative velocity were observed so no difference

in relative energy occurred when compared to the corresponding trajectory in the base

scenario.

Modifying the lead vehicle’s velocity trajectory by settting γ equal to 1.0 reveals some

consequences of dropped messages. The relative velocity increased by an order of magnitude

as shown in Figure 4.1(a). The largest difference in velocity occurred near the end of the

simulation, refer to Figure 4.1(b), and reached a magnitude of 0.003 m/s. This additional

variation in velocity corresponds to an increase in the energy expenditure for each vehicle.

Under the ideal communication assumption, every vehicle required the same amount of

energy so the relative energy remained at 0 J/kg when the lead vehicle’s velocity varied

according to Eq. (4.2) with γ equal to one. By contrast, introducing a 10% loss rate

resulted in Vehicle 8 requiring over 0.083 J/kg for the same trajectory over 50 seconds.
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Increasing the frequency of the lead vehicle’s sinusoidal velocity trajectory by setting γ

equal to 0.75, then 0.5, further emphasized the increase in energy required by vehicles as a

result of the 10% communication error rate.

Figure 4.2(a) re-summarizes the relative energy expenditure for each following vehicle

under ideal communication while Figure 4.2(b) presents the relative energy used when

10% of transmissions were unsuccessful. With ideal communication, each following vehicle

expended more energy than its predecessor in a very linear fashion, but Figure 4.2(b) shows

a more chaotic relationship between a vehicle’s position within the platoon and the relative

energy required. The scattered nature of the γ=0.5 trajectory in Figure 4.2(b) illustrates

the susceptibility of platoon stability to random transmission losses. The internal modes of

oscillation in the platoon are being excited by the random change in accelerations.

The relative energies shown in Figure 4.2(b) are more scattered than the ideal commu-

nication scenario as a result of accumulated behavior when a vehicle consistently fails to

transmit. A failed transmission by one vehicle has a ripple effect on all following vehicles.

By way of example, consider three consecutive periods. Assume the lead vehicle began de-

celerating in the first period and continues that acceleration through the next two periods.

Vehicle 3 was unable to communicate during the first period. As a result, Vehicle 4 does

not change its acceleration for the second period. Moving forward to the second period,

Vehicle 4 now experiences increasing velocities while preceding vehicles are slowing down.

The variations in velocity were small enough not to have a large impact on the vehicle

spacing error but did contribute to a higher relative energy. The higher velocity enacted

by Vehicle 4 during the second period is shared with Vehicle 5. Combining Vehicle 4’s less

than ideal kinematic data with true kinematic information from the lead vehicle, Vehicle 5’s

control algorithm produced desired accelerations to offset the errors of Vehicle 4. Vehicle

5’s adjustments will be made in the third period but are already shared with Vehicle 6

which is able to more closely match the efficient trajectory of the lead vehicle and achieve a

lower relative energy expenditure. Due to transmission losses from Vehicle 6, however, the

corrected trajectory was not shared with Vehicle 7. As a result, Vehicle 7 also maintained
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Fig. 4.1: Relative velocity when 10% of transmissions are unsuccessful and the lead vehicles
velocity trajectory described by Eq. (4.2) with γ=1.0.
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Fig. 4.2: Relative energy (J/kg) expenditure for following vehicles when lead vehicle follows
velocity trajectories described by Eq. (4.2) with γ=5.0, 1.0, 0.75, then 0.5.
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a higher velocity than necessary. Vehicles 7 and 8 both transmitted successfully so each

subsequent vehicle was able to approach the lead vehicle’s trajectory and hence reduce the

relative energy consumption.

The scenario described above is a sample behavior for three consecutive periods. Each

simulation is comprised of 5000 periods, a time of 50 s, where communication success is a

random probability. There were some periods wherein all vehicles successfully transmitted

or when other vehicles failed to transmit. The sample period described is the dominant

behavior however and results in the energy expenditures pictured for γ=0.5 in Figure 4.2(b).

The velocity variations which produced the relative energy expenditures are shown in Figure

4.3. Note, the variation in speeds during each period.

With 10% of attempted transmissions unsuccessful, the ten-vehicle platoon experienced

more oscillations and expended more energy than the ideal communication scenario. This
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Fig. 4.3: Failed transmissions cause vehicles to have noticeably sharper changes in velocity.



47

deterioration in efficiency becomes more pronounced as fewer transmissions are successful.

Adjusting the simulation to model a 20% transmission error rate increased from 0 J/kg with

the ideal communication model while following a lead vehicle velocity trajectory of Eq. (4.2)

with a γ of 5.0 to over 0.042 J/kg during the 50 second simulation. When γ was at 0.5,

the maximum energy expenditure was over 4.8 J/kg at the 20% transmission loss rate, as

shown in Figure 4.4, compared to under 0.38 J/kg for the ideal case. The distribution of

relative energy expenditure is larger so partially obscures the energy deviations occurring

from transmission losses which distorted Figure 4.2(b) but the loss of up-to-date kinematic

data is still quite apparent, particularly for the γ=1.0 scenario.

Previous scenarios contained oscillatory behavior, but the vehicle spacing consistently

remained within 0.001 m of the ideal gap during all four trajectories. Losing 20% of the

transmissions caused more variable spacing error. When the lead vehicle followed the gentle
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Fig. 4.4: Losing 20% of the transmissions increased the energy expenditure for every tra-
jectory with each vehicle using more energy than its predecessor.
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trajectory of Eq. (4.2) with γ=5.0, primary steady-state spacing errors generally remained

bounded by 0.001 m but a maximum spacing error of 0.003 m was experienced by Vehicle

9 while Vehicle 3 had an error of 0.002 m during one period. The relative spacing for the

entire simulation is shown in Figure 4.5(a). A closer look at the maximum spacing error

is shown in Figure 4.5(b). Surprisingly, nearly all vehicle spacing errors remained bounded

by 0.001 m when the lead vehicle tracked the sinusoidal velocity described by Eq. (4.2)

with γ at the minimum value of 0.5. As shown in Figure 4.6, vehicles experienced frequent

spacing errors but only Vehicle 2 experienced a momentary error greater than 0.001 m. It is

worth noting, when vehicles were initially spaced at twice the ideal gap, all ten vehicles still

reached general convergence though, with γ equal to 0.5, approximately 7 s were required

for the platoon to settle.

Corresponding to the increased spacing error and larger relative energy expenditures,

vehicles experienced larger velocity differences in all four trajectories. Under ideal commu-

nication, the relative velocity remained on the order of 10−4 m/s with the trajectory only

affecting the frequency of oscillation. Losing one in five transmissions resulted in relative

velocities orders of magnitude larger. Following the slow-varying trajectory given by Eq.

(4.2) with γ=5.0 still resulted in occasional velocity differences five times larger than pre-

vious scenarios. In the most extreme instance, a γ value of 0.5 caused several vehicles to

experience relative velocities exceeding 0.03 m/s as presented in Figure 4.7.

The overall platoon performance deteriorated noticeably when the transmission error

rate was increased to 30%. When following vehicles were initially spaced 0.2 m behind their

predecessors, transmission losses caused the spacing error to reach as much as 0.02 m while

tracing Eq. (4.2) with γ=5.0. Unlike previous simulations, the high communication loss

led the control algorithm to consistently generate desired accelerations which exceeded the

±3 m/s2 acceleration bounds placed in the simulation as shown in Figure 4.8. Changing

the lead vehicle’s velocity trajectory by decreasing values of γ further amplified errors

within the platoon. When γ was set to 0.5 and vehicles were initially spaced 0.2 m behind

their predecessor, the control algorithm successfully drew vehicles to within 0.004 m of the
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Fig. 4.5: Following the velocity trajectory of Eq. (4.2) with γ=0.5 and a 20% transmission
loss rate resulted in larger spacing errors than previous scenarios wherein all oscillations
remained within ±0.001 m of the ideal gap which is 0.1 m.
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Fig. 4.6: Spacing errors remained bounded by 0.001 m when 20% of transmissions are lost
and the lead vehicle follows Eq. (4.2) with γ=0.5.
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Fig. 4.7: Changing the trajectory to Eq. (4.2) with γ=0.5 increased the occurrence of
velocity differences greater than 0.03 m/s.
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ideal gap in 5 s but spacing errors began growing throughout the rest of the simulation.

This increasing error is visible in Figure 4.9. The poor platoon performance is further

reflected in the large relative energy used by each vehicle as summarized in Figure 4.10. As

with the majority of previous communication error rates, the rearmost vehicle requires the

most energy requiring over 240 J/kg more than the lead vehicle during the 50 s simulation.

Relative energy expenditures did not exceed 0.4 J/kg when all transmissions were successful.

Unlike previous error rates, a 30% transmission loss produced increasing spacing errors,

as noted in Figure 4.9. In a physical implementation, this could result in vehicle collisions

and hence is unacceptable so a lower communication error rate must be achieved. Further,

the energy expenditures required to compensate for a 30% transmission loss rate are over

30 times larger than those at 20% loss rate.

Chapter 2’s analysis of the WAVE protocol found a communication period of 10 ms

accommodated a platoon of 25 vehicles with less than 20% error rate. Control algorithm
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Fig. 4.8: High transmission loss caused the controller to generate desired accelerations
exceeding the physical bounds of the simulation, forcing railing.
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simulations with a 20% transmission error rate resulted in spacing errors on the order of

0.002 m which provides a comfortable margin of safety when the ideal gap is 0.1 m. In

this scenario, variations in vehicle velocity caused the relative energy expenditure to be

larger than in the ideal communication scenario, however. When the lead vehicle followed

Eq. (4.2) with γ equal to 0.5, the rearmost vehicle expended just over 7.06 J/kg in 50

seconds at the 20% error rate compared to under 0.04 J/kg when all transmissions were

successful. Unsuccessful transmissions lead to higher energy requirements because vehicles

over-compensate. A similar vehicle response is observed when vehicles receive imprecise

kinematic data from other platoon members.

4.2 Introducing Kinematic Variation

Thus far, it has been assumed all transmissions contain exact information, within

double precision, so only the transmission error rate effected efficiency and platoon stability.

In reality, the kinematic data reported by each vehicle will be measured by sensors which

have limited accuracy and are susceptible to variation. Measured data will therefore have

some deviation from the true value which vehicles will need to tolerate. To model this

realistic attribute, a normally distributed random value, herein referred to as variation, is

added to the true kinematic value. The variation is characterized by a standard deviation, σ,

which slightly alters the velocity and acceleration values shared with other platoon vehicles.

For simulations in this section, ideal communication was assumed to isolate the influence of

variation on platoon efficiency. All figures in the remainder of this chapter are not statistical

but represent individual simulations unless otherwise noted.

Using a small σ of 0.01 did not significantly alter the previously observed bounds on

vehicle spacing but did greatly impact both the relative velocities and hence generalized

energy expenditure of each vehicle. As shown in Figure 4.11, vehicles were still able to

converge to the ideal gap when initially spaced at 0.2 m and remain within 0.005 m of

ideal gap while following the lead vehicle’s trajectory of Eq. (4.2) with γ=0.5, the strictest

trajectory explored.
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(a) Vehicles converged to the ideal gap within 5 s when initially spaced 0.2
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(b) Steady-state spacing error.

Fig. 4.11: Relative vehicle spacing while tracking the velocity trajectory of Eq. (4.2) with
γ=0.5, ideal communication, and variation with magnitude 0.01 standard deviation.
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There was minimal oscillation in the relative velocity when vehicles followed a trajec-

tory described by Eq. (4.2), γ=0.5, with ideal communication and no variation, see Figure

4.12(a). The oscillations which did occur remained on the order of 10−4 m/s, even when

transmission losses were incorporated. Introducing kinematic variation with standard de-

viation of magnitude 0.01 resulted in relative velocities exceeding 0.04 m for all vehicles as

shown in Figure 4.12(b).

Increasing the standard deviation of variation to a magnitude of 0.02 caused frequent

oscillations in the spacing error. The steady state spacing error was generally bounded by

0.005 m though two vehicles experienced 0.01 m spacing errors near the end of the simulation

as shown in Figure 4.13. As anticipated, the magnitude of velocity also increased with

frequent oscillations occurring with magnitude greater than 0.1 m. The relative velocity is

shown in Figure 4.14.

Large energy expenditures accompanied the increase in relative velocity when variation

was incorporated into the model. Under ideal conditions with the largest value of γ, each

vehicle’s energy expenditure for the 50 s simulation was on the order of 100 J/kg. By

comparison, incorporating a variation with σ=0.01 increased this energy expenditure by a

factor of ten so each vehicle required over 1000 J/kg for the same trajectory. As a measure of

this large energy increase resulting from kinematic variation, the generalized platoon energy

was calculated for each value of σ tested, specifically σ=0.0, 0.01, and 0.02, by summing

each member’s generalized energy. Table 4.1 summarizes the results of this summation.

While the individual spacing errors still seem small, within 10% of the ideal spacing

and comparable to the dropped packet scenarios, the collective behavior in the platoon

was interesting. The platoon length decreases as the standard deviation of the transmitted

Table 4.1: Relative energy expenditure (J/kg) as a function of kinematic variation.

σ=0.0 σ=0.01 σ=0.02

γ=5.0 1209.2 11984.34 21526.37
γ=1.0 6288.422 13087.19 21798.87
γ=0.75 8405.993 13710.04 22476.78
γ=0.5 12591.67 16405.10 23728.19
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(a) Relative velocity without kinematic variation.
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(b) Relative velocity when variation with standard deviation of magnitude
0.01 was introduced.

Fig. 4.12: Relative velocities required to follow the velocity trajectory of Eq. (4.2) with
γ=0.5 when all communicated information was successfully transmitted.
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(a) Relative spacing primarily within 0.005 m of ideal gap.
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(b) Vehicles did experience a maximum spacing error of 0.01 m near the
end of the simulation.

Fig. 4.13: Relative vehicle spacing, assuming ideal communication, while tracking Eq. (4.2)
with γ=5.0.
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Fig. 4.14: A variation with σ=0.02 produced large velocity oscillations when vehicles tracked
Eq. (4.2) with γ=5.0.

kinematics is increased. To study this undesirable platoon behavior, the simulation was

ran using a ten vehicle platoon with vehicle spacing at ideal gap. The platoon follows a

constant velocity trajectory of 20 m/s. Under these conditions, the impact of the standard

deviation in the transmitted data on the overall average platoon length is apparent as shown

in Figure 4.15. The maximum standard deviation of 0.04 m/s for a vehicle moving at 20

m/s translates into the vehicle being between a speed of 19.96 m/s and 20.04 m/s 67% of

the time. Yet, this error, on the order of 8 cm/s for each vehicle, and a corresponding error

range in the transmitted accelerations cause the platoon length to shrink to 0.7835 m when

the platoon length should be 0.9 m.

Further, as shown in Figure 4.16, the platoon exhibits low frequency oscillations after

reducing its length. Intuitively, the observed oscillations are related to the amount of rapid

change in acceleration. A Fast Fourier Transform of the data confirms the frequencies in
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Fig. 4.15: When vehicles travel at a constant 20 m/s and are ideally spaced, the introduction
of a standard deviation to transmitted data causes the overall platoon length to shrink.

0 5 10 15 20 25 30 35 40 45 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (s)

Le
ng

th
 o

f 1
0 

C
ar

 P
la

to
on

 (
m

)

Convergence of 10 Vehicle Platoon to Final Length

Fig. 4.16: Low frequency oscillations in the platoon appear when kinematic variation is
introduced, causing the overall platoon length to decrease.
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the oscillations are due to the impulses caused by the changes of the acceleration at discrete

times. Varying the damping ratio, ξ, in the control algorithm, Eq. (4.1), did not eliminate

the oscillations so the control law itself was modified.

4.3 Modified Control Algorithm

The control algorithm described by Eq. (4.1) is essentially a modified spring system.

Simulation results demonstrated the effectiveness of this design when kinematic data was

precise. When variation is introduced into the system, however, the overall platoon length

began shrinking. This can be rationalized by noting Eq. (4.1) does not account for the

distance between a following vehicle and the lead vehicle. Hence, the control algorithm

cannot directly determine nor correct a vehicle’s position with respect to the leader.

Given the relative symmetry of Eq. (4.1) for velocity and acceleration, it is natural to

extend the balance between lead and preceding vehicle data into a new position term for

the lead vehicle. The modified control algorithm then becomes:

ẍ∗i = (1− C1)ẍi−1 + C1ẍ0 − (2ξ − C1(ξ +
√
ξ2 − 1))ωnε̇i (4.3)

−(ξ +
√
ξ2 − 1)ωnC1(ẋi − ẋ0)− {(1− C1)ε−KC1(x0 − iL− xi)}ω2

n,

where K is a tuning variable and the product iL provides the ideal spacing between Vehicle

i and the lead vehicle where L is the ideal gap. All shared information in Eq. (4.3) is still

contained in the envisioned data packet of Figure 2.3.

For a 10-vehicle platoon traveling at a constant velocity of 20 m/s, experimental ev-

idence showed a value of K=4.0 consistently maintained vehicle spacing with increasing

kinematic variation. Figure 4.17 compares the platoon length when vehicle acceleration is

governed by the original controller of Eq. (4.1) to the length when the modified controller

from Eq. (4.3) is implemented for increasing standard deviations. Incorporating the spac-

ing error between a vehicle and the lead vehicle better maintains the overall platoon length

when vehicles are exposed to larger kinematic variation than the original controller. For a

standard deviation of magnitude 0.04, the original controller resulted in a platoon length
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Fig. 4.17: The modified control algorithm maintains the platoon length better than the
control algorithm of Eq. (4.1) in the presence of kinematic variation.

of 0.7835 m which is over one ideal gap smaller than the ideal platoon length of 0.9 m. The

modified controller was more resilient to the increased variation with an overall platoon

length of 0.8937 m for the same simulation.

The modified controller, Eq. (4.3), was developed to stabilize the platoon length. As

the platoon will suffer from dropped transmission packets, it needs to be tested under

those conditions. Simulating a ten vehicle platoon with initial vehicle spacing equal to

the ideal gap of 0.1 m and moving at a constant speed of 20 m/s, the differences between

the original controller, Eq. (4.1), and the modified controller are seen in Figure 4.18(a)

and Figure 4.18(b) for variations with standard deviation of magnitude 0.02 and 0.04,

respectively. With a standard deviation of 0.04 in the transmitted data and a transmission

failure rate of 30%, the original controller causes the platoon to shrink by 24%. With

the same standard deviation and failure rate, the modified controller results in a platoon
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(a) Kinematic variation with standard deviation of 0.02.
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(b) Kinematic variation with standard deviation of 0.04.

Fig. 4.18: Average length of ten vehicle platoon for the controller of Eq. (4.1) and the
modified controller in Eq. (4.3). The modified controller maintains the overall platoon
length noticeably better than the original controller, even in the presence of unsuccessful
transmissions.
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shrinkage of 2%. Unfortunately, in the present form the modified controller does not reduce

the wasted energy within the platoon. The modified controller, after a time period of 50

seconds, resulted in a relative energy loss of 14252 J/kg. This value compares to the relative

energy loss of 14351 J/kg for the original controller.

For the standard deviation in transmitted kinematic data of 0.04 with a failure rate in

transmission of 30%, both controllers generated accelerations which exceeded the physical

bounds of ±3 m/s2 causing railing. The modified controller was better at maintaining the

overall platoon length. The relative energies, however, show the inter-vehicle gaps were

varying about equally in both cases.

4.4 New Controller with Adaptive Feature

The modified controller is not making use of all the relevant information available to

it. C1 is a measure of each vehicle’s confidence in the lead vehicles information compared

to the preceding vehicle: C1=1 implies Vehicle i is relying solely on data from the lead

vehicle while C1=0 implies total reliance on the preceding vehicle. For the simulations ran

prior to this point, C1 was 0.5, giving equal weight to the two sets of transmitted data.

However, all the trailing vehicles know which vehicles were successful in their transmissions

of kinematic data. This information will allow each trailing vehicle to adapt its control

algorithm to the appropriate situation by scaling C1. If the lead vehicle is unsuccessful in

transmitting its data, all platoon members should change C1 to 0, eliminating any use of

the lead vehicles information for that period. If Vehicle i-1 fails to complete a transmission

of its kinematic data, Vehicle i should change its C1 to 1 unless the lead vehicle also failed

in its transmission. In this case, Vehicle i should not update its acceleration but instead

continue operating under its old acceleration and velocity values.

When simulated at a constant velocity of 20 m/s, the ten vehicle platoon, using this

adaptive control algorithm, produced essentially identical results to the modified system.

The standard deviation magnitude in transmitted data was varied between 0.01 and 0.04.

The failure rate was varied between 0% and 30%.

When the inter-vehicle gap was examined, however, a significant change was noted.
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Figure 4.19(a) shows the relative spacing between the lead vehicle and Vehicle 1 as well

as the relative spacing between Vehicle 4 and Vehicle 5 in a 10 vehicle platoon moving

according to the velocity trajectory described by Eq. (4.2) with γ=1.0 when vehicles are

initially spaced at the ideal gap. The failure rate in transmissions was 25% with a standard

deviation magnitude of 0.035. The controller for the simulation was the original PATH-

demonstrated controller of Eq. (4.1). Figure 4.19(b) uses the controller in Eq. (4.3) with

the same conditions. Finally, Figure 4.19(c) uses Eq. (4.3) in combination with the adaptive

C1 which switches between {0, 0.5, 1.0} based on transmission success. All simulations

were ran for 50 seconds with a time step of 10 ms and a reaction delay of 1 ms. Note,

the oscillations due to the original controller are much larger in amplitude and the gap

size reflects more frequencies. The larger deviations from the ideal spacing are towards the

smaller gap spacing, resulting in a decrease in the platoon length.

Contrasting the difference between the adaptive controller and the modified controller,

Eq. (4.3) is difficult on these graphs. A direct comparison of the gap between Vehicles 4

and 5 for the two controllers is shown in Figure 4.20. The adaptive controller has a slightly

smaller oscillation in its amplitude and lacks the large deviation from the ideal gap size

shown by the modified controller, with the spike 47.7 seconds into the simulation being

an exception. Both controllers produce an oscillation in the system, one which might be

controlled via signal processing.

4.5 Signal Processing

Although implementing the modified controller of Eq. (4.3) reduced the impact of

kinematic variation on platoon length, the new controller did not alter the energy expen-

diture. As briefly mentioned earlier, even the small variation introduced into the velocity

and acceleration values caused a significant increase in energy expenditures. The values

of σ implemented do not correspond to a large variation in speed. Choosing σ=0.01 m/s

translates into 67% of the encoded velocity values being between 26.99 m/s and 27.01 m/s

for an average velocity of 27 m/s. Even bumps on the road can produce larger variations

in velocity. Hence, kinematic variation will occur in the physical implementation.
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(a) Vehicle desired accelerations derived from Eq. (4.1).
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(b) Vehicle desired accelerations derived from Eq. (4.3).
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(c) Vehicle desired accelerations derived from Eq. (4.3)
but with C1 scaled adaptively.

Fig. 4.19: Relative vehicle spacing between lead vehicle and Vehicle 1 as well as between
Vehicle 4 and Vehicle 5 when tracking Eq. (4.2) with γ=1.0 assuming a 25% transmission
loss rate and kinematic variation with standard deviation 0.035.
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Fig. 4.20: A direct comparison between the modified controller of Eq. (4.3) and the adaptive
controller: relative spacing between Vehicles 4 and 5 while following a velocity trajectory of
Eq. (4.2) with γ=1.0, a 25% transmission loss rate, and variation with standard deviation
of magnitude 0.035.

Signal processing algorithms can be implemented to reduce kinematic variation and

improve vehicle efficiency. To explore the impact of signal processing on the large energy

expenditures accrued in the kinematic variation scenarios, a simple least-squares technique

was added to the code. Each vehicle would store its previous ten accelerations into an array

called Quadratic. A quadratic least-squares fit was applied to the ten acceleration values to

produce a predicted acceleration. This predicted acceleration, ˆ̈x, for Vehicle i was combined

with the controller produced acceleration, ẍ∗ according to:

ẍ∗i = Rẍ∗i + (1−R)ˆ̈xi, (4.4)

where R is an experimentally determined weighting factor. Experimentation showed R=0.8

yielded the best results in term of energy savings. Equation (4.4) has the additional effect
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of adding inertia to the system as it slows the acceleration of vehicles. Although a relatively

simple signal processing technique, this approach noticeably reduced the abrupt velocity

changes resulting from kinematic variations. The corresponding decrease in wasted energy

is presented in Figure 4.21 when ten vehicles traveled at a constant velocity of 20 m/s.

Similar to the control system, the high speed of vehicles within a platoon requires fast

signal processing algorithms. Using a quadratic least-squares fit is a comparatively primitive

technique but is fast and shows the benefits of introducing signal processing to the overall

platoon system. Sophisticated, high-speed signal processing algorithms exist. Though im-

plementing a more advanced processing scheme would most likely further reduce the energy

consumption of following vehicles subject to kinematic variation and potentially reduce the

inter-vehicle oscillations, a more sophisticated signal processing algorithm exceeds the scope

of this work.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

200

400

600

800

1000

1200

1400

1600

Standard Deviation

T
ot

al
 R

el
at

iv
e 

E
ne

rg
y 

(J
\k

g)

Total Wasted Energy (J/kg)

 

 

Original Controller
Modified Controller
Signal Processing

Fig. 4.21: Signal processing can counter kinematic variation and improve platoon efficiency.
Here, a simple quadratic fitting algorithm was implemented.
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4.6 Chapter Summary

Although successfully implemented in the eight-vehicle PATH demonstration, the per-

formance of the control algorithm developed by Rajamani et al. [2], Eq. (4.1), deteriorated

significantly in the presence of kinematic variation. Oscillations in spacing and velocity er-

rors appeared with greater frequency and magnitude as the standard deviation of variation

was increased. Large increases in relative energy expenditures accompanied the oscillations.

The oscillatory behavior was further exacerbated by increasing transmission loss rate.

Although relative vehicle spacings oscillated around the ideal gap, the presence of kinematic

variation caused the oscillations to tend toward smaller vehicle spacings. This collective

behavior resulted in the platoon length shrinking during the course of each simulation.

Modifying the original control algorithm of Eq. (4.1) to include the distance between

Vehicle i and the lead vehicle, as expressed in Eq. (4.3), significantly reduced the observed

platoon shrinkage. When 30% of transmissions were unsuccessful and the kinematic varia-

tion had standard deviation of 0.04, the original controller causes the platoon to shrink by

24%. With the same standard deviation and failure rate, the modified controller results in

a platoon shrinkage of just 2%.

Because vehicles are aware of which platoon members successfully transmit, the modi-

fied controller can be further improved by adaptively tuning C1 in Eq. (4.3). C1 is essentially

a ratio of the confidence Vehicle i assigns to the lead vehicle with respect to the preceding

vehicle. When the preceding vehicle fails to successfully transmit, a vehicle adjusts C1 to

1.0 and relies entirely on data transmitted by the lead vehicle. Alternatively, if the lead

vehicle’s transmission is unsuccessful, C1 is equal to 0 so only the preceding vehicle’s data is

used in Eq. (4.3). When both vehicles transmit successfully, C1 is 0.5 as in early simulation

work. If both the lead vehicle and preceding vehicle are unsuccessful, Vehicle i maintains

its velocity and acceleration for the next period. The adaptive control scheme was compa-

rable to the modified controller at maintaining overall platoon length. Individual vehicles

benefited from slightly smaller oscillations about the ideal gap.
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Neither the modified controller nor the adaptive controller reduced the high relative en-

ergy expenditures encountered with increasing variation. Instead, a quadratic least-squares

approximation was used to generate a predicted acceleration which was then combined with

the controller-generated acceleration. The result of this simple signal processing technique

was a more efficient platoon. When vehicles traveled at a constant 20 m/s, a standard

deviation of just 0.005 caused the ten-vehicle platoon to expend over 1000 J/kg during the

50 second simulation run prior to the signal processing. Using the quadratic least-squares,

the same platoon required less than 200 J/kg.

Overall, the development and results of three novel ideas were presented in this chapter:

modified controller, adaptable confidence ratio C1, signal processing to reduce kinematic

variation. Combining these ideas improved vehicle behavior, reduced platoon shrinkage,

and decreased relative energy expenditures.
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Chapter 5

Summary of Results and Future Work

Vehicle plaooning has been successfully demonstrated in controlled environments. The

1997 eight-vehicle PATH demonstration took place on an isolated track. Radio commu-

nication relayed information between vehicles for use in the longitudinal controller which

maintained a 6.5 m vehicle gap, with errors of ±0.2 m. The velocity trajectory for the

demonstration began at rest, increased to 60 mph (27.9 m/s), then returned to rest in a

100 s window [1, 2]. A European group, SARTRE, has similarly implemented a physical

platoon. SARTRE vehicles were spaced as closely as 4 m apart during a 200 km test along

actual highways in Spain [7]. Very little technical information has been disclosed regarding

SARTRE’s control algorithm though wireless communication was used to share information

between vehicles.

SARTRE was able to further reduce vehicle spacing to slightly improve fuel consump-

tion. Balancing improved efficiency and safety concerns indicates a vehicle gap of 0.1 m

will significantly reduce vehicle fuel consumption without increasing collision damage. This

small vehicle spacing requires high-speed communication and robust control. Within this

thesis, the effectiveness of PATH’s well-documented control algorithm, Eq. (3.3), was eval-

uated when vehicles communicate per the WAVE protocol to maintain a vehicle spacing of

0.1 m.

To analyze Eq. (3.3), a computer simulation was developed in C++ to model platoon

behavior. The lead vehicle received a user-defined velocity trajectory with acceleration de-

termined from the velocity using numerical integration. Each following vehicle attempted

to remain 0.1 m behind its predecessor while following the lead vehicle. The desired accel-

eration for each following vehicle was determined by the control algorithm. When modeling

Eq. (3.3), vehicles use the current velocity and acceleration of the preceding and lead vehicle
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to determine a desired acceleration to be implemented in the next period.

PATH relied on radio communication to share this information but wireless communi-

cation has emerged as the preferred protocol for vehicular networks. In the United States,

WAVE was developed around the established IEEE 802.11 family of standards [22]. The

physical layer of WAVE is governed by 802.11p which essentially doubles the data rate of

802.11a but does not alter the header or preamble structure of data packets.

Under the recently accepted IEEE 802.11p amendment, as part of WAVE, a model

was developed for this work which found a platoon of 25 vehicles could transmit position,

velocity, and acceleration data every 10 ms with less than a 20% loss rate. As a result of

this analysis, a period of 10 ms was chosen for the control simulation as well. The validity

of the communication model was supported by adjusting the data transmission rates to

match those specified in IEEE 802.11a and looking at the channel throughput. Although

the simulation increased the payload size by adding additional packets, hence increasing the

unusable bits which varies from standard throughput analysis, the simulated throughput

was found to have the same functional form as documented throughput rates for IEEE

802.11a.

The control algorithm was similarly validated by comparing simulated results to docu-

mented behavior. To model the results of PATH as presented by Rajamani, the simulation

assumed all transmissions were successful so every vehicle had the data necessary to calcu-

late its desired acceleration for the next period. The implemented acceleration was bounded

by ±3 m/s2 to model physical limitations of actual vehicles. With this ideal communication,

vehicles were able to maintain the 0.1 m gap when the lead vehicle tracked four separate

trajectories, which increased in frequency, of the functional form:

ẍi = 20.0 + sin(t/γ), (5.1)

where i={1,2,...,N} and N is the number of platoon members. The velocity trajectories

explored in the simulation are more severe than those implemented by PATH to ensure

robust control.
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The original controller also maintained vehicle spacing when kinematic data remained

exact but the transmission loss rate was increased to 20%, where one in five transmissions

were unsuccessful. Larger velocity impulses were needed to maintain ideal spacing however,

which translated to larger energy expenditure. When 30% of transmissions were unsuccess-

ful, the spacing errors began amplifying with time making this loss rate unacceptable for

physical implementations.

Due to sensor accuracy and environmental conditions, a physical platoon will also

encounter kinematic variation. The control algorithm will therefore need to accommodate

inaccurate velocity and acceleration values. To isolate the influence of variation, the velocity

trajectory of the lead vehicle was reduced from a sinusoid to a constant velocity of 20 m/s.

Returning to the ideal communication scenario but introducing variation with a standard

deviation of 0.02 in the kinematic data noticeably reduced the ability of Eq. (3.3) to

maintain vehicle spacing. Relatively large oscillations occurred in both the spacing error

between vehicles and the relative velocity with transmission losses aggravating this behavior.

Velocity oscillations caused a large increase in the relative energy required by vehicles which

is discouraging. Even more troublesome, the overall platoon length actually decreased in

the presence of kinematic variation.

Rajamani observed oscillations in the PATH implementation as well. With a vehicle

spacing of 6.5 m, the spacing error of 0.2 m was not a concern. Reducing the vehicle gap to

0.1 m makes this spacing error unacceptable, however. A new controller design is needed

which will better maintain the platoon length when transmitted position, velocity, and

acceleration data have some deviation from the exact values. Building on the symmetry of

Eq. (3.3), an additional position term was added to the control algorithm, resulting in Eq.

(4.3). The new term is a measure of the spacing between Vehicle i and the lead vehicle.

The modified control algorithm of Eq. (4.3) was significantly more effective at maintain-

ing overall platoon length. When 30% of transmissions were unsuccessful and the kinematic

variation had standard deviation of 0.04, the original controller causes the platoon to shrink

by 24% when vehicles follow the velocity trajectory of Eq. (5.1) with γ=1. With the same
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standard deviation and failure rate, the modified controller results in a platoon shrinkage

of just 2%.

Individual vehicles still experienced frequent oscillations in position and velocity under

the modified controller. In an effort to reduce this internal oscillation, C1 in Eq. (4.3) was

changed from a fixed constant of 0.5 to an adaptive gain. Because C1 reflects the confidence

of Vehicle i in the lead vehicle’s data with respect to the preceding vehicle’s data, the value

of C1 should depend on which vehicles successfully transmitted. The adaptive scheme did

reduce internal oscillations slightly but the overall energy expenditure for vehicles exposed

to kinematic variation was still much larger than the ideal scenario.

Signal processing can reduce the impact of kinematic variation on platoon efficiency. As

a demonstration, a simple quadratic least-squares algorithm was implemented. Predicting

the next acceleration based on the previous 10 acceleration values and combining with

the controller-generated acceleration significantly decreased internal oscillations within the

platoon. When vehicles traveled at a constant 20 m/s, a standard deviation of just 0.005

in the kinematics caused the ten-vehicle platoon to expend over 1000 J/kg during the 50

second simulation run prior to the signal processing. Using the quadratic least-squares as

a demonstration, the same platoon required less than 200 J/kg.

A more advanced signal processing algorithm could potentially further reduce the en-

ergy expenditure by removing vehicular oscillations and would be worth investigating. The

simulations conducted in this work were compared to published works as a means of val-

idation, but the results are still simulated. Ultimately, it would be extremely valuable to

implement the modified control algorithm in physical vehicles to get experimental data. On

the communication end, WAVE has multiple channels allotted for vehicular communication.

This work assumed a single communication channel but it would be interesting to see if a

multi-channel network could better accommodate multiple platoons. Finally, only longitu-

dinal control was considered in this thesis. A very similar analysis could be undertaken for

lateral control with the two potentially being merged to provide a model for more extensive

platooning scenarios.
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More work is needed before full-scale implementation of vehicular platoons is feasible

but the modified controller in Eq. (4.3) with adaptable confidence gain C1 shows significant

promise. It is more robust to transmission losses and especially kinematic variation than

the already implemented controller of Eq. (3.3). Including a signal processing algorithm

reduces the negative affects of kinematic variation, thus improving platoon efficiency which

provides financial and environmental incentives for implementing platooning systems.
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