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Introduction
Secondary electron emission (SEE) plays a key role in spacecraft

charging [Garrett, 1981; Frooninckx and Sojka, 1992] .  As a result,
spacecraft charging codes require knowledge of the SEE character-
istics of various materials in order to predict vehicle potentials in
various orbital environments [Katz, et. al., 1986]. Because SEE is a
surface phenomenon, occurring in the first few atomic layers of a
material, the SEE characteristics of a given surface are extremely
sensitive to changes in surface condition—e.g.,  the addition or re-
moval of surface contaminants, or changes in surface morphology.
That spacecraft surfaces can and generally do undergo significant
evolution during their operational lifetimes is a fact well established
by NASA's Long Duration Exposure Facility (LDEF) [Crutcher, et
al., 1991a].  Deposition and removal of contaminants can occur as a
result of preferential adsorption of gases on cooler surfaces, the
collection of ionized gases on negatively charged surfaces, atomic-
oxygen-induced oxidation, photodissociation under vacuum uv
bombardment, and ion-induced desorption.  Since SEE is material-
dependent phenomenon, it is reasonable to assume that as a space-
craft's surfaces evolve, so too do it's SEE characteristics.

In order to determine whether or not charging models need in-
corporate the effects of changing surface conditions aboard operat-
ing spacecraft, data assessing the impact of these changes on the
SEE characteristics of various surfaces are required.  Measurements
have therefore been made investigating the dynamic evolution of
secondary electron (SE) yields resulting from energetic electron
bombardment of typical spacecraft materials in a rarefied atmos-
phere representative of the microenvironment surrounding space
vehicles.  A detailed report of the experiment and results has been
given elsewhere [Davies, 1996; Davies and Dennison, 1997]; what
follows here is a brief summary.

Experiment and Instrument
A sample of oxidized aluminum was placed inside an ultra-high

vacuum (UHV) chamber alongside a piece of PTFE (Teflon®)
coated wire and continuously bombarded with 1-3 keV electrons for
~30 hours. The SE yield of the surface was monitored as a function
of time throughout the electron bombardment. Oxidized aluminum
was chosen as a typical material comprising spacecraft surfaces,
while outgassing of the Teflon wire contaminated the UHV envi-
ronment, simulating the microenvironment surrounding an operating
spacecraft.  Continuous electron bombardment resulted in two ef-
fects—(i) the removal of the oxide layer, and (ii) the deposition of a
thin (~1 nm-thick) layer of carbon contamination—duplicating the
surface effects of other processes known to occur in Earth orbit.

Results
Total SE yield of the surface, δ, as a function of time is depicted

in Fig. 1.  Detailed analysis of the data reveal the following: (i) an
approximately 30% decrease in δ due to removal of the oxide layer
(region I), and (ii) an approximately 57% drop in δ due to the depo-
sition of an ~1 nm-thick carbon layer (region II) [Davies and Denni-
son, 1997].  The combined effect was a reduction in δ from ~0.58 to
~0.25—a decrease of more than a factor of two over ~30 hrs.

Fig. 1  Secondary yield vs. time for 2.0-keV electrons continu-
ously incident on contaminated aluminum surface.

Discussion
Rates of contaminant deposition and removal observed in this

investigation are representative of those recorded aboard LDEF
[Crutcher, et al., 1991b], and the vacuum and contaminant levels
employed are typical of operating spacecraft in low-Earth orbit.
Thus it is reasonable to assume that the SE reduction observed in
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our laboratory is representative of that which can be expected for an
oxidized aluminum surface aboard an operating spacecraft.  Fur-
thermore, because the most troublesome spacecraft potentials are
negative, the reduction of a surface's SE yield translates to increased
spacecraft-to-plasma charging levels for a given set of environ-
mental conditions.  It is noted that the mechanisms responsible for
the sample surface modifications in our laboratory—namely, the
electron-beam-induced desorption of the oxide layer and deposition
of carbon—are not likely to be important in the space environment,
as the beam current densities used in the laboratory (~10-3 A cm-2)
were seven orders of magnitude greater than those found in space
(~10-10 A cm-2) [Davies and Dennison, 1997; Hardy, et.al., 1985].

Conclusion
The work presented here serves to demonstrate the degree to

which SEE yields can be expected to vary as a result of surface
evolution.  In this regard, the data make it clear that in order to
properly assess electrical potentials to which spacecraft may be
subject over their entire operational lifetimes, charging codes must
incorporate knowledge of how the vehicle's SEE characteristics can
be expected to change as its surface evolves.  As an operational
matter, the data are as yet insufficient for inclusion into spacecraft
charging codes.  In order for modelers to include the effects of sur-
face evolution, SE yield-versus-energy curves will be required for a
variety of spacecraft materials subject to varying degrees and kinds
of contamination.  Investigations of this type are presently underway
at Utah State University under the sponsorship of NASA's Space
Environment and Effects program.
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