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ABSTRACT 

A variety of different command and data protocols over UARTs, SPI and I2C exist within subsystems designed for CubeSats. We 
present our implementation of the Standard Commands for Programmable Instruments (SCPI, sometimes pronounced "skippy") 
as applied to Pumpkin's evolving line of Supervisor MCU-based modules for nanosatellites. SCPI includes human-readability 
and standardized error reporting, which can be beneficial in a variety of circumstances, including preproduction testing and 
runtime monitoring. We present an overview of the software and hardware required to support SCPI, and its runtime performance 
in a production CubeSat. 

INTRODUCTION 

The SCPI protocol was established in the early 1990s as a 
way to standardize communication between instruments 
and controllers in a way that is extensible and easy to 
learn.1 It defines a command syntax and structure that can 
be applied to a wide variety of test and measurement 
devices for control and data query. 

Pumpkin has implemented SCPI as the standard command 
interface for its line of PIC24E Supervisor MCU-based 
(SupMCU) CubeSat-compatible modules, enabling 
configuration and telemetry capability across an entire 
family of CubeSat components using a common set of 
ASCII based instructions. The SupMCU SCPI 
implementation is built around an open source SCPI parser 
library written by Jan Breuer. 2 One of the strengths of the 
SCPI protocol is that it uses a command tree hierarchy 
which allows maximum reuse of common commands 
across devices, minimizing the need to extensively rewrite 
code to interface with different instruments. Adopting a 
common electrical architecture and command interface 
across key flight components will greatly reduce time 
required for bus integration, testing, and flight software 
development. 

SupMCU modules communicate with a flight computer as 
a slave device over an I2C bus. I2C’s 2-wire common 
electrical bus and multi-node architecture make it the ideal 
data bus choice for the SupMCU family of CubeSat 
devices. The high data overhead and strict timing 
requirements for I2C message transmission presented some 
implementation challenges but these were overcome by 
developing a well defined send/receive sequence, 

implementing an efficient interrupt driven I2C driver, and 
taking advantage of the clock stretching capability of I2C 
slave devices. 
 

 
Figure 1: GPSRM 1 Module 

The first SupMCU module that has been released is the 
GPSRM 1, which provides the GPS functionality of 
NovAtel® OEM615-series GPS receivers in a CubeSat-
ready form factor.3 SCPI over I2C has been extensively 
tested on this module and has performed without error 
under conditions simulating the constant demands of a 
flight C&DH system. Pumpkin currently fields an 
additional SupMCU-based module (the SIM 1) in its MISC 
3 CubeSats, and more are planned. 

SUPERVISOR MCU ARCHITECTURE 

At the core of a SupMCU module is a PIC24E 16-bit 
microcontroller running firmware built upon the Salvo ™ 
real-time operating system. Each module contains a set of 
hardware & software components for common functions 

such as power management, I2C bus isolation, 
programming & debugging support and status indication, as 
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well as unique application-specific features (e.g., control of 
a GPS module).  

 

Command and telemetry data is transferred between 
module and C&DH over the system bus via an I2C 
connection to the PIC24E. Depending on the module type, 
a number of auxiliary I/O lines from the microcontroller 
and application hardware may also be brought out to the 
main bus. The minimum hardware connection between the 
SupMCU and the CubeSat requires only power and I2C 
lines.  

Each module’s firmware is built from a common set of 
code that handles RTOS, I2C drivers, SCPI Parsing and 
implementation of SupMCU common commands and tasks. 
The generous memory allocation of the chosen SupMCU 
microcontroller ensures that plenty of program and data 
space remain available for application-specific 
functionality. SCPI parser and telemetry functions occupy 
about 19kB of program memory – less than 8% of the 
MCU’s available 256k. Likewise, less than 2kB, or 6%, of 
RAM is required for SCPI and telemetry data. 

SCPI SYNTAX AND STRUCTURE 

SCPI command strings are formed by colon-separated 
keywords that trace out a command hierarchy.  For 
example, a command to measure a voltage would be 
written: 

MEASure:VOLTage 

SCPI commands are case-insensitive but have both a long 
form and a short form. The short form is typically 
expressed in capital letters in documentation. The SCPI 
parser will treat full short form and full long form 
commands equally but will generate errors for partial or 
undefined commands. These errors are logged and can be 
retrieved and handled by the commanding device. 

Depending on implementation, certain commands can be 
changed to queries by appending a ‘?’ to the command 
string or passed one or more parameters separated by 
commas. The commands to query and then set the 
frequency of an instrument might look like: 1 

SYSTem:FREQuency? 

SYSTem:FREQuency 8000000 

Multiple commands can be sent as a single string separated 
by semicolon. The previous commands could be shortened 
to: 

SYST:FREQ?;SYST:FREQ 8000000 

SCPI’s efficient yet human-readable command format 
makes it suitable for in-flight command & telemetry as well 
as manual or batch debug and test. 

SCPI ON THE SupMCU 

Every SupMCU-based module will support a common set 
of SCPI commands. An outline some of the commands in 
the SupMCU command hierarchy is shown in Table 1. 

Keyword Parameters Notes 
SUPervisor  Top level keyword 
     :LED {OFF|ON|FLASh|APPlication} Status LED behavior 
     :RESet  Reset MCU 
     :I2C  I2C functions keyword 
         :RESet  Reset I2C driver 
         :PASSthrough {OFF|ON} Set I2C isolator 
     :CLOCk {OFF|ON}, <divider_value> Configure clock output 
     :SELFtest  Run PIC24E self test 
     :TELemetry? <index_value> Request telemetry data 
… … … 

Table 1: SupMCU Common SCPI Commands 

This set of commands covers some of the basic 
functionality common to all SupMCU modules. It is likely 
to be expanded and modified as development continues.  
 
In this representation, curly brackets { } enclose keyword 
parameters and angle brackets < > enclose numeric 
parameters. As an example, turning on the clock signal 
output with a divider of 2 would be accomplished with: 
 
SUP:CLOC ON,2 
 
One or more additional top-level keywords are defined for 
application specific functionality. The GPSRM 1 module 
defines the keyword GPS as well as commands such as: 
POWer, :LOG, and :RESet. The command string GPS:LOG 
GGA, for example, will initialize logging of NMEA GGA 
data from the NovAtel® OEM615 GPS receiver. 
 
The behavior for each SCPI command is defined in 
callback functions that are called by the SCPI parser when 
a command match is recognized. 
 
 

Figure 2: SupMCU simplified 
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I2C CHALLENGES 

Though the I2C-bus has many features that make it 
desirable as the primary SupMCU command bus, such as a 
two-wire interface and the ability to address up to 112 slave 
devices, the high processing overhead as compared to the 
UART or SPI bus required careful consideration of how to 
implement data handling on an 8MHz MCU to avoid data 
loss.4 

To send a command, an I2C master – typically the C&DH 
processor – first sends out an address byte, with one bit 
indicating read or write, over the bus. Each slave device 
receives this byte and if it matches the device address, the 
device prepares to receive or transmit additional bytes.4 
Since the dedicated I2C buffer on the PIC24E is only one 
byte long, it was important that incoming messages were 
processed efficiently and quickly stored in a RAM ring-
buffer for parsing at a later time.  

As a first measure to try and accomplish this, the I2C 
handling routine was made interrupt-driven and optimized 
to require a minimal amount of MCU operations. This 
worked at lower I2C clock speeds, but bytes of data were 
still being missed at I2C speeds over 100 kbit/s or when 
other interrupt routines or application processes were 
putting excessive demand on the MCU. We found this 
result somewhat surprising, as simple and inexpensive I2C 
devices (e.g., discrete latches) have no problem keeping up 
with 400kHz I2C clock rates. 

Implementing clock stretching on the SupMCU’s I2C slave 
driver solved this problem. Clock stretching is a method by 
which a slave device can delay the master from sending 
additional data by holding the I2C clock (SCL) line low 
during the last bit of an I2C byte until it is ready to receive 
and process another byte. This allows the SupMCU device 
to process and store each I2C byte, as well as handle other 
high priority tasks such as timer interrupts or UART 
messages, without any chance of missing bytes that arrive 
over I2C. Figure 3 shows the bit timing of a SCPI message 
sent over I2C.  

 

Figure 3: I2C Clock Stretching 

Clock stretching is evident on the 9th bit (the acknowledge 
bit) of each character transmission as the slave device holds 
the clock low until ready to process the next byte. In this 
example the clock was typically held for about 24 µs on the 
last bit instead of the 10 µs that would be required if clock 
stretching was not enabled. The exact amount of clock 
stretching required depends on application loads placed on 
the MCU. 

It’s important to point out that clock-stretching is an 
optional feature in the I2C specification that is supported by 
many, but not all, I2C master devices. master I2C devices 
that support clock stretching can communicate with 
SupMCU-based modules. 

With clock stretching implemented, a SupMCU was shown 
to be able to receive and parse I2C messages flawlessly at 
all standard I2C clock rates while running multiple 
application tasks and sending and receiving debug 
messages over UART. 

TELEMETRY DATA 

In order to get telemetry and operational data from a 
SupMCU module, a telemetry request system has been set 
up that enables reliable access to information from the 
SupMCU module. 

Similar to the way SCPI commands are divided between 
commands that are common to SupMCU-based modules 
and those that are application-specific, the telemetry table 
is made up of fields common to the SupMCU and ones 
specific to individual modules. Table 2 shows a sampling 
of telemetry fields available on the GPSRM 1. This data 
structure is initialized in RAM at module start up and is 
periodically updated. Each field can be queried via SCPI by 
passing the corresponding index parameter. 
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Table 2: SupMCU Telemetry Table 

Index Name Data Data Length (Bytes) Read Buffer 

1 Clock Ticks <1…> 10 1 

2 I2C Messages <2…> 10 1 

3 SCPI Messages Parsed <3…> 10 1 

… … … … … 

10 GPS NMEA GGA <10…> 88 1 

… … … … … 

 

Fields in the table are updated at different frequencies by 
dedicated tasks depending on the nature of the data. To 
avoid conflicts between write and read operations to the 
telemetry table, a triple ring buffer update system is used. 
For each data field there are three buffer arrays that get 
updated in a circular manner. The latest buffer that has 
been finished updating is tracked and this is where the 
master is pointed to when it requests data. This ensures that 
there is always a complete data string available to be read 
out over I2C and that there is an exceedingly low chance of 
an update trying to write while data is being read. 

Table 3 shows the way that telemetry data is formatted 
byte-by-byte in the ‘data’ field array. 

Table 3: Telemetry Data Field 

Index Time Stamp Telemetry String CRC Value 

<1 Byte> <4 Bytes> <Depends on Field> <1 Byte> 

 

Each data array begins with the (non-zero) index of the 
field in the telemetry table followed by a timestamp, a fixed 
length data field, and an 8-bit check value. A cyclic 
redundancy check is automatically performed and recorded 
for each telemetry field in order to confirm data integrity. 

The I2C specification does not allow slave devices to 
initiate transmission of data to a master device. Instead the 
master device must request data from the slave device byte-
by-byte. For this reason, a telemetry request protocol has 
been established for SupMCU devices that allows the 
master to request specific data from the SupMCU. The 
request sequence looks like this: 

C&DH (Master): Send SCPI message requesting a 
particular telemetry field – eg. SUPervisor:TELemetry? 3 

SupMCU (Slave): Begin parsing SCPI message 

C&DH: Begin reading bytes of data at intervals from the 
slave. The master will read only NULL until requested data 
is ready to be read. 

SupMCU: Once request message is parsed and handled, 
read pointer is set to start of data array. 

C&DH: Non-zero index byte will be read indicating that 
data is available. The known length of the requested 
telemetry message can be read in rapid succession from 
SupMCU. 

SupMCU: Reset pointer to NULL when last character of 
telemetry string is read. Subsequent reads will return 
NULL until another telemetry request is received. 

Table 4 shows what this looks like from the point of view 
of the master device. 

Table 4: Sample Telemetry Read 

Operation Data Meaning 

Write 53 55 50 3a 54 45 4c 3f 20 33 SUP:TEL? 3 

Read <1 Byte> 00 0 

Read <1 Byte> 00 0 

Read <1 Byte> 03 3 

Read <9 Bytes> 64 0E 00 00 01 00 00 00 61 3684 (s) 
1 (SCPI message parsed) 
0x61 (CRCV) 

 

This method requires that the master device know the 
structure of the telemetry table in order to make requests 
for the correct field and data string length. A telemetry 
query function will be implemented so that the master can 
acquire the structure and metadata of the SupMCU device 
it is communicating with. 

CONCLUSION 

Applying SCPI standards to CubeSat modules provides a 
robust method for command and telemetry that is easy for 
operators and programmers to learn while being powerful 
enough to use for in orbit operations. Careful attention to 
hardware and software architecture ensures that there is 
maximum interoperability between modules and a minimal 
amount of effort required to add support for new modules 
in flight software. 

Use of the I2C bus is the simplest method for electrically 
connecting an extendable multi-node system. 
Implementation of clock stretching and telemetry 
checksums help ensure the reliability of data sent over I2C, 
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though it adds the requirement that a master device talking 
to a SupMCU module must support clock stretching. 

Further development of the Supervisor MCU family of 
CubeSat modules will add to their existing functionality. 
The number of different types of Supervisor MCU modules 
available is expected to grow beyond the GPSR and SIM 
that have currently been designed. Adoption of SCPI and 
common command interface standards across CubeSat 
modules should significantly decrease time required for 
test, integration, and software development for future 
CubeSat missions. 
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