
SSC14-WK-30

1

Applying Standard Commands for Programmable Instruments (SCPI) to CubeSats

Shaun Houlihan, Andrew Kalman

Pumpkin Inc.

744 Naples Street, San Francisco, CA 94112; (415) 548-6360

shaun@pumpkininc.com, aek@pumpkininc.com

ABSTRACT

A variety of different command and data protocols over UARTs, SPI and I2C exist within subsystems designed for CubeSats. We
present our implementation of the Standard Commands for Programmable Instruments (SCPI, sometimes pronounced "skippy")
as applied to Pumpkin's evolving line of Supervisor MCU-based modules for nanosatellites. SCPI includes human-readability
and standardized error reporting, which can be beneficial in a variety of circumstances, including preproduction testing and
runtime monitoring. We present an overview of the software and hardware required to support SCPI, and its runtime performance
in a production CubeSat.

INTRODUCTION

The SCPI protocol was established in the early 1990s as a
way to standardize communication between instruments
and controllers in a way that is extensible and easy to
learn.1 It defines a command syntax and structure that can
be applied to a wide variety of test and measurement
devices for control and data query.

Pumpkin has implemented SCPI as the standard command
interface for its line of PIC24E Supervisor MCU-based
(SupMCU) CubeSat-compatible modules, enabling
configuration and telemetry capability across an entire
family of CubeSat components using a common set of
ASCII based instructions. The SupMCU SCPI
implementation is built around an open source SCPI parser
library written by Jan Breuer. 2 One of the strengths of the
SCPI protocol is that it uses a command tree hierarchy
which allows maximum reuse of common commands
across devices, minimizing the need to extensively rewrite
code to interface with different instruments. Adopting a
common electrical architecture and command interface
across key flight components will greatly reduce time
required for bus integration, testing, and flight software
development.

SupMCU modules communicate with a flight computer as
a slave device over an I2C bus. I2C’s 2-wire common
electrical bus and multi-node architecture make it the ideal
data bus choice for the SupMCU family of CubeSat
devices. The high data overhead and strict timing
requirements for I2C message transmission presented some
implementation challenges but these were overcome by
developing a well defined send/receive sequence,

implementing an efficient interrupt driven I2C driver, and
taking advantage of the clock stretching capability of I2C
slave devices.

Figure 1: GPSRM 1 Module

The first SupMCU module that has been released is the
GPSRM 1, which provides the GPS functionality of
NovAtel® OEM615-series GPS receivers in a CubeSat-
ready form factor.3 SCPI over I2C has been extensively
tested on this module and has performed without error
under conditions simulating the constant demands of a
flight C&DH system. Pumpkin currently fields an
additional SupMCU-based module (the SIM 1) in its MISC
3 CubeSats, and more are planned.

SUPERVISOR MCU ARCHITECTURE

At the core of a SupMCU module is a PIC24E 16-bit
microcontroller running firmware built upon the Salvo ™
real-time operating system. Each module contains a set of
hardware & software components for common functions

such as power management, I2C bus isolation,
programming & debugging support and status indication, as

SSC14-WK-30

2

well as unique application-specific features (e.g., control of
a GPS module).

Command and telemetry data is transferred between
module and C&DH over the system bus via an I2C
connection to the PIC24E. Depending on the module type,
a number of auxiliary I/O lines from the microcontroller
and application hardware may also be brought out to the
main bus. The minimum hardware connection between the
SupMCU and the CubeSat requires only power and I2C
lines.

Each module’s firmware is built from a common set of
code that handles RTOS, I2C drivers, SCPI Parsing and
implementation of SupMCU common commands and tasks.
The generous memory allocation of the chosen SupMCU
microcontroller ensures that plenty of program and data
space remain available for application-specific
functionality. SCPI parser and telemetry functions occupy
about 19kB of program memory – less than 8% of the
MCU’s available 256k. Likewise, less than 2kB, or 6%, of
RAM is required for SCPI and telemetry data.

SCPI SYNTAX AND STRUCTURE

SCPI command strings are formed by colon-separated
keywords that trace out a command hierarchy. For
example, a command to measure a voltage would be
written:

MEASure:VOLTage

SCPI commands are case-insensitive but have both a long
form and a short form. The short form is typically
expressed in capital letters in documentation. The SCPI
parser will treat full short form and full long form
commands equally but will generate errors for partial or
undefined commands. These errors are logged and can be
retrieved and handled by the commanding device.

Depending on implementation, certain commands can be
changed to queries by appending a ‘?’ to the command
string or passed one or more parameters separated by
commas. The commands to query and then set the
frequency of an instrument might look like: 1

SYSTem:FREQuency?

SYSTem:FREQuency 8000000

Multiple commands can be sent as a single string separated
by semicolon. The previous commands could be shortened
to:

SYST:FREQ?;SYST:FREQ 8000000

SCPI’s efficient yet human-readable command format
makes it suitable for in-flight command & telemetry as well
as manual or batch debug and test.

SCPI ON THE SupMCU

Every SupMCU-based module will support a common set
of SCPI commands. An outline some of the commands in
the SupMCU command hierarchy is shown in Table 1.

Keyword Parameters Notes
SUPervisor Top level keyword
 :LED {OFF|ON|FLASh|APPlication} Status LED behavior
 :RESet Reset MCU
 :I2C I2C functions keyword
 :RESet Reset I2C driver
 :PASSthrough {OFF|ON} Set I2C isolator
 :CLOCk {OFF|ON}, <divider_value> Configure clock output
 :SELFtest Run PIC24E self test
 :TELemetry? <index_value> Request telemetry data
… … …

Table 1: SupMCU Common SCPI Commands

This set of commands covers some of the basic
functionality common to all SupMCU modules. It is likely
to be expanded and modified as development continues.

In this representation, curly brackets { } enclose keyword
parameters and angle brackets < > enclose numeric
parameters. As an example, turning on the clock signal
output with a divider of 2 would be accomplished with:

SUP:CLOC ON,2

One or more additional top-level keywords are defined for
application specific functionality. The GPSRM 1 module
defines the keyword GPS as well as commands such as:
POWer, :LOG, and :RESet. The command string GPS:LOG
GGA, for example, will initialize logging of NMEA GGA
data from the NovAtel® OEM615 GPS receiver.

The behavior for each SCPI command is defined in
callback functions that are called by the SCPI parser when
a command match is recognized.

Figure 2: SupMCU simplified

SupMCU MODULE

PIC24EP

I2C
Command

Bus

Module
Com & I/O

Aux I/O

Application

SCPI Parser

I2C Driver

C
ubeSat B

us

Program/
Debug

SSC14-WK-30

3

I2C CHALLENGES

Though the I2C-bus has many features that make it
desirable as the primary SupMCU command bus, such as a
two-wire interface and the ability to address up to 112 slave
devices, the high processing overhead as compared to the
UART or SPI bus required careful consideration of how to
implement data handling on an 8MHz MCU to avoid data
loss.4

To send a command, an I2C master – typically the C&DH
processor – first sends out an address byte, with one bit
indicating read or write, over the bus. Each slave device
receives this byte and if it matches the device address, the
device prepares to receive or transmit additional bytes.4
Since the dedicated I2C buffer on the PIC24E is only one
byte long, it was important that incoming messages were
processed efficiently and quickly stored in a RAM ring-
buffer for parsing at a later time.

As a first measure to try and accomplish this, the I2C
handling routine was made interrupt-driven and optimized
to require a minimal amount of MCU operations. This
worked at lower I2C clock speeds, but bytes of data were
still being missed at I2C speeds over 100 kbit/s or when
other interrupt routines or application processes were
putting excessive demand on the MCU. We found this
result somewhat surprising, as simple and inexpensive I2C
devices (e.g., discrete latches) have no problem keeping up
with 400kHz I2C clock rates.

Implementing clock stretching on the SupMCU’s I2C slave
driver solved this problem. Clock stretching is a method by
which a slave device can delay the master from sending
additional data by holding the I2C clock (SCL) line low
during the last bit of an I2C byte until it is ready to receive
and process another byte. This allows the SupMCU device
to process and store each I2C byte, as well as handle other
high priority tasks such as timer interrupts or UART
messages, without any chance of missing bytes that arrive
over I2C. Figure 3 shows the bit timing of a SCPI message
sent over I2C.

Figure 3: I2C Clock Stretching

Clock stretching is evident on the 9th bit (the acknowledge
bit) of each character transmission as the slave device holds
the clock low until ready to process the next byte. In this
example the clock was typically held for about 24 µs on the
last bit instead of the 10 µs that would be required if clock
stretching was not enabled. The exact amount of clock
stretching required depends on application loads placed on
the MCU.

It’s important to point out that clock-stretching is an
optional feature in the I2C specification that is supported by
many, but not all, I2C master devices. master I2C devices
that support clock stretching can communicate with
SupMCU-based modules.

With clock stretching implemented, a SupMCU was shown
to be able to receive and parse I2C messages flawlessly at
all standard I2C clock rates while running multiple
application tasks and sending and receiving debug
messages over UART.

TELEMETRY DATA

In order to get telemetry and operational data from a
SupMCU module, a telemetry request system has been set
up that enables reliable access to information from the
SupMCU module.

Similar to the way SCPI commands are divided between
commands that are common to SupMCU-based modules
and those that are application-specific, the telemetry table
is made up of fields common to the SupMCU and ones
specific to individual modules. Table 2 shows a sampling
of telemetry fields available on the GPSRM 1. This data
structure is initialized in RAM at module start up and is
periodically updated. Each field can be queried via SCPI by
passing the corresponding index parameter.

SSC14-WK-30

4

Table 2: SupMCU Telemetry Table

Index Name Data Data Length (Bytes) Read Buffer

1 Clock Ticks <1…> 10 1

2 I2C Messages <2…> 10 1

3 SCPI Messages Parsed <3…> 10 1

… … … … …

10 GPS NMEA GGA <10…> 88 1

… … … … …

Fields in the table are updated at different frequencies by
dedicated tasks depending on the nature of the data. To
avoid conflicts between write and read operations to the
telemetry table, a triple ring buffer update system is used.
For each data field there are three buffer arrays that get
updated in a circular manner. The latest buffer that has
been finished updating is tracked and this is where the
master is pointed to when it requests data. This ensures that
there is always a complete data string available to be read
out over I2C and that there is an exceedingly low chance of
an update trying to write while data is being read.

Table 3 shows the way that telemetry data is formatted
byte-by-byte in the ‘data’ field array.

Table 3: Telemetry Data Field

Index Time Stamp Telemetry String CRC Value

<1 Byte> <4 Bytes> <Depends on Field> <1 Byte>

Each data array begins with the (non-zero) index of the
field in the telemetry table followed by a timestamp, a fixed
length data field, and an 8-bit check value. A cyclic
redundancy check is automatically performed and recorded
for each telemetry field in order to confirm data integrity.

The I2C specification does not allow slave devices to
initiate transmission of data to a master device. Instead the
master device must request data from the slave device byte-
by-byte. For this reason, a telemetry request protocol has
been established for SupMCU devices that allows the
master to request specific data from the SupMCU. The
request sequence looks like this:

C&DH (Master): Send SCPI message requesting a
particular telemetry field – eg. SUPervisor:TELemetry? 3

SupMCU (Slave): Begin parsing SCPI message

C&DH: Begin reading bytes of data at intervals from the
slave. The master will read only NULL until requested data
is ready to be read.

SupMCU: Once request message is parsed and handled,
read pointer is set to start of data array.

C&DH: Non-zero index byte will be read indicating that
data is available. The known length of the requested
telemetry message can be read in rapid succession from
SupMCU.

SupMCU: Reset pointer to NULL when last character of
telemetry string is read. Subsequent reads will return
NULL until another telemetry request is received.

Table 4 shows what this looks like from the point of view
of the master device.

Table 4: Sample Telemetry Read

Operation Data Meaning

Write 53 55 50 3a 54 45 4c 3f 20 33 SUP:TEL? 3

Read <1 Byte> 00 0

Read <1 Byte> 00 0

Read <1 Byte> 03 3

Read <9 Bytes> 64 0E 00 00 01 00 00 00 61 3684 (s)
1 (SCPI message parsed)
0x61 (CRCV)

This method requires that the master device know the
structure of the telemetry table in order to make requests
for the correct field and data string length. A telemetry
query function will be implemented so that the master can
acquire the structure and metadata of the SupMCU device
it is communicating with.

CONCLUSION

Applying SCPI standards to CubeSat modules provides a
robust method for command and telemetry that is easy for
operators and programmers to learn while being powerful
enough to use for in orbit operations. Careful attention to
hardware and software architecture ensures that there is
maximum interoperability between modules and a minimal
amount of effort required to add support for new modules
in flight software.

Use of the I2C bus is the simplest method for electrically
connecting an extendable multi-node system.
Implementation of clock stretching and telemetry
checksums help ensure the reliability of data sent over I2C,

SSC14-WK-30

5

though it adds the requirement that a master device talking
to a SupMCU module must support clock stretching.

Further development of the Supervisor MCU family of
CubeSat modules will add to their existing functionality.
The number of different types of Supervisor MCU modules
available is expected to grow beyond the GPSR and SIM
that have currently been designed. Adoption of SCPI and
common command interface standards across CubeSat
modules should significantly decrease time required for
test, integration, and software development for future
CubeSat missions.

ACKNOWLEDGMENT

A special thanks to Jan Breuer who developed the SCPI
parser libraries that were used on the Supervisor MCU
firmware and posted them to GitHub with an open licence2.

REFERENCES

1. SCPI Consortium. “Standard Commands for
Programmable Instruments (SCPI).” Version
1999.0.

2. Breuer, Jan. “SCPI parser library.” Internet:
https://github.com/j123b567/scpi-parser, [Jun. 13,
2014.]

3. Pumpkin Inc. “GPSRM 1 GPS Receiver Module
Datasheet.” Rev C. February 2014.

4. NXP Semiconductors. “I2C-bus specification and
user manual.” Rev. 6. 4 April 2014.

