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Abstract

Dot Product Graphs and

Their Applications to Ecology

by

Sean Bailey, Master of Science

Utah State University, 2013

Major Professor: Dr. David Brown
Department: Mathematics and Statistics

During the past few decades, examinations of social, biological, and communication

networks have taken on increased attention. While numerous models of these networks

have arisen, some have lacked visual representations. This is particularly true in ecology,

where scientists have often been restricted to at most three dimensions when creating

graphical representations of pattern and process. I will introduce an application of

dot product representation graphs that allows scientists to view the high dimensional

connections in ecological networks. Using actual data, example graphs will be developed

and analyzed using key measures of graph theory.

(40 pages)
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Public Abstract

Dot Product Graphs and

Their Applications to Ecology

by

Sean Bailey, Master of Science

Utah State University, 2013

Major Professor: Dr. David Brown
Department: Mathematics and Statistics

We will introduce a new tool to visualize the comparison between different birds.

This tool will allow users to use any number of measurable traits to see relationships

between different birds, both individually and collectively.

(40 pages)
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Chapter 1

Introduction

1.1 Graphical Representations

During the past few decades, examinations of social, biological, and communica-

tion networks have taken on increased attention. During these examinations, graphical

representations of these networks and systems have proven to be very useful. Such repre-

sentations can be used to determine or demonstrate the interconnections or relationships

between elements of these networks. A myriad of mathematical tools also allow a system

to be analyzed based on its graphical representation.

Yet troubles arise when we attempt to create graphical representations in k-dimensions

with k > 3. This problem is especially true in biological representations. A method used

by biologists is to restrict their representations to 2- or 3-dimensions [4] . This restriction

requires that a biologist rank the criteria being used and use only a subset of the infor-

mation available. In addition, 2-dimensional scatterplots are limited as to the quantity

and quality of tools available for analysis.

In order to allow for quantified species data to be analyzed in both quantitative

and qualitative ways, we have developed a method of creating a graphical representation

for k-dimensions for any k ∈ N. This method incorporates a type of simple, undirected

graph. For clarity, when we refer to a graph throughout the remainder of this thesis, we

will be referring to a simple, undirected graph.

1.2 Notation, Terminology, and Concepts

A simple, undirected graph is defined as an ordered pair of sets: a set of vertices and

a set of edges. The set of vertices is V = {v1, v2, ..., vn}, and a set of edges,E, consists of

a subset of all non-ordered pairs of vertices. Further we define two vertices as adjacent

if and only if they comprise an edge. The vertices which comprise an edge may be called
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endpoints of the edge. Similarly we define an edge to be incident to a vertex if and only

if the vertex is one of the endpoints of the edge. Thus if vivj ∈ E, then vi is adjacent

to vj and both vertices are incident to vivj . For convenience, we denote such a graph

simply as G.

G is a simple graph if no vertex is adjacent to itself and adjacent vertices have only

one edge between them [1]. During this thesis, we will only consider simple, undirected

graphs.

There are a number of parameters and structures useful in analyzing a graph, G.

To introduce these characteristics, consider the following graph, G (Figure 1.1).

Chapter 1. Introduction 2

1.2 Notation, Terminology, and Concepts

Simple, undirected graphs are defined as a set of vertices and edges. The set of vertices

is V = {v1, v2, ..., vn}, and a set of edges is E = {vivj : (i, j) 2 I}, where I is the index

of non-ordered pairs. Further we will define two vertices as adjacent if and only if they

have an edge between them. Similarly wewill define an edge to be incident to a vertex

if and only if the vertex is one of the endpoints of the edge. So G = (V, E) is the graph

defined by the set of vertices V and edges E. For convenience, we will denote such a

graph simply as G.

G is a simple graph if no vertex is adjacent to itself and adjacent vertices have only

one edge between them.[1] During this thesis, we will only consider simple, undirected

graphs.

There are a number of parameters and components useful in analyzing a graph, G. To

introduce these characteristics, consider the following graph, G:

v2

v3

v5

v4

v1

Figure 1: An Example Graph

The set of vertices is V = {v1, v2, v3, v4, v5} and the set of edges is E = {v1v2, v1v3, v1v4,

v1v5, v2v3, v2v4, v2v5, v3v4, v4v5}.

Another component of this graph are paths. A path is a sequence of unique vertices which

are adjacent to the preceding and following vertices in the sequence.[1] An example of a

path from v1 to v5 in Figure 1 is v1v4v3v2v5. It can also be seen that v1v5 is also a path

from v1 to v5. We will define the length of a path as the number of edges in a path.[1]

A path from a vertex back to itself is called a cycle.[1] An example of a cycle in Figure

1 is v1v2v3v4v5v1}. This cycle has length 5. We will refer to a cycle of length k as a

k-cycle. Additionally, we will define a chordless cycle as a cycle such that non-sequential

vertices of the cycle are not adjacent in the graph G. An example of a chordless cycle

Figure 1.1: An Example of a Graph.

The set of vertices is V = {v1, v2, v3, v4, v5} and the set of edges is E = {v1v2, v1v3, v1v4,

v1v5, v2v3, v2v4, v2v5, v3v4, v4v5}.
Another structure of this graph are paths. A path is a sequence of unique vertices

each of which is adjacent to the preceding and following vertex in the sequence [1]. An

example of a path from v1 to v5 in Figure 1.1 is v1v4v3v2v5. It can also be seen that

v1v5 is also a path from v1 to v5. We will define the length of a path as the number of

edges in a path [1].

A path from a vertex back to itself is called a cycle [1]. An example of a cycle in

Figure 1.1 is v1v2v3v4v5v1. This cycle has length 5. We will refer to a cycle of length k as

a k-cycle. Additionally, we define a chordless cycle to be a cycle such that non-sequential

vertices of the cycle are not adjacent in the graph G. An example of a chordless cycle

in Figure 1.1 is v1v2v5. Conversely, v1v2v3v4v5v1 is not chordless because the edge v1v4

exists.

A graph generated from another graph by deleting a set of vertices and the edges
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incident to those vertices is called an induced subgraph. Some examples of induced

subgraphs of Figure 1.1 are shown in Figure 1.2.

Chapter 1. Introduction 3

in Figure 1 is v1v2v5. Conversely, v1v2v3v4v5v1 is not chordless because the edge v1v4

exists.

A graph generated from another graph by deleting a set of vertices and the edges incident

to those vertices is called an induced subgraph. Some examples of induced subgraphs of

Figure 1 are:

v2

v3

v1

v4 v3 v4

v5

Figure 2: Induced Subgraphs of Figure 1

1.2.1 Properties of Graphs

Graphs are used in modeling so that their structures can be analyzed in hopes of yielding

insight into the source of our model. The structural parameters of a graph can be

considered as either quantitative or qualitative.

An example of a qualitative parameter of a graph is connectedness. A graph is connected

if and only if there exists a path between any two vertices. The graph in Figure 1 is

connected.

A connected graph with every vertex adjacent to every other vertex is called complete.

In addition, an induced subgraph that is complete is called a clique. While not every

graph is complete, every graph does contain at least one clique. An example of a clique

in Figure 1 is the induced subgraph on the left in Figure 2. The number of vertices in

the largest clique of a graph is a global parameter called the clique number, !(G).

Complete bipartite graphs are graphs such that V (G) = V1 [ V2 with V1 \ V2 = ;,
uw /2 E(G) if u, w 2 Vi for i = 1, 2, and xy 2 E(G) is x 2 V1 and y 2 V2. We will use

the notation Kn1,n2 for a complete bipartite graph, where n1 and n2 are the number of

vertices in each subset. An example of K3,2 is:

Figure 1.2: Induced Subgraphs of Figure 1.1.

1.3 Properties of Graphs

Graphs are used in modeling so that their structures can be analyzed in hopes of

yielding insight into the source of our model. The structural parameters of a graph can

be considered as either quantitative or qualitative, local or global.

An example of a qualitative parameter of a graph is connectedness. A graph is

connected if and only if there exists a path between any two vertices. The graph in

Figure 1.1 is connected. A connected graph with every vertex adjacent to every

other vertex is called complete. In addition, an induced subgraph that is complete is

called a clique. While not every graph is complete, every graph does contain at least

one clique. An example of a clique in Figure 1.1 is the induced subgraph on the left in

Figure 1.2. The number of vertices in the largest clique of a graph is a global parameter

called the clique number, ω(G).

Complete bipartite graphs are graphs such that V (G) = V1 ∪ V2 with V1 ∩ V2 = ∅,
uw /∈ E(G) if u,w ∈ Vi for i = 1, 2, and xy ∈ E(G) if x ∈ V1 and y ∈ V2. We will use

the notation Kn1,n2 for a complete bipartite graph, where n1 and n2 are the number of

vertices in each subset, V1, V2, respectively. An example of K3,2 is shown in Figure 1.3.
Chapter 1. Introduction 4

v1

v2

v3

v4

v5

Figure 3: An Example Bipartite Graph

A local parameter of a graph is the degree of its vertices. The degree of a vertex, written

deg(vi), is the number of vertices adjacent to it. For example, deg(v1) = deg(v2) =

deg(v4) = 4 and deg(v3) = deg(v5) = 3. Specifically, we consider the maximum and

minimum degrees of a graph. We will denote the maximum degree of a graph, G, by

�(G) and the minimum degree by �(G). Our example graph in Figure 1 has �(G) = 4

and �(G) = 3.

The maximum degree of a graph is related to a global measure of a graph, the chromatic

number. The chromatic number of a graph, written �(G), is the minimal number of

colors necessary to assign each vertex in graph G a color such that no two colors are

adjacent. For our example graph in Figure 1, �(G) = 4. The possibility of this coloring

can be seen in the following labeling of the graph:

blue

red

red

green

orange

Figure 4: A Coloring of Figure 1

The following theorems demonstrate the relations between some of these parameters.

Theorem 1: The chromatic number of a graph must be greater than or equal

to the clique number of the graph.

Figure 1.3: An Example Bipartite Graph.
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A local parameter of a graph is the degree of its vertices. The degree of a ver-

tex, written deg(vi), is the number of vertices adjacent to it. For example, deg(v1) =

deg(v2) = deg(v4) = 4 and deg(v3) = deg(v5) = 3. Specifically, we consider the maxi-

mum and minimum degrees of a graph. We will denote the maximum degree of a graph,

G, by ∆(G) and the minimum degree by δ(G). Our example graph in Figure 1.1 has

∆(G) = 4 and δ(G) = 3.

The maximum degree of a graph is related to a global measure of a graph, the

chromatic number. The chromatic number of a graph, written χ(G), is the minimal

number of colors necessary to assign each vertex in graph G a color such that no two

colors are adjacent. For our example graph in Figure 1.1, χ(G) = 4. The possibility of

this coloring can be seen in the following labeling of the graph (Figure 1.4).

Chapter 1. Introduction 4

v1

v2

v3

v4

v5

Figure 3: An Example Bipartite Graph

A local parameter of a graph is the degree of its vertices. The degree of a vertex, written

deg(vi), is the number of vertices adjacent to it. For example, deg(v1) = deg(v2) =

deg(v4) = 4 and deg(v3) = deg(v5) = 3. Specifically, we consider the maximum and

minimum degrees of a graph. We will denote the maximum degree of a graph, G, by

�(G) and the minimum degree by �(G). Our example graph in Figure 1 has �(G) = 4

and �(G) = 3.

The maximum degree of a graph is related to a global measure of a graph, the chromatic

number. The chromatic number of a graph, written �(G), is the minimal number of

colors necessary to assign each vertex in graph G a color such that no two colors are

adjacent. For our example graph in Figure 1, �(G) = 4. The possibility of this coloring

can be seen in the following labeling of the graph:

blue

red

red

green

orange

Figure 4: A Coloring of Figure 1

The following theorems demonstrate the relations between some of these parameters.

Theorem 1: The chromatic number of a graph must be greater than or equal

to the clique number of the graph.

Figure 1.4: A Coloring of Figure 1.1.

The following theorems demonstrate the relations between some of these parame-

ters.

Theorem 1: The chromatic number of a graph must be greater than or equal

to the clique number of the graph.

Theorem 2 (Brooks’ Theorem): If a graph G has a maximum vertex degree

∆(G), then the chromatic number of the graph χ(G) ≤ ∆(G), unless the graph

is complete or an odd cycle. In these latter cases, χ(G) = ∆(G) + 1 [2].

All of these properties will be used to analyze the graphical representations of bio-

logical networks, and we will discuss the implications of the presence or absence of the

qualitative parameters and the implications of the values of the quantitative parameters.

We will give examples of biological networks which exhibit these properties and suggest

interpretations consistent with the presence of these properties.
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Chapter 2

Background

2.1 Dot Product Representations of Graphs

Our graphical representation will utilize a specific type of representation of a graph

called a dot product representation. For a graph G, a dot product representation is a

function f : V → Rk along with a positive constant, t, where each vertex is assigned a

vector, f(u) = {x1, x2, · · · , xk}T , in Rk and uv ∈ E(G) if and only if f(u) · f(v) ≥ t [3].

An important proposition about dot product representations of graphs enables our

use of them for any graph.

Proposition 1: Every graph can be represented as a dot product representa-

tion.

Proof: Let G be a graph with n vertices and k edges. We arbitrarily label each edge

from 1 to k. We can define f : V → Rk such that the ith component of f(u) is 1 if u is

incident to the edge corresponding to i, with 0 otherwise. Thus uv ∈ E(G) implies the

ith component of f(v) and f(u) is 1. So f(v) · f(u) ≥ 1. Similarly uv /∈ E(G) implies

that there is no common component in f(u) and f(v) that is 1. So f(v) · f(u) = 0 < 1

in this case. Thus we have a dot product representation of G.

2.1.1 Examples of Dot Product Representations of Graphs

To further understand dot product representations of graphs, consider the graph,

H (Figure 2.1).

Chapter 2. Background 7

2.1.1 Examples of Dot Product Graphs

To further understand dot product graphs, consider the following graph:

v1

v2

v3

v4

Figure 5: Example of a Dot Product Graph

We can turn this into a dot product graph by assigning each vertex a vector such that

the dot product of adjacent vertices is greater than or equal to 1 and the dot product

of nonadjacent vertices is less than 1. Using the assignment designated in the proof of

Proposition 1, we get the following assignment:

f(v1) =

0
BBBBBBBBB@

1

1

0

0

0

1
CCCCCCCCCA

f(v2) =

0
BBBBBBBBB@

0

1

1

0

1

1
CCCCCCCCCA

f(v3) =

0
BBBBBBBBB@

1

0

1

1

0

1
CCCCCCCCCA

f(v4) =

0
BBBBBBBBB@

0

0

0

1

1

1
CCCCCCCCCA

.

But this assignment is not the only one what works. A brief examination of the dot

products of the following vectors shows that the following assignment also produces the

graph in Figure 5.

f(v1) =

0
@

1
2

1
2

1
A f(v2) =

0
@2

2

1
A f(v3) =

0
@2

2

1
A f(v4) =

0
@

1
2

1
2

1
A.

This possibility of multiple dot product functions corresponding to the same graph

gives rise to another parameter: the dot product dimension of a graph. We define the

dot product dimension, written ⇢(G), as the minimal dimension of the vectors necessary

to create G. It can be trivially seen from the proof of Proposition 1 that for every graph

G, ⇢(G)  |E(G)|.[3]

To understand this parameter more fully, let us consider ⇢(G) for the graph in Figure

5. We showed that we could represent each vertex with a vector of dimension 2. But

Figure 2.1: H: An Example of a Dot Product Representation of Graph.

We can turn this into a dot product representation by assigning each vertex a vector
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such that the dot product of adjacent vertices is greater than or equal to 1 and the dot

product of nonadjacent vertices is less than 1. Using the assignment designated in the

proof of Proposition 1, we get the following assignment:

f(v1) =




1

1

0

0

0




f(v2) =




0

1

1

0

1




f(v3) =




1

0

1

1

0




f(v4) =




0

0

0

1

1




,

a dot product representation of dimension 5. But this assignment is not the only one

that works. A brief examination of the dot products of the following vectors shows that

the following assignment also produces the graph in Figure 2.1:

f(v1) =




1
2

1
2


 f(v2) =


2

2


 f(v3) =


2

2


 f(v4) =




1
2

1
2




a dot product representation of dimension 2.

2.1.2 Dot Product Dimension

This possibility of multiple dot product representationss corresponding to the same

graph gives rise to another parameter: the dot product dimension of a graph. We define

the dot product dimension, written ρ(G), as the minimal dimension of the vectors nec-

essary to create a dot product representation for G. It can be trivially seen from the

proof of Proposition 1 that for every graph G, ρ(G) ≤ |E(G)| [3].

To understand this parameter more fully, let us consider ρ(H) for the graph in

Figure 2.1. We showed that we could represent each vertex with a vector of dimension

2. But could we use a vector with dimension 1? We can. Here is a possible function:

f(v1) = 〈12〉, f(v2) = 〈2〉, f(v3) = 〈2〉, f(v4) = 〈12〉. Since these 1-dimensional vectors

satisfy our representation, ρ(H) = 1 for our example.

While we were able to determine the dot product dimension of Figure 2.1, com-

puting dot product dimension is a NP-hard problem [5]. This implies that the problem

of finding the dot product dimension is as hard as a problem where the time is takes

to find a solution using an algorithm increases quickly as the size of the problem grows.

Still the dot product dimension of certain classes is known. For example, ρ(Kn) = 1 for

all n ∈ N. Also ρ(Kn1,n2) = min{n1, n2} [3].
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2.1.3 Applications of Dot Product Representations to Social Networks

A basic example of the application of dot product representations is with social

networks. Suppose we have four individuals in a social network who are surveyed on

their preference level towards dogs, ice cream, religion, and sports. We can give positive

preferences positive values, apathetic preferences zero, and negative preferences nega-

tive values with stronger preferences receiving values with greater magnitudes. So the

following table could represent the preferences of our four individuals:

Category Individual A Individual B Individual C Individual D

Dogs 1 -0.5 -1 -1
Ice Cream 0.5 1 0 1
Religion -1 -1 0 1
Sports 1 0 1 -0.5

This table shows that Individuals A and C have similar preferences towards sports,

but their preferences on the other categories differ. If we set our threshold value for dot

products at 0.5, then these preference vectors generate graph in Figure 2.2.

Chapter 2. Background 8

could we use a vector with dimension 1? We can. Here is a possible function: f(v1) =

h1
2i, f(v2) = h2i, f(v3) = h2i, f(v4) = h1

2i. Since these 1-dimensional vectors satisfy our

representation, ⇢(G) = 1 for our example.

While we were able to determine the dot product dimension of Figure 5, computing dot

product dimension is a NP-hard problem.[5] This means that the problem of finding the

dot product dimension is as hard as a problem where the time is takes to find a solution

using an algorithm increases quickly as the size of the problem grows. Still the dot

product dimension of certain classes is known. For example, ⇢(Kn) = 1 for all n 2 N.

Also ⇢(Kn1,n2) = min{n1, n2}.[3]

2.1.2 Applications of Dot Product Graphs to Social Networks

A basic example of the application of dot product graphs is with social networks. Sup-

pose we have four individuals in a social network who are surveyed on their preference

level towards dogs, ice cream, religion, and sports. We can give positive preferences pos-

itive values, apathetic preferences zero, and negative preferences negative values with

stronger preferences receiving values with greater magnitudes. So the following table

could represent the preferences of our four individuals:

Category Individual A Individual B Individual C Individual D

Dogs 1 -0.5 -1 -1
Ice Cream 0.5 1 0 1
Religion -1 -1 0 1
Sports 1 0 1 -0.5

This table shows that Individuals A and C have similar preferences towards sports,

but their preferences on the other categories di↵er. If we set our threshold value for dot

products at 0.5, then these preference vectors generate the following graph:

A

B

C

D

Figure 6: Example of a Dot Product Graph of A Social NetworkFigure 2.2: An Example of a Dot Product Representation of a Social Network.

Looking at this graph, we see that it suggests that B would be friends with everyone.

On the other hand, A would have only one friend, B. So while A and C have similar

preferences towards sports, they have opposing differences in the other categories that

outweigh that similarity.

For this example, we used a threshold of t = 0.5. But t could have been any positive

number. Therefore our representation would change as we either increase or decrease

our threshold. We will further demonstrate how this relation changes in Chapter 3.

Research into the dot product representations of graphs of social networks has been

of growing interest [14][12]. Significant work has been done in this area by Schienerman

and Young (2009) [13]. This work suggests that biological networks would also be
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modeled with dot product representations since biological networks and social networks

exhibit similar properties.

2.2 Evolutionary Fitness Gradient

Since dot product representations require vectors, we decided to consider the evo-

lutionary fitness gradients of various species of birds. The dimension of these gradients

is 4, allowing us to represent and analyze high dimension models. These gradients are

developed from the work of Robertson, Lande, and Leslie.

In 1966, Robertson introduced the secondary theorem of natural selection [11].

This theorem refers to the per generation evolutionary change in trait x as a function

of the genetic heritability of trait x and the strength of natural selection of the trait.

In agricultural circles, this theorem is known as the “breeder’s equation.” Heritabil-

ity proportional to the additive genetic variance of trait x among the individuals of a

population. An individual’s fitness is perhaps best measured as its contribution to the

population’s Malthusian growth rate, r, which is the rate at which one generation prop-

agates the next generation of a population. The secondary theorem of natural selection

states that dx̄
dt = σ2 dr

dx̄ , where the σ2 is the genetic heritability and dr
dx̄ is the strength of

the selection.

The secondary theorem of natural selection was extended to the multivariate case

by Lande [7][8]. This extension allows for the examination of the evolutionary change

of multiple traits such as brain mass, body mass, and fertility. Suppose these traits

are quantified and denoted as x1, x2, ..., xn. We first let x̄ = 〈x̄1, x̄2, x̄3, ..., x̄n〉T and

∇r = 〈 ∂rdx̄1 ,
∂r
dx̄2

, ..., ∂rdx̄n 〉
T . Then Lande showed that ∆x̄ = G∇r, where G is the matrix

of additive genetic covariance amongst traits.

The gradient ∇r is known as the fitness gradient when considering life history

traits. In evolutionary biology, the fitness of an individual organism is defined as the

probability that the organism will survive and reproduce. Some of the life history traits

that affect fitness include juvenile survival and fertility.

In our application, we will consider the simple 2 × 2 matrix model developed by

Leslie [9][10]. This matrix, called the Leslie matrix, helps model fitness in terms of juve-

nile survival, the onset of first reproduction, fertility, and adult survival. We will define

σ1 as the probability of juvenile survival, γ as the probability of becoming an adult and

beginning reproduction, φ as per time step fertility, and σ2 is the probability of adult

survival. The Leslie matrix is
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A =


σ1(1− γ) φ

σ1γ σ2




Let us consider the blue tit, a small European bird, to look at an example of

a Leslie matrix. The blue tit has a probability of juvenile survival of σ1 = 0.16, a

probability of adult survival of σ2 = 0.40, a probability of becoming an adult and

beginning reproduction of γ = 1, and a per time step fertility of φ = 4.23. Thus the

Leslie matrix for the blue tit is:

A =


 0 4.23

0.16 0.40




Using this matrix, Leslie showed that ln(λ1) = r, where λ1 in the eigenvalue of A

with the largest magnitude. Thus the fitness gradient of a species associated with the

Leslie matrix is ∇r =

〈
∂ln(λ1)
dσ1

,
∂ln(λ1)
dγ

,
∂ln(λ1)
dφ

,
∂ln(λ1)
dσ2

〉T
.

To determine this gradient, we first find the eigenvalues of A by using the charac-

teristic equations of A, det(A − λI) = 0. By definition of the determinant of a 2 × 2

matrix, (σ1 − σ1γ − λ)(σ2 − λ)− φσ1γ = 0. This is a quadratic equation so we can use

the quadratic formula to find λ:

λ =
σ1 − γσ1 + σ2 ±

√
σ2

1 − 2γσ2
1 + γ2σ2

1 + 2σ1σ2 − 2γσ1σ2 + σ2
2 − 4φγσ1

2 .

Both eigenvalues of A are positive. Thus

λ1 =
σ1 − γσ1 + σ2 +

√
σ2

1 − 2γσ2
1 + γ2σ2

1 + 2σ1σ2 − 2γσ1σ2 + σ2
2 − 4φγσ1

2 .

We can then take the partial derivative of ln(λ1) to get our fitness gradient:
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∇r =




1

2
− 1

2
γ +

2σ1 − 4σ1γ − 2σ2 + 2σ1γ
2 + 2γσ2 + 4φσ2

4
√
σ2 − 2σ2γ − 2σ1σ2 + +σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

1

2
σ1 −

1

2
σ1γ +

1

2
σ2 +

1

2

√
σ2 − 2σ2γ − 2σ1σ2 + σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

−1

2
σ1 +

−2σ2
1 + 2σ2

1γ + 2σ1σ2 + 4φσ1

4
√
σ2 − 2σ2γ − 2σ1σ2 + +σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

1

2
σ1 −

1

2
σ1γ +

1

2
σ2 +

1

2

√
σ2 − 2σ2γ − 2σ1σ2 + σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

σ1γ√
σ2 − 2σ2γ − 2σ1σ2 + +σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

1

2
σ1 −

1

2
σ1γ +

1

2
σ2 +

1

2

√
σ2 − 2σ2γ − 2σ1σ2 + σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

1

2
+

−2σ1 + 2σ1γ + 2σ2

4
√
σ2 − 2σ2γ − 2σ1σ2 + +σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ

1

2
σ1 −

1

2
σ1γ +

1

2
σ2 +

1

2

√
σ2 − 2σ2γ − 2σ1σ2 + σ2

1γ
2 + 2σ1γσ2 + σ2

2 + 4φσ1γ




Critical aspects of the fitness gradient as far as our model is concerned are:

1. The orientation of the gradient vector, which are the angels generated between the

vector and the primary axis. The orientation determines which variable of fitness

affects the fitness of the species the most.

2. The length of the vector, which we will take to be the Euclidean norm of the gradi-

ent. This norm is found for any vector v̄ =




x1

x2

...

xk




by ||v̄|| =
√
x2

1 + x2
2 + · · ·+ x2

k.

This norm of the gradient is the rate at which the fitness of a species is increasing

as the various variables increase.

These fitness gradients will be used to create dot product representations of dimension

4. It is these representations that we will analyze in our application.
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Chapter 3

Applications of Dot Product Graphs

Recall that the dot product of vectors u and v is u · v = ||u||||v||cosθ, where θ is

the angle between the two vectors when originating at the same point and ||u|| is the

Euclidean length (or 2-norm) of vector u. So we may regard u · v ≥ t as a measure of

the angle between them. We will be using angles between vectors to indicate similarity

between corresponding species, like we used u · v ≥ t to indicate possible compatibility

in the social network example.

3.1 Applications to Evolutionary Ecology

Using the fitness gradients mentioned in Chapter 2 and demographic data available

in literature, we were able to assign vectors to each species of a set of 10 long-lived

seabirds in order to provide an evolutionary ecology example of dot product graphs. To

allow us to examine the angles between vectors, we decided to normalize them using

the Euclidean norm. Thus, if the vectors are normalized (reduced to length 1), we can

redefine connectedness of vertices if and only if the angle between the vectors, θ, is less

than or equal to a given angle.

To better understand how this normalization affects vectors and their dot products,

consider the vectors u =


5

5


 and v =




1
6

1
6


. It can be noted that u ·v = 5

√
2

6 < 1. But

||u|| = 5
√

2 and ||v|| =
√

2
6 . The normalized version of the vectors then are û =




√
2

2
√

2
2




and v̂ =




√
2

2
√

2
2


. This implies that û · v̂ = 1 > u · v. Similarly, it is possible to generate

to vectors such that their dot product is more than the dot product of their normalized

versions.

This difference between normalized and non-normalized vectors led us to consider

the graphical representations generated when the vectors were not normalized. Thus
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we can compare the two different models and their implications. In the next chapter

we will discuss similarities and differences between models using normalized versus non-

normalized vectors.

3.2 Examples of Normalized Graphs

FIgures 3.1-3.7 are a series of graphical representations based on the normalized

vectors as the threshold, θ, decreases. We will denote Gθ=α to be the dot product graph

where vertices u and v are adjacent if and only if the angle between û and v̂ is less than

or equal to α (in radians).

For this sequence of graphs, we begin with θ = 0.2. We then incrementally decrease

θ by 0.02 until our final graph, Gθ=0.08, only has 2 adjacent vertices. This sequence was

chosen as it shows a general sequence of reduced connections, as well as a sequence of

isolated species. We will discuss these sequences and implications in Chapter 4.
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to vectors such that their dot product is more than the dot product of their normalized

versions.

This di↵erence between normalized and non-normalized vectors led us to consider the

graphical representations generated when the vectors were not normalized. Thus we can

compare the two di↵erent models and their implications. In the next chapter will will

discuss any similarities and di↵erences between normalized and non-normalized vectors.

3.1.1 Examples of Normalized Graphs

The following is a series of graphical representations based on the normalized vectors

as the threshold, ✓, decreases. We will denote G✓=↵ to be the dot product graph where

vertices u and v are adjacent if and only if the angle between û and v̂ is less than or

equal to ↵ (in radians).

For this sequence of graphs, we begin with ✓ = ↵ such that G✓=↵ is a complete graph.

We will then decrease ✓ each time such that one additional vertex becomes isolated with

each step until our graph G✓=� is an empty graph.

G✓=0.2

King Penguin

Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.1: Gθ=0.2.
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G1 : ✓ = 0.2 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

G2 : ✓ = 0.18 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.2: Gθ=0.18.
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G3 : ✓ = 0.16 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

G4 : ✓ = 0.14 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.3: Gθ=0.16.
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G3 : ✓ = 0.16 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

G4 : ✓ = 0.14 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed Penguin

Southern Giant Petrel Laysan Albatross

Northern Giant Petrel Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.4: Gθ=0.14.
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G5 : ✓ = 0.12 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering Albatross

Sooty Albatross Black Browed Albatross

G6 : ✓ = 0.1 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.5: Gθ=0.12.
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G5 : ✓ = 0.12 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering Albatross

Sooty Albatross Black Browed Albatross

G6 : ✓ = 0.1 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross Black Browed Albatross

Figure 3.6: Gθ=0.1.
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G7 : ✓ = 0.08 radians

King Penguin

Adelie Penguin

Bulwers’ Petrel

Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

3.1.2 Example of Non-normalized Graphs

The following is a series of graphical representations based on the non-normalized vectors

as the threshold, t, increases. We will begin with t = 0.85 and end with t = 1.07.

Ĝ1, Ĝ2, Ĝ3, Ĝ4, Ĝ5 and Ĝ6

Figure 3.7: Gθ=0.08.
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3.3 Example of Non-normalized Graphs

Figures 3.8-3.13 are a sequence of graphical representations based on the non-

normalized vectors. We will denote Gt to be the dot product graph where vertices u and

v are adjacent if and only if the dot product of û and v̂ is greater than or equal to t.

Our sequence will begin with Gt=0.85, which will provide a connected graph that is

almost complete. For each graph in the sequence, t will incrementally increase by 0.05

from the preceding graph, except for the final graph. For the final graph, Gt=1.07, the t

increased by on 0.02 as a step of 0.05 would have produced an empty graph.

As with the normalized graph, this sequence of graphs shows a sequence of isolated

species as well as a sequence of connected species. We will discuss those sequences and

implications in Chapter 4.Chapter 3. Our Applications of Dot Product Graphs 18

Ĝ1 : t = 0.85

King Penguin

Adelie PenguinBulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Ĝ2 : t = 0.9

King Penguin

Adelie PenguinBulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Figure 3.8: Gt=0.85.
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Ĝ1 : t = 0.85

King Penguin

Adelie PenguinBulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Ĝ2 : t = 0.9

King Penguin

Adelie PenguinBulwers’ Petrel

Yellow-Eyed PenguinSouthern Giant Petrel

Laysan AlbatrossNorthern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Figure 3.9: Gt=0.9.
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Ĝ3 : t = 0.95

King Penguin

Adelie Penguin Bulwers’ Petrel

Yellow-Eyed Penguin
Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Ĝ4 : t = 1

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Figure 3.10: Gt=0.95.
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Ĝ3 : t = 0.95

King Penguin

Adelie Penguin Bulwers’ Petrel

Yellow-Eyed Penguin
Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering AlbatrossSooty Albatross

Black Browed Albatross

Ĝ4 : t = 1

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Figure 3.11: Gt=1.
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Ĝ5 : t = 1.05

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Ĝ6 : t = 1.07

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Looking at the graphs you can see that as t increases and ✓ decrease, the number of

edges decreases. In the next chapter, we will discuss our analysis each of these graphs

using structural properties of graphs mentioned in the Introduction.

Figure 3.12: Gt=1.05.
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Ĝ5 : t = 1.05

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Ĝ6 : t = 1.07

King Penguin Adelie Penguin

Bulwers’ Petrel Yellow-Eyed Penguin

Southern Giant Petrel

Laysan Albatross

Northern Giant Petrel

Wandering Albatross

Sooty Albatross

Black Browed Albatross

Looking at the graphs you can see that as t increases and ✓ decrease, the number of

edges decreases. In the next chapter, we will discuss our analysis each of these graphs

using structural properties of graphs mentioned in the Introduction.

Figure 3.13: Gt=1.07.

Figures 3.1-3.13 show that as t increases and θ decreases, the number of edges de-

creases. In the next chapter, we will discuss our analysis of these graphs using structural

properties of graphs mentioned in the Introduction.
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Chapter 4

Analysis of Application of Dot Product Graph Models

4.1 Analysis of the Normalized Vector Models

The first thing one might notice upon examining Gθ=0.2 is that our graph is con-

nected except for the King penguin. The fact that this is the first species to be isolated

suggests that the fitness gradient of this species is significantly different than the other

species in this model. This might strongly suggest that the life cycle of the King penguin

is different than all the other species.

It can be further noted that even within the connected portion of Gθ=0.2 that the

other two species of penguins, the Adelie penguin and the yellow-eyed penguin, are not

connected despite the fact that they are closer phylogenetic relatives than they are to

procellerariformes (albatrosses and shearwaters). Similarly some of the other species

that might be closely related are not connected within our sequence of graphs.

As we further examine the connections among Gθ=0.2 through Gθ=0.08, it can be

noticed that in Gθ=0.1 we have an instance of a disconnected graph with two compo-

nents. This graph is of importances as it suggests that the life cycles of the Adelie

penguin and the sooty albatross are more similar to one another than any other species.

This discovery was intriguing as both birds might seem dissimilar to one another in

terms of their taxonomical relatedness, but are highly connected with respect to their

life histories. Understanding the determinants of tight connections like these could help

us better understand life history evolutions. This understanding might even help guide

conservation biology in terms of basic knowledge of the ecological determinants of life

history evolution.

Consider now the vertex degrees in our sequence of graphs. In Gθ=0.2, the northern

giant petrel and the Laysan albatross have the maximum vertex degrees with 5. But

the Laysan albatross was isolated before the Adelie penguin, which was among those

vertices with the minimum degree of 3. On the other hand, it should be noticed that
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deg(NorthernGiantPetrel) = 5 through Gθ=0.14. Thus the northern giant petrel is a

species that has more of an average of life cycles in comparison to the other species.

The northern giant petrel is also part of both of the maximal cliques in Gθ=0.2.

There are actually 2 cliques of size 4 in Gθ=0.2 (Figure 4.1)
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with 5. But the Laysan albatross was isolated before the Adelie penguin, which was

among those vertices with the minimum degree of 3. On the other hand, it should

be noticed that deg(NorthernGiantPetrel) = 5 through G4. Thus the northern giant

petrel is a species that has more of an average of life cycles in comparison to the other

species.

The northern giant petrel is also part of both of the maximal cliques in G1. There are

actually 2 cliques of size 4 in G1:

Southern Giant Petrel

Northern Giant Petrel

Wandering Albatross

Black Browed Albatross

Yellow-Eyed Penguin

Laysan Albatross

Northern Giant Petrel

Black Browed Albatross

This latter clique (with the Laysan albatross) remains intact through G4 while the former

only through G2. Thus there seems to be a deep connection between the four species

of this latter clique (yellow-eyed penguin, Laysan albatross, northern giant petrel, and

black browed albatross). This is further re-enforced by the fact that the only connected

pair of species in G7 are from this clique.

Since !(G1) = 4, �(G1) � 4. A four coloring of G1 can be found by coloring the

four vertices of one of the maximal cliques first. That coloring can be extended to the

remainder of the graph by a process of elimination. Thus �(G1) = 4. Since !(G1) =

Figure 4.1: Cliques of Size 4 in Gθ=0.2.

This latter clique (with the Laysan albatross) remains intact through Gθ=0.14 while

the former only through Gθ=0.18. Thus there seems to be a strong life history connec-

tion between the four species of this latter clique (yellow-eyed penguin, Laysan albatross,

northern giant petrel, and black browed albatross). This is further re-enforced by the

fact that the only adjacent pair of species in Gθ=0.08 are from this clique.

Since ω(Gθ=0.02) = 4, χ(Gθ=0.02) ≥ 4. A four coloring of Gθ=0.2 can be found by

coloring the four vertices of one of the maximal cliques first. That coloring can be ex-

tended to the remainder of the graph by a process of elimination. Thus χ(Gθ=0.02) = 4.

Since ω(Gθ=0.2) = ω(Gθ=0.18) = ω(Gθ=0.16) = ω(Gθ=0.14), the chromatic numbers of

these graphs are also the same. One possible implication of this property of the graphs

is that the species in Gθ=0.2 can be divided into four distinct subsets such that no pair

of species in the same subset have similar life histories.

Additionally, it can be seen that no chordless cycles of length greater than 3 or
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complete bipartite graphs on subsets of size greater than 2 are contained in these nor-

malized vector representations. The lack of complete bipartite graphs with n1, n2 ≥ 2

in the normalized models can be proven to be a limitation of dot product graphs on

normalized vectors. Consider the following lemma:

Lemma 1: If G is a dot product graph with V (G) represented by vectors of unit length,

then Kn1,n2, where n1, n2 ≥ 2, cannot be an induced subgraph.

Proof: Initially, it can be noted that the property of being a dot product representation

is hereditary. This means that any induced subgraph of G must be a dot product graph

if G is. This heredity for dot product graphs was proven [3]. Thus we only need to

consider the case where G = Kn1,n2 with n1 = n2 = 2

We will prove this by contradiction. Suppose that G can be represented by vectors

of unit length. Let U and V be the bipartite sets of V (G). Let Û = {u1,u2} and

V̂ = {v1,v2} be the set of unit vectors associated U and V , respectively. So given

some t > 0, uivj > t, uiuj < t, and vivj < t for any ui,uj ∈ Û and vi,vj ∈ V̂ . But

since the vectors are normalized, our threshold can also be seen as an angle θ where the

angle between adjacent vectors is less that θ and the angle between nonadjacent vectors

is greater that θ. Additionally, all of the vectors project onto a n-dimensional sphere.

So the set of vectors within θ of a given vector w would be contained within an ellipse

centered around w. Thus v1 would to be contained within the ellipse centered around

v2 and vice verse. But u1 would be contained in both ellipses centered around v1 and

v2. u2 would also need to be contained on those two ellipses. But the intersection of

the ellipse centered around v1 and v2 would be contained within the the ellipse centered

u1. Thus u2 would be contained within the ellipse centered around u1, which would

imply that the angle between u1 and u2 is less than θ which is a contradiction.

Thus K2,2 cannot be generated by vectors of unit length. Thus it cannot be an

induced subgraph of graph generated by vectors of unit length.

Unfortunately, the characterization of the classes of graphs in general that can be

generated as dot product graphs on a set of normalized vectors is not known. Thus the

validity of using the normalized models is uncertain. But there do appear to be some

implications generated by this model that can be examined further form the biological

model.
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4.2 Analysis of the Non-Normalized Vector Models

Unlike the normalized representations, the first isolated species in the non-normalized

model is the sooty albatross. This may be in part because of the length of the fitness

gradient for the sooty albatross. It has the second smallest norm of the 10 vectors con-

sidered. The impact though of the norm of the vectors is seen as the first three isolated

species (sooty albatross, Laysan albatross, and Adelie penguin) are those with the three

smallest norms. Conversely, the final pair of adjacent vertices in Gt=1.07 (wandering

albatross and southern giant petrel) are the vectors with the greatest norms of those

considered.

Those vertices with largest norms are also those with the maximum vertex degree

in Gt=0.85, namely wandering albatross, northern giant petrel, and southern giant petrel.

All of these vertices have degree 9. It is also interesting to note that the first isolated

vertex, Sooty albatross, is also the vertex with minimum vertex degree.

This trend continues in Gt=0.9 where the maximum degree vertices are again the

two longest vectors. Similarly the three shortest vectors not isolated in Gt=0.9 corre-

spond to the vertices with the minimum vertex degree.

We can prove this correlation based on the following lemma.

Lemma 2: Let u,v be vectors in Rn whose components are strictly positive. Then for

any t > 0, if u · v ≥ t then ||u||||v|| ≥ t.
Proof: Let t > 0 be given. Suppose that u · v ≥ t. Then ||u||||v|| ≥ ||u||||v||cos(θ) =

u · v ≥ t.
The converse of this lemma suggests if ||u|| < t

||v|| , then u · v < t. So the vectors

of shortest length will be the first to be be isolated since their dot products with the

other vectors fail to obtain the threshold first.

We would then expect the maximal clique of Gt=0.85 to contain those vertices with

the greatest norm. To check the validity of this concept we first need to observe that

ω(Gt=0.85) = 6. There are two cliques of this size (Figure 4.2).

While these cliques each include the three longest vectors, they are both missing

the vertices whose vector is the fourth longest, namely the king penguin. In addition,

the first clique includes the Adelie penguin, which is the third shortest vector. Thus

these maximal cliques seem to be based on more on ω than the norm of the vectors.

A pattern of decreasing maximal cliques can be seen as ω(Gt=0.9) = 5, ω(Gt=0.95) =

4, and ω(Gt=1) = 3. This steady decent suggests that that dot product representation
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We would then expect the maximal clique of G1 to contain those vertices with the

greatest norm. To check the validity of this concept we first need to observe that

!(Ĝ1) = 6. There is two cliques of this size, namely:

Adelie PenguinBulwers’ Petrel

Southern Giant Petrel

Northern Giant Petrel

Wandering Albatross

Black Browed Albatross

Yellow-Eyed PenguinBulwers’ Petrel

Southern Giant Petrel

Northern Giant Petrel

Wandering Albatross

Black Browed Albatross

While these cliques do include the three longest vectors, they are both missing the

vertices whose vector is the fourth longest, namely the king penguin. In addition, the

first clique includes the Adelie penguin, which is the third shortest vector. Thus these

maximal cliques seem to be less based on the norm of the vectors than maximum vertex

degree.

A pattern of decreasing maximal cliques can be seen as !(Ĝ2) = 5,!(Ĝ3) = 4, and

!(Ĝ4) = 3. This steady decent suggests that that dot product representation allows for

refinement of connectedness as the threshold t increases.

As a six coloring of Ĝ1 is possible, �Ĝ1 = 6. Similarly, �Ĝ2 = 5, �Ĝ3 = 4, and

�Ĝ4 = �Ĝ5 = 3.

Finally, it can be seen that as with the normalized graphical representations, there are

no chordless cycles of length greater than 3 or complete bipartite graphs contained in

Figure 4.2: The Maximal Cliques of Gt=0.85.

allows for refinement of adjacency as the threshold t increases. Thus the longer a pair

of vertices remains adjacent in the sequence of non-normalized graphs, the stronger the

similarities between the life histories of the corresponding species.

As a six coloring of Gt=0.85 is possible, χGt=0.85 = 6. Similarly, χGt=0.9 = 5,

χGt=0.95 = 4, and χGt=1 = χGt=1.05 = 3.

Finally, it can be seen that as with the normalized graphical representations, there

are no chordless cycles of length greater than 3 or complete bipartite graphs with

n1, n2 ≥ 2 contained in these graphical representations either.

4.3 Comparisons Between The Different Model Types

These types of models yielded some interesting similarities and differences. The first

difference that appears to occur is the connectedness of graphs. These differences are

seen in the maximal clique size and maximum vertex degree. But these differences may

be based more on our choice of threshold values. For example, both Gθ=0.2 and Gt=0.9

are graphs where nine of the ten vertices are connected. While ω(Gt=0.9) > ω(Gθ=0.2),

it is possible that a minor increase in the threshold for Gt=0.9 would yield a graph on

nine vertices with maximal clique of size 4.

Another noticeable difference is the first isolated vertex in each model. As we

already mentioned, the first isolated vertex for the normalized models was the king
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penguin, but the first isolated vertex for the non-normalized models was the Sooty

albatross. While these species are different, it can be noted that the king penguin was

still the fourth isolated species in the non-normalized models. This is important as it

had the fourth longest vector. This suggests that it does have a life history that is

significantly different than the other species, as we hypothesized in the analysis of the

normalized models.

Additionally, it should be noted while the sooty albatross and Adelie penguin were

among the first species isolated in the non-normalized models, they were among the

last isolated among the normalized models. These contrasts may only re-enforce the

similarities in life histories of these species. Both have very short vectors, and from the

normalized model both vectors have a very small angle between them. Thus their life

histories are likely to be very similar.

Another similarity illuminated was that existing between the northern giant petrel

and the wandering albatross. Both were adjacent until the penultimate graphs in both

series. Thus it strongly suggests a connection between the life histories of these species.

4.4 Limitations of Our Application

Both models are limited by their dot product dimension as we are using vectors

of dimension 4. Thus it is impossible to create any graph with dot product dimension

greater than four using our fitness gradients. While it has been conjectured that ρ(G) ≤
bn2 c, where n = |V (G)|, this conjecture is still one of the open problems in dot product

graphs [3]. Thus we cannot be sure whether this limitation would be eliminated if we

reduced our models to nine vertices. On the other hand, it is known that there are

several classes with dot product dimension of four or less. Some of these classes of

graphs include trees, interval graphs, planar, and outer planar graphs [3][6]. Therefore,

this limitation may not be a concern, particularly as our threshold changes to reduce

the number of edges in the model.

4.5 Connection Depth

Our analysis also leads to a new measurement within our graphs, θ connection

depth. θ connection depth, denoted cdθ(xy), is the minimal θ for x, y ∈ V (G) such

that xy ∈ E(Gθ). We will similarly define t connection depth, denoted cdt(xy), is the

maximal t for x, y ∈ V (G) such that xy ∈ E(Gt). Thus θ connection depth is related

to the graphs with normalized vectors and t connection depth is related to the graphs
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with non- normalized vectors. For example, with x=Northern Giant Petrel and y=Black

Browed Albatross, cdθ(xy) ≤ 0.08 since these vertices are adjacent in Gθ=0.08. Since this

angle is based on the gradient vectors for these species, this value can be calculated to be

cdθ(xy) = 0.0451. The tables for both connection depths can be found in the Appendix.
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Chapter 5

Conclusions

5.1 Conclusions

If our model has limitations, we believe these can be compensated for by attention

to examination of both normalized and non-normalized models and threshold variation.

For example, if a vertex is isolated early in the sequence of normalized graphs, examine

the sequence of non-normalized graph. If in this second sequence the vertex is eliminated

relatively early, then it can be interpreted that that vertex is significantly different than

the other species.

Another combination that would provide significant information is a pair of ver-

tices that are adjacent late in the sequence of normalized graphs and both vertices are

isolated early in the sequence of non-normalized graphs. These combinations imply that

both vertices are affected predominantly by the same variables of fitness and at similar

rates.

The examinations of these networks was further augmented by the graph theory

tools we used. But our selection of vertex degree, chromatic number, clique number,

and cycle size are only a few of the parameters used in graph theory. Yet these pa-

rameters allowed us to more confidently identify connections between different species.

Additional parameters such as clique cover number, boxicity, and chordality are a few

other parameters that might be used to find further connections as well as strengthen

the ones already determined.

This mixture of dot product graphs of both kinds of models (normalized and non-

normalized) and graph theory tools provide the opportunity to analyze and exhibit

graphical representations of biological networks. In this way, they allow us to continue

to examine biological networks without eliminating parameters. This will give biologists

more effective ways to examine these networks.

Thus we would encourage biologists to consider using these models. Mathematical
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software such as MATLAB and Maple were used to generate our graphs. Therefore we

would encourage others to use similar software to develop dot product graphs of the

various biological networks they are working with.

The following are also some open problems left to be solved:

• Characterize the class of graphs represented by unit-length vectors.

• Does the dot product dimension change if the parameters used change? For exam-

ple, if six different quantifiable parameters for a collection of species is known and

it is known which species are similar, which of the six parameters are required to

create a dot product graph with those known similarities?

• Given a set of fixed vectors and a fixed threshold, what is the probability that a

particular graph is obtained?
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