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Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab
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Linear analysis and nonlinear numerical simulations of autocatalytic reaction fronts ascending in narrow
vertically unbounded slabs describe the growth, development, and annihilation of fingers in the front, the
dynamics of edge suppression, and a secondary transition to a two-roll state above the onset of convection. The
pattern formation and evolution of the reaction fronts are determined by the horizontal aspdétrhti@ and
the dimensionless driving parame®@&+ 5ga’/vD¢, which involve the gap thickness the slab widthb, the
fractional density differencé between the unreacted and reacted solutions, the gravitational accelgrdtien
kinematic viscosityr, and the catalyst molecular diffusivit .. The reaction fronts satisfy a chemical
reaction-diffusion equation and two-dimensional Navier-Stokes equations describing the average Poiseuille
velocity in the vertical plane perpendicular to the gap direction. The wavelength of maximum growth rate
reaches a minimum value at~=1 mm.[S1063-651X96)13109-3

PACS numbg(s): 47.20.Bp, 47.70.Fw, 03.40.Gc, 82.20.Mj

I. INTRODUCTION front” approximation, the reaction-diffusion equation re-
duces to a simple “eikonal” relatiof5] between the front
Autocatalytic reaction-diffusion frontgl] in aqueous so- Vvelocity and the front curvature. In a reference frame station-
lution serve as a rich arena for the study of pattern formatiorary with respect to the fluid, the eikonal relation gives the
and evolution, combining chemical reaction-diffusion phe-normal component of velocity of the reaction front as
nomena with hydrodynamic flow2]. lodate—arsenous-acid c=cy+DcK, wherec is the flat front speed anld is the
reaction fronts consume unreacted solution to produce a rdront curvature. Here&K is measured as positive when the
acted solution of lower mass density. Buoyancy therefore&enter of curvature is in the unreacted fluid. This curvature
renders ascending fronts potentially unstable to convectionorrection tends to lower peaks and raise valleys in the front
[2]. A slab with parallel vertical walls separated by a smallsurface, thus flattening the front. For ascending fronts, buoy-
gap provides an ideal geometry to investigate pattern formaancy competes with this curvature effect, and tends to desta-
tion in chemical waves. The purpose of this paper is to in-bilize a flat front.
vestigate the theory of pattern formation and evolution for In this paper, we consider a narrow slab that is unbounded
ascending autocatalytic reaction fronts in such a geometry.in the vertical directiore, with gapa and widthb>a, and
An autocatalytic front of iodide in iodate—arsenous-acidwith no-slip boundaries ak=+*a/2 andy==*b/2. For a
solution serves as a unique system because of its simplicitgufficiently small gap, laminar viscous flows are two dimen-
The reaction front can be accurately described by the oxidasional, being restricted to the plane parallel to the slab. The
tion of iodide by iodate and the reduction of iodine by arse-two components of velocity in this plane, which must vanish
nous acid; the iodide is generated autocatalytically at theat the no-slip walls, have a well-characterized quadratic Poi-
front, and diffuses ahead of the front. A simple autocatalyticseuille dependence on the coordinateormal to the walls
reaction-diffusion equation, derived from the chemical[6]. Averaging the Navier-Stokes equations over this coordi-
reaction-rate equations and the catalyst diffusion equatiomate (Sec. 1) yields a set of equations involving the two
governs the evolution of the front in the absence of conveceomponents of averaged velocity, which depend/pn, and
tion. It successfully describes the one-dimensional propagahe timet. These two-dimensional equations lend themselves
tion of the front in a vertical capillary tubs]. to linear and nonlinear analyses, and reduce to Darcy’s law
An isothermal hydrodynamic stability theory of convec- for steady irrotational flow. In Sec. Ill, based on these two-
tion near autocatalytic reaction fronit8] treats the thin re- dimensional equations and the correspondingly averaged ei-
action front as a moving surface which consumes unreactekbnal equation, we summarize the results of a linear stability
fluid of uniform mass densitp,, to produce reacted fluid of analysis for the onset of convection for autocatalytic reaction
lower uniform densityp,, thereby relegating all chemical fronts in a horizontally unbounded slab with—c, and
reactions to the surface. The relative strength of buoyancy isompare them with three-dimensional results obtained previ-

measured by a dimensionless driving paraméRaf. [4]), ously. We also investigate the effect of the sidewalls at
y==b/2, for finite b. In Sec. IV, we discuss a numerical

. sga’ 1 simulation of front evolution above the onset of convection

Do’ @) for finite b by coupling the two-dimensional equations with

the reaction-diffusion equation, which is more convenient for
whered=(p,— p;)/p; is the fractional density difference be- numerical simulation than the eikonal equation. In Sec. V,
tween unreacted and reacted fluids,the acceleration of we present the results of the numerical simulation, discuss
gravity, a the gap thicknessy the kinematic viscosity, and pattern formation and evolution near the autocatalytic reac-
D the molecular diffusivity of the catalyst. In this “thin- tion fronts, and draw conclusions.
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planes, based on the Poiseuille velocity profile in E4.
The last two terms in Eq(5) come from the average of
vV2v=1(?% x>+ V?)v.

It is appropriate to give some historical perspective on Eq.
(5). In the absence of external forces, we can ignore the
acceleration term on the left side to obtain Darcy’s [&iy

a2
V(y,Z)I—mVP, (7)
for steady irrotational flows. Darcy’s law can readily be
modify to incorporate external forcefs necessary for the
study of the displacement of one fluid by another in a Hele-
: r L : Shaw geometryd—0) [8]. Replacing the ternrV2v in Eq.
05 -03 01 01 03 05 (2) by —12vV/a?, that is, ignoring theV? term and the
X factor 6/5 in Eq.(5), yields a set of equations used to study
FIG. 1. Even-parity convective velocity fie[@] for g.=0.5 vs the stability 01_‘ a binary fluid mixture in the HeIe—Shaw.ge—
horizontal coordinatex perpendicular to a vertical slab. The com- ©Metry[9]. This replacement reduces the order of the differ-

ponent of the velocity field perpendicular to the slab is representential equation_s_, making it impossible to invok_e no-slip
by u(x), and the vertical component byw(x), with boundary conditions ajI: *+b/2. TOQ/ercome this prOb-

|u|~0.005w|. The dashed curve is the parabolic profile in E4.  lem, Brinkman[10] suggested that th€2 term be included.
chosen to have the same maximum magnitude/@g. Accordingly replacing the Laplacian in Eq(2) by

V2=v2-12/a? yields Eq.(5), except for the factor 6/5. The
V2 term predicts important finite-gap corrections in double

The Navier-Stokes equations for incompressible fluids, diffusive systemg11].
At an interface between these two viscous fluids with unit

Il. EQUATIONS OF MOTION FOR A NARROW SLAB

Y 1 5 normaln, the fluid velocityv and the normal stresgT;; for
ST (v Vv=f- ;VPJF vV, (2 (i,j=x,y,x) must be continuoug12]. Here the three-
dimensional stress tensdt; = Pg;; + Tj; consists of a diag-
V.v=0, (3y onal component P§; and a viscous component
Tij=— u(dvi/axj+ dv;/dx;). Averaging as_before yields a
involve the fluid velocityv, the external force per unit vol- two-dimensional stress tensor T;;=Pd; +T¥

umef, the pressur®, the mass density, and the kinematic \yith Ti\J(z —u(dViloxj+dVjlax;) for (i,j=y,z). There-
viscosity v. Fully three-dimensional analytical solutions ob- fore, we demand continuoug and continuous): T:. at the
tained previously for the onset of convection for autocatanierface between the two fluids. 1y

lytic reaction fronts in a vertical slatwith b—c, Ref.[6]) The hydrodynamic stability theory of convection near au-
reveal that, whem is small, the magnitude of thecompo-  ,catalytic reaction frontf2] treats the thin reaction front as
nentu of the velocity, which is normal to the slab plane, is 3 moving surface which consumes unreacted fluid to produce
much smaller than the magnitudes of hendz components  reacted fluid. By defining a time-dependent reaction-front
v andw (|u[~0.00§w]). These solutions also show that  pejght z=h(x,y,t) and a unit vecton pointing normal to
andw have parabolic Poiseuille profiles in thedirection  the front into the unreacted fluid, we can write the normal
(see Fig. 1 satisfying no-slip boundary conditions. Accord- front velocity relative to the moving fluid as
ingly, we ignoreu and demand such profiles enandw by c—g.35h/ot—fA-v|,_,. This involves the normal fluid ve-

writing locity at the frontn-v|,_, and the normal front velocity
6 /a2 n-z(dh/at) in the laboratory frame. When the gapis suf-
V(X,y,2,t) = —Z(Z—XZ)V(V,Z,U- (4) ficiently small, both this equation and the eikonal relation,
a c=cotDcK, are replaced by the averaged equations, re-

e . ) ) spectively. The no-chemical-flow boundary condition
Here, V=vy+wz is the fluid velocity v averaged over ;h/5x—0 atx=+a/2 demands vanishing averaged curva-
—a/2<x=a/2. Substituting Eq(4) into Egs.(2) and (3)  tyre perpendicular to the plane, which therefore makes no

and averaging yield contribution to the eikonal relation. Accordingly,
N STV R - 2y s el K
— T5(V-V)V= - v A n-| 20—V - =co+DcK. (8)
V-V=0, (6)

IIl. ONSET OF CONVECTION

where V_z(a/ay)9+(a/az)2, and f and P are averaged FOR b= AND FOR FINITE b

quantities. Equationés) and (6) describe the averaged non-  We now summarize the results of a linear stability analy-
linear two-dimensional fluid motion between two parallel sis of autocatalytic reaction fronts in a narrow vertical slab
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that is unbounded in the vertical direction and in one hori-
zontal direction b—o). The associated horizontal transla- ' ' '
tional invariance allows unrestricted perturbation wave- 0c, Hele-Shaw
lengths in this direction. As usudl2], we employ the |
Oberbeck-Boussinesq approximatifis] by neglecting the /
small density difference between the reacted and unreacted
fluids except in the large gravity term. Equatidbg (6), and qc, 2D
(8) govern the evolution of the averaged fluid velocity /\
V(y,z,t) and the averaged reaction front heighth(y,t). dc, 3D
These equations allow us to apply standard linear stability
techniqueg6,2] to study the fully time-dependent equations. o ,
Whereas Ref[6] discusses three-dimensional solutions for —
the marginal state only, we are here able to obtain solutions / —
of the two-dimensional time-dependent equations. These so- — W
lutions allow us to study the maximum growth rate, which is 1! ~
of particular interest experimentally. / G
This linear stability analysis yields the growth ratdor a
perturbation wave number and a driving parametes,

Sq2q+(k; —k-)]=2(q*+ ov/Dc)(ky —k-) 0.00 100 200 300 400 500

x[202+12+o+q(k, —k_)]=0, 9

FIG. 2. Convective stability diagram for flat ascending reaction
where k. = —3V,/5+ g+ 12+ o+ 9V(2,/25. Hereo and  fronts in a vertical slab with unbounded width—x. The three-

q are dimensionless quantities measured in units/af and  dimensional(3D) trace forq, represents the marginal stability ob-
1/a, respectively. For iodate—arsenous-acid reaction frontgained by solving the three-dimensional Navier-Stokes equations
Vo=coa/v~0.03 for a~1 mm, so 9/3/25~ 3.24 [6], the 2D trace that obtained by the two-dimensional equati®ns

X 10 *<12. Neglecting this term ik.. and simplifying Eq. and(6), and the Hele-Shaw trace that obtained by Darcy’s law, Eq.

(9) yields (7). For a particular value of the driving paramet®r the band
0<<qg<(q, of perturbation wave numbers is unstable to convection.
Sq—2(92+ ov/D)(q2+ 12+ o+ qyg?+ 12+ ) = 0. The wave numben,, with the maximum linear growth rate for
¢ (10) given S is obtained from the two-dimensional equations.
For the marginal state, the perturbations neither grow or de- chﬁq z(qun+ 12+ o)
cay with time, so thatr=0. Equation(10) therefore be- o= > -1}, (13
comes Vo |12+ o= QmV95+ 12+ o
S=20c(02+ 12+ qe\q2+ 12), R 4qm(dm+ 12+ o) (G + 124 0+ Ao+ 12+ 07)

, , . 12+ 0= Om\02 + 12+ oy '

which relates the marginal wave numbggy to the driving (14)

parametefS. Figure 2 compares this condition with the exact

three-dimensional marginal condition for the onset of con-The maximum growth rater,, occurs at the perturbation
vection for autocatalytic reaction fronts in a vertical slabwave numben,,, which is uniquely determined by the driv-
with arbitrary gapa [6]. These both agree ag— 0 with the  ing parameteS (Fig. 2). Numerical solutions of Eq913)
“Hele-Shaw” limit S—24q. obtained from Darcy’s law, and(14) reveal thato,,<2x 10 2 for S<300. Accordingly
agree thaSH4q§ asq.—o, and differ by at most 5.2% at ignoring o,, on the right sides of Eqg13) and (14) yields
g.~6. In our previous work6], we obtained a useful ap- the approximate relations

proximate analytical marginal condition relatiggandq ,

Dean|  2(ap+12)
2 2 =——= = -1 (15)
$=20.(q5+ 12+ Qe \o; + 18), (12 M P NP T B
which agrees with the exact three-dimensional condition to 2 2
within 2.5% over the whole range & . 40m( 0, +12) (g + 124 gm0 +12) 16
For iodate—arsenous-acid reaction fronis;9.2x10 3 12— Va3, +12 '

cm?/s andD,=2.0X 10" ° cm?/s. Solving Eq.(10) numeri-

cally yields the growth rater as a function of the wave These relations agree with the numerical solutions of Egs.
numberq for various values 08 (see Fig. 3 As indicated in  (13) and (14) to within 0.02% for botho,, and S at the
Fig. 3, the larger the driving paramet& the larger the typical valueg,=1.0, and have the advantage of giving
growth rateo for a given perturbation wave numbgr Tak- o, and S directly from gy, .

ing the derivative of Eq(10) with respect tog and setting For the iodate—arsenous-acid reaction fronts,(Egindi-
do/dg=0 yield cates that the slab gap thicknessdetermines the driving
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FIG. 3. Dimensionless linear growth ragevs wave numbeq
for S=50 (tracea), 100(traceb), 150(tracec), 200(traced), 250
(trace e), and 300(trace f). The critical wave numbeg., the
growth rateo, and the wave numbey,,, with maximum growth rate
o, all increase with increasing. The maximum growth rate is less
than 2x 102 for S<300. The quantities,, andq,, are labeled for

S=50 (tracea).

parametefS, which determines the wave numfegy of maxi-
mum growth ratgFig. 2). Thus the maximum growth wave-
length\ ,=2malq,, is determined by the gag. Solving Eq.

dimensionless wave number ¢
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FIG. 5. Stability diagram for ascending fronts in a vertical slab
with finite width b. The solid line represents the predicted marginal
state, and the arrow indicates its asymptotic li@lt=76.1 for
I'—o0, which is close to the asymptotic limit 24 for laterally
unbounded slab. The filled circles with error bars represent the mar-
ginal state obtained from our numerical simulations. The front is
flat and convectionless in region |; one convective roll appears in
region Il. The open circles with error bars locate the transition from
the one-roll state to a symmetric two-roll state.

creases monotonically witla, and approaches the cutoff
wavelength A.=2m(4vDc/6g)° for the laterally un-
bounded system as—« (see Fig. 3 in Ref.6]). Solving Eq.
(9) numerically with finiteV yields values ofg,, and o,

(9) numerica”y y|6|dS Flg 4, which reveals the existence Ofthat agree with Eqi_’LS) and(14) to within 0.03% at typ|ca|
a critical slab gapa.. The wavelength\, decreases t0 a yalyes ofa=0.2, 1, 10, and 100 mm.

minimum value asa increases to the critical valug., in-

Finite width b eliminates horizontal translational symme-

creases witha as a>a., and approaches the maximum try and requires rigid boundary conditions at the sidewalls,

growth wavelength\ ,,= 15.0374¢?/5g)*® for a laterally
unbounded systef2] asa— . The wavelength ,, behaves
quite differently than the cutoff wavelengtty,, which de-

30 .
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FIG. 4. The wavelengtk ,, of maximum growth rate vs slab gap
a for the iodate—arsenous-acid systésolid trace, including the
Hele-Shaw and laterally unbounded limits. The wavelength

100

slab gap a (mm)

reaches its minimum value as=a. .

Vl|y==+r;2=0, (17)
wherel” =b/a, the aspect ratio of the slab. We use the algo-
rithm of Vasques, Edwards, and Wildé#] to obtain the
marginal condition forS, andI" as plotted in Fig. 5solid
trace.

Comparing with results fob— o yields a deeper under-
standing of the marginal condition for finitein Fig. 5. The
minimum wavelength .=2mal/q, (measured in conven-
tional unitg necessary for convection decreases with increas-
ing driving paramete8 (Fig. 2). Since each wavelengt of
the convection pattern embodies two rolls, a single roll in a
finite-b cell corresponds to the maximum allowable wave-
length A=2b for such a cell. Thus\,=2b embodies an
approximate marginal condition for the onset of convection
for finite b. This condition relates the corresponding mar-
ginal aspect ratid'= 7/q, to S through Eq.(11). This rela-
tion underestimates the marginal condition in Fig. 5 by about
10%.

IV. NUMERICAL SIMULATION

The reaction kinetics of a propagating front of iodide in
an iodate—arsenous-acid solution can be accurately described
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by the oxidation of iodate by iodate and the reduction of w:ﬁ(/,_ (23
iodine by arsenous aciB]. The iodide is generated auto-

catalytically at the reaction front and diffuses ahead of theCombining with Eqs(5), (21), and(20), we have

front, catalyzing the reaction. In the absence of convection,

the coupling of the corresponding chemical reaction rate dow 6 J(¢Y,w) JC — 12

equations with the catalyst diffusion equation governs the E—gm—ﬁgwﬂ v 2| (24
spatiotemporal evolution of the iodide concentration and the

propagation speed of the iodide front. The simple autocata- JC  I(4,C)
lytic reaction-diffusion equation describing a one- rra 3(y.2)
dimensional iodide front in an iodate—arsenous-acid reaction '
with arsenous  acid in  stoichiometric  excess

([H3As03]0>3 [10537 ]o) has been investigatda],

+DV2C—aC(C—C,)(C—Cs), (25

where

Aty afy oty oty of,

aC 9%C L e (26)
E:Dcﬁ_aC(C_C:z)(C_C:;), (18) @(y,Z) (‘7y 0z 0z (9y

B o . We also require no-slip boundary conditions for the averaged
where C=[1"] denotes the iodide concentration, fiyiq velocity and no-flow boundary conditions for the
C,=[103"],=5.0x10"3M the initial iodate concentration, chemical concentration at the sidewalls.
Cy=—ka/ky=—1.03x10"°M, and a=k[H"]*=3.45 To simulate the evolution of the autocatalytic reaction
X10'M~?/s. The reaction rate constants akg=4.50  fronts in the narrow vertical slab, Eq&3), (24), and (25)
X10°M "%/s and k,=3.45<10°M ~“/s. Equation(18) re-  are solved numerically using a rectangular mesh. The mesh
solves the reaction front, which was treated previously agjze is varied to address the computational needs of each
infinitesimally thin using the eikonal equation, E@). In-  choice of S and I'. The spatial derivatives are calculated
stead of the time-dependent front heibhEq. (18) naturally  using central differences; a five-point expansion is used to
introduces the scalar variab@, which avoids the disconti- approximate the Laplacian. The time evolution is calculated
nuity at the front and is consequently more accurate andsing the explicit Euler method, and the Poisson equation is
convenient for numerical simulations. Previous calculationssolved using a finite-term expansion methidd]. In this
demonstrate that the two approaches agree for the thin fronigork, we used both four- and nine-term truncations. For
of interest[14]. Equation(18) has a steady state solution, T'<11, the four-term truncation yields propagation speeds
and front shapes that agree with the nine-term truncation.
The results were checked using a cyclic reduction method
[16] to solve the Poisson equation in test cases. The initial
conditions consist of no fluid flow anywhere, together with
where E=z—vot, k= \al2DcC,, and vo  Small random perturbations in chemical concentration in the
=\2aDc(C,/2—C3), the propagation speed of the front. Vicinity of a step-function concentration profile at the bottom
For the values given above,=2.95<10 2 cm/s. The pa- Of the mesh. The front propagates vertically in this bounded
rameter C, is the initial iodide concentration satisfying Mesh, and reaches the upper boundary eventually. To simu-
Co<C, (Ref.[3]). Iate propagation in a vertically u'nbounded slab, th.e front is

Including hydrodynamics, the governing equations for thefirst allowed to travel a small distance and then is shifted

evolution of the iodide front in iodate—arsenous-acid solutiorPack. At that time, unreacted fluid is added near the upper
are boundary, and reacted convectionless fluid is discarded near

the lower boundary. This procedure is justified for vertical
boundaries that are far away from the front.

= T ic, e

(19

iC —
—£ FV-VC=DcV?C—aC(C~C,)(C~Cy), (20
V. NUMERICAL SIMULATION RESULTS

p(C)=p(Cy)[1-B(C-Cy)], (21) AND DISCUSSION

) The simulations employing the reaction-diffusion equa-
and Egs. (5 and (6). Here the quantity 3=[p(0) tion (Sec. IV) reveal that when the system is in the no-
—p(C2)]/p(C;)C,=6/C; is the molecular expansion coef- convection regior(region | in Fig. 5, the front is flat and
ficient. The parameter values arg=980 cm/$ and globally stable. Here the perturbations decay, leaving the
6=0.87x10 *. We again adopt the uniform-density ap- steady flat profile described by E@.9), with the front speed
proximation, which ignores density changes except in thejiffering from the theory by less than 1%. The filled circles

gravity term. with error bars in Fig. 5 represent the marginal state for the
Equation(6) and the pressure term in E@) can be elimi-  onset of convection based on these simulations. The upper
nated by introducing the stream functign limit of the error bars represents the smallest valuslofor
which convection was observed, and the lower limit repre-
Vv _9Y Vo= — Iy 22) sents the largest value for which convection was not ob-

Yooz’ z ay served; the filled circles are located at the average of these
two values. The thin-front approximatidfig. 5, solid trace;

and the vorticityw, see Sec. Il underestimates these values by about 15%. This
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(a) width FIG. 7. The enhancement to the propagation spéeflascend-

ing fronts due to the onset of convection. The param¥tgis the
speed of the flat front in the absence of convection. The cusp in
V (at S~80 forI'=5) reflects the transition from the one-roll state
to the two-roll state.

ginal stability, the small values of the growth ratedemand
a long time for the roll to grow and to saturate.

Our simulation reveals the existence of a transition from
st the steady one-roll state to a steady symmetric two-roll state
"""""""""""" (region Il in Fig. 5. The open circles with error bars in Fig.
cereoniiliiiinii 5 locate the transition. The upper limit of the error bars rep-

resents the smallest value 8F for which the steady two-
roll state was observed, and the lower limit represents the
largest value for which the steady one-roll state was ob-
served. Just above the transition, for initial conditions con-
sisting of a slightly perturbed flat front, the one-roll state
dominates initially owing to its largest growth rdteee Fig.
6(b)]. After a period of time depending on both the driving
1 B— ‘ parameterS and the aspect ratid_“, .the. two-roll state
®) =< width emerges anq eventually saturates, indicating that the one-roll

state is nonlinearly unstable to the two-roll state. The larger

the driving paramete§, the faster the two-roll state devel-

FIG. 6. (& The steady one-roll state fa=0.46 mm and ops. The two-roll state corresponds to a full-wavelength de-
b=2.3 mm. The solid lines are equiconcentration lines in the reac; PS. . . P 9
formation of the fron{Fig. 6(b) att=22/9].

tion front. These lines identify the reaction-front region where the i 6
Convection enhances the propagation speeaf the

concentration varies significantly, and thereby indicate the thickness i i .
of the reaction front. The simulation employed a grid space of 0.1fonts. Numerical data reveal that the increase idepends

mm in the propagation direction and a time step otd10%s, and ~ ON both the driving paramet& and the aspect ratib (Fig.
was carried out in a mesh 18@5 (only a small portion near the 7). The cusp irv (at S~80 forI'=5) reflects the transition
front is shown here (b) Demonstration of the development from to two rolls discussed above.

t = 8/9 (h)

t = 22/9 (h)

= 2/9 (h)
3 mm
14/9 (h)

t
t

the one-roll state to the two-roll state faa=0.55 mm and Simulations well above the transition to the two-roll state
b=2.75 mm. The evolution of the front is represented at fourreveal edge suppression and a tertiary instability that breaks
stages. the symmetry of the two-roll state. These simulations were

carried out forS=463.4 andIl’=10, which correspond to

is also true for the laterally unbounded systE¥], where a=1 mm andb=10 mm. Figure 5 ensures that the corre-
the thin-front critical wave numbeg,=48.74 cmi * exceeds  sponding valueSI'=4634 greatly exceeds the marginal
the finite-front critical wave numbaey,=46.39 cmi 1 by 5%,  value SI'~300 for the transition to the two-roll state. Figure
which corresponds to underestimates of the critical driving8 shows the velocity fields for these simulations at four dif-
paramete|8~q;3 by 15%. ferent stages during the development of the front. The small,

Just above the marginal stateegion Il in Fig. 5, one  random perturbations about the initially flat convectionless
convective roll grows in the vicinity of the front and even- front lead to a first stage consisting of five rolls. This result
tually saturates, with a corresponding half-wavelength deforfollows approximation from the linear stability analysis for
mation of the formerly flat fronfsee Fig. Ga)]. Near mar- the unbounded system, which predicts a wavelength
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nonsymmetric two-roll state is evident in the final stage. aspect ratio
Am=2malq,,=3.55 mm for the fastest-growing mogieom FIG. 9. Fingering in the fronts for different aspect ratios

Eg. (16)], and a corresponding numbbr(\,/2)~5.6 of 1'=3,5, 10, 14, 17, and 18, with a fixed gap=1 mm.
rolls (since each roll occupies half a wavelengtin the
second and third stages, the nonlinear interactions betweasn the type of the reaction, the initial chemical concentra-
these five rolls lead to strong downward flows near the sidetions, the fluid viscosity, etc. For example, for the iodate—
walls as rolls are annihilated there. These strong flows temarsenous-acid reaction, E¢l) yields S=463.4° with a
porarily suppress the propagation of the front at the edges aheasured in millimeters. Fdt=6, Fig. 5 yields the critical
the front. Such edge suppression has been observed in exondition S.I'=105, which yields a,=0.34 mm and
periments[17]. The fourth stage shows the final saturatedp=2.04 mm.
state consisting of two unsymmetric rolls. This state indi- In conclusion, our nonlinear numerical simulation of the
cates a tertiary transition from two symmetric rolls to two evolution of autocatalytic reaction fronts ascending a narrow
unsymmetric rolls above the transition from one to two sym-vertical slab confirms our linear marginal stability analysis,
metric rolls[see Figs. 5 and(B)]. The nature and location of and also reveals transitions to two-roll states, edge suppres-
this transition deserve further study. sion, and fingering. An amplitude-equation analysis and

Simulations well beyond the marginal condition also re-careful experiments might shed further light on the transition
veal fingering in the front. Our simulations of the evolution to the two-roll state. The relation between initial perturba-
of fronts for S=463.4 andl'=3, 5, 10, 14, 17, and 18 tions and patterns developed in the fronts is also an interest-
clearly demonstrate the formation, annihilation, and developing subject. Theoretically, we can study the relation through
ment of fingers in the frontésee Fig. 9, indicating that the selected perturbations to start the numerical simulation. Ex-
nonlinear dynamics mainly dominates the evolution of theperimentally, this might be realized by initiating the chemi-
fronts. The measured typical wavelengttihat emerges ini- cal reaction with controlled initial perturbationghrough
tially is in the range 3.4—4.6 mm. The average wavelength ofarious electrode shapes or by initiating the reaction at se-
4.0 mm differs with the predicted maximum growth wave- |lected points
length\ ,,=3.55 mm by 11%. This difference could be due
to the thin-front approximation.

Experiments designed to test the instability of ascending
reaction fronts in a slab can be carried out by varying any of We are indebted to Yunging Wu for many valuable sug-
the parameters 8= dga®/vD¢, notably the density jump gestions on the numerical work and for sharing his numerical
8 (through the various chemical concentrations the slab  code with us. Discussions with Eugenia Kuo, Stephen Mor-
gapa. Varying the gapa is more effective sincé& is pro-  ris, Desiderio Vasquez, and Joseph Wilder are gratefully ac-
portional toa®. Decreasing will eventually yield a flat front ~ knowledged. This work was supported in part by National
for any given aspect ratid’. Note that whereas Fig. 5 is Science Foundation Grant No. R11-8922106 and the National
universal, the critical gap and widthb of the slab depend Research Center for Coal and Energy.
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