
Center, Kenneth 1 28th Annual AIAA/USU 

  Conference on Small Satellites 

SSC14-II-2 

Describing and Deploying Satellite Behaviors Using Rules-based Statecharts 
 

Kenneth B. Center 

PnP Innovations 

3921 Academy Pkwy. North NE, Albuquerque, NM 87109; (505) 503-1563 

Ken.center@pnpinnovations.com 

 

 

ABSTRACT 

PnP Innovations has developed the ability to graphically author Universal Modeling Language (UML) statechart 

diagrams that can be translated directly to rules-based flight code. The generated code module integrates with an 

Autonomous Mission Manager (AMM) Architecture developed by a working group at the Air Force Research 

Laboratory. The role of the statechart-described module behaviors can be many and varied – from subsystem mode 

transition management to fault tolerance techniques to courses of action taken in response to non-deterministic 

events. The capability provides a unique opportunity for system designers or operators (not programmers) to capture 

behaviors in a form that is natural and deploy them on a satellite asset without passing through an implementation 

cycle that could result in code errors. The resulting process ensures that the design always remains consistent with 

the deployed implementation. 

INTRODUCTION 

In the current climate of shrinking government budgets, 

space system developers need technologies and tools 

that allow them to do more for less. Meeting this need 

necessitates that these systems are more: 

 Capable of operating without ground operator 

intervention (autonomous) 

 Responsive to non-deterministic events 

 Robust in overall utility to their user community 

 Resilient in the face of anomalies 

Achieving these objectives requires that satellites are 

capable of being tasked at a high level (in terms of 

overall goals) and that they are then capable of carrying 

out those directives using their own decision logic 

through sensible planning, mindful at all times of 

limitations and constraints imposed by installed 

resources and consumables. 

Investing in innovation that moves toward the 

widespread use of satellite autonomy has the potential 

to yield significant benefits to the space situational 

awareness (SSA) community and Defensive Space 

Control (DSC). Most notably, if satellite platforms have 

the ability to detect and respond to events without 

exchanging information over the space-to-ground link 

(which is subject to latency and availability limits), 

their response to those events can be significantly more 

timely, leading to higher overall system utility. 

This paper describes a recent addition to the AMM 

capabilities – the addition of the ability to express 

desired system behaviors as graphical statecharts and 

deploy them directly to an active system without any 

software coding.  

AMM ACTIVITY 

PnP Innovations is actively involved in supporting the 

development of an autonomy architecture targeting 

space domain Decision Support Systems (DSS). This 

Autonomous Mission Manager (AMM) architecture 

provides a powerful data framework by which modular 

elements can be interconnected (both locally on the 

satellite and between spatially distributed elements).1 

 

Figure 1: Federated Assets interacting in a 

distributed “Space WAN” 

The standards being developed in support of this 

activity allow modules from different developers to be 

contributed and interoperate seamlessly. The AMM 

framework is already being used by a working group 

(comprised mostly of collaborating SBIR contractors) 



Center, Kenneth 2 28th Annual AIAA/USU 

  Conference on Small Satellites 

to prototype an SSA system consisting of sensors 

models, spacecraft subsystem support software, data 

fusion algorithms, decision logic applications, planners, 

and ground stations. Referencing Figure 1, the intent is 

that elements exchanging data in an AMM architecture 

configuration can be seamlessly located across a Space 

Wide Area Network “Space WAN”. Within nodes on 

the network, individual support components (physical 

sensors exposing compliant data interfaces and software 

applications performing specific SSA functions) may 

interact locally with each other but may also reach out 

to the wider network to interoperate with remote 

members of the architecture acting as “AMM  

Federated Assets”. 

The AMM working group has addressed the challenges 

associated with creating collaborative interactions 

between federated assets to achieve greater system 

utility though several use cases related to the 

monitoring of space-resident objects and responses to 

detected on-orbit events. Several components of the 

existing architecture utilize rules to define platform and 

mission behaviors in support of these system use cases. 

Our graphical statechart capture capabilities extend the 

use of rules-based programming by integrating a Jet 

Propulsion Laboratory (JPL) developed process named 

STAARS to better manage those rules by bridging the 

gap between UML-described behaviors and the 

resulting software. JPL has witnessed significant gains 

in software reliability and maintainability using 

STAARS on major NASA programs. Our extensions to 

AMM have yielded similar results. 

AMM ARCHITECTURE 

AMM fits within a larger service-oriented architectural 

framework that includes (from lower- to higher-

functional utility layers as shown in Figure 2) device 

and application support, subsystem support, and finally 

autonomy. All layers are supported by a middleware 

framework called ASPIRE, which provides both a 

platform abstraction layer for common operating 

system services and a messaging framework supporting 

data interactions between applications and modular 

hardware deployed in a compliant space system. 

 

 

Figure 2: Larger Architecture Service Layers 

Our AMM Working Group undertook a comprehensive 

trade study to determine the best course to take for 

supporting inter-module messaging. This trade led to 

the selection of the ASPIRE framework (Adaptive, 

Scalable, Portable Infrastructure for Responsive 

Engineering). ASPIRE was chosen because its native 

features were well-aligned with the CCSDS’s 

Spacecraft Onboard Interface Service (SOIS)-defined 

capabilities and because ASPIRE’s requirements, 

features, and source code could be controlled by the 

working group. Fundamentally, ASPIRE includes a 

transport agnostic, cross-subnet messaging service that 

can run on a variety of processing platforms (operating 

systems and processor architectures). ASPIRE uses a 

common message wire protocol to pass data and 

configuration information between components. A set 

of classes have been written to abstract message 

delivery, in both the local and non-local subnets. 

ASPIRE does not require specific hardware to execute. 

It is simply an application “wrapper” that can be 

attached at the lower level to specific hardware to 

abstract data interfaces.  

 

 

Figure 3: ASPIRE Layers indicating API Access 

Points 

As shown in Figure 3, ASPIRE defines various layers 

which provide access to a range of functionality 

associated with registering a component, describing 

component interfaces with an XML data sheet, 

publishing messages as a provider, and locating other 

data interfaces using query services. The benefit of this 

layering is that the user of the ASPIRE infrastructure 

can take advantage of any layer to support integration 

of capabilities (for example, an application writer can 

use the Platform Abstraction Layer (PAL) to ensure that 

their code is executable on any of the supported 

platforms).  

This layering approach helps prevent being locked in to 

any one underlying implementation and allows 

implementation specifics, such as OS and hardware, to 

be switched without affecting the above layers. Another 

similarly beneficial feature of ASPIRE is that APIs 

(Application Programming Interfaces) have been 



Center, Kenneth 3 28th Annual AIAA/USU 

  Conference on Small Satellites 

developed for several high-level programming 

languages including C++, C#, and Java. 

The modules in the autonomy layer can employ a 

variety of approaches toward facilitating the realization 

of operational goals. Procedural logic is one option – 

simply creating a software module that finds and 

attaches the appropriate abstract data sources to 

perform its role in the planning or execution process. 

This allows the software component to be highly 

reusable as long as the ontology remains static, but new 

requirements or features are not possible without 

modifying code and re-qualifying the module. Any time 

that the “seal is broken” on flight software in a major 

commercial program, the consequences can amount to 

millions of dollars. That said, many of the core services 

and functions in a satellite platform remain largely 

static. In these cases, it makes ultimate sense to take 

this approach of developing software modules with 

“long shelf lives” that can be configured/combined in 

modular building-block fashion to create typical 

satellite bus capability atop a potentially diverse set of 

supporting support hardware and processors.  

USING RULES FOR DECISION LOGIC 

Building on this paradigm and taking a step further, the 

AMM group moved to develop a capability to specify 

the operational behavior of a satellite (or the aggregate 

behavior of a collection of collaborating assets) using a 

rules-based approach. Rules are much closer to the 

“natural” language of engineering and better capture the 

mission-specific variations that typically discriminate 

one set of operations from another. Mission objectives 

and overall goals are also highly susceptible to change, 

particularly if there is an interest in the ability to adapt 

to dynamic global situations or in repurposing 

components to enhance or rebalance overall system 

utility. The AMM project was the initial proving 

ground for the application of rules-based decision logic. 

Initial efforts validated the rule engine capability with 

simple initial use cases – the management of dedicated 

solar array energy collection based upon battery 

telemetry. Later cases utilized rules for asset 

management, determining the conditions under which 

event messages should be published to other assets 

(using operator-prescribed rule logic) and on the tasked 

asset side determining responses based upon locally 

sensed state (such as an assigned latitude/longitude 

bound). 

DROOLS AS THE RULE ENGINE 

The Drools rules engine, its capability accessible via 

Java API calls, was adapted for compliance with the 

ASPIRE middleware being utilized for message 

exchange within the architecture.  

We found the Drools package to be an exceptionally 

elegant choice for the representation of system 

behaviors. This is primarily because Drools is a modern 

enterprise language that leverages many Java-based 

packages to provide a very minimalistic, yet powerful 

top-tier overlay to declare facts and apply inference 

engine operations to them.  It should be noted that 

Drools’ inferencing is extremely efficient. The 

algorithms employed allow evaluation of enormous 

numbers of rules with relatively little processing, as 

witnessed by benchmarking activities that we 

performed on a Gumstix Overo Fire Comm processor, 

which demonstrated <1% processor utilization to 

execute one of the Drools-based AMM Agents for 

Energy Management. 

THE ROLE OF STATECHARTS 

The use of a rules-based paradigm becomes even more 

compelling when integrated with a full-service tool 

capability that allows behaviors to be specified by 

engineers or system users in graphical state charts, 

automatically generated to flight-ready software, and 

verified in robust mission simulation before 

deployment. State machines appear in many more 

software applications than most people realize in 

operational systems. Stateful, deterministic behaviors 

are requirements for most deployed applications, 

especially satellites, where risk tolerance is extremely 

low because of the difficulty of patching problems once 

the platform has slipped Earth’s bounds and is only 

accessible via a thin, slow communications pipe. The 

agent-based autonomous software that PnP Innovations 

has developed for AMM and other space customers 

such as the Operationally Responsive Space Office is a 

good example of a situation where the statechart-to-

code paradigm is extremely applicable. Every agent has 

an established stateful pattern like the one in Figure 4. 

Even though the states are not many, the potential 

transitions between them are quite numerous. As it 

turns out, the logic associated with the transitions is 

different for every case to which the agent is applied – 

sensor support, communications contact planning, 

power management… all need to maintain  the concept 

of a common collection of agent states, but what causes 

transitions between states is highly varied.  

 

Figure 4: The complexities of transitions between 

major states of a software agent 



Center, Kenneth 4 28th Annual AIAA/USU 

  Conference on Small Satellites 

So a great opportunity is presented to allow the 

standard “agent” state template to be grabbed from a 

library and then interactively manipulated with an 

editing tool to formulate the transition logic and actions 

associated with the supported states. 

LEVERAGING STAARS 

STAARS (STate-based Architecture and Auto-coding 

for Real-Time Systems) is a JPL model-based 

engineering process for software development.2 Model-

based engineering tools and processes provide a means 

to capture complex system behavior as high-level 

models.  STAARS extensively utilizes UML Statechart 

(e.g. Harol State Machine Diagrams), which have 

proven useful for expressing and automatically 

deploying complex behaviors. STAARS comprises five 

pieces that can be customized for the needs of specific 

application. They include: 

 MagicDraw – A UML CASE (Computer Aided 

Software Engineering) tool for entering models 

 Statechart Framework – A state machine design 

pattern and associated event messaging middleware 

framework 

 Autocoder – JPL developed state machine code 

generator 

 Test-Harness – State machine simulation and run-

time visual monitoring 

 Promela – Model checking language produced 

from UML via Autocoder 

The evolution of the STAARS process to its current 

form resulted from a gradual, well-considered effort at 

JPL to bridge the gap between the process approaches 

of systems engineers and software developers. 

Developing the integrated capability sought to find a 

cost-effective way to leverage lightweight Commercial 

Off-The-Shelf (COTS) tool sub-components to 

effectively merge model-based design approaches with 

the rigors of traditional software development practices. 

At JPL, there has been widespread buy-in from many 

projects because the resulting environment is highly 

flexible, easy to use, and very inexpensive to deploy to 

a large number of users. 

The STAARS process was utilized on the Mars 

Curiosity Rover project at JPL (shown in Figure 5) and 

as such, both the process and generated flight software 

products (which supported the mission since launch and 

continues to run onboard during rover operations) have 

high heritage and Technical Readiness Level (TRL). In 

the Curiosity Mars Science Lander (MSL) program, the 

generated rules governed the high-level spacecraft 

modes (more than 50 primary states) including the 

cruise phase management of attitude control and 

maneuvering for nominal and off-nominal conditions, 

launch phase, Mars entry, descent, landing, and 

ultimately the “rover” mode. One of the key benefits 

realized in the course of using STAARS for the 

Curiosity program was that it enabled the 

accommodation of late-breaking requirements changes 

by adapting code automatically without software 

developers needing to intervene. Despite the late 

addition of mission operational features and responses, 

the entire design was naturally kept consistent with the 

flight software, allowing the program to be agile and 

(obviously) execute successfully. MSL used the 

STAARS Statechart Autocoder Rev1. Since then they 

have developed a Rev2 which has been re-engineered to 

include support for many different back-end coding 

languages, including C, C++, Python and Promela. In 

addition there are many more UML state-machine 

features supported, such as sub state-machines, 

termination states etc. This new Autocoder is actively 

been used on JPL’s current flagship mission - SMAP 

(Soil Moisture Active Passive), an earth orbiting 

satellite. 

 

Figure 5: STAARS specified state-based behaviors 

for the NASA JPL Curiosity Mission 

PnP Innovations specifically leveraged two components 

of the STAARS framework for use in the AMM 

development effort, the UML Modeling Tool and the 

AutoCoder. The role of each is summarized next. 

UML Modeling 

The MagicDraw UML Modeling CASE tool is a 

commercially available product that has been 

incorporated into STAARS to facilitate the 

specification of system behaviors in the way that 

systems engineers can directly relate to their 

requirements. This consists of UML-standard State 

Machines and UML-standard Sequence Diagrams. 

Events passed between objects (state machines) in a 

sequence diagram typically become the events on state 

transitions in a statechart diagram, and these 

specifications map one-to-one with the constructs that 



Center, Kenneth 5 28th Annual AIAA/USU 

  Conference on Small Satellites 

must be resident in software to meet the stated UML 

behaviors. 

AutoCoder 

JPL developed an autocoder in Java to convert the 

MagicDraw Statechart UML directly to C++ code 

according to their established software design patterns. 

This auto-generated code is highly readable and 

understandable and cannot be differentiated from code 

developed by software programmers to established 

architecture patterns. JPL abstracted a plug-in interface 

to facilitate support of multiple languages to target the 

needs of individual programs (as illustrated in Figure 

6).  The JPL Autocoder Rev. 2 back-end was extended 

using its plug-in interface to map MagicDraw 

Statechart UML models to either Python or Promela 

language implementations. For implementation 

languages such as C, C++ or Python a unique Python 

graphical widget is also generated that presents the 

original StateChart models as graphical displays. These 

Statechart Python widgets provide the ability to 

“animate” and display the Statechart while executing 

the autogenerated state machine implementation, 

providing quick run-time verification of operation. 

 

Figure 6: Auto-coding of model XML to flight 

code/rules in multiple languages 

INTEGRATION WITH AMM 

Figure 7 depicts the feature areas of the AMM 

architecture and the relationship of STAARS to those 

elements.  

Starting on the right side of the figure, a deployed 

AMM-based system is a collection of software modules 

(or hardware devices providing AMM-compliant data 

interfaces) communicating by means of a network-

oriented messaging layer. That layer, ASPIRE, 

facilitates the connection of these data sources based 

upon XML-based descriptions of AMM module data 

interfaces. The formalized interfaces in these xTEDS 

facilitate the Service Oriented Architecture (SOA) 

features that are desired for the composition of robust 

system capabilities leveraging high (or even complete) 

re-use of previously validated modules.  

 

Figure 7: Role of the STAARS components in the 

AMM Architecture 

AMM software modules pulled from the “library” 

include services such as “Object Catalog Management”, 

“Pointing Director”, “Slew & Keepout Planning 

Support”, etc. These “commodity” modules will work 

on any type of platform utilizing underlying hardware 

infrastructure. The interfaces they present “upward” 

allow mission/system-level behaviors a uniform base to 

execute upon. Going forward, we presume these 

behaviors to be based on a variety of approaches, but in 

the figure we refer to them as the “Rules/Scripts” of the 

languages cited in the blue box. To be compliant with 

the AMM architecture, they must utilize the underlying 

ASPIRE message layer to inter-communicate.  

What STAARS adds to the mix is the ability to 

graphically specify system behaviors and generate the 

products to implement those behaviors in the AMM 

architecture. The output of that process results in 

modules that are already compatible with AMM 

systems (by meeting the AMM message standard and 

ontology). One of the strong selling points for STAARS 

is the built-in feedback loop that allows the behavioral 

specifications to be validated (with ample visual 

presentation of the success or lack thereof). STAARS 

has a “native” state simulation capability, but it can be 

extended to use external simulation resources.  

The task that PnP Innovations undertook was to create a 

new “back end” plug-in for the JPL auto-coder that 

converted the auto-coder’s internal meta-model of 

states and state transitions into Drools rules. Actions 

within states (executed upon entry-to or exit-from that 

state) and the conditions that result in transitions 

between states are represented as rules that operate on 

Facts in the Drools Knowledge Base. Facts are either 

internal data items that manage the traversal of the 

statechart, or are bound to data that arrives or departs in 

ASPIRE messages. So two levels of auto-coder “back-



Center, Kenneth 6 28th Annual AIAA/USU 

  Conference on Small Satellites 

end” development were really required – the stamping 

of the rule patterns associated with statechart 

management, and the mapping of facts to AMM 

messages via the J-ASPIRE API. The result was a new 

back-end for the auto-coder that would translate UML 

diagrams with defined states and transitions into a Java 

module that could be dropped into an AMM system, 

locate messages that it needed to operate, and issue 

system control or produce event reports according to 

the statechart logic. 

Figure 8 shows the stack-up of layers utilized to realize 

statechart execution in an AMM compliant system. At 

the top is auto-coded Drools language that uses rules to 

control state actions and transitions. It sits atop an 

IntelligentAgent class that declares knowledge-base 

facts and maps them to ASPIRE messaging in the layer 

at the bottom via the Java-based J-ASPIRE API. 

Through the ASPIRE middleware, data is reached that 

can drive the transitions in the statecharts (telemetry 

points compared to threshold values or system events). 

Actions within states (or resulting during transitions) 

can also be mapped to control of system resources, or 

provide events that signal a planning activity.  

 

Figure 8: Stackup of a Drools Statechart and 

relation to AMM system data and services 

The result of our work was a completely functional 

capability to create a graphical UML statechart 

interactively (defining states, sub-states, entry/exit 

conditions, transitions, guards, orthogonal regions – all 

standard UML statechart constructs), and use property 

fields in the MagicDraw tool to bind certain statechart 

data items to ASPIRE messages (see Figure 9 for 

snapshot of MagicDraw User Interface). Messages 

available in the AMM architecture can be imported 

based upon their xTEDS, which includes metadata 

about the message delivery rate, its variables, and other 

relevant parameters. Once imported, messages can be 

identified as “provider” or “consumer” (from the 

perspective of the module implementing the statechart 

behaviors). Provider messages result in the assertion of 

the statechart’s ability to deliver those messages to a 

subscriber, while consumer messages result in the 

statechart issuing ASPIRE queries to locate suitable 

matches to messages it needs to operate.  

The nominal deployment process is to invoke the auto-

coder to process the file created by the MagicDraw tool 

once it has been saved. Doing so will parse the XML 

file to build a meta-model of the statechart that is 

language agnostic – then call the back-end plugin 

specified by the user to select the programming 

language to be used to generate code. In our case, this is 

Drools/J-ASPIRE. Output of the autocoder is then 

uploaded to the target execution platform (in our case a 

testbed, but in final form a satellite’s mission 

processor). Once the file transfer is complete, the Java 

Runtime Environment (JRE) is called with the files. 

The module joins the running system by registering its 

own messages, locating needed messages, and then 

beginning to apply its statechart-described behaviors. 

 

Figure 9: MagicDraw User Interface 

As part of the research, we were able to verify the 

ability to dynamically update a statechart. A typical 

modification might involve editing some aspect of the 

UML diagram, such as adding an additional state and 

“re-wiring” the state transitions to use it. Once 

complete, the revised diagram is pushed through the 

same process described above, but at the end, the 

original module is terminated and the new module is 

immediately started. The ASPIRE dynamic message 

binding features allow this to be accomplished 

seamlessly. We utilize data browsing tools that provide 

us visibility into telemetry from the statechart modules 

that allow us to verify that behaviors are being properly 

represented. As soon as the new statechart module is 

installed it can be verified that the “re-wired” behaviors 

have been incorporated. This cycle takes all of a few 

minutes to accomplish (based on the complexity of the 

statechart modification). 

APPLICATION USE CASES 

We created statecharts designed to represent behaviors 

at several levels of satellite systems and in one case a 

domain outside of space operations.  

One way to apply the charts is within an individual 

space asset (single satellite). To this end, we have 

implemented several examples.  

In one case, we created a statechart that subscribes 

telemetry data associated with the satellite power 



Center, Kenneth 7 28th Annual AIAA/USU 

  Conference on Small Satellites 

management system (battery charge level, voltage, 

current), as well as the interfaces to manage the attitude 

of the satellite and finally an agent arbitrator that 

ensures that satellite resources are not over-booked (to 

protect interfering with a higher-priority process that is 

utilizing attitude control, for example). The statechart 

monitors battery condition, checking for a variety of 

conditions that indicate the need for dedicated charging. 

If those conditions are satisfied, the statechart module 

interacts with the agent management function to 

schedule a slew to orient the solar panels to collect 

power. Considering eclipse conditions, the current rate 

of battery discharge, and other factors are all part of the 

logic that is described in the statechart. 

The AMM working group has worked extensively on 

systems of federated assets. Another statechart was 

intended to determine courses of action for conditions 

where another visiting satellite was detected in the 

vicinity of the satellite hosting the statechart (using a 

variety of sensing techniques). The state knowledge 

associated with the visiting satellite and the confidence 

in that state knowledge combined with other sources of 

data to determine courses of action. These actions could 

be to request observation of the visitor by other 

federated assets, to take a defensive posture to avoid 

being compromised, or to maneuver to maintain a 

minimum separation distance. The nice thing about 

representing these actions in statecharts is that once 

they are complete it is trivial to tweak parameters used 

in the state logic. Changing threshold values for a 

critical separation distance (as an example) and 

actuating the change is easily accomplished with the 

flexibility of the ASPIRE messaging framework (or 

with the UML statechart editor for more structural 

updates). 

These statecharts have broad utility and can be applied 

to many domains, not just space. We have used the 

same toolchain and ASPIRE middleware to assemble 

demonstrations of capability that apply to widely 

distributed data systems. One example was to 

orchestrate “checklist style” planning and cueing for 

courses of action (COA) for military operations (Figure 

10 shows this particular UML statechart diagram – it is 

representative of the appearance of a typical collection 

of states and transitions). It is possible to create 

ASPIRE modules that access remote web-based 

services to acquire relevant data used in the planning 

process (weather conditions, predictions of GPS 

accuracy, etc.).  

 

Figure 10: Sample UML Statechart defining courses 

of action based on external events and conditions 

This data is then used within time windows to 

determine possible courses of action using fall-through 

logic approaches until a mission can be satisfied. 

Essentially this is automating procedures that humans 

perform manually in today’s world. Applying these 

tools to capture the routine tasks (while leaving the real 

brainwork intensive logic functions to the specialists) 

has the potential to significantly streamline COA 

planning processes by automating a large portion of the 

activities in the procedure manual. 

RESULTS 

We tried an exercise at the conclusion of our statechart-

to-code technical development program to see just how 

much benefit this process capability could offer. 

Internally, several of our programmers have worked 

with ASPIRE for years, and regularly author code to 

implement state machine behavior in agents that 

manage one category of mission behavior for an 

operational satellite activity. The time to implement an 

agent for a new case (using state data, the attitude 

control subsystem, and onboard thrusters to maintain a 

user-defined orbit) was measured to be 43 hours (and 

that is the time required for a skilled programmer that 

knows exactly how to realize a desired set of 

capability). We used the statechart capture and auto-

coder to conduct the same activity. Granted, there is a 

learning curve associated with using the UML tool 

(something we plan to streamline for better productivity 

in future efforts), but once it is understood how to bind 

statechart constructs to ASPIRE messages and services, 

specification of behaviors happens very quickly. 

Capturing a basic agent comparable in complexity to 

the hand-coded implementation only took 4 hours… 

That is over a factor of 10 decrease in time-to-

implementation over the traditional approach, and the 

exercise can in practice be accomplished by a systems 

engineer or a specifically trained operator with no 

software programming experience! 



Center, Kenneth 8 28th Annual AIAA/USU 

  Conference on Small Satellites 

 

CONCLUSION 

The developed capability has shown great promise as a 

new approach to the development of mission-level 

flight software. The ability to capture a set of behaviors 

in an interactive tool and generate straight to code has 

the benefits of ensuring that the design remains 

consistent with the deployed implementation, since the 

code created is not generated by human programmers 

and thus subject to human errors. In addition to 

eliminating coding errors the implementation timeline 

shrinks to zero, so there are significant lifecycle 

development savings available. Furthermore, it opens 

the doors toward allowing non-programmers to capture 

and maintain mission-level behaviors of operational 

space platforms. This allows systems engineers and 

ground-ops personnel to be more tightly in the loop 

with satellite systems behavioral specification. 

ACKNOWLEDGEMENTS 

PnP Innovations is performing this research under the 

sponsorship of Paul Zetocha, Section Chief of the 

AFRL/RVSVC Space Vehicles Directorate at the Air 

Force Research Laboratory, Kirtland Air Force Base, 

Albuquerque, New Mexico. The associated SBIR is 

FA9453-13-M-0081, “Easy-to-Employ Satellite and 

Space System Robustness”.  

Many thanks to Garth Watney and Owen Cheng at 

NASA JPL for their support in acquiring the STAARS 

framework and assisting in getting up to speed on the 

auto-coder component. 

REFERENCES 

1. Center, K.B., Countney, P., Adams, R., Musliner, 

D.J., Pelican, M.J., Hamell, J., Kortenkamp, D., 

Hudson, M.B., Fausz, J.L., Zetocha, P., 

“Improving Decision Support Systems Through 

Development of a Modular Autonomy 

Architecture,” Proceedings of the 2012 I-

SAIRAS Conference, Turin, Italy, September 

2012.  

2. Mindock, J. and Watney, G., “Integrating System 

and Software Engineering Though Modeling,” 

IEEEAC Paper No. 1666, Version 4, October 

2007.  

 

  

 


