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Abstract

Computational Fluid Dynamics Validation of Buoyant Turbulent Flow Heat Transfer

by

Jared M. Iverson, Master of Science

Utah State University, 2013

Major Professor: Dr. Robert E. Spall
Department: Mechanical and Aerospace Engineering

Computational fluid dynamics (CFD) is commonly implemented in industry to perform

fluid-flow and heat-transfer analysis and design. Turbulence model studies in literature show

that fluid flows influenced by buoyancy still pose a significant challenge to modeling. The

Experimental Fluid Dynamics Laboratory at Utah State University constructed a rotatable

buoyancy wind tunnel to perform particle image velocimetry experiments for the validation

of CFD turbulence models pertaining to buoyant heat-transfer flows. This study validated

RANS turbulence models implemented within the general purpose CFD software STAR-

CCM+, including the k− ε models: realizable two-layer, standard two-layer, standard low-

Re, v2 − f , the k − ω models from Wilcox and Menter, and the Reynolds stress transport

and Spalart–Allmaras models. The turbulence models were validated against experimental

heat flux and velocity data in mixed and forced convection flows at mixed convection ratios

in the range of 0.1 ≤ Gr/Re2 ≤ 0.8. The k−ε standard low-Re turbulence model was found

most capable overall of predicting the fluid velocity and heat flux of the mixed convection

flows, while mixed results were obtained for forced convection.

(172 pages)
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Public Abstract

Computational Fluid Dynamics Validation of Buoyant Turbulent Flow Heat Transfer

by

Jared M. Iverson, Master of Science

Utah State University, 2013

Major Professor: Dr. Robert E. Spall
Department: Mechanical and Aerospace Engineering

Computational fluid dynamics (CFD) is commonly used to visualize and understand

complicated fluid flow and heat transfer in many industries. It is imperative to validate

the CFD computer models in order to avoid costly design choices where experimentation

cannot be used to ratify the predictions of computer models. Assessments of CFD computer

models in the literature conclude that significant errors occur in computer model predictions

of fluid flow influenced by buoyancy forces.

The Experimental Fluid Dynamics Laboratory at Utah State University constructed

a wind tunnel with which to perform experiments on buoyancy induced fluid flow. The

experiments measured the heat transfer and fluid velocity occurring in the buoyant flows to

be used to validate computer models. Additional experimental measurements at the inlet

and around the walls from each experiment allowed the computer models to simulate the

fluid flow with realistic boundary conditions.

For this study, four experiments were performed, including two cases where the buoy-

ancy influence was significant, and two where it was not. For each set of two cases, one

experiment was performed where the heat transfer occurred from a wall of the wind tunnel

held at constant temperature and in the other experiment the wall temperature fluctuated

axially.
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This study used the experimental data to validate computer models available in the

general purpose CFD software STAR-CCM+, including the k − ε models: realizable two-

layer, standard two-layer, standard low-Re, v2 − f , the k − ω models from Wilcox and

Menter, and the Reynolds stress transport and Spalart–Allmaras models. The k − ε stan-

dard low-Re model was found most capable overall of predicting the fluid flow and heat

transfer that occurred in the flows where the buoyancy influence was significant. For the

experimental cases where the buoyancy influence was less significant, the validation results

were inconsistent.
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Chapter 1

Introduction

Computational fluid dynamics or CFD is a numerical method to analyze and pre-

dict fluid flow. The mathematical equations used in CFD are based on scientific results

throughout the history. Foremost among all the scientific contributions to the CFD nu-

merical method are the Navier–Stokes equations, formulated by Claude Louis Marie Henry

Navier and George Gabriel Stokes. The Navier–Stokes equations provide a basis for all CFD

calculations by giving expressions for the conservation of mass, momentum and species [1,2].

The mathematical expressions are non-linear with regard to many fluid properties and flows;

therefore, solutions to the Navier-Stokes equations are predominantly obtained via numer-

ical solver, exceptions being flow situations in which many critical simplifications may be

applied. At the advent of the Navier–Stokes equations, solutions were obtained analytically

by making assumptions about the fluid flow in order to simplify the equations. Later, em-

pirical models obtained from theory or experimental data were solved on discrete meshes in

order to approximate the Navier–Stokes equations [2]. Many of the models are still in use

today and continue to be improved through further experimental validation. This study

seeks to validate CFD turbulence models by comparing simulated and experimentally mea-

sured heat flux and fluid velocity in order to assess the feasibility of using CFD as a method

of analysis in buoyant heat transfer flows.

Chapter 1 contains a literature review of research completed with regard to CFD model-

ing, including its current state-of-art and its connection to this study. Chapter 2 describes

the experimental setup and the experiments carried out by the Experimental Fluid Dy-

namics Laboratory for this study, including instrumentation and uncertainty. Chapter 3

provides details of the discretized meshes generated for the study and the simulation setup,

including physics models used, boundary conditions, initial conditions and convergence cri-
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teria. Chapter 4 describes the mean-comparison-validation method implemented in this

study. Chapter 5 contains results from the completed CFD simulations and validation as-

sessment, including local profiles of the heat flux and boundary layer velocity, calculated

modeling error and demonstrated grid convergence. Chapter 6 provides concluding remarks

drawn from the validation and simulation results.

1.1 Literature Background

Turbulent fluid flow modeling, irrespective of heat transfer complexities, is a daunting

task. In turbulent flow, as the Reynolds number (Re) increases eddies of varying size

and strength begin to form, particularly in flow regions adjacent to boundary walls or

opposing fluid. And to computationally capture the effect of every eddy in a flow using the

Reynolds-averaged Navier–Stokes equations would require a prohibitively large amount of

information [2]. Therefore, models of turbulent flow are either based on a time average,

which calculates a solution from the mean flow neglecting the instantaneous fluctuations,

or empirical relations obtained from experimentation. The turbulence models that have

been produced have been validated against many experimental data sets and continue to

be revised and improved.

So et al. [3] added a damping function to the k−ε model in order to accurately predict

free and wall bounded shear flows. It was found that the added damping function gave

solutions with good correlation to experimental and direct numerical simulation data for

all of the cases observed. Furthermore, Sarkar and So [4] performed a critical evaluation of

near-wall two-equation models in which ten different models, including k−τ , k−ω and k−ε,

were assessed against experimental and direct numerical simulation data for plane Couette,

channel, and flat-plate boundary-layer flows. The flows observed were chosen because the

spatial distribution of the turbulent kinetic energy predicted by two-equation models has

been incorrect. The study showed that models that are asymptotically consistent can predict

the distribution of the turbulent kinetic energy.

The significance of predicting turbulent fluid flow accurately is compounded by the

addition of heat transfer because it causes an interdependence of the temperature and ve-
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locity fields through buoyancy. Therefore, it is recommended that the energy solver order of

accuracy be less than or equal to that of the momentum solver [5] because the temperature

solution can only be as accurate as that of the velocity. However, if the buoyancy terms

in the governing momentum equations are neglected then the velocity field can be calcu-

lated without regard to the temperature and the two can be solved independently. This

modeling simplification was utilized by many of the early turbulence models to avoid the

interdependence of the governing equations.

In addition to the interdependence created by buoyancy, the heat transfer in the flow

occurs primarily in the boundary layer, depending on Re and Prandtl (Pr) numbers [6].

This restriction focuses heat transfer modeling on the near-wall fluid flow. Many methods

are available to solve the near-wall flow, but the most prevalent are wall functions and

low-Reynolds number methods. Wall functions are empirically derived relations for the

flow adjacent to the wall, consisting of the viscous sub-layer and fully turbulent regions.

Conversely, low-Reynolds number methods integrate the k and ε equations to the wall [7].

Both methods have been shown to be reliable approaches to solving wall bounded flows.

Kader and Yaglom [8] explored the wall function method by obtaining function pa-

rameters from experimental data and then comparing the model against the data. Good

correlation of the Nusselt number (Nu)was observed for turbulent heat-transfer flows in

pipes, channels, and boundary layers. Kader performed another study on “Temperature

and Concentration Profiles in Fully Turbulent Boundary Layers” [9]. This additional study

bolstered the findings of the first, in that good correlation was again observed between pre-

dicted and experimental temperature distributions. However, despite the positive results of

these wall function studies, the function parameters obtained may only be compatible for

the specific cases studied. This concern seems ratified by “The Numerical Computation of

Turbulent Flow” study of Launder and Spalding [10] whose intent was to find a universal

solver capable of providing credible solutions to a large variety of flow types. The wall

function method was merited for its ability to economize computer time and storage as well

as to introduce empirical information to the solution in specific cases. Nevertheless, turbu-
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lent flow studies peformed by Launder and Spalding showed that the two-equation k − ε

model coupled with the low-Re near-wall method provided a better universal applicability

and realism than the wall-function method. Additional studies show that good heat-transfer

correlations can also be found using Spalart–Allmaras, k−ω, and Reynolds-stress-transport

models [11,12].

The discrepancies in the above mentioned heat-transfer correlation studies may be due

to neglecting the effects of buoyancy. Buoyancy affects fluid flow in several critical ways,

including: modification of the shear distribution, interaction with the turbulence generat-

ing mechanisms, anisotropic effects on the velocity fluctuations, laminarization, counter-

gradient fluxes, and the formation of gravity waves [5, 13–18]. Petukhov and Polyakov [19]

summarize the effects of buoyancy as the structural and external effects, referring to the

direct influence of buoyancy on the turbulence field and on the mean field, respectively. For

horizontal flows only the structural effect is present, evidenced by the vertical stratification

of the flow. In contrast, both the structural and external effects are present in a vertical

flow. Because the two effects commonly act in opposing directions, turbulent buoyancy

flows are governed by a complicated interaction of the effects.

An early buoyant heat-transfer study by Malhotra and Hauptmann [13] recognized

impaired heat-transfer predictions because of the complicated buoyancy effects. The im-

pairment was attributed to the modified shear distribution and turbulence generating mech-

anisms. Later, recognizing the known buoyant flow effects, Sommer and So [20] modified a

Reynolds-stress model to be asymptotically consistent in the near-wall region, to relax the

constant turbulent Prandtl number (Prt) assumption, and to account for counter-gradient

transport. In heated horizontal and vertical flows, the modified model presented solutions

in agreement with experimental data. This promising result for buoyant heat transfer flow

modeling is distorted however by findings of recent turbulence model studies. Spall et al. [21]

studied variable property flows in strongly heated vertical pipes and found the v2−f model

capable of predicting wall temperatures within engineering accuracy. Also, contrary to

expectations from the findings of Thomas et al. [12], the k−ω model significantly over pre-
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dicted heat transfer rates for the range of Re tested. He et al. [22] assessed the performance

of a diverse group of turbulence models in predicting supercritical pressure heat transfer in

vertical flows. Consistent with the findings of Spall et al., the assessment found that the

v2 − f model gave the best results. Conversely, an earlier turbulence model assessment for

mixed convection flows by Kim et al. [23] found that early k − ε models predict the effects

of buoyancy best; although, the canceling of inaccurate expressions in the models was the

reason for their superior performance. The disagreement between the results of these stud-

ies implies that the complicated interaction of the structural and external buoyancy effects

remains a serious challenge to buoyant turbulent flow modeling.

Petukhov [24] concluded that in order to make progress in modeling buoyant turbulent

flow heat transfer further experimentation of stratified flows was required. Areas of concern

consisting of velocity and temperature fields, turbulent stresses, turbulent heat fluxes, and

correlation functions. Launder [15] further concluded that development of accurate stress

models must precede those for buoyant heat transfer; on the basis that turbulent stresses

are an important input to the heat flux equations, both directly and through their influence

on the mean velocity field. The turbulence models currently available have accounted for

many of these concerns; however, study results show that turbulence recovery is lacking [23],

viscous corrections are required in order to be accurate [25], and that no models reproduce

the buoyancy turbulence production of kinetic energy accurately [22].

Recognizing the turbulence model limitations regarding buoyant flows, this validation

study seeks to contribute insight into the use of CFD to predict heat transfer in turbulent

fluid flow where buoyancy is significant. Special interest will be given to specifying which

turbulence model provides the most accurate predictions of heat transfer, because studies

in the literature give conflicting conclusions [22,23].
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Chapter 2

Experimental Setup

Fig. 2.1: Rotatable Buoyancy Wind Tunnel (RoBuT)

Utah State Universitys Experimental Fluid Dynamics Laboratory (EFDL) contracted

Engineering Laboratory Design, Inc. to construct the Rotatable Buoyancy Wind Tunnel

(RoBuT) to perform benchmark CFD validation experiments of buoyant flows. The wind

tunnel is built into a rotational frame to enable both buoyancy-aided and buoyancy-opposed

mixed/forced convection experiments using the same inlet in all cases. The RoBuT is shown

in Fig. 2.1 and includes a sub-figure of the tunnel inlet showing the global coordinate system

used in this study. A schematic of the RoBuT layout is shown in Fig. 2.2 with the air flow

indicated in green.

The test section of the RpBuT is a square 30.5 × 30.5 cm cross-section that is 192.3

cm long. The test section includes three clear polycarbonate (Lexan) walls and a composite

nickel-coated aluminum plate embedded with heaters, hereafter referred to as the heated
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plate or wall; all four of the walls are embedded with instrumentation.

Fig. 2.2: Schematic of the RoBuT. The dashed green line indicates the direction of air flow
through the wind tunnel. Used with permission from Engineering Laboratory Design, Inc.
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The embedded instrumentation includes that required for temperature measurements

of the inlet flow and the test section walls as well as heat flux measurements at three

locations along the centerline of the heated wall: x = 16, 77 and 139 cm hereafter referred

to as the first, second and third HFS respectively. The RoBuT is also instrumented to

enable PIV evaluation of the flow velocity at the inlet plane and across the near-wall flow

region. Collectively, the data obtained from the instrumentation fully defines the CFD

simulation boundary conditions, specifying the energy and momentum introduced into the

system, and the system response quantities (SRQ) of interest at the three HFS locations

for the turbulence model validations.

In addition to the RoBuT instrumentation, the EFDL researchers obtained six cross-

sectional measurements of the RoBuT test section at seven axial locations in order to

reconstruct the test section geometry for the CFD simulations. As shown in Fig. 2.3, the

measurements include the height at the center, left and right walls and the width at the

middle, bottom and top walls as viewed from the test section inlet were the heated wall is the

bottom. For further details concerning the RoBuT experimental setup and instrumentation

the reader is directed to reference [26] and [27].

2.1 Instrumentation Uncertainty

The following subsections give a brief description of the sensor and PIV instrumentation

used in the RoBuT experiments and their respective uncertainties.

2.1.1 Thermocouples

The thermocouples used for the temperature measurements described above are type

K and made by Omega Engineering. They were calibrated using an IsoTech Fast-Cal series

temperature calibrator with an accuracy of 0.3 ◦C within a temperature range of 20−200◦C.

The overall uncertainty of the temperature measurements is 1 ◦C, mainly due to the data

acquisition system.



9

Fig. 2.3: Placement of cross-sectional as-built dimension measurements.

2.1.2 Heat Flux Sensors

The three thin film heat flux sensors are Model 20457-3 made by RDF Corporation.

They were calibrated by the manufacturer and have an uncertainty of 2% of the reading

(EFDL assumes this uncertainty to be at 95% confidence).

2.1.3 Particle Image Velocimetry System

The PIV system from LaVision, Inc. includes an Nd-YAG double pulse laser producing

532 nm wavelength light and a 12-bit CCD camera with 1376 X 1040 resolution and frame

rate of 4 Hz. In conjunction with the system hardware, DaVis version 8.1.6 was used to

process the images acquired with a multi-pass cross-correlation algorithm. The uncertainty

of the PIV velocity measurements was assessed with respect to particle image diameter,

particle shift, particle density, and fluid shear using an automatic uncertainty estimator for

PIV developed at the EFDL [28]. Because the uncertainty calculation is dependent on the

PIV algorithm used, a wide range of user inputs, flow characteristics and the experimental

setup which vary in time and space, they lead to non-uniform uncertainty throughout the

flow field. Recognizing this limitation the 95% uncertainty for the flows in this study varied
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between 45% in the boundary layer and 0.5% in the freestream; in general, the uncertainty

was less than 1%.

2.2 Validation Cases

This turbulence model validation study consists of four quasi-steady cases, including

two cases from both the mixed and forced convection heat-transfer regimes. The RoBuT was

designed exclusively for experiments with an isothermal temperature condition at the heated

plate boundary. As will be illustrated later, an ideal isothermal boundary condition was

not achieved across the heated plate of the RoBuT test section due to the limitations of the

design and instrumentation; cases M1 and F1 represent mixed and forced convection flows

over the non-ideal isothermal plate. During experimentation one of the heaters embedded

in the heated plate failed, which lead to the thermal boundary conditions of the heated

plate in the mixed and forced convection flows of cases M2 and F2.

The four validation cases included in this study were included for two reasons: first,

validation of both mixed and forced convection cases enables the validation study to inves-

tigate whether a turbulence model gives consistent results in differing heat transfer regimes;

and second, while maintaining flow speeds between the mixed and forced cases, the differ-

ing thermal state of the heated plate enables the turbulence models to be validated under

thermal conditions of varying difficulty.

Mixed convection is a flow regime where both natural and forced convection contribute

to the physics of the fluid flow and occurs when the mixed convection ratio, Gr/Re2, satisfies

0.3 ≤ Gr/Re2 ≤ 10 [29]. The Grashof number is defined as Gr = gβ(Ts−T∞)x3/ν2, where

g is the acceleration of gravity, β is the fluid thermal coefficient of expansion, Ts and T∞ are

the surface and freestream fluid temperatures respectively, and x is the axial distance from

the leading edge of the RoBuT test section. The Reynolds number is defined as Re = ux/ν,

where u is the freestream fluid velocity.

For all four cases, the plate was stabilized at 150◦C and the flow velocity was chosen to

obtain desirable mixed convection ratios. For forced convection, the ratio was set to obtain

Gr/Re2 = 0.03 at the first HFS in order to facilitate negligible natural convection/buoyancy
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influence from the heated wall, resulting in a nominal bulk velocity of ∼ 4.65 m/s. As shown

in Table 2.1, the desired conditions were closely duplicated in the F1 and F2 experiments,

resulting in ratios near 0.3 and the onset of mixed convection at the third HFS. For mixed

convection, the flow speed was reduced to ∼ 2.5 m/s, while maintaining turbulence in the

boundary layer this speed enabled mixed convection to occur at the second and third HFS

locations. The Reynolds, Grashof, and mixed convection ratios achieved in each experiment

at the three HFS locations are tabulated in Table 2.1.

Table 2.1: Reynolds, Grashof and mixed convection ratio for each validation case and HFS
location. Note that Gr is not a function of the freestream velocity.

Case Location Re Gr Gr/Re2

M
1

HFS 1 21600 3.67E+7 0.079

HFS 2 109000 5.13E+9 0.433

HFS 3 201000 2.99E+10 0.736

M
2

HFS 1 24600 4.93E+7 0.082

HFS 2 112000 5.61E+9 0.448

HFS 3 217000 3.22E+10 0.686

F
1

HFS 1 36900 3.32E+7 0.024

HFS 2 174000 5.10E+9 0.168

HFS 3 314000 2.99E+10 0.302

F
2

HFS 1 42300 4.82E+7 0.027

HFS 2 183000 4.11E+9 0.123

HFS 3 338000 3.16E+10 0.276

The SRQs used for validation of the CFD turbulence models in the described experi-

ments are the heat flux and the streamwise fluid velocity across the near region at each of

the three HFS locations. In each validation case, the CFD solution variables corresponding

to the SRQ data are compared to evaluate the modeling error. Note that for the M2 and F2

cases the heat flux at the second HFS is not used for validation, because the failed heater

allows conduction of heat in the plate across that region and therefore, measurements of
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the heat flux are inaccurate.

All of the boundary conditions, SRQs, and experimental error data for the described

validation cases were obtained from the EFDL researchers on the RoBuT project. The data

are available to the public at http://efdl.neng.usu.edu/EFDL/EFDL_Home.html.

http://efdl.neng.usu.edu/EFDL/EFDL_Home.html
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Chapter 3

CFD Setup

Using the general purpose CFD software STAR-CCM+1, the previously described ex-

periments were modeled in order to validate and assess the different turbulence models’

ability to predict heat transfer in buoyant, turbulent flow. The approach to simulating the

experiments consisted of: reconstruction of the RoBuT using as-built measurements into a

discretized mesh domain, applying physics models to the simulation, placing appropriate

boundary and initial conditions to reproduce the experimental environment, and ensuring

iterative and grid convergence. Each validation case was simulated with eleven different

turbulence models and solved over three consecutively coarser meshes to investigate grid

convergence; the turbulence models included in the study represent a diverse variety of

turbulence solver methods, including those indicated by the literature that may give the

best results.

3.1 Meshing

In order to numerically solve the governing momentum, energy and turbulence equa-

tions for CFD simulations, it is necessary to discretized or partition a normally continuous

region into distinct volumetric cells. All of the volumetric cells collectively make up the

simulation’s computational domain. In this study the computational domain represents

the experimental flow field inside the experimental RoBuT test section. By solving the

governing equations, the simulation will attempt to predict the fluid variables existent at

each distinct volumetric cell in the domain, such as velocity, pressure, temperature, turbu-

lent kinetic energy, etc., which will then be used to validate the turbulence models against

the corresponding fluid properties measured experimentally. Because the fluid variables

computed by each model simulation are directly dependent on the discretized mesh, the

1STAR-CCM+ version 8.04 is a widely verified CFD software package distributed by CD-ADAPCO
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distribution and refinement of the discretized cells is fundamental to a simulation’s ability

to accurately predict the physics and fluid flow occurring within the computational domain.

Given the turbulent flow heat transfer physics occurring in the validation cases, specific

attributes were imposed on the discretized cell distribution and refinement in order to

promote accurate calculation of the physics. The following points outline the attributes

imposed on the mesh cell distribution and detail the reason for their application:

Duplication of the as-built experimental RoBuT test section in the computa-

tional domain

A validation study seeks to determine the degree to which a given physics model ac-

curately duplicates reality [30]. In order for a computer physics model to duplicate an

experiment, the computational domain of the model must also duplicate the experimental

boundaries. Therefore, to enable the duplication of the experimental RoBuT test section

in the computational domain the RoBuT research group obtained measurements of the

RpBuT test section after it was constructed. The measurements were obtained on seven

cross-sectional planes along the test section with six dimension measurements per plane,

see Fig. 2.3. The following figure shows the location of the seven measurement planes.

Fig. 3.1: As-built dimension measurement planes relative to the leading edge of the test
section (dashed vertical line on left side). All of the measurements are in cm.
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Refinement of the near-wall mesh to obtain y+ u 1 in the cell layer adjacent to

the wall boundaries

In the validation cases, the heat transfer between the heated plate and the turbulent

air flow results in a complex interaction of the fluid flow, wall shear stress and variable fluid

properties due to temperature dependencies. To capture the effects of heat transfer, the

simulation discretized cell distribution in the near-wall region must be refined.

y+ =
yUτ
ν

=
y
√
τs/ρ

ν
(3.1)

Because wall y+ is dependent on the fluid viscosity (ν), density (ρ) and the wall shear

stress (τs), fluid properties that indirectly account for the heat transfer through their tem-

perature dependence, refining the mesh so that the first cell layer adjacent to the wall gives

y+ u 1 provides a cell distribution capable of capturing the heat transfer effects in the

viscous sub-layer and fully turbulent region of the turbulent boundary layer. Additionally,

this cell distribution is required by STAR-CCM+ in order for the governing turbulence

model equations to be integrated to the wall rather than resorting to empirically derived

wall functions.

Minimal cell skewness

The cell skewness angle is a measure designed to assess a specific cell’s ability to permit

diffusion without becoming unbounded [31]. Consider the two cells with a shared face shown

in Fig. 3.2. The skewness angle (θ) is the angle between the face normal vector (a) and the

vector connecting the two cell centroids (ds). An angle of zero indicates that the two cells

are orthogonal to each other and thus calculations will not be impaired. Solver convergence

is impaired if the cell skewness angle is greater than 90◦; STAR-CCM+ recommends limiting

the angle to < 85◦.
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Fig. 3.2: Depiction of the cell skewness angle, θ

A FORTRAN code was written to generate a hyperbolically clustered hexahedral cell

mesh from the as-built measurements. The hyperbolic clustering equations, discussed in

Section 3.1.2, enabled the near-wall cell distribution refinement discussed above and the

hexahedral cell type created inherently minimized the cell skewness angle as it partitioned

the computational domain of the RoBuT test section. Furthermore, the hexahedral cell type

lent itself to enhancing the numerical calculation of the flow throughout the test section,

because the resulting flow generally aligned with the mesh discretization.

The following sections describe the assumptions made to utilize the as-built measure-

ments in the creation of the computational domain and the methods implemented in the

mesh generation code. The resulting discretized meshes used in the validation study are

also visualized and the grid convergence index (GCI) method is explained.

3.1.1 As-Built Geometry

In order to validate the turbulence models against the experimental data from the

RoBuT the simulation boundary conditions and geometry must duplicate those present in

the wind tunnel. The boundary conditions are readily available from the RoBuT instru-

mentation. The simulation geometry however requires modeling of the RoBuT test section

from the cross-sectional dimensions.
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The cross-sectional, as-built dimensions were obtained at room temperature by metic-

ulous placement of a micrometer into the test section and measuring the dimensions desired

at the locations of interest. Despite the precise measurements obtained from the micrometer

however, the measurements obtained do not have a point of reference, meaning that each

measurement is independent and without any means to correlate its position and orienta-

tion with the other measurements taken. The lack of a reference point prohibits precise

reconstruction or modeling of the test section. Therefore, in order to model the RoBuT test

section geometry, assumptions were made about the geometry itself to allow its modeling

from the as-built dimensions. Collaboration with the EFDL researchers led to the following

seven assumptions which were used to model the simulation geometry:

1. The heated wall is perfectly flat, void of curvature

2. The centerline of the heated wall is straight

3. The center height dimension is measured along the centerline of the heated wall and

is orthogonal to the wall

4. The midpoint of the middle and top width dimensions are aligned with the center

height dimension

5. The midpoint of the middle width dimension coincides with the midpoint of the center

height dimension

6. The middle width and center height dimensions are orthogonal

7. The left, right and top dimensions are from vertex to vertex

It is recognized that the simulation geometry will not exactly duplicate that of the

experimental setup as desired because the cross-sectional dimensions lack a reference point

and the heated wall cannot be perfectly flat, as assumed above. Furthermore, due to ther-

mal expansion of the heated plate during while at operating temperature, ∼ 150◦C, it must

also be recognized that the as-built measurements may not conform with the dimensions of
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the RoBuT test section during operation. It is reasonable that unrealized thermal expan-

sion effects, curvature or flaws in the simulation geometry will have an effect on pressure

gradient calculations, convective accelerations or other flow properties in the CFD solution;

however, the influence of these defects is assumed to be negligible relative to truncation and

turbulence modeling errors.

3.1.2 Mesh Generation Code

Hyperbolic clustering is a grid generation method that distributes a specified number of

points on a linear line between two predetermined points in space, as shown in Fig. 3.3. The

point distribution is governed by a hyperbolic equation dependent on the predetermined

extremum, containing parameters to control how clustered the points on the line are, ζ, and

where they are clustered, σ. Two clustering distributions, one-sided and two-sided, were

implemented in the mesh generation code written to read in the as-built dimensions and

create the computational domain, defined as

xi = H
(ζ + 1)− (ζ − 1)[(ζ + 1)/(ζ − 1)]1−ηi

[(ζ + 1)/(ζ − 1)]1−ηi + 1
(3.2)

xi = H
(2σ + ζ)[(ζ + 1)/(ζ − 1)](ηi−σ)/(1−σ) + 2σ − ζ

(2σ + 1){1 + [(ζ + 1)/(ζ − 1)](ηi−σ)/(1−σ)}
(3.3)

where H is the distance between the two extremum. ηi is a value between 0 and 1 cor-

responding to the location of xi between 0 and H, recognizing that there is a uniform dη

between 0 and 1 and dx is not uniform but varies hyperbolically.

Fig. 3.3: Hyperbolic clustering of points between two predetermined points
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Eq. 3.2 provides the one-sided distributions shown in Fig. 3.4, it is specifically formu-

lated to cluster the interior points near y = 0, thus the absence of σ in the equation. For

the two-sided distributions shown in Fig. 3.5, σ in Eq. 3.3 is set to 1/2 so that the interior

points are equally clustered at the extremum. The clustering parameter, ζ, ranges from 1

to ∞ in both equations; as illustrated in Figs. 3.4 and 3.5, as ζ approaches 1 the point

distribution becomes more finely clustered.

(a) ζ = 1.05 (b) ζ = 1.2

Fig. 3.4: Grid generated by the one-sided transformation function in Eq. 3.2.

(a) ζ = 1.05 (b) ζ = 1.2

Fig. 3.5: Grid generated by the two-sided transformation function in Eq. 3.3.

One-sided clustering was implemented axially down the test section computational

domain, along the X axis, to aid in resolving the fluid flow as it develops along the test

section and two sided clustering was implemented along each of the test section walls, in
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the Y and Z axis, in order to resolve the turbulent boundary layer flow. As shown in Fig.

2.1, the coordinate axis are defined with the Y-Z axes plane coincident with the test section

inlet plane with the Y axis normal to the heated wall and the X axis is directed axially

down the centerline of the heated wall; thus, the coordinate axes origin is located on the

heated wall centerline at the intersection of the inlet and heated wall planes.

The extremum for the hyperbolic clustering equations were obtained from the test

section boundaries, which were modeled using the assumptions discussed previously in con-

junction with polynomial splines dependent on the as-built dimensions. The implemented

spline methods were the cubic and Lagrange interpolating polynomial methods defined in

Numerical Methods for Engineers [32]. Cubic splines were used to capture the axial varia-

tions in a given dimension at nine locations around the unheated walls of the test section

and Lagrange polynomials were used to capture the variation between dimensions on a given

as-built measurement plane.

Fig. 3.6: Curves defined by spline methods. Cubic splines are shown in blue and Lagrange
polynomials in red.

Fig. 3.6 illustrates the location of the nine cubic splines in the computational domain.

Each of the splines is a piecewise continuous function consisting of six two-dimensional cubic

polynomials, one for each interval of the test section outlined by the as-built measurement
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planes. The cubic equation for each interval is of the form

fi(x) =
f”
i (xi−1)

6(xi − xi−1)
(xi − x)3 +

f”
i (xi)

6(xi − xi−1)
(x− xi−1)3

+ [
f(xi−1)

xi − xi−1
− f”(xi−1)(xi − xi−1)

6
](xi − x)

+ [
f(xi)

xi − xi−1
− f”(xi)(xi − xi−1)

6
](x− xi−1) (3.4)

were the unknown second derivatives are solved with

(xi − xi−1)f”(xi−1) + 2(xi+1 − xi−1)f”(xi) + (xi+1 − xi)f”(xi+1)

=
6

(xi+1 − xi)
[f(xi+1)− f(xi)] +

6

(xi − xi−1)
[f(xi−1)− f(xi)]. (3.5)

Using the axial location of each measurement plane as the dependent variable and the as-

built dimension value as the independent variable, Eq. 3.4 and 3.5 were evaluated to obtain

the six polynomials for each cubic spline.

The above equations for this method were derived under the following constraints:

1. The function values are equal at the interior piecewise function transitions or knots

2. The first and last functions pass through the end points

3. The first derivatives at the interior knots are equal

4. The second derivatives at the interior knots are equal

5. The second derivatives at the end knots are zero

These constraints enable the resulting splines to include all of the as-built dimension

data and have smooth second order continuous interval transitions, attributes desired in

the duplication of the experimental RoBuT test section to the simulations computational

domain.

Fig. 3.6 also illustrates the general curves in the computational domain computed

with the Lagrange interpolating polynomial method; this method was chosen to compute
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these curves because it produced a smooth arc from the 3 known points on each curve, see

Fig. 2.3, rather than the cubic spline method which produced unrealistic sinusoidal curves.

In addition to producing a smooth arc, the Lagrange method exhibits the same beneficial

attributes noted for the cubic spline method.

The Lagrange interpolating polynomial is defined by

fn(x) =
m∑
i=0

Li(x)f(xi) (3.6)

where

Li(x) =

m∏
j=0
j 6=i

x− xj
xi − xj

(3.7)

where m is the order of the polynomial passing exactly through the m + 1 known data

points and
∏

means the product of. Thus, the polynomial for each red curve in Fig. 3.6 is

of the form

f(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2). (3.8)

The resulting discretized mesh created by the mesh generation code from the modeled

test section boundaries consists of hexahedral cells clustered in the near-wall region and

aligned axially with the test section and thus the fluid flow. To provide further control over

the near-wall mesh clustering with respect to wall y+ and to facilitate ease of implementing

grid refinement ratios for the grid convergence study, the ability to specify constraints on

the first cell layer thickness, surface growth rate, and maximum cell size was added to the

code.

The mesh generation code accepts each of the additional constraints for the mesh from

the user at runtime. The first cell layer thicknesses specified for the walls are then subtracted

from H in Eqs. 3.2 and 3.3. The code then iterates on the number of points, dη, and the ζ

parameter of the hyperbolic equations with the reduced H until the maximum cell size and
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surface growth rate constraints are satisfied. Each of the additional parameter constraints

is described below and the FORTRAN code with the as-built measurement files may be

viewed in Appendix G.

3.1.2.1 Maximum Cell Size

The maximum cell size parameter, MCS, sets the maximum length that a hexahedral

cell may be in any coordinate axis, see Fig. 3.7. This ability enables simple specification

of grid refinement ratios for the grid convergence study and it also defines how coarse the

mesh is in the freestream region of the flow.

Fig. 3.7: Discretized cell exhibiting the maximum cell size (MCS) permitted.

3.1.2.2 First Cell Layer Thickness

The first wall cell layer thickness parameter, t, sets the thickness of the layer of cells

that is immediately next to a wall boundary, as shown in Fig. 3.8. This ability streamlines

the mesh generation process because the mesh can be more easily and directly refined to

provide a mesh that gives y+ ≈ 1 in the first cell layer. The mesh generation code allows

specification of this parameter for the heated wall, side walls, top wall and the inlet of the

test section geometry. The inlet specification is not specified for y+ reasons, but rather to

aid the simulation in resolving the inlet flow as it develops from the contraction preceding

the test section.
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Fig. 3.8: Illustration of the first wall cell layer thickness (t) and surface growth rate (SGR)
parameters.

3.1.2.3 Surface Growth Rate

The surface growth rate parameter, SGR, specifies the ratio of the second to the first

wall cell layer thickness, shown in Fig. 3.8. This parameter was required in the mesh

generation code to enable a smooth transition from the specified first cell layer thickness to

the hyperbolic distribution of interior points.

3.1.3 Discretized Mesh

A set of three consecutively refined discretized meshes were created for each validation

case. Tables 3.1 and 3.2, contain the meshing parameters and hyperbolic clustering/place-

ment parameters used to generate the discretized meshes as well as parameters characteristic

of generated mesh: cell count and maximum skewness angle. The columns 1, 2 and 3 shown

in the tables correspond to the first, second and third level of mesh refinement in the set of

meshes for each validation case, 3 representing the coarsest mesh and 1 the most refined.

Because the MCS parameters used to generate each set of discretized meshes were

the same, the set of meshes for each validation case are generally similar. The difference

between each set lies in the near-wall cell distribution, which was tailored to give y+ u 1

in the first cell adjacent to the wall. The tailoring of each set of meshes was achieved by

iteratively creating a mesh and running a CFD simulation to check the wall y+. Due to the

similarity between the sets of meshes, only an exemplary mesh is illustrated here.
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Table 3.1: Parameters used in generating the discretized meshes for the M1 and F1 valida-
tion cases and characteristic parameters of the resulting meshes. Note: A, HP, TW, and
SW, respectively, denote axial, heated plate, top wall, and side walls.

M1 F1

Parameter 1 2 3 1 2 3

SGR 1.05 1.05

tA (m) 0.0025 0.0025

tHP (m) 0.0003 0.0002

tTW (m) 0.000235 0.00015

tSW (m) 0.000235 0.00015

MCS (m) 0.0035 0.005 0.007 0.0035 0.005 0.007

ζA 2.00068 1.45109 1.26534 2.00068 1.45109 1.26534

ζHP 1.05141 1.03469 1.02374 1.03349 1.02282 1.01582

ζTW 1.03661 1.02500 1.01725 1.02284 1.01572 1.01098

ζSW 1.03656 1.02496 1.01745 1.02281 1.01570 1.01096

σ 1/2 1/2

# Cells 20482880 9290400 4333500 24686420 11095866 5133375

Max Skewness Angle 4.023◦ 5.277◦ 6.853◦ 5.741◦ 7.563◦ 9.862◦

Table 3.2: Parameters used in generating the discretized meshes for the M2 and F2 valida-
tion cases and characteristic parameters of the resulting meshes. Note: A, HP, TW, and
SW, respectively denote axial, heated plate, top wall, and side walls.

M2 F2

Parameter 1 2 3 1 2 3

SGR 1.05 1.05

tA (m) 0.0025 0.0025

tHP (m) 0.0003 0.0002

tTW (m) 0.000225 0.000125

tSW (m) 0.000225 0.000125

MCS (m) 0.0035 0.005 0.007 0.0035 0.005 0.007

ζA 2.00362 1.45186 1.26426 2.00362 1.45186 1.26426

ζHP 1.05197 1.03488 1.02425 1.03518 1.02394 1.01649

ζTW 1.03487 1.02373 1.01665 1.01889 1.01306 1.00910

ζSW 1.03489 1.02374 1.01666 1.01890 1.01295 1.00910

σ 1/2 1/2

# Cells 20930580 9423594 4443494 26680500 11907828 5475734

Max Skewness Angle 9.007◦ 11.794◦ 15.112◦ 14.241◦ 18.688◦ 24.047◦
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Figs. 3.9–3.11 show the cross-sectional cell distribution for each level of mesh refinement

with a close up view of the near-wall refinement.

Fig. 3.9: Cross-section of the discretized mesh with first level refinement. The near-wall
corner refinement inside the designated white area is shown on the right.

Fig. 3.10: Cross-section of the discretized mesh with second level refinement. The near-wall
corner refinement inside the designated white area is shown on the right.
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Fig. 3.11: Cross-section of the discretized mesh with third level refinement. The near-wall
corner refinement inside the designated white area is shown on the right.

Fig. 3.12 illustrates the characteristics attributed to every mesh used in this study:

a uniform cross-sectional cell distribution throughout the computational domain and a

gradual coarsening of the mesh in the axial direction from the inlet to the outlet.

Fig. 3.12: Illustration of the coarsest discretized mesh, showing the mesh distribution on
cross-sectional planes at each heat flux sensor location as well as the vertical centerline
plane.
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Table 3.3: Average y+ value from the three heat flux sensor locations for each validation
case.

Average First Cell y+ Value

Turbulence Model1 M1 F1 M2 F2

R2L 0.93 0.95 0.98 1.00

S2L 0.92 0.91 0.99 1.00

SLR 0.82 0.82 0.87 0.88

V2F 0.89 0.95 0.93 1.00

k − ω 0.90 0.94 0.96 1.00

SST 0.87 0.89 0.91 0.99

RST 0.95 0.98 0.98 1.03

SA 0.85 0.93 0.92 1.03

R2LB 1.34 1.37 1.41 1.43

S2LB 1.22 1.18 1.31 1.30

RSTB 1.47 1.51 1.53 1.58

1 The turbulence model acronyms are defined in Section 3.2.7.

This distribution of cells in the computational domain met all of the cell refinement

and cell skewness attributes desired for this validation study, discussed in section 3.1. As

depicted in the above figures, the computational domain is partitioned smoothly, with

refinement on the walls to resolve the viscous sub-layer and regular cells in the freestream

region, which minimized cell skewness. Tables 3.1 and 3.2 show that the maximum cell

skewness angle for all of the meshes used is well below the STAR-CCM+ recommended

85◦. Also, Table 3.3 shows that the near-wall refinement for each validation case met the

desired y+ u 1 by each turbulence model validated.

3.1.4 Grid Refinement

A vital part of CFD as a numerical method is estimating the discretization error or

numerical uncertainty in the solution. As explained previous, a discretized mesh allows for

numerical simulations to predict physics in reality by discretizing or partitioning a normally

continuous region into volumetric cells. A single cell however cannot account for all the

physics occurring in the corresponding continuous region in reality; thus, a discretized mesh
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inherently contains errors. To investigate this error, a grid refinement and/or coarsening

of the discretized computational domain is carried out in order to analyze the solution

behavior as the mesh resolution changes. Each turbulence model in this validation study

was solved over three consecutively refined meshes, see Figs. 3.9–3.11, and the resulting

solutions were compared using the grid convergence index (GCI) method to evaluate the

discretization error.

The GCI method is the recommended method by the American Society of Mechanical

Engineers (ASME) for estimation of discretization error, which is based on the Richardson

Extrapolation method. The GCI method is outlined in the following section, with the

results presented in Chapter 5.

GCI Method

The GCI method consists of five steps, resulting in an extrapolated value for a given

variable (φ) to an infinitely fine mesh as well as an estimation of the numerical uncertainty

[33]. The five steps are:

Step 1

A representative cell or grid size, h, is defined for each mesh, which for three-dimensional

space is defined as

h =
1

N

N∑
i=1

(∆Vi), (3.9)

where ∆Vi is the volume the ith cell, and N is the total number of cells. For this study,

given that the validation variables are only dependent on the local fluid flow, h is specified

locally using only the cells in the first cell layer adjacent to the heated wall boundary.

The representative cell sizes for the three different meshes used are h1, h2 and h3, where

h1 represents the finest mesh and h3 represents the coarsest, such that h1 < h2 < h3.
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Step 2

The key variables of interest, φ, important to the simulation study objective are ob-

tained from completed simulations. For this study, the key variables are the wall heat flux

(q”) and the u and v velocity vector components.

Step 3

The apparent order, p, of the numerical method is calculated using the expression

p =
1

ln(r21)
|ln|ε32/ε21|+ q(p)|, (3.10a)

q(p) = ln

(
rp21 − s
rp32 − s

)
, (3.10b)

s = 1 · sign(ε32/ε21), (3.10c)

where r21 = h2/h1, r32 = h3/h2, ε21 = φ2− φ1, ε32 = φ3− φ2 and φk denoting the kth grid.

Agreement of the observed apparent order and the formal order are a good indication that

the meshes used are in the asymptotic convergence range; however, poor agreement does

not necessarily indicate poor calculations [33].

It is noted that if either ε21 or ε32 is very close to zero, then the above procedure is

invalid. Zero values may indicate that the exact solution has been reached or may be a

result of oscillatory convergence, which is denoted by values of ε32/ε32 < 0.

Step 4

The value of φ extrapolated to h = 0 is calculated from

φ21
ext = (rp21φ1 − φ2)/(rp21 − 1). (3.11)
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Step 5

The apparent numerical order is reported along with the approximate relative error

(e21
a ), extrapolated relative error (e21

ext), and the fine-grid convergence index (GCI21
fine) ob-

tained respectively from

e21
a =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ , (3.12)

e21
ext =

∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣ , (3.13)

GCI21
fine =

1.25e21
a

rp21 − 1
; (3.14)

where GCI21
fine is the numerical uncertainty of φ1 as a decimal percentage.

For profiles of key variables, it is recommended that the numerical uncertainty be

indicated with error bars. The error bar magnitudes are computed by using Eq. 3.14 above

in conjunction with an average value of p = pavg, calculated by averaging p from GCI studies

at every point in the variable profile, as a measure of the global order of accuracy.

3.2 Physics

The physics models make up the governing momentum, energy and turbulence equa-

tions to be solved over the computational domain. The STAR-CCM+ CFD package contains

many physics models, from which specific models are brought together to simulate a given

physical phenomena. The physics models used in the CFD simulations for this validation

study include: three dimensional, gradients, gravity, gas, ideal gas, steady, coupled flow,

coupled energy, turbulent, Reynolds-averaged Navier–Stokes and select turbulence models

and wall treatments. The three dimensional and gradients models are base building blocks

for the solver in STAR-CCM+ needed to allow three dimensional computations and cal-

culate parameter diffusion and convection. The remaining physics models were specifically

chosen to model the buoyant, turbulent flow heat transfer in the validation cases of this

study.

An explanation for each model selected, along with any changed default parameters

or options, is given in the following sections. For further details and explanations of the
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STAR-CCM+ physics models the reader is referred to the STAR-CCM+ user manual [31].

3.2.1 Gravity

The gravity model accounts for gravitational acceleration in the simulations. For the

fluid in this study, the model allows use of the piezometric pressure as the working pressure

and also enables the use of the gravity body force in the momentum equations. Thus,

without this model the effects of buoyancy could not be properly calculated.

3.2.2 Gas

The gas model specifies the simulation working fluid as a pure gas. Numerous types

of gases may be assigned as the working fluid each with specified default values for dy-

namic viscosity (µ), molecular weight (M), specific heat (cp), thermal conductivity (k∗)

and turbulent Prandtl number (Prt).

Air is the working fluid in the experiments validated by this study, in order to account

for changes to its properties due to the heat transfer in the boundary layer the dynamic

viscosity was enabled to vary according to Sutherlands Law,

µ

µ0
=

(
T

T0

)3/2(T0 + S

T + S

)
, (3.15)

with µ0 = 1.827E-5 Pa-s, S = 120.0 K and T0 = 291.15 K. The default values for the

remaining fluid properties were used, specified as:

M = 28.9664 kg/kmol

cp = 1003.62 J/kg-K

k∗ = 0.0260305 W/m-K

Prt = 0.9

3.2.3 Ideal Gas

The ideal gas model was chosen as the fluid equation of state because air is considered
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to be an ideal gas. Furthermore, the ideal gas model enables the fluid density to be a

function of temperature and pressure, as defined below in the ideal gas law

ρ =
p∗abs
RT

(3.16)

with

p∗abs = p∗static + p∗ref (3.17)

R = Ru/M (3.18)

where ρ is the density, p∗abs is the absolute pressure, R is the specific gas constant dependent

on the universal gas constant Ru and T is the temperature.

The pressure dependency of the model may be restricted to depend only on the reference

pressure (pref ) by assuming that the flow is incompressible. Though incompressible flow

may reasonably be assumed in the validation cases of this study, the fluid was solved as

a compressible flow in order to facilitate the accounting of all effects of the heat transfer.

Allowing this enabled the static pressure (p∗static) in the equation above to account for

buoyancy effects enabled by the gravity model as

p∗static = p̃+ ρref · g(x− x0), (3.19)

where the working pressure (p̃) is the piezometric pressure.

3.2.4 Steady

The steady temporal discretization model removes any time varying values and calcula-

tions from the CFD simulation and attempts to converge on a steady-state solution, which

can be difficult in a turbulent flow simulation due to the inherent complex instabilities. The

instabilities of turbulent flow often requires obtaining a solution through an unsteady time

model, which steps the solution out in time, converging the solution at each time step, until

the solution reaches an unchanging state. However, unsteady models exchange enhanced
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solver stability for longer solution convergence times.

The steady model was chosen for this study despite possible convergence complications

because, first, the uniformity of the experimental flow which occurred the test section al-

leviated concerns that the turbulent instabilities would inhibit solution convergence, and

second, due to the number of turbulence models selected for validation, and thus the number

of simulations to be completed, extensive convergence times were impractical.

3.2.5 Coupled Flow and Coupled Energy

The coupled flow and coupled energy models solve the governing equations for mass,

momentum and energy simultaneously. The complex internal and external buoyancy effects

between the fluid flow and energy balance require the governing equations to be solved

simultaneously.

3.2.6 Turbulent and Reynolds-Averaged Navier–Stokes

The viscous regime in STAR-CCM+ contains three distinct approaches to modeling

a flow that is in a state of continuous instability, exhibiting irregular, small-scale, high-

frequency fluctuations in both space and time [31]. The three approaches include: Reynolds-

Averaged Navier–Stokes, Large Eddy Simulation (LES) and Detached Eddy Simulation

(DES).

This study is focused on validation of turbulence models that use the Reynolds-Averaged

Navier–Stokes (RANS) approach. The RANS approach to solving turbulent flow involves

the decomposition of the Navier–Stokes equations into mean and fluctuating components.

The resulting equations for the mean quantities are similar to the original Navier–Stokes

equations, except for an additional stress term in the momentum transport equation, Tt,

termed the Reynolds stress tensor. Two general approaches are available in STAR-CCM+

to solve the Reynolds stress tensor and thereby provide closure to the governing equations:

Reynolds stress transport and eddy viscosity.

The Reynolds stress transport approach, also known as second-moment closure, directly

solves a transport equation for each component of the Reynolds stress tensor. Conversely,
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the eddy viscosity approach uses the concept of a turbulent viscosity (µt) to model the

Reynolds stress tensor as a function of the mean flow quantities; the function used in

STAR-CCM+ is the Boussinesq approximation

Tt = 2µtS−
2

3
(µt∇ · v + ρk)I (3.20)

where S is the strain rate tensor and k is the turbulent kinetic energy:

S =
1

2
(∇v +∇vT ) (3.21)

k =
1

2
(u′u′ + v′v′ + w′w′) (3.22)

The k − ε, k − ω and Spalart–Allmaras eddy viscosity methods in STAR-CCM+ solve

additional transport equations in order to obtain µt.

3.2.7 Turbulence Models

Eleven turbulence models from the Reynolds stress, k− ε, k−ω and Spalart–Allmaras

RANS turbulence methods were validated using the SRQ data provided by the EFDL

RoBuT research group. All of the models utilized 2nd order upwind convection schemes

and all of the default solver parameters set by STAR-CCM+ were accepted unless otherwise

stated in the following brief descriptions of each model:

3.2.7.1 Reynolds Stress Transport

The Reynolds stress transport (RST) model solves seven transport equations in addi-

tion to the mass, momentum and energy equations, including six for each unique stress in

the Reynolds stress tensor and a model equation for the isotropic turbulent dissipation rate

(ε). The solution of the additional transport equations allows the RST to naturally account

for the anisotropic effects of turbulent fluid flow due to strong swirling motions, streamline

curvature, rapid changes in strain rate and secondary flows.
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In this study, two RST models implementing the linear pressure strain two-layer formu-

lation were validated; one applying the shear driven two-layer formulation recommended for

flows not dominated by buoyancy, and the second applying the buoyancy driven two-layer

formulation (denoted RSTB).

3.2.7.2 k − ε: Standard Two-Layer

The standard k − ε two-layer (S2L) model combines the standard k − ε model with

the two-layer approach to solving the viscous sub-layer flow. The standard k − ε model

solves transport equations for the turbulent kinetic energy (k) and the turbulent dissipation

rate (ε) in order to compute µt. The equations are of the form suggested by Jones and

Launder [34], with coefficients suggested by Launder and Sharma [10].

The S2L model was included in the validation study because the literature review

showed it to be among the turbulence models most suited to computing buoyant flow [23].

As with the RST models, two S2L models were validated with the shear and buoyancy driven

(denoted S2LB) two-layer formulations as well as with the Yap correction for ε, non-linear

quadratic constitutive relations and Durbin realizability solver options in STAR-CCM+.

3.2.7.3 k − ε: Standard Low-Re

The governing transport equations of the k− ε low-Re (SLR) model by Lien et al. [35]

are identical to those of the standard k − ε model, but the damping function enabled

equation coefficients permit the viscous-affected near-wall flow to be resolved. The damping

functions modulate the coefficients as functions of the turbulent Reynolds number, often

also incorporating the wall distance. STAR-CCM+ recommends this model for natural

convection problems, particularly if the Yap correction is enabled [31].

The SLR model validated included the Yap correction for ε, non-linear-quadratic con-

stitutive relations and Durbin realizability constraints.

3.2.7.4 k − ε: Realizable Two-Layer

The realizable k − ε two-layer (R2L) model is a fairly recent k − ε turbulence model
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by Shih et al. containing a new transport equation for the turbulent dissipation rate (ε)

and also allows the critical Cµ coefficient to be a function of mean flow and turbulence

properties rather than an assumed constant [36], as in the Standard k − ε model [31]. The

variable Cµ concept is consistent with experimental findings.

Two R2L models were validated employing the shear driven and buoyancy driven (de-

noted R2LB) two-layer formulations.

3.2.7.5 k − ε: v2 − f

The v2 − f k − ε (V2F) model solves transport equations for the normal stress and

elliptic turbulence quantities in addition to k and ε. Thus, the V2F model has more

computational overhead than the other k − ε models, but it is able to more accurately

capture the near-wall turbulence effects critical to predicting heat transfer, skin friction

and flow separation [37–39]. The turbulence model assessments in the literature found the

V2F model to give the best results in heat transfer flow calculations [22,23].

3.2.7.6 k − ω: Standard

The k − ω model is an alternative two-equation turbulence model to the k − ε model.

The turbulence transport equations solve for the turbulent kinetic energy (k) and the spe-

cific dissipation rate (ω), the turbulent dissipation rate per unit turbulent kinetic energy

(ω ∼ ε/k). This formulation of the governing equations may be applied throughout the

boundary layer without requiring a two-layer or low-Re modification to resolve the viscous

sub-layer. Furthermore, the application of the model transport equations is achieved with-

out computing the wall distance. STAR-CCM+ reports that the k − ω model provides

improved performance in modeling boundary layers under adverse pressure conditions [40].

3.2.7.7 k − ω: Shear Stress Transport with Gamma ReTheta Transition

The shear-stress transport or SST k−ω (SST) model was derived by Menter to address

the original k−ω models sensitivity to freestream and inlet conditions [41]. Menter derived

a new form of the k−ω transport equations by introducing a variable substitution into the
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standard k−ε equations; the resulting equations included a non-conservative cross-diffusion

term containing the ∇k ·∇ω dot product. This term effectively blends a k− ε model in the

far-field or freestream flow with a k−ω model in the near-wall region. The resulting model

dampens the sensitivity of the model to the inlet conditions.

The gamma Retheta transition model was included in the SST model for this validation

study to account for possible laminarization of the turbulent flow due to buoyancy. The

gamma Retheta correlation-based model investigates turbulent flow transition by relating

the vorticity-based Reynolds number, which can be calculated on an unstructured CFD

grid, to the momentum thickness Reynolds number.

3.2.7.8 Spalart–Allmaras

The Spalart–Allmaras (SA) model solves a single transport equation to determine the

turbulent viscosity (µt). The model was originally developed primarily for aerodynamic flow

applications, such as flow past a wing [42]. However, the SA model is a low-Reynolds number

model, meaning that it is specifically formulated to accurately resolve the entire turbulent

boundary layer, including the viscous sub-layer critical to the calculation of boundary heat

transfer. Despite the resolution of the boundary layer however, free-shear spreading rates

predicted for jet-like free-shear regions are inaccurate [40]; therefore, the SA model may be

ill-suited to flows with complex recirculation or body forces.

3.3 Boundary Conditions

Boundary conditions inform the CFD solver, the governing mass, momentum, energy

and turbulence equations, how the substance within the computational domain interacts

with its environment. As shown in Fig. 3.13, the six bounding surfaces of the computational

domain are assigned distinct boundary types, including: wall, velocity inlet, and pressure

outlet. Each boundary has its own properties for physics conditions and physics values. All

of the data required to prescribe each physics condition and value was obtained from the

EFDL RoBuT experiments. Each boundary type used in the validation study is discussed

below.
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Fig. 3.13: Illustration of the computational domain with the distinct boundary conditions
labeled.

3.3.1 Wall

The wall boundary represents an impermeable no-slip surface with a defined thermal

state or temperature condition. Figs. 3.14–3.17 below show the thermal boundary con-

ditions mapped onto the test section walls and inlet for each of the four validation cases,

where the leading edge of the test section is at the top of the illustrated heated wall on the

right of each figure.
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Fig. 3.14: Thermal boundary conditions for the M1 validation case.

Fig. 3.15: Thermal boundary conditions for the F1 validation case.
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Fig. 3.16: Thermal boundary conditions for the M2 validation case.

Fig. 3.17: Thermal boundary conditions for the F2 validation case.

The thermal state of the heated wall for each RoBuT experiment was only dependent

on the thermocouples located at each of the three heat flux sensor locations. Thus, the
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targeted thermal state for each experiment can be more critically viewed as having been

obtained along the heated wall centerline.

In each CFD simulation, wall treatments are the set of near-wall modeling assumptions

for each turbulence model in STAR-CCM+. Three types of wall treatments are available

in STAR-CCM+, dependent on the y+ value of the cell adjacent to the wall:

� The high y+ wall treatment, for y+ ≥ 30, implements a wall function as described in

Chapter 1 to account for boundary layer flow.

� The low y+ wall treatment, for y+ u 1, is suited only for low-Reynolds number

turbulent models were it is assumed that the near wall mesh is sufficiently refined to

resolve the viscous sub-layer flow.

� The all y+ wall treatment is a hybrid treatment that attempts to emulate the high

y+ treatment in coarse regions of the discretized mesh, and the low y+ treatment

for fine regions. The formulation also allows for a blend of the wall treatments on

intermediate mesh resolutions.

As shown in Section 3.1.3, the discretized mesh for this validation study has been

refined to resolve the viscous sub-layer of the turbulent flow boundary layer. The all y+

wall treatment was implemented on all of the turbulence models in the study in order to

be uniform and to enable the low y+ wall treatment calculations on all of the models.

In conjunction with the all y+ wall treatment, the two-layer models validated (RST,

R2L and S2L) prescribe ε and µt as functions of wall distance in the flow layer next to the

wall. Thereafter the values of ε are blended smoothly with the values computed by the

respective models transport equation. The transport equation for k is solved in the entire

flow.

3.3.2 Velocity Inlet

The velocity inlet boundary represents a region allowing fluid mass and momentum to

enter the computational domain where the fluid velocity is known. For the assigned velocity
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inlet boundary of the computational domain, the turbulence and thermal physics proper-

ties as well as the inflow velocity vector components are specified. In this study, several

turbulence specifications were used to specify the turbulence of the inlet flow, including the

following combinations: k and ε, k and ω, and modified turbulent diffusivity. The values

used were obtained from the RoBuT experiments for each validation case.

The PIV system described in Chapter 2 was used to acquire nine profiles across the

inlet of the RoBuT test section. See reference [26] for details about the specific profiles.

Two-component PIV was used at each of the nine profiles, thus only the in-plane velocities

were measured. Previous cross examination of two orthogonal plane PIV studies by the

EFDL researchers showed that the transverse velocities were symmetric in the freestream

of the test section inlet, meaning w = v. Thus, the three velocity components u, v, and w

are specified by two-component PIV measurements in the X-Y plane at each of the measured

PIV points.

In order to create a more continuous profile of the velocity, the EFDL researchers wrote

a Matlab code to interpolate the measured PIV velocity components over a fine grid to be

used in this validation study. The velocity mapped onto the inlet for the F2 case is in

Figs. 3.18 and 3.19, the mapped velocities for the other validation cases are similar to those

shown and are contained in Appendix A.

The turbulence quantities at the inlet were obtained in the above mentioned Matlab

code by processing the interpolated PIV data. k and ε were obtained directly using the

PIV data, see Eqs. 3.22 and 3.23, and the correlations in Eqs. 3.24 and 3.25 were then used

to obtain values for the specific dissipation rate and the modified turbulent diffusivity.

It is recognized that the interpolation process implemented in the Matlab code probably

induced incorrect gradients in the velocity and turbulence distributions used at the inlet,

and is therefore a significant source of error in the results. However, importing the PIV

velocity data directly into STAR-CCM+ for the inlet conditions would have created a

’blocky’ inlet distribution, which probably would have instilled a larger input error on the

CFD simulation due to the discontinuities present than the interpolated distribution.
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Fig. 3.18: u velocity mapped onto the velocity inlet of the computational domain.

Fig. 3.19: v and w velocity mapped onto the velocity inlet of the computational domain.
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Kays, Crawford, and Weigand define the Reynolds decomposition of the instantaneous

velocity as the sum of the mean (ū) and fluctuating (u′) components, that is u = ū+ u′ [6],

which enables k to be calculated as from Eq. 3.22 with u, v and w being the fluctuating

components in the x, y and z coordinate axis. Each fluctuating component is set equal to

the variance (square of the standard deviation) of the time averaged velocity from the two

component PIV inlet measurements, with w = v as implied by the symmetric inlet velocity.

The turbulent dissipation rate (ε) was approximated from the two-component PIV data

as

ε = 2ν

{(
∂u′

∂x

)2

+

(
∂v′

∂y

)2

+
3

2

[(
∂u′

∂y

)2

+

(
∂v′

∂x

)2
]

+
∂u′

∂y

∂v′

∂x

}
, (3.23)

were ν is kinematic viscosity and turbulence is assumed to be isotropic [43].

From the derived values for k and ε, the specific dissipation rate (ω) and modified

turbulent diffusivity (ν̃) were calculated from

ω =
ε

Cµk
, (3.24)

ν̃ =
C

3/4
µ k2

ε
, (3.25)

were Cµ = 0.09, the default value used in the validation simulations set by STAR-CCM+.

The following figures depict the various turbulence specifications for the F1 validation

case as they were mapped onto the computational domain inlet; the turbulence specification

profiles for the other validation cases are similar and are contained in Appendix B.
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Fig. 3.20: Turbulent kinetic energy (k) mapped onto the velocity inlet of the computational
domain.

Fig. 3.21: Turbulent dissipation rate (ε) mapped onto the velocity inlet of the computational
domain.
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Fig. 3.22: Specific turbulent dissipation rate (ω) mapped onto the velocity inlet of the
computational domain.

Fig. 3.23: Modified turbulent diffusivity (ν̃) mapped onto the velocity inlet of the compu-
tational domain.
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3.3.3 Pressure Outlet

The pressure outlet boundary represents a region allowing fluid to exit the compu-

tational domain to an environment with a known pressure. Similar to the velocity inlet

boundary, the turbulence and thermal physics properties as well as the gauge pressure of

the specified fluid outlet region. In order to simulate the fluid flow exiting to the ambient

conditions of the RoBuT lab, the pressure was set to the reference pressure (zero gauge),

the static temperature was set to the reference temperature and the turbulence intensity

and viscosity ratio were set to 1.0E-5 and 1.0, respectively. The reference pressure and

temperature are listed in Table 3.4.

It is recognized that the specified zero gauge pressure is inaccurate, because the sim-

ulation pressure outlet plane coincides with the test section exit and not the wind tunnel

exit, see Fig. 2.2. However, due to the incompressible nature of the flow, it is assumed that

the pressure drop between the test section and wind tunnel exit planes is negligible.

3.3.4 Physics Reference Values

The physics reference values for each STAR-CCM+ simulation define the ambient

environment of the physics being modeled. The values specified for each validation case are

shown in Table 3.4.

At the time of each RoBuT experiment, the local absolute pressure, relative percent

humidity and temperature of the air in the RoBuT lab were recorded. From the known

Table 3.4: Physics reference values used for each validation case.

Parameter M1 F1 M2 F2

Air Density (kg/m3) 1.013 1.015 1.026 1.019

Absolute Pressure (Pa) 86625.0 86765.3 87220.0 86529.0

Temperature (C) 23.4 23.4 22.4 22.1

Gravity [−9.81, 0, 0] m/s2

Altitude 1456.3 m
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altitude of Utah State University, 1456.3 m above sea level, and the recorded lab condi-

tions the air densities shown above were calculated using the BARANIDESIGN air density

calculator available at http://www.baranidesign.com/air-density/air-density.htm.

3.4 Initial Conditions

Prior to running each turbulence model simulation, the initial conditions or initial field

data for every dependent variable in the governing equations was set across the computa-

tional domain. The initial conditions were set as: uniform zero gauge pressure, uniform

static temperature as specified in the reference values and the inlet turbulence specification

and velocity profiles were extended from the velocity inlet throughout the computational

domain.

3.5 Convergence Criteria

Solution convergence for steady state simulations is achieved by iterating on the gov-

erning differential equations across the computational domain until the residuals reach an

acceptable point determined by the user. Residuals represent the degree to which the dis-

cretized governing equations are satisfied collectively by each cell in the discretized mesh.

The STAR-CCM+ simulations in this study monitor residuals at every iteration for conti-

nuity, energy, X, Y and Z momentum and for the turbulence transport equations, described

in section 3.2.7. The American Society of Mechanical Engineers (ASME) set the threshold

for iterative convergence as a decrease of the normalized residuals of three (preferably four)

orders of magnitude for each equation solved [44].

Convergence criteria for this validation study maintains the convergence threshold set

by ASME while requiring each turbulence model simulation to reach iterative convergence,

denoted by a ’leveling out’ of the normalized residuals. Fig. 3.24 illustrates a converged

solution; examples of the converged residuals for each type of turbulence model are contained

in Appendix E.

http://www.baranidesign.com/air-density/air-density.htm
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Fig. 3.24: Converged residuals of the F2 R2L simulation.

One exception was made to the convergence criteria for the SST turbulence model. The

SST model solves an intermittency transport equation to mimic the behavior of algebraic

engineering correlations for the source terms. STAR-CCM+ states that the intermittency

equation is naturally noisy due to strong dependence of the source terms on higher powers

of the mean flow strain rates, and the fact that the source terms are not differentiable

functions [31]. The Fig. 3.25 illustrates a converged solution of the SST turbulence model.
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Fig. 3.25: Converged residuals of the M1 SST simulation.
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Chapter 4

Validation Methodology

Prior to validation of a computer model, the computational code and solution must be

verified [30]. Code verification establishes that the code accurately solves the mathematical

models. STAR-CCM+ is recognized as an extensively verified CFD software package; there-

fore, it is assumed that the models employed in the solution of each simulation accurately

solve their respective transport equations. Solution verification comprises the estimation of

the simulation discretization error or numerical uncertainty; the GCI method was imple-

mented to satisfy this verification as described in Section 3.1.4 with the results presented

in Chapter 5.

Validation, as defined in the published ASME standard for verification and validation,

is the process of determining the degree to which a model is an accurate representation

of the real world from the perspective of the intended uses of the model [45]. The vali-

dation method implemented in this study was the mean comparison method developed by

Oberkampf and Roy [30], which computes a statistical confidence interval, dependent on

the uncertainty in the experimental data, which presents an estimated range within which

the true modeling error lies and reflects the confidence in the estimated model accuracy.

The confidence interval for the true modeling error is derived from the confidence

interval expression for the true experimental mean (µ∗) for the SRQ of interest, defined as

ȳe − t∗α/2,ν∗ ·
s√
n
< µ∗ < ȳe + t∗α/2,ν∗ ·

s√
n

(4.1)

where s is sample standard deviation, based on n experiments, given by

s =

[
1

n− 1

n∑
i=1

(yie − ȳe)2

]1/2

. (4.2)
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For the true modeling error, the estimated model error (Ẽ) and the true model error

(E) are defined as

Ẽ = ym − ȳe, (4.3)

E = ym − µ∗ (4.4)

where ym is the model SRQ and ȳe is the estimated experimental SRQ, or sample mean

based on n experiments. ȳe is given by

ȳe =
1

n

n∑
i=1

yie (4.5)

where yie are the individually measured values of the SRQ from each each experiment.

By substituting the estimated model error and the true model error into Eq. 4.1 the

expression changes from a bounded interval for µ∗ to a bounded interval containing the true

modeling error E:

ym − ȳe − t∗α/2,ν∗ ·
s√
n
< E < ym − ȳe + t∗α/2,ν∗ ·

s√
n

(4.6)

(
Ẽ − t∗α/2,ν∗ ·

s√
n
, Ẽ + t∗α/2,ν∗ ·

s√
n

)
(4.7)

where t∗ is the two-tail probability value from the student’s t-distribution and the level of

confidence is given by 100 · (1− α)%.

While the above expressions for the true modeling error are ideal for specific validation

variables it is often desirable to investigate a global, or overall, statement of the modeling

accuracy, which is more beneficial when considering a range of validation data. To obtain a

measure for the global true modeling error the average relative error is considered, defined

as ∣∣∣∣∣ Ẽȳe
∣∣∣∣∣
avg

=
1

xu − xl

∫ xu

xl

∣∣∣∣ym(x)− ȳe(x)

ȳe(x)

∣∣∣∣ dx, (4.8)
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with the average relative confidence indicator as the half-width of the confidence interval,

defined as ∣∣∣∣CIȳe
∣∣∣∣
avg

=
tα/2,ν

(xu − xl)
√
n

∫ xu

xl

∣∣∣∣ s(x)

ȳe(x)

∣∣∣∣ dx. (4.9)

where xu and xl are the dependent spacial extrema in the ym(x) and ȳe(x) profiles of interest.∣∣∣CIȳe ∣∣∣avg is referred to as an indicator, as opposed to an interval, because the uncertainty

structure of s(x) is not maintained through the integration operator.

For this validation study, the confidence interval calculations above were modified to ac-

count for bias errors in the experiment instrumentation as well as the precision uncertainty.

The bias and precision errors for each validation case, obtained from a single experiment,

were obtained for the u velcoity and heat flux from the RoBuT experiments and data post

processing. For the u velocity, the bias, random and 95% precision uncertainty was cal-

culated during the PIV post processing as discussed in Chapter 2. For the heat flux, the

manufacturer prescribed bias uncertainty of 2% of the sensor reading was used along with

the heat flux measurements at each HFS location from the RoBuT experiments.

The overall uncertainty, including bias and precision, produced by the PIV uncertainty

estimator were used directly in the modified confidence interval calculations to be described

below. The overall heat flux uncertainty was calculated as

U =

√
B2 +

(
t∗α/2,ν∗ ·

s√
n

)2

. (4.10)

where B is the bias uncertainty.

Replacing t∗α/2,ν∗ ·
s√
n

in Eqs. 4.7 and 4.9 with U defined above, the modified true

modeling error confidence interval and indicator used in this study are defined as

(
Ẽ − U
ȳe

,
Ẽ + U

ȳe

)
(4.11)

and ∣∣∣∣∣ Ẽȳe
∣∣∣∣∣
avg

=
1

xu − xl

∫ xu

xl

∣∣∣∣ym(x)− ȳe(x)

ȳe(x)

∣∣∣∣ dx (4.12)
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with ∣∣∣∣CIȳe
∣∣∣∣
avg

=
1

(xu − xl)

∫ xu

xl

∣∣∣∣U(x)

ȳe(x)

∣∣∣∣dx. (4.13)

Note that the specific confidence interval, Eq. 4.11, was normalized by ȳe similar to Eqs.

4.12 and 4.13, which will simplify comparisons between the heat flux and u velocity errors

in the turbulence model assessment, because the results of both will be relative to the

experimental data.

The amount of experimental data obtained for the validation SRQs varied between

between each experiment. The u velocity SRQ profiles were obtained from a time average

of 1000 frames of PIV data, thus with n = 1000 the normal distribution (z∗) was used

instead of the student’s t-distribution. For the heat flux SRQs, multiple measurements

were obtained for the M1 and F1 cases whereas only one measurement was recorded for the

M2 and F2 cases.

Each confidence interval reported in the validation results, except the M2 and F2 heat

flux, was calculated at a 95% confidence level. Thus, z∗ = 1.96 was used for the u velocity,

t∗α/2,ν∗ = 2.201 (n = 12, ν∗ = 11) was used for the M1 heat flux and t∗α/2,ν∗ = 3.182

(n = 4, ν∗ = 3) was used for the F1 heat flux. The heat flux readings and statistical

calculations for the experimental SRQs are shown in Appendix F.

It is recognized that the confidence interval calculations in this validation study do

not account for the influence of discretization error. As discussed in Section 3.1.3, all of

the turbulence models for a given case study were solved over the same set of discretized

meshes, which allowed for some models to retain discretization error that is not negligible.

Therefore, the results of the GCI study are included in the concluding assessment of the

turbulence model validation results.
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Chapter 5

Results

The CFD simulations for the four validation cases and the respective turbulence model

validations were carried out as described in Chapters 3 and 4. Prior to presenting the

validation assessment results, the effects of buoyancy on fluid flow are reviewed, focusing

on the modification to the shear stress distribution as shown in Fig. 5.1, and the flow fields

generated by the turbulence model simulations are studied, including visualizations of the

general fluid flow and local profiles of the streamwise u velocity, Reynolds turbulent shear

stress and heat flux at the three heat flux sensor (HFS) locations. The general fluid flow

visualizations, Figs. 5.2 and 5.3, are included to give a general perspective of the flow and

heat transfer effects. The local profile visualizations, including the experimental profiles,

are shown in Figs. 5.4–5.9 and will be discussed accordingly. An overall ranking of the

turbulence models from the validation assessment results is shown in Table 5.1. The specific

turbulence model validation results for each case are shown in Tables 5.2–5.5. Additionally,

Figs. 5.10–5.11 illustrate the tabulated results. Following the discussion of the validation

assessments, the grid convergence study results are presented and discussed. The results of

all three HFS locations are included in the following discussions; however, for brevity, only

the validation and GCI result tables and figures for the third HFS location are shown in

this chapter. The tables and figures for the other HFS locations are contained in Appendix

C and D.

5.1 Review of Buoyancy Effects

As discussed in Chapter 1, the structural and external effects of buoyancy consist of

the direct influence of buoyancy on the turbulence field, diffusion and advection, and that

on the mean field, respectively. The structural and external effects can either enhance the
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Fig. 5.1: Turbulence shear stress for buoyancy-opposed and buoyancy-aided flow1.

heat transfer occuring in the flow or impair it depending on the flow rate, thermal loading

and the flow direction [23].

For downward flow, buoyancy opposes the flow and the near-wall velocity is reduced,

which reduces the energy transport by advection, a further consequence is the increase of

shear stress in the region. As a result, the turbulence production is enhanced and the

turbulent diffusion of heat transfer is improved [18], see Fig. 5.1. In buoyancy-aided flow,

although advection is increased in the near-wall region due to buoyancy, shear stress is

reduced as shown in Fig. 5.1. The net result is that the heat transfer process is impaired.

As the buoyancy influence increases, due to the deterioration of turbulence production, a

stage is reached where the shear stress in the near-wall region falls to a level such that

the flow is effectively laminar (see Fig. 5.1). With further increase of buoyancy, the shear

stress in the core region becomes negative and turbulence production and heat transfer

1Reprinted from The Lancet, 51, Kim, W. S., He, S., and Jackson, J. D., “Assessment by Comparison
with DNS Data of Turbulence Models used in Simulations of Mixed Convection,” pp. 1293–1312, 2008, with
permission from Elsevier.
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effectiveness recover [18].

In this study, it was expected that buoyancy effects would be minor in the forced

convection flows as their mixed convection ratios are at the lower end of the mixed convection

range, see Table 2.1. For the mixed convection flows, significant buoyancy influence was

expected.

5.2 Visualization of the Results

Select distributions of the general fluid flow computed by the CFD simulations for

each validation case are shown in Figs. 5.2 and 5.3. Fig. 5.2 illustrates the temperature

and pressure typical of all of the validation cases and Fig. 5.3 illustrates the fluid velocity

predicted down the centerline of the test section for each case. Note that the inlet and

heated plate are at the left and bottom of each illustration. These figures are included to

give a global reference for the specific HFS profiles to be discussed.

In Fig. 5.3, the normalized velocity distributions (u/Ub) shown from top to bottom

Fig. 5.2: General distributions of the temperature (Top) and pressure (Bottom) down the
simulation centerline. Note that the inlet and heated plate are at the left and bottom of
each figure.



59

Fig. 5.3: Normalized distributions (u/Ub) of the fluid velocity for the M1 (Top), M2 (Top-
Middle), F1 (Bottom-Middle) and F2 (Bottom) validation cases down the simulation cen-
terline. Note that the inlet and heated plate are at the left and bottom of each figure.

are M1, M2, F1 and F2; where Ub is the bulk velocity at the inlet. No significant effects

of buoyancy are apparent in the M1 flow, though the flow rate is similar to the M2 case

where the flow outside the heated plate boundary layer is significantly lower than that at

the top of the test section. In the F1 case, the flow adjacent to the heated plate exhibits

an increase in the fluid velocity that is presumed to be due to minor buoyancy influence.
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Conversely, the F2 fluid velocity distribution indicates that the boundary layer on the top,

unheated wall is developing much faster than that on the heated plate, while buoyancy

influence is suspected it is unreasonable that the influence is significant due to the large

flow rate present. However, a more complicated buoyancy effect may be occurring in this

case due to the thermal condition of the plate. This may also be why the M1 and M2

velocity distributions are different.

The pressure distribution illustrated in Fig. 5.2 shows the pressure drop across the

test section, which was predicted in the range of 5 Pa by every turbulence model for all

four validation cases. This small pressure drop gives credence to the assumption that the

flow is incompressible and use of the compressible ideal gas model was not needed; however,

the change in pressure may have enhanced the calculation of the buoyancy influence in

the flow. The temperature distribution seems to indicate that the thermal boundary layer

is fully developed at the later end of the test section. In conjunction with the velocity

distributions in Fig. 5.3, it is reasonable that the flow is nearly fully developed at the later

end of the test section for all four validation cases.

Figs. 5.4 and 5.5 illustrate the streamwise u velocity and Reynold’s turbulent shear

stress u′v′ profiles from the SLR, V2F and RST simulations as well as the experimental

profile with 95% uncertainty bands for the M1 and F1 validation cases. Similarly, Figs. 5.6

and 5.7 illustrate the same profiles for the M2 and F2 validation cases. The discretization

error for the CFD predicted profiles was not included in the figures, because it was generally

found to be less than 1.0%. The discretization error and results of the GCI grid refinement

study are discussed in the next section.

The illustrated experimental flow profiles for the forced convection cases exhibit a

degradation of the fully turbulent velocity along the test section, which is indicated by

the smoothing of the sharp transition from the near-wall to freestream flow from the first

to third HFS in Figs. 5.4 and 5.6 (dashed lines). This degrading trend is ratified by the

apparent increase in buoyancy influence along the test section in Figs. 5.5 and 5.7, denoted

by the decrease in the turbulent shear stress peak value near the wall, reference Fig. 5.1.



61

The CFD predicted u velocity from the turbulence models is in good agreement with the

experimental values at each of the three HFS locations for both of the heated plate boundary

conditions, with significant divergence generally only occurring away from the wall. The

predicted turbulent shear stress agrees fairly well with the experimental values, except for

the first HFS location. A possible cause of the more significant discrepancies between the

experimental and CFD results at the first HFS may be the developing thermal boundary

layer in the flow at that location, as illustrated in the temperature distribution shown above

and the heat flux plots in Figs. 5.8 and 5.9.

The experimental flow profiles for the mixed convection cases, solid lines in Figs. 5.4

and 5.6, exhibit a flow profile which is assumed to be in transition, between laminar and

turbulent flow, from the first to third HFS locations. This assumption is in agreement

with the significant buoyancy influence shown in the corresponding turbulence shear stress

profiles (Figs. 5.5 and 5.7), where laminarization of the flow is apparent from the zero

gradient near the wall at the second and third HFS locations (reference Fig. 5.1). The

CFD predicted velocity is only in good agreement with the experiment in the near-wall

region, diverging in the freestream flow. Furthermore, it appears that the CFD models

predict the fluid flow to be more turbulent than the experiment, distinguishable by the

larger velocity gradient near the wall and the sharper transition into the freestream flow,

which is also consistent with the over prediction of the near-wall shear stress peak in Figs.

5.5 and 5.7. This over prediction of turbulence is reasonable, because the boundary layer

flow may actually be in transition as mentioned earlier and the CFD turbulence models used

are formulated for fully turbulent flow. Despite this fact, the CFD predicted turbulent shear

stress at the second and third HFS locations is in good agreement with the experimental

values, particularly for the SLR turbulence model. The large discrepancies seen in both

the u velocity and turbulent shear stress profiles at the first HFS location are likely due

to a combination of the developing thermal boundary layer mentioned previously and the

inherent errors of simulating transitional flow with a turbulence model.
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Fig. 5.4: Streamwise velocity u for the F1
(dashed) and M1 (solid) validation cases at
the three HFS locations: x = 16 cm (top),
x = 77 cm (middle), x = 139 cm (bottom).
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Fig. 5.5: Reynold’s stress u′v′ for the F1
(dashed) and M1 (solid) validation cases at
the three HFS locations: x = 16 cm (top),
x = 77 cm (middle), x = 139 cm (bottom).
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Fig. 5.6: Streamwise velocity u for the F2
(dashed) and M2 (solid) validation cases at
the three HFS locations: x = 16 cm (top),
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Fig. 5.7: Reynold’s stress u′v′ for the F2
(dashed) and M2 (solid) validation cases at
the three HFS locations: x = 16 cm (top),
x = 77 cm (middle), x = 139 cm (bottom).
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Fig. 5.8: Heat flux along the centerline of
the heated plate (z = 0) for M1 (top) and
F1 (bottom) validation cases.
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Fig. 5.9: Heat flux along the centerline of
the heated plate (z = 0) for M2 (top) and
F2 (bottom) validation cases.

The CFD simulated wall heat flux down the centerline of the heated plate and the

experimental heat flux measured at the three HFS locations for each validation case is

illustrated in Figs. 5.8 and 5.9, along with the wall surface temperature following the right-

hand y axis. Varying degrees of agreement are present between the CFD and experimental

results. In every case, the SLR turbulence model appears to give the best results over the

region were the thermal boundary layer is developing, the first and second HFS, but is less

accurate as the flow develops. In the thermally developed region of HFS three, the V2F,

k − ω and SST models show better agreement.

A likely cause for the discrepancy between the experiment and the mixed convection

cases at the first HFS was mentioned above. It is reasonable that the over prediction of

turbulence, resulting from the turbulence model solution of the transitional flow, would
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cause the CFD simulation to also over predict the heat flux due to the larger near-wall

velocity gradient, see the first HFS velocity profiles in Figs. 5.4 and 5.6.

Also worth noting is the smooth temperature curve shown for the M2 case in Fig. 5.9.

The slower fluid velocity allowed the heat in the plate to be conducted axially rather than

being convected away, as is evident in the F2 case illustrated in the same figure. Thus, the

consistency of the boundary conditions and results for the M1 and M2 cases is reasonable.

5.3 Validation Results

The turbulence model error validation studies for the streamwise u velocity and heat

flux SRQs at the three HFS locations were performed as described in Chapter 4. An overall

ranking of the CFD turbulence models with respect to mixed and forced convection flow

was computed from the validation study results. The model rankings are shown in Table

5.1 and are discussed accordingly.

The global validation of the near-wall u velocity was performed for two selections of the

available PIV data; first, all of the available data at each HFS location, referred to as FULL

in the tables and figures hereafter, and second, data assumed to be in the viscous sub-layer

and buffer regions of the turbulent boundary layer at each location (the 6th to 17th data

points), referred to as VSL hereafter. The VSL assessment was included because it was

assumed that the turbulence models able to better predict the fluid flow in the viscous sub-

layer would be more suited to accurately predicting the wall heat flux. Table 5.2 contains the

relative error results, Ẽ
ȳe

and
∣∣∣ Ẽȳe ∣∣∣avg, from the heat flux and u velocity validation assessments

with an overlaid gray-scale for comparison and evaluation of the average turbulence model

performance. Tables 5.3 and 5.4 contain the average relative error with 95% confidence

indicator for the FULL and VSL assessments specific to the third HFS. Additionally, for

further insight into the local character of the u velocity error, the maximum relative error

with its respective 95% confidence indicator are listed alongside the average relative error

for each model and validation case. The maximum relative error and confidence indicator
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are defined as ∣∣∣∣∣ Ẽȳe
∣∣∣∣∣
max

= max

∣∣∣∣ym(x)− ȳe(x)

ȳe(x)

∣∣∣∣ (5.1)

and ∣∣∣∣CIȳe
∣∣∣∣
max

=

∣∣∣∣U(x̂)

ȳe(x̂)

∣∣∣∣ , (5.2)

where x̂ is the x value in the range xl ≤ x ≤ xu at which the maximum value of
∣∣∣ Ẽȳe ∣∣∣ occurs.

The heat flux validation was carried out for each specific HFS location using Eq. 4.11

and the results of the assessment, alongside the CFD predicted and experimentally measured

heat flux, for the third HFS are shown in Table 5.5.

5.3.1 General Results

The results are discussed in this section with a global perspective, drawn from the

average relative error results of the validation assessments contained in Table 5.2. Therefore

it must be noted that there are significant differences between the local and global character

of the CFD turbulence model and the experimental u velocity profiles, which are indicated

by the discrepancies between the average and maximum relative error. Figs. 5.11 and 5.12

show that the largest error in the CFD predicted u velocity is in the viscous sub-layer region;

it is also shown that the local divergence in the character of the turbulence models is more

pronounced for the mixed convection cases.

From Table 5.2, it is apparent that there is not a single turbulence model that gives

superior performance in predicting the heat flux and fluid flow for both the mixed and

forced convection cases. For mixed convection however, the SLR model gave the best

results in almost every instance. Furthermore, the SLR model predicted the heat flux in the

developing thermal boundary layer for both forced and mixed convection much better than

any of the other models. Thus, the SLR model can be recommended for CFD simulation

of mixed convection and developing thermal boundary layers.

It is difficult to define conclusive results for forced convection flow overall. As shown

in Table 5.2, for the more ideal thermal condition in the F1 case, the SA model clearly
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predicts the u velocity with much better accuracy than any of the other models throughout

the test section; however, it only gives good predictions for the heat flux when the flow is

fully developed thermally. In contrast, for the F2 case, many of the turbulence models were

in excellent agreement with experimental values for the fluid flow and the third HFS heat

flux. The k − ω model giving the best results for the FULL, VSL and heat flux validation

assessments at the third HFS location.

In an attempt to identify the turbulence model most suited to predicting the mixed

and forced convection flows, the root mean square of the relative errors for each validation

assessment and turbulence model was evaluated. The resulting ranking of the turbulence

models is shown in Table 5.1.

The ranking of the turbulence models with respect to mixed convection agrees with

the conclusions deduced from the results in Table 5.2. For forced convection, the consistent

high ranking of the k − ω model brings further insight to results discussed. Though the

Table 5.1: Ranking of turbulence models with respect to the the available error data.

Mixed Forced

Velocity Velocity

Rank FULL1 VSL2 Heat Flux FULL1 VSL2 Heat Flux

1 SLR SLR SLR k − ω R2L k − ω
2 SST SST k − ω V2F k − ω SST

3 V2F V2F SST SST R2LB S2L

4 k − ω k − ω SA SA V2F R2L

5 S2L RST R2L SLR S2L SLR

6 RST S2L V2F R2L SA RST

7 SA R2L S2L RST RST SA

8 R2L SA RST S2L SST V2F

9 S2LB S2LB S2LB R2LB RSTB S2LB

10 R2LB RSTB R2LB RSTB SLR R2LB

11 RSTB R2LB RSTB S2LB S2LB RSTB

1 FULL profile ranking was computed using all of the available PIV data at each location.

2 VSL, viscous sub-layer, ranking was computed using PIV data only in the VSL and buffer regions
of the boundary layer at each location.
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k − ω model did not give the best results in every situation, it gave consistent rather than

varying results in the heat flux valdiation across the three HFS locations. Therefore, it may

be recommended that the k − ω turbulence model be used in CFD simulations of forced

convection flow; recognizing that the results may not be the most accurate at every location,

but the modeling error is more consistent.

From Fig. 5.10, it is apparent that as the flow develops the heat flux predicted by the

turbulence models tends to be in better agreement with the experimental values. The V2F

and k−ω models giving the best and most consistent results when all four validation cases

are considered. This conclusion is in agreement with results found in the literature, where

it was concluded that the V2F model gave the best results [21,22].

In every validation case, the two-layer turbulence models that employed the buoyancy

driven solver performed very poorly in predicting both the streamwise u velocity and the

wall heat flux, giving the worst results in almost every instance of the three validation

assessments. As illustrated by the error plots in Figs. 5.11 and 5.12, the near wall u

velocity was greatly over predicted and the freestream velocity followed the trend of the

experiment but the magnitude was severely under predicted. Performance was better for

the forced convection cases than the mixed, giving values of
∣∣∣ Ẽȳe ∣∣∣avg in the range of 10−25%

and 5 − 25% for the FULL and VSL, respectively; while for the mixed convection cases,

values of
∣∣∣ Ẽȳe ∣∣∣avg were in the range of 20− 35% and 25− 75% for the FULL and VSL. The

significant over prediction of the near-wall flow is suspected to have led to the over predicted

heat flux illustrated in Fig. 5.10 and denoted by the Ẽ
ȳe

values in the range of 20 − 135%

and 110− 230% for the forced and mixed convection cases, respectively.

The buoyancy driven two-layer solver seems ill-suited to solving mixed and forced

convection flows, though significant buoyancy influence is apparent in the turbulent shear

stress profiles in Figs. 5.5 and 5.7. It is reasonable that the buoyancy solver may give

better results for natural convection or buoyant plume situations were the fluid flow is

purely driven by buoyancy forces. Therefore, the results of the two-layer turbulence models

that employed the buoyancy driven solver are neglected in the discussions that follow.
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Table 5.2: Comparison table of the relative error results, without uncertainty bands, of the
heat flux, VSL and FULL validation assessments. The results contained in the bold border
cells are the best results for the given HFS location and validation case.

Heat Flux 
  

M1 M2 F1 F2 
Model 1 2 3 1 2 3 1 2 3 1 2 3 

  

R2L 30.9 65.6 28.7 35.8 27.5 17.3 19.3 -4.4 14.3 4.1 
S2L 26.5 72.3 35.0 35.4 34.8 12.1 11.1 -14.6 16.4 -3.9 
SLR 18.1 16.0 -20.0 21.2 -20.7 -4.3 -14.8 -33.6 -5.3 -22.0 
V2F 48.5 29.6 -11.8 40.2 -9.8 29.2 8.2 -14.1 24.5 -5.5 ݇ − ߱ 26.6 42.8 10.7 31.0 14.1 11.4 14.0 -8.3 11.3 1.5 
SST 34.1 22.8 -18.4 30.9 -14.4 11.1 0.6 -23.9 13.1 -3.1 
RST 40.9 62.4 24.4 39.5 22.6 22.3 20.8 -3.2 18.9 4.3 
SA 29.4 59.1 20.6 32.1 33.5 15.5 24.6 3.1 19.4 18.1 

R2LB 162.4 229.0 142.5 173.1 138.3 132.4 123.1 76.8 122.6 92.4 
S2LB 115.5 166.6 109.0 130.0 108.7 95.0 60.0 21.2 120.0 36.0 
RSTB 172.9 234.6 151.1 174.7 145.8 136.7 132.9 86.1 126.9 99.9 

  

VSL 
  

 M1 M2 F1 F2 
Model 1 2 3 1 2 3 1 2 3 1 2 3 

  

R2L 24.1 23.8 40.7 42.9 30.8 23.0 1.7 7.7 10.9 0.7 4.7 3.7 
S2L 11.4 27.1 43.9 37.4 34.8 26.3 10.4 12.7 17.3 0.7 5.3 9.3 
SLR 8.0 1.7 2.6 28.8 4.2 11.7 13.3 22.5 28.3 6.1 10.9 15.0 
V2F 27.5 7.7 12.2 38.6 12.4 4.9 1.8 12.2 17.3 2.0 1.5 8.5 ݇ − ߱ 21.5 14.5 29.6 43.0 23.5 15.1 2.0 7.1 11.1 2.7 7.4 2.1 
SST 23.9 3.5 6.0 36.9 8.7 6.0 6.9 15.7 22.0 0.8 1.8 7.2 
RST 41.8 12.1 23.1 45.9 16.4 7.9 0.7 15.1 18.1 2.3 4.6 11.3 
SA 30.8 23.5 36.2 44.6 36.9 26.8 1.7 1.6 2.5 10.1 22.0 10.1 

R2LB 51.7 53.5 75.8 72.2 64.0 54.5 5.3 7.0 7.4 6.8 12.9 7.9 
S2LB 24.4 37.4 61.4 48.4 49.7 43.6 16.8 23.2 25.5 6.8 13.2 24.5 
RSTB 58.6 49.7 72.4 70.8 61.7 52.3 9.2 12.2 12.3 9.7 14.4 12.7 

  

FULL 
  

 M1 M2 F1 F2 
Model 1 2 3 1 2 3 1 2 3 1 2 3 

  

R2L 15.8 11.8 19.4 12.6 8.6 11.0 4.9 3.9 7.2 4.6 3.6 7.1 
S2L 13.0 11.5 19.2 10.3 9.0 10.6 5.1 5.6 9.0 4.4 3.5 9.4 
SLR 12.6 6.1 9.5 9.3 5.0 6.1 5.6 4.3 6.4 5.3 3.7 5.0 
V2F 16.4 7.4 11.5 10.5 5.2 6.0 5.1 2.7 4.5 5.2 3.2 4.3 ݇ − ߱ 15.7 9.5 16.3 12.7 6.7 8.7 5.0 2.0 4.6 5.0 4.1 3.3 
SST 15.8 7.3 10.7 11.5 4.7 6.7 5.7 3.0 5.1 4.7 2.4 5.0 
RST 18.9 9.6 15.9 13.7 5.4 8.5 4.9 4.3 7.3 5.2 3.4 7.8 
SA 15.8 10.5 17.6 13.2 9.3 10.5 4.9 1.4 3.7 4.0 7.2 3.6 

R2LB 24.1 21.6 33.5 19.5 17.5 19.7 9.7 11.4 12.8 9.9 15.4 15.6 
S2LB 19.9 20.7 33.3 14.1 15.8 20.7 9.2 14.3 18.4 9.7 18.7 22.8 
RSTB 26.5 23.0 35.4 20.6 18.4 20.9 11.3 13.5 14.8 12.3 18.2 17.7 

  

 < 5%   5-10%   10-15%   15-20%   20-30%   >30%   
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5.3.2 Case Results

5.3.2.1 1st Mixed Case

The u velocity relative error shown in Tables 5.3 and 5.4 depict the pattern of the

turbulence model agreement results as shown in Fig. 5.11. At all three HFS locations the

SLR turbulence model gave the best results, giving excellent results at the second and third

HFS for the VSL in the range of
∣∣∣ Ẽȳe ∣∣∣avg < 3% and 9.5% for FULL. Good results were also

given by the SST and V2F models at the second and third HFS, giving
∣∣∣ Ẽȳe ∣∣∣avg < 13% for

the VSL and FULL assessments.

The SLR model also gave the best wall heat flux results at the first and second HFS,

giving Ẽ
ȳe
≈ 18% at both locations. While the k−ω model gave the best results at the third

HFS with Ẽ
ȳe

= 10.7% as shown in Table 5.5. The V2F model also gave good results at the

third HFS, giving Ẽ
ȳe

= −11.8%.

It is interesting to note from general inspection of the relative error results that good

agreement for the u velocity does not imply good agreement for the heat flux, and vice

versa, as demonstrated by the SLR and k − ω models at the third HFS location where the

k − ω model gave
∣∣∣ Ẽȳe ∣∣∣avg ≈ 30% and ≈ 16% for the VSL and FULL, respectively.

5.3.2.2 1st Forced Case

The FULL assessment results show that good agreement with the experimental u ve-

locity is found by all of the turbulence models at all three HFS locations, giving results in

the range of
∣∣∣ Ẽȳe ∣∣∣avg ≈ 5%. Fig. 5.11 reveals however, that large errors are present in the

near-wall u velocity predicted by most of the models, which is also indicated by the VSL

relative error results. The SA model gave the best results at the second and third HFS

locations, giving excellent results in the range of
∣∣∣ Ẽȳe ∣∣∣avg < 2.5% for the VSL assessment.

At the first HFS, the R2L, V2F, k−ω, RST and SA model all gave excellent results for the

VSL validation. The best results being from the RST model, giving
∣∣∣ Ẽȳe ∣∣∣avg = 0.7%.

The excellent results for the u velocity validations however did not correlate to good

heat flux results in most cases, similar to the occurrence at the third HFS for the M1 case.
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At the first HFS, the SLR model gave the best heat flux relative error, Ẽ
ȳe

= −4.3%, while

only giving
∣∣∣ Ẽȳe ∣∣∣avg = 13.3% for the VSL assessment. And at the second HFS, the SST

model gave the best heat flux result, Ẽ
ȳe

= 0.6%, but gave
∣∣∣ Ẽȳe ∣∣∣avg = 15.7% for the VSL.

While at the third HFS, the SA model gave the best heat flux result in addition to the u

velocity, giving Ẽ
ȳe

= 3.1%. Note also that the R2L and RST models gave excellent results

for the heat flux assessment at HFS three despite giving poorer results for the u velocity.

5.3.2.3 2nd Mixed Case

The FULL relative error results show that fair agreement is found by all the turbulence

models with the experiment, giving
∣∣∣ Ẽȳe ∣∣∣avg < 14% with the extreme values generally from

the results at the first HFS. As with the M1 case, the best results are given by the SLR, SST

and V2F models. The SLR gave the best results in FULL, VSL and heat flux assessments

at the first HFS, giving values of
∣∣∣ Ẽȳe ∣∣∣avg = 9.3%, 28.8% and Ẽ

ȳe
= 21.2%, respectively. And

at the third HFS, the V2F model also gave the best results for all three assessments, giving

values of
∣∣∣ Ẽȳe ∣∣∣avg = 6%, 4.9% and Ẽ

ȳe
= −9.8%, respectively.

Note that the heat flux relative error results, Ẽ
ȳe

, of the M1 and M2 cases are relatively

equivalent for most of the turbulence models. A likely reason for this equivalence was

mentioned earlier. The lower fluid velocity allowed the heat in the plate to be conducted

axially rather than being convected away, which allowed the heated plate to become more

uniform in temperature (see Fig. 3.14). Therefore, the two cases to have similar boundary

conditions and results.

5.3.2.4 2nd Forced Case

As with the F1 case, very good general agreement is found by all of the turbulence

models from the FULL assessment results, giving results in the range of
∣∣∣ Ẽȳe ∣∣∣avg ≈ 5%. In

contrast to the F1 results however, good agreement was also found by all the turbulence

models in the VSL assessment, with the worst models giving results in the range of
∣∣∣ Ẽȳe ∣∣∣avg ≈

10% and the best giving
∣∣∣ Ẽȳe ∣∣∣avg ≈ 2%. This greater level of agreement with experiment is

evident in Fig. 5.12 when compared with Fig. 5.11.
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For the heat flux assessment, the SLR gave the best results at the first HFS location,

giving Ẽ
ȳe

= −5.3%. The k − ω model performed best at the third HFS, giving Ẽ
ȳe

= 1.5%,

but the R2L, S2L, V2F, SST and RST models also showed excellent agreement.

It is unclear why the CFD turbulence models were more capable of predicting the fluid

velocity and heat flux of the F2 flow over the F1 flow. Better results were expected for

the F1 flow, because its thermal boundary condition presented a less difficult situation to

model than the F2 thermal condition. It is recommended that future research be conducted

to investigate this result.
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Ẽ
(m

/s
)

0

0.1

0.2

0.3

0.4

0.5

U
n
certain

ty
(m

/s)

Fig. 5.12: Streamwise velocity (u) error of each turbulence model for the M2 (top) and F2
(bottom) validation case at HFS location 3.



76

T
ab

le
5
.3

:
F

U
L

L
A

ss
es

sm
en

t:
R

el
a
ti

v
e

er
ro

r
of
u

ve
lo

ci
ty

fo
r

ea
ch

tu
rb

u
le

n
ce

m
o
d

el
an

d
va

li
d

at
io

n
ca

se
w

it
h

95
%

co
n

fi
d

en
ce

in
d

ic
a
to

r
a
t

th
e

th
ir

d
H

F
S

lo
ca

ti
on

.

M
1

F
1

M
2

F
2

M
o
d
el

A
ve

ra
ge

(%
)

M
a
x
im

u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

R
2
L

1
9.

4
±

3.
2

38
0.

3
±

62
.0

7.
2
±

2.
2

54
.4
±

71
.7

11
.0
±

3.
5

30
.1
±

62
.1

7.
1
±

2.
4

9.
3
±

1.
5

S
2L

1
9.

2
±

3.
2

39
1.

8
±

62
.0

9.
0
±

2.
2

58
.2
±

71
.7

10
.6
±

3.
5

29
.0
±

7.
9

9.
4
±

2.
4

12
.9
±

1.
3

S
L

R
9.

5
±

3.
2

24
1.

3
±

62
.0

6.
4
±

2.
2

68
.0
±

71
.7

6.
1
±

3.
5

50
.9
±

62
.1

5.
0
±

2.
4

27
.6
±

26
.8

V
2F

1
1.

5
±

3.
2

27
9.

9
±

62
.0

4.
5
±

2.
2

58
.4
±

71
.7

6.
0
±

3.
5

44
.5
±

62
.1

4.
3
±

2.
4

10
.9
±

26
.8

k
−
ω

1
6.

3
±

3.
2

33
0.

6
±

62
.0

4.
6
±

2.
2

56
.5
±

71
.7

8.
7
±

3.
5

36
.5
±

62
.1

3.
3
±

2.
4

5.
3
±

2.
0

S
S
T

1
0.

7
±

3.
2

25
4.

1
±

62
.0

5.
1
±

2.
2

63
.3
±

71
.7

6.
7
±

3.
5

47
.4
±

62
.1

5.
0
±

2.
4

9.
6
±

26
.8

R
S
T

1
5.

9
±

3.
2

33
7.

7
±

62
.0

7.
3
±

2.
2

55
.4
±

71
.7

8.
5
±

3.
5

36
.5
±

62
.1

7.
8
±

2.
4

11
.6
±

11
.6

S
A

1
7.

6
±

3.
2

35
3.

0
±

62
.0

3.
7
±

2.
2

51
.3
±

71
.7

10
.5
±

3.
5

30
.5
±

7.
9

3.
6
±

2.
4

17
.5
±

18
.6

R
2
L

B
3
3.

5
±

3.
2

80
1.

7
±

62
.0

12
.8
±

2.
2

18
.0
±

1.
4

19
.7
±

3.
5

92
.8
±

39
.8

15
.6
±

2.
4

50
.2
±

26
.8

S
2L

B
3
3.

3
±

3.
2

71
0.

1
±

62
.0

18
.4
±

2.
2

37
.2
±

71
.7

20
.7
±

3.
5

77
.0
±

39
.8

22
.8
±

2.
4

33
.3
±

1.
5

R
S
T

B
3
5.

4
±

3.
2

88
9.

7
±

62
.0

14
.8
±

2.
2

21
.9
±

1.
8

20
.9
±

3.
5

10
9.

3
±

46
.0

17
.7
±

2.
4

58
.0
±

26
.8



77

T
ab

le
5.

4:
V

S
L

A
ss

es
sm

en
t:

R
el

at
iv

e
er

ro
r

of
u

ve
lo

ci
ty

fo
r

ea
ch

tu
rb

u
le

n
ce

m
o
d

el
an

d
va

li
d

at
io

n
ca

se
w

it
h

95
%

co
n

fi
d

en
ce

in
d

ic
at

or
a
t

th
e

th
ir

d
H

F
S

lo
ca

ti
o
n

.

M
1

F
1

M
2

F
2

M
o
d
el

A
ve

ra
ge

(%
)

M
a
x
im

u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

A
ve

ra
ge

(%
)

M
ax

im
u
m

(%
)

R
2
L

40
.7
±

1
1.

8
72

.4
±

28
.5

10
.9
±

6.
7

18
.2
±

12
.9

23
.0
±

11
.5

26
.0
±

7.
9

3.
7
±

6.
7

6.
2
±

3.
7

S
2L

43
.9
±

1
1.

8
76

.5
±

28
.5

17
.3
±

6.
7

24
.6
±

12
.9

26
.3
±

11
.5

29
.0
±

7.
9

9.
3
±

6.
7

10
.8
±

3.
7

S
L

R
2
.6
±

11
.8

22
.6
±

28
.5

28
.3
±

6.
7

41
.0
±

12
.9

11
.7
±

11
.5

24
.9
±

19
.6

15
.0
±

6.
7

20
.1
±

11
.3

V
2F

12
.2
±

1
1.

8
35

.9
±

28
.5

17
.3
±

6.
7

26
.0
±

12
.9

4.
9
±

11
.5

15
.5
±

19
.6

8.
5
±

6.
7

8.
3
±

3.
7

k
−
ω

29
.6
±

1
1.

8
55

.7
±

28
.5

11
.1
±

6.
7

20
.5
±

12
.9

15
.1
±

11
.5

19
.2
±

7.
9

2.
1
±

6.
7

4.
0
±

3.
7

S
S
T

6
.0
±

11
.8

27
.2
±

28
.5

22
.0
±

6.
7

33
.2
±

12
.9

6.
0
±

11
.5

19
.5
±

19
.6

7.
2
±

6.
7

7.
6
±

3.
7

R
S
T

23
.1
±

1
1.

8
53

.7
±

28
.5

18
.1
±

6.
7

23
.9
±

12
.9

7.
9
±

11
.5

10
.3
±

7.
9

11
.3
±

6.
7

11
.6
±

3.
7

S
A

36
.2
±

1
1.

8
63

.5
±

28
.5

2.
5
±

6.
7

11
.6
±

12
.9

26
.8
±

11
.5

30
.5
±

7.
9

10
.1
±

6.
7

15
.6
±

11
.3

R
2L

B
75

.8
±

1
1.

8
16

2
.0
±

28
.5

7.
4
±

6.
7

11
.6
±

3.
3

54
.5
±

11
.5

67
.8
±

19
.6

7.
9
±

6.
7

12
.6
±

11
.3

S
2L

B
61

.4
±

1
1.

8
13

9
.1
±

28
.5

25
.5
±

6.
7

27
.8
±

3.
3

43
.6
±

11
.5

55
.0
±

19
.6

24
.5
±

6.
7

28
.6
±

3.
7

R
S
T

B
72

.4
±

1
1.

8
16

9
.4
±

28
.5

12
.3
±

6.
7

18
.7
±

3.
3

52
.3
±

11
.5

74
.9
±

19
.6

12
.7
±

6.
7

19
.6
±

3.
7



78

T
ab

le
5
.5

:
H

ea
t

fl
u

x
re

su
lt

s
fo

r
ea

ch
tu

rb
u
le

n
ce

m
o
d

el
an

d
va

li
d

at
io

n
ca

se
w

it
h

re
la

ti
ve

er
ro

r
(Ẽ
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5.4 Grid Convergence Results

Values for the grid sizes N , characteristic cell size h, and step size ratios r for each of

the four validation cases are shown in Table 5.6. Results from the GCI method for grid

refinement outlined in Chapter 3 are tabulated in Tables 5.7–5.11 for the heat flux and u

velocity at the third HFS of each validation case. The GCI method results for the other

HFS locations are contained in Appendix D. Note that the tabulated GCI results for the u

velocity illustrate the global character of each turbulence model, showing the global order

of accuracy, pavg, the maximum discretization error found in the velocity profile, GCIfine,

and the percentage of the velocity profile where oscillatory convergence occurred.

In Tables 5.7–5.11, the values listed for the GCIfine index for each turbulence model

can be considered the amount of error in the CFD solution due to the level of refinement

in the mesh. For example, from Table D.3, based off the three different characteristic

cell sizes used in the simulations for the SLR M2 case, one can expect the value for the

simulated wall heat flux to be within 28.64% of φ1 = 1392.9 W/m2 as the characteristic cell

size approaches zero. In this particular case, because the discretization error is similar in

magnitude to the relative error between the experimental value and the SLR CFD solution,

Ẽ
ȳe

= 20%, the error due to grid refinement is significant and therefore must be considered

among other possible sources of error; such as turbulence modeling, boundary conditions,

etc. This example however, illustrates a discretization error outside the general norm seen

in the GCI results. The GCI values shown in the tabulated results are generally in the

range of GCIfine ≈ 1.0% and most being less than 0.5%, for both the heat flux and u

velocity, implying that the error due to grid refinement is insignificant in comparison with

other error sources.

The exceptions to the general results are given by the SLR, S2L and S2LB turbulence

models. The SLR model GCI results only varied significantly from 1.0% at the first HFS

location, whereas the S2L and S2LB models varied significantly in almost every instance.

Also, note that the max u velocity discretization error in the range of GCIfine ≈ 15% listed

in Table D.5 for the M2 case is relative to an isolated near-wall location in the velocity
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profile. The general results for the discretization error in that case are in agreement with

those shown in the other tabulated results, where the max GCIfine is less than 1.0%.

The level of grid refinement in this study was sufficiently refined that, at a few instances,

the GCI method for estimation of the discretization error was invalid, see Section 3.1.4. For

example, from Table D.3, the three simulations used to predict the wall heat flux at the first

HFS gave φ1 = 1561.1, φ2 = 1559.6 and φ3 = 1558.1 W/m2; clearly denoting a nearly grid

converged solution. However, the discretization error was estimated as GCIfine = 73.86%

with an order of accuracy of p = 0.0027. The occurrence of situations where the GCI

method is invalid shows that the level of refinement required to achieve a CFD solution

with negligible discretization error varies between turbulence models.

Table 5.6: Grid size N , characteristic cell size h and grid ratios used for the GCI method.

Parameter M1 F1 M2 F2

N1 20,482,880 24,686,420 20,930,580 26,680,500

N2 9,290,400 11,095,866 9,423,594 11,907,828

N3 4,333,500 5,133,375 4,443,494 5,475,734

h1 (m3) 2.3087E-9 1.5247E-9 2.3099E-9 1.5207E-9

h2 (m3) 4.2697E-9 2.8259E-9 4.2923E-9 2.8385E-9

h3 (m3) 7.7814E-9 5.1863E-9 7.8263E-9 5.2090E-9

r21 1.849 1.853 1.858 1.867

r32 1.822 1.835 1.823 1.835
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Chapter 6

Conclusion

This study found that the SLR turbulence model was most capable of predicting mixed

convection flow, predicting the experimental heat flux values within Ẽ
ȳe
≈ 20% and the FULL

and VSL velocity profiles within
∣∣∣ Ẽȳe ∣∣∣avg ≈ 10% and 3%, respectively. For forced convection

flow, results varied depending on the thermal state of the heated plate boundary condition,

though more consistent results were found at the third HFS where the flow was more

developed thermally. The SA turbulence model predicted the u velocity very well in the F1

case for both the FULL and VSL assessments, predicting the velocity within
∣∣∣ Ẽȳe ∣∣∣avg ≈ 5%

and 2.5% of the experiment, respectively. While for F2 case, many of the turbulence models

were able to predict the u velocity and the heat flux at the third HFS very well. Overall, it

was deduced that for forced convection the k − ω model gave the most consistent results,

simulating the experimental heat flux within Ẽ
ȳe
≈ 15% and the FULL and VSL u velocity

profiles within
∣∣∣ Ẽȳe ∣∣∣avg ≈ 5% and 10%, respectively.

The study results showed that the SLR turbulence model was most capable of predicted

the wall heat flux in the developing thermal boundary layer, for both mixed and forced

convection, simulating the mixed convection heat flux within Ẽ
ȳe
≈ 20% and the forced

convection heat flux within Ẽ
ȳe
≈ 5%. Also, as the flow developed along the test section

the V2F and k − ω models gave more consistent and accurate predictions of the wall heat

flux than the other turbulence models, see Fig. 5.10, simulating the experiment within

Ẽ
ȳe
≈ 15%.

The GCI method estimation of the discretization error for the simulated wall heat flux

and u velocity was generally within 1.0%; exceptions often occurring by the S2L, S2LB,

and SLR turbulence models, particularly at the first HFS location. Most of the estimated

discretization errors were within 0.5%, indicating excellent grid convergence in the CFD
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simulations.

6.1 Sources of CFD Uncertainty

Versteeg [7] cites the main sources of error and uncertainty that are prevalent in CFD.

Causes of error include: numerical, coding and user errors. Numerical errors refer to round-

off, iterative convergence and discretization errors; coding errors refer to mistakes in the

software, which are inherent in unverified CFD code; and user errors refer to human er-

rors made through incorrect use of the software. For this study, the verified STAR-CCM+

software was executed in double precision by an individual competent in CFD simulation

and the ASME iterative convergence threshold was upheld by all of the CFD simulations

performed; except for the intermittency transport equation included in the SST turbulence

model simulations. The numerical discretization cause of error however, must be considered.

The grid convergence results from the GCI method showed that the error due to dis-

cretization in many instances was insignificant compared to other sources of error. However,

for the SLR turbulence model, there were many instances where the discretization error was

greater than the estimated 1.0% uncertainty noted for the PIV data in Chapter 2, where

GCIfine values were found in the 1.2− 3% range for the forced convection cases. Further-

more, for the F1 and M2 cases, discretization errors in excess of the experimental uncertainty

were found for the heat flux calculated, see Tables D.2 and D.3. These discrepancies are

significant because the SLR model was found to give the best results for the wall heat flux

at the HFS location in question; meaning that, due to the uncertainty implied by the large

discretization error, the SLR model may not be the most capable model in predicting the

heat flux in the developing thermal boundary layer.

Mesh discretization as a source of error in this study, though generally only significant

in a few instances, is mainly due to the solution of the CFD turbulence models over the same

set of three discretized meshes for each validation case. The uniformity in the mesh between

the model simulations eliminated sources of error in the validation study based on the mesh

discretization and therefore the simulation boundary conditions. However, each turbulence

model requires a different level of mesh refinement in order to obtain a solution where



86

discretization error is negligible. Therefore, as a result of the mesh uniformity between

the turbulence models some of the CFD solutions contain discretization error that is not

negligible. This is in conflict with the mean comparison validation method implemented in

this study, which assumes the discretization error is negligible. Thus, for the turbulence

models with significant discretization error in their solutions, the modeling error confidence

intervals reported do not account for the significant discretization error. However, because

the discretization error is negligible for most of the turbulence model solutions, the mesh

uniformity revealed which models require more or less mesh refinement and subsequently

require a greater or lesser computational cost. It is therefore apparent that the SLR model

requires additional mesh refinement, particularly in the region around the first HFS location,

while the level of mesh refinement implemented is sufficient for the SA, V2F and k−ω models

mentioned above.

From Versteeg, causes of uncertainty include: input and physical model uncertainty.

Input uncertainty refers to inaccuracies due to limited information or approximate rep-

resentation of geometry, boundary conditions, material properties, etc. Physical model

uncertainty refers to discrepancies between real flows and CFD due to inadequate represen-

tation of physical or chemical processes (e.g. turbulence) or due to simplifying assumptions

in the modeling process (e.g. incompressible flow, steady flow).

While neither input or physical model uncertainty can be neglected in this study, it is

the author’s belief that the most significant uncertainties in the CFD simulations presented

in this study are due to the turbulence modeling. The fluid flow in the mixed convection

cases was predicted to be considerably more turbulent than the experiment. As discussed

earlier, the fluid flow appears to be transitional and not fully turbulent, thus the discrepan-

cies between the model and experiment are reasonable because the turbulence models were

used to solve a flow for which they were not formulated. In the forced convection cases,

the u velocity error plots show that the turbulence models fail to duplicate the near-wall

viscous flow, where there is a small buoyancy influence. Failure of the model to accurately

account for buoyancy would affect the heat transfer predicted, thus the inconsistency of
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the turbulence models in predicting the forced convection wall heat flux seems reasonable.

This conclusion is in agreement with turbulence model assessments cited in the literature

review [22, 23], where it was shown that the predicted turbulent kinetic energy, turbulent

dissipation rate, and damping functions of turbulence models failed to duplicate those found

in DNS studies.

As for input uncertainty, both the inlet and outlet boundary conditions are of concern.

The velocity and turbulence profiles mapped onto the simulation velocity inlet were dis-

cussed in Chapter 3. It was assumed that the transverse velocities were equivalent, w = v,

which was investigated in the freestream by comparison of PIV results from two orthogonal

planes. However, it is possible that the transverse velocities in the boundary layer are not

equivalent, which is pertinent because the boundary-layer flow was under investigation in

this study. Additionally, the interpolation of the PIV velocity to a finer grid may have

compounded the incorrect velocity and turbulence gradients. Thus the large discrepancies

found in the results for the first HFS location may be due to the incorrect inlet conditions

rather than any fault of the turbulence model.

The outlet boundary condition is of concern due to the zero gauge pressure enforced.

As noted previously, this pressure specification is inaccurate because the simulation exit

plane is not coincident with the RoBuT outlet to the ambient lab atmosphere, see Fig. 2.2.

Though the simulated pressure drop is small, in the range of 5.0 Pa for both forced and

mixed convection cases, this inaccurate pressure specification may be a concern due to its

relation with the buoyancy influence predicted in the flow through the compressible ideal

gas physics model. Direct measurement of the pressure at the inlet and outlet of the RoBuT

test section in future studies would eliminate this concern.

6.2 Concluding Remarks

Computational fluid dynamics is an impressive tool in analyzing and modeling real

world problems. However, it has its limitations, many of which due to turbulence modeling.

In attempting to resolve the non-linearities that arise in the governing differential equations,

turbulence models will never be exact. However, the insight obtained from CFD by visual-
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izing and analyzing complex flows with little or no experimental validation is desirable in

almost any industry today.

In this study, CFD turbulence models were able to model the overall behavior of fluid

flow exhibiting forced and mixed convection heat transfer. For mixed convection, of the

turbulence models validated, the SLR model was most adept at predicting the near-wall u

velocity profile and heat flux; though consideration must be given to the level of uncertainty

in its results due to discretization and modeling error. In modeling forced convection flow,

the SLR model was most suited to predicting the developing thermal boundary layer heat

flux. Additionally, if the heat transfer being modeled originates from a more ideal thermal

boundary, one could expect excellent prediction of the near-wall u velocity and fully devel-

oped flow heat flux from the SA turbulence model. Overall, the V2F and k−ω models may

be recommended for predicting the fully developed flow and heat transfer. It is worth not-

ing that despite the relative differences between simulated and experimental values, CFD

simulations can be used to predict values on or near the same order of magnitude as the real

life values one is investigating, which is especially useful if experimentation is impossible.
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Prandtl Number,” Wärme- und Stoffübertragung , Vol. 22, 1988, pp. 159–168.

[30] Oberkampf, W. L., and Roy, C. J., Verification and Validation in Scientific Computing ,
Cambridge University Press, New York, 2010, pp. 369–670.

[31] USER GUIDE STAR-CCM+ Version 8.04.007 , CD-adapco, 2013.

[32] Chapra, S. C., and Canale, R. P., Numerical Methods for Engineers, 6th ed., McGraw-
Hill, New York, 2010.

[33] Celik, I. B., Ghia, U., Roache, P. J., and Freitas, C. J., “Procedure for Esti-
mation and Reporting of Uncertainty Due to Discretization in CFD Applications,”
http://journaltool.asme.org/Content/JFENumAccuracy.pdf, 2008, access 5/15/2013.

[34] Jones, W. P., and Launder, B. E., “The Prediction of Laminarization with a Two-
Equation Model of Turbulence,” International Journal of Heat and Mass Transfer ,
Vol. 15, 1972, pp. 301–314.

[35] Lien, F. S., Chen, W. L., and Leschziner, M. A., “Low-Reynolds Number Eddy-
Viscosity Modelling based on Non-Linear Stress-Strain/Vorticity Relations,” Proceed-
ings of the 3rd Symposium on Engineering Turbulence Modelling and Measurements,
Vol. 1, Crete, Greece, May 1996, pp. 27–29.

[36] Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., and Zhu, J., “A New k − ε Eddy
Viscosity Model for High Reynolds Number Turbulent Flows – Model Development
and Validation,” 1994, NASA TM 106721.



92

[37] Davidson, L., Nielson, P. V., and Sveningsson, A., “Modifications of the v̄2 − f Model
for Computing the Flow in a 3D Wall Jet,” Turbulence, Heat and Mass Transfer 4 ,
edited by K. Hanjalic̀, Y. Nagano, and M. Tummers, Begell House, Antalya, Turkey,
2003.

[38] Lien, L. S., Kalitzin, G., and Durbin, P. A., “RANS Modeling for Compressible and
Transitional Flows,” Center for Turbulence Research - Proceedings of the Summer Pro-
gram, Stanford, CA, 1998.

[39] Durbin, P. A., “On the k − ε Stagnation Point Anomaly,” International Journal of
Heat and Fluid Flow , Vol. 17, 1996, pp. 89–90.

[40] Wilcox, D. C., Turbulence Modeling for CFD , 2nd ed., DCW Industries, Inc, La
Canada, CA, 1998.

[41] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Modeling for Engineering
Applications,” AIAA Journal , Vol. 32, No. 8, 1994, pp. 1598–1605.

[42] Spalart, P. R., and Allmaras, S. R., “A One-Equation Turbulence Model for Aerody-
namic Flows,” 1992, AIAA-92-0439.

[43] Sharp, K. V., and Adrian, R. J., “PIV Study of Small-Scale Flow Structure around
a Rushton Turbine,” American Institute of Chemical Engineers, Vol. 47, No. 4, 2001,
pp. 766–778.

[44] Roache, P. J., Ghia, K. N., and White, F. M., “Journal of Fluids En-
gineering Editorial Policy Statement on the Control of Numerical Accuracy,”
http://journaltool.asme.org/Content/JFENumAccuracy.pdf, 1986, access 5/15/2013.

[45] Standard for Verification and Validation in Computational Fluid Dynamics and Heat
Transfer , The American Society of Mechanical Engineers, New York, 2009.

[46] Beckwith, T. G., Marangoni, R. D., and V, J. H. L., Mechanical Measurements, 6th
ed., chap. 3, Pearson Prentice Hall, Upper Saddle River, NJ, 2007, p. 58.



93

Appendices



94

Appendix A

Inlet Velocity Profiles

A.1 M1

Fig. A.1: u velocity mapped onto the velocity inlet of the computational domain for the
M1 validation case.
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Fig. A.2: v and w velocity mapped onto the velocity inlet of the computational domain for
the M1 validation case.

A.2 F1

Fig. A.3: u velocity mapped onto the velocity inlet of the computational domain for the F1
validation case.
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Fig. A.4: v and w velocity mapped onto the velocity inlet of the computational domain for
the F1 validation case.

A.3 M2

Fig. A.5: u velocity mapped onto the velocity inlet of the computational domain for the
M2 validation case.
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Fig. A.6: v and w velocity mapped onto the velocity inlet of the computational domain for
the M2 validation case.
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Appendix B

Inlet Turbulence Profiles

B.1 M1

Fig. B.1: Turbulent kinetic energy (k) mapped onto the velocity inlet of the computational
domain for the M1 validation case.
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Fig. B.2: Turbulent dissipation rate (ε) mapped onto the velocity inlet of the computational
domain for the M1 validation case.

Fig. B.3: Specific turbulent dissipation rate (ω) mapped onto the velocity inlet of the
computational domain for the M1 validation case.
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Fig. B.4: Modified turbulent diffusivity (ν̃) mapped onto the velocity inlet of the computa-
tional domain for the M1 validation case.

B.2 M2

Fig. B.5: Turbulent kinetic energy (k) mapped onto the velocity inlet of the computational
domain for the M2 validation case.
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Fig. B.6: Turbulent dissipation rate (ε) mapped onto the velocity inlet of the computational
domain for the M2 validation case.

Fig. B.7: Specific turbulent dissipation rate (ω) mapped onto the velocity inlet of the
computational domain for the M2 validation case.
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Fig. B.8: Modified turbulent diffusivity (ν̃) mapped onto the velocity inlet of the computa-
tional domain for the M2 validation case.

B.3 F2

Fig. B.9: Turbulent kinetic energy (k) mapped onto the velocity inlet of the computational
domain for the F2 validation case.
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Fig. B.10: Turbulent dissipation rate (ε) mapped onto the velocity inlet of the computational
domain for the F2 validation case.

Fig. B.11: Specific turbulent dissipation rate (ω) mapped onto the velocity inlet of the
computational domain for the F2 validation case.
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Fig. B.12: Modified turbulent diffusivity (ν̃) mapped onto the velocity inlet of the compu-
tational domain for the F2 validation case.
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Appendix C

Validation Results: HFS 2 & 3
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Fig. C.1: Streamwise velocity (u) error of each turbulence model for the M1 (top) and F1
(bottom) validation case at HFS location 1.
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Fig. C.2: Streamwise velocity (u) error of each turbulence model for the M2 (top) and F2
(bottom) validation case at HFS location 1.
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Ẽ
(m

/s
)

0

0.1

0.2

0.3

0.4

0.5

U
n
certain

ty
(m

/s)
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/ȳ

e

M
o
d

el
(W
/m

2
)

(W
/m

2
)

(%
)

(W
/m

2
)

(W
/m

2
)

(%
)

(W
/m

2
)

(W
/m

2
)

(%
)

(W
/m

2
)

(W
/m

2
)

(%
)

R
2L

14
5
7
.4

11
1
3
.1

30
.9

20
64

.1
17

59
.5

17
.3

15
61

.1
11

49
.3

35
.8

23
09

.9
20

20
.7

14
.3

S
2L

14
0
8
.1

26
.5

19
72

.8
12

.1
15

55
.9

35
.4

23
51

.9
16

.4

S
L

R
13

1
4
.5

18
.1

16
83

.8
-4

.3
13

92
.9

21
.2

19
14

.6
-5

.3

V
2F

16
5
2
.8

48
.5

22
72

.7
29

.2
16

10
.9

40
.2

25
16

.7
24

.5

k
−
ω

14
0
8
.7

26
.6

19
60

.3
11

.4
15

05
.8

31
.0

22
49

.5
11

.3

S
S

T
14

9
2
.3

34
.1

19
55

.4
11

.1
15

04
.7

30
.9

22
85

.4
13

.1

R
S

T
15

6
8
.6

40
.9

21
52

.2
22

.3
16

02
.8

39
.5

24
02

.1
18

.9

S
A

14
4
0
.6

29
.4

20
33

.1
15

.5
15

18
.0

32
.1

24
12

.6
19

.4

R
2
L

B
29

2
0
.7

16
2.

4
40

88
.8

13
2.

4
31

38
.4

17
3.

1
44

97
.5

12
2.

6

S
2L

B
23

9
9
.0

11
5.

5
34

31
.8

95
.0

26
42

.8
13

0.
0

44
44

.6
12

0.
0

R
S

T
B

30
3
7
.7

17
2.

9
41

64
.2

13
6.

7
31

56
.7

17
4.

7
45

84
.4

12
6.

9

U
n

ce
rt

a
in

ty
±

2
2.

8
±

2.
0

±
35

.3
±

2.
0

±
23

.0
±

2.
0

±
40

.4
±

2.
0



112

0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Ẽ
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Table C.6: Heat flux results for each turbulence model and validation case with relative
error (Ẽ/ȳe) and uncertainty at the second HFS location.

M1 F1

ym ȳe Ẽ/ȳe ym ȳe Ẽ/ȳe

Model (W/m2) (W/m2) (%) (W/m2) (W/m2) (%)

R2L 966.7 583.8 65.6 1456.5 1220.9 19.3

S2L 1005.8 72.3 1356.7 11.1

SLR 676.9 16.0 1040.2 -14.8

V2F 756.4 29.6 1320.9 8.2

k − ω 833.9 42.8 1391.6 14.0

SST 716.9 22.8 1228.5 0.6

RST 948.3 62.4 1457.4 20.8

SA 292.0 59.1 1521.3 24.6

R2LB 1920.4 229.0 2724.1 123.1

S2LB 1556.2 166.6 1953.0 60.0

RSTB 1953.5 234.6 2844.0 132.9

Uncertainty ± 12.2 ± 2.1 ± 27.6 ± 2.3
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Appendix D

GCI Results: HFS 2 & 3
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Appendix E

Examples of Converged Residuals

Fig. E.1: Converged residuals of the R2L simulation.

Fig. E.2: Converged residuals of the S2L simulation.
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Fig. E.3: Converged residuals of the SLR simulation.

Fig. E.4: Converged residuals of the V2F simulation.
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Fig. E.5: Converged residuals of the k − ω simulation.

Fig. E.6: Converged residuals of the SST simulation.
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Fig. E.7: Converged residuals of the RST simulation.

Fig. E.8: Converged residuals of the SA simulation.
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Fig. E.9: Converged residuals of the R2LB simulation.

Fig. E.10: Converged residuals of the S2LB simulation.
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Fig. E.11: Converged residuals of the RSTB simulation.
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Appendix F

Experimental Heat Flux Readings & Statistics

The heat flux sensor readings that where taken during the RoBuT experiments for each

validation case are presented in the following sections along with the respective uncertainty

calculations. Note that multiple readings where only recorded for the M1 and F1 validation

cases. For the M2 and F2 cases, only a single reading was taken; thus only the bias

uncertainty was used in the modeling error confidence intervals.

F.1 M1

For the M1 case, the heat flux sensor measurements were recorded from each of the

nine profile measurements for the inlet velocity as well as the from the three HFS location

measurements, for a total of twelve measurements.

For twelve degrees of freedom, ν + 1 and 95% confidence for a two-tailed distribution,

α/2 = 0.25, the Students t-Distribution gives a probability of tα/2, ν = 2.201 [46]. The

resulting uncertainties for the M1 case are shown in Table F.1 with the specific readings

and statistical values shown in Table F.2.

Table F.1: Uncertainty calculations for M1 validation case.

HFS 1 HFS 2 HFS 3

Bias (B) 22.262 11.675 13.753

P = tα/2, ν · σ√
12

4.733 3.442 3.670

U =
√
B2 + P 2 22.760 12.172 14.234

Relative Error (U/µ) 2.045 2.085 2.070
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Table F.2: Heat flux measurements and bias uncertainty for M1 validation case.

HFS 1 HFS 2 HFS 3

Reading Location Measurement 2% Bias Measurement 2% Bias Measurement 2% Bias

HFS 1 1118.928 22.379 591.448 11.829 698.982 13.980

HFS 2 1121.246 22.425 574.747 11.495 690.108 13.802

HFS 3 1121.750 22.435 589.888 11.798 692.897 13.858

Inlet 1 1109.725 22.195 586.447 11.729 686.937 13.739

Inlet 2 1101.085 22.022 577.420 11.548 684.838 13.697

Inlet 3 1100.198 22.004 576.917 11.538 676.368 13.527

Inlet 4 1106.499 22.130 279.262 11.585 680.528 13.611

Inlet 5 1119.884 22.398 588.179 11.764 689.655 13.793

Inlet 6 1113.044 22.261 585.645 11.713 690.538 13.811

Inlet 7 1117.920 23.358 585.541 11.711 688.452 13.769

Inlet 8 1113.631 22.273 585.801 11.716 685.331 13.707

Inlet 9 1113.256 22.265 583.772 11.675 687.266 13.745

µ∗ 1113.097 22.262 583.756 11.675 687.658 13.753

s 7.450 0.149 5.417 0.108 5.776 0.116
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F.2 F1

For the F1 case, the heat flux sensor measurements was recorded once during the inlet

velocity measurements as well as at the three HFS location measurements, for a total of

four measurements.

For four degrees of freedom, ν + 1 and 95% confidence for a two-tailed distribution,

α/2 = 0.25, the Students t-Distribution gives a probability of tα/2, ν = 3.182 [46]. The

resulting uncertainties for the F1 case are shown in Table F.3 with the specific readings and

statistical values shown in Table F.4.

Table F.3: Uncertainty calculations for F1 validation case.

HFS 1 HFS 2 HFS 3

Bias (B) 35.191 24.418 26.859

P = tα/2, ν · σ√
12

3.096 12.961 6.198

U =
√
B2 + P 2 35.327 27.644 27.565

Relative Error (U/µ) 2.008 2.264 2.053

Table F.4: Heat flux measurements and bias uncertainty for F1 validation case.

HFS 1 HFS 2 HFS 3

Reading Location Measurement 2% Bias Measurement 2% Bias Measurement 2% Bias

HFS 1 1759.223 35.184 1222.187 24.444 1339.146 26.783

HFS 2 1762.222 35.244 1209.993 24.200 1341.975 26.840

HFS 3 1757.568 35.151 1229.728 24.595 1348.396 26.968

Inlet 1759.116 35.182 1221.631 24.433 1342.283 26.846

µ∗ 1759.532 35.191 1220.885 24.418 1342.950 26.859

s 1.946 0.039 8.146 0.163 3.896 0.078
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F.3 M2

For the M2 case, the heat flux was only measured a single time, thus precision un-

certainty is neglected. Table F.5 contains the measured heat flux values and the bias

uncertainties. Note that no heat flux measurement was taken at the second HFS due to the

failed heater in the plate.

Table F.5: Heat flux measurements and bias uncertainty for M2 validation case.

HFS 1 HFS 3

Measurement 1149.270 723.934

2% Bias 22.985 14.479

F.4 F2

For the F2 case, the heat flux was only measured a single time, thus precision un-

certainty is neglected. Table F.6 contains the measured heat flux values and the bias

uncertainties. Note that no heat flux measurement was taken at the second HFS due to the

failed heater in the plate.

Table F.6: Heat flux measurements and bias uncertainty for F2 validation case.

HFS 1 HFS 3

Measurement 2020.670 1389.570

2% Bias 40.413 27.791
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Appendix G

Mesh Generation Code

The format required for the as-built dimension file read into the code is presented along

with the two files used in this study, after which the full FORTRAN code is shown.

G.1 Input File Format

In the example file format below, N is the number of intervals (number of measurements

planes - 1), Planek are the coordinates in X of each measurement plane and the remaining

values in the table are the corresponding as-built measurements from each plane; from left

to right they are: bottom width, middle width, top width, left height, center height and

right height. Reference Fig. 2.3.

N

Plane1 Plane2 · · · Planek

B1 M1 T1 L1 C1 R1

B2 M2 T2 L2 C2 R2

· · ·
...

Bk Mk Tk Lk Ck Rk



133

G.2 Input Files

Table G.1: As-built measurements as of April 5, 2013.

6

0 13.235 24.585 38.085 48.725 65.475 75.76

11.9413 12.0231 12.0095 12.0141 12.0114 12.0373

12.0194 12.0522 12.0702 12.042 12.0494 12.043

12.0524 12.0772 12.074 12.0458 12.0638 12.056

12.0394 12.1008 12.1044 12.0155 12.0489 12.0334

12.0698 12.0964 12.0716 12.0678 12.0746 12.0608

12.073 12.0978 12.0446 12.0604 12.0686 12.055

12.0804 12.071 12.0365 11.9556 12.0241 12.0154

Table G.2: As-built measurements as of June 12, 2013.

6

0 13.285 24.635 38.135 48.775 65.525 75.81

12.005 12.00067 11.996 11.98167 11.99467 11.99067

12.003 12.00733 12.023 12.02017 12.01917 12.02

12.01283 12.027 12.01783 12.02883 12.01717 12.02283

11.996 12.03533 12.03533 12.00317 12.023 12.02767

12.018 12.042 12.03633 12.04033 12.041 12.03367

12.001 12.038 12.0135 12.0435 12.046 12.02533

11.99233 12.0245 12.00467 12.00233 12.01833 12.01917

Note that all of the measurements are in inches.
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G.3 FORTRAN Code

Program TMCWT Mesher

! Desc r ip t i on : This program computes the xyz components o f the
! g r id po int node l o c a t i o n s throughout a g ene r i c r e c tangu la r
! domain . This domain i s s i m i l a r in s i z e to the Rotatable
! Bouyancy Wind Tunnel t e s t s e c t i o n being used f o r the
! f o r c ed and mixed convect ion v a l i d a t i o n study .

! The Coordinate System i s po s i t i oned so that the x ax i s i s
! the a x i a l component that runs down the cente r o f one wal l

I m p l i c i t None

! Integer , Parameter : : IM = 400
! Integer , Parameter : : JM = 154
! Integer , Parameter : : KM = 154
In t eg e r : : i , j , k
In t eg e r : : IM, JM, KM, CCount , AC, MGM, n
In t eg e r : : Quit
Real : : LConv , Tol
Real : : Lx , Ly , Lz
Real : : dxi , deta , dzeta
Real : : xi , eta , zeta
Real : : a , Bx , ByB, ByT, Bz
Real : : xT , yT , zT
Real : : MCS, SGR, HPT, SWT, TWT, IPT
Real , Dimension ( : , : , : ) , A l l o ca tab l e : : X, Y, Z
Real , Dimension ( : ) , A l l o ca tab l e : : xPlane
Real , Dimension ( : , : ) , A l l o ca tab l e : : fP lane
Real , Dimension ( : , : , : ) , A l l o ca tab l e : : ACoeff
Real , Dimension (3 , 2 , 3 ) : : PCoeff
Real , Dimension (2 , 7 ) : : PCoord
Character (30) : : TSFilename

Tol = 1 .0E−15
LConv = 12 ./0 .3048 ! Length conver s ion in /m

! ! Set d e f au l t va lues
TSFilename = ’ Tes tSec t i on 6 . 1 2 . 2 0 1 3 . csv ’
Quit = 0
IM = 150
JM = 60
KM = 60
CCount = 0
AC = 1
MGM = 1
MCS = 0.01*LConv
SGR = 1.05
HPT = (2 . 0E−4)*LConv
SWT = (1 .25E−4)*LConv
TWT = (1 .25E−4)*LConv
IPT = (2 . 5E−3)*LConv
a = 0.5 ! The p lanes w i l l always have two s ided c l u s t e r i n g
Bx = 1.1
ByB = 1 . 1 ; ByT = 1 . 1 ;
Bz = 1.1

Cal l TestSect ion User Input ( )
Cal l Te s tSe c t i on F i l e Input ( )
Cal l Ax ia lSp l ine (n , xPlane , fPlane )

Write (* , ’ (/ ,A) ’ ) ’ Computing the mesh parameters . . . ’
Ca l l MeshParam ()

A l l o ca t e ( X(IM,JM,KM) )
Al l o ca t e ( Y(IM,JM,KM) )
Al l o ca t e ( Z(IM,JM,KM) )

I f (AC == 1) Then
Lx = xPlane (n+1)−IPT ! Inches

Else
Lx = xPlane (n+1) ! Inches

End I f
dxi = 1 ./ Real (IM−1) ! i d e l t a
deta = 1 ./ Real (JM−1) ! j d e l t a
dzeta = 1 ./ Real (KM−1) ! k de l t a

! Not ice to user
Write (* , ’ (/ ,A) ’ ) ’ The de l t a va lues are : ’
Write (* , ’ (A, F12 . 8 ) ’ ) ’ dxi = ’ , dxi
Write (* , ’ (A, F12 . 8 ) ’ ) ’ deta = ’ , deta
Write (* , ’ (A, F12 . 8 ) ’ ) ’ dzeta = ’ , dzeta
Write (* , ’ (/ ,A, / ) ’ ) ’ Meshing . . . ’

! Generate the Mesh
Do i = 1 ,IM
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Write (* , ’ (A, I3 ) ’ ) ’ Meshing Plane : ’ , i
I f ( i == 1) Then

x i = 0 .
xT = 0 .

E l s e I f ( i == IM) Then
x i = 1 .
xT = xPlane (n+1)

Else
I f (AC == 1) Then

x i = Real ( i −2)/Real (IM−2)
xT = Lx * ( ( (Bx+1.)−(Bx−1.) * ( ( (Bx+1.) /(Bx−1.) ) **(1.− x i ) ) ) / &

& (1 .+((Bx+1.) /(Bx−1.) )**(1− x i ) ) )+IPT
xi = xT/xPlane (n+1)

Else
x i = Real ( i −1)*dxi
xT = Lx* x i

End I f
End I f

Ca l l P laneSpl ine ( xi , xPlane , ACoeff , PCoeff , PCoord )
Do k = 1 , KM

zeta = dzeta *Real (k−1)
I f ( k == KM) zeta = 1 .
Ly = LengthY ( zeta , PCoeff , PCoord )−HPT−TWT
Do j = 1 , JM

eta = deta *Real ( j −1)
I f ( j == JM) eta = 1 .
Lz = LengthZ ( eta , PCoeff , PCoord ) −2.0*SWT

I f ( j == 1) Then
yT = 0 .

E l s e I f ( j == JM) Then
yT = Ly+HPT+TWT

Else
eta = Real ( j −2)/Real (JM−3)
I f ( eta . l e . 0 . 5 ) Then

yT = Ly * ( ( ( 2 . * a+ByB) * ( (ByB+1.) /(ByB−1.) ) ** ( ( eta−a ) /(1.−a ) ) +2.*a−ByB) / &
& ( ( 2 . * a+1.) * (1 .+((ByB+1.) /(ByB−1.) ) ** ( ( eta−a ) /(1.−a ) ) ) ) ) + HPT

Else
yT = Ly * ( ( ( 2 . * a+ByT) * ( (ByT+1.) /(ByT−1.) ) ** ( ( eta−a ) /(1.−a ) ) +2.*a−ByT) / &

& ( ( 2 . * a+1.) * (1 .+((ByT+1.) /(ByT−1.) ) ** ( ( eta−a ) /(1.−a ) ) ) ) ) + HPT
End I f

End I f

I f ( k == 1) Then
zT = −0.5*(Lz+2.0*SWT)

E l s e I f ( k == KM) Then
zT = 0 .5* ( Lz+2.0*SWT)

Else
zeta = Real (k−2)/Real (KM−3)
zT = Lz * ( ( ( 2 . * a+Bz) * ( ( Bz+1.) /(Bz−1.) ) ** ( ( zeta−a ) /(1.−a ) ) +2.*a−Bz) / &

& ( ( 2 . * a+1.) * (1 .+((Bz+1.) /(Bz−1.) ) ** ( ( zeta−a ) /(1.−a ) ) ) ) ) − 0 .5*Lz
End I f

! Store the (x , y , z ) components
X( i , j , k ) = xT/LConv
Y( i , j , k ) = yT/LConv
Z( i , j , k ) = zT/LConv

End Do
End Do

End Do

CCount = IM*JM*KM
Write (* , ’ (/ ,A) ’ ) ’ Mesh Parameters : ’
Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−− ’
Write (* , ’ (A, I10 ) ’ ) ’ C e l l s in X: ’ ,IM
Write (* , ’ (A, I10 ) ’ ) ’ C e l l s in Y: ’ ,JM
Write (* , ’ (A, I10 ) ’ ) ’ C e l l s in Z : ’ ,KM
Write (* , ’ (/ ,A, I10 ) ’ ) ’ Total Ce l l Count : ’ ,CCount

! ! Output the mesh to f i l e
Write (* , ’ (/ ,A) ’ ) ’ Outputing the mesh f i l e . . . ’
! Open(100 , F i l e = ”Mesh . p3d ” , Action = ’ Write ’ , Form = ’ Unformated ’ )
Write (100) IM, JM, KM
!Do i = 1 , IM

Write (100) ( ( (X( i , j , k ) , i = 1 ,IM) , j = 1 ,JM) , k = 1 ,KM) , &
& ( ( (Y( i , j , k ) , i= 1 ,IM) , j = 1 ,JM) , k = 1 ,KM) , &
& ( ( ( Z( i , j , k ) , i = 1 ,IM) , j = 1 ,JM) , k = 1 ,KM)

! End Do
Close (100)

! ! F in i shed
Write (* , ’ (/ ,A) ’ ) ’ Mesh Complete ’

Contains

Subroutine MeshParam ()
! ! This subrout ine uses the modi f ied secant method to so l v e f o r the beta meshing
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! ! parameters r equ i r ed in the mesh .
In t eg e r : : c , j , k , jDim , kDim
Int ege r : : yFlag , zFlag
Real : : Perc
Real : : x , yO, yN, zO , zN , dy , dz

Real : : xD, Del , BxD
Real : : xi , eta , zeta
Real : : Lx , Ly , Lz
Real : : BLMT, TLMT, SLMT
Real : : BLMTD, TLMTD, SLMTD
Real : : yCM, zCM

Del = 0.00001

! ! Axial Mesh Parameter Ca l cu l a t i on s
Write (* , ’ (/ ,A) ’ ) ’ Axial Parameters ’
Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−− ’
Do

I f (AC == 1) Then
Lx = xPlane (n+1)−IPT
Do

x i = 1 ./ Real (IM−2)
Bx = 1.000001
Do c = 1 ,1000

x = Lx * ( ( (Bx+1.)−(Bx−1.) * ( ( (Bx+1.) /(Bx−1.) ) **(1.− x i ) ) ) / &
& (1 .+((Bx+1.) /(Bx−1.) ) **(1.− x i ) ) )−SGR*IPT

BxD = Bx*(1.0+ Del )
xD = Lx * ( ( (BxD+1.)−(BxD−1.) * ( ( (BxD+1.) /(BxD−1.) ) **(1.− x i ) ) ) / &

& (1 .+((BxD+1.) /(BxD−1.) ) **(1.− x i ) ) )−SGR*IPT

! Write (* ,* ) Bx , xN/LConv , (xN−SGR*IPT) /LConv
I f (Abs (x/LConv) . l e . Tol ) Exit

Bx = Bx−Del*Bx*x/(xD−x )
End Do

I f (MGM == 1) Then
x i = Real (IM−3)/Real (IM−2)
x = Lx * ( ( (Bx+1.)−(Bx−1.) * ( ( (Bx+1.) /(Bx−1.) ) **(1.− x i ) ) ) / &

& (1 .+((Bx+1.) /(Bx−1.) ) **(1.− x i ) ) )+IPT
I f ( xPlane (n+1)−x . gt . MCS) Then

IM = IM + 1
Else I f ( xPlane (n+1)−x . l t . 0 .9*MCS) Then

Perc = −0.01+(xPlane (n+1)−x ) /MCS
IM = Floor ( Real (IM) *Perc )

Else
Exit

End I f
Else

Exit
End I f

End Do
End I f

I f ( (AC == 2) . And . (MGM == 1) ) Then
I f ( xPlane (n+1)/Real (IM) . gt . MCS) Then

IM = IM + 1
Else I f ( xPlane (n+1)/Real (IM) . l t . 0 .9*MCS) Then

Perc = −0.01+xPlane (n+1)/Real (IM) /MCS
IM = Floor ( Real (IM) *Perc )

Else
Exit

End I f
Else

Exit
End I f

End Do

Write (* , ’ (A, I10 ) ’ ) ’ IM =’ , IM
Write (* , ’ (A, F8 . 5 ) ’ ) ’ Bx = ’ , Bx

! ! Plane Mesh Parameter Ca l cu l a t i on s
Write (* , ’ (/ ,A) ’ ) ’ Plane Parameters ’
Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−− ’
Do

ByB = 1.000001
ByT = 1.000001
Bz = 1.000001
Do

Cal l Plane MeshParam (ByB*(1.+DEL) ,ByT*(1.0+ Del ) ,Bz*(1.0+ Del ) ,BLMTD,TLMTD,SLMTD,yCM,zCM)
BLMTD = BLMTD−SGR*HPT
TLMTD = TLMTD−SGR*TWT
SLMTD = SLMTD−SGR*SWT
Cal l Plane MeshParam (ByB,ByT, Bz ,BLMT,TLMT,SLMT,yCM,zCM)
BLMT = BLMT−SGR*HPT
TLMT = TLMT−SGR*TWT
SLMT = SLMT−SGR*SWT
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! ! Beta Ca l cu la t i on
I f ( ( Abs (BLMT/LConv) . l e . Tol ) &

& . And . (Abs (TLMT/LConv) . l e . Tol ) &
& . And . (Abs (SLMT/LConv) . l e . Tol ) ) Exit

ByB = ByB − Del*ByB*BLMT/(BLMTD−BLMT)
ByT = ByT − Del*ByT*TLMT/(TLMTD−TLMT)
Bz = Bz − Del*Bz*SLMT/(SLMTD−SLMT)

End Do

! ! Number o f c e l l s (Y, Z) dependent on max c e l l s i z e
I f (MGM == 1) Then

! Y Di r e c t i on
I f (yCM . gt . MCS) Then

JM = JM + 1
yFlag = 0

Else I f (zCM . l t . 0 .9*MCS) Then
JM = JM − 1
yFlag = 0

Else
yFlag = 1

End I f

! Z Di r e c t i on
I f (zCM . gt . MCS) Then

KM = KM + 1
zFlag = 0

Else I f (zCM . l t . 0 .9*MCS) Then
KM = KM − 1
zFlag = 0

Else
zFlag = 1

End I f

! Exit Clause
I f ( yFlag + zFlag == 2) Exit

Else
Exit

End I f
End Do

Write (* , ’ (A, I10 ) ’ ) ’ JM =’ , JM
Write (* , ’ (A, I10 ) ’ ) ’ KM =’ , KM
Write (* , ’ (A, F8 . 5 ,A, F8 . 5 ) ’ ) ’ ByB =’ , ByB, ’ ByT =’ , ByT
Write (* , ’ (A, F8 . 5 ) ’ ) ’ Bz =’ , Bz

End Subroutine MeshParam

Subroutine Plane MeshParam (ByB,ByT, Bz ,BLMT,TLMT,SLMT,yCM,zCM)
Real , In tent ( In ) : : ByB, ByT, Bz
Real , In tent ( Out) : : BLMT, TLMT, SLMT, yCM, zCM

Int ege r : : j , k
Real : : eta , zeta
Real : : Ly , Lz
Real : : dy , dz
Real , Dimension (JM) : : y
Real , Dimension (2 ,JM) : : z

y = 0 . 0 ; z = 0 . 0 ;
yCM = 0 . 0 ; zCM = 0 . 0 ;

Ca l l P laneSpl ine ( 0 . 0 , xPlane , ACoeff , PCoeff , PCoord )

BLMT = 0 . 0 ; TLMT = 0 . 0 ; SLMT = 0 . 0 ;
Do k = 1 ,KM

z ( 1 , : ) = z ( 2 , : )
zeta = Real (k−1)/Real (KM−1)
I f ( k == KM) zeta = 1 .0
Ly = Lengthy ( zeta , Pcoef f , PCoord )−HPT−TWT
Do j = 1 ,JM

eta = Real ( j −1)/Real (JM−1)
I f ( j == JM) eta = 1 .0
Lz = LengthZ ( eta , PCoeff , PCoord ) −2.0*SWT

I f ( j == 1) Then
y (1) = 0 .

E l s e I f ( j == JM) Then
y (JM) = Ly+HPT+TWT

Else
I f ( eta . l e . 0 . 5 ) Then

eta = Real ( j −2)/Real (JM−3)
y ( j ) = Ly * ( ( ( 2 . * a+ByB) * ( (ByB+1.) /(ByB−1.) ) ** ( ( eta−a ) /(1.−a ) ) +2.*a−ByB) / &

& ( ( 2 . * a+1.) * (1 .+((ByB+1.) /(ByB−1.) ) ** ( ( eta−a ) /(1.−a ) ) ) ) ) + HPT
Else

eta = Real ( j −2)/Real (JM−3)
y ( j ) = Ly * ( ( ( 2 . * a+ByT) * ( (ByT+1.) /(ByT−1.) ) ** ( ( eta−a ) /(1.−a ) ) +2.*a−ByT) / &

& ( ( 2 . * a+1.) * (1 .+((ByT+1.) /(ByT−1.) ) ** ( ( eta−a ) /(1.−a ) ) ) ) ) + HPT
End I f
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End I f

I f ( k == 1) Then
z (2 , 1 ) = −0.5*(Lz+2.0*SWT)

E l s e I f ( k == KM) Then
z (2 ,JM) = 0 .5* ( Lz+2.0*SWT)

Else
zeta = Real (k−2)/Real (KM−3)
z (2 , j ) = Lz * ( ( ( 2 . * a+Bz) * ( ( Bz+1.) /(Bz−1.) ) ** ( ( zeta−a ) /(1.−a ) ) +2.*a−Bz) / &

& ( ( 2 . * a+1.) * (1 .+((Bz+1.) /(Bz−1.) ) ** ( ( zeta−a ) /(1.−a ) ) ) ) ) − 0 .5*Lz
End I f

! ! Ca l cu la te the change in Y and Z
I f ( k == 1) z (1 , j ) = z (2 , j )

I f ( j == 1) Then
dy = 0.0

Else
dy = y( j ) − y ( j −1)

End I f
I f ( k == 1) Then

dz = 0 .0
Else

dz = z (2 , j ) − z (1 , j )
End I f

! ! Find max th i ckne s s o f second l ay e r o f f the wal l
! Y Di r e c t i on
I f ( j == 3) Then

I f ( dy . gt . BLMT) BLMT = dy
End I f
I f ( j == JM−1) Then

I f ( dy . gt . TLMT) TLMT = dy
End I f

! Z Di r e c t i on
I f ( k == 3) Then

I f ( dz . gt . SLMT) SLMT = dz
End I f
I f ( k == KM−1) Then

I f ( dz . gt . SLMT) SLMT = dz
End I f

! ! Keep track o f the max c e l l s i z e
I f ( j . ge . 2) Then

I f ( dy . gt . yCM) yCM = dy
End I f
I f ( k . ge . 2) Then

I f ( dz . gt . zCM) zCM = dz
End I f

End Do
End Do

End Subroutine Plane MeshParam

Subroutine TestSect ion User Input ( )
Character (30) : : Rec

Real : : Temp

Write (* , ’ (/ ,A) ’ ) ’Welcome to the TMCWT Test Sect ion Mesher ’
Write (* , ’ (A) ’ ) ’ **************************************** ’

Write (* , ’ (/ ,A,A,A) ’ ) ’ Spec i f y the t e s t s e c t i o n As−Bui l t dimension f i l ename : ( Defau l t : ’ ,Trim(
TSFilename ) , ’ ) ’

Write (* , ’ (A) ’ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
Read (* , ’ (A30) ’ ) Rec

I f ( Rec . ne . ’ ’ ) Then
TSFilename = Rec

EndIf

! ! Create mesh based on # of c e l l s or max c e l l s i z e
Write (* , ’ (/ ,A, I2 ,A) ’ ) ’ Spec i f y the mesh generat i on method : ( Defau l t : ’ ,MGM, ’ ) ’
Write (* , ’ (A) ’ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
Write (* , ’ (A) ’ ) ’ 1) Spec i f y the maximum c e l l s i z e ’
Write (* , ’ (A) ’ ) ’ 2) Spec i f y the number o f c e l l s in each d i r e c t i o n (x , y , z ) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) MGM
End I f
I f (MGM . ne . 1) Then

Read(Rec , * ) MGM
! ! Number o f c e l l s in each coord inate d i r e c t i o n o f the mesh
Write (* , ’ (/ ,A, I4 ,A) ’ ) ’ Input the # of c e l l s d e s i r ed in the x d i r e c t i o n : ( ’ ,IM, ’ ) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) IM
End I f
Write (* , ’ (/ ,A, I4 ,A) ’ ) ’ Input the # of c e l l s d e s i r ed in the y d i r e c t i o n : ( ’ ,JM, ’ ) ’
Read (* , ’ (A30) ’ ) Rec
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I f ( Rec . ne . ’ ’ ) Then
Read(Rec , * ) JM

End I f
Write (* , ’ (/ ,A, I4 ,A) ’ ) ’ Input the # of c e l l s d e s i r ed in the z d i r e c t i o n : ( ’ ,KM, ’ ) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) KM
End I f

Else
! ! Max c e l l s i z e
Write (* , ’ (/ ,A, F5 . 3 ,A) ’ ) ’ Input the max c e l l s i z e : ( ’ ,MCS/LConv , ’ m) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) Temp
MCS = Temp*LConv

End I f
End I f

! ! C lus te r in the Axial D i r e c t i on
Write (* , ’ (/ ,A, I2 ,A) ’ ) ’ Spec i f y a x i a l mesh c l u s t e r i n g method : ( Defau l t : ’ ,AC, ’ ) ’
Write (* , ’ (A) ’ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
Write (* , ’ (A) ’ ) ’ 1) One−s ided c l u s t e r i n g at i n l e t ’
Write (* , ’ (A) ’ ) ’ 2) No c l u s t e r i n g ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) AC
End I f

! ! Mesh Parameters
Write (* , ’ (/ ,A) ’ ) ’ Spec i f y Mesh Parameters ’
Write (* , ’ (A) ’ ) ’−−−−−−−−−−−−−−−−−−−−−−− ’
! ! Sur face mesh growth ra t e
Write (* , ’ (/ ,A, F5 . 3 ,A) ’ ) ’ Input the su r f a c e growth ra t e : ( ’ ,SGR, ’ ) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) SGR
End I f

! ! Thickness o f near wal l c e l l l a y e r
Write (* , ’ (/ ,A) ’ ) ’ Thicknesses o f the near wal l c e l l l a y e r s : ’
Write (* , ’ (A) ’ ) ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’
Write (* , ’ (/ ,A, ES9 . 2 ,A) ’ ) ’ Heated p la t e wal l : ( ’ ,HPT/LConv , ’ m) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) Temp
HPT = Temp*LConv

End I f
Write (* , ’ (/ ,A, ES9 . 2 ,A) ’ ) ’ S ide wa l l s : ( ’ ,SWT/LConv , ’ m) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) Temp
SWT = Temp*LConv

End I f
Write (* , ’ (/ ,A, ES9 . 2 ,A) ’ ) ’ Top wal l : ( ’ ,TWT/LConv , ’ m) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) Temp
TWT = Temp*LConv

End I f
I f (AC == 1) Then

Write (* , ’ (/ ,A, ES9 . 2 ,A) ’ ) ’ I n l e t plane : ( ’ , IPT/LConv , ’ m) ’
Read (* , ’ (A30) ’ ) Rec
I f ( Rec . ne . ’ ’ ) Then

Read(Rec , * ) Temp
IPT = Temp*LConv

End I f
End I f

End Subroutine TestSect ion User Input

Subroutine Te s tSe c t i on F i l e Input ( )
In t eg e r : : i

Real : : A90
Real , Dimension ( : ) , A l l o ca tab l e : : dTest

Real , Dimension ( : , : ) , A l l o ca tab l e : : SDim

Open(100 , F i l e = TSFileName , Action = ’Read ’ )
Read (100 , ’ ( I3 ) ’ ) n

A l l o ca t e ( SDim(6 , n+1) )
A l l o ca t e ( xPlane (n+1) )
A l l o ca t e ( fPlane (n+1 ,9) )

A l l o ca t e ( dTest (n+1) )

! Not ice to user
Write (* , ’ (/ ,A) ’ ) ’ Se t t ing up the plane data . . . ’

! Read in the a x i a l l o c a t i o n o f the p lanes where the dimensions are known
Read (100 ,* ) xPlane ( : )
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! Read in the known dimensions on each plane
! Assumes that 6 dimensions are known on the plane
! Width − Bottom
! − Middle
! − Top
! Height − Lef t
! − Center
! − Right
Do i = 1 ,n+1

Read (100 ,* ) SDim ( : , i )
End Do
Close (100)

! ˜ Write (* ,* ) ’−−−−−−−−−−−−−−−−−−−−−’
! ˜ Do i = 1 ,n+1
! ˜ Write (* , ’ ( 7 F8 . 4 ) ’ ) xPlane ( i ) , SDim ( 1 : 6 , i )
! ˜ End Do
! ˜ Write (* ,* ) ’−−−−−−−−−−−−−−−−−−−−−’

Do i = 1 ,n+1
Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−−−−−−−− ’
Write (* , ’ (A, I4 ) ’ ) ’ Plane : ’ , i

Ca l l Secant (A90 , SDim ( : , i ) )
fPlane ( i , 1 ) = −0.5*SDim(1 , i )
fPlane ( i , 2 ) = −0.5*SDim(2 , i )
fPlane ( i , 3 ) = fPlane ( i , 1 ) − SDim(4 , i ) * s i n (A90)

fPlane ( i , 4 ) = SDim(4 , i ) * cos (A90)
fPlane ( i , 5 ) = SDim(5 , i )
fPlane ( i , 6 ) = SDim(6 , i ) * cos (A90)
fPlane ( i , 8 ) = 0.5*SDim(2 , i )
fPlane ( i , 9 ) = 0.5*SDim(1 , i )
fPlane ( i , 7 ) = fPlane ( i , 9 ) + SDim(6 , i ) * s i n (A90)
dTest ( i ) = sq r t ( ( fPlane ( i , 7 )−fP lane ( i , 3 ) ) **2 &

& + ( fPlane ( i , 6 )−fP lane ( i , 4 ) ) **2)
End Do

! Not ice to the user
Write (* , ’ (/ ,A) ’ ) ’ Descrepancy in top width measurement : ’

Do i = 1 ,n+1
Write (* , ’ (A, I3 , 3X, F12 . 8 , 3X, ES16 . 8 ) ’ ) ’ Plane : ’ , i , dTest ( i ) , dTest ( i )−SDim(3 , i )

End Do

Dea l l o ca te (SDim)
Dea l l o ca te ( dTest )

End Subroutine Te s tSe c t i on F i l e Input

Subroutine PlaneSpl ine ( xi , xDim , ACoeff , PCoeff ,PC)
Real , In tent ( In ) : : x i
Real , In tent ( In ) , Dimension (n+1) : : xDim
Real , In tent ( In ) , Dimension (4 ,n , 9 ) : : ACoeff

Real , In tent ( Out) , Dimension (3 , 2 , 3 ) : : PCoeff
Real , In tent ( Out) , Dimension (2 , 7 ) : : PC

Real : : f2 , dx , xP
In t eg e r : : a , b , c , x , y
In t eg e r : : i

xP = xi *xDim(n+1)

Cal l PlaneCoordinates (PC, xP , xDim , ACoeff )

! ! Ca l cu la te Sp l ine C o e f f i c e n t f o r the plane curves
Do i = 1 ,3

S e l e c t Case ( i )
Case (1 )

a = 1 ; b = 2 ; c = 3 ; x = 1 ; y = 2 ;
Case (2)

a = 3 ; b = 4 ; c = 5 ; x = 2 ; y = 1 ;
Case (3)

a = 7 ; b = 6 ; c = 5 ; x = 1 ; y = 2 ;
End S e l e c t

f2 = ( 3 . /PC(x , c )−PC(x , a ) ) &
& * ( (PC(y , c )−PC(y , b) ) /(PC(x , c )−PC(x , b) ) &
& +(PC(y , a )−PC(y , b) ) /(PC(x , b)−PC(x , a ) ) )

dx = PC(x , b)−PC(x , a )
PCoeff (1 ,1 , i ) = f2 / (6 .* dx )
PCoeff (2 ,1 , i ) = PC(y , a ) /dx
PCoeff (3 ,1 , i ) = PC(y , b) /dx−f 2 *dx /6 .
dx = PC(x , c )−PC(x , b)
PCoeff (1 ,2 , i ) = f2 / (6 .* dx )
PCoeff (2 ,2 , i ) = PC(y , b) /dx−f 2 *dx /6 .
PCoeff (3 ,2 , i ) = PC(y , c ) /dx

End Do
End Subroutine PlaneSpl ine
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Function LengthZ ( eta , PCoeff ,PC)
Real , In tent ( In ) : : eta
Real , In tent ( In ) , Dimension (3 , 2 , 3 ) : : PCoeff
Real , In tent ( In ) , Dimension (2 , 7 ) : : PC

Real : : LengthZ
Real : : zL , zR , yL , yR

! ! Cubic Sp l ine Ca l cu la t i on
! I f ( eta . l e . 0 . 5 ) Then
! y = eta *PC(1 ,4 )
! zL = PCoeff ( 1 , 1 , 1 ) *(y−PC(1 ,1 ) ) **3 &
! & + PCoeff ( 2 , 1 , 1 ) *(PC(1 ,2 )−y ) &
! & + PCoeff ( 3 , 1 , 1 ) *(y−PC(1 ,1 ) )
! zR = PCoeff ( 1 , 1 , 3 ) *(y−PC(1 ,7 ) ) **3 &
! & + PCoeff ( 2 , 1 , 3 ) *(PC(1 ,6 )−y ) &
! & + PCoeff ( 3 , 1 , 3 ) *(y−PC(1 ,7 ) )
! LengthZ = zR−zL
! Else
! yL = eta *PC(1 ,3 )
! zL = PCoeff ( 1 , 2 , 1 ) *(PC(1 ,3 )−yL) **3 &
! & + PCoeff ( 2 , 2 , 1 ) *(PC(1 ,3 )−yL) &
! & + PCoeff ( 3 , 2 , 1 ) *(yL−PC(1 ,2 ) )
!
! yR = eta *PC(1 ,5 )
! zR = PCoeff ( 1 , 2 , 3 ) *(PC(1 ,5 )−yR) **3 &
! & + PCoeff ( 2 , 2 , 3 ) *(PC(1 ,5 )−yR) &
! & + PCoeff ( 3 , 2 , 3 ) *(yR−PC(1 ,6 ) )
! LengthZ = sqr t ( ( zR−zL ) **2+(yR−yL) **2)
! End I f

! ! Lagrange I n t e r p o l a t i n g Poly Ca l cu la t i on
I f ( eta . l e . 0 . 5 ) Then

yL = eta *PC(1 ,4 )
yR = yL

Else
yL = eta *PC(1 ,3 )
yR = eta *PC(1 ,5 )

End I f

zL = PC(2 ,1 ) *(yL−PC(1 ,2 ) ) *(yL−PC(1 ,3 ) ) &
& /((PC(1 ,1 )−PC(1 ,2 ) ) *(PC(1 ,1 )−PC(1 ,3 ) ) ) &

& + PC(2 ,2 ) *(yL−PC(1 ,1 ) ) *(yL−PC(1 ,3 ) ) &
& /((PC(1 ,2 )−PC(1 ,1 ) ) *(PC(1 ,2 )−PC(1 ,3 ) ) ) &

& + PC(2 ,3 ) *(yL−PC(1 ,1 ) ) *(yL−PC(1 ,2 ) ) &
& /((PC(1 ,3 )−PC(1 ,1 ) ) *(PC(1 ,3 )−PC(1 ,2 ) ) )

zR = PC(2 ,7 ) *(yR−PC(1 ,6 ) ) *(yR−PC(1 ,5 ) ) &
& /((PC(1 ,7 )−PC(1 ,6 ) ) *(PC(1 ,7 )−PC(1 ,5 ) ) ) &

& + PC(2 ,6 ) *(yR−PC(1 ,7 ) ) *(yR−PC(1 ,5 ) ) &
& /((PC(1 ,6 )−PC(1 ,7 ) ) *(PC(1 ,6 )−PC(1 ,5 ) ) ) &

& + PC(2 ,5 ) *(yR−PC(1 ,7 ) ) *(yR−PC(1 ,6 ) ) &
& /((PC(1 ,5 )−PC(1 ,7 ) ) *(PC(1 ,5 )−PC(1 ,6 ) ) )

LengthZ = sqr t ( ( zR−zL ) **2+(yR−yL) **2)
End Function LengthZ

Function LengthY ( zeta , PCoeff ,PC)
Real , In tent ( In ) : : ze ta
Real , In tent ( In ) , Dimension (3 , 2 , 3 ) : : PCoeff
Real , In tent ( In ) , Dimension (2 , 7 ) : : PC

Real : : LengthY
Real : : zB , zT , yT

! ! Cubic Sp l ine Ca l cu la t i on
! I f ( zeta . l e . 0 . 5 ) Then
! zB = PC(2 ,1 ) *abs ( ( zeta −0.5) /0 . 5 )
! zT = PC(2 ,3 ) *abs ( ( zeta −0.5) /0 . 5 )
! yT = PCoeff ( 1 , 1 , 2 ) *(zT−PC(2 ,3 ) ) **3 &
! & + PCoeff ( 2 , 1 , 2 ) *(PC(2 ,4 )−zT) &
! & + PCoeff ( 3 , 1 , 2 ) *(zT−PC(2 ,3 ) )
! LengthY = sqr t ( ( zT−zB)**2+yT**2)
! Else
! zB = PC(2 ,7 ) *( zeta −0.5) /0 .5
! zT = PC(2 ,5 ) *( zeta −0.5) /0 .5
! yT = PCoeff ( 1 , 2 , 2 ) *(PC(2 ,5 )−zT) **3 &
! & + PCoeff ( 2 , 2 , 2 ) *(PC(2 ,5 )−zT) &
! & + PCoeff ( 3 , 2 , 2 ) *(zT−PC(2 ,4 ) )
! LengthY = sqr t ( ( zT−zB)**2+yT**2)
! End I f

! ! Lagrange I n t e r p o l a t i n g Poly Ca l cu la t i on
I f ( zeta . l e . 0 . 5 ) Then

zB = PC(2 ,1 ) *abs ( ( zeta −0.5) /0 . 5 )
zT = PC(2 ,3 ) *abs ( ( zeta −0.5) /0 . 5 )

Else
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zB = PC(2 ,7 ) *( zeta −0.5) /0 .5
zT = PC(2 ,5 ) *( zeta −0.5) /0 .5

End I f

yT = PC(1 ,3 ) *(zT−PC(2 ,4 ) ) *(zT−PC(2 ,5 ) ) &
& /((PC(2 ,3 )−PC(2 ,4 ) ) *(PC(2 ,3 )−PC(2 ,5 ) ) ) &

& + PC(1 ,4 ) *(zT−PC(2 ,3 ) ) *(zT−PC(2 ,5 ) ) &
& /((PC(2 ,4 )−PC(2 ,3 ) ) *(PC(2 ,4 )−PC(2 ,5 ) ) ) &

& + PC(1 ,5 ) *(zT−PC(2 ,3 ) ) *(zT−PC(2 ,4 ) ) &
& /((PC(2 ,5 )−PC(2 ,3 ) ) *(PC(2 ,5 )−PC(2 ,4 ) ) )

LengthY = sqr t ( ( zT−zB)**2+yT**2)
End Function LengthY

Subroutine PlaneCoordinates ( Coord , xP , x , ACoeff )
Real , In tent ( In ) : : xP
Real , In tent ( In ) , Dimension (n+1) : : x
Real , In tent ( In ) , Dimension (4 ,n , 9 ) : : ACoeff
Real , In tent ( Out) , Dimension (2 , 7 ) : : Coord ! Coord = (Y, Z) o f 7 po int s on L , T, and R s i d e s

o f plane

In t eg e r : : i , s , k , f l a g
Real , Dimension (9) : : f

Do i = 1 ,9
s = 1
f l a g = 0
Do

k = s+1
I f ( (xP . ge . x ( s ) ) .AND. (xP . l e . x ( s+1) ) ) Then

f ( i ) = ACoeff (1 , s , i ) *( x (k )−xP) **3 &
& + ACoeff (2 , s , i ) *(xP−x (k−1) ) **3 &

& + ACoeff (3 , s , i ) *( x (k )−xP) &
& + ACoeff (4 , s , i ) *(xP−x (k−1) )

f l a g = 1
Else

s = s+1
EndIf
I f ( ( s == n+1) . or . ( f l a g == 1) ) Exit

End Do
End Do

! Ca lcu la te the (Y, Z) Coordinates o f the 7 po int s − Coord (2 ,7 ) = (y : z , Point )
Coord (1 ,1 ) = 0 .
Coord (2 ,1 ) = f (1)
Coord (1 ,2 ) = 0.5* f (5 )
Coord (2 ,2 ) = f (2)
Coord (1 ,3 ) = f (4)
Coord (2 ,3 ) = f (3)
Coord (1 ,4 ) = f (5)
Coord (2 ,4 ) = 0 .
Coord (1 ,5 ) = f (6)
Coord (2 ,5 ) = f (7)
Coord (1 ,6 ) = 0.5* f (5 )
Coord (2 ,6 ) = f (8)
Coord (1 ,7 ) = 0 .
Coord (2 ,7 ) = f (9)

End Subroutine PlaneCoordinates

Subroutine Ax ia lSp l ine (n , x , fx )
Integer , In tent ( In ) : : n ! n (number o f s e c t i o n s ) must be >= 2
Real , In tent ( In ) , Dimension (n+1) : : x ! Axial p o s i t i o n o f the p lanes
Real , In tent ( In ) , Dimension (n+1 ,9) : : fx ! 9 − assumes 9 curves around l e f t , top ,

! and r i g h t s i d e s f o r the geometry
In t eg e r : : i , k , s
Real , Dimension (n−1) : : e , f , g , r
Real , Dimension (n+1) : : f 2

A l l o ca t e ( ACoeff (4 , n , 9 ) )

Write (* , ’ (/ ,A) ’ ) ’ Computing a x i a l s p l i n e c o e f f i c i e n t s . . . ’
! So lve f o r c o e f f i c i e n t s o f cubic s p l i n e s along the a x i a l d i r e c t i o n
! Implimenting the Thomas Algorithm as de f ined by Chapra and Canale
Do i = 1 ,9

Write (* , ’ (A, I4 ) ’ ) ’ Sp l ine : ’ , i
f 2 = 0 .0
Cal l TriDiag (x ( : ) , fx ( : , i ) ,n , e , f , g , r )
! Decomposition : Thomas Algorithm LU
Do k = 2 , n−1

e (k ) = e (k ) / f (k−1)
f ( k ) = f (k ) − e (k ) *g (k−1)

End Do
! Forward Subs t i tu t i on
Do k = 2 , n−1

r (k ) = r (k ) − e (k ) * r (k−1)
End Do
! Back Subs t i tu t i on
f2 (n) = r (n−1)/ f (n−1)
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Do k = n−2,1,−1
f2 (k+1) = ( r (k )−g (k ) * f 2 ( k+2) ) / f ( k ) ! Note s h i f t in f2 array f o r switch o f bounds

End Do

! Ca lcu la te the curve c o e f f i c i e n t s
Do s = 1 , n

k = s+1
ACoeff (1 , s , i ) = f2 (k−1) / ( 6 . 0* ( x (k )−x (k−1) ) )
ACoeff (2 , s , i ) = f2 (k ) / ( 6 . 0* ( x (k )−x (k−1) ) )
ACoeff (3 , s , i ) = fx (k−1, i ) /(x (k )−x (k−1) ) &

& −f 2 (k−1)*( x (k )−x (k−1) ) /6 .0
ACoeff (4 , s , i ) = fx (k , i ) /(x (k )−x (k−1) ) &

& −f 2 ( k ) *( x (k )−x (k−1) ) /6 .0
End Do

End Do

End Subroutine Ax ia lSp l ine

Subroutine TriDiag (x , y , n , e , f , g , r )
Integer , In tent ( In ) : : n
Real , In tent ( In ) , Dimension (n) : : x , y
Real , In tent ( Out) , Dimension (n−1) : : e , f , g , r
I n t eg e r : : i , j

e = 0 . 0 ; f = 0 . 0 ; g = 0 . 0 ; r = 0 . 0 ;

f (1 ) = 2*( x (3)−x (1) )
g (1) = x (3) − x (2)
r (1 ) = ( 6 . / ( x (3)−x (2) ) ) *( y (3)−y (2) ) &

& + ( 6 . / ( x (2)−x (1) ) ) *( y (1)−y (2) )
Do i = 2 ,n−2

j = i+1
e ( i ) = x( j )−x ( j −1)
f ( i ) = 2 . 0* ( x ( j +1)−x ( j −1) )
g ( i ) = x( j +1)−x ( j )
r ( i ) = ( 6 . / ( x ( j +1)−x ( j ) ) ) *( y ( j +1)−y ( j ) ) &

& + ( 6 . / ( x ( j )−x ( j −1) ) ) *( y ( j −1)−y ( j ) )
End Do
e (n−1) = x (6)−x (5)
f (n−1) = 2 .0* ( x (7)−x (5) )
r (n−1) = ( 6 . / ( x (7)−x (6) ) ) *( y (7)−y (6) ) &

& + ( 6 . / ( x (6)−x (5) ) ) *( y (5)−y (6) )
End Subroutine TriDiag

Subroutine Secant ( Alpha , PDim)
Real , In tent ( In ) , Dimension (6) : : PDim
Real , In tent ( Out) : : Alpha
Real : : Aconv , Pi , Tol

Real : : aO, aN , fO , fN
In t eg e r : : i

Pi = 4.0* atan ( 1 . 0 )
AConv = Pi /180.0

Tol = 10.**( −14)

! ! I n i t i a l Guess
aO = 92.*AConv
aN = 91.*AConv

! ! F i s t Evaluat ion
fO = FEval (aO,PDim)

Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−−−−−−−− ’
Do i = 1 , 10000000

fN = FEval (aN ,PDim)
Write (* , ’ ( I6 , 3X, F12 . 8 , 3X, ES16 . 8 ) ’ ) i , aN/AConv , fN
I f ( ( abs ( fN ) . l e . Tol ) . Or . ( abs (aN−aO) . l e . Tol ) ) Exit
Alpha = aN−(( fN *(aO−aN) ) /( fO−fN ) )

fO = fN
aO = aN
aN = Alpha

End Do
Write (* , ’ (A) ’ ) ’ −−−−−−−−−−−−−−−−−−−−−− ’

Alpha = Alpha − 0 .5* Pi ! Subtract 90 Deg f o r use in c a l c u l a t i n g the top corner coord
End Subroutine Secant

Function FEval ( Alp ,PDim)
Real , In tent ( In ) : : Alp

Real , In tent ( In ) , Dimension (6) : : PDim
Real : : FEval

Real : : B, R, L , T, D, Rho , Tau

B = PDim(1)
R = PDim(6)
L = PDim(4)
T = PDim(3)
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D = sqr t (B*B+R*R−2.*B*R* cos ( Alp ) ) ! Ca lcu la te l ength o f c r o s s s e c t i o n d iagona l
! based on the corner angle ( alpha )

Rho = as in ( s i n ( Alp ) *R/D) ! Ca lcu la te the por t ion o f the bottom l e f t ver tex
! ang le that i s with in the lower r i g h t t r i a n g l e

Tau = acos ( (L*L+D*D−T*T) /(2 .*L*D) ) ! Ca lcu la te the por t ion o f the bottom l e f t ver tex
! ang le that i s with in the upper l e f t t r i a n g l e

FEval = Alp − Rho − Tau ! Ca lcu la te the d i f f e r e n c e between the supposed lower
! l e f t ver tex angle and the c a l c u l a t e po r t i on s

End Function FEval

End Program TMCWT Mesher
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Appendix H

Copyright Permission from ELD for Fig. 2.2

From email correspondence:

Hello Barton and Jared,

You may use the drawings that we furnished with the wind tunnel in your papers.

Indicate that the images are ”Used with permission” and credit Engineering Laboratory

Design, Inc.

Thanks for requesting permission.

Regards,

Sig Anderson

Sigurd W. Anderson, President Engineering Laboratory Design, Inc. 2021 South Highway

61 PO Box 278 Lake City, MN 55041 USA mariner@eldinc.com 651-345-4515

800-795-8536 FAX 651-345-5095 www.eldinc.com
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