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ABSTRACT 

Peach Fruit Quality Analysis in Relation to Organic and Conventional 

Cultivation Techniques 

by 

Varun Chandra Koneru, Master of Science 

Utah State University, 2013 

Major Professor: Dr. Robert E. Ward 

Department: Nutrition, Dietetics, and Food Sciences  

The USA is the third major world producer of peaches but consumption has 

decreased over the last two decades. Consumers have cited mealy texture, fruit browning, 

and lack of sweetness as some undesirable characteristics in peaches, which may be 

related to the decline. The focus of this study was to evaluate the effect of farm 

management practices on fruit quality. The experiment was a completely randomized 

block design with 10 replicates, three treatments (organic, conventional and transitional 

organic), and two to four sampling dates as repeated measures. A non-targeted approach 

based on HS-SPME-GC-MS was used to analyze the volatile compounds in the 

treatments. Eighty volatiles (alcohols, ketones, aldehydes, esters, lactones, carboxylic 

acids, phenolics and terepenoids) were quantified and many of these were found to be 

correlated with the physical parameters of the peaches. Sensory evaluation indicated 

transitional organic peaches were liked the best and organically grown peaches were least 

liked. All the treatments were significantly different from each other and consumers 

preferred the aroma of conventionally grown peaches. There was no statistically 

significant difference in flesh firmness between the treatments; conventionally grown 

peaches were larger (86±4 mm) and were statistically different from transitional organic 
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(82±4 mm) and organic peaches (80±5 mm). The titratable acidity to soluble solids 

content (TA: SSC) ratio of transitional organic (14±1) was statistically significant from 

conventionally grown peaches (11±1) and organic peaches (11±1). The total phenolic 

content was found to be significantly higher in transitional organic and organic peaches 

compared to conventional peaches. Transitional organic fruit were somewhat nitrogen 

stressed as synthetic N administration was ceased and it may take some time before 

organic nitrogen builds in the soil. Lower nitrogen composition was associated with 

greater sweetness, higher polyphenolic defense compounds, and higher dry matter, which 

may have contributed to the highest liking of the transitional organic peaches during the 

sensory analysis. Overall, transitional organic peaches were found to have highest SSC: 

TA, which may affect the overall liking of the fruit, whereas the size of conventional 

peaches was presumably higher due to the availability of inorganic NPK as fertilizers. 

Farm management techniques can influence the peach fruit quality and volatile 

compounds development in the fruits, which can influence the consumer’s preference. 

         (66 pages) 
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PUBLIC ABSTRACT 

Peach Fruit Quality Analysis in Relation to Organic and Conventional 

Cultivation Techniques 

by 

Varun Chandra Koneru 

The USA is the third major world producer of peaches but consumption has 

decreased over the last two decades.  Consumers have cited mealy texture, fruit browning 

and lack of sweetness as some undesirable characteristics in peaches, which may be 

related to the decline. The focus of this study was to evaluate the effect of farm 

management practices on fruit quality. Physical parameters (color, firmness and size), 

volatiles and metabolite data was collected.  

Sensory evaluation indicated transitional organic peaches were liked the best and 

organically grown peaches were least liked. All the treatments were significantly different 

from each other and consumers preferred the aroma of conventionally grown peaches. 

Firmness and sugar content of the treatments were not different from each other. The total 

phenolic content was found to be significantly higher in transitional organic and organic 

peaches compared to conventional peaches. Transitional organic peaches were more liked 

and organic were least liked, but the nutritional values in organic peaches can be the point 

of interest for the consumers. 
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INTRODUCTION 

The demand for organic foods continues to increase rapidly worldwide (Lester, 

2006). By legal definition, traditional organic farming eliminates the use of synthetic 

fertilizers and pesticides, relies on animal manures, green manures like uprooted crops 

plowed into soil, off-farm organic wastes to maintain soil fertility, and uses biological and 

cultural methods to control weeds and pathogens (Browne, Harris, Hofny-Collins, 

Pasiecznik, & Wallace, 2000). Organic livestock are fed with 100% organically grown 

feed that is free of pesticides and animal by-products. Organic livestock has to be 

provided with access to the outdoors, direct sunlight, fresh air and freedom of movement 

(Smith-Spangler et al., 2012). All organic foods are processed without irradiation or 

chemical food additives and are free from genetically modified organisms (Smith-

Spangler et al., 2012). 

The share of organic agricultural land and the organic foods market are increasing 

in many countries (Yussefi & Willer, 2007). About 120 countries practice organic 

agriculture. In 2007 Australia had the highest area of organic agriculture at 11.8 million 

hectares while the U.S had about 1.6 million hectares (Yussefi & Willer, 2007). The U.S 

organic food and beverage market has grown from $1 billion in 1990 to $26.7 billion in 

2010 according to organic trade association. A growth of 7.7% was observed in sales 

from 2009 to 2010 (Yussefi & Willer, 2007).  

During the last 20 years there has been a growing interest in the quality variations 

between organic and conventional foods. Searching the term ‘organic foods’ in PubMed 

on December 1
st
, 2012 resulted in 923 references whereas there were 354 references in 

2002 and 98 in 1992 (www.ncbi.nlm.nih.gov/pubmed/). Organically grown plants have more 

http://www.ncbi.nlm.nih.gov/pubmed/
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total phenols than conventionally grown plants (Hunter et al., 2011). There is better 

growth and reproduction in animals fed with organic feed compared with those that are 

fed with conventional feed (Worthington, 1998). However, a meta analysis concluded 

that there is no strong evidence that organic and conventional foods are different in major 

nutrients like sugars, vitamins and minerals with the exception of nitrate (Bourn & 

Prescott, 2002). A second meta analysis analyzed 55 published studies and concluded that 

conventionally grown crops have a significantly higher nitrogen content whereas 

organically grown crops contain more phosphorus and a higher titratable acidity 

(Dangour et al., 2009). While investigating the nutrient difference between organic and 

conventional foods studies in the above meta analysis (Dangour et al., 2009) have 

narrowed down their analyses to a small range of components such as protein, sugars, 

vitamins and minerals (Bourn & Prescott, 2002). However, it is important to investigate 

the effects on secondary metabolites such as alkaloids, terpenoids, saponins, phytolexins, 

phenolic glycosides and others as they are responsible for defense against 

microorganisms, herbivores and competing plants (Wink, 1988). In addition they are also 

responsible for nitrogen transport, nitrogen storage and protection against ultraviolet rays 

(Wink, 1988). The focus of this study is to investigate whether farm management 

practices, such as organic and conventional farming, affect the fruit quality. 

The hypothesis of this study is: 

Farm management techniques might affect the peach fruit quality. 

The objectives of this thesis are: 

1. To investigate the effect of farm management techniques on peach fruit 

quality.  
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2. To estimate the clustering and establish a relation between volatile 

compounds and treatments using principal component analysis (PCA).  

 



4 

LITERATURE REVIEW 

Farm Management Practices 

 Some studies have concluded that consumers believe that organically grown fruits 

and vegetables are more nutritious, environmentally friendly and safer (Lester, 2006).  

Agricultural practices may affect fruit composition as plants with resistance to 

microorganisms and herbivores tend to have high levels of defense-related secondary 

metabolites (Mitchell et al., 2007).  While the obvious divisions between organic and 

conventional farming rest on the use of synthetic pesticides, use of different forms of 

nitrogen likely have major effects on fruit and vegetable quality. In conventional farming, 

farmers utilize synthetic fertilizers to address deficiencies in soil nitrogen that limit 

production of biomass ( Drinkwater, Letourneau, Workneh, Van Bruggen, & Shennan, 

1995). In contrast, organic systems emphasize the accumulation of soil organic matter 

and fertility (including fixed nitrogen) over time through the use of cover crops and 

manures and depend on the activity of a diverse soil ecosystem to make nitrogen and 

other nutrients available to plants (Mitchell et al., 2007). In conventional farming, the 

inorganic nitrogen, phosphorus and potassium (NPK) may influence the synthesis of 

secondary metabolites, proteins and soluble solids compared to the nitrogen sources used 

in organic farming. Restriction of fertilizers in organic procedures results in a lower 

nitrogen content in the fruits when compared to the fruits grown conventionally (Shaver 

& Chapin, 1995).  
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What is Fruit Quality? 

The quality of fresh fruits results from a combination of physical and biological 

attributes (Kader, 1999). Consumers judge the quality of the fruits mostly by their 

appearance, firmness and aroma. Climacteric fruits like peaches, can be ripened off the 

plant, they are picked mature but unripe so that they can withstand the postharvest 

handling system during shipment (Kader, 1999). Soluble solid content (SSC) is measured 

by a refractometer and expressed in degrees brix which is equivalent to percentage of 

sucrose in the solution. Titratable acidity (TA) is a measure of the total acid concentration 

in the given solution and for peaches it is expressed as g/100 ml as malic acid 

equivalents.  California’s mandatory quality standards for peaches establish a minimum 

of 11% SSC with a TA ≤ 0.7%. These parameters are necessary to satisfy 80% of 

consumers and the SSC: TA ratio is also important in relation to customer acceptance 

(LaRue & Johnson, 1989). Fruits with 9-13.5 Newton’s flesh firmness are considered as 

“ready to eat” and harvest date is determined when skin ground color (background color 

of the peach skin) changes from green to red using a color chip guide (LaRue & Johnson, 

1989). In general, peaches with a diameter greater than 74 mm are considered to be large 

and below that are considered to be small ( Blasco, Aleixos, & Moltó, 2003). Thus it can 

be concluded that SSC, TA, SSC: TA, color, firmness and size are readily measurable 

characteristics that predict the peach fruit quality.  
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Major Nutrients That Effect the Plant Growth 

Nitrogen Importance in Plant System  

Nitrogen (N) plays an important role in developing chlorophyll and amino acids. 

Nitrogen fertilization increases tree N content by increasing organic dry mass and N 

concentration throughout the plant growth. Plant uptake of N is principally through the 

root system and is a function of N availability and concentration (Rehman, Farrukh 

Saleem, Ehsan Safdar, Hussain, & Akhtar, 2011). 

Soil microorganisms like bacteria and fungi convert decomposing organic matter 

which can be converted to ammonia N (NH4
+
) through mineralization (Pidwirn, 2002). 

Clay particles in the soil adsorb ammonia onto their surface (Simonne, 2003). The 

positively charged ammonium ion may also associate with negatively charged soil 

colloids and this method is called micelle fixation. Micelle fixation is reversible and 

NH4
+
 may be discharged through cation exchange from the colloids (Pidwirn, 2002). In 

addition, microbes may convert NH4
+ 

to nitrate (NO3
-
) (Simonne, 2003). Ordinarily NO3

-
 

accumulates in the soil not adsorbed onto the soil colloids but in solution. If NO3
- 
is not 

taken up by the plants, it may leach into ground water (Simonne, 2003).  

 Nitrogen is a distinguishing component of all amino acids and proteins (Mills & 

Jones, 1996). In addition to its role in protein composition, nitrogen is an integral part of 

chlorophyll. An adequate supply of N is enables vigorous vegetative growth and a dark 

green color, while imbalances with respect to other nutrients, such as P, K, and S will 

slow growth and delay crop maturity (Marti & Mills, 1991). 



7 

Phosphorus 

Phosphorus is the most essential nutrient element after nitrogen. It is a structural 

element in Deoxyribo nucleic acid (DNA) and Ribo nucleic acid (RNA) which play a 

vital role in growth and reproduction of living organisms (Schachtman, Reid, & Ayling, 

1998). Adenosine diphosphate (ADP) and Adenosine triphosphate (ATP) help to develop 

internal energy in the living organisms. Improper P supply may result a reduction in RNA 

synthesis, and depressed growth (Hedley, Stewart, & Chauhan, 1982). Phosphorus-

deficient plants are characterized by a restricted root system and thinner stems. Older 

leaves turn purple in several plants due to the development of anthocyanins (Jones, 

Dennis, Owen & Van Hee, 2003). In the tropics, soils contain large amounts of iron and 

aluminum oxides that bind P firmly, making P biologically unavailable (Schachtman, 

Reid, & Ayling, 1998). Generally phosphorus in all its forms is insoluble and poorly 

absorbed from soil. Thus, when P is applied in fertilizer or manure it generally is applied 

in excess to what the crop takes up (Schachtman, Reid, & Ayling, 1998). 

Potassium 

 Crops require large quantities of potassium (K) to maintain the osmotic pressure 

of cells (Hedley, Stewar, & Chauhan, 1982). K plays a major role in water management 

within plant since the osmotic potential of cells is regulated by it. K participates in the 

closure and opening of stomata. Water uptake, retention and transportation within xylem 

and of photosynthesis within phloem are affected by K levels (Cakmak, 2005). Cell 

extension is affected by K and with balanced levels of K, plant resistance to pests and 

disease increases as it thickens the cell walls of the plants. This, in turn, increases the 

shelf life of fruits and vegetables. Conversely, plants with K deficiency show less 
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resistance to diseases and their fruits and seed are smaller in size and deformed (Jungk & 

Claassen, 1986).  

 

Fruit Maurity  

As peach fruit gets to the completion of development, the fruit matures and begins 

to ripen. Maturity refers to complete development and ripening implies readiness to 

consume (Lester, 2006). Fruit goes through several changes during maturation like a 

decrease in flesh firmness, a modified color from green to yellow and a significant 

increase in flavor (Sánchez, Besada, Badenes, Monforte, & Granell, 2012). Throughout 

maturity and ripening quality parameters change and ripening will increase sugar 

concentration, and the presence of aromatic compounds, and decrease in acid and the 

firmness of the fruit (Kader, 1999).  For acceptable fruit quality the soluble solids 

concentration should exceed 10% at harvest ( Kader, 1999). 

 

Fruit Volatile Compounds 

Fruit aroma is defined by the volatile compounds such as alcohols, aldehydes and 

organic acids (Sánchez, Besada, Badenes, Monforte, & Granell, 2012). Aroma plays a 

key role in consumer acceptability (Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria, 

Danyluk, & Rodrick, 2009). Volatile component concentration tends to increase with 

advancing maturity (Sánchez, Besada, Badenes, Monforte, & Granell, 2012). There are 

large numbers of volatile compounds found in fruits. One effective method to measure 

them is headspace solid phase micro extraction (HS SPME) with GC-MS. HS SPME  is a 

solvent free sample preparation technique where a silica fiber coated with polymeric 
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organic liquid is placed on the head space above the sample (Zhang & Pawliszyn, 1993). 

The volatile analytes are extracted and concentrated on the coating and then transferred to 

the GC-MS injection port for desorption and analysis. HS SPME is chosen as an 

extraction method because it is  rapid, easy and inexpensive when compared to liquid-

liquid extraction or solid-phase extraction (Smith-Spangler, 2012).  

 

Metabolomic Analysis of Food 

Metabolomics is the study of the small molecule metabolites through chemical 

fingerprints that are left behind by the specific cellular processes of the organism 

(Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria, Danyluk, & Rodrick, 2009). 

Metabolomics can be used in food industry in food component analysis, food 

consumption monitoring, designing new approaches in nutrition, food security and food 

quality (Wishart, 2008). Metabolomics analysis can be characterized into targeted and 

untargeted analysis. In targeted analysis,  a selected group of metabolites is identified and 

quantified (Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria, Danyluk, & Rodrick, 

2009). Conversely, an untargeted metabolomic approach gives a wider picture of the 

metabolite dynamics in food at the expense of quantitation (Cevallos-Cevallos, Reyes-

De-Corcuera, Etxeberria, Danyluk, & Rodrick, 2009). The nutritional quality of fruits is 

correlated with the presence of soluble sugars, organic acids and some major secondary 

metabolites like volatiles, flavonoids and pigments (Reganold et al., 2010).  
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GC-MS 

GC-MS is a common method used in metabolomics. GC-MS is a great analytical 

tool that can be used to measure volatile and semi-volatile compounds. The process 

involves the separation of chemicals based on their gas volatility and other physical 

parameters. MS is used to identify the chemicals based on their mass signatures. 

Chemicals separated in the GC move to MS and are bombarded with electrons causing 

fragmentation. The charged ions pass through an electromagnetic filter where the ions are 

separated based on their mass and the detector counts the ions with specific mass and 

creates a mass spectrum.  

In food metabolomics analysis using GC-MS the metabolites are first oximated 

and subsequently silylated (Wishart, 2008).  Condensation of compounds with hydroxyl 

amine or methoxy amine is oximation and silylation substitutes the hydrogen atom which 

is bound to a hetero atom by a silyl group forming a silicon bond and thus protects from 

further alterations of molecule (Hong et al., 2012).  Different small polar molecules can 

be analyzed by GC-MS such as organic acids, sugars, alcohols, aldehydes, amines and 

acyl monophosphates. This method is popular in metabolomics studies, since every 

biofluid or food consists of such components (Wishart, 2008). There are large databases 

of mass spectra as references that aid in the identification of compounds in food samples. 

Once the samples are passed through the GC-MS and the peaks are recorded, the samples 

are sent to the Automated Mass Spectral Deconvolution and Identification System 

(AMDIS) and the components are identified using the libraries from the databases. These 

results can be manually integrated to detect components using the software program 

Spectconnect without any need for a reference library or manual interpretation.  
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The Automated Mass Spectral Deconvolution and Identification System 

AMDIS is a freely available software program that extracts data for individual 

spectra of components that are found in a GC-MS data file. It conducts noise analysis and 

removal followed by component perception, deconvolution and then compound 

identification by matching the spectra to the target libraries such as National Institute of 

Standards and Technology (NIST).  

 

SPECTCONNECT 

 SpectConnect is a freely available analytical source at http://spectconnect.mit.edu. 

SpectConnect tracks the peaks of known and unknown metabolites across replicates and 

no reference spectra is required. SpectConnect tracks and compares components between 

every spectrum in each sample and compares them with the spectra of the other samples. 

(Stycznski et al., 2007) concluded that the important compounds will be conserved across 

most or all replicates, while the noise will be eliminated. 
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MATERIALS AND METHODS 

Experimental Design  

The study design was a completely randomized design with 10 replicates, three 

treatments, and two to four sampling dates as a repeated measure. 

 Treatment 1: Herbicide + Nitrogen, Phosphorus and Potassium NPK 

(conventional, n = 27). 

 Treatment 2: Herbicide + NPK (transitional organic, n = 45; first year in transition 

to organic). 

 Treatment 3: Paper mulch + organic herbicide + compost (organic, n = 10). 

 Conventionally grown peaches were given triple sixteen NPK along with urea to 

increase the available nitrogen to the plants. Organically grown fruits were given paper 

mulch, organic herbicide and compost. Transitional organic trees were established in 

2008 and were grown conventionally for four years, then in the fifth year (2012) the trees 

were given organic herbicide, paper mulch and compost as in the organic treatment.  This 

process leads to nitrogen stress as the trees had become accustomed to available nitrogen 

from synthetic fertilizers, but subsequently nitrogen needs to develop in the soil from the 

organic inputs which affects the nitrogen availability.  

Peaches were transported from Kaysville Research Farm (Kaysville, UT) to 

Nutrition Food Science building (Logan, UT) after they were picked at harvest. Fruits 

were cooled to refrigeration temperature after picking and were processed two days after 

harvest for consistency.  
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Peach Size Measurement 

Equatorial and top diameter of each peach sample was recorded using a digital 

Vernier scale (Carrera Precision 5906, La Verne, CA). The scale was calibrated to zero 

before every reading. Top diameter was measured from the end of the stem to the apex 

and equatorial diameter was the circumference at the mid portion of the fruit.  

 

Pit Size Measurement 

Peaches were cut vertically from both ends to open it in half and then the pit was 

removed by careful removal of flesh surrounding it. The Varnier scale was used to 

measure the length and width of the pit. Both pit length and width were recorded for each 

individual peach.  

 

Skin Color Determination 

Color variation was measured on the skin of peaches. Overall, peaches have a 

lighter shade (spot) near the stem while the remaining surface is darker. Color 

measurements were taken at both darker and lighter areas for every individual peach 

using a Hunter calorimeter L*, a*and b* values were recorded to calculate the hue angle 

(h
0
).  
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Flesh Firmness 

Flesh firmness was measured with a TMS Pro texture analyzer (Food Technology 

Corp, Sterling, VA) with a compressive force was applied using a 50-kg load cell. A 

partial hemispherical probe (Magness- Taylor type) of 9 mm in diameter was attached to 

the load cell moving at a speed of 12 cm/min. Flesh firmness was determined by carefully 

removing the skin at the equatorial cheeks on the both halves without ripping of the flesh 

and the fruit was placed in a cylindrical ring so that it didnot move while being punctured 

by the probe. The skins were carefully peeled after the firmness test and flesh samples 

were cut into thin slices. About 5 g of each sample was stored in 15 ml centrifuge tubes 

(Fisher Scientific, Denver, CO) at -80 °C for SPME GC-MS volatile analysis.  

 

Soluble Solid Content  

Fruit samples were cut and pureed in a blender for 1 min. The resulting slurry was 

filtered, centrifuged (20 min; 10,000 x g; 4 °C) and the clear supernatant was collected to 

determine SSC. Remaining supernatant was stored in centrifuge tubes at -80 °C for TA 

calculation. SSC was measured using a digital refractometer (Hanna, Woonsocket, RI) 

standardized after every five samples with distilled water to a refractive index 0% SSC.  

 

Titratable Acidity 

Frozen samples were thawed and TA was determined with an automatic titrator 

(Mettler Toledo, Columbus, OH). Two grams of sample was mixed with 50 ml of 

deionized water and titrated by 0.1 N sodium hydroxide until pH 8.2 was reached. TA is 

expressed as percent malic acid equivalents.  
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SPME GC-MS Volatile Analysis 

Volatile sample preparation was carried out as described by Sánchez et al.(2012) 

with modifications. Frozen peach samples were finely grounded to a powder in liquid 

nitrogen using a mortar and pestle. Frozen tissue powder (500 mg) was weighed in a 4 ml 

vial and 500µl of 100 mM EDTA (pH 7.5) solution and 1.1 g of CaCl2•2H2O were added 

immediately to restrict enzyme activity. The vial was sonicated and centrifuged at 300 × g 

for 3 min. Approximately 1 g of supernatant was then transferred into 20 ml head space 

vials and incubated at 50 °C with 500 rpm agitation for 10 min. Subsequently volatiles 

were adsorbed onto a 65 µm poly dimethylsiloxanedivinylbenzene fiber (Supelco, St. 

Louis, MO) and subsequently desorbed in the injection port of a Shimadzu GC-MS (QP 

2010S,Kyoto, Japan) for 1 min at 270 °C in splitless mode. Separation was performed on 

a ZB-5 MSi column (35.0 m length, 0.25 mm diameter and 0.25-µm film thickness). 

Helium was used as the carrier gas at a flow rate of 1.0 ml/ min. The temperature 

program started at 60°C for 1 min, followed by a 10°C/min-ramp to 325°C, with a 10-

min hold at 325°C. 

 

Extraction of Phenols 

The phenols extraction protocol was carried out as described in Luthria  et al. 

(Luthria, Mukhopadhyay, & Krizek, 2006). For each extraction, approximately 500±1mg 

of ground freeze-dried peach sample was placed in a 15ml centrifuge tube with 5 ml of 

the solvent mixture Methanol:H2O (80:20, % v/v). The vials were then placed in a 

sonicator bath (New Bruswick Scientific, G76, Edison, NJ) at ambient temperature for 30 

minute. The mixture was centrifuged and the supernant collected. The residue was 
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resuspended in 5 ml of Methanol: H2O (80:20, %v/v), gently mixed manually and 

sonicated for an additional 30 min followed by centrifugation. The supernant was 

combined with the initial extract and dried under nitrogen at 40 ºC. Completely dried 

sample was taken in 2 ml of extraction solution and assayed by a Folin–Ciocalteu (FC) 

assay for total phenol (TP) content. For each sample, duplicate extractions and analyses 

were carried out. 

 

Folin–Ciocalteu Assay Protocol 

The FC assay was modified from Luthria et al. (Luthria, Mukhopadhyay, & 

Krizek, 2006); it was carried out by pipetting 500 μl of peach extract into a 12 ml amber 

vial. This was followed by addition of 3.5 ml of deionized water. This mixture was 

vortexed for 10–20 s and 500 μl of FC reagent was added. The mixture was vortexed for 

an additional 20–30 s and 1.5 ml of 20% sodium carbonate solution was added after the 

1
st
 min and before 8

th
 min of addition of the FC reagent. The mixture was then vortexed 

for 20–30 s after the last addition of sodium carbonate at 8
th

 min and placed in dark. After 

2 h±3 min at room temperature, the absorbance of the colored reaction product was 

measured at 765 nm. A calibration curve was created using different concentrations of 

standard gallic acid solutions, each time an analysis was run. The level of TP in the 

extract was calculated from the standard calibration curve. Results were expressed on the 

basis of mg of Gallic Acid Equivalent per gram (mg GAE/g) of dried peach powder. 
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Metabolites Extraction Protocol 

Metabolites extraction was carried out as described in Roessner-Tunali et al   

(Roessner-Tunali et al., 2003).  Frozen tissue powder (500mg) was weighed in a 15 ml 

centrifuge tube and 2 ml of methanol was added to extract the metabolites. One hundred 

micro liters of as internal standard (0.2 mg/ml ribitol) was added to the peach mixture in 

the 15ml centrifuge tube. The mixture was extracted for 30 min in a 50°C water bath with 

shaking. Deionized water (1.2) ml was added into the tube and vortexed. Centrifugation 

was carried out at 2,200xg for 15 min. Supernatant was transferred into a 4 ml plastic 

tube. The supernatant in the 4 ml tube was frozen with liquid nitrogen, and then 

lyophilized for 18 hrs at -80°C. 

Derivitization  

One hundred and twenty micro liters of 15 mg/ml methoxyamine hydrochloride in 

pyridine was added to the 4 ml plastic tube containing lyophilized samples and incubated 

at 50°C, and sonicated. One hundred and twenty micro liters (120 µl) of 

Bis(trimethylsily)trifluoroacetamide+ 1% Trimethylchlorosilane was subsequently added 

and the solution was incubated for 30 min at 50°C. 1.0 µl of the solution was injected at 

25:1 split ratio onto a GC equipped with a DB-5-MS (35.0 m length, 0.25 mm diameter 

and 0.25-µm film thickness) column coupled to a MS. The injection port was held at 

280°C, and the oven ramped from 80°C (2 min) to 315°C (6 min) at 5°C/min. The MS 

source was held at 250°C and the quadropole at 150°C and scanned from 50 - 650 m/z. 
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Statistical Analysis 

All statistical treatments were performed using IBM SPSS statistics software (v 

19, Armonk, NY). The physical parameters and volatiles data were analyzed using one 

way ANNOVA. Sensory analysis was carried out by Dr. Silvana Martini in the sensory 

kitchen at Utah State University. Principal component analysis (PCA) was performed 

using SPSS software to detect clustering and establish a relation between treatments and 

volatile compounds. Correlation analysis was carried out to determine certain volatiles 

that might influence the physical parameters between the individual treatments. Data 

analysis was carried out after the samples were run on GC-MS. Retention Index (RI) data 

was collected once the n-alkanes were run and RI library was built to correct the retention 

indicies of the analytes. Chromatograms were run on AMDIS using RI calibration data 

and then submitted to spectconnect. All missing values in volatiles and metabolites data 

set were replaced by least values in the chromatogram (Xia, Psychogios, Young, & 

Wishart, 2009).  
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RESULTS AND DISCUSSION 

Effect of Treatments on Physical Parameters 

Size Variance Between the Treatments 

The equatorial diameter of the fruits showed that conventionally grown fruits 

were significantly greater in size (p > 0.05) than organic and transitional organic fruits as 

shown in Figure 1. There was no significant difference observed between the transitional 

organic and organically grown peaches. 

 
Figure 1. Equatorial Diameter of Peaches as a Function of Treatment. 

The top diameter of the fruits showed there is no significant difference between 

the conventional, organic and transitional organically grown fruits as shown in Figure 2. 

Although organically grown peaches appeared to have a larger top diameter the 

difference was not significant between treatments (Figure 2). In general peaches with an 

equatorial diameter greater than 74 mm are considered to be large (Blasco, Aleixos, & 

Molto, 2003).  Peaches grown under these three different treatments were larger than 

Equatorial Diameter (mm) 

a 

b 

b 
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typical peaches available in market.  This might be due to an early frost in 2012 which 

resulted in fewer fruits per branch.  

 

Figure 2. Top Diameter of Peaches as a Function of the Treatment. 

Tables 1 and 2 shows there was no significant differences between the pit length 

and pit width peaches grown under organic, transitional organic, and conventional 

treatments.  

Table 1  

One-way ANOVA for Pit Length as a Function of Treatment 

Contrast Difference 
Standardized 

difference 

Critical 

value 

Pr > 

Diff 
Significant 

Organic vs 

Conventional 
0.552 0.603 2.389 0.819 No 

Organic vs 

Transitional organic 
0.642 0.742 2.389 0.739 No 

Conventional vs 

Transitional organic 
0.090 0.149 2.389 0.988 No 

 

 

a 

a 

a 
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Table 2  

One-way ANOVA for Pit Width as a Function of Treatment 

Contrast Difference 
Standardized 

difference 

Critical 

value 

Pr > 

Diff 
Significant 

Conventional vs 

Transitional organic 
0.245 0.647 2.389 0.795 No 

Conventional vs 

Organic 
0.356 0.618 2.389 0.811 No 

Transitional organic 

vs Organic 
0.111 0.204 2.389 0.977 No 

 

Peach Fruit Color Variance Between the Treatments 

The overall treatment effect on Hunter color values are shown in Table 3. The 

redness (a
*
) and hue angle values of the light spot were significantly affected by the 

organic treatment when compared to conventional and transitional organic treatments. 

Color can be quantified by hue angle, where 0° = red, 90° = yellow, and 180° = green. 

The decrease in hue angle in organic peaches at the light spot can be due to the carotenoid 

accumulation since decreased carotenoid content has been shown to correlate with a 

decrease in hue angle (Ruiz, Egea, Tomas-Barberan, & Gil, 2005). On the dark side of the 

peach fruits there is no significant difference between the L*, a*, b* and hue angle.  

Soluble Solids Content 

 Figure 3 shows soluble solids content values between the treatments. There was 

no significant difference observed in SSC between the treatments. This is in agreement 

with the conclusions of a systematic review of 55 satisfactory quality-crop studies, which 

concluded that there is no evidence of difference between SSC in organic and 

conventionally grown fruits (Dangour et al., 2009). All the treatments met with California 

standards for consumer’s acceptance with respect to SSC (LaRue & Johnson, 1989). 
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Although there was no significant difference in SSC between the treatments the SSC: TA 

ratio is more closely related to consumer acceptance than SSC alone (Iglesias & 

Echeverria, 2009). Most of the studies on organic and conventional farming reported 

there was no significant difference in the SSC but TA acidity tends to show significant 

difference between the treatments (Dangour et al., 2009). This demonstrates the 

importance of SSC: TA ratio in consumer acceptability, as sugars and organic acids 

mostly influence the consumer liking higher the value of SSC: TA gives higher consumer 

acceptability. 

 

Figure 3. Soluble Solid Content of Peaches as a Function of the Treatment 

Titratable Acidity  

 The titratable acidity of the peaches grown under conventional, organic and 

transitional organic treatments showed significant differences between the treatments. 

Organically grown peaches had higher titratable acidity followed by conventional and 

transitional organic peaches had least titratable acidity (Figure 4).  

a 

a 
a 
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These results are in agreement with the Dangour et al., 2009. It is also expected 

that the degree of liking of the peaches is affected by the TA and SSC. As there was no 

significant difference between the SSC between the treatments, the TA may explain the 

results from the sensory panel as the lowest degree of liking value was given to the 

organic peaches which has significantly higher percentage of TA and lower SSC: TA ratio 

(10.9± 1.1). 

 

Figure 4. TA of Peaches as a Function of the Treatment. 

a 

b 

c 
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Table 3  

Hunter color mean values of peaches treated with different treatments 

 

*p-value significance at 0.05; NS= not significant; values within column sharing letters (a,b) are not 

significantly different; Values are mean±SEM 

L* = lightness; a*= redness; b* = yellowness; hue angle = atan(b*/a*) 

 

 

 

Light spot 

  

Dark spot 

  Treatments L* a* b* Hue L* a* b* Hue 

Conventional 64±4
a
 14±4

a
 36±4

a
 20±7

a 
41±4

a
 19±5

a
 14±3

a
 36±5

a 

 

Transitional 

organic 

62±6
a
 15±6

a
 33±5

a
 24±10

a 
40±3

a
 17±4

a
 12±2

a
 39±5

a 

 

Organic 61±5
a
 7±3

b
 34±4

a
 12±5

b 
40±4

a
 16±6

a
 12±3

a
 39±8

a 

p – value NS 0.002 NS 0.001 NS NS NS NS 
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Firmness 

 There was no significant difference found between the peaches grown under three 

different treatments with respect to their flesh firmness as shown in (Table 4). Figures 

5,6, and 7 show the variation of firmness in peaches from one harvest date (August 11. 

2102) between the individual treatments. Firmness is inversely proportional to ripeness of 

the fruit; since there is no significant difference between the treatments (Table 4) all fruits 

were assumed to be equally ripened. However, many other factors contribute to ripeness 

like ethylene production, respiration, skin ground color and others. 

 
Figure 5. Firmness of Conventional Peaches Harvested on 8-11-2012. 
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   Figure 6. Firmness of Transitional Organic Peaches Harvested on 8-11-2012. 

 
Figure 7 Firmness of Organic Peaches Harvested on 8-11-2012. 
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 Table 4  

Physical Parameters Data Between the Treatments  

Treatment conventional transitional organic 

equatorial diameter 

(mm)  86±4
a 

82±4
b 

80±5
b 

top diameter (mm) 72±4
a 

71±4
a 

73±3
a 

pit length (mm) 41±3
a 

41±2
a 

41±1
a 

pit width (mm) 30±2
a 

29±2
a 

29±1
a 

SSC (brix %) 10.9±0.9
a 

11.3±0.8
a 

11.3±0.9
a 

L* (l) 64±4
a 

62±6
a 

61±5
a 

a*(l) 14±4
a 

15±6
a 

7±3
b 

b* (l)    36±4
a 

33±5
a 

34±4
a 

Hue (l) 20±7
a
 24±10

a
 12±5

b
 

L* 41±4
a 

40±3
a 

40±4
a 

a* 19±5
a 

17±4
a 

16±6
a 

b* 14±3
a 

12±2
a 

12±3
a 

Hue  36±5
a
 39±5

a
 39±8

a
 

TA % (g of malic acid 

per 100 ml juice) 0.97±0.08
a 

0.80±0.07
b 

1.04±0.11
c 

SSC:TA 11.3±0.8
a 

14.2±1.6
b 

10.9±1.1
a 

Firmness (mN) 25,000±13,000
a 

19,000± 

12,000
a 

21,000±14,000
a 

Note: Values sharing similar letters within rows (a, b, and c) are not significantly 

different (p ≥0.05) 

* Mean ± SEM 
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Sensory Evaluation of Peaches 

 A 120-member consumer panel evaluated all three groups of peaches grown under 

different treatments. Degree of color liking of the conventionally grown fruits was 

significantly higher than the other two treatments (Table 5).  

 Overall liking of the peaches was higher for transitional organic fruits, followed 

by conventional fruits and then organically grown (p = 0.001). Flavor liking was rated 

higher in transitional organic, followed by conventional and organic treatments 

respectively (Table 5). SSC: TA was significantly higher in transitionally grown fruits 

(Table 4) which might have affected the consumer’s score in overall liking and flavor 

liking of fruits. There was no significant difference between the SSC: TA in 

conventionally and organically grown peaches but TA of the organic fruits were 

significantly higher than conventionally grown fruits since TA is the composition of 

organic acids which gives off flavors and negatively affect consumer scores; higher the 

ratio of SSC:TA indicates there was more sugar content and less TA which might have 

affected consumers give higher overall liking to transitional organic fruits.  

 Transitional organic peaches were rated significantly higher in juiciness (p = 

0.0001) than conventional and organic peaches. Sourness liking was given significantly 

higher score in transitional organic peaches (p = 0.0002) than other two treatments. The 

texture of transitional organic peaches was preferred (p = 0.0001) other two treatments.  
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Table 5  

Sensory Analysis of Peaches Treated with Different Treatments 

Attribute 

 

Conventional 

Transitional 

organic 

 

Organic 

 

p - value 

 
a a a 

 

Smell Liking 7.1 6.86 6.84 0.0427 

 
a a b 

 

color liking 7.07 7.01 6.25 0.0001 

 
b a c 

 

overall liking 6.43 6.98 5.86 0.0001 

 
b a c 

 

flavor liking 6.29 6.95 5.87 0.0001 

 
b a c 

 

Juiciness liking 6.11 6.81 5.46 0.0001 

 
b a b 

 

Tartness/sourness 

liking 
5.81 6.32 5.4 0.0002 

 
b a b 

 

texture/firmness liking 6.02 6.83 5.63 0.0001 

Note: Values sharing similar letters within rows are not significantly different (p ≥0.05),  

* Means of the sensory scores by 120 panelists were given.  
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Total Phenol Concentration 

 The total phenol concentration of the peaches is shown in Figure 8. The 

results indicate there were significantly lower concentrations of TP in conventionally 

grown fruits than the other two treatments (Figure 8).  

 

Figure 8 Total Phenol Concentration of the Treatments. 

 Biosynthesis of phenolic compounds in plants is strongly affected by the 

cultivator techniques (Häkkinen & Törrönen, 2000), environmental conditions and the 

fertilizers used. It has  previously been reported that the phenol concentration is 

influenced by  level of available nitrogen (Brandt & Molgaard, 2001). Increase in 

phenolic compounds is related to the defense role they play in plants under stressed 

conditions (Dixon & Paiva, 1995).  
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HEAD SPACE SOLID PHASE MICRO-EXTRACTION GAS 

CHROMATOGRAPHY MASS SPECTROMETRY 

 

 The initial output from the HS-SPME-GC-MS analysis contained 79 potential 

compounds that were detected in the HS of the samples. This is similar to the average 

amount (75) of volatiles detected in previous studies (Sánchez et al., 2012 & Zhang & 

Pawliszyn, 2005) . Most of the volatile compounds detected fall under the categories of 

alcohols, aldehydes, ketones, lactones, esters, terepenoids, phenols and carboxylic acids. 

Table 6 shows those compounds that showed significant difference between the 

treatments along with CAS identification and the odor generally associated with each 

compound. Volatile data was normalized with internal standard 1, 2 di-chloro benzene 

and represented as the ratio to surrogate. Figure 9 shows the variation between the 

volatile compounds that showed significant difference.  

 Some volatiles are correlated with quality parameters which are responsible for a 

consumer acceptable, ripe peach (Jones et al., 2003). Volatile compounds showed 

strongest correlation with respect to equatorial diameter in conventional peaches (Table 

7). Peach fruit quality is directly affected by the fruit maturity parameters (SSC, size, 

color, TA, and flesh firmness). The peel ground color change from green to orange-red is 

a common field method used to identify harvest-ready fruit to get better quality. This 

process corresponds to an increase in SSC content, increase in size, decrease in titratable 

acidity and flesh softening (Sánchez et al., 2012). Equatorial diameter in conventional 

fruits was strongly positively correlated to alpha-santalol (r = 0.645
**

) and also 7 other 

volatile compounds as shown in Table 13, suggesting that these volatiles increase during 



32 

of fruits. Myristic acid, methyl ester was highly negatively correlated with top diameter 

in organic peaches as shown in Table 8. In transitional organically grown peaches most 

of the lactones were seen to be positively correlated with the SSC whereas in organic 

peaches 3,6-Dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran and linalyl alcohol 

were found to be highly negatively correlated with SSC. Lactones were seen to be highly 

negatively correlated with all the treatments (gamma-undecalactone was found highly 

negatively correlated to all the treatments r = -0.550
**

, -0.541
**

 and -0.518
*
 for 

conventional, transitional organic and organic treatments respectively) with respect to 

firmness (Table 9). The concentration of lactones increases during the maturity (Jones et 

al., 2003) and gamma- undecalactone which showed highly negative correlation to 

firmness in all treatments, also it had no significant difference of its concentration 

between the treatments which shows that all the fruits must have been equally ripened at 

the time of harvest and processing.  

 Eleven volatile compounds showed significant differences (Figure 9) between the 

treatments. 1-hexyl acetate, cis-3-hexenyl-1-acetate, n-heptanoic acid, ethylhexanoic 

acid, octanoic acid and nonanoic acid were found at significantly higher concentrations in 

conventional peaches than other two treatments. Tolualdehyde, myristic acid, methyl 

ester and pentadecanoic acid, methyl ester were found to be significantly higher in 

organic treatment, and propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester 

was found to significantly lower in concentration. Isomenthone and gamma-nonalactone 

were significantly higher in the transitional organic treatment. Interestingly, there was 

there was no significant difference between the treatments for smell liking in the sensory 

data (Table 5). Presence of a volatile compound that is relatively high doesn’t infer that it 
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significantly contributes to flavor (Tieman et al., 2012). The synergistic and antagonistic 

interactions in complex food cannot be altered by concentration and odor threshold of an 

individual volatile (Tieman et al., 2012). 6-Pentyl-2H-pyran-2-one and isomenthane 

showed highly negatively correlated to TA in organic peaches (r = -0.689*, 0.645* 

respectively), organic peaches showed significantly higher in TA and Transitional 

organic peaches showed significantly lower in concentration of TA, isomenthane was 

found to be significantly higher in transitional organic peaches than other treatments; this 

shows that increase in concentration of isomenthane is lowering the TA in these fruits.  
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Table 6  

Volatiles with Significant Difference Between Treatments 

 

CAS 

Number 
Odor 

1-Hexyl acetate 142-92-7  

 

Fruity, green apple 

banana sweet 

n-Heptanoic acid 111-14-8  

Cheesy, waxy, sweaty, 

fermented, pineapple and 

fruity 

Tolualdehyde 100-52-7  

Almond, fruity, powdery, 

nutty and benzaldehyde 

Octanoic Acid 124-07-2  

fatty waxy, rancid, oily 

vegetable, cheesy 

Nonanoic acid 112-05-0  

Waxy, dirty and cheesy 

with a cultured dairy 

nuance 

gamma.-Nonalactone 104-61-0  

Sweet, creamy, coconut, 

fatty with oily buttery 

nuances 

cis-3-Hexenyl-1-Acetate 
1708-82-

3 

green fruity banana apple 

Ethylhexanoic acid 149-57-5  

Faint specific ordor 

Isomenthone 
491-07-6  

Minty, cooling, sweet, 

peppermint-like. 

Propanoic acid, 2-methyl-

, 3-hydroxy-2,4,4 

trimethylpentyl ester 

74367-

34-3 

sweet fruity pineapple 

spicy floral 

   
Myristic acid, methyl 

ester 

67762-

40-7 

Honey, Fatty coconut, 

cognac odor 
Odor description were taken from the website www.thegoodscentscompany.com/ 

http://www.thegoodscentscompany.com/data/rw1003201.html
http://www.thegoodscentscompany.com/data/rw1008501.html
http://www.thegoodscentscompany.com/data/rw1001492.html
http://www.thegoodscentscompany.com/data/rw1009091.html
http://www.thegoodscentscompany.com/data/rw1012131.html
http://www.thegoodscentscompany.com/data/rw1000532.html
http://www.thegoodscentscompany.com/data/rw1451571.html
http://www.thegoodscentscompany.com/data/rw1451571.html
http://www.thegoodscentscompany.com/data/rw1043681.html
http://www.thegoodscentscompany.com/data/rw1003111.html
http://www.thegoodscentscompany.com/
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Figure 9. Ratio to surrogate of headspace volatile compounds that showed significant difference between the three treatments.  

 

 

a a 

b b 

a a b 

a 

c 

a b b 
a 

b b a b b 
a 

b 
c 

a b b 

a 

b 

c a a 
b 

a 
b b 
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Table 7  

 Correlation of Certain Aroma Volatiles with Equatorial Diameter 

 

Conventional  

 

Equatorial 

diameter  

 

Transitional organic  

 

Equatorial 

diameter  

 

Organic  

 

Equatorial 

diameter  

Alpha-santalol  .645**  No volatiles correlated  Ocimenol  .787**  

Cyclopentyl 

cyclopentanone  

.571
**

    2-(2- 

Ethylhexyloxy)  

ethanol  

-.637
*
  

n-Heptanoic-acid .568
**

      

p-Menthatriene .561
**

      

Isooctanol .539
**

      

Gamma-Caprolactone .531
**

      

Tridecyne .516
**

      

Menthol .513
**

      

** Correlation is significant at the 0.01. * Correlation is significant at the 0.05. 

 

 

 



37 

Table 8   

Correlation of Certain Aroma Volatiles with Top Diameter 

 Conventional 
Top 

diameter 
Transitional 

Top 

diameter 
Organic 

Top 

diameter 

Tridecyne .541
**

 gamma-caprolactone .558
**

 
Myristic acid, methyl 

ester 

-.644
*
 

 

p-Menth-1-en-9-

al 
.468

*
 Alpha-Santalol .521

**
   

Cyclopentylcyclo

pentanone 
.459

*
 delta-undecalactone .481

**
   

p-Menthatriene .454
*
 Octanol .473

**
   

 ** Correlation is significant at the 0.01. * Correlation is significant at the 0.05. 
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Table 9 

Correlation of Certain Aroma Volatiles with Firmness 

Conventional Firmness Transitional Firmness Organic Firmness 

gamma-undecalactone -.550
**

 p-menth-1-en-8-ol .524
**

 

Propanoic acid, 2-methyl-, 3-

hydroxy-2,4,4-

trimethylpentyl ester 

.461
*
 

delta-undecalactone -.505
**

 Linalyl alcohol .515
**

 1,3,8-p-Menthatriene .453
*
 

delta-decalactone -.407
*
 Cis-3-Hexenyl-1-acetate .474

**
 Acetic acid, octyl ester -.510

*
 

Chloroacetic-acid-

dodec-9-ynyl-ester 
-.400

*
 Ocimenol .450

**
 Gamma-Undecalactone -.518

*
 

  
gamma-undecalactone -.541

**
 delta-undecalactone -.551

*
 

  
delta-undecalactone -.539

**
 2-Hexen-1-ol acetate -.553

*
 

** Correlation is significant at the 0.01. * Correlation is significant at the 0.05. 
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Table 9  

Correlation of Certain Aroma Volatiles with Titratable Acidity 

Conventional TA Transitional organic TA Organic TA 

Tridecyne .671
**

 Ocimenol .396
**

 
6-Pentyl-2H-

pyran-2-one 
-.689

*
 

p-Cymen-8-ol .630
**

 p-menth-1-en-8-ol .368
*
 Isomenthone -.645

*
 

Nonanoic-acid .626
**

 
Dihydro-4-methyl-2-2-

methyl-1-propenyl-2H-pyran 
.336

*
   

n-heptanoic-acid .596
**

 delta-decalactone -.337
*
   

Octanoic-acid .596
**

 gamma-undecalactone -.321
*
   

Ethylhexanoic-

acid 
.553

**
 delta-undecalactone -.315

*
   

Menthol .537
**

     

Alpha-santalol .510
**

     

Isooctanol .508
**

     

** Correlation is significant at the 0.01. * Correlation is significant at the 0.05. 
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Headspace Principal Component Analysis 

 Using the 11 compounds that showed a significant difference between treatments, 

Table 12 PCA was performed. The eigen values of the correlation matrix in Table 11 were 

used to determine that the first three principal components were sufficient to explain 

74.17% of the variation in the data.  

 Table 10  

Eigenvalues of the Correlation Matrix for the Headspace Principal 

Component  Analysis 

 Eigenvalue Variability (%) Cumulative % 

F1 
5.079 46.168 46.168 

F2 
1.735 15.773 61.942 

F3 
1.346 12.236 74.178 

F4 
0.991 9.009 83.186 

F5 
0.697 6.334 89.521 

F6 
0.510 4.635 94.156 

F7 
0.328 2.978 97.134 

F8 
0.135 1.229 98.363 

F9 
0.078 0.712 99.075 

F10 
0.065 0.592 99.667 

F11 
0.037 0.333 100.000 
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Table 11  

Eigenvectors of Principal Component 1, Principal Component 2, and 

Principal Component 3 for the Headspace Principal Component Analysis 

 

Prin1 Prin2 Prin3 

cis-3-Hexenyl-1-Acetate 0.238 0.243 -0.499 

1-Hexyl acetate 0.316 0.261 -0.420 

n-Heptanoic acid 0.415 -0.096 -0.017 

Tolualdehyde 0.026 0.513 0.188 

Ethylhexanoic acid 0.412 -0.003 -0.010 

Isomenthone 0.270 0.240 0.363 

Octanoic Acid 0.408 -0.180 0.067 

Nonanoic acid 0.396 -0.209 -0.047 

gamma.-Nonalactone 0.151 0.272 0.583 

Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-

trimethylpentyl ester 0.286 -0.193 0.215 

Myristic acid, methyl ester -0.013 0.596 -0.116 

 

Using 0.3 as a cut off for the eigen vectors (Table 12), 1-Hexyl acetate, n-

Heptanoic acid, Ethylhexanoic, Octanoic Acid, and Nonanoic acid play the largest role in 

separating the treatments. The eigenvectors from the same table for Prin2 indicate that 

Tolualdehyde and Myristic acid, methyl ester play the largest role in separating between 

the treatments. The eigenvectors from Prin3 indicate that cis-3-Hexenyl-1-Acetate, 1-
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Hexyl acetate, Isomenthone, and gamma.-Nonalactone play most of the role in separating 

between the treatments.  

Figure10 showed some discrimination between the treatments, as transitional 

organic replicates were seen mostly clustered on the negative side of PC2 over PC1 

which was influenced by Tolualdehyde and Myristic acid, methyl ester. Although, there is 

no significant difference between the smell likings for the treatments (Table 5) 

conventional fruits had higher rating to smell liking. Conventional treatment replicates 

showed more clustering on the positive side of the PC3 (Figure 11 and 12) which is 

influenced by cis-3-Hexenyl-1-Acetate, 1-Hexyl acetate, Isomenthone, and gamma.-

Nonalactone. All these volatiles influencing PC3 give a fruity and fresh odor, which 

might have made consumers give a higher rating to the conventional peaches (Table 5).  

 

 

Figure 10. Score plot for headspace principal component analysis (PC1 

and PC2); square: organic, triangle: transitional organic, polygon: 

conventional. 
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Figure 11. Score plot for headspace principal component analysis (PC1 

and PC3); square: organic, triangle: transitional organic, polygon: 

conventional. 
 

 
 

Figure 12 Score plot for headspace principal component analysis (PC2 

and PC3); square: organic, triangle: transitional organic, polygon: 

conventional. 
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Metabolomics Analysis   

 The metabolite analysis of peaches produced 49 and many of them are sugars, 

sugar alcohols and organic acids compounds. This is somewhat lower than the average 

identified metabolites 58 in previous studies (Roessner-Tunali et al., 2003 & Lombardo et 

al., 2011). Seven metabolites showed significant difference between treatments on a one 

way ANOVA as a function of treatment (Table 13).  

Most of the metabolites that showed differences between the treatments were 

organic acids. Organic peaches were significantly higher in all the organic acids except 

lactic acid. In ripe peaches major soluble acids are malic acid and citric acid. 

Table 12  

One way ANOVA for Metabolites with Treatment as a Function 

Metabolites 

Conventional 

(Ratio of 

surrogate/gm 

of fruit 

weight) 

Transitional 

Organic 

(Ratio of 

surrogate/gm 

of fruit 

weight) 

Organic (Ratio 

of surrogate /gm 

of fruit weight) 

p-value 

Lactic acid 0.13 ± 0.07
a 

0.05 ± 0.01
b 

0.04 ± 0.01
 b

 0.037 

D-malic acid 7 ± 3
 a
 13 ± 6

 a
 50± 30

 b
 0.01 

Succinic acid 0.1 ± 0.1
 b
 0.1± 0.1

 b
 0.3 ± 0.1

 b
 0.01 

Citric acid 0.2 ± 0.
 
1

 b
 3 ± 1

 b
 14 ± 9

 b
 0.01 

D-Mannopyranose 15 ± 4
 b
 22 ± 5 

ab
 40 ± 20 

a 0.05 

D-Fructofuranose 10± 2
 a
 8 ± 3

 a 
 43 ± 30

 b
 0.01 

Quinic acid 4 ± 2
 b
 4 ± 1

 b
 20 ± 10

 b
 0.01 

* Values sharing similar letters (within rows) are not significantly different (p≥0.05),        

* Mean ± SEM 
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Table 20 shows that the two major acids were found higher in concentrations in 

organic peaches. This might have affected the consumer acceptability, as organic peaches 

were least preferred (Table 5). This agrees with Malundo et al.,  who concluded that fruits 

with higher acid content can have negative effect on consumer acceptability of fruits.  

 Table 14 shows the variation in the predominant sugars found in the treatments. 

Although organic peaches showed somewhat higher concentrations of sugars, it was not 

significantly higher than other treatments.  

 Table 13  

Predominant Sugars Variation in the Treatments 

 

organic conventional transitional organic p-value 

Sucrose  91± 57
a 

54 ± 32
 a
 49 ± 25

 a
 0.167 

Fructose 105 ± 60
 a
 56 ± 26

 a
 57 ± 30

 a
 0.080 

d-Glucose 63 ± 40
 a
 55 ± 26

 a
 32 ± 21

 a
 0.067 

 * Values sharing similar letters within rows (a, b, and c) are not significantly 

different (p ≥0.05) 

* Mean ± SEM 
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CONCLUSIONS 

 From this study we can conclude farm management techniques can affect the 

overall quality of peach fruit. Transitional organic peaches which were nitrogen stressed, 

developed more sweetness and significantly less titratable acidity; whereas 

conventionally grown peaches were bigger in size due to the increased availability of N 

as NO3
-
 nitrate levels. Sensory data supported these results as the overall liking for 

transitional organic peaches (higher SSC: TA than other treatments) was significantly 

higher than conventional and organic peaches. Organic peaches were least liked by the 

consumers, which may be due to the high TA in these peaches. Total phenol concentration 

was found to be significantly lower in conventionally grown fruits compared to organic 

and a transitional organic fruit, as the bioavailability of N to these treatments is likely 

lower than conventional. There was no significant difference in firmness, which is related 

to the ripeness of the fruits. At this point there was no clear evidence on the equal 

ripeness in fruits which plays an important role in TA and consumer acceptability. Further 

studies may include measuring ripeness of fruit, respiration and ethylene production rates 

to get a bigger picture of the nutritional and physiological changes in fruits with respect 

to their farm management technique. 

 There was a significant difference between some volatiles that might contribute to 

the smell liking of the peaches.  The HS SPME PCA provided a separation of the 

conventional treatment on PC3. The compounds that were most responsible for the 

variation are cis-3-Hexenyl-1-Acetate, 1-Hexyl acetate, Isomenthone, and gamma.-

Nonalactone. 
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 Organic treatment showed high concentrations of predominant acids in peaches 

which inversely affect the consumer acceptability. Organic peaches have more 

concentration of sugars but these were not significantly higher and variance in the sample 

size might some time effect the overall data. Transitional organic peaches were more 

liked and organic were least liked, but the nutritional values organic peaches bring can be 

the point of interest for the consumers. Future studies can be performed selecting less 

variance in the sample size.  
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Table A 14 

One-way ANOVA for Equatorial Diameter 

Contrast Difference 
Standardized 

difference 

Critical 

value 

Pr > 

Diff 
Significant 

Conventional vs 

Transitional 

organic 

3.215 2.978 2.389 0.011 Yes 

Conventional vs 

Organic 
6.137 3.738 2.389 0.001 Yes 

Transitional 

organic vs 

Organic 

2.922 1.885 2.389 0.150 No 

 

Table A 2 

One-way ANOVA for Top Diameter as a Function of Treatment 

Contrast Difference 
Standardized 

difference 

Critical 

value 

Pr > 

Diff 
Significant 

Organic vs 

Conventional 
1.259 0.871 2.389 0.660 No 

Organic vs 

Transitional organic 
1.971 1.444 2.389 0.324 No 

Conventional vs 

Transitional organic 
0.711 0.748 2.389 0.735 No 

 

Table A3 

One-way ANOVA for Soluble Solid Content as a Function of Treatment 

Contrast Difference 

Standardized 

difference 

Critical 

value 

Pr > 

Diff Significant 

Transitional organic 

vs Organic 0.043 0.146 2.389 0.988 No 

Transitional organic 

vs Conventional 0.422 2.043 2.389 0.109 No 

Organic vs 

Conventional 0.379 1.206 2.389 0.453 No 
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Table A4 

One-way ANOVA for Titratable Acidity as a Function of Treatment 

Contrast Difference 

Standardized 

difference 

Critical 

value Pr > Diff Significant 

Organic vs 

Conventional 0.077 2.391 2.389 0.050 Yes 

Organic vs 

Transitional 

organic 0.240 7.902 2.389 < 0.0001 Yes 

Conventional vs 

Transitional 

organic 0.163 7.712 2.389 < 0.0001 Yes 

 

Table A5 

 One-way ANOVA for Firmness as a Function of Treatment 

Contrast Difference 

Standardized 

difference 

Critical 

value 

Pr > 

Diff Significant 

Conventional vs 

Organic 3547.054 0.737 2.389 0.742 No 

Conventional vs 

Transitional organic 6152.415 1.944 2.389 0.133 No 

Organic vs 

Transitional organic 2605.361 0.573 2.389 0.835 No 
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Figure A1 Ratio to surrogate of headspace volatile compounds from peach samples of the three treatments. * = Ratio to surrogate is significantly 

different between treatments (p ≤  0.05).

 


	Peach Fruit Quality Analysis in Relation to Organic and Conventional Cultivation Techniques
	Recommended Citation

	tmp.1390329951.pdf.rH9tC

