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ABSTRACT 

Small satellite missions are characterized by tight constraints on cost, mass, power, and volume that generally make 
them unable to fly inertial measurement units (IMUs) required for orbital missions demanding precise orientation 
and positioning. Instead, small satellite missions typically fly low-cost micro-electro-mechanical system (MEMS) 
IMUs. The performance characteristics of MEMS IMUs make them ineffectual in many spaceflight applications 
when employed in a single IMU system configuration. The challenge for small satellite designs aiming to tackle 
more aggressive missions is to creatively employ advanced software algorithms coupled with embedded system 
architectures to create an effective precision IMU from clusters of low-cost MEMS IMUs.  The objective of this 
work is to develop and demonstrate a MEMS IMU cluster whose composite output provides high performance while 
remaining within the mass, power, and volume constraints of a 1U CubeSat. Successfully achieving this objective 
will represent a new class of inertial navigation performance for the small satellite platform. We investigate the 
practical issues associated with implementing an IMU cluster in a form factor suitable for use on a 1U CubeSat. The 
results show that in general, simple averaging of the sensor outputs approaches the predicted square root of N 
improvement in performance for the RMS noise and bias stability of the sensors. However, some sensors exhibited 
lower performance improvements than other sensors, indicating a higher correlation between individual sensors. 

 

INTRODUCTION 

Definitions and Applications 

An inertial measurement unit (IMU) is a device capable 
of sensing non-gravitational accelerations and angular 
rates that can be employed to propagate vehicle 
position, velocity, and attitude between external updates 
(e.g. Global Positioning System or a star tracker) [1]. 
This can be accomplished by measuring accelerations 
acting on the body as well as tracking any changes in 
the orientation of the body to allow the reference frame 
of the body to be transformed back to an inertial frame. 

Accelerations are most often measured using linear 
accelerometers. A linear accelerometer outputs an 
analog or digital electrical signal proportional to the 
linear acceleration experienced by the sensor along a 
predefined axis. An accelerometer is typically selected 
that measures accelerations along three mutually 
orthogonal axes to provide a full description of the 
accelerations acting upon the body. A gyroscope (or 
gyro) is an instrument able to track changes in 
orientation over time.  Similar to the accelerometer, the 

change in orientation is measured relative to a set of 
three mutually orthogonal axes [2]. These two sensors 
allow the complete state of a body (position, velocity, 
orientation) to be determined. 

Vehicle navigation is one of the primary applications of 
an IMU. While this work focuses on satellite 
applications, IMUs are also extensively used in 
robotics, self-driving cars, aircraft, nautical vessels and 
a host of other vehicles. Outputs from the IMU are 
utilized by signal processing and control algorithms 
from which changes in orientation and velocity may be 
sensed. For many space applications, the gyros play a 
more important role than the accelerometers, except 
during propulsive maneuvers. Otherwise, in low-Earth 
orbit, the linear accelerometers only sense aerodynamic 
drag and these accelerations may be small compared to 
the noise on the acceleration measurements. Thus, it is 
common for an acceleration threshold to be set below 
which the output of the accelerometer is not considered 
and spacecraft translational motion is described by 
orbital mechanics. 
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An IMU can be used in conjunction with external 
navigation updates, such as GPS, or act independently, 
resulting in a completely self-contained navigation 
solution. An example of when self-contained navigation 
is often employed is during spacecraft re-entry. During 
hypersonic re-entry of a spacecraft, a plasma sheath 
surrounds the vehicle as a result of the extreme heating 
of the air generated by strong shock waves at the 
vehicle leading edges. The plasma, consisting of ions 
and free electrons, can reflect and attenuate the 
propagation of electromagnetic waves, including those 
at frequencies used for radio communications. This 
results in a “communication blackout” for some period 
of time during re-entry. The spacecraft must rely on 
inertial navigation during this time since external 
navigational updates cannot be communicated to the 
spacecraft [3,4]. 

Although the concept of a completely self-contained 
navigation system is enticing, one disadvantage of 
IMUs is that navigation errors tend to quickly build up 
over time. Determining the position requires integrating 
the measured acceleration twice with respect to time. If 
a constant bias is present in the linear acceleration 
measurement, it would result in a position error that 
grows quadratically with time. Similarly, the output of 
the gyro must be integrated once with respect to time in 
order to determine the orientation. A constant bias error 
in the rate of change of the orientation measurement 
would result in a ramp error in the orientation 
measurement. Because of this, much effort has been put 
in to developing new technologies to minimize the 
various errors found in inertial navigation systems. 

Accelerometer and Gyroscope Technologies 

Different types of inertial sensor technologies for both 
accelerometers and gyros have been developed to 
mitigate errors, each having different tradeoffs between 
performance, mass, volume and power consumption. 
The three most common types of gyroscopes are the 
ring laser gyroscope (RLG), the fiber optic gyroscope 
(FOG), and the micro-machined electromechanical 
system (MEMS) gyroscope. 

Mirrors are aligned in the RLG to produce a closed 
light path. Two counter-propagating laser beams are 
directed along this path. As the apparatus is rotated 
about the axis normal to the plane of the light path, the 
path length of each beam is altered resulting in a phase 
difference which can be measured by allowing the two 
beams to undergo interference. This phase difference is 
proportional to the angular rate [5]. 

FOGs operate on a similar principle. A coil of fiber 
optic cable is wrapped around a cylindrical drum. Light 
is directed through a beam splitter creating two 

countercurrent light paths. As the drum rotates about its 
axis, the transmit time for each path is altered, resulting 
in a phase difference which can be detected at the point 
of entry via an interference measurement. This phase 
difference can be measured and related to the angular 
rate [5]. 

One of the technologies developed in recent years is the 
MEMS gyroscope. These sensors are inexpensive, 
small and have few moving parts [5]. Although there 
are several sub-classifications within the grouping of 
MEMS gyroscopes, only Coriolis vibratory gyroscopes 
will be considered here. In a single-axis configuration, 
two proof masses are attached on either side of a fixed 
platform. The masses are driven at a specific frequency 
along the horizontal plane. If a rotation is applied to the 
axis normal to the plane, the Coriolis force causes the 
two masses to deflect in opposite directions. A 
differential capacitive measurement results in a value 
corresponding to the angular rate [5]. 

Several accelerometer technologies include the force-
feedback accelerometer, the vibratory accelerometer 
and the pendulous mass MEMS accelerometer. The 
mechanical force-feedback accelerometer consists of a 
pendulum with an attached proof mass. Initially, the 
pendulum is at a standstill in the equilibrium position. 
As an acceleration is applied, the pendulum moves 
from its equilibrium position. The deviation is directly 
proportional to the applied acceleration. 

The vibratory accelerometer has two quartz crystal 
beams positioned back to back, each supporting a proof 
mass. The beams vibrate at their own resonant 
frequency. When an acceleration is applied along the 
sensitive axis, one beam undergoes compression while 
the other undergoes expansion, altering the resonant 
frequency. The difference in resonant frequencies is 
directly proportional to the applied acceleration. 

There are two main types of MEMS accelerometers: 
pendulous mass and vibrating beam. Only pendulous 
mass accelerometers will be considered here. In this 
configuration, a polysilicon structure is suspended over 
a silicon substrate by a set of polysilicon springs, 
creating a differential capacitor. As the structure 
deflects due to accelerative forces, the capacitance of 
the differential capacitor changes. The magnitude and 
direction of the acceleration can be determined via 
phase-sensitive demodulation techniques [5,6]. 

Aims of Study 

In this study, we seek to demonstrate that placing 
MEMS sensors in a cluster configuration results in the 
predicted improvements [7]. The cluster configuration 
consists of placing multiple MEMS sensors on a single 
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circuit board and synthesizing their outputs to create a 
single output which has improved performance 
characteristics over that of a single MEMS sensor. We 
examine the benefits of simple averaging of the sensor 
outputs. 

A custom board was designed and fabricated to test the 
objective of fusing many simultaneous MEMS IMU 
measurements. What follows is a description of the 
physical board layout, the process used to calibrate the 
sensors, and a comparison between the RMS noise and 
bias stability of a single MEMS sensor and a custom 
MEMS IMU cluster. Additionally, the MEMS IMU 
cluster described here is compared to a number of 
current IMUs on the market of varying degrees of 
performance. A comparison that scales the performance 
by the power and mass of the devices is also included, 
as these constraints are often just as important as the 
performance of the IMU in small satellite applications. 

BOARD DESIGN AND LAYOUT 

The IMU is 10 cm x 10 cm circuit board designed to fit 
within a 1U CubeSat form factor. The sensor cluster is 
made up of 16 individual sensor groups. Each sensor 
group contains two dual-axis analog MEMS gyros (ST 
Microelectronics LPY410AL) as well as a single tri-
axial analog MEMS accelerometer (Analog Devices 
ADXL335), for a total of 32 gyros and 16 
accelerometers on a single board, or 112 individual 
inertial measurements. Dual-axis gyros were chosen 
instead of tri-axial because the selection of single-
package tri-axial analog output MEMS gyros is limited. 
Each pair of gyros is perpendicularly aligned to provide 
a measurement of all three axes. The seven analog 
sensor outputs of each sensor channel are sampled 
sequentially by a high speed 16-bit analog-to-digital 
converter (ADC). The high sampling speed of the ADC 
(Texas Instruments ADS8332) compared to the 
maximum output bandwidth of the analog sensors 
(500kSPS vs 1.6kHz) allows near-simultaneous 
sampling of the seven sensor outputs within each sensor 
channel. 

Each sensor channel has its own ADC, allowing 
simultaneous sampling of a single IMU axis (e.g. the x-
axis on the MEMS accelerometer) across all sensor 
channels. An op-amp buffer in a unity gain 
configuration is placed between each sensor output and 
the ADC as a precaution to ensure sufficient drive 
strength into the ADC inputs. 

A FPGA (Lattice XP2-8) located at the center of the 
board serves as a massively parallel I/O processor to 
simultaneously acquire data from the ADCs. The FPGA 
has two onboard decimation units to control the rate of 
data output. Each will discard N of N+1 data sets, 

where N is the setting. At present, the FPGA collects 
the data in parallel from the sensor channels and 
transmits it serially over USB; all processing is done 
via an external processing unit. However, the authors 
would like to mention that the FPGA has sufficient 
internal logic resources to implement signal filtering 
and navigation algorithms within the FPGA itself in the 
future. With the addition of an on-board wireless 
system, this would eliminate the need for an external 
processing unit. Our current goal of determining how 
the performance of a MEMS IMU cluster compares 
with single MEMS gyro and accelerometer does not 
require on board processing.  

A UART/FIFO IC (FTDI FT2232HL) serves as a 
communication bridge between the FPGA and an 
external Mini-USB connection. The connection is used 
to both collect data via a host computer as well as 
controlling the internal settings of the IMU. A second 
Mini-USB port provides auxiliary power to the board as 
the power consumption of the board exceeds the 500 
mA maximum limit for USB. 

Figure 1 illustrates the rendered exploded view of IMU 
assembly and custom enclosure and Figure 2 shows the 
rapid prototype of IMU enclosure.  The enclosure was 
designed to contain the entire IMU cluster in 
preparation for sounding rocket flight testing. The 
schematic of the integrated system is shown in Figure 3. 
The main elements of the unit are the battery, voltage 
regulator and charging circuit, the MEMS IMU cluster, 
and the Raspberry Pi processor. We collect data 
through a wireless dongle to a remote laptop. We 
currently do not perform significant calculations on the 
onboard processor, but that is a target for our coning 
and sculling algorithms as we further develop the IMU 
cluster. 

External Processing 
External processing is carried out on a Raspberry Pi 
Model B (512 MB of RAM, Broadcom BCM2835 
700MHz ARM1176JZFS processor). The Raspberry Pi 
was chosen for the prototype due to its simplicity, 
wireless capabilities and small form factor. Currently, 
the Raspberry Pi receives the data from the IMU board 
over a serial connection and transmits it wirelessly to a 
host computer via TCP/IP connection. The wireless 
connection is established over WiFi using an 802.11n 
wireless adapter (Edimax EW-7811Un). 
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Figure 1: Rendered exploded view of IMU 
assembly and custom enclosure 

 

Figure 2: Rapid prototype of IMU enclosure 

Power 

The entire assembly is powered by an off-the-shelf 
consumer Lithium-polymer battery pack with a capacity 
of 6600 mAh and regulated output voltage of 5V. The 
battery pack has two USB-A outputs which provide 1A 
and 2A of current. There is also a Micro USB port on 
the side for charging the battery pack. This battery pack 
was chosen because of its sufficiently small form factor 
and weight, as well easily interfacing with the USB 
connections on the MEMS IMU board and the 
Raspberry Pi. The battery is able to power the IMU and 
Raspberry Pi for approximately 4-5 hours at full charge. 
Future work includes eliminating the USB connections  

 

Figure 3: Flow diagram of IMU connections 

 

Figure 4: IMU test fixture mounted on rate table  

as the cables are bulky and add unnecessary weight to 
the assembly. Linear power supplies were used on the 
IMU board instead of switching supplies to minimize 
electrical noise. A number of additional noise reduction 
techniques were also employed to minimize electrical 
noise as much as possible. 

CALIBRATION 

Measurement Setup 

Calibration of the IMU board was performed on a 
single-axis rate table (Trio-Tech Model 1102). The rate 
table itself was calibrated by a trained technician before 
testing. Before any measurements were taken, the table 
was first leveled using a built-in bubble level on top of 
the rate table. The test setup is shown in Figure 4. 

Data Collection 

Sensor data was collected at 100 °/s clockwise, 100 °/s 
counter-clockwise, and at zero rate. Data was recorded 
in six different orientations: each sensing axis of the 
IMU was aligned to be parallel with the gravitational 
vector, as well as anti-parallel. Accelerometer data was 
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collected at zero rate with the gravitational force being 
the input acceleration. 

Accelerometer Calibration 

The bias level, scale factors, and misalignment for each 
individual accelerometer were calculated using the test 
procedures outlined in [8]. The bias level was 
calculated by mounting each sensing axis of the 
accelerometers both parallel with the gravitational 
vector parallel as well as anti-parallel, for a total of six 
orientations. For a single axis, the bias level is given by 

𝐵! =
𝑎! + 𝑎!

2
 (1) 

where 𝑎!  is the digital output of the accelerometer with 
an input acceleration of +g and 𝑎!  is the digital output 
of the accelerometer with an input acceleration of –g. 
The units of 𝐵! are given in µg. The scale factor for a 
single axis is calculated similarly by 

𝑆! =
𝑎! − 𝑎!
2𝐵!

 (2) 

with the units of 𝑆! given in !"#
!"

.  

Calculation of the inter-axial error, or misalignment 
angles, requires four separate measurements. Using the 
x-axis as an example, the x-axis is first aligned 
horizontally with the y-axis pointing downwards. The 
output of the x-axis is recorded (𝑎!,!!). The same 
procedure is repeated, except with the y-axis pointing 
upwards. The output of the x-axis is recorded (𝑎!,!!). 
The misalignment angle with respect to the y-axis is 
then given by (3). Equation (4) follows similarly. 

𝛿!,!" =
𝑎!,!! − 𝑎!,!!

2𝑆!
 (3) 

𝛿!,!" =
𝑎!,!! − 𝑎!,!!

2𝑆!
 (4) 

Knowing the bias level, scale factor and misalignment 
angles for each individual sensor allow for a basic 
calibration of the IMU. However, this calibration does 
not take into account environmental thermal 
fluctuations. To minimize this effect, the data was 
acquired at night when the temperature of the room was 
the most stable. The parameters can be combined into a 
model of the accelerometer, given by 

𝒂!"#$ = (𝐈 + 𝑺!)(𝐈 + 𝚪!)(𝒂!"#$ + 𝑩!) (5) 

where 𝒂!"#$ is a vector of the digital outputs of the 
accelerometer, 𝒂!"#$ is the acceleration truth vector, 𝑩! 
is a vector of the accelerometer bias values for each 
axis, 𝑺! is the accelerometer sensitivity matrix and 𝚪! is 
the accelerometer misalignment matrix. The sensitivity 
matrix and misalignment matrix are defined below 

𝐒! =   
𝑆!,! 0 0
0 𝑆!,! 0
0 0 𝑆!,!

 (6) 

𝚪! =   
0 𝛿!,!" 𝛿!,!"

𝛿!,!" 0 𝛿!,!"
𝛿!,!" 𝛿!,!" 0

 (7) 

Gyroscope Calibration 

The process of calibrating the gyros is analogous to the 
process of calibrating the accelerometers [9]. The 
equations for the x-axis bias level, scale factor and 
misalignment angles are given by 

𝐵! =
𝜔! + 𝜔!

2
 (8) 

𝑆! =
𝜔! − 𝜔!
2𝐵!

 (9) 

𝛿!,!" =
𝜔!,!! − 𝜔!,!!

2𝑆!
 (10) 

𝛿!,!" =
𝜔!,!! − 𝜔!,!!

2𝑆!
 (11) 

where 𝜔! is a positive rotation about the axis being 
sensed, 𝜔! is a rotation rate equal in magnitude to 𝜔! 
except with opposite sign, 𝜔!,!! , 𝜔!,!!    are positive 
and negative rotations of equal magnitude about the y-
axis, respectively, and 𝜔!,!!, 𝜔!,!!    are positive and 
negative rotations of equal magnitude about the z-axis, 
respectively. The equations for the y and z axes follow 
similarly. The parameters can be combined into a 
model of the gyroscope, given by 

𝝎!"#$ = (𝐈 + 𝑺!)(𝐈 + 𝚪!)(𝝎!"#! + 𝑩!) (12) 

where 𝝎!"#$ is a vector of the digital outputs of the 
gyro, 𝑩! is a vector of the gyro bias values for each 
axis, 𝑺! is the gyro sensitivity matrix and 𝚪! is the gyro 
misalignment matrix and 𝝎!"#$ is the angular rate truth 
vector. 
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EXPERIMENT DESIGN 

Introduction 

When comparing the performance of IMUs, there are 
often several standard metrics used to facilitate a 
standard comparison between different technologies. 
Bias stability is the deviation from the mean value over 
a period of time given a constant input. With units of 
deg/hr for gyros or µg for accelerometers, a higher 
value for bias stability indicates that the bias has large 
fluctuations about the mean. Such fluctuations have 
implications on how IMU biases should be treated in 
Kalman filters that may process these measurements. 
Rate noise density is an indication of noise at the output 
of the sensor. The faster a sensor is sample, the more 
the noise will affect the final measurement. For gyros, 
this measure is often expressed as angle random walk 
(ARW) in units of degrees per root hour. ARW is the 
standard deviation of the error introduced by integrating 
noisy gyro measurements. Scale factor stability is a 
measure of the deviation of the scale factor for constant 
conditions over time and between different runs. 
Finally, non-orthogonality refers to the errors in the 
alignment of the sensor axes. This includes angular 
deviations of the axes from their true orientation as well 
as inter-axial angular errors. 

For this study, the authors choose to experimentally 
determine bias stability and noise characteristics for 
both a single MEMS gyro/accelerometer, as well as the 
MEMS cluster. 

RMS Noise 

For a deterministic signal with additive zero-mean 
Gaussian noise which is uncorrelated with the signal, 
the improvement in the signal to noise ratio (SNR) by 
averaging N separate sample records is given by 

𝑆𝑁𝑅 = 𝑁
𝑆
𝜎
   (13) 

Since the IMU cluster has N=16 sensor groups that will 
be averaged together, our expectation is that the 
improvement in bias stability and noise will be on the 
order of 𝑁 or a factor of 4. Because we are using 
multiples of the same sensor, not all of the noise 
sources will be completely uncorrelated. Therefore, the 
actual improvement is expected to be less than what 
theory predicts. 

Method for Determining Bias Stability 

The bias stability was calculated by creating an Allan 
variance plot for each individual sensor as well as the 

sensor clusters. The Allan variance method is a way of 
separating out different noise sources which contribute 
to the overall signal noise. In basic terms, an Allan 
variance plot shows the variance of the noise as a 
function of the averaging time. 

The Allan variance is calculated according to [3] using 
the following formula 

𝜎!! 𝛥𝑡 =
1

2(𝑁 − 1)
𝑥! − 𝑥!!!

!
!!!

!!!

   (14) 

where 𝑥! , 𝑖 = 1,… ,𝑁 is the time series data and Δ𝑡 is 
the sample time. Then a new sequence is defined 

𝑦! =
𝑥!! + 𝑥!!!!

2
, 𝑗 = 0,1,… ,

𝑁
2
   (15) 

and the Allan variance 𝜎!! 2Δ𝑡  is computed for that 
sequence. This process continues for longer and longer 
averaging times until a new 𝑦! can no longer be formed. 
The square root of the Allan variance is then plotted on 
a log-log plot for analysis. Although it will not be 
shown here, the bias stability can be determined by 
looking at the minimum point on the Allan deviation 
curve. 

Experimental Setup 

The IMU cluster assembly was mounted to the rate 
table to provide a flat surface for testing. The negative 
z-axis of the IMU was aligned parallel with the 
gravitational vector. The onboard decimation units were 
set to produce a data output rate of 18.9 Hz. Data was 
continuously collected for eight hours, resulting in N = 
545410 data points for each of the 112 sensor axes. 

RESULTS AND DISCUSSION 

RMS Noise 

Figures 5 and 6 illustrate the difference in RMS noise 
between a single MEMS sensor and the sensor cluster 
for each axis of the gyros and accelerometers, 
respectively. The results are summarized in Table 1. 
The first column of Table 1 shows the RMS noise for a 
single sensor, the second column shows the RMS noise 
for the sensor cluster and the final column shows the 
ratio between the single sensor value and the sensor 
cluster value. 

The authors would like to point out that for the 
ADXL335 accelerometer, the noise density specified 
for the z-axis of the accelerometer (referred to as the y-
axis in this paper) is twice the value for the other two 



Greenheck 7 28th Annual AIAA/USU 
  Conference on Small Satellites 

axes. This explains why the RMS noise for the y-axis is 
twice that of the x and z axes. 

As predicted, the improvement in noise is close to a 
factor of 4. The gyros showed the highest average 
performance realization. The gyro x-axis was the best 
performing, with a ratio of 3.9 between the single 
sensor performance and the cluster performance. The 
accelerometers also saw solid improvements in 
performance. The accelerometer z-axis did not perform 
as well as the other two axes (performance ratio = 2.7), 
suggesting that the correlation of the noise between 
sensors increases as they are subjected to an 
acceleration.  

Table 1: RMS noise comparison between single 
sensor and sensor cluster 

 
Figure 5: RMS noise of single MEMS gyro vs. 

MEMS cluster 

 

 

Figure 6: RMS noise of single MEMS accelerometer 
vs.  MEMS cluster 

Bias Stability 

Figures 7 and 8 show the Allan variances for both the 
gyros and accelerometers in the single sensor and 
cluster configurations. For the case of a single sensor, 
the Allan variances for each individual sensor were 
calculated. For the cluster, the Allan variances were 
averaged across each group of sensors. The bias 
stability for each axis is indicated by a horizontal dotted 
line corresponding to the minimum of the graph. The 
results are summarized in Table 2. The average 
performance ratio for the accelerometers (ratio = 2.8) 
and the gyros (ratio = 3.0) shows a significant 
improvement via simple averaging. However, in 
comparison with the RMS noise, the performance 
improvements are not quite as pronounced. This may 
have been caused by changes in the bias due to 
temperature fluctuations since the experiment was not 
carried out in a controlled thermal environment. 
However, data was collected during the night to 
minimize any temperature fluctuations. The gyro y-axis 
stands out as the improvement ratio was only 2.4, 
compared to 3.3 for both the x-axis and z-axis. Data 
was recorded at different orientations to determine if 
this artifact was the result of g-dependent errors, but the 
results did not indicate any specific correlation with the 
orientation. The cause of the reduction in performance 
for the y-axis has not yet been determined. 

The performance ratio for the other axes are consistent 
with the expected results given the fact that there are 
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Accelerometer Single (µg) Cluster (µg) Ratio 

X-axis 3670 1060 3.5 

Y-axis 6250 1800 3.5 

Z-axis 3590 1330 2.7 

Average 4500 1400 3.2 

Gyroscope Single (deg/s) Cluster (deg/s) Ratio 

X-axis 0.418 0.108 3.9 

Y-axis 0.393 0.109 3.6 

Z-axis 0.422 0.111 3.8 

Average 0.411 0.109 3.8 
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unmodeled, correlated errors between the individual 
sensors. 

Table 2: Bias stability comparison between a single 
sensor and sensor cluster 

Accelerometer Single (µg) Cluster (µg) Ratio 

X-axis 62 23 2.7 

Y-axis 152 56 2.7 

Z-axis 61 21 2.8 

Average 92 33 2.8 

Gyroscope Single (deg/hr) Cluster (deg/hr) Ratio 

X-axis 29.5 9.0 3.3 

Y-axis 25.3 10.6 2.4 

Z-axis 26.6 8.0 3.3 

Average 27.1 9.2 3.0 

 

Figure 7: Allan variance of single MEMS 
accelerometer vs. MEMS cluster 

 

 Figure 8: Allan variance of single MEMS gyro vs. 
MEMS cluster 

Comparison with Other IMUs 

A secondary aim of this work is to compare the 
performance of the MEMS IMU cluster to existing 
IMU sensors on the market. A direct comparison 
between a MEMS sensor and a RLG or FOG based 
sensor shows that much progress must be made before 
MEMS can be used in precision applications. However, 
for applications where quantities such as mass, power 
and volume are highly constrained, it is worth 
examining the tradeoff between mass, power, and 
performance. Figures 9 and 10 show the comparison 
between the MEMS IMU cluster and other types of 
IMUs on the market [10,11,12,13,14]. It is notable that 
the IMU cluster shown here is consistent with the mass, 
power, and performance trends seen with other IMUs.  

By incorporating more precise MEMS IMUs, it is 
anticipated that the IMU cluster performance can be 
significantly improved with little change in the mass or 
power consumption. Replacing the analog sensors with 
digital output sensors would eliminate the need for the 
op-amps and ADCs, which would drastically reduce 
power consumption and shrink the board size due to 
fewer physical components being on the board. 
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Figure 9: IMU Accuracy scaled by mass for the 
various types of IMUs 

 

Figure 10: IMU Accuracy scaled by power for the 
various types of IMUs 

CONCLUSION 

Our results show that performance gains resulting from 
averaging of a cluster of MEMS sensors approaches the 
predicted performance. The improvement in RMS noise 
for a cluster of 16 MEMS accelerometers was on 
average 3.2x, while the improvement in RMS noise for 
a cluster of 16 MEMS gyros was 3.8x. Bias stability 
saw less of a performance improvement, with an 
average improvement of 2.8x for the accelerometers 
and 3.0x for the gyros. This suggests that correlation 
between bias stability errors across the individual 
sensors is higher than the correlation between errors 
due to random noise. The y-axis of the gyros also 
showed less improvement in bias stability when 
compared to the other gyro axes. Further 
experimentation will be needed to determine if this is a 
result of the test setup, the cluster configuration, or 
because of the actual sensors themselves. 

Future work involves implementing signal processing 
techniques more advanced than simple averaging, such 
as using Kalman filtering. The board design could also 
be improved by using digital sensors instead of analog, 
which would reduce power consumption and reduce 
board size by eliminating the need for the buffers and 
the ADCs. Implementing the algorithms on the FPGA 
would also eliminate the need for an external processor, 
drastically reducing the mass, weight and volume of the 
current design. 
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