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Monte Carlo simulations and a scaling hypothesis are used to study the distribution of blob masses
on two-dimensional finite-mass clusters at the percolation threshold. The exponents associated with
this distribution function are a combination of backbone and percolation exponents. This work
oR'ers insights into the structure and fragmentation properties of percolation clusters in particular,
and provides methods applicable to other fractal distribution problems in general.
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A wide variety of fragmentation processes possess no
preferred direction. For example, destructive phenomena
such as combustion, dissolution, or corrosion occurring
both at the external surface and deep within the pores
of a random porous solid can cause fragmentation of the
solid as the pores widen and fuse [1]. Percolation theory
[2] would seem an ideal tool for studying these nearly
isotropic random processes. Percolation models of frag-
mentation [3—5] provide important geometrical informa-
tion which is absent from rate-equation approaches for
fragmentation [6—8]. Moreover, these percolation models
raise fundamental questions about the blob-mass distri-
bution on percolation clusters and identify this distribu-
tion as a key element in the overall understanding of the
structure of percolation clusters. The primary goal of
this Brief Report is to understand this distribution us-
ing scaling arguments and two-dimensional (2D) Monte
Carlo simulations.

Percolation clusters are defined as sets of adjacent oc-
cupied sites or bonds (unit line segments) on a lattice
randomly occupied with probability p. Above the per-
colation threshold p~, a spanning cluster exists on the
infinite lattice [9]. The transition at p, features critical
behavior analogous to that of thermal phase transitions,
most importantly self-similar clusters with simple scal-
ing properties [2]. The desire to understand transport
in random materials has motivated careful studies of the
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structure of percolation clusters [10,11]. These studies
emphasize the cluster surface or "hull" [12] and the clus-
ter backbone [13—17).

The blob-mass distribution on the backbone has been
carefully studied at p, [14]. For bond percolation clusters,
the backbone is defined as the subset of bonds carrying
current between two designated reference bonds on the
cluster. The backbone itself consists of singly connected
red (cutting) bonds, whose absence would break the
backbone, and multiply connected blue bonds [10,11,13].
Backbone blobs are defined as connected sets of adja-
cent blue bonds. Clearly, designating diBerent reference
bonds results in a diferent backbone; the reference bonds
define a preferred orientation on the cluster.

For isotropic fragmentation of percolation clusters, it
is the overall cluster connectivity, rather than the con-
nectivity of the backbone, that matters. Accordingly,
we designate as "&agmenting" those bonds on the clus-
ter that would break the cluster if removed. Cluster
blobs are correspondingly defined as groups of adjacent
nonfragmenting bonds (Fig. 1). This definition implies
a small distinction between cluster blobs and backbone
blobs; bond k in Fig. 1 is a member of the cluster blob
containing bondi, but is not a member of the correspond-
ing blob on the backbone defined by reference bonds i and
j. Only a subset of the blobs and fragmenting bonds on a
cluster appear as blobs and red bonds on any particular
backbone of the cluster (Fig. 1). The essential connec-
tivity of percolation clusters can be described simply as
a branched network or tree of blobs of various masses
linked by fragmenting bonds. This network is much like
a Bethe lattice (Cayley tree), with blobs occupying the
vertices, except here the vertex mass and the coordina-
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FIG. 1. Sample cluster of mass 20 on a square bond lattice
with three fragmenting bonds (thin lines) and cluster blobs
(groups of adjacent nonfragmenting bonds) of masses 1, 4, 5,
and 7. Fragmenting bonds 2 and 3 serve as red bonds on the
backbone defined by reference bonds i and j. Bond k, bond
1, and the blob to its left are not on this backbone.

tion number (the number of links per vertex) can vary.
By contrast, the blobs and red bonds on a backbone form
a branchless, one-dimensional path between the two ref-
erence bonds.

What is the form of the cluster blob-mass distribution
and how does it differ, if at all, from the backbone blob-
mass distribution? What is the dependence of the coor-
dination number on the blob mass? As will be seen, the
answers to these questions provide fundamental informa-
tion about the internal structure of percolation clusters
relevant to the &agmentation of random porous solids.

It is natural to de6ne the cluster blob-mass distribution
as the average number density n, b of blobs of mass b on
clusters of mass s at p, where number density means the
number of such blobs per cluster bond and mass refers in
both cases to bonds, not sites. In this Brief Report, we

propose the scaling form

n, s = b f(b/s')

and the scaling relationship

~' —1 = 1/z = D/D, (2)

which involve new exponents w' and z as well as the
known cluster and backbone fractal dimensions D and
D. That D & D in all dimensions greater than one de-
mands that w' ) 2 and z ( 1.

To test Eqs. (1) and (2) and to determine the expo-
nents numerically, we performed 2D Monte Carlo simula-
tions involving 42861 clusters generated using the Leath
method [18] on a square bond lattice at p, = 1/2. Once
the &agmenting bonds are identified on a particular clus-
ter [5], one more pass through the list of cluster bonds
is sufBcient to determine the blob-mass distribution for
that cluster. This is done using a burning algorithm [14],
which starts at one end of a fragmenting bond and burns
only non&agmenting bonds until all of these are burned,
thereby counting the number of bonds burned in this pro-
cess (the blob mass). Figure 2 shows a log-log plot of n, s
as a function of 6 for four different cluster masses. Evi-
dent in the figure are a power-law decay for small b and
a cutoff at large b consistent with Eq. (1).

Moments p( ) = Ps b"n, s of the distribution allow us
to determine 7. and z precisely &om the Monte Carlo
simulations. These moments scale as [19]
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FIG. 2. Distribution of blob masses for clusters in the
mass ranges 32 768—35734 (squares), 8192—8933 (diamonds),
4096—4467 (triangles), and 512—558 (circles).
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The last term comes by direct integration of Eq. (1) and
dominates as s -+ oo for k & 2, whereas the first (con-
stant) term dominates for k = 0 and k = 1. Conse-

quently, the average blob mass p, /p, = ai/ao repre-(~) (o)

senting the ratio of the total blob mass on a cluster to the
number of blobs on the cluster is a constant for large 8,
as is evident in Fig. 3. The weighted average blob mass

p„ /p, s~ with p = z(3 —w') is analogous to the
average cluster size as it is usually defined [2]. The ino-

(3) (~)ment ratio p, /p, s' scales as the cutoff blob mass
B s' and involves a "gap" exponent z. Fits to the
highly linear data in Fig. 3 yield p = 0.721+ 0.008 and
z = 0.856 + 0.018, from which 7' = 2.16 + 0.02 follows
immediately.

These computed scaling exponents agree with Eq. (2)
to high precision. With the known 2D values D = 91/48
[2] and D = 1.64 6 0.01 [16,17], Eq. (2) implies z
0.865 + 0.005 and ~' = 2.16 6 0.01, in precise agreement
with the computed exponents.
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FIG. 3. Computed ratios of moments of the blob-mass dis-
tribution vs cluster mass. Shown are the ratio of the third
to second moment (triangles), the second to first moment
(diamonds), and the first to zeroth moinent (squares) whose
asymptotic slopes are the exponents z, p, and zero, respec-
tively.
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IFIG 4. Scaled .blob-mass distribution b n, q vs b/s' with
v

' = 2.16 and z = 0.856.

I

Figure 4 shows the scaled distribution b n, b as a func-
tion of the ratio x = b/s' of the blob mass to the cutoff
blob mass, with ~' = 2.16 and z = 0.856. The striking
collapse of the data further confirms Eq. (1) and defines
the shape of the scaling function f (x) T. his function
measures the deviations of n, b from the pure power-law

1

behavior b . The peak near x = 1 implies an excess
of blobs just below the cutofF, whereas the sharpness of
the cutoff at higher x rejects an extreme sensitivity of
the cluster blob-mass distribution to the blob mass in the
vicinity of the cutoK

Fractal concepts provide a deeper understanding of the
cluster blob-mass distribution and drive a scaling argu-
ment for the second equality in Eq. (2). In a box of edge
L, the cutoff cluster of mass 8 L has a cutofF blob
mass B 8 L '. This can be related to the corre-
sponding cutoÃ blob mass on the backbone. The fractal
dimension of backbone blobs equals the fractal dimension
D of the backbone itself because the red bonds contribute
insignificantly to the backbone mass [11,14]. Hence the
cutofF backbone blob mass in a box of edge L scales as

Bbb L . The small distinction between cluster and
backbone blobs is not expected to aBect the scaling of
the cuto8 blob mass. Accordingly, taking B Bbb pro-
duces z = D/D, the second equality in Eq. (2).

The scaling relation r' —1 = 1/z can be derived from
a hyperscaling argument similar to the original Widom
hyperscaling argument for thermal critical points [20].
A slight variant of this argument hypothesizes that the
scaling part of the free-energy density I"„ t2 in a
volume defined by the correlation length approaches a
constant at criticality. That is, I'„(" t is a con-
stant at reduced temperature t = ]T —T,

~

= 0, requiring
that dv = 2 —o.. For the cluster distribution function at
p = p, the number density of percolation clusters on a
lattice of size L should scale as [2] n, (L) = s f(s/L ).
The total density of these clusters, given by the inte-
gral of n, (L) over all cluster masses, has a singular part
which scales as L~ ~ . This singular part measures the
density of only the largest clusters on the lattice since it
arises from the integration over the largest cluster masses.
That is, the integration of the cluster distribution func-
tion is performed over the largest cluster masses only, say,

from a fraction of the cutoK mass 8 = 0 L to infinity

n, (L)ds = L( u f(u)du L(' ) . (4)

It seems natural to hypothesize that there should be a
finite number of these largest clusters for any size lat-
tice in two dimensions. Then as criticality is approached
(here, as L -+ oo), the total number of these largest
clusters approaches a constant L"+,requiring that
w —1 = d/D. This is the familiar hyperscaling relation
for the cluster number exponent w in terms of the fractal
dimension.

A hyperscaling argument identical to the one for clus-
ter numbers leads to the scaling relation in Eq. (2). At
p = p, we have argued that the number density of blobs
on a cluster of mass s should scale as n, i, = b f(b/s').
Now consider the total density of these blobs [the ze-
roth moment k = 0 in Eq. (3)] whose singular part
scales as s(i ~ ) . The scaling part in Eq. (3) measures
the density of the largest blobs on the cluster since the
other terms arise from the lower limit of the integral over
the cluster masses. In analogy with Eq. (4), the scal-
ing part of the blob distribution function is integrated
over the largest blobs, i.e. , from a fraction of the cut-
oif blob size (b = os') to infinity. It seems natural
to hypothesize that there should be a Rnite number of
largest blobs for any size cluster so that as criticality is
approached (s —

& oo), the total number of these largest
I

blobs 8 + & &' should approach a constant, requiring
that r' —1 = 1/z.

Introducing a "cluster granularity" further illuminates
this hyperscaling relation as well as the finite-8 scaling
of the total fraction p, = cps ~ "& + ai of blob bonds
on a cluster. The granularity G of blobs on percolation
clusters is defined as the ratio of the cutofF blob mass
to the cluster mass G = B/s s' . Since the scaling
part of this total blob fraction arises from the finite num-
ber of largest blobs whose mass approximately equals the
cutoK mass, the scaling part of the total fraction should
dier from the granularity only by a factor of the con-
stant number of these largest blobs; this also leads to
r' —1 = 1/z. Furthermore, the cluster granularity plays
an important role in p, , even to rather large s (Fig. 3,
k = 0) smce 1 —z = z(2 —r') is small.

Although individual cluster and backbone blobs are
nearly identical, their mass distributions are quite difFer-
ent. The backbone blob-mass distribution [14] is defined
as the average number density nl, b of blobs of mass 6
on a backbone contained in a d-dimensional box of edge
L at p, . It scales as nl. ~ = L " "b f (b/L ), where
D„ is the fractal dimension of the red bonds. Whereas
fragmenting and blob bonds each comprise Gnite mass
fractions of large clusters, the inequality D ( D implies
that red bonds comprise an insignificant mass fraction of
large backbones. Furthermore, since w ( 2, the moments
nt( ) P bkn ~ LD„—d o + bkLD(k —~+1) are dom

inated by the first term only for k = 0. The scaling
relationship w —1 = D„/D analogous to Eq. (2) follows

by simply demanding that m& scale as the total blob-
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mass density I ". Finally, whereas the average mass

p, /p, of cluster blobs is constant, the average mass(~) (o)

m& /m& LD D" of backbone blobs increases with(i) (0)

increasing L. Consequently, large cluster blobs (of mass
b ) p( )/p( l) have a higher likelihood of appearing on
the backbone than small cluster blobs; the backbone is
populated preferentially with large cluster blobs. In fact,
the granularity of blobs on the backbone is a constant
of order unity, being the ratio of the cutoK blob mass to
the backbone mass, which both scale as L; in contrast,
the granularity of blobs on clusters goes to zero for large
clusters.

The coordination number Zb, defined as the average
number of fragmenting bonds attached to blobs of mass 6,
is interesting because it describes the overall connectivity
of percolation clusters. Its scaling [21] Zb b, indepen-
dent of cluster mass, indicates that the average number
of links emanating from a blob is proportional to the
blob mass. This is in contrast to backbone blobs where
only the two links to the backbone are relevant. This
result, coupled with the results on the blob-mass distri-

bution, constitutes an important addition to the nodes,
links, and blobs picture of percolation clusters [10,11].
Studies of the distribution of the number of fragmenting
bonds per link might further illuminate the structure of
percolation clusters.

In conclusion, we have described the distribution of
blobs on critical percolation clusters using a scaling the-
ory and numerical simulations. The blob-mass distribu-
tion exponent 7' = 1 + D/D, being a combination of
the percolation cluster dimension D and the backbone
dimension D, reHects the geometry of fractal clusters
(blobs) embedded in a fractal substrate (the percolation
cluster) .
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