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ABSTRACT 

Constraints on patterns of abundance and aggregation 

in biological systems 

by 

Kenneth J. Locey, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Ethan P. White 

Department: Biology 

Understanding mechanisms that drive the structure of biological systems is a 

primary goal of all biological sciences. From the shapes of molecules to the structure of 

ecological communities, all biological systems are characterized by patterns in the 

organization of their components (i.e. structure). Despite their complexity, the structure 

of biological systems is often characterized by relatively simply patterns in properties 

such as aggregation and abundance. The overarching goal of my research was to explore 

how patterns in these structural properties may be constrained by general state variables 

such as the size of a biological system and number of elements, parts, or components 

within it (e.g. number base pairs in a genome, number of chromosomes, number of 

species and individual organisms in community).  

For example, aggregation of nucleotide base pairs is a structural property that 

reflects, among other things, the encoding of genetic information. Using over 300 
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microbial genomes, I demonstrate that aggregation among nucleotides is constrained by 

genome length (but not chromosome length) and that levels of aggregation consistently 

differ between regions of coding and noncoding DNA. Likewise, in ecological systems, 

the distribution of abundance among species is a primary pattern of ecological structure 

that provides a full characterization of commonness and rarity. Using over 9000 

communities of plants, animals, fungi, and microorganisms, I demonstrate how species 

abundance distributions are constrained by total abundance and species richness, and that 

the strength of this influence differs between communities of microbes and those of 

conspicuous plants and animals. 

In conclusion, general variables such as the size of a system and the number of 

elements within it can greatly constrain simple structural properties  at scales of biology 

from individual genomes to ecological communities. The influence of these constaints is 

poorly understood and this lack of understanding influences our interpretation of 

processes underlying biological structure. My research provides a step towards a general 

understanding of the constraining influence of general variables on patterns of 

aggregation and abundance across biology. 

 (113 pages) 
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PUBLIC ABSTRACT 

Constraints on patterns of abundance and aggregation 

in biological systems 

by 

Kenneth J. Locey, Doctor of Philosophy 

Utah State University, 2013 

Major Professor: Ethan P. White 

Department: Biology 

Understanding the mechanisms that  structure  biological systems is a primary 

goal of biology. My research shows that the biological structure is constrained in 

important ways by general variables such as the number of base pairs in a genome and 

the number of individuals and species in a community. I used a combination of 

macroecology, bioinformatics, statistics, mathematics, and advanced computing to pursue 

my research and published several peer-reviewed scientific manuscripts and open-source 

software as a result. 

I was funded through a combination of fellowships and scholarships awarded by 

the Utah State University School of Graduate Studies, College of Science, and 

Department of Biology, as well as teaching assistantships awarded through the 

Department of Biology at Utah State University, and research assistantships funded 

through a CAREER grant from the U.S. National Science Foundation (DEB-0953694) 
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awarded to my advisor, Dr. Ethan White. With the help of my advisor, I also obtained a 

computing grant from Amazon Web Services in the amount of $7,500. Altogether, 

funding for my research and education totaled approximately $123,500. 

Using over 9000 communities of plants, animals, fungi, and microorganisms, I 

demonstrated that the forms of empirical species abundance distributions (SADs) are 

constrained by total abundance and species richness. Using over 300 microbial genomes, 

I demonstrate that nucleotide aggregation is constrained by genome length and differs 

between regions of coding and noncoding DNA. General state variables of genomes and 

ecological communities (i.e. genome length, total abundance and species richness) 

constrain simple structural properties of each system. 
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CHAPTER 1 

INTRODUCTION 

Understanding mechanisms that influence the structure of biological systems is a 

primary goal of all biological sciences (Watson & Crick 1953, Paine 1974, Gehring 1987, 

Brown 1995). From the structure of molecules involved in gene expression and metabolic 

pathways, to the structure of populations and communities characterized by patterns of 

abundance among alleles and species, all biological systems are characterized by patterns 

in the organization of their components (i.e. structure). Despite their inherent complexity, 

at least two structural properties apply to most any biological system, i.e. aggregation (i.e. 

properties of grouping and clustering) and abundance. These structural properties may, in 

turn, be constrained by general variables that reflect the size and number of elements in a 

biological system (e.g. genome length, length and number of chromosomes, total 

community abundance, number of species) (Almirantis & Provata 1997, Bohlin et al. 

2009, McGill 2010, Harte 2011).  

At the molecular scale, the number of nucleotide base pairs is a basic attribute of 

any genome. Likewise, the aggregation of nucleotides is a structural property that reflects 

the encoding of genetic information and likely differs between regions of DNA that code 

and do not code for proteins (Almirantis & Provata 1997, Bohlin et al. 2009). It has also 

been suggested that forces related to entropy may drive aggregation within genomes and 

the self-assembly of genomic structures (Marenduzzo et al. 2006). 
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At the macroecological scale, total abundance and species richness are basic 

attributes of ecological communities that inherently influence the distribution of 

abundance among species; a primary pattern of ecological structure (McGill et al. 2007). 

Recently, it has been shown that models primarily constrained by total abundance and 

species richness can explain the majority of variation in abundances among species 

(Harte et al. 2008, Harte 2011, White et al. 2012). Indeed, species richness and total 

abundance constitute two primary state variables in the Maximum Entropy Theory of 

Ecology (Harte 2011).   

The constraining influence of general variables on structural patterns of 

abundance and aggregation has rarely been studied across disparate fields of biology or 

even within a single context. The overarching goal of my research was to show how the 

structural properties of aggregation and abundance are constrained across biological 

systems by general variables that relate to the size of a system and its number of primary 

components (e.g. genome length, chromosome length and number, total community 

abundance, species richness). I demonstrate the breadth of the constraining influence of 

these general variables on abundance and aggregation by focusing on the molecular and 

ecological scales, i.e., aggregation of nucleotides in genomes as constrained by genome 

length and chromosome number, and distributions of abundance in ecological  

communities as constrained by total abundance and species richness. 
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CHAPTER 2 

HOW SPECIES RICHNESS AND TOTAL ABUNDANCE CONSTRAIN THE  

DISTRIBUTION OF ABUNDANCE* 

Abstract 

The species abundance distribution (SAD) is one of the most intensively studied 

distributions in ecology and its hollow-curve shape is one of ecology’s most general 

patterns. We examine the SAD in the context of all possible forms having the same 

richness (S) and total abundance (N), i.e. the feasible set. We find that feasible sets are 

dominated by similarly-shaped hollow-curves, most of which are highly correlated with 

empirical SADs (most R
2
 values > 75%), revealing a strong influence of N and S on the 

form of the SAD and an a priori explanation for the ubiquitous hollow-curve. Empirical 

SADs are often more hollow and less variable than the majority of the feasible set, 

revealing exceptional unevenness and relatively low natural variability among ecological 

communities. We discuss the importance of the feasible set in understanding how general 

constraints determine observable variation and influence the forms of predicted and 

empirical patterns. 

 

 

 

 

*Coauthored by: Locey, K.J. & White, E.P. (2013). How species richness and total 

abundance constrain the distribution of abundance. Ecology Letters, 16, 1177-1185. 

Introduction  
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 The species abundance distribution (SAD) is one of the most widely studied 

patterns in ecology and exhibits a consistent structure with many rare and few common 

species; the canonical “hollow curve” (McGill et al. 2007). The form of the SAD has 

been predicted by a variety of models based on an array of different processes including 

niche differentiation (e.g. Sugihara 1980), stochastic population dynamics (e.g. Hubbell 

2001), and the structure of abundance across a species range (e.g. McGill & Collins 

2003). Though SADs are potentially influenced by some or all of these processes, the 

ability to distinguish between different structuring processes depends on the presence of 

sufficient variation among the possible shapes of the SAD (Haegeman & Loreau 2008). If 

most of the possible SADs have similar shapes, it will be difficult to determine what 

processes generated them. 

Haegeman & Loreau (2008) introduced the use of the set of all possible 

distributions (the feasible set) to examine ecological patterns and theory. They argue that 

if the feasible set is small then there is little information in the pattern being examined. 

Likewise, if theoretical predictions do not deviate from the center of the feasible set, then 

they may provide limited information about process. To explore the implications of these 

ideas for understanding the species abundance distribution we use McGill et al.’s (2007) 

definition of the SAD as the “vector of abundances of all species present in a 

community”. This distribution is necessarily influenced by two values: total abundance 

(N; i.e. the number of individuals in a community) and species richness (S; i.e. the 

number of species in a community). Though ecological theories often use N and S as 

inputs to fit or predict the shape of the SAD (McGill 2010), knowing N and S constrains 
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the form of the SAD in ways that ecologists rarely address. Specifically, there are a 

limited number of ways that the abundances of S species can sum to a total abundance of 

N, and thus, there is a limited feasible set of uniquely-shaped SADs for any combination 

of N and S. For example, there is only one possible SAD form when S = 1 and N = 1 (i.e. 

{1}) and only two possible forms if S = 2 and N = 5 (i.e. {4,1}, {3,2}). As we show, N 

and S not only determine the number of possible SADs but also the general form of the 

possible distributions, making it necessary to understand how the properties of the 

feasible set constrain the form of the SAD and how constraints such as N and S influence 

empirical patterns and the predictions of ecological models. 

We refer to each uniquely-shaped SAD within the feasible set as a macrostate (i.e. 

an unordered vector of unlabeled species abundances). This differs from a microstate, 

which refers to a unique distribution of individuals among species leading to a specific 

macrostate. The terms feasible set, macrostate, and microstate have been used in recent 

applications of entropy maximization (MaxEnt) to macroecology (Haegeman & Loreau 

2008, McGill & Nekola 2010; Harte 2011). In short, MaxEnt infers the most likely 

macrostate as that with the most microstates based on sets of state variables (e.g. N, S) 

and related constraints. Though the framework of MaxEnt implies the existence of a 

feasible set, MaxEnt does not explicitly consider it. Here, we focus solely on the 

distribution of macrostates within the feasible set without considering the numbers of 

ways in which macrostates can arise. As we show, feasible sets have strong central 

tendencies, meaning that most of the possible macrostates have similar shapes. If 

empirical SADs have shapes similar to those near the center of the feasible set, then there 
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may be little ecological information in the shape of the SAD beyond that contained in N 

and S. Since most of the observable forms of the abundance distribution have shapes that 

are very similar to this central tendency, many different processes will result in 

distributions of the same general form as will many different models. This observation 

goes beyond the issue of equivalent models (e.g., Pielou 1975, McGill et al. 2007), 

suggesting that many different models and empirical patterns may be expected to take 

similar forms because most possible states of the pattern are similar in shape (White et al. 

2012). However, if the shape of an SAD is exceptional to the majority of shapes with the 

same N and S, then this exceptional evenness or unevenness would require an 

explanation, especially if consistent across communities. Consequently, the feasible set 

provides a context for understanding whether predicted and empirical patterns are 

exceptional to or representative of the majority of possible forms. As such, studies of the 

SAD would benefit from considering the shape of the SAD relative to the feasible set, 

rather than the shape of the SAD per se. 

Here, we explore general properties of the feasible set and reveal the strength of 

the influence of N and S on the shape of the SAD. We use the feasible set as a contextual 

framework for understanding how richness and abundance necessarily constrain 

ecological patterns. We show that most of the possible SAD shapes are similarly-shaped 

hollow-curves, revealing an a priori reason for the ubiquitous hollow-curve. Using one of 

the most taxonomically diverse and geographically expansive data compilations in 

community ecology, we show that the central tendency of the feasible set is strongly 

correlated with empirical SAD patterns within and among sites for birds, mammals, trees, 
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and metagenomic datasets of prokaryotes and fungi. Moving beyond single SADs, we use 

ensembles of SADs with the same values of N and S to assess relationships between the 

variance predicted by the feasible set and that observed in ecological systems. We discuss 

the importance of using the feasible set as a context for understanding variation in the 

forms of empirical patterns and the inference that can be drawn from models that  

successfully predict them. 

Methods 

Finding macrostates of feasible sets 

Finding all possible macrostates for a community of a particular total abundance 

(N) and species richness (S) is equivalent to finding all unordered ways of summing S 

positive integers to obtain the positive integer N, a combinatorial approach known as 

integer partitioning (Andrews & Eriksson 2004). For example, the feasible set for N = 10 

and S = 3 is {8+1+1, 7+2+1, 6+3+1, 6+2+2, 5+4+1, 5+3+2, 4+4+2, 4+3+3}. Different 

unordered sets of S integers that sum to N are partitions (i.e. macrostates) of N and S. 

Hence, sets of the same integers in different order, e.g. {8+1+1, 1+8+1, 1+1+8}, 

constitute the same partition. Likewise, each would produce the same frequency 

distribution (i.e. two 1’s, one 8) and the same rank distribution (i.e. 8+1+1). Several 

algorithms are available for integer partitioning problems, such as finding the size of the 

feasible set for a given N and S (Nijenhuis & Wilf 1978). We used the implementation of 

these algorithms in the free open-source Python-based Sage computer algebra system 

(http://www.sagemath.org/). 

http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://www.sagemath.org/
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Generating the feasible set for a community of a particular N and S can require a 

large amount of time and computational memory. This is because feasible sets become 

large for communities of realistic size; a result of combinatorial explosion (i.e. large 

changes in the number of possible outcomes for small changes in the values of inputs). 

For example, there are nearly 8.8x10
14

 macrostates for N = 1,000 and S = 10 and nearly 

6.28x10
26

 macrostates for N = 1,000 and S = 50. While complete enumeration of the 

feasible set can be untenable for many values of N and S, the form of the feasible set 

space can be determined by randomly sampling macrostates from the feasible set. We 

used the random partition algorithm described by Nijenhuis & Wilf (1978) and 

implemented in Sage to generate uniform random samples of feasible sets.  

The partitioning algorithm we used, and all currently implemented integer 

partitioning algorithms, generates random partitions (i.e. macrostates) based on N but not 

S. We randomly drew partitions of N and rejected partitions that did not have S parts; an 

approach that can be computationally expensive. For example, randomly drawing one 

macrostate for N = 1,000 and S = 10 requires drawing from a feasible set of nearly 

2.4x10
31

 macrostates, one of the roughly 8.9x10
14

 for which S = 10; a probability of 

nearly 3.7x10
-17

. Consequently, we used substantial computational resources (one in-

house cluster of three dual Quad Core Intel Xeon 3 GHz processors with 16 GB of RAM 

each, plus 20 High-CPU Extra Large Amazon Web Service instances with 7GB of RAM 

each and a total of 160 AWS cores) and computational time (> 10,000 compute hours) to 

generate random macrostates for combinations of N and S. Code for replicating our 
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analyses are available at https://github.com/weecology/feasiblesets. All software required 

to run our scripts (e.g. Sage, Numpy, Python) is free and open source. 

We chose the integer partitioning approach to the feasible set over the random 

walk method used by Haegeman & Loreau (2008) because it is conceptually simpler and, 

by definition, yields uniform random samples of the feasible set without requiring 

decisions regarding burn-in periods and the number of steps between samples. However, 

this approach can be very slow for some combinations of N and S, and further research  

comparing the speed and accuracy of these two approaches would be valuable. 

Data 

We used a subset of previously compiled datasets of site-specific species 

abundance data (see White et al. 2012). Our subset represents 9,562 different sites of 

bird, tree, and mammal communities. The data set includes four continental-to-global 

scale surveys, including the Christmas Bird Count (129 sites) (CBC; National Audubon 

Society 2002),  North American Breeding Bird Survey (1,586 sites) (BBS; Sauer et al. 

2011), Gentry’s Forest Transect Data Set (182 sites) (GENTRY; Phillips & Miller 2002), 

Forest Inventory Analysis (7,359 sites) (FIA; U.S. Department of Agriculture 2010), and 

one global-scale data compilation, the Mammal Community Database (42 sites) (MCDB; 

Thibault et al. 2011). White et al. (2012) used one year of sampling for each site and only 

used data for communities with a minimum of 10 species (Ulrich et al. 2010). We 

included only sites with combinations of N and S for which random macrostates could be 

generated based on reasonable computational effort. This includes large fractions of all of 

the datasets except for CBC, which only includes ~6% of the original sites. Additionally, 

https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
https://github.com/weecology/feasiblesets
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we restricted our analysis of FIA to natural forest stands (e.g. absence of human 

disturbance, plots without artificial regeneration, plots without silvicuture treatment). 

More details regarding the data can be found in Appendix C and in Appendix A of White 

et al. (2012). 

We also compiled relative abundance data at the species level from five microbial 

metagenome projects for a total of 264 surveys of geographically distinct bacterial, 

archaeal, and indoor fungal communities. Metagenomes are produced from genetic 

material recovered from environmental samples and are the primary means of studying 

microbial diversity in situ. Despite the lack of a universally accepted microbial species 

definition, there is a well-established convention for demarcating species-level units. 

Taxonomic levels representing species are commonly delineated at 97% 16S rRNA 

sequence similarity for prokaryotes and 97% rRNA sequence and rRNA related ITS 

(internal transcribed spacer) sequence similarity for fungi (Roselló-Mora & Amann 2001, 

Schloss & Handelsman 2006, Marshal et al. 2008, Amend et al. 2010, Chu et al. 2010, 

Flores et al. 2011, Fierer et al. 2012). This convention was used by studies that generated 

the metagenomic data used in our study. 

We used SAD data from region-to-global scale PCR-targeted projects from the 

metagenomics server MG-RAST (Meyer et al. 2008). PCR-targeted (i.e. amplicon 

sequenced) approaches provide better overall coverage of a specific gene (e.g. 16S 

rRNA) than a random shotgun approach by sequencing an amplified target gene. We used 

the rRNA library provided by MG-RAST (i.e. M5RNA) to obtain SAD data for each 

metagenome used in our study. We used common thresholds for sequence comparison 
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and species-level determination (Lazarevic et al. 2009; Lamendella et al. 2011) including 

a maximum e-value (probability of observing an equal or better match in a database of a 

given size) cutoff of 1e
-5

, a minimum alignment length of 50 base pairs, and a minimum 

percent identity of 97% to the M5RNA reference sequence. However, because microbial 

species are sometimes defined below or above 97% (e.g. Webster et al. 2010, Martiny et 

al. 2011) we also analyzed microbial communities at 95% and 99% species-level cutoffs. 

We compiled metagenomic data into datasets representing aquatic prokaryotic 

communities (48 metagenomes), terrestrial prokaryotic communities (92 metagenomes), 

and terrestrial fungal communities (124 metagenomes). The aquatic datasets (AQUA) 

included the Archaeal and Bacterial Diversity of Geographically and Geologically 

Distinct Deep-Sea Hydrothermal Vent Mineral Deposits project (Flores et al. 2011) and 

the Catlin Arctic Survey of bacterial and archaeal diversity 

(www.catlin.com/en/Responsibility/CatlinArcticSurvey). The terrestrial prokaryotic 

datasets (TERA) included the archaeal and bacterial diversity of the Lauber 88 Soils 

project (Fierer et al. 2012), and the Chu Arctic Soils project (Chu et al. 2010). The 

terrestrial fungi dataset was a global-scale survey of fungal community data sampled 

from indoor habitats of human cities (Amend et al. 2010). Detailed information about 

each metagenome project is available on the MG-RAST website 

(http://metagenomics.anl.gov/) and additional details on our use of microbial 

metagenomes is available in Appendix C. 

Our compilation of data is taxonomically diverse. As such, there are differences 

among our datasets that should be recognized. First, despite our use of accepted species 

http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
http://metagenomics.anl.gov/
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level delineations for microbes, these species and communities  do not represent the same 

ecological and evolutionarily meaningful units as our other datasets, i.e., genetically 

distinct populations of biological species. Whereas our macrobial data represent a few 

well-known members of one domain (i.e. Eukaryota), our microbial datasets include 

many poorly understood members from all three. Second, whereas abundances in 

macrobial datasets were reported as counts of individuals, taxonomic abundance and 

identification of microbes in natural environments is commonly derived from DNA 

harvested from environmental samples; individual counts are not practical. Third, among 

macrobial datasets there are large differences in how communities were sampled (e.g. 

plot counts of trees, transects for breeding birds, multiple trapping/sampling methods for  

mammals) (see Appendix C). 

Form of SADs in the Feasible Set 

The canonical, hollow-curve, form of the species abundance distribution includes 

large numbers of rare species and small numbers of abundant species, leading to 

frequency distributions with the mode at small values of N and long, right-skewed, tails. 

To determine if this form is common in the set of possible SADs we analyzed the 

distribution of modal abundance class, species evenness, and skewness within the 

feasible set for a variety of N and S combinations and N/S ratios. We avoided extremely 

large values of S because values of S close to N are uncommon in nature and constrain 

the SAD to a nearly even vector of singletons. We used uniform random samples of 500 

macrostates for each N-S combination in this analysis. These numbers are large enough 

to characterize the general form of the feasible set and small enough to permit doing so in  
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reasonable time (Fig. 1 of Appendix C). 

Comparing Observed Data to Central Tendencies of Feasible Sets 

We determined which SAD represented the center of each feasible set by 

generating 300 to 500 random macrostates from the feasible set (generating 500 random 

macrostates for some combinations of N and S was untenable). Random samples of 300, 

500, and 700 macrostates produce equivalent results (Fig 1. of Appendix C). We chose 

the macrostate that overlapped the most on average with other random macrostates across 

the S ranked abundances. In the case of a tie, we favored the macrostate having the more 

evenly distributed overlap across ranked abundances (i.e. the macrostate with the smaller 

variance in overlap with other macrostates). This yielded SADs that were centered within 

the densest regions of random samples (Fig. 2 of Appendix C), and hence, within the 

central tendency of the feasible set. We compared this central SAD for each community 

to the observed SAD using rank-abundance distributions (RADs). Specifically we 

compared the observed value of abundance at each rank (most abundant to least 

abundant) at each site to the abundance at that same rank from the SAD representing the 

central tendency of the feasible set. We used log-transformed values of abundance at each 

rank (not log-transformed bins; see Nekola et al. 2008) to make visual comparisons and 

calculate R
2
 values following Marks & Muller-Landau (2007) to avoid overweighting 

rare species, to address heteroscedasticity, and because we are generally more interested  

in proportional differences in abundance within a rank rather than absolute differences. 
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Results 

The majority of possible SAD shapes exhibit the classic hollow-curve form with 

modes at low abundance classes and positive skewness, revealing an overall hollow-

curve shape for most of the macrostates in the feasible set (Fig. 2—1, see also Fig 3 of 

Appendix C). The specific form of the distribution is influenced by the values of N, S, 

and average species abundance (i.e. N/S), which are associated with modal abundance, 

species evenness, and skewness of the SAD (Fig 2—2). This means that differences in 

community structure among sites (or directional changes along gradients) could result 

from the constraining influence of N and S. For realistic values of average abundance, the 

portion of highly uneven macrostates in the feasible set will increase as N is partitioned 

across a greater number of species. However, as average abundance approaches 1.0, the 

SAD must necessarily become highly even. 

Observed ranked abundances were often similar to those near the central tendency 

of the feasible set, both within and across sites for trees, animals, and microorganisms 

(Fig 2—3). The SAD at the central tendency of the feasible set consistently explained the 

majority of variation in observed abundance distributions both within sites and among 

entire datasets (R
2
: BBS = 0.93; CBC = 0.77; FIA = 0.84; GENTRY = 0.81; MCDB = 

0.78; TERA = 0.83; AQUA = 0.58; FUNGI = 0.76; R
2
 values are with respect to the 

central tendency, not a fitted relationship). However, clear deviations from the form of 

the central tendency did occur and were strongest among microbial metagenomes where 

the central tendency of the feasible set contained lower abundances for dominant species 

and higher abundances for rare species than the observed communities. We observed the 
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same pattern for microbes regardless of whether species were defined at 95, 97, or 99% 

(Fig. 4 of Appendix C). 

Because many of the possible SADs are similar, the similarity between the center 

of the feasible set and the observed data means that the shapes of observed SADs tend to 

look very similar to the majority of possible shapes, suggesting a strong influence of the 

limits of observable variation on natural variation. Evaluating the correlation between the 

observed SAD and all random macrostates shows that randomly choosing a macrostate 

will often produce a distribution that is well correlated with observed data (Fig 4). This 

was most obvious for BBS, where the majority of randomly sampled macrostates  

explained more than 80% of observed variation in abundance for nearly all sites. 

Discussion 

The hollow-curve SAD has been referred to as an ecological law and is thought to 

be universal across taxa (McGill et al. 2007). This pattern is also observed in non-

biological systems (Gaston et al. 1993; Nekola & Brown 2007; Warren et al. 2011) 

suggesting that the unevenness and ubiquity of the hollow-curve SAD might be explained 

by emergent statistical phenomena rather than specific biological processes (Šizling et al. 

2009b; McGill 2010; White et al. 2012, Yen et al. 2012). Here, we have described the 

first attempt to understand the shape of the SAD in terms of the set of all possible shapes 

given two general constraints that are commonly used as inputs in ecological theory. The 

majority of feasible SADs share similar forms that, like observed SADs, resemble a 

hollow curve frequency distribution. As such, the feasible set provides an a priori reason 

for the ubiquity of the hollow-curve and a reason why many different models tend to 
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produce the same general SAD form. Examination of over 9,000 communities shows that 

observed SADs are often similar to the central tendency of the feasible set and, because 

most macrostates are clustered near the central tendency, the majority of possible 

distributions often explain substantial portions of variation in observed abundances. 

While much of the variation in empirical SADs is characterized by the center of 

the feasible set, SADs are often more uneven than the central tendency. SADs for 

microbial communities were almost always exceptionally uneven, regardless of whether 

species were delineated at 95, 97, or 99% sequence similarity. Though hollow-curve 

SADs have been widely documented for microbes and macrobes, our examination reveals 

that the structure of microbial communities, with respect to the influence of N and S, may 

differ from that of macrobes. Indeed, microbial communities are known for their large 

rare portions (i.e. rare biosphere). However, it has also been suggested that the 

exceptional unevenness of microbial SADs may result from detection issues related to 

metagenomic methods that can exaggerate dominance and rarity (Woodcock et al. 2006). 

Observational/sampling biases are also a potential issue for the macrobial datasets (e.g., 

MacKenzie & Kendall 2002) and therefore have the potential to play a role in deviations 

from the feasible set in those analyses as well. 

Empirical data can also be compared to the feasible set by comparing distributions 

of a statistical property (e.g. species evenness) across the feasible set. This allows the 

values for individual communities to be placed within context. For example, a 

community with a value of species evenness in the 50
th
 percentile of the feasible set, i.e. 

near the central tendency and the majority of possible macrostates, would not have an 
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exceptionally even or uneven distribution of abundance, regardless of whether the value 

of evenness itself is large or small (Fig 5 of Appendix C). This is particularly important 

when comparing sites that differ in N and S, since differences in evenness can be 

expected based purely on differences in the feasible set (Figure 2—2, Fig 5 of Appendix 

C). Consequently, comparisons of species evenness that do not account for the feasible 

set are primarily comparisons of N and S. 

In addition to contextualizing single communities, ensembles of sites with shared 

values of N and S can be used to compare distributions of a property across communities 

to the distribution of that property in the feasible set. Conducting this analysis using FIA 

data and species evenness (Evar; Smith & Wilson 1996) reveals that, while the modal 

values of Evar for feasible sets and FIA sites were often similar, the distribution of Evar 

across the feasible set was broader than that of empirical distributions (Fig. 2—5).This 

relatively low natural variability could indicate that interactions between ecological 

processes and statistical phenomena prevent the extreme values of evenness that are 

otherwise possible. Additionally, the tendency for the distribution of empirical Evar values 

to be concentrated at lower or higher values of Evar was related to average abundance (i.e. 

N/S), with higher N/S leading to lower Evar (i.e. lower evenness) for both empirical SADs 

and the feasible set. While the general decrease in species evenness with average 

abundance can be explained by the feasible set (Fig. 2—2), the actual change in empirical 

Evar outpaced that of the feasible set (Fig. 2—5), suggesting that mechanisms leading to 

unevenness may strengthen as N/S increases (e.g. via positive frequency dependence), 

but not so much that the lowest possible range of species evenness is attained. 
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While the feasible set reveals that a small number of community-related 

constraints may explain the general shape of the SAD by limiting observable variation, it 

also demonstrates that in some cases empirical patterns deviate directionally from the 

majority of possible states (Fig. 2—3) and are more tightly clustered than expected (Fig. 

2—5). Consequently, the ecological interactions of individuals, populations, and species 

may be needed to explain the specific form of ecological patterns as well as the frequent 

occurrence of exceptionally uneven SADs and the rare occurrence of exceptionally even 

ones. High degrees of competition and dispersal limitation, and low degrees of 

invasiveness may all lead to the degrees of excessive dominance or unevenness that are 

commonly observed among microorganisms and macroorganisms and which cannot be 

attributed to the constraining influences of N and S. However, without the feasible set it 

would not possible to recognize that this degree of unevenness and its relatively low 

natural variability are exceptional. 

The feasible set approach focuses on the observable variation among the possible 

forms of a pattern of interest (i.e. macrostates). In a way, it assumes that all possible 

forms of the SAD are equally likely because it assumes nothing about the ways in which 

each macrostate may arise. However, by accounting for the ways in which macrostates 

can arise through microstate configurations, approaches like MaxEnt (Pueyo et al. 2007; 

Harte et al. 2008; Frank 2011) produce a most likely form that may better explain the 

general shape of the SAD. Indeed, 4 out of the 5 datasets shared with White et al. (2012) 

are at least somewhat better fit by the predictions of the MaxEnt model of Harte (2011); 

the exception being BBS. This comparison is approximate because we worked with 
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subsets of the datasets in White et al. (2012) and because the model of Harte (2011) 

requires additional assumptions to be made beyond fixing N and S. 

The idea that empirical SADs may be more similar to the form with the greatest 

number of microstates than to the form closest to the center of the feasible set is 

complicated by the fact that MaxEnt yields different predictions depending on the 

specific approach to the problem (Haegeman & Etienne 2010). In cases where the 

number of constraints is small, it is unlikely that the most likely macrostate from one of 

the several MaxEnt approaches will occur at the center of the feasible set. In fact, 

Haegeman & Loreau (2008) consider differences between MaxEnt predictions and the 

center of the feasible set to be a necessary condition for applications of MaxEnt to be 

considered non-trivial. This presents an interesting philosophical question: should we try 

to understand patterns in the context of their distribution of macrostates alone, in the 

context of these macrostates weighted by the number of microstates, or some 

combination of the two. Current microstate-based approaches do not explicitly consider 

the properties of either the feasible set or the full set of microstates, only a single most 

likely macrostate. This prevents existing MaxEnt approaches from providing a general 

context for how extreme an abundance distribution is relative to the most likely 

macrostate, though this can probably be addressed through sampling approaches to 

randomly select microstates. Further research is needed to compare and understand the 

relationships between these microstate and macrostate based-approaches, to form a more 

comprehensive understanding of how to contextualize empirical patterns and theoretical 

predictions. 
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Another area for additional research is understanding what functional forms (e.g. 

log-series, log-normal, etc.; McGill et al. 2007) are most common in the feasible set and 

whether the most common forms change as a function of S and N. This would provide 

information useful for comparing the quality of distributional fits to empirical data. It 

would also provide context for one of the current challenges for theoretical models of 

macroecological patterns - making predictions that are valid at multiple taxonomic and 

spatial scales (e.g, Šizling et al. 2009a). In contrast to most theoretical models, it is 

possible that the form of the central tendency changes with N, S, and N/S, becoming 

more or less similar to different standard distributions (e.g. log-series, log-normal). 

Knowing how the feasible set responds to changes in N (e.g. with sample size and area) 

and S (e.g. different taxonomic levels) could enlighten the discussion of whether 

universal forms of macroecological patterns exist (Šizling et al. 2009a). It has been 

suggested that, as N approaches infinity and as S changes as a function of N (i.e. S = 

cN
1/2

), there is a limit shape to random integer partitions (Vershik & Yakubovich 2001). 

Further studies are needed to explore whether this is the case for combinations of N and S 

observed in natural systems, and whether this limit shape is similar to known 

distributions. 

 The feasible set approach is part of an emerging area of ecology that uses 

constraint or state-variable-based approaches to understand ecological patterns (Shipley 

et al. 2006; Pueyo et al. 2007; Haegman & Loreau 2008; McGill 2010; Harte 2011). 

These approaches take a top down perspective on understanding ecological patterns, 

suggesting that much of the information contained in a distribution can be captured by a 
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small number of constraints. This approach to understanding ecological patterns has 

received empirical support from observational (Harte 2011; White et al. 2012) and 

experimental (Supp et al. 2012) studies. However, even when these approaches 

successfully characterize empirical patterns, they do not indicate whether ecological 

processes are not operating. Instead ecological processes may influence emergent 

patterns indirectly through their influence on constraints or state variables (White et al. 

2012; Supp et al. 2012). These constraint-based approaches reinforce the fact that 

ecological processes operate within but also influence constraints that necessarily 

determine a set of possible outcomes. 

 The feasible set represents a new perspective in understanding empirical patterns. 

This approach is potentially applicable to many other widely-known distributions in 

ecology and other areas of science. In particular, the SAD is a specific type of 

distribution of wealth and uneven distributions of wealth are widespread in social, 

economic, and physical systems (Zipf 1949, Gaston et al. 1993, Reed 2001, Nekola & 

Brown 2007). The feasible set approach should be applicable to distributions of wealth 

and abundance that are characterized by the partitioning of a total quantity (e.g. 

individuals, species, dollars, hectares) among a number of classes (e.g. species, islands, 

socioeconomic classes, countries). This includes classic ecological patterns, such as the 

species-area relationship and species-time relationship, and emerging patterns in 

microbial ecology such as distribution of functional traits, as well as distributions of 

wealth, size, and abundance among human populations 
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Figure 2 – 1. Plots revealing characteristics of the species abundance distribution feasible 

set. Left, plots of 500 randomly sampled macrostates in the feasible set for N = 1,000 and 

S = 140. Each macrostate is plotted as a light grey frequency distribution of log2 

abundance classes. Overlap of these distributions produces the gradual shading to dark 

grey. Center and Right, plots of skewness and modal abundance across random samples 

of feasible set for N = 1000 and S = 40, 140, 210 reveal that feasible sets are dominated 

by right-skewed macrostates and that the modal abundance class tends towards singletons 

or small abundances, indicating that feasible sets are dominated by similarly-shaped 

hollow-curves. 
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Figure 2 – 2. Plots revealing how feasible set characteristics change with average 

abundance. Plots of average abundance (N/S) against modal abundance, evenness, and 

skewness averaged across 500 randomly sampled macrostates for N = 50, 100, 200 and S 

= {N/10, N/9, …, N}. The monotonic change in these features of the feasible set with 

increasing N/S across doublings of N suggests predictable changes and constraints on 

community structure resulting from changes in N and N/S. 
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Figure 2 – 3. Plots of the relationship between observed rank-abundances from all sites in 

a dataset and the corresponding ranked abundances at the center of the feasible set. Each 

point represents a rank in a community with the y-coordinate showing the observed 

abundance at that rank and the x-coordinate showing the abundance at the center of the 

feasible set. Data are heat mapped to reveal the density of rank-abundance states, which 

is largely centered around the 1:1 line for some datasets (e.g. BBS, GENTRY) and 

deviates more greatly for others (e.g. AQUA, FUNGI). Insets are of kernel density curves 

for site specific R
2
 values; the x-axis ranges from 0.0 to 1.0. 
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Figure 2 – 4. Kernel density curves of R
2
 values relating random macrostates to the 

observed RAD as in Figure 3. Each site is represented by a single kernel density curve, 

revealing that the majority of a random sample of the feasible set often describes large 

portions of variation in ranked abundances at a site. 
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Figure 2 – 5. Plots of kernel density curves for Evar across entire feasible sets (black 

curves) and kernel density curves for Evar across sites in FIA with the same N and S (grey 

lines). Sample size, i.e. number of FIA sites, is given as ‘n’. Modes of the feasible sets 

are shown by vertical dashed lines. Each column reveals 1.) a shift in the mode of the 

feasible set towards lower evenness as average abundance (i.e. N/S) increases as in 

Figure 2; 2.) a shift in the distribution of empirical Evar towards lower evenness that out-

paces the changing mode of the feasible set; and 3) a more narrow distribution of 

observed Evar values than expected from sampling from the feasible set.  
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CHAPTER 3 

EFFICIENT ALGORITHMS FOR SAMPLING FEASIBLE SETS OF 

MACROECOLOGICAL PATTERNS 

Abstract  

Ecological variables such as species richness (S) and total abundance (N) can strongly 

influence the forms of macroecological patterns. For example, the majority of variation in 

the species abundance distribution (SAD) can often be explained by the majority of 

possible forms having the same N and S, i.e. the feasible set. The feasible set reveals how 

variables such as N and S determine observable variation and whether empirical patterns 

are exceptional to the majority of possible forms. However, this approach has currently 

only been applied to the SAD using relatively inefficient random sampling algorithms. 

We extend the use of the feasible set approach by developing new algorithms to 

efficiently generate random samples of the feasible set for the SAD and the intraspecific 

spatial abundance distribution (SSAD). These algorithms are often several orders of 

magnitude faster than a previous method, which greatly increases the size and diversity of 

communities that can be examined. 

 

 

 

 

*Coauthored by: Locey, K.J. & McGlinn, D.J. (2013) Efficient algorithms for sampling 

feasible sets of macroecological patterns. PeerJ PrePrints, 1, e78v1 

http://dx.doi.org/10.7287/peerj.preprints.78v1 

Introduction 
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Understanding patterns of abundance, distribution, and diversity is a primary goal 

in ecology (Brown 1995). These macroecological patterns reveal general characteristics 

of ecological systems and provide insights into the processes and phenomena that drive 

ecological structure. It has also been shown that general ecological variables such as 

total community abundance (N) and species richness (S) can greatly constrain the forms 

of ecological patterns (Harte et al. 2008, McGlinn & Hurlbert 2012, Supp et al. 2012, 

White et al. 2012, see also chapter 2). In fact, more than 90% of observed variation in the 

species abundance distribution (SAD), i.e. the vector of abundances of all species in a 

community (McGill et al. 2007), can often be explained by models constrained by N and 

S (Harte 2011, White et al. 2012). This is perhaps not surprising given that the majority 

of all possible forms of the SAD having the same N and S, i.e. the feasible set, often 

explain the general form of empirical SADs (see also chapter 2). 

The feasible set reveals how constraint variables such as N and S determine 

observable variation and whether empirical patterns are exceptional to or representative 

of the majority of possible forms having the same constraint values (Haegeman & 

Loreau 2008, see also chapter 2). Currently only the SAD has been examined using the 

feasible set approach (but see Storch et al. 2008). Though results from chapter 2 

suggested that other macroecological patterns could also be examined in the context of 

their feasible sets, there are considerable computational challenges to using a feasible set 

approach. 

Feasible sets can be immense and enumerating them can be untenable. However, 

small random samples can be used to characterize the center of the feasible set (i.e. 
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average form) as well as the distribution of statistical features (e.g. evenness, diversity) 

within the feasible set. In chapter 2 we took a conceptually simple and unbiased 

approach to sampling the SAD feasible set, a combinatorial method known as integer 

partitioning. This approach is based on the fact that there are a limited number of 

unordered ways that n integers can sum to a total q, and hence, a limited number of ways 

that the abundances of S unlabeled species can sum to a total abundance of N. These 

unordered configurations of integers are called integer partitions (Bóna 2006). For 

example, the feasible set for q = 6 and n = 3 is: {(4, 1, 1), (3, 2, 1), (2, 2, 2)}, where 

differently ordered configurations having the same integer values (e.g. (4, 1, 1), (1, 1, 4), 

(1, 4, 1)) represent the same integer partition, i.e. (4, 1, 1). 

Use of integer partitioning to randomly sample the feasible set allows the feasible 

space to be characterized without generating all possible forms. However, all published 

partitioning algorithms sample the feasible set only with regards to the total, q. This 

means that all partitions of q, regardless of the number of elements n, have the same 

probability of being drawn. For example, randomly generating one partition for q = 1000 

and n = 10 requires drawing from a feasible set of nearly 2.4x10
31 

partitions, one of the 

roughly 8.9x10
14

 having 10 elements; a probability of nearly 3.7x10
-17

. This means that 

randomly sampling the feasible set for a given q and n, requires generating partitions 

according to q and then rejecting those not having n elements, often resulting in 

impractically high rejection rates.  

Another challenge in applying integer partitioning to the study of feasible sets is 

that some macroecological patterns include parts with zero values. One example is the 
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species spatial abundance distribution (SSAD) describing the frequency with which 

individuals of a single species occupy areas within a landscape (Brown et al. 1995, Harte 

et al. 2008). In the SSAD, individuals can be absent from a number of areas, meaning 

that there are some areas with zero individuals. Because integer partitions per se do not 

include zeros, integer partitioning methods need to be modified to examine the SSAD 

feasible set. 

Here, we present algorithms that greatly increase the efficiency of sampling the 

SAD and SSAD feasible sets. We explain each algorithm in concept and develop Python 

and R based implementations of them. We test each algorithm for sampling bias and for 

speed against the method of chapter 2. To reveal the practical gains of these new 

algorithms, we reanalyze the SAD datasets of chapter 2 wherein it took more than 10000 

compute hours to examine only 60% of the available data (9562 of 15950 SADs). Our 

algorithms should allow us to examine a much larger portion of the data in less time. 

Finally, we examine general characteristics of the SSAD feasible set including 

characteristics of the frequency distribution, skewness of the SSAD, and the rank 

distribution of abundances. Our work expands the feasible set approach to an additional 

ecological pattern and to values of q and n that were previously  

untenable. 

Methods 

 Our goal is to develop fast and unbiased integer partitioning algorithms, to 

generate random samples of feasible sets for ecological patterns such as the SAD and 

SSAD that are defined by a total q and composed of n elements. Integer partitioning is a 
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mature field of mathematics and algorithms for generating random partitions of q (e.g. 

Nijenhuis and Wilf 1978) are often implemented in mathematical environments (e.g. 

Sage, Mathematica). However, these approaches do not allow the random partitioning 

of q into exactly n elements. Here, we use two well-established theorems and a 

partitioning identity to develop a general method for generating a random partition of q 

having n elements. We then modify our method to allow elements having zero values. 

We begin by using two theorems to generate a random partition of q (see Appendix D 

for generating functions and recurrence relations). 

1) For every integer q there are p(q) partitions having q or less elements.  

2) For every integer q there are pk(q) partitions having k or less as the first 

element. 

For example, there are 5 partitions of 4 and each has 4 or less as the first element; i.e. 

p(4) = 5, {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. Likewise, there are 4 partitions of 4 

having 3 or less as the first element; p3(4) = 4, {(3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. It is 

possible to sequentially build a random partition element by element by iteratively 

applying these two theorems (Fig. 3—1).  Specifically, if we choose a random number 

x from 1 to p(q), we can say there are at least x partitions of q having some value k or 

less as the first element, i.e. x ≤  pk(q). Likewise, there must also be some value of k – 1, 

for which, there are less than x partitions of q having k – 1 or less as the first element, 

i.e. pk-1(q) < x. Putting these statements together, there must be a value k for which  pk-

1(q) < x ≤ pk(q). In this way, we can find the value of the first element in one of the 

partitions by finding the value of k that satisfies pk-1(q) < x ≤  pk(q). Having found the 
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value of the first element, we can decrease x by pk-1(q) and q by k, and then find the first 

element for this combination of smaller values. Repeating this process will sequentially 

build the partition until q = 0 and the sum of the partition is equal to the original value 

of q (Fig 3—1). 

 The above approach is similar to well-established methods of generating 

random partitions of q (e.g. Nijenhuis & Wilf 1978, Stojmenovic 2008). However, our 

goal is to generate random partitions of q having n elements. For this, we use a well-

known integer partitioning identity to restrict the number of elements in a randomly 

chosen partition to n. Specifically, the number of partitions of q having n elements 

equals the number of partitions of q having n as the first element (Bóna 2006). This is 

because each partition of q having n elements corresponds to one unique partition of q 

having n as the first element (Bóna 2006). For example, consider the partition (3, 1), 

which can be illustrated with rows of dots, called a Ferrer’s diagram (Fig 1). In the 

Ferrer’s diagram for (3, 1) there are two rows, the largest having three dots. Flipping 

the diagram on its diagonal produces its conjugate (2, 1, 1), which has three rows, the 

largest row having two dots. So, the conjugate of (3, 1) is (2, 1, 1) and vice versa. 

Consequently, the first part of an integer partition determines the number of parts in its 

conjugate (Bóna 2006). This allows us to extend the problem of generating random 

partitions of q to random partitions of q having exactly n elements. That is, knowing the 

first element must be n so that its conjugate has n elements, we can decrease q by n and 

then generate a random partition for this decreased value of q having n or less as the 

first element. Once the partition is generated, we append n to the beginning of the 
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partition and conjugate it to produce a random partition of the original q having exactly 

n elements (Fig 3—1). 

The approach outlined above begins with a randomly chosen number x between 1 

and p(q).. It then finds the value of k that satisfies the inequality pk-1(q) < x ≤  pk(q), that 

value of k is the value of the first element of the partition. However, the question remains 

as to which value of k to start with and how to proceed to different values. Indeed, we 

could start with the smallest possible value of k (k = 1) and take a ‘bottom-up’ approach, 

or the largest possible value (k = p(q)) and take a ‘top-down’ approach, or even choose k 

at random and use a ‘divide-and-conquer’ method. These approaches differ only in how k 

is chosen and each builds the partition one element at a time. However, in the event that q 

is much larger than n, e.g. all trees in the 50 ha Barro-Colorado Island mapped forest plot 

where q ≈ 200,000 individuals and n ≈ 300 species, the three algorithms above will still 

be inefficient. This is because they would first generate a partition of, say, 200000 having 

300 as the first element, but having as many as 199701 elements, and then conjugate it to 

produce a partition of 200000 having 300 elements. Clearly building the partition one 

element at a time would be inefficient in this case. 

An alternative approach is to build a partition using multiples of integers – the 

‘multiplicity’ approach. Instead of finding the value of k corresponding to the first 

element, appending it and moving on, we can instead ask how many times must k occur, 

i.e. the partitions having some multiple m of k. We can start with the smallest possible 

multiple (i.e. m = 1) and ask whether x is less than or equal to the number of partitions of 

q – k*m  having less than k as the first part. This is because the set of partitions of q 
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having a number of k’s equal to m actually contains the set of partitions of q – k*m  

having less than k as the first part (Appendix D). We can increase m by one until x ≤ pk(q 

– k*m), at which point we will have found the corresponding multiple of k. One  

drawback to this method is the overhead due to the extra computation. 

Random partitions for q and n, with some parts having zero values 

The above algorithms address patterns having positive values, e.g. SAD. In 

contrast, some macroecological patterns include zero values (e.g. absences). One example 

is the species spatial abundance distribution (SSAD), a frequency distribution that 

characterizes the number of quadrats, cells, or areas containing a given abundance of a 

species (Brown et al. 1995). However, only small changes are needed to adapt the above 

approaches to cases allowing zero-valued parts. For example, let 10 unlabeled individuals 

occupy a landscape sectioned into quarters. The most aggregated distribution would be 

for all 10 to occupy the same quarter, [10, 0, 0, 0]. The least aggregated would be for 3 to 

occupy two quarters while 2 occupy the other two quarters, [3, 3, 2, 2]. In fact, the 

number of configurations for 10 unlabeled individuals distributed across 4 unlabeled 

sections equals the number of partitions of 10 having 4 or less parts, i.e. p4(10 + 4) = 23. 

Consequently, if n ≤  q, a random partition for q and n allowing for zero-valued parts, is 

simply a random partition for q having n or less parts, with zeros appended to ensure the 

final form of the partition has n parts. 

On the other hand if n > q a different approach is needed. To see this let 4 unlabeled 

individuals occupy a landscape sectioned into tenths. The most aggregated distribution 

would be for all 4 to occupy the same subsection, [4, 0, 0, 0, 0, 0, 0, 0, 0, 0] and the least 



40 

 

 

aggregated configuration would be for 4 sections to have one individual and for 6 

sections to have zero, i.e. [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]. In this way, the number of possible 

configurations for 4 unlabeled individuals distributed across 10 unlabeled sections is p(q). 

Consequently, if q < n, a random partition for q and n, allowing for zero-valued parts, is 

simply a random partition for q having q or less parts, with zeros appended to ensure the  

partition has n parts. 

Examining for bias and speed 

We implemented the above algorithms in Python and R and made them freely 

available using a public Github repository (https://github.com/klocey/partitions). We are 

currently developing these algorithms into a Python module to be distributed on the 

Python Package Index (PyPI; https://pypi.python.org/pypi) and an R package to be 

distributed on The Comprehensive R Archive Network (CRAN; http://cran.us.r-

project.org/). We used kernel density curves to visually compare the results of the above 

algorithms to full feasible sets and to random samples generated with the function 

implemented in Sage, which is based on the algorithm of Nijenhuis & Wilf (1978) and is 

the method used in chapter 2. If our algorithms are unbiased, then their distributions will 

not differ in any systematic way from full feasible sets and random samples generated 

using Sage. We compare the computational speed of our algorithms to that of the 

approach used in chapter 2 (i.e. using Sage to generate random partitions for a given q 

and rejecting those not having n elements) across a range of values of q, n, and q-n ratios 

for which the latter method was likely to return random  

samples within reasonable time (one hour). 
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Empirical Demonstration of the New Algorithms  

In chapter 2 we analyzed 9562 SADs of trees, birds, mammals, fungi, and 

prokaryotes using a partitioning algorithm that sampled the feasible set according to total 

abundance N but not with respect to species richness S (i.e. the number of elements). 

Those data consisted, in part, of a subset of previously compiled datasets of site-specific 

species abundance data (see White et al. 2012), and included four continental-to-global 

scale surveys, including the Christmas Bird Count (129 sites) (National Audubon Society 

2002),  North American Breeding Bird Survey (1,586 sites) (Sauer et al. 2011), Gentry’s 

Forest Transect Data Set (182 sites) (Phillips & Miller 2002), Forest Inventory Analysis 

(7,359 sites) (U.S. Department of Agriculture 2010), and one global-scale data 

compilation, the Mammal Community Database (42 sites) (Thibault et al. 2011). In 

chapter 2 we also compiled abundance data at the species level from five microbial 

metagenome projects for a total of 264 SADs. Those data were obtained from the 

metagenomics server MG-RAST (Meyer et al. 2008). Metagenomic data were compiled 

into datasets representing aquatic prokaryotic communities (48 metagenomes) (Flores et 

al. 2011, www.catlin.com/en/Responsibility/CatlinArcticSurvey), terrestrial prokaryotic 

communities (92 metagenomes) (Chu et al. 2010, Fierer et al. 2012), and terrestrial 

fungal communities (124 metagenomes) (Amend et al. 2010).  

 The inefficiency of the partitioning method used in chapter 2 restricted our 

analyses to combinations of N and species richness S, for which, there was a reasonable 

probability of generating a random integer partition of q with exactly n elements (> 10
-6

). 

This restriction allowed for only 60% of the available data to be examined despite more 

http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
http://www.catlin.com/en/Responsibility/CatlinArcticSurvey
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than 10000 compute hours worth of effort. We reanalyze those datasets using the 

algorithms developed here, which should allow for random samples of  

a greater number of SADs to be produced in less time. 

General characteristics of the SSAD feasible set 

Brown et al. (1995) revealed evidence that the general form of the SSAD, like that 

of the SAD, is characterized by a hollow-curve. In the sense of the SSAD, a hollow-curve 

implies that many areas are occupied by few or no individuals and that relatively few 

areas are occupied by many individuals. We generated random samples of the feasible set 

of the SSAD for ecologically realistic combinations of q and n, and examined their  

general features. 

Results 

Statistical properties of entire feasible sets are indistinguishable from random 

subsets generated with our sampling algorithms, demonstrating that the implementation 

of our algorithms was unbiased (Fig 3—2 and Figs 1 and 2 of Appendix D). When 

generating 300 random partitions, i.e. enough to safely characterize the feasible space 

(see chapter 2), these implementations were, at worst, one-to-two orders of magnitude 

faster than the method used in chapter 2 and were, at best, 4 to 5 orders of magnitude 

faster for the combinations of q and n we tested (Fig 3). These combinations were limited 

to values for which the algorithm used in Sage could generate random samples in 

reasonable time. Consequently, the algorithms we developed quickly produce random 

samples for values of q and n that are impractical with algorithms that sample only 
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according to q. Each algorithm was best suited for particular values of q and n (Fig 3—4). 

For cases where all parts have positive values, the multiplicity algorithm is the fastest for 

combinations where q is partitioned among a relatively small number of elements (Fig 3 

of Appendix D). 

The greater efficiency of the algorithms developed here allowed us to generate 

between 300 and 500 random partitions for 92.7% of the SADs (14786/15950) from the 

compilation of SAD data used in chapter 2, in less than 1000 compute hours. In contrast, 

the method used in chapter 2 required more than 10000 compute hours to generate 

between 300 and 500 random partitions for 60% of the available data (9562/15950 

SADs).  

Our examination of the SSAD feasible set supports the observation of Brown et al. 

(1995) that SSADs are characterized by hollow-curves (few cells with many individuals 

and many cells with few individuals) (Fig 5). The hollow-curve nature of the members of 

the feasible set increases as the total q is distributed across a greater number of elements  

(e.g. quadrats, areas). 

Discussion 

The feasible set approach is a general method for understanding how constraints 

determine observable variation in the forms of macroecological patterns and in 

distributions of wealth, in general (see chapter 2). We used integer partitioning to 

understand how the feasible set is ordered, to find the size and general features of the 

feasible set, and to generate unbiased random samples of the feasible set for a given a 

total (e.g. total community abundance, total species abundance) and number of entities 
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(e.g. species, quadrats). The algorithms we derived greatly increase the practical use of 

feasible set by decreasing computing time. In addition to examining the SAD, we 

expanded the feasible set approach to distributions with zero values, such as the SSAD. 

We also provided the algorithms in two computing languages frequently used by 

ecologists, R and Python, and have taken steps to ensure our implementations are 

unbiased.  

Integer partitioning is only one way to examine and randomly sample the feasible 

set of possible SAD and SSAD shapes. Other possibilities include linear programming 

and iterative random walks, such as that used by Haegeman & Loreau (2008). Those 

approaches may not require combinatorial problems to be solved, i.e. pk(q), and so may 

not suffer from the problem of combinatorial explosion (large increases in the size of the 

feasible set for small changes in the total q and number of elements), as is the case with 

our algorithms. However, as stated in chapter 2 one benefit to the integer partitioning 

approach is that random sampling algorithms can be derived that are inherently unbiased 

and do not require ‘burn-in’ periods to produce effectively independent samples. The 

combinatorial approach also reveals properties such as the size of the feasible set, 

mathematical properties and symmetries within the feasible set (e.g. the theorems and 

identity used in this study), and a way to relate the feasible sets of different patterns, e.g. 

SAD and SSAD, in purely quantitative terms. However, we suggest that the 

combinatorial algorithms developed here should be compared to approaches such as 

those in Haegeman & Loreau (2008). 
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Our examination of the SSAD feasible set (Fig. 3—5) reveals that the central 

tendency of the set is characterized by a hollow-curve which is consistent with the 

empirical SSADs found by Brown et al. (1995). In that study, the authors state that the 

highly ‘clumped’ and hollow-curve nature of the SSAD resembles distributions used to 

predict the form of the SAD. The authors offer an ecological interpretation for the 

similarity between the patterns in terms of niche requirements. However, the SSAD 

feasible set (in purely mathematical terms and without interpreting what the total q and 

number of elements n represent) differs from the SAD feasible set only in that zero 

values are allowed, which also allows for n > q. Consequently, the two patterns are not 

only coupled by ecological mechanisms, but are also coupled by the purely mathematical 

properties of their feasible sets. 

 The feasible set approach ignores biological and statistical mechanisms and focuses 

entirely on observable variation in the shape of empirical patterns. Consistency of 

empirical patterns with the center of the feasible set suggests that the shapes of those 

patterns contain little information beyond that encoded by the constraints used to 

characterize the feasible set (Haegeman & Loreau 2008, see chapter 2). However, 

consistency with the feasible set does not mean that biological processes are not 

operating but rather that they may indirectly influence empirical patterns through their 

effects on constraints (Supp et al. 2012, White et al. 2012). Alternatively if empirical 

patterns occupy an uncommon portion of the feasible set (e.g. in being exceptionally 

uneven) biological processes or additional constraints beyond those used to characterize 

the feasible set may be relevant. 
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Our work provides the opportunity to more fully explore the feasible set approach 

by greatly decreasing computational time and by defining the feasible set of another 

macroecological pattern, i.e., the SSAD. Our computational and theoretical advances 

enabled us to examine combinations of constraint values that were previously out of 

reach. The algorithms we developed apply to frequency distributions such as the SAD 

and SSAD. However, many macroecological patterns are also cumulative, describing the 

rates at which species are encountered with increasing area (species-area relationship), 

time (species-time relationship) or both area and time (species-time-area relationship). 

Characterizing and randomly sampling the feasible sets of these and other patterns may 

require extensive modification of the algorithms we developed, approaches more similar  

to that of Haegeman & Loreau (2008), or altogether new approaches. 
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Table 3—1. Comparison of results from partitioning methods. Results of Locey and 

White (2013) and those from the reanalysis of those data used in that study reveal the 

practical gains of the algorithms developed here. Note, sampling effort per dataset was 

not controlled or accounted for.  

Dataset 
Number of 

SADs 

Chapter 1 

~10K hours 

Present Study 

~1K hours 

North American Breeding 

Bird Survey 
2769 1586, 57% 2769, 100% 

Christmas Bird Count 1992 129, 6.5% 1231, 62% 

Gentry’s forest transects 222 182, 82% 221, 99.5% 

Forest Inventory and 

Analysis 
10356 7359, 71% 10101, 98% 

Mammal Community 

Database 
103 42, 41% 103, 100% 

Aquatic metagenomes 252 48, 19% 120, 48% 

Terrestrial metagenomes 128 92, 72% 113, 88% 

Fungi metagenomes 128 124, 97% 128, 100% 

Total 15950 9562, 60% 14786, 92.7% 
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Figure 3—1. General approach for generating random integer partitions of a total having 

exactly a given number of parts. Top: Two theorems and one identity used to generate 

random integer partitions. Center: General method for generating a random partition of q 

having 1 to q elements using the two theorems. Bottom: General method for generating a 

random partition of q into exactly n elements, using the two theorems and the partitioning 

identity.  

 

Example: Generate a random partition for q = 14

having  n = 5 elements:

1.)  Generate a partition for q = 9

with 5 or less as the first element.

2.)  Append 5 to the partition.

3.)  Conjugate the partition.

(5, 2, 2)

Example: A partition for q = 4 having n = 2 elements corresponds

to the conjugate of that partition which has 2 as its first element.

(4, 4, 2, 2, 2)(5, 5, 2, 2)

Problem 2: Generate a random partition that sums to q and has n elements 

Solution: Generate a random partition of q – n having n or less as the first element.  Append n and find 

the conjugate to produce a partition of q with n elements. 

Problem 1: Generate a random partition of q that has any number of elements.

Solution: Use theorem 1 to choose a random integer x from 1 to p(q). Repeatedly use theorem 2 to  

sequentially build the partition.

Example: If q = 9 & x = 21, then the first element is k = 5 because p4(9) = 18 < 21 ≤ 23 = p5(9)
partition:  (5) Decrease   x by p4(9)  &  q by k

Now, q = 4 & x = 3, the first element is k = 2 because p1(4) = 1 < 3 ≤ 3 = p2(4)
partition: (5, 2)               Decrease   x by p1(4)  &  q by k

Now,  q = 2 & x = 2, the first element is k = 2 because p1(2) = 1 < 2 ≤ 2 = p2(2)
partition: (5, 2, 2) Decrease   x by p1(2)  &  q by k

Theorem 1: For every integer q there are p(q) partitions having q or less elements. 

Theorem 2: For every integer q there are pk(q) partitions having k or less as the first element.

Identity: Each partition of q with n elements has a conjugate  partition with n as the first element

(5, 2, 2)

(3, 1)

conjugateappend n

(2, 1, 1)
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Figure 3—2. Kernel density curves revealing lack of bias in developed algorithms. A 

comparison of the full feasible set and kernel density curves for the median derived from 

1000 random samples  for different combinations of q and n using our four new 

algorithims for parts without zeros (left column) and for parts with zeros (right column). 

The similarity between the results derived using our algorithms and the full feasible set 

reveals that the algorithms produce unbiased random samples of the feasible set. We used 

Sage to generate the entire feasible set for q = 50 and n = 10 (16928 partitions) and used 

the random partitioning function in Sage to generate 1000 partitions for q = 100 and n = 

20, which is too large to enumerate in full in reasonable time (10474462 partitions). 
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Figure 3—3. Comparison of speed between a pre-existing method and the methods 

derived in this chapter. Plots of the ratio of the computational time for Sage to generate 

300 random integer partitions (no zeros) to the time taken for the new algorithms 

(‘Multiplicty’, ‘Top down’, ‘Divide and Conquer’, ‘Bottom up’) to do the same. 
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Figure 3—4.  Color map revealing the fastest algorithm for specific combinations of q ≤ 

1000 and n ≤ q. Comparisons were based on the time taken to generate 300 random 

partitions for each  combination of q and n, both for cases where parts were allowed to 

have zero values (left) and when parts had positive values only (right). Insets reveal the 

small corner of the main graph where q ≤ 100. 

 



54 

 

 

 

Figure 3—5. Plots revealing characteristics of the intraspecific spatial abundance 

distribution feasible set. The SSAD feasible sets for q = 1000 and n = {50, 100, 500} for 

500 random samples displayed as frequency distributions (left), kernel density curve of 

skewness (center), and ranked distributions of abundance (i.e. areas or subplots ranked 

from most-to-least occupied) (right). Each row applies to one value of n. As q becomes 

distributed across an increasing number of elements, e.g. areas or quadrats, the feasible 

set in general becomes characterized by increasingly hollow-curves (i.e. few large 

elements and many small or zero-value elements), suggesting higher aggregation in 

SSADs as q is distributed across an increasingly large number of areas, quadrats, or 

subplots. For n = 500, ranks with values of 0 are plotted but difficult to discern.    
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CHAPTER 4 

SIMPLE STRUCTURAL DIFFERENCES BETWEEN CODING AND NONCODING  

DNA* 

Abstract 

 The study of large-scale genome structure has revealed patterns suggesting the 

influence of evolutionary constraints on genome evolution. However, the results of these 

studies can be difficult to interpret due to the conceptual complexity of the analyses. This 

makes it difficult to understand how observed statistical patterns relate to the physical 

distribution of genomic elements. We use a simpler and more intuitive approach to 

evaluate patterns of genome structure. 

 We used randomization tests based on Morisita’s Index of aggregation to examine 

average differences in the distribution of purines and pyrimidines among coding and 

noncoding regions of 261 chromosomes from 223 microbial genomes representing 21 

phylum level groups. Purines and pyrimidines were aggregated in the noncoding DNA of 

86% of genomes, but were only aggregated in the coding regions of 52% of genomes. 

Coding and noncoding DNA differed in aggregation in 94% of genomes. Noncoding 

regions were more aggregated than coding regions in 91% of these genomes. Genome 

length appears to limit aggregation, but chromosome length does not. Chromosomes from 

the same species are similarly aggregated despite substantial differences in length. 

Aggregation differed among taxonomic groups, revealing support for a previously 

reported pattern relating genome structure to environmental conditions. 
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 Our approach revealed several patterns of genome structure among different types 

of DNA, different chromosomes of the same genome, and among different taxonomic 

groups. Similarity in aggregation among chromosomes of varying length from the same 

genome suggests that individual chromosome structure has not evolved independently of 

the general constraints on genome structure as a whole. These patterns were detected 

using simple and readily interpretable methods commonly used in other areas of biology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Coauthored by: Locey, K.J. & White, E.P. (2011). Simple Structural Differences 

between Coding and Noncoding DNA. PLoS ONE, 6, 2, e14651. 
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Introduction 

 Evidence that selection affects the organization of information within genomes 

has resulted in efforts to characterize large-scale patterns of genome structure. Recently, 

advanced statistical and graphical methods such as chaos game theory, wavelet analyses, 

information theory, thermodynamics, and fractal geometry have been used to examine 

large-scale genome structure (Almeida & Vinga 2002, Garte 2004, Wang et al. 2004, 

Zhou et al. 2005, Allen et al. 2006, Oliver et al. 2008, Nandy 2009, Parker et al. 2009). 

The results of these studies have increased our knowledge of how genomes are organized 

by moving beyond simple characterizations such as genome length and GC content, to 

study how the distribution and organization of information within genomes may be 

evolutionarily constrained (Allen et al. 2006). While statistically informative, the 

structures quantified by these studies can be difficult to understand, making it difficult to 

interpret how the observed statistical patterns relate to the physical distribution of 

genomic elements.  

 Considering the difficulty of linking complex statistical patterns to the physical 

structure and biological processes affecting genomic evolution, we ask whether patterns 

in large-scale genomic structure can be quantified using a simpler approach with an 

intuitive structural interpretation. This simplification has the potential to allow for less 

statistically abstracted interpretations of genomic structural patterns. Here, we attempt 

such an approach using a straightforward definition of one of the most intuitive structural 

properties of sequential data, aggregation. We use this measure to detect a general 

difference among the two major kinds of DNA and the two forms of nitrogenous bases 
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commonly used in other studies (Almirantis & Provata 1997, Rogozin et al. 2002, Zhou 

et al. 2005, Allen et al. 2006, Oliver 2008, Nandy 2009, Parker et al. 2009). 

 Specifically, genomes are comprised of regions of DNA that code or do not code 

for proteins and are composed of two different structural forms of nitrogenous bases, 

purines (Pu) represented by adenine and guanine, and pyrimidines (Py) represented by 

thymine and cytosine. Assuming that coding and noncoding DNA are structured by 

different selective forces (Rogozin et al. 2002), common units of coding and noncoding 

regions (i.e. Pu and Py) may exhibit different distributions resulting from different 

structuring forces. Our aim was to use Morisita’s Index of aggregation (IM) (Morisita 

1959, Morisita 1962, Morisita 1971, Hurlbert 1990) to examine whether: 1) Pu and Py 

exhibit non-random structure within sequences; 2) aggregation differs between coding 

and noncoding DNA; and 3) patterns of aggregation differ among chromosomes of the 

same species and among taxonomic groupings. If meaningful patterns can be detected 

this suggests that aggregation may provide an intuitive measure of structural genomic  

patterns that can be meaningfully influenced by biological processes. 

Methods 

Obtaining genomic data  

We created Perl scripts to examine 261 chromosomes of 223 genomes from 21 

phylum level microbial groups, downloaded from the National Center for Biotechnology 

Information microbial genome website, www.ncbi.nlm.nih.gov/genomes/lproks.cgi. We 

downloaded FASTA sequence and GenBank feature files. We picked genomes and 
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chromosomes that represented a broad range of lengths and protein coding contents. Pearl 

scripts and microbial genome information and per chromosome results can be accessed  

through here (http://www.plosone.org/article/info:doi/10.1371/journal.pone.0014651). 

Genome handling and aggregation estimation 

We obtained estimates of aggregation for coding and noncoding DNA by using a 

sliding window approach to estimate the average aggregation of Pu and Py among 

consecutive non-overlapping 100-base sections of chromosomes. Rather than examine 

each individual coding or noncoding region separately, we examined coding and 

noncoding DNA as concatenated sequences of individual regions. These approaches 

alleviated two problems. First, analyzing individual coding and noncoding regions leaves 

a considerable amount of genome unanalyzed because individual coding and noncoding 

regions are rarely perfect multiples of a particular window size. Second, information 

regarding GC content is lost when sequences are binarily recoded according to Pu (A,G) 

and Py (C,T), hence removing potential statistical effects of GC content on aggregation. 

 We used Morisita’s Index (IM) (Morisita 1959, Morisita 1962, Morisita 1971, 

Hurlbert 1990) as our aggregation metric. IM is commonly used in ecological and 

evolutionary studies (Williamson 1975, Ricklefs & Lau 1980, Sakai & Oden 1983, 

Dewey & Heywood 1988) to study the spatial distribution of age classes, genotypes, and 

species, and has been shown to be a more precise and less biased descriptor of spatial 

aggregation than other methods (e.g. variance:mean ratio) (Hurlbert 1990). IM uses the 

number of occurrences among subsections of sampling areas (i.e., windows) to estimate 

measurements of aggregation based on a sampling probability. Specifically, IM measures 

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0014651
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how many times more likely it is that two randomly selected individuals will be from the 

same subsection of study area than if the individuals in the population were distributed at 

random. For example, IM = 1.5 indicates that the probability of sampling two individuals 

from the same quadrat is 50% greater than if the population was randomly distributed 

(i.e., Poisson distributed). An IM of 0.5 indicates this probability is 50% less likely than 

random. IM is not typically used in cases of severely limited occupancy (e.g. linear 

segments of genomes of n size holding, at most, n Pu or Py). As a result, the value 

representing randomness was offset from IM = 1.0 to IM = 0.91936 (SE = .000057), as 

determined from 20,000 randomizations. Therefore we compared observed values to 

randomizations of the same sequence (see below) to determine if the genome was more 

of less aggregated than random and to determine whether or not this difference  

was statistical meaningful. 

Morisita’s Index is calculated as: 

1
1

1

2

X

X
IM  

where X is the total number of individuals in the sampling universe, µ is the mean 

number of individuals per quadrat (i.e. subsection of the sampling universe), and σ
2
 is the 

variance of individuals among quadrats. The formulation here is identical to that in 

Hurlbert (1990). In the present study, X is the total number of Pu (or Py) in a 100 base 

section of a genome, referred to here as a window, µ is the average number Pu or Py 

within each 10 base subsection of the window, and σ
2
 is the variance of Pu or Py among 
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the 10 subsections. It can be seen from the above equation that Morisita’s Index is 

independent of genome length, genome segment length, and number of genome segments 

and is thus independent of the density of individuals in the window (Hurlbert 1990). 

Using IM thus controlled for differences in the density of Pu and Py among genomes. We 

also confirmed that IM was insensitive to window and subsection size by reanalyzing a 

random subset of 29 genomes using several combinations of window size (100, 400) and 

subsection size (10, 20, 40). These combinations yielded qualitatively similar results (see  

table in supplementary materials). 

Randomizations 

We created 100 randomized versions of each genome for comparison with actual 

genomes by randomly redistributing Pu and Py within individual coding and noncoding 

regions. These randomized genomes were analyzed as described above for comparison to 

actual genomes. By avoiding changes in the number of Pu and Py among individual 

regions, observed differences reflect the effect of nitrogenous base order; another control 

for the effects of Pu and Py density. P-values were determined to be less than 0.01 when 

average measurements of IM from real genomes were greater than those from all 100  

randomizations or less than those from all 100 randomizations. 

Statistical analysis 

Microbial genomes typically contain a much larger fraction of coding than 

noncoding DNA. Here, the percentage of coding DNA ranged from 73.54 to 95.54%. 

Under this circumstance, IM is calculated more times for coding DNA (typically tens of 
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thousands) than noncoding DNA (typically thousands). To account for this difference in 

sample size, we chose non-parametric rank-sum tests to determine whether Pu and Py 

generally differ in aggregation between coding and noncoding regions of individual 

genomes. Additionally, we conducted Spearman’s rank correlation to determine whether 

aggregation was related to percent coding DNA, genome length, chromosome length, and 

GC-content. We chose a nonparametric correlation technique because all datasets were 

non-normally distributed as determined from the Lilliefors test for normality. We used 

the student version of MATLAB v7.7.0 to generate kernel density curves, box plots, and  

to conduct all statistical analyses.  

Results 

Purines (Pu) and pyrimidines (Py) were distributed similarly within genomes and 

chromosomes, as illustrated by nearly identical distributions within coding and 

noncoding DNA (Fig. 1) and the similar results of statistical analyses (Table 4—1 and 

4—2). In coding DNA Pu and Py were less aggregated (i.e. more evenly distributed) than 

random in approximately 44% of genomes, and more aggregated than random in almost 

52% of genomes (p < 0.01; Table 4—1). Noncoding DNA was rarely more evenly 

distributed than random (~10% of genomes) with 86% of genomes exhibiting significant 

aggregation (p < 0.01; Table 4—1). The difference in aggregation between coding and 

noncoding DNA was significant in 94% of chromosomes (n = 245). Of these 245 

chromosomes, noncoding DNA was more aggregated than coding DNA in 91% of cases 

(n = 224). Hence, coding DNA was more aggregated than noncoding DNA in only 21 

chromosomes (8.0%), from 18 genomes. 
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Of the 18 genomes (21 chromosomes) where coding DNA was more aggregated 

than noncoding DNA, seven genomes belong to the Spirochaetes group. The other 11 

genomes are widely distributed across groups: Alphaproteobacteria (3), Aquificae (1), 

Bacterioides/Chloribi (1), Betaproteobacteria (1), Crenarcheota (2), Euryarchaeota (1), 

Gammaproteobacteria (1), and Nanoarcheota (1). Only two of the 13 Spirochaete 

members represented in the dataset showed greater average aggregation in noncoding 

DNA than coding DNA. Compare this to Actinobacteria (N = 17), Thermotogae (N = 8), 

Firmicutes (N = 15), and Epsilonproteobacteria (N = 9) where all members showed 

greater average aggregation in noncoding DNA, or to Gammaproteobacteria (N = 32), 

Euryarchaeota (N = 11), or Betaproteobacteria (N = 26) where all but one member 

showed greater average aggregation in noncoding DNA. All other groups had three or 

fewer members lacking greater average aggregation within noncoding DNA than coding 

DNA. Hence, Spirochaetes appear to be the only phylum-level group where noncoding 

DNA is not typically more aggregated than coding DNA. 

Aggregation varied significantly among phyla, with individual groups of taxa 

typically occupying narrow ranges of aggregation and having little-to-no overlap with 

most other groups (Fig 4—2). However, the distribution of taxonomic groups across the 

observed range of aggregation revealed no apparent phylogenetic clustering or pattern. 

For instance, proteobacteria are distributed throughout while archaeal groups are 

separated by bacterial groups. When the set of 200 genomes was examined as a group, 

with an average measure of aggregation for each genome represented by a single data 

point, coding and noncoding regions formed different distributions of aggregation with 
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noncoding regions shifted towards higher values of aggregation (Fig. 4—1). Despite a 

smooth unimodal distribution of aggregation values among noncoding DNA, coding 

DNA from the identical set of genomes exhibited an apparent bimodality. While the first 

mode could be the result of sample bias, the lack of a corresponding mode in the curve 

for noncoding DNA suggests two different subgroups of genomes with aggregated 

noncoding DNA; one where the distribution of nitrogenous bases in coding DNA is 

under-aggregated to essentially random (IM = 0.91936), and one where the distribution is 

significantly aggregated. 

Aggregation, as estimated with Morisita’s Index, showed a significant correlation 

with GC content and a slight but also significant correlation with percent coding DNA 

(Fig. 4—3). Aggregation was also significantly correlated with genome length. The 

strength of the correlation and the shape of the distribution reveals that estimates of IM 

decreased and converged on lower values with increasing genome length (Fig. 4—4), 

suggesting that larger genomes tend to be less aggregated. Among genomes with multiple 

chromosomes, IM and chromosome length were not correlated (Fig. 4—4). However, 

when the lengths of these chromosomes were summed to obtain the length of the 

genome, the pattern of limited aggregation with increasing genome length was again 

obtained (Fig. 4—2). Additionally, aggregation was similar among chromosomes of the 

same species (average % difference = 0.28 ± 0.04 SE for Py to 0.27 ± 0.04 SE for Pu) 

despite large differences in chromosome length (average % difference = 91.3 ± 9.23 SE). 
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Discussion 

Both structural forms of nitrogenous bases clearly exhibit non-random 

distributions within genomic sequences and are nearly always distributed similarly. Steps 

taken to remove statistical effects of density, sampling scale, and GC bias, and to 

examine the statistical relationships of aggregation to GC content, percent coding DNA, 

and genome length reveal that the reported differences between coding and noncoding 

DNA are likely due to meaningful patterns of Pu and Py clustering within sequences and 

not due to the statistical effects of these other variables. Despite removing statistical 

effects of GC-content by recoding genomes in Purines and Pyrimidines, and using a 

measure of aggregation that is independent of the ratio of coding to noncoding DNA, 

GC-content, genome length (but not chromosome length), and percent coding DNA were 

significantly correlated with aggregation. Though these results suggest that relationships 

among these structural genomic features are real, further studies will be necessary to 

understand these patterns. 

Genome length appears to set a maximum limit on the degree of aggregation 

possible (Fig. 4—4). This pattern holds for genomes with single and multiple 

chromosomes. However, the lengths of chromosomes from multi-chromosomal genomes 

do not appear to show the same relationship. Instead, chromosomes of the same species 

are similarly aggregated despite large differences in length. When the lengths of these 

chromosomes are summed to obtain overall genome length, their summed lengths follow 

the decreasing pattern shown for single chromosome genomes (Fig. 4—4). At the 

chromosome scale, aggregation appears to be a property of the species, largely invariant 
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with chromosome length. However, overall aggregation seems to be limited by genome 

length, perhaps regardless of the number of chromosomes comprising a genome. Both 

similarity in aggregation among chromosomes of varied length from the same genome, 

and the tendency for aggregation among chromosomes to be influenced by overall 

genome length, suggests that chromosome structure has not evolved independently of 

general constraints on overall genome structure. 

Noncoding DNA was almost always more aggregated than coding DNA. In other 

words, nitrogenous bases of similar structure are more likely to be found in close 

proximity within noncoding DNA than within coding DNA. This conclusion is based on 

the genome-wide averaging of tens of thousands of estimates of IM across a diverse 

collection of 223 microbial genomes, and hence, represents a general low-resolution 

pattern of genome structure. It may be unlikely that such a pattern is the result of one or 

even a few specific genetic or evolutionary processes. What it does suggest is that the 

functions that coding and noncoding DNA perform, and the pressures that affect their 

evolution, are different enough to manifest a general difference in the gross distribution 

of their common elements.  

For Spirochaetes, the pattern is typically reversed. Spirochaetes are a small and 

cohesive group of gram-negative chemoheterotrophs. They are unusual in their linear 

chromosomes, cytoskeleton, long helical cells, and coevolution with a host-specific 

phage. As such, it is possible that these traits that distinguish Spirochaetes from other 

microbes explain their exception to the general pattern. However, a superficial 

investigation of the microbial traits is unlikely to explain this reversed pattern, because a 
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variety of cell shapes (e.g. coccus, rod, spiral), chromosome shapes (e.g. linear, circular), 

temperature ranges (e.g. mesophilic, thermophilic), habitats (e.g. soils, sulfur springs, 

hosts), chromosome lengths (490885-5566749), and percent coding DNA (0.7475-

0.9483), are represented within the set of 18 genomes where coding DNA was on average 

more aggregated that noncoding DNA. 

The observed bimodality in the distribution of aggregation values for coding 

DNA suggests the presence of two general groups of genomes differing characteristically 

in the patterns of aggregation within coding DNA. Whether these two groups differ in a 

biologically meaningful way that influenced the distribution of structurally different 

nitrogenous bases has not yet been determined. Further investigation is necessary to 

determine whether this bimodality results from the specific genomes chosen for analysis 

or whether it is an indicator of an important biological process that has shaped genome 

evolution among microbes. 

The distribution of phyla across the range of aggregation in this study strongly 

corroborates the pattern described by Bohlin et al. (2009) who examined the genomic 

fraction of purine and purine/pyrimidine stretches (i.e. an indirect measure of 

aggregation) in relation to environmental variables across a similar but smaller set of 

prokaryote phyla (Bohlin et al. 2009). Though there are no methodological similarities, 

and noncoding DNA is analyzed separately from coding DNA in this study, both studies 

reveal that phyla occupy similarly ordered and narrow ranges of aggregation (Table 3). 

When comparing the ranks of phyla common to both studies there were four exact 

matches and four instances where phyla differed by only one rank. The reproduction of 
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this pattern in spite of minimal methodological similarity suggests that the pattern is 

robust and relatable to functional traits that interface with the exogenous environment 

(Bohlin et al. 2009). 

Despite the potential for exceedingly complex distributions of bases within coding 

and noncoding regions, the study of large-scale genomic structure clearly does not 

preclude the use of simple approaches to arrive at general patterns based on intuitive 

properties. It is clear that those forces that have structured protein coding and noncoding 

regions, as well as individual chromosome and overall genome structure, have left 

evidence of their effects at the level of common elements, the two types of structural 

nitrogenous bases. We suggest that processes and constraints with predominant effects on 

genome structure should influence the patterns of aggregation observed in this study. 

While statistical approaches to large scale genome structure have the potential to reveal 

novel and meaningful patterns as well as structural relationships, we suspect that the 

general patterns reported here are unlikely to be explained by statistical approaches alone, 

that is, without establishing the genetic or evolutionary mechanisms. Lack of clarity in 

the interpretation of statistical methods, metrics, and results that document novel and  

poorly understood structural patterns can only be a detriment to this endeavor. 
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Table 4—1. Aggregation among microbial genomes. 

Genomes, 

N = 223 

Coding Noncoding 

Pu Py Pu Py 

Aggregated 
52.0% 

(n = 116) 

52.0% 

(n = 116) 

86.1% 

(n = 192) 

86.1% 

(n = 192) 

Random 5.4%  (n = 12) 4.0%  (n = 9) 3.6%  (n = 8) 4.0%  (n = 9) 

Overdispersed 42.6%  (n = 95) 44.0%  (n = 98) 10.3%  (n = 23) 9.9%  (n= 22) 

 

 

Table 4—2. Aggregation among microbial chromosomes. 

Chromosomes 

N = 261 

Coding Noncoding 

Pu Py Pu Py 

Aggregated 
46.7%  

 (n = 122) 

47.9%  

 (n = 125) 

80.4% 

  (n = 210) 

80.5%  

 (n = 210) 

Random 5.4%  (n = 14) 5.4%  (n = 14) 5.4%  (n = 14) 5.7%  (n = 15) 

Overdispersed 
47.9% 

  (n = 125) 

46.7%   

(n = 122) 

14.2% 

  (n = 37) 
13.8%  (n= 36) 
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Table 4—3. Phyla ranked according to aggregation of purines, averaged for coding and 

noncoding DNA, as reported here and as reported by Bohlin et al. (2009). Ranks in 

parentheses (n = 4) are exact matches, ranks with asterisks (n = 4) are one rank different. 

 

 Present Study Bohlin et al. (2009) 

Rank Purine Aggregation Purine Stretches 

1 Chlamydia Thermotoga 

2* Thermotoga Spirochaetes 

3 Firmicutes Chlamydia 

4 Spirochaetes Euryarcheota 

5 Deltaproteo Crenarchaeota 

6* Crenarchaeota Firmicutes 

(7) Epsilonbacteria Epsilonbacteria 

8* Cyanobacteria Deltaproteo 

9 Alphaproteo Cyanobacteria 

(10) Gammaproteo Gammaproteo 

11 Euryarcheota Chloroflexi 

12* Chloroflexi Alphaproteo 

(13) Actinobacteria Actinobacteria 

(14) Betaproteo Betaproteo 
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Figure 4—1. Kernel density curves reveal different distributions for coding and 

noncoding DNA. Kernel density curves for purines and pyrimidines within coding (C) 

and noncoding DNA (N). Distributions for purines and pyrimidines nearly completely 

overlap. Curves for noncoding DNA are shifted towards higher values of aggregation 

while curves for coding DNA are centered closer to the derived value for randomness, 

0.91936. Apparent bimodality within coding regions may have resulted from the sample-

size of different taxonomic groupings (e.g. 32 Gammaproteobacteria within a narrow 

range), but note the lack of bimodality among corresponding noncoding regions of the 

same set of genomes. 
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Figure 4—2. Box plots showing ranges of aggregation values (IM) for pyrimidines within 

coding and noncoding DNA of 21 microbial groups. The distribution of box plots for 

coding DNA (A) is shifted more towards lower values of aggregation and closer to 

randomness than those for noncoding DNA (B) which are shifted towards values of 

higher aggregation. 
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Figure 4—3. Plots of aggregation (IM) vs. % GC content and % coding DNA, with a plot 

of % coding DNA vs. % GC content. Aggregation of pyrimidines within coding DNA 

(blue) and noncoding DNA (green) shows a greater linear relationship to %GC content 

than to % Coding DNA. % Coding DNA and % GC (red) content are not correlated.  
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Figure 4—4. Plots of aggregation (IM) vs. genome length and chromosome length for 

Purines (Pu). (Top) Aggregation of purines in coding (blue plots) and noncoding (green 

plots) DNA for 223 genomes. (Middle) Aggregation of purines in coding and noncoding 

DNA for the 33 genomes with multiple chromosomes. (Bottom) Aggregation of purines 

in coding and noncoding DNA for 71 individual chromosomes from the 33 genomes with 

multiple chromosomes. These plots reveal that dissecting a genome into its constituent 

chromosomes destroys the generally decreasing pattern of aggregation with increasing 

genome length. 
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CHAPTER 5 

CONCLUSION 

 General variables related to the size of a system and the numbers of elements 

within it (e.g. size of a community, numbers of species, length of a genome) constrain 

structural properties of abundance and aggregation across systems representing disparate 

scales of biology, i.e. individual genomes and ecological communities. Though 

understanding the mechanisms that drive the structure of biological systems is a primary 

goal of biology, understanding ways in which the structures of biological systems are  

inherently constrained by general variables is, perhaps, of equal importance. Indeed, from 

the shapes of molecules to patterns of abundance in ecological communities, the structure 

of all biological systems is likely to be constrained by such variables as the size of the 

system and the numbers and types of components, parts, and elements within it. 

 In part, I revealed how genome length constrains the aggregation of nucleotides 

and how the aggregation of nucleotides differs between regions of DNA that either code 

or do not code for proteins. However, reasons for why genome length would constrain 

nucleotide aggregation remain unknown. Likewise, in this research (i.e. chapter four), I 

related nucleotide aggregation to the genetic information carried on the DNA molecule. 

However, this was with respect to protein coding information. It is well known that some 

noncoding DNA is transcribed into noncoding RNA elements (transfer RNA, ribosomal 

RNA). Consequently, not all noncoding DNA is without transcribable information.  

 Aggregation of nucleotides may also relate to the physical properties of DNA and 

the different physical or structural (i.e. non-informational) functions that noncoding DNA 
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performs. One way to begin teasing apart whether differences in nucleotide aggregation 

between coding and noncoding DNA actually relate to informational or structural 

properties would be to examine regions of noncoding DNA that either provide 

informational functions (e.g. regulation, methylation) or are transcribed into noncoding 

RNA elements, separately from regions of noncoding DNA that serve a non-

informational but structural function, such as spatial separation of genes that lessens the 

influence of mutation in a specific region of a chromosome or that help bind the DNA 

molecule and prevent damages from physical, chemical, or thermal stress. 

 Once again, whether differences in nucleotide aggregation between coding and 

noncoding DNA are primarily due to informational or purely structural properties, the 

question might still remain as to why genome length would effectively place an upper 

bound on nucleotide aggregation where larger genomes, but not larger chromosomes, 

lead to lower maximum aggregation. These are the next most obvious steps in 

understanding why aggregation, a general statistical property, differs so clearly between 

coding and noncoding DNA. Likewise, there are several promising and important future 

directions to better understand the influence of general constraints on properties of 

aggregation and structure in ecological systems, specifically through the use of the 

feasible set approach. 

 In my initial feasible set work, i.e. chapters 2 and 3, I laid the groundwork for 

examining the distribution of abundance among species based solely on the shapes of the 

distribution that were possible given the values of total abundance (i.e. the number of 

individuals in a community) and species richness (i.e. the number of species in a 
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community). This approach was only concerned with the observable variation in the 

shape of the distribution, and it assumed nothing of how any particular shape may arise. 

Hence, this initial feasible set work took an entirely ‘macrostate’ based approach, i.e., an 

approach that considers only the shape of a distribution and not how the distribution may 

arise nor which values of abundance different species may have. For example, in 

macrostate form, the distribution of abundance among species only reveals that there are, 

say, two species with 10 and 20 individuals, but does not consider which species has 10 

and which has 20. This later approach of considering the form of a distribution with 

respect to which entities (e.g. species, subplots) have which values (e.g. 10 or 20 

individuals), is commonly referred to as a ‘microstate’ based approach.  

 It is possible to explicitly consider the feasible set of microstates, i.e. ordered 

ways in which the abundance of species (or subplots, etc.) can sum to a given total 

abundance. Just as there is a combinatorial object (i.e. integer partitions) for macrostates, 

there is a combinatorial object for microstates (i.e. integer compositions). Indeed, integer 

compositions are simply permutations of integer partitions. Because of this, the 

microstate feasible set based on integer compositions (ordered configurations of 

unlabeled individuals) can be many times larger than the macrostate feasible set. This 

microstate feasible set has yet to be explored or compared to empirical distributions of 

abundance, though it may well be that for some biological systems, the microstate 

feasible set explains more variation in abundance among species, subplots, samples, 

alleles, etc. than the macrostate feasible set. Likewise, there are other ways of considering 

or defining microstates (e.g. ordered configurations of labeled individuals among 
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samples or subplots) as well as different feasible sets based on the different possible 

microstates. But, perhaps most importantly when considering macrostate and microstate 

based configurations of ecological or biological patterns of abundance and aggregation, 

as well as their respective feasible sets, little work has been conducted to reveal when and 

which forms of microstates or macrostates are most appropriate for a given ecological or 

biological system or pattern. 

 In general, the feasible set approach should apply whether considering 

macrostates and observable variation or the potentially different forms of microstates and 

the ways in which different macrostates can arise. Most importantly, we should recognize 

that there may be a tenable feasible set, i.e., a set of alternative outcomes that can be 

examined, regardless of the ‘state’ with which we are working. When this is true, it 

implies the potential to examine and understand patterns of aggregation and abundance 

within biological systems solely with respect to a set of possible alternative outcomes, 

and hence, to understand how the structures of biological systems are constrained by and 

explainable from the values of numerical constraints. Though numerical constraints 

themselves may not be the focus a study, understanding patterns of aggregation and 

abundance in biological systems first in terms of known information (i.e. constraint 

values) reveals whether there is sufficient variation in the possible shapes of a pattern or 

set of outcomes to interpret the form of a pattern or outcome in terms of more complex 

phenomena such as biological, ecological, and statistical processes and mechanisms. 

 There are a great number of biological systems between the scales of individual 

genomes and ecological communities where patterns of aggregation and abundance are 
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studied. Examples are the distribution of frequencies among alleles, aggregation in 

occupancy of space or occurrence in time of individuals and species, branching patterns 

in phylogenetic trees, the partitioning of energy among an organism’s metabolic 

processes, coalescent pathways of individual relatedness and metabolic pathways of 

cellular respiration. These systems are all characterized by a number of components (i.e. 

individual or group level entities) that interact in particular ways. Likewise, the structure 

of these systems, i.e. varying configurations of elements resulting in patterns of 

aggregation and abundance, may well be constrained by a feasible set determined by the 

values of such general variables as the number of individual organisms, species, alleles, 

taxa, subplots in the system. 

 Finally, research into the constraining influences of general variables on the 

structure of biological systems may represent one path towards synthesis between 

systems biology and macroecology. Both disciplines represent a large-scale holistic 

perspective on biological (system biology) and ecological (macroecology) systems; as 

opposed to a more proximate and experimental reductionist approach to identifying 

process and mechanism. Both systems biology and macroecology are driven by the study 

of emergent properties and the extensive use of theory, analytic and computational 

modeling, and highly quantitative approaches. However, while systems biology still 

makes use of experimental approaches, macroecology is largely pursued through the 

statistical analysis of patterns in abundance, distribution, and diversity. However, 

realization that the structure of both biological and, more specifically, ecological systems 

may be strictly constrained by general variables (e.g. size of the system, numbers and 
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types of parts, components, and elements) suggests room for greater synthesis and 

crossover between macroecology and systems biology. 
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APPENDIX A: 

REPRINT POLICIES FOR DISSERTATION CHAPTERS 

Chapter 2—As per the publisher’s (Wiley-Blackwell) author reprint policy: 

(http://authorservices.wiley.com/bauthor/faqs_copyright.asp#1.7), authors maintain the 

right to reprint manuscripts in theses/dissertations. No request from Wiley-Blackwell to 

reprint the work from Chapter 2 is needed. 

Chapter 3—Is a preprint (not published) and requires no reprint permissions. 

Chapter 4—Was published in PLoS ONE (http://www.plosone.org/). PLoS ONE 

maintains a Creative Commons Attribution License (CCAL), “Under the CCAL, authors 

retain ownership of the copyright for their article, but authors allow anyone to download, 

reuse, reprint, modify, distribute, and/or copy articles in PLOS journals, so long as the 

original authors and source are cited. No permission is required from the authors or the 

publishers.” see http://www.plosone.org/static/license. 

  

https://owa.usu.edu/owa/redir.aspx?C=wfHsF33_2USc6gb1nCp9PGa3wSCwtdAI7M8Noum_Bs_HX6zupCZeRQzU05-9bzL6-pvHkr8UkaM.&URL=http%3a%2f%2fauthorservices.wiley.com%2fbauthor%2ffaqs_copyright.asp%231.7
http://www.plosone.org/
http://www.plosone.org/static/license
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APPENDIX B: 

CHAPTER 3: LETTER OF RELEASE FROM DR. DANIEL J. MCGLINN 

 

13 December 2013 

 

TO WHOM IT MAY CONCERN: 

 I hearby release the rights to reproduce the manuscript, “Efficient algorithms for 

sampling feasible sets of macroecological patterns” to my coauthor Kenneth J. Locey for 

use in his dissertation. 

Daniel J. McGlinn 
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APPENDIX C: 

CHAPTER 2: SUPPLEMENTAL FIGURES AND DETAILS ON DATASETS 

Additional details on datasets—We used a subset of the data compiled by White et al. 

(2012); details provided in Appendix A of that paper. Consequently, much of the 

following is a reiteration of White et al.’s (2012) appendix. Some of the language is 

directly quoted from White et al. because it is the most precise way to convey the 

information. We used as much of the data in White et al. (2012) as was practical given 

the computationally intensive nature of our approach, which sometimes required several 

minutes to generate a single random macrostate for some combinations of total 

abundance (N) and species richness (S). Consequently, there were some combinations of 

N and S for which few, if any, macrostates could be generated. Details on each of those 

datasets, as well as on our use microbial metagenomic data are given below. 

Birds—White et al. (2012) compiled data collected in 2009 from the North American 

Breeding Bird Survey (BBS; Sauer et al. 2011) and from the Christmas Bird Count 

(CBC; Christmas Bird Count (National Audubon Society 2002). BBS routes are 40 km 

long and consist of 50 three minute point counts, 800 m apart, sampled annually in June. 

CBC count circles are 24.1 km in diameter and are censused by multiple observers over 

the course of a day. Nocturnal species, water birds, and raptors were excluded from 

analyses, because they are poorly sampled by Breeding Bird Survey survey methods. 
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Trees—We used data compiled by White et al. (2012) from the USFS Forest Inventory 

Analysis program (U.S. Department of Agriculture 2010, Woudenberg et al. 2010,) 

(FIA), and the Alwyn H. Gentry Forest Transect Data Set (Phillips and Miller 2002) 

(GENTRY). We used one year of data (calendar year of sampling varies among plots) for 

FIA phase 2 plots that were sampled using the standardized methodology implemented in 

1999 [see the FIA National Core Field Guide for more information (U.S. Department of 

Agriculture 2010)]. The standard plot consists of four 24.0-foot (7.32 m) radius subplots, 

on which trees 5.0 inches (12.7 cm) and greater in diameter are identified to species and 

measured. We further restricted our analysis of FIA data beyond the subsetting done by 

White et al. to include only natural forest stands (e.g. absence of human disturbance, plots 

without artificial regeneration, plots without silvicuture treatment). In addition we fixed a 

minor bug in the White et al. (2012) subsetting (see https://github.com/weecology/white-

etal-2012-ecology/commit/90896ebf745341d7c8bbedb81d391b22c2673d87), which 

results in minor differences in some of the plots and years included in the analysis. 

White et al. (2012) used data from the GENTRY dataset for 226-0.1 hectare sites 

throughout the world, with each site sampled once over the course of a 22 year period. 

The following is largely a reiteration of the data presented in the appendix of that study. 

At each site, all plants with stem diameters of 2.5 cm or greater were identified and 

measured along ten 2 × 50 m transects. Due to difficulties in the taxonomy and 

identification of tropical trees, some species in the Gentry dataset are identified only as 

morpho-species (unique within sites), and species’ names vary among sites due to both 

https://github.com/weecology/white-etal-2012-ecology/commit/90896ebf745341d7c8bbedb81d391b22c2673d87
https://github.com/weecology/white-etal-2012-ecology/commit/90896ebf745341d7c8bbedb81d391b22c2673d87
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typographical errors and synonymy problems. Since we only analyzed data within a site, 

these issues do not affect our analyses[ 

 

Mammals—White et al. (2012) used species abundance data for the 42 sites included in 

the Mammal Community Database (Thibault et al. 2011) (MCDB). These mammal data 

were compiled from published sources and therefore were not collected using a 

standardized protocol across sites and therefore include various levels of sampling effort 

spread across varying amounts of time and space.  

Microorganisms—Whereas our macroorganismal datasets (birds, trees, mammals) report 

abundances in numbers of individuals, species and abundance counts for microorganisms 

cannot be conducted in situ at the level of the individual cell. Instead, microbial 

ecologists rely on environmental sampling and molecular methods to sequence the DNA 

from an environmental sample to 1.) identify microbial taxa in the environment (by 

comparing cloned sequences to libraries of annotated sequences) and 2.) to calculate 

estimates of taxa abundance in the environment from estimates of abundance in the 

sample (using sophisticated alignment and clustering algorithms). Microbial taxa are 

often delineated based on percent rRNA or ITS (internal transcribed spacer) sequence 

similarity among sequences cloned from a sample. In the present paper, we used the 97% 

sequence similarity convention but also show that our results remain the same for 95% 

and 99% similarity cutoffs (see Appendix C). We obtained all of our metagenomic data 

from the MG-RAST metagenome server. MG-RAST reports taxa abundances as the 

estimate of the number of sequences in the sample that contain a given annotation. For 
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our study, an annotation pertains to an rRNA or ITS sequence belonging to a specific 

taxon. 

 

Figure 1. Kernel density curves for evenness (Evar) across entire feasible sets (red) and 

samples of randomly drawn macrostates (black). Each subplot contains 10 kernel density 

curves based on 300, 500, and 700 random samples. These plots reveal that 300 random 

macrostates capture the structure of the feasible set nearly as well, or as well as, samples 

size of 500 and 700. 
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Figure 2. Heat maps of rank-abundance distributions generated from 500 randomly drawn 

macrostates from the feasible sets of N = 500 and S = {50, 100, 200, 400}. Heat maps, 

i.e. three-dimensional histograms of log(abundance) vs. rank values, effectively reveal 

the density of overlap among the 500 randomly drawn macrostates. The macrostate 

derived as the central tendency (grey line) runs through the densest regions (i.e. hottest 

regions) of the feasible set. 
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Figure 3. Additional plots, similar to those in Figure 1, reveal the tendency for feasible 

sets to be dominated by similarly shaped hollow-curve frequency distributions (right-

skewed, modal abundance at lowest abundance classes). Each row applies to a single 

value of total abundance N and three different values of richness S. Left column, 

Subplots reveal the overall shape of the feasible set when all macrostates are plotted as 

Preston plot frequency distributions. Each macrostate is plotted in a light shade of grey, 

so that overlapping macrostates generate a light-to-dark grey shaded image of density 

within the feasible set. Center column, kernel density plots reveal the distribution of 

skewness across the feasible set. Values above 0.0 indicate right skewness. Right 

column, plots of modal abundance reveal that the smallest abundance classes (e.g. 

singletons, doubletons) are the most common. 
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Figure 4. Additional analyses of microbial metagenomic datasets (AQUA, TERA) for 

species defined at 95 and 99% sequence similarity. These observed vs. expected plots 

were constructed in the same fashion as Figure 3 in the main manuscript. These plots 

vary little with percent similarity and reveal the same pattern and similar r-square values 

to those in Figure 3. A subset of the data from Figure 3 were used to reduce the 

computational expense of the analysis (which still required 1,380 compute hours). This 

analysis demonstrates that our results for metagenomes are robust with respect to percent 

similarity cutoff.    
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Figure 5. Kernel density plots for values of species evenness (Evar) distributed across 

entire feasible sets. Vertical red and blue lines represent values of Evar for two different 

macrostates in the feasible sets for N = 50 and S = {20, 10}. Despite having similar Evar, 

a value of ~ 0.7 indicating high evenness, the macrostate from the feasible set for N = 50 

and S = 10 is exceptionally even with respect to its feasible set, while the macrostate for 

N = 50 and S = 20 is neither exceptionally even or uneven, and is instead near the central 

tendency of its feasible set.   
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APPENDIX D: 

CHAPTER 3:  EXPLANATION OF PARTITION FUNCTIONS AND ADDITIONAL 

FIGURES 

The partition function: 

Here, the mathematical convention of representing the total as n (instead of q) is 

followed. The number of partitions of an integer n, i.e. p(n), equals the number of 

partitions of n having n or less as the largest element (Andrews & Eriksson 2006, Bóna 

2006). Likewise, the number of partitions of an integer n into k or less parts, i.e. pk(n) 

equals the number of partitions of an integer n into k or less parts and partitions of n 

having k or less as the largest part (Bóna 2006). Consequently, knowing pk(n) for k = {1, 

…, n) leads to p(n), the generating function for which is given by: 

 

The recurrence relation for the number of partitions of n into parts having k or less as the 

largest part (or having k or less parts or k or less as the first part): 

 

Interpretation: Partitions of n into at most k parts either have exactly k parts or they have 

fewer than k parts. By convention p(n = 0) = 1. Also pk=0(n) = 0 if n > 0. 

Simple recursive function showing how the recurrence relation is implemented. This 

function is too slow for ecologically realistic values of :  

 

def parts(n, k):   # find the number of partitions for q with k as the largest part 

    if k == 0: return 0 
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    if n == 0: return 1 

    if n < 0: return 0 

    return parts(n, k - 1) + parts(n - k, k) 

Partition functions for Locey and McGlinn (2013) can be found  here:  

https://github.com/klocey/partitions/blob/master/partitions.py 

Explanation of the ‘multiplicity’ approach, specifically the statement: 

The set of partitions of q having a number of k’s equal to m contains the set of partitions 

of q – k*m having less than k as the first part. Consider the 8 partitions of q = 10 having k 

= 3 as the first element and note that the possible multiples (m) of 3 are 3, 2, 1:  

[3, 3, 3, 1] 

[3, 3, 2, 2] 

[3, 3, 2, 1, 1] 

[3, 3, 1, 1, 1, 1] 

[3, 2, 2, 2, 1] 

[3, 2, 2, 1, 1, 1] 

[3, 2, 1, 1, 1, 1, 1] 

[3, 1, 1, 1, 1, 1, 1, 1] 

 

 According to the above statement, the partitions of q = 10 having three 3’s will 

contain the set of partitions of q – k*m = 10 – 9 = 1 having less than 3 as the first part. 

Indeed, there is only one possible partition, i.e. [1]. Likewise, the partitions of q = 10 

having two 3’s will contain the set of partitions of q – k*m = 10 – 6 = 4 having less than 3 

as the first part. Indeed, the possible partitions are [2, 2], [2, 1, 1] and [1, 1, 1, 1], i.e. the 

feasible set for q = 4 having less than three as the largest part. Finally, the partitions of q 

= 10 having one 3 will contain the set of partitions of q – k*m = 10 – 3 = 7 having less 

than 3 as the first part. Indeed, the possible partitions are [2, 2, 2, 1], [2, 2, 1, 1, 1], [2, 1, 

https://github.com/klocey/partitions/blob/master/partitions.py
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1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1], i.e. the feasible set for q = 7 having less than three as 

the largest part. 

 

 

Figure 1. Kernel density curves for skewness are derived from random samples of 500 

partitions for different combinations of Q and N. These reveal that the integer partitioning 

algorithms, i.e. Multiplicity, Top-down, Divide and conquer, Bottom-up produce random 

samples of feasible sets (FS) both when excluding and including parts having zero values, 

left and right, respectively. We used Sage to generate the entire feasible set (thick red 

line) for Q = 50 and N = 10. We used the random partitioning function in Sage to 

generate 500 partitions for Q = 500 and N = 10, which is too large to enumerate in full. 
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Figure 2. Kernel density curves for the variance are derived from random samples of 500 

partitions for different combinations of Q and N. These reveal that the integer partitioning 

algorithms, i.e. Multiplicity (Multi), Top down (T-D), Divide and conquer (D-Q), Bottom 

up (B-U) produce random samples of feasible sets (F-S) both when excluding and 

including parts having zero values, left and right, respectively. We used Sage to generate 

the entire feasible set (thick grey line) for Q = 50 and N = 10. We used the random 

partitioning function in Sage to generate 500 partitions for Q = 500 and N = 10, which is 

too large to enumerate in full. 

 

Fig 3. Time required to generate a single random partition (no zero values) for 

ecologically large combinations of Q and N using the random partitioning algorithms 
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derived here, implemented in Python. The multiplicity algorithm greatly outperforms the 

bottom-up and divide-and-conquer methods for these types of Q-N combinations.  
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