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Abstract

An Algorithm to Recognize Multi-Stable Behavior from an Ensemble of Stochastic

Simulation Runs

by

Eduardo Monzon, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

A myriad of methods exist to simulate the time evolution of genetic circuits. The

assessment process to verify the behavior of these systems usually involves performing many

stochastic simulation runs and performing statistical analysis on the ensemble of simulated

paths. Inferring information from this sea of random data is not always easy and the

designer usually needs to be trained in stochastic processes to make correct interpretations.

To help the biological designer in this duty, this thesis presents a new method to visualize

the typical behavior of genetic circuits when they exhibit more than one path. The method

is shown to produce correct results with the simulation of a genetic toggle switch circuit.

(79 pages)
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Public Abstract

An Algorithm to Recognize Multi-Stable Behavior from an Ensemble of Stochastic

Simulation Runs

by

Eduardo Monzon, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Synthetic biological designers are demanding tools to help with the design and verifica-

tion process of new biological models. Some of the most common tools available aggregate

multiple simulation results into one “clean” trajectory that hopefully is representative of the

system’s behavior. However, for systems exhibiting multiple stable states, these techniques

fail to show all the possible trajectories of the system. This work introduces a method

capable of detecting the presence of more than one “typical” trajectory in a system, which

can also be integrated with other available simulation tools.
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Chapter 1

Introduction

Synthetic biology is a relatively new field of research and engineering with the goal of

designing and synthesizing biological components and systems that do not exist in nature.

According to Ingalls [1], the design and construction of synthetic gene networks, as an area

of synthetic biology, has grown very rapidly after the first engineered gene circuits were

announced in the year 2000.

Synthetic biology promises many applications in medicine and pharmaceutical. For

instance, bacteria can be manipulated to synthesize proteins that produce drugs [2]. Also,

bacteria can potentially be engineered to target cancer cells and destroy them before they

are pernicious to the human body [3], to clean toxic wastes, such as oil spills, and detect the

presence of toxins in the environment [4]. The potential that can be reached by programming

organisms to do specific tasks is yet unknown. However, like in any engineering field, there

is the need of automated tools to aid in the design and constructions process.

Following the success of electronic design automation (EDA) tools in the electronics in-

dustry, scientists and engineers in synthetic biology have created genetic design automation

(GDA) tools to speed up the progress in this field. One way this is achieved, is by acceler-

ating the design process and reducing the skill-sets needed to achieve successful biological

designs. Up to some extent this is possible if the designer is presented with summarized and

useful information that is easy interpret and does not lead to ambiguities. However, this is

not an easy task since ambiguity and randomness are inherent in these biological systems.

To reveal the highly random behavior in genetic circuits due to small molecule counts

and sporadic gene expression, stochastic simulation algorithms are necessary in any GDA

tool. Statistics generated from stochastic simulation runs, however, are usually very noisy

and can be difficult to analyze. Furthermore, targeted users of GDA software include
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practicing biochemists who are not necessarily trained in the analysis and interpretation

of stochastic systems. This imposes a fundamental difficulty to the use of GDA tools: the

ability to distilled functional behavior from noisy simulation results. Masking noise from

the “typical” behavior of a genetic circuit helps to speed up the design and verification

process of these biological systems and and helps the designer to make informed decisions

easier and quicker.

Designers typically intend for their genetic circuits to behave nearly-deterministically,

despite the growing argument that noise is an integral part of a reaction system’s behav-

ior. Deterministic behaviors are desirable because predictions correspond faithfully to real

simulation runs and reveal the functional details intended by the designers. Unfortunately,

this is rarely the case and simulations often reveal unintended behaviors such as spurious

oscillations or multiple stable states that were not anticipated in the design process.

Computer simulations have become an important part of functional verification allow-

ing the designer to assess the likelihood of a design’s success before proceeding with man-

ufacturing and experimental testing. Hence, there is a growing interest in general-purpose

techniques for modeling genetic circuits and predicting their behavior. Visualization of the

behavior of genetic circuits is one way computer simulations help biological designers assess

their models. Being able to visualize properly a genetic circuit model provides feedback

on what things are working properly and what things may not. On the extreme, poor vi-

sualization methods may cause confusion and even lead the designer to infer an erroneous

behavior from the circuit. Hence, proper visualization is of utmost importance in synthetic

biology.

The information presented on this thesis is organized as follows: Chapter 2 presents

background information about synthetic gene networks (a.k.a genetic circuits) and the pro-

cesses of transcription and translation. Some examples of genetic circuits are also presented.

Chapter 3 introduces some common stochastic simulation algorithms. Chapter 4 describes

the multi-path visualization algorithm as a contribution of this thesis, as well as the outline

of a new Multi-Path Detection iSSA (MPD-iSSA) method to address some challenges of
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current GDA tools, like the detection and visualization of multi-stable behavior. Chapter

5 presents some discussions and future direction of these methods.
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Chapter 2

Background

The behavior of any organism, at the molecular level, is determined by the information

contained in its DNA. This information instructs the organism how to perform functions

like reproduction, communication with the environment, and production of certain proteins

and other cell components for survival. Hence, a clear understanding of how an organism

makes use of this information is vital to any biological designer intending to modify an

organism’s behavior. The term behavior is being used loosely here, but primarily refers to

any possible response or interaction of the organism with its environment.

This chapter introduces how the genetic machinery of the cell makes use of the infor-

mation encoded in its DNA, and how this process can be harnessed to modify an organism’s

behavior by changing this information. Some very common genetic constructs that have

been used to this purpose are also introduced. The information on this chapter is organized

as follows: Section 2.1 gives an overview of gene expression and the processes of tran-

scription and translation. Section 2.2 introduces synthetic gene networks and its various

components. Section 2.3 presents some synthetic gene networks that have been constructed

and tested successfully in vivo (i.e., inside living organisms).

2.1 Gene Expression

Gene expression is a complex process, which occurs in two stages. In the first stage,

the DNA of the gene is transcribed into messenger RNA (mRNA) by the enzyme RNA

polymerase (i.e., the information stored in the nucleotide order on the DNA is copied

into information stored by the nucleotide order on the mRNA). In the second stage, the

mRNA is translated into protein by enzymes called ribosomes (i.e., the information stored

in nucleotides on the mRNA is translated into the amino acids sequence of the protein).
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The first stage is called transcription and the second stage is called translation, and both

processes are illustrated in detail in Figures 2.1 and 2.2.

Figure 2.1 shows the transcription process step by step. This process is initiated when

the enzyme RNA polymerase (RNAP) recognizes a specific part of the DNA, which marks

the beginning of a coding region. This is shown in step 1. In step 2, RNAP moves along

the DNA coding region and produces a complimentary copy of every DNA base pair it

reads, forming a messenger RNA (mRNA) molecule. This transcription process terminates

in step 3, when RNAP reads a DNA sequence signaling the end of the coding region.

The information contained in the mRNA molecule just produced can now be used by the

ribosomes during the translation process to create proteins or any other molecules encoded.

The translation process looks simple from Figure 2.2, but it is no less complex than

transcription. Here, the ribosome recognizes and binds to a specific sequence in the mRNA

known as the ribosome binding site. After that, the ribosome reads a sequence of three

nucleotides at a time, which code for a specific amino acid. There is a total of 20 different

kinds of amino acids found in living organisms and their specific order determines the

protein’s shape and function. Proteins are constructed one amino acid at a time in the

order specified by the codons in the mRNA. A codon is a group of three bases which

specifies a particular amino acid using the genetic code shown in Table 2.1. As it can

be seen in the table, some amino acids are associated with more than one codon. This

redundancy provides robustness in the face of mutations (i.e., small random changes) that

occur naturally when DNA is replicated during cell divisions [5].

The information encoded in genes includes not only coding sequences for the specific

order of amino acids in a protein, but also regulatory sequences that control the rate that a

gene is transcribed. Hence, transcription can be either activated (i.e., turned on) or repressed

(i.e., turned off) if certain proteins bind to this regulatory sequences. Transcription can also

be regulated through post-transcriptional modifications, DNA folding, and other feedback

mechanisms [5]. This regulation is analogous to electrical circuits in which multiple input

signals are processed to produce multiple output signal and the reason why these regulatory
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Fig. 2.1: An overview of the transcription process.

Fig. 2.2: An overview of the translation process.
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networks are sometimes referred to as genetic circuits.

2.2 Genetic Circuits

Current technology in genetic engineering has made it possible to synthesize fragments

of DNA consisting of almost any gene sequence. Since genes are responsible for the behavior

of organisms at the molecular level, these DNA fragments can be synthesized to contain gene

sequences capable of altering the organism’s behavior to certain internal or environmental

conditions. These genetic components are inserted into the organism’s genome through a

variety of transformation techniques in which the organism accepts this exogenous genetic

material and makes it part of its genome. These constructed gene sequences are known as

synthetic gene networks and sometimes are called genetic circuits. Throughout this thesis

the terms genetic circuit and synthetic gene network will be used interchangeably.

A genetic circuit, in the context of synthetic biology, can be considered as a group of

genes forming a network of interaction, which resembles an electrical circuit. This analogy

with electrical circuits abstracts away the complexities of the DNA transcription and trans-

Table 2.1: The genetic code for the different kinds of amino acids.

U C A G

U UUU Phenylalanine UCU Serine UAU Tyrosine UGU Cysteine

UUC Phenylalanine UCC Serine UAC Tyrosine UGC Cysteine

UUA Leucine UCA Serine UAA Stop UGA Stop

UUG Leucine UCG Serine UAG Stop UGG Tryptophan

C CUU Leucine CCU Proline CAU Histidine CGU Arginine

CUC Leucine CCC Proline CAC Histidine CGC Arginine

CUA Leucine CCA Proline CAA Glutamine CGA Arginine

CUG Leucine CCG Proline CAG Glutamine CGG Arginine

A AUU Isoleucine ACU Threonine AAU Asparagine AGU Serineine

AUC Isoleucine ACC Threonine AAC Asparagine AGC Serineine

AUA Isoleucine ACA Threonine AAA Lysine AGA Arginine

AUG Methionine ACG Threonine AAG Lysine AGG Arginine

G GUU Valine GCU Alanine GAU Aspartate GGU Glycine

GUC Valine GCC Alanine GAC Aspartate GGC Glycine

GUA Valine GCA Alanine GAA Glutamate GGA Glycine

GUG Valine GCG Alanine GAG Glutamate GGG Glycine



8

lation processes, and helps with the idea of components that can be manipulated to achieve

a desired behavior. Even though this abstract view of genetic circuits simplifies the process

of designing and working with these systems, it is important to keep in mind the intrinsic

difference with their electrical counterpart. In genetic circuits, instead of electrical signals

representing information through a sequence of ones and zeros, the chemical concentrations

of specific DNA-binding proteins and inducer molecules act as the input and output signals

of the system. These molecules are able to interact with other proteins, bind to specific

DNA sites, and regulate the expression of other proteins within the cell. It is this regulatory

activity which can be exploited to construct genetic systems able to process chemical signals

in a way similar to what digital logic functions do, as well as some analog electrical circuits.

Gene expression, in a genetic circuit, is controlled by a region of DNA called the pro-

moter. Transcription of the gene is initiated when the RNA polymerase recognizes and

binds to this promoter sequence. This sequence instructs RNAP both where to start syn-

thesis of the mRNA transcript and in which direction. The transcription process terminates

when the RNAP reaches a transcriptional stop signal sequence.

Regulation is mediated by proteins, called transcription factors. These proteins rec-

ognize portions of the DNA sequence near the promoter region, known as operator sites.

Once bound, they either hinder the binding of RNAP to the promoter and thus repress

gene expression (the transcription factors are then called repressors) or they enhance the

binding of RNAP to the promoter and activate gene expression (the transcription factors

are then called activators). According to Swain and Longtin [6], nearly all genes in vivo

are regulated. However, unregulated genes also exist and they are said to be constitutively

expressed.

All the terms mentioned above (i.e., genes, promoters, transcription factors, and opera-

tor binding sites) are the basic building blocks of any genetic circuit. These building blocks

can be observed in Figure 2.3. This figure shows a simple genetic circuit found in the phage

λ virus and it is described in more details by Myers [5]. It is common among the community

to represent the promoters with arrows pointing either left or right, the genes with filled
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rectangles, ribosome binding sites with empty squares, and the proteins and transcription

factors with round shapes.

When inserted into an organism’s genome, genetic circuits are able to change this

organism’s behavior. This DNA sequence contains information that the cell machinery

inside the organism is able to interpret. As noted by Weiss et al. [7], the resulting behavior

of these synthetic constructs in an organism is not always easy to predict, but this has

not stopped the community of scientists and engineers to assemble a component library of

genetic circuit building blocks.

2.3 Component Library of Genetic Gates

The first step to be able to build more complex systems consists in establishing a

library of well-defined components. The integration of these components enables cells to

perform sophisticated digital and analog computation, both as individual entities and as

part of larger cell communities. The simplest digital gate constructed out of biological parts

is probably the NOT gate or biochemical inverter. In the following subsections we will see

how this simple component can be used to form other genetic circuits like the NAND gate

or even a genetic oscillator.

Fig. 2.3: Circuit found in the phage λ virus showing the different components of a genetic
circuit.
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2.3.1 Biochemical Inverter

The biochemical inverter or biochemical NOT gate follows the same working principle

as the digital NOT gate shown in Figure 2.4(a). In digital electronics, this logic gate inverts

the binary state of its input. So, if the input is low (i.e., binary 0) the output is high, and

if the input is high (i.e., binary 1) the output is low. In the case of the biological inverter,

when the input signal is high (i.e., a high concentration of repressor molecules) the output

signal is low (i.e., low gene expression) and vice-versa.

The graphical representation of the biochemical inverter is shown in Figure 2.4(b). It

shows a protein called TetR acting as the repressor signal for the expression of the Green

Fluorescent Protein (GFP), which acts as the output signal of the circuit. Reporter genes

like GFP are very important in synthetic biology because they help assessing if a constructed

circuit is working properly by providing a visible output.

2.3.2 Biochemical NAND Gate

The biochemical NAND gate follows the same principle of operation of the logical

NAND gate in digital electronics. The logical NAND gate has two inputs, which can be

high or low independently providing four possible combinations. The output is low only

when the two inputs are high. Any other combination of input logic states will produce a

high output signal. This is summarized in Table 2.2.

The symbol used in digital electronics to represent the digital NAND gate is shown in

Figure 2.5(a). Similar to the digital NOT gate symbol, it has a circle at the output indicating

that it is actually an AND gate with an inverted output. The biochemical representation of

this logic gate is shown in Figure 2.5(b). In this case, the NAND gate is formed by putting

in parallel two biochemical NOT gates with the same output (GFP), but different inputs

(LacI and TetR). So, according to the truth Table 2.2, only when the concentration of the

two repressors is high will the gene expression of GFP be low. It is important to note at

this point that although the two components of the NAND gate are drawn separate, they

may be together, side by side, on the same strand of DNA.
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Fig. 2.4: (a) Symbol representing digital NOT gate. (b) Biochemical representation of NOT
gate.

Table 2.2: Truth table for the logical NAND gate.

LacI TetR GFP

0 0 1

0 1 1

1 0 1

1 1 0

2.3.3 Biochemical Ring Oscillator

An oscillator is a circuit or device that produces a repetitive signal, often a sine wave

or a square wave [8]. They are widely used in electronic communications to generate carrier

signals and in digital systems to generate clock signals that regulate computers and quartz

clocks. However, electronic oscillators are not the only class of oscillators in existence.

There are also biological oscillators and they exist in many living organisms. They appear

in functions ranging from cell-division cycle [9] to helping organisms keep track of the time

of day [10]. In these oscillators, obviously, the repetitive signal is produced by an enhanced

production and inhibition of gene expression.

According to Friesen and Block [11], there are two essential elements of any biological

oscillator: 1) an inhibitory feedback loop, which includes one or more oscillating variables,

and 2) a source of delay in this feedback loop, which allows an oscillating variable to
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Fig. 2.5: (a) Symbol representing digital NAND gate. (b) Biochemical representation of
NAND gate.

overshoot a steady-state value before the feedback inhibition is fully effective.

Figure 2.6 shows both the digital (on the top) and the biological representation (on the

bottom) of an oscillator. Each node in the digital version has the name of the corresponding

gene expressed in the biological counterpart. We can observe that this is a ring oscillator

formed with three inverters connected in a feedback loop. The propagation delay of the

inverters provides the source of delay required to produce the oscillations. The same manner,

in the biological oscillator in Figure 2.6, the source of delay is the time required by the

transcription and translation process, plus the time required by these proteins to affect the

promoter of the gene downstream. This time, of course, is random due to the diffusion

process involved and hence the periods and amplitude of the oscillations are also stochastic.

The genetic circuits presented above are just examples of some of the simplest biological

systems that can be achieved. More complex circuits can also be constructed by connecting

simple parts, however, it is important to remember that signals in genetic circuits are carried

out by molecules that diffuse and interact with other chemical species, and whenever a new

part is introduced, attention must be paid to how this may affect the rest of the circuit.
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Fig. 2.6: Digital and biochemical representation of a ring oscillator.

2.3.4 Genetic Toggle Switch

Another interesting genetic circuit worthwhile examining is the genetic toggle switch.

The toggle switch model, shown in Figure 2.7(b) is a genetic circuit implementation of the

well-known set-reset latch from traditional electronics, shown in Figure 2.7(a). The circuit’s

inputs are aTc and IPTG, and it is designed such that the molecular species TetR and LacI

mutually repress each other. The TetR gene is also associated with a gene that codes for

green fluorescent protein (GFP), which serves as a detectable output signal similar to the

previously shown genetic circuit examples. Due to the mutual repression between LacI and

TetR, only one of these species persists under normal conditions. This creates a bi-stable

situation in which the circuit has two possible states: one state in which LacI is present

but TetR is absent (the “off” state), and another state in which TetR is present but LacI

is absent (the “on” state) [12].

The circuit’s state can be controlled by temporarily adding one of the input species,

either aTc or IPTG. When aTc is added, the circuit is expected to switch off. Similarly,

when IPTG is added, the circuit is expected to switch on. If both input species are added,

the circuit’s behavior is undefined. When both input species are initially absent, a race

condition situation is created in which one species is produced slightly faster than the

other, leading eventually to a latched on or off state.
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Fig. 2.7: Genetic circuit for the toggle switch.

Once the circuit is latched, it is expected to hold its state indefinitely via the negative

feedback mechanism. By adjusting the kinetic parameters of the model, the race can be

made fair so that either outcome is equally likely, or biased towards one of the two states.

However, when the circuit is initially set to one of the two states and the repressor input is

increased, the circuit is more likely to switch to the other state.
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Chapter 3

Stochastic Simulations

The solution to Ordinary Differential Equation (ODE) models of a chemical reaction

system provides expressions for the concentration of each species as a function of time.

These models assume concentrations vary continuously and deterministically. However, the

molecule counts in genetic circuits is generally small (often tens or hundreds of molecules of

each transcription factor and one strand of DNA) and the discrete and stochastic nature of

these systems may influence significantly the observable behavior. Therefore, a stochastic

description of the genetic circuit is required to perform more accurate simulations.

3.1 Stochastic Chemical Kinetic Model

Chemical reaction network models are composed by n chemical species {S1, S2, ..., Sn}

interacting through m chemical reaction channels {R1, R2, ..., Rn}. Stochastic Chemical

Kinetic (SCK) models assume that the molecular species are contained in a constant volume

Ω, like the volume of a cell, and the system is well-stirred [5], which means the molecules are

equally distributed throughout the volume. This assumption, however, is not always true

and methods that account for spatial effects must be used for more accurate simulations.

Another assumption in SCK models is that the system maintains a constant temperature

T , which is referred as thermal equilibrium.

The state of the system at time t is represented by the vector X (t) = (Xi(t), ..., Xn(t)),

where Xi(t) is the number of molecules of species Si at time t. The initial state of the system

(i.e., the initial number of molecules at some initial time t0) is X(t0) = x0. When a reaction

Rµ occurs, the system state is updated by adding the state-change vector vµ to the current

system state (i.e. x′ = x + vµ). The elements of vµ = (v1µ, ...,vnµ) contain the change in

molecule count to Si due to reaction Rµ. The two-dimensional array formed by {vi,µ} is
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also known as the stoichiometry matrix.

The stoichiometry matrix is the mathematical representation of the biochemical reac-

tion network as shown in the matrix below. Its elements indicate the amount of molecules

that are lost or gained when a particular reaction occurs. The reactions are aligned in the

columns of the matrix, while the rows indicate which species participate in a particular re-

action. For instance, element a1,2 in the matrix below indicates that species 1 participates

in reaction 2. The sign of matrix entry indicates whether the species is a reactant, with

negative sign, or a product, with positive sign. If the species does not participate at all in

the reaction then a zero entry is placed in the matrix.

Nm,n =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n


Every reaction channel Rµ is associated with a specific probability rate constant cµ,

which is selected such that cµdt can be defined to be the probability that a random com-

bination of reactant molecules react inside volume Ω in the next infinitesimal time interval

[t, t+ dt], as defined by reaction Rµ. This value multiplied by the total number of possible

combinations of reactant molecules for Rµ produces the propensity function, aµ. Since the

number of molecules of each species may change according to the state x of the system, this

function must be recalculated as the system evolves. So, put in precise words, aµ (x) dt is

defined to be the probability that Rµ occurs in the state x within Ω in the next infinitesimal

time interval [t, t+ dt].

Let us illustrate this with the following example. Consider the following reaction sys-

tem:

A+B
cµ−→ C. (3.1)

In order to determine cµ for this reaction, it is necessary to find the probability that an
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A molecule and a B molecule collide and react within the next dt time units. We assume

that each molecule of A and B are hard spheres of mass ma and mb with radius ra and

rb, respectively. The previous assumption of thermal equilibrium means that a randomly

selected molecule of A and B can be found uniformly distributed within the volume Ω. Also,

it means that the average relative speed in which A and B see each other moving is given

by ~vab =
√

8kBT/πmab where kB is Boltzmann’s constant and mab = mamb/(ma + mb).

A B molecule then should sweep in the next dt time units a collision cylinder relative to

a molecule A, which has height ~vabdt and base area π(ra + rb)
2. Since the molecules are

uniformly distributed within Ω, the probability of one molecule finding itself within the

collision cylinder of a molecule of the other reactant is the ratio of π(ra + rb)
2~vabdt to the

volume Ω. The specific probability rate constant for this reaction is given by the following

formula:

cµ = Ω−1π(ra + rb)
2~vabpµ, (3.2)

where pµ is the probability that A and B react when they collide. If we assume that they

collide only when their kinetic energy exceeds the activation energy, εµ, then cµ can be

expressed by this formula:

cµ = Ω−1π(ra + rb)
2

(
8kBT

πmab

)1/2

exp(−εµ/kBT ). (3.3)

Since the number of possible combinations of A and B that can react is a × b, the

propensity function for Rµ is aµ(x) = cµab.

3.2 Chemical Master Equation

The stochastic model described above is a jump Markov process, where the state up-

dates occur in discrete amounts and the next state of the system is only dependent on the

present state and not the past history. It is not possible to know the exact state X (t)

of the system due to its stochastic nature, but we can calculate the probability of being

in a specific state at time t starting from a state X (t0) = x0 (i.e., P (x, t|x0, t0)). This

probability can be described using a time-evolution of step dt as shown below:
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P (x, t+ dt|x0, t0) = P (x, t|x0, t0)×

1−
m∑
j=1

(aj (x) dt)


+

m∑
j=1

P (x− vj , t|x0, t0)× (aj (x− vj) dt).

(3.4)

On the right-hand side we have two terms adding together. The first term is the

probability that the system is already in state x at time t, and there are no reaction in the

time period [t, t+ dt]. The second term indicates that the state x is vj away at time t, and

the reaction Rj occurs in the time period [t, t+ dt]. Let us make the observation that dt is

chosen small enough that at most one reaction can occur during this time period. Then, the

time evolution of state probabilities P (x, t|x0, t0) of the Chemical Master Equation (CME)

are the result of performing the limit as shown next.

∂P (x, t|x0, t0)

∂t
= lim

dt→0

P (x, t+ dt|x0, t0)− P (x, t|x0, t0)

dt

=
m∑
j=1

[aj (x− vj)P (x− vj , t|x0, t0)− aj (x)P (x, t|x0, t0)]
(3.5)

This differential equation, however, cannot be solved analytically or numerically except

in very simple situations because it represents a set of equations that is nearly as large as

the number of molecules in the system. Hence, other methods like the ones described next

are used instead to solve these systems.

3.3 Gillespie’s Stochastic Simulation Algorithm

Like the master equation, this stochastic simulation algorithm correctly accounts for

the inherent fluctuations and correlations that are necessarily ignored in the deterministic

formulation, but it is not based directly on the CME. Hence, the key to generating simulated

trajectories of X (t) is not the function P (x, t|x0, t0), but rather a new probability function

p (τ, µ|x, t), which is defined as follows:
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p (τ, µ|x, t) dτ , the probability, given X (t) = x, that the next reaction

in the system will occur in the infinitesimal time interval

[t+ τ, t+ τ + dτ), and will be an Rµ reaction.

(3.6)

Therefore, this function is a joint probability density function of two random variables,

the time to the next reaction, τ , and the index of the next reaction, µ. The advantage

of this formulation is that the simulation is able to advance from one reaction to the next

skipping over times in which no reaction occurs.

Let us derive an analytical expression for p (τ, µ|x, t) to understand better how this

algorithm works. First, let us represent the probability that there is no reaction in the time

interval [t, t+τ) with a new function P0 (τ |x, t). Now, let us express the function p (τ, µ|x, t)

as follows:

p (τ, µ|x, t) = P0 (τ |x, t)× (aµ (x) dτ) . (3.7)

Explicitly, this means that no reactions occur in the interval [t, t+ τ), but the Rµ reac-

tion can occur in the interval [t+ τ, t+ τ + dτ). However, the following must be satisfied:

P0 (τ + dτ |x, t) = P0 (τ |x, t)×

1−
m∑
j=1

(aj(x)dτ)

 . (3.8)

Manipulating this formula and denoting a0(x) =
∑m

j=1 aj(x), we can derive the follow-

ing differential equation:

P0 (τ + dτ |x, t) = P0 (τ |x, t)− a0 (x)P0 (τ |x, t) dτ

P0 (τ + dτ |x, t)− P0 (τ |x, t)
dτ

= −a0(x)P0 (τ |x, t)

P0 (τ,x, t)

dτ
= −a0 (x)P0(τ |x, t).

(3.9)
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With initial condition P0(τ = 0|x, t) = 1, this differential equation has solution:

P0(τ |x, t) = exp(−a0(x)τ). (3.10)

If we now combine equations 3.7 and 3.10 and cancel dτ we obtain:

p (τ, µ|x, t) = exp (−a0 (x) τ)× aµ (x) , (3.11)

which can be rewritten as:

p (τ, µ|x, t) = a0 (x) exp (−a0 (x) τ)
×aµ (x)

a0 (x)
. (3.12)

Equation (3.12) shows that p (τ, µ|x, t) can be divided into a probability density func-

tion for τ and another for µ. The variable τ is an exponential random variable with mean

and standard deviation of 1/a0 (x). The variable µ, on the other hand, is an integer random

variable with point probabilities aµ (x) /a0 (x).

Gillespie’s SSA is built upon these previous observations and its steps are outlined

in Algorithm 1. In step 1, the starting time t0 and the initial state of the system x0 are

set. In step 2, all the propensity functions aj(x) and their sum a0 are recalculated every

iteration since their values depend on the current state x, which may change due to the

last reaction. In step 3, two uniform random numbers, r1 and r2, are selected between

[0, 1]. These random numbers are used in the next two steps to determine τ and µ. In

step 6, the next state is determined by updating the molecule count using the stoichiometry

information for the reaction, vµ, and moving time forward τ time units.

Finally, in step 7 the current time t is checked to verify whether the simulation time has

not been exceeded. If it has, the trajectory is complete and the simulation halts, otherwise,

in step 8 the new state is recorded and the simulation continues back at step 2.

3.4 Next Reaction Method

Since the algorithm’s introduction, numerous SSA variations have been developed. One
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Algorithm 1 Gillespie’s stochastic simulation algorithm (SSA).

1: Initialize: t = t0 and x = x0.
2: Evaluate propensity functions aj(x) at state x, and their sum a0 =

∑m
j=1 aj(x).

3: Draw two unit uniform random numbers, r1 and r2.
4: Calculate the time τ , until the next reaction:

r =
1

a0(x)
ln

(
1

r1

)
5: Determine the next reaction, Rµ:

µ = the smallest integer satisfying

µ∑
j=1

aj(x) > r2a0(x)

6: Determine the new state after reaction µ : t = t+ τ and x = x + vµ.
7: If t is greater than the desired simulation time then halt.
8: Record (x, t) and go to step 2.

of its variants is the Next Reaction Method developed by Gibson and Bruck [13]. Similar to

Gillespie’s SSA, this is an exact algorithm to simulate coupled chemical reactions, but it is

computationally more efficient because it uses only a single random number per simulation

event, and it takes time proportional to the logarithm of the number of reactions, instead of

the number of reactions itself. One main idea of this algorithm comes from recognizing that

when a reaction fires, the molecule count only changes for the chemical species involved

in that reaction, hence only reaction channels having those species as reactants need to

update their propensities aj(x). In the Gillespie’s SSA all propensities are updated in every

iteration. Also, by storing the times τj when each reaction is likely to happen, and not just

aj , it is possible to save calculating one random number every iteration. This may not seem

a huge save, but it becomes significant for many iterations.

The statement of recalculating aj (and τj) only if it changes may seem circular because

to know whether aj has changed one normally would calculate the new value aj,new and

compare it to the old value aj,old. However, one can analyze the set of reactions before-

hand and determine which reactions change which aj . This is achieved introducing a data

structure, called a dependency graph. The dependency graph for a set of reactions R is a

directed graph G(V,E) with vertex set V = R and with a directed edge from vi to vj if and
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only if Affects(vi)
⋂

DependsOn(avj ) 6= ∅. In other words, a dependency graph is a data

structure that tells precisely which aj to change when a given reaction is executed. Using

the dependency graph allows one to recalculate only the minimum number of aj .

With respect to be able to re-use τj where appropriate, it is known that, in general,

Monte Carlo simulations assume statistically independent random numbers and it is usually

not legitimate to re-use random numbers. However, in this particular special case, it is

legitimate because the τj values are changed to use absolute time rather than relative

time between reactions and they are re-normalized whenever its propensity has changed.

Updating ais and τjs is made efficient thanks to the use of another data structure, called

an indexed priority queue. An indexed priority queue consists of (a) a tree structure of

ordered pairs of the form (j, τj), where j is the number of a reaction and τj is the putative

time when reaction j occurs, and (b) an index structure whose jth element is a pointer to

the position in the tree that contains (j, τj).

The next reaction algorithm is outlined in Algorithm 2.

3.5 Tau-Leaping Method

The next reaction method provides some improvements over the exact SSA method

for systems with many species and many reaction channels; however, reactions are still

simulated one at a time and this is a real bottleneck for speeding up simulation time.

Sometimes it is necessary to give up the exactness of an algorithm to improve the simulation

speed. Tau-leaping is an approximate way of accelerating the SSA in which each time step

τ advances the system through possibly many reaction events, instead of just one by one

as has been seen before. With the system in state x at time t, let us suppose there exists a

τ > 0 that satisfies the leap condition: During [t, t + τ) no propensity function is likely to

change its value by a significant amount. With aj(x) remaining essentially constant during

[t, t + τ), it then follows that the number of times reaction channel Rj fires in [t, t + τ) is

a Poisson random variable with mean (and variance) aj(x)τ [14]. In other words, instead

of jumping precisely to the next reaction, many reactions are allowed to fire at once in the

time interval [t, t+ τ).
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Algorithm 2 Gibson and Bruck’s next reaction method.

1: Initialize:

a) t = t0 and x = x0.

b) Generate a dependency graph, G(V,E).

c) Evaluate propensity functions aj(x) at state x.

d) For each j, determine the time, τj , until the next Rj reaction:

τj = t+
1

aj(x)
ln

(
1

rj

)
where each rj is a unit uniform random number.

e) Store the τj values in an indexed priority queue Q.

2: Let Rµ be the reaction whose τµ is the smallest stored in Q.
3: Let τ be τµ.
4: Determine the new state after reaction Rµ : t = τ and x = x + vµ.
5: For each edge (µ, α) in the dependency graph G,

a) Set aα,old = aα and update aα.

b) If α 6= µ, set τα = (aα,old/aα)(τα − t) + t.

c) If α = µ, generate a random number, rµ, and

τµ = t+
1

aµ(x)
ln

(
1

rµ

)
6: If t is greater than the desired simulation time then halt.
7: Record (x, t) and go to step 2.
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To the degree that the leap condition is satisfied, this change is accomplished by intro-

ducing m random functions, Kj(τ,x, t), each one returning the number of times that the

reaction channel, Rj , fires in the interval [t, t+ τ) assuming the system is currently in state

X(t) = x. After this τ -leap is determined, the next state of the system is given by:

X(t+ τ) = x +

m∑
j=1

Kj(τ,x, t)vj . (3.13)

Equation (3.13) is the basic tau-leaping formula. How this formula can be used in an

algorithm to perform faster stochastic simulations will be discussed later. For the moment,

let us suppose that τ is not only small enough to satisfy the leap condition, but also large

enough that the expected number of firings of each reaction channel Rj during τ is � 1:

aj(x)τ � 1 for all j = 1, ...,m. (3.14)

Then, denoting the normal (Gaussian) random variable with mean m and variance

σ2 by N (m,σ2), and recalling the fact that a Poisson random variable with a mean and

variance that is � 1 can be approximated as a normal random variable with that same

mean and variance, we can approximate Equation (3.13) as

X(t+ τ) ≈ x +

m∑
j=1

Nj(aj(x)τ, aj((x)τ)vj = x+

m∑
j=1

[
aj(x)τ +

√
aj(x)τNj(0, 1)

]
j . (3.15)

In the last step the well-known property of the normal random variable thatN (m,σ2) =

m+σN (0, 1), is invoked. Collecting terms and assuming τ is a macroscopically infinitesimal

time increment dt produces what is known as the chemical Langevin equation (CLE) or

Langevin leaping formula [14],

X(t+ dt) ≈ X(t) +

m∑
j=1

vjaj(X(t))dt+

m∑
j=1

vj

√
aj(X(t))Nj(t)

√
dt, (3.16)

where Nj(t) are m statistically independent and temporally uncorrelated normal random
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variables with mean 0 and variance 1. This equation has a deterministic component that

grows linearly with respect to the propensity functions and a stochastic component that

grows proportional to the square root of the propensity functions. Since the propensity

functions grow in direct proportion with the system size (volume and species population),

the stochastic component scales as the inverse square root of the system size. Thus, as

the size of the system increases, the magnitude of the stochastic fluctuations diminishes.

At some point, due to the system size, the fluctuations will become so insignificant that

Equation (3.16) can be approximated to:

X(t+ dt) ≈ X(t) +

m∑
j=1

vjaj(X(t))dt, (3.17)

which can be rearranged in the following:

X(t+ dt)−X(t)

dt
=
dX(t)

dt
=

m∑
j=1

vjaj(X(t)). (3.18)

This equation is the reaction rate equation, which has been derived from stochastic

chemical kinetics.

Let us now go back to the formulation of the tau-leaping algorithm using all this

knowledge. As it has been shown, the number of reactions of a reaction channel, Rj ,

is dependent on its propensity, aj(x), which is dependent on the state which in turn is

dependent on the number of all other reactions. Since all these functions are dependent on

each other, they are not so easy to compute. The first thing that needs to be done when

the leap condition is satisfied, is to approximate the value of Kj(τ,x, t) for each reaction,

Rj , to be a statistically independent Poisson random variable:

Kj(τ,x, t) ≈ Pj(aj(x), τ) (j = 1, ....,m). (3.19)

Here, Pj(aj(x), τ) returns the number of events k in the interval [t, t+ τ) such that the

probability of each k value is given by:
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P[k events] =
e−aj(x)τ (aj(x)τ)k

k!
. (3.20)

The core part of the tau-leaping algorithm is then to find a value for τ that is small

enough to satisfy the leap condition, but large enough to fire a number of events able to

speed up the simulation time significantly. This value for τ can be found using the following

equation:

τ = min
i∈Irs

{
max{εixi, 1}

|
∑

j∈Jncr vijaj(x)|
,
max{εixi, 1}2∑
j∈Jncr v

2
ijaj(x)

}
, (3.21)

where Irs are the chemical species that appear as reactants in reactions and Jncr are the

non-critical reactions, meaning reactions that can be fired nc times without causing the

species count to become negative. Using this equation it is ensured that no propensity

function is likely to change by more than εaj(x), where ε is an accuracy control parameter

satisfying 0 < ε� 1. The value of ε provides a mean of trading off accuracy of the algorithm

for simulation time. The greater the value for ε, the greater speed up can be achieved at

the cost of accuracy. However, care has to be taken to avoid any species count being made

negative. The steps involved in this algorithm are detailed in Algorithm 3.

3.6 Incremental Stochastic Simulation Algorithm

The previous simulation methods presented up to now show only a single trajectory

of the time evolution of the genetic circuit. However, a single path is usually not sufficient

to verify a design’s non-rare behavior from SSA data, and researchers commonly execute

many repetitions of the SSA simulation. This yields a bundle of sample paths, which can

then be analyzed using statistical measures. Some publications report the typical behavior

of a genetic circuit by computing the mean over all SSA sample paths. This approach,

however, becomes less useful with systems showing dynamic behavior, like state-holding or

oscillating circuits, because dynamic behaviors do not necessarily occur at the same time

in different simulated trajectories. So, averaging mis-aligned events tends to distort the

underlying patterns.

To address this situation, Winstead et al. [15] and Kuwahara et al. [16] have presented
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Algorithm 3 Tau-leaping simulation algorithm.

1: Initialize: t = t0 and x = x0.
2: Evaluate propensity functions aj(x) at state x.
3: Determine Jncr.
4: If Jncr = 0 then τ ′ =∞ else determine value for τ ′ using Equation 3.21.
5: If Jncr includes all reactions then τ ′′ =∞ else use SSA to compute τ ′′ and jc, the next

critical reaction.
6: τ = min(τ ′, τ ′′) and t = t+ τ .
7: x = x +

∑
j∈Jncr Pj(aj(x)τ)vj)

8: If t is greater than the desired simulation time then halt.
9: Record (x, t) and go to step 2.

the incremental stochastic simulation algorithm (iSSA), for visualizing stochastic simulation

results. This method selects representative results and excludes outliers from among a

collection of stochastic simulations. By selecting results from traditional SSA simulations,

the iSSA method avoids possible distortions that may arise from statistical processing.

The iSSA method returns a single trajectory that is representative of the typical system’s

behavior. The reason why a single-trace result is desirable is because they help improve

productivity in early-stage design exploration by allowing rapid verification for a complex

system.

The incremental approach in iSSA ensures that patterns between different sample paths

are aligned in time, so that statistical measures are appropriate and meaningful. This

is achieved by bundling stochastic simulation runs in small time increments, instead of

complete sample paths, and averaging over all simulation runs at the end of each time

increment to determine the mean state. A single state is then selected from these statistics

which in turn is used to constrain the initial condition of each run in the next time increment.

By performing simulation runs in this manner, this algorithm is able to follow the dominant

SSA trajectory on a genetic circuit, rejecting outliers that occur in a minority of SSA

trajectories.

The basic idea of the iSSA is depicted in Algorithm 4. It takes as parameters a

maximum number of simulation runs (maxRuns), a simulation time limit (timeLimit),

a simulation time increment (increment), and an initial system state-vector x0. At the

start of the kth increment, the run number, i, is reset to 1, and the global time is set
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to t′ = (k − 1) × increment. Within each increment, the SSA is executed over the local

time-interval t ∈ (t, t + increment]. Once the local time t has exceeded this interval, t is

reset to the start of the increment, and the SSA is repeated until maxRuns is reached. At

this point, the global time is advanced to the next increment until the timeLimit has been

exceeded.

As seen in line 2, the iSSA also requires a function to select a state in which to start the

simulation run, and another to record the simulation data and statistics (line 5). These two

functions can be defined in a number of alternative ways to produce specialized forms of

the iSSA. Each of these specialized iSSA methods delivers different statistical information.

For example, the iSSA reduces to the SSA when increment is set equal to timeLimit, the

select function sets x to x0, and the record function tracks raw simulation data. Therefore,

the essence of the iSSA actually lies upon these functions.

Even though the term iSSA could refer to any of the specialized forms as determined by

the record and select functions, throughout this thesis it is used to refer to the incremental

approach in general.
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Algorithm 4 Incremental stochastic simulation algorithm (iSSA).

1: Initialize: k = 1 and X(0) = init (x0).
2: Set i = 1, t′ = (k − 1)× increment, and limit = t′ + increment.
3: Set t = t′ and x = select(X(k−1)).
4: Execute a Gillespie SSA step:

a) Evaluate propensity functions aj(x) at state x, and also their sum

a0(x) =
∑

j=1 aj(x).

b) Draw two unit uniform random numbers, r1, r2.

c) Determine the time, τ , until the next reaction:

τ =
1

a0(x)
ln

(
1

r1

)
d) Determine the next reaction, Rµ, where µ is the smallest integer satisfying

µ∑
j=1

aj(x) > r2a0(x)

e) Determine the new state: t = t+ τ and x = x + vµ .

5: If t < limit then record(X(k),x, i), go to step 4.
6: If i < maxRuns then i = i+ 1, go to step 3.
7: If t < timeLimit then k = k + 1, go to step 2.
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Chapter 4

Recognizing and Visualizing Multiple Paths

Visualization is an important part of the design process because it provides the designer

feedback on how changes in the system’s parameters affect the simulation results. Noisy

results are generally undesirable because they distract the designer from the normal behavior

of the system and may occasionally lead to incorrect interpretation of the typical behavior.

We cannot completely eliminate noise from stochastic simulations because it is inherent in

the system itself, but we can reduce it and produce “clean” simulation paths that would be

easier to interpret and less likely to be misunderstood.

It was previously mentioned that a common practice among researchers is to perform

many stochastic simulations runs of a biochemical system and then average the results to get

a clean path, which hopefully is representative of the system’s behavior. By averaging many

paths, the noise is reduced and outliers are masked to show only a single path containing

the “expected value” states at every time step. However, this technique has not shown

satisfying results with complex systems like genetic oscillators and toggle switches. The

iSSA method, shown in the previous section, has been shown as a promising alternative;

however, it lacks the ability to show multiple paths if they are available.

Biochemical systems showing bi-stable or multi-stable behavior are prevalent in nature.

For example, in the context of disease networks, it is believed that bi-stable or multi-stable

circuits may drive transitions from one locked-in state (healthy state) to another (disease

state) [17]. When studying those kind of systems is important to have tools capable of

detecting any possible paths and showing correct results of the system’s behavior. Per-

forming this detection automatically is a great challenge, especially when noise can lead to

mis-detection of states in the system.

This chapter presents the contribution of this thesis: a visualization method capable
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of detecting multi-stable behavior of a biochemical system by analyzing an ensemble of

stochastic simulation runs. This method can be used both as a replacement of the current

averaging of an ensemble of paths, or integrated with incremental methods like iSSA. The

chapter is organized as follows: Section 4.1 presents the multi-path visualization algorithm

as a method to detect and show multiple stable paths from an ensemble of runs using

Kernel Density Estimators. This algorithm is applied to both artificially generated data as

well as simulation results from a genetic toggle switch model. Section 4.2 describes how this

algorithm can be integrated within methods like iSSA and the challenges of this integration.

4.1 The Multi-Path Visualization Algorithm

The main problem when averaging sample paths from systems showing more than one

stable behavior is that the result of this operation is one path that may not be represen-

tative of any of the system’s states. To make this clearer, let us assume the genetic toggle

switch described in subsection 2.3.4 is simulated 20 different times using the Gillespie SSA

algorithm, and 50% of the runs are “high” for molecular species TetR, while the other 50%

of the runs are “low.” The definitions of “high” and “low” can be somewhat arbitrary

depending on the system’s characteristics. For this example, “high” represents a molecule

count of 50 or more molecules, and “low” a molecule count below 10. When these sample

paths are averaged, the result is a new path showing TetR with a molecule count around 30

molecules, which is not representative of the real system’s behavior. A more accurate result

should be able to show two paths: one with a molecule count around 50 molecules, and the

other with a molecule count close to zero. To achieve this, instead of blindly aggregating

all the sample path into one average path, it is required a detection step that will identify

groupings of these sample paths and will show a path that is representative of each group.

4.1.1 Reasoning Behind the Algorithm

When averaging an ensemble of sample paths, the molecule count for all the runs of each

chemical species at time t is contained in a vector xi,t (rj), where i represents the species and

rj represents the run number. These arrays of values xi,t provide a snapshot of the system
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at time t and contain all the information needed to perform any detection of multiple states.

These states correspond to some range of values for the molecule count of species i, which

can be seen as clusters or groups of molecules around some values in xi,t (rj). These groups

can be detected using many different techniques, like clustering algorithms. However, not

every technique provides the required flexibility or desired running time complexity, which

can become quite important for large systems running large simulations.

Clustering refers to finding groups of similar objects in a set, according to some mea-

sure. This is different to classification, in which objects are labeled and placed into cat-

egories according to some prior information. In machine learning terminology, clustering

techniques are usually referred as unsupervised learning, while classification techniques are

known as supervised learning. Grouping sample stochastic simulation paths requires unsu-

pervised learning because there are no categories to identify or prior information to include

in the decision step of the algorithm. Instead, groups need to be formed according to some

similarity (e.g., molecule count) and without any prior assumptions.

One common clustering algorithm in machine learning is the k-means clustering algo-

rithm. According to Jain [18], the k-means algorithm was first proposed over 50 years ago,

and still continues to be widely used due to its simplicity and popularity. K-means works by

partitioning n observations into k clusters, in which each observation belongs to the cluster

with the nearest mean. The k-means clustering algorithm can be used to group paths when

performing the average operation; however, there is one fundamental problem: the k-means

requires a k parameter value to correctly identify k clusters, but this information is not

known beforehand. Hence, a separate method must be used to detect the possible groups,

and then, k-means can be used to perform this separation.

4.1.2 Kernel Density Estimation

Density estimation is a very well-known technique used to reconstruct the probabil-

ity density function of a group of observations. One way to reconstruct this density is

using kernel density estimators (kde). Kernel density estimators can be considered as a

generalization of histograms in the sense that instead of summing up “boxes” centered at
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the observations, symmetric probability density functions (pdf) are added together. These

symmetric pdf are called the kernel of the estimator and hence the name of kernel density

estimator. The kernel density estimator is defined as

f̂h(x) =
1

n

n∑
i=1

1

h
K

(
x− xi
h

)
, (4.1)

where K is a kernel function such as the Gaussian distribution, and h is the bandwidth

of the kernel. The bandwidth, is a value that indicates how wide or narrow is the shape

of the kernel function. This value is important because as it is shown in Figure 4.1, if the

kernel shape is narrow (width is small) the density estimate may be under-smoothed, or if

the kernel shape is too wide (large width) the density estimation may be over-smoothed.

Usually, an optimal value for the right amount of smoothing can be automatically obtained

from the data itself. Some methods to find this optimal value are presented in the works of

Stone and others [19–21].

Density estimation has been widely used to investigate the properties of a given set

of data, such as skewness and multi-modality [22]. By reconstructing the density of an

ensemble of sample paths at specific points in time t, and detecting the modes of this density,

it is possible to achieve the detection that is not provided by the k-means algorithm, when

analyzing an ensemble of stochastic simulation paths.

4.1.3 Description of the Algorithm

The contribution of this thesis is an algorithm able to “summarize” an ensemble of

sample paths into one or more paths that are representative of the behavior of the system.

This algorithm is similar to the method of averaging, but instead of calculating the average

at every point in time, the probability density function is reconstructed using kernel density

estimators, and the peaks of this density are the values used as the “average” to reconstruct

the resulting paths. To illustrate this idea, let us refer to Figure 4.2. In this figure, six sample

paths are shown representing the bi-stable behavior of some system. At time t = 5 the pdf

of the paths is estimated and it is shown to have one mode because the paths are close
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Fig. 4.1: Effect of three different bandwidths. Figure (a) has a very narrow bandwidth and
the kernel density estimate is said to under-smoothed as the bandwidth is too small. Figure
(b) has a very large bandwidth and the estimate is said to be over-smoothed. Figure (c)
shows an estimate with an optimal bandwidth for the given data.

together forming one group. Hence, only one peak is detected in this distribution, which is

marked with a red x. At time t = 50, however, the paths have taken two different directions.

The pdf of the ensemble of paths at this point in time now shows two modes indicating the

two different states of the system. These two peaks marked at time t = 50 will be recorded

to reconstruct the two final “summarized” trajectories shown to the biological designer.

It is important to note that calculating the kde of the ensemble of runs at every time

step is significantly more computationally expensive than just calculating the average. To

ameliorate this situation it is possible to trade speed for accuracy by calculating the kde at

time intervals greater than the time steps in the data. In other words, if the ensemble of

simulation paths contains values for some number points in time, instead of calculating the

kde at every time increment, it is possible to do it every λ time increments, and assume

there is not a significant change in the behavior of the system during the time in-between.

Of course, this may not always hold true for systems changing very rapidly, hence this is a

trade-off that needs to be carefully considered.

The steps of the multi-path visualization algorithm, applied to a ensemble of stochastic

simulation runs, are outlined in Algorithm 5. Steps 1 through 8 are basically “data col-
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Fig. 4.2: Detection of bi-stable behavior of a system using kernel density estimators.

lection” steps to ensure that all the paths are aligned in time according to the same time

increment. Step 1 initializes the simulation runs counter with j = 1. Step 2 initializes the

n matrices Xn
j,k to contain the initial molecule count for species 1 < i < N , at the discrete

time increment k = 0 for run j. The next two steps, 3 and 4, are very similar to the steps in

iSSA, where the limit to the next discrete time increment is calculated. After the execution

of a Gillespie SSA in step 5, the simulation time t is checked in step 6 until it has reached

the time step limit. If this limit has bee reached, the molecule count for all species i is

recorded for discrete time k. Otherwise, another Gillespie SSA step is performed. Step 7

checks that one simulation runs has been completed once t has reached the total timeLimit

for the simulation, and then another simulation run is started in step 8. As it can be noted,

these are serialized steps to fill in the Xn matrices with the ensemble of runs, but since one

run is independent of another, they can also be executed in parallel as long as their discrete

time increments are the same. Also, to this end, the matrices can be organized in different

ways to take advantage of how information is stored in computer memory, or to gain better

parallelized performance. The important part is to have an ensemble of of path aligned in

time to proceed with the next part of the algorithm.

The next part of the algorithm (steps 9 through 13) evaluates the ensemble of runs
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to reconstruct a “summarized” path or set of paths that will be shown to the biological

designer. Step 9 resets the species counter and the discrete time counter. Step 10 calculates

the pdf of all the runs in the ensemble at time k using kernel density estimation. The peaks

of this density are calculated and recorded in step 11. It will be shown later that recording

these peaks requires further analysis and computation to make sure the “summarized”

paths are reconstructed appropriately. This is due to the fact that noise and outliers in

the ensemble may cause spurious modes to appear in the density, which may produce a

wrong number of peaks to be stored at different points in time. Step 12 is just iterates

the previous step for all species in the system, while step 13 completes the analysis for the

whole simulation time. One important thing to note here is parameter Jump, which can

skip over some time steps to speed the simulation up, at the expense of accuracy.

This algorithm was tested and verified by feeding the input with different test cases

involving multi-stable behavior. The test cases comprised both artificially generated data, as

well as simulation results from a genetic toggle switch model. Ideally, the input data would

be generated from a variety of real biochemical systems; however, finding real system models

exhibiting multi-stable behavior proved to be very hard. The only real biochemical system

simulated was the genetic toggle switch. Other tests involved data artificially generated in

MATLAB simulating the required behavior.

Algorithm 5 Multi-path visualization algorithm.

1: Set j = 1.

2: Initialize: X
(i)
j,0 = init (xi), and set k = 1.

3: Set t′ = (k − 1)× increment, and limit = t′ + increment.
4: Set t = t′.
5: Execute a Gillespie SSA step.

6: If t < limit then record(X
(i)
j,k), go to step 5.

7: If t < timeLimit then k = k + 1, go to step 3.
8: If j < maxRuns then j = j + 1, go to step 2.
9: Set i = 1, k = 1.

10: Calculate KDE(X
(i)
k,all) (i.e. kth column vector of X(i)).

11: Calculate and save the peaks of the KDE for i.
12: If i < N (number of species) then i = i+ 1, go to step 10.
13: If k < timeLimit then k = k + Jump, go to step 10.
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4.1.4 Tests with Artificially Generated Data

A test bench was created in MATLAB with artificial data simulating a system exhibit-

ing bifurcating behavior. Figure 4.3 shows this artificially generated data, which consists of

one hundred sigmoid functions with randomly varied parameters and Gaussian noise added

on top. The sigmoid function is defined as

S(t) =
1

1 + e−t
. (4.2)

The MATLAB code used to generate the data in Figure 4.3 can be found in Appendix

A.1. It simulates the values for a single chemical species, but to simulate more than one

species would be trivial. The data for other species would just have to be placed in their

own matrices following the same steps. However, it is important to note that not every

species in a system undergo bifurcation. By generating data this way, we effectively skip

steps 1− 8 of the visualization algorithm. The rest of the algorithm only makes use of the

data generated in the previous steps.

The two paths shown in Figure 4.4 were reconstructed from the generated data shown

in Figure 4.3 with Jump = 20. The MATLAB code used to generate the data and the plots

is available in Appendix A.2 and Appendix A.3.

Another example was performed generating artificial data to simulate a system under-

going two other bifurcations, after an initial bifurcation, for a total of four different system

states. This may be an extreme case, which may or may not exist in nature, but it is helpful

to verify the multi-path visualization algorithm. The data generated in MATLAB is shown

in Figure 4.5. Again, this data is created manipulating the different parameters of the sig-

moid function and tweaking the vertical and horizontal displacement. This data is placed

into a matrix, where the sigmoid functions representing an individual simulation run form

the rows of the matrix. This is similar to the matrix of a chemical species containing the

ensemble of values of its system simulation. The MATLAB code to generate this example

is also available in Appendix A.4. It is important to note that these functions are generated

randomly and may look different than in Figure 4.5.
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Fig. 4.3: Plot of 100 randomly generated sigmoid functions.

Fig. 4.4: Results generated from the multi-path visualization method when applied ran-
domly generated data.
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When the data in Figure 4.5 is provided to the multi-path simulation algorithm, the

result is shown in Figure 4.6. To demonstrate the algorithm actual results, this figure shows

dots every time a peak is detected in the mode of the pdf generated by the kde. The dots

are not connected on purpose to demonstrate the actual results of the method and it is the

reason why the paths appear with discontinuities. Connecting the dots is a trivial if the

values are stored in a vector. It is necessary to mention at this point that the MATLAB

script in Appendix A.2 is a simple proof of concept of the algorithm and the kernel width

for the kde was given a fixed value. If the reader wants to replicate these results, small

changes on this value may be necessary to get the desired result if the input data changes.

This exposes a real drawback of this algorithm: the dependency on the kernel width of the

kde. Although methods exist to find optimal values for the kernel width, the underlying

data may vary greatly in unexpected ways and it is unclear what “optimal” means under

these circumstances.

4.1.5 Test with Data from a Real Model

The method has also been tested using data from simulations of the genetic toggle

switch model described in Section 2.3.4. The toggle switch model was simulated using

iBioSim with 20 independent runs and a time limit of 2, 000, using the Gillespie SSA simula-

tor option. The results of these simulations were then exported to MATLAB for processing.

Figure 4.7 plots the 20 sample paths generated for molecular species TetR and Figure 4.8

shows the pdf of the ensemble, generated by the kde at at time t = 2, 000. Again, this is

only to demonstrate the algorithm in action and what happens under the hood before the

“summarized” paths are shown.

The results of applying the method to the data in Figure 4.7 are shown in Figure 4.9.

The results are considerably noisier than before and this is in part due to the small number

of sample paths. The greater this number, the more accurate can the pdf be reconstructed

at the expense of a larger running time of the algorithm. The MATLAB code for these tests

can be found in Appendix A.5 and Appendix A.6.



40

Fig. 4.5: Artificial data system undergoing multiple bifurcations.

Fig. 4.6: Results of the method when data undergoes multiple bifurcations.
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Fig. 4.7: Plots of TetR for 20 SSA runs of the toggle switch.

Fig. 4.8: Density distribution estimate for TetR at time t = 2, 000.
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Fig. 4.9: Two stable states paths of the toggle switch recovered from the multi-path visu-
alization algorithm.

4.1.6 Summary

An alternative method to averaging an ensemble of stochastic simulation runs has

been presented as a way to distinguish possible multi-stable behavior in the system. As

opposed to averaging the sample paths, this method makes use of kernel density estimators

to reconstruct the pdf of the samples at specific points in time and recognizes groups of

paths as indicators of possible system states. The peaks of this pdf are then stored and

used to reconstruct the “summarized” path or paths representing the system’s behavior.

4.2 Integration with iSSA

The multi-path visualization algorithm, as it was presented in the previous section, is

capable of identifying multiple “typical” paths from an ensemble of runs. Although this

method showed correct results when applied to a system with oscillating behavior, it is

unclear whether it will produce correct results for all cases. So, it is desirable to integrate

this method with other more robust methods like iSSA, which can to produce correct results

for such systems. This integration, however, has some caveats because calculating the kde

and the peaks of this density will now have an effect on the starting point of the next time
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increment. If more than one value are chosen as starting points for the next time increment

in the regular iSSA method, then, it is unclear how many runs should be performed for

each new starting state. Let us note that the word state here is different than the system

state mentioned previously. In the context of of iSSA, state refers to the molecule count of

some chemical special at the start of the next time increment.

One solution to the problem of how many runs to execute at the next time increment

is to always perform the same number of runs (maxRuns) for each starting state, regardless

of how many there are. However, the disadvantages of doing that are obvious. As possible

bifurcations are detected, the number of performed simulation keeps adding as well as the

time the algorithm takes to execute. Consider, for example, that iSSA receives as parameter

maxRuns = 50, and after some time, four different paths are detected. The next time step

will then have to perform 200 simulation runs (4 × maxRuns), and this is not counting

false detections that may occur due to a very noisy system or the presence of outliers. One

solution to avoid increasing the number of runs considerably, could be to divide maxRuns

by the number of newly discovered starting points and execute that number of runs for

the next time increment. However, this brings up another issue, which is that simulation

runs may not be evenly distributed among the different points, or the number of runs for

each starting state may be significantly reduced to the point that statistics are no longer

producing satisfying results.

One more consideration when referring to the integration of the multi-path visualiza-

tion method with iSSA is that the internal data structure to store information in iSSA is

typically a matrix, and matrices are not flexible enough to handle situations where one path

bifurcates into two paths and then reintegrates into a single path. When the ensemble of

sample paths has been completely generated it is easier to spot and remove these spurious

peaks from the final reconstructed paths, however, when performing this processing every

time increment it is more challenging to filter out unwanted peaks. Since it is impossible

to predict exactly what will happen next, every peak, whether spurious or not, must be

recorded and considered valid until future data can disprove it. To work with this unknown
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number of possible paths it may be necessary to use an unconventional data structure.

4.3 The Multi-Path Detection iSSA (MPD-iSSA) Method

Another contribution of this work is an iSSA implementation with multi-path detection

capabilities. This method, called the Multi-Path Detection iSSA (MPD-iSSA), applies

kernel density estimation and peak detection to incremental SSA methods to make them

capable of handling multiple paths. This integration could be one step forward to the goal

of creating one general visualization tool in synthetic biology to aid with the design and

verification of genetic circuits. This section presents a description of the method and results

obtained from the simulation.

4.3.1 Description of the Algorithm

MPD-iSSA is in essence a combination of the incremental idea of iSSA with the use

of kernel density estimators to detect bifurcations and multiple stable states in a biological

system. Similar to the previous multi-path visualization method applied to an ensemble of

paths, a parameter Jump indicates how many incremental steps to skip before performing

the kde on the generated trajectories at time t. In general, we want a value that would

allow the system sufficient time to show a clear separation of the paths. Otherwise, any

bifurcation or multi-stable behavior could go undetected.

The steps performed by the MPD-iSSA algorithm are outlined in Algorithm 6. These

steps are presented at a higher level with less details than before because it is in essence the

same iSSA described in Algorithm 4 with different select and record functions that calculate

the kde of the trajectories at time t and then select the trajectories closest to the peaks of

the modes of this distribution. Selecting actual trajectories is important to make sure the

simulation does not violate any conservation constraints in the system. Also, recording the

system’s state at t requires a flexible data structure that can be post-processed once the

simulation to eliminate spurious paths, if necessary.
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Algorithm 6 MPD-iSSA method.

1: Simulation is set to some initial state.
2: Stochastic simulations are run to obtain several end-states over some interval.
3: The end-states are fit to a distribution using kernel density estimation for each inde-

pendent species.
4: From the density estimate, the peaks of the modes of the distribution are chosen to

represent the molecule count.
5: The trajectories closest to the peaks are chosen.
6: New nodes are created in the linked structure and the molecule count values are stored.
7: Any link from a previous node is created to the new nodes.
8: Back to step 2, until simulation time is completed.
9: Nodes are traversed and cycles are eliminated, if necessary.

4.3.2 Conservation Constraints

Since iSSA updates the system state every time increment from the trajectories gener-

ated, a selection of the new state for the next time increment must respect any conservation

laws in the system. Conservation laws regulate that physical conditions are appropriately

expressed in the mathematical model. For example, let us denote B to be a promoter

bounded by another chemical species like a transcription factor or RNA polymerase, and

U to be the same unbounded promoter. The same promoter cannot be bounded and un-

bounded at the same time. The mathematical constraint in this case would be something

like B+U = 1, where the promoter is either bounded (i.e. B = 1 and U = 0) or unbounded

(i.e. B = 0 and U = 1). In MPD-iSSA violations to conservation laws can occur if a new

state is calculated for two or more molecular species that are dependent on each other.

To illustrate this, let’s use the fictitious example shown in Figure 4.10. Assume molecular

species A and B are dependent on each other with the system constraint A + B = 100.

After some processing, if the new calculated states for A and B are A = 95 and B = 6, the

conservation constraint is violated and the results are no longer valid.

Conservation constraints can appear in many networks as conserved groups of molecules

called moieties [23]. These groups can be spotted by analyzing the network’s topology, which

is embedded in the stoichiometry matrix, as explained by Sauro and Ingalls [24]. Essentially,

when conservation constraints are imposed on the system, there will be linear dependencies

among the rows (species) of the stoichiometry matrix. MPD-iSSA avoids violating conser-
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Fig. 4.10: Example of a conservation constraint.

vation constraints in the system by choosing real trajectories closest to the peaks in the

modes of the distribution. By choosing real real trajectories it is guaranteed that the new

starting states for the next time increment will abide the conservations constraints of the

system. Also, choosing one trajectory from maxRuns is computationally less expensive

than evaluating every chemical species in the systems and calculating new values for the

dependent ones to ensure the constraints are not violated.

4.3.3 A Flexible Data Structure

In general, storing information in memory arrays is very efficient because information

is placed in contiguous spaces in memory, which helps for fast retrieval. However, once the

memory for these arrays has been allocated and information has been placed in them, it

is cumbersome to change their dimensions. For a method like MPD-iSSA, which can have

outliers appearing and disappear spontaneously at different time increments, this can be

burden. The record function for MPD-iSSA requires a more flexible data structure that is

able to accommodate any number of starting trajectories, whether spurious or not.

A data structure similar to a linked-list can be used to allow MPD-iSSA fast adaptation

to changes in the underlying behavior. A linked-list is a data structure where nodes are

linked together in a linear order. In the regular linked-list structure every node contains
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only one pointer to the next node, however, by changing this property and allowing multiple

pointers to other nodes it is possible to effectively achieve the desired characteristics. This

idea is illustrated in Figure 4.11. Every block represents a node containing two parts: a

value, and pointers to others nodes. The value holds the actual molecule count found of

the trajectories closest to the peaks of the modes in the pdf generated by the kde, and the

pointers are the links to other nodes in the path. One advantage of this structure is that

cycles formed by spurious nodes can be detected when reconstructing the final path in the

post-processing stage. When the linked structured is traversed, if any set of nodes leads to

an already visited node, these nodes can be deleted from the final path.

If the information stored in the structure shown in Figure 4.11 were to be plotted,

the designer would see something like Figure 4.12. If necessary, the cycle marked in red,

representing the false detection of a third path at time t = 3 could be filtered and only two

paths would be effectively shown to the biological designer.

4.3.4 Computational Complexity Analysis

The computational complexity of this method is the same of the original iSSA method,

plus the added complexity of the new record and select functions. In Big-O notation,

the complexity of a naive implementation of these two functions is O(N2), which is the

complexity of calculating the density estimation. However, according to Elgammal et al.

[25], this can be optimized to O(M +N), where M is the length of the Gaussian kernel and

Fig. 4.11: Flexible data structure to store MPD-iSSA information.
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Fig. 4.12: Plot of the information contained in data structure of Figure 4.11.

N is the number of evaluation points. Besides the calculation of the density, the remaining

parts of the two functions can all be computed in linear time O(N) because they only

require scanning through the N sample points in the density a constant number of times.

If instead of choosing the trajectories closest to peaks in the distribution, this method

calculated the values of the dependent species from the values of the independent species,

the computational complexity could easily reach O(N3) because it would be necessary to

perform some matrix multiplications. This can become prohibitively expensive for very

large systems or very large simulations. The fact that functions record and select can

be optimized to almost linear time complexity in MPD-iSSA is very significant for the

practicality of this method.

4.3.5 Simulation Results

The MPD-iSSA method has been implemented in MATLAB simulating the genetic

toggle switch described by Lepzelter et al. [26]. This model is simpler than the one simulated

in iBioSim with fewer species and reactions. It is described by the following eight reactions:

OonA + 2B
hA→ OoffA , (4.3)

OoffA

fA→ OonA + 2B, (4.4)
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OonB + 2A
hB→ OoffB , (4.5)

OoffB

fB→ OonB + 2A, (4.6)

OonA
gA→ OonA + bAA, (4.7)

OonB
gB→ OonB + bBB, (4.8)

A
k→, (4.9)

B
k→ . (4.10)

The simulation had parameters maxRuns = 30, Jump = 20, and timeLimit = 400.

The trajectories generated by the Gillespie SSA steps are shown in Figure 4.13, while the

results of the MPD-iSSA method are shown in Figure 4.14. It can be noted that the

trajectories in Figure 4.11 are relatively less noisier than before. This may be due to the

fact that all trajectories are brought back to one of the two common points when starting

the next time increment. Also, let us note that the generated paths resulting from the

algorithm are shorter in time with respect to the original Gillespie SSA trajectories due to

the Jump value. In this sense, these generated paths should be regarded as paths showing

the “typical behavior” of the system and not trajectories with real values the specific points

in time, although the time axis could be scaled to meet this criteria.

Fig. 4.13: Gillespie SSA trajectories of a genetic toggle switch simulated with MPD-iSSA.
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Fig. 4.14: Simulation results of a genetic toggle switch with MPD-iSSA.

4.3.6 Summary

The Multi-Path Detection iSSA (MPD-iSSA) method has been presented as an im-

provement of the original iSSA method to provide the capability of simulating systems with

multi-stable behavior. The main difference rely in the record and select functions. The

record function incorporates an internal data structure with flexibility to handle spurious

trajectories that can be filtered out in a post-processing stage after the simulation has com-

pleted. This eliminates the burden on the designer of having to carefully select an optimal

kernel width for the density estimation. The select function makes use of this density and

a peak detection algorithm to find the trajectories closest to the peaks, which will be the

starting points of the next time increments.
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Chapter 5

Discussion

The dynamics of genetics circuits is very complex and sometimes their behavior varies

greatly from one simulation run to another. To capture the “typical” behavior of the system,

researchers and biochemical designers often execute many simulation runs and perform

statistical analysis on the ensemble of trajectories. Usually, this statistical analysis consists

of averaging the ensemble of trajectories, which tends to mask important system dynamics

and hide multi-stable behavior. This thesis provides a method to detect and visualize this

multi-stable behavior from an ensemble of sample paths. The method makes use of kernel

density estimators to generate the probability density function of the trajectories at time t

to detect possible clustering of paths around some number of molecules, which could mean

that this is one of the “typical” behavior of the system. We say “typical” because that is a

behavior trajectories tend to follow more frequently.

When the density of an ensemble of trajectories is reconstructed using kde, the clusters

of paths around some molecule number appear as modes of the distribution. So, identifying

the paths lying in specific modes of the density is essentially a clustering operation, and

finding the trajectory closest to the peak of one mode is equivalent to finding the centroid

of that cluster.

The multi-path visualization method applied to an ensemble of stochastic simulations

helps designers of biological systems to view a “summary” of the ensemble, which shows

more correct results than averaging, when the system exhibits multi-stable behavior. How-

ever, it is unclear whether this method will always produce correct results if the system

exhibits oscillatory behavior. The iSSA method, on the other hand, has shown to produce

correct results for these type of systems, but fails to account more than one trajectory

for systems with multi-stable behavior. A new method with hybrid characteristics from
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the multi-path visualization method and iSSA is then desirable to get one step closer of a

general simulation tool of genetic circuits.

The Multi-Path Detection iSSA (MPD-iSSA) method has been proposed and simulated

with promising results. This method makes some changes in the record and select functions

of the original iSSA to provide the capability of detecting and handling multiple trajectories

for systems exhibiting multi-stable behavior. The record function has been changed to store

the state of system at each time increment in a more flexible data structure, which can later

be analyzed after the simulation has completed to filter out unwanted trajectories.

However, it remains to be shown the physical meaning of an MPD-iSSA result compared

to an actual Gillespie SSA trajectory. As it was shown in the previous chapter, an MPD-

iSSA trajectory if formed by “snapshots” of the system state at specific points in time

determined by the Jump parameter. Even if we align in time this resulting trajectory

with an actual Gillespie SSA path and extrapolate the points in-between, should biological

designers regard it as a real path or just an example of what the behavior of the system

looks like? Extrapolating values from the system state at one point time to another creates

fictitious values that were not generated by the system’s dynamics. Could these values

violate the system’s conservation laws at some point?

Besides the previous questions, there are some other questions that remain unanswered.

For example, how do biological designers choose an appropriate Jump value for every system

that would allow the multi-stable behavior to be detected by MPD-iSSA? Is there a way to

automatically calculate this number from the reactions based on how fast or slow changes

the dynamics of the system? Further research in this area is required to answer these

questions.

With the new data structure proposed for MPD-iSSA to store the snapshots of the

system at different points in time and reconstruct the typical behavior from them, there is

a variety of features that can be added to the method. For example, the nodes can contain

not only the molecule count for each species at a specific point in time, but also the number

of trajectories that fall in the same cluster or mode of the distribution. This could be use
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calculate a percentage of trajectories that follow one path or another. This is especially

useful to determine if there is one preferred path among all possible. Also, based on the

percentage of trajectories going different ways, the designer may choose to show or hide

paths with lower probabilities. This is also another way to filter out unwanted paths from

the results.

More work needs to be done to test these methods with systems showing not only

multi-stable behavior, but also oscillating, and possibly other system behaviors not currently

considered. Even though these methods were designed to solve the problem of detecting

multiple paths and multi-stable behavior in biological systems, it may be interesting to

know if they can also solve other kinds of problems. Also, one future goal is to embed these

methods within tools like iBioSim that support simulation and verification of experimental

designs.
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Appendix A

MATLAB Scripts

A.1 Artificial Data Simulating Bifurcating Behavior

1

2 clear all

3

4 % Variance of molecules

5 sigma = 5;

6 a = 50; b = 70;

7 runs = 100;

8 t start = −200; t end = 800; step = 1;

9 len = (t end − t start)/step + 1;

10

11 mydata = zeros(runs,len);

12

13 figure(1)

14 for idx = 1:runs

15

16 m mean = ceil((b − a) * rand + a);

17

18 t = [t start:step:t end];

19 p(idx,:) = (m mean./(1 + (50 * rand)*exp(−t/(80 * rand)))) + ...

20 floor(randn(1, len));

21

22 if (rand < 0.5)

23 p(idx,:) = −p(idx,:);

24 end

25
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26 plot(t − t start, p(idx,:) + b+sigma, 'color', [rand rand rand])

27 mydata(idx,:) = p(idx,:) + b+sigma;

28 hold on

29

30 end

31

32 xlabel('Time','FontSize',16)

33 ylabel('Molecule count','FontSize',16)

34 title([num2str(runs) ' independent runs'],'FontSize',18)

35 grid on

A.2 Testing Algorithm With Artificial Data

1 TetR = mydata.';

2 [m n] = size(TetR);

3

4 figure(1)

5 xlabel('Molecule count','FontSize',22)

6 ylabel('Probability P(x)','FontSize',22)

7 title('PDF at time t = 1','FontSize',22)

8

9 theplot = zeros(2,length(1:20:m));

10 jdx = 1;

11

12 for idx=1:20:m

13 [f,xi] = ksdensity(TetR(idx,:),'npoints',50,'width',20);

14

15 figure(1)

16 plot(xi,f,'LineWidth',3.5);

17 title(['PDF at time t = ' num2str(idx)],'FontSize',22)

18 grid on;

19

20 [maxtab, mintab] = peakdet(f, 0.00001, xi);

21 hold on;
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22 plot(maxtab(:,1), maxtab(:,2), 'r*', 'MarkerSize', 25);

23 hold off;

24 pause(.1)

25

26 if ( length(maxtab(:,1)) == 1 )

27 theplot(1,jdx) = maxtab(:,1);

28 theplot(2,jdx) = maxtab(:,1);

29 else

30 if ( length(maxtab(:,1)) > 1 )

31 theplot(:,jdx) = maxtab(1:2,1);

32 end

33 end

34 jdx = jdx + 1;

35

36 figure(2)

37 plot(idx.*ones(size(maxtab(:,1)),1), maxtab(:,1),'k.', 'MarkerSize', 26)

38 grid on;

39 ylabel('Molecule count','FontSize',16)

40 xlabel('Time','FontSize',16)

41 title('Peaks of the Distributions','FontSize',22)

42 hold on;

43

44 end

45

46 figure(1)

47 xlabel('Molecule count','FontSize',22)

48 ylabel('Probability P(x)','FontSize',22)

A.3 Peak Detection Algorithm

1 function [maxv]=peakdet(v, ∆, x)

2

3 maxv = [];

4
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5 mn = Inf; mx = −Inf;

6

7 for i=1:length(v)

8 this = v(i);

9 if this > mx

10 mx = this; mxpos = x(i);

11 end

12 if this < mn

13 mn = this;

14 end

15 if this < mx−∆

16 maxv = [maxv ; mxpos mx];

17 mn = this;

18 end

19 end

A.4 Artificial Data Simulating Multiple Bifurcating Behavior

1 % Variance of molecules

2 sigma = 5;

3 a = 50; b = 70;

4 runs = 20;

5 t start = −200; t end = 800; step = 1;

6 len = (t end − t start)/step + 1;

7 len2 = 2*len;

8

9 mydata = zeros(runs,len2);

10

11 figure(1)

12

13 for idx = 1:runs

14

15 m mean = ceil((b − a) * rand + a);

16
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17 t = [t start:step:t end];

18 p(idx,:) = (m mean./(1 + (50 * rand)*exp(−t/(70 * rand)))) + ...

19 floor(randn(1, len));

20

21 if (rand < 0.5)

22 p(idx,:) = −p(idx,:);

23 end

24

25 plot(t − t start, p(idx,:) + 2*b+sigma, 'color', [rand rand rand])

26 mydata(idx,1:len) = p(idx,:) + 2*b+sigma;

27 hold on

28 end

29

30 xlabel('Time','FontSize',16)

31 ylabel('Molecule count','FontSize',16)

32 title([num2str(runs) ' independent runs'],'FontSize',18)

33 grid on

34

35 a = 20; b = 30;

36 runs = 10;

37 for idx = 1:runs

38

39 m mean = ceil((b − a) * rand + a);

40

41 t = [t start:step:t end];

42 p(idx,:) = (m mean./(1 + (50 * rand)*exp(−t/(70 * rand)))) + ...

43 floor(randn(1, len));

44

45 if (rand < 0.5)

46 p(idx,:) = −p(idx,:);

47 end

48

49 mydata(idx,(len+1):len2) = p(idx,:) + 80+sigma;

50 plot(t − t start + len, p(idx,:) + 80+sigma, 'color', [rand rand rand])

51 hold on
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52 end

53

54 for idx = 1:runs

55

56 m mean = ceil((b − a) * rand + a);

57

58 t = [t start:step:t end];

59 p(idx,:) = (m mean./(1 + (50 * rand)*exp(−t/(70 * rand)))) + ...

60 floor(randn(1, len));

61

62 if (rand < 0.5)

63 p(idx,:) = −p(idx,:);

64 end

65

66 mydata(idx+10,(len+1):len2) = p(idx,:) + 200+sigma;

67 plot(t − t start + len, p(idx,:) + 200+sigma, 'color', [rand rand rand])

68 hold on

69 end

A.5 Gillespie SSA Algorithm for Multiple Runs

1 function data = mgillespie(state, parms, tau)

2

3 X0 = state.X;

4 Nruns = parms.Nruns;

5 multiplicity = parms.multiplicity;

6 ∆ = parms.∆;

7 c = parms.c;

8

9 [M N] = size(∆);

10

11 %///////////////// INITIALIZE THE SIMULATION //////////////////////

12 h = zeros(1,M);

13 a = zeros(1,M);
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14 acc = zeros(1,M);

15

16 data = zeros(Nruns, N);

17

18 %/////////////// MAIN SIMULATION LOOP /////////////////////////

19

20 for rundx = 1:1:Nruns

21 t = 0;

22 X = X0(rundx,:);

23

24 while (t < tau)

25 a0 = 0;

26

27 %COMPUTE THE PROPENSITIES //

28 for idx = 1:1:M

29

30 h(idx) = 1;

31

32 for jdx=1:1:N

33 k = multiplicity(idx,jdx);

34 if (k>0)

35 n = X(jdx);

36 if (k == 1)

37 h(idx) = h(idx) * n;

38 elseif (n ≥ k)

39 h(idx) = h(idx) * nchoosek(n,k);

40 else

41 h(idx) = 0;

42 end

43 end

44 end

45

46 a(idx) = h(idx) * c(idx);

47

48 a0 = a0 + a(idx);



64

49 acc(idx) = a0;

50 end

51

52 r1 = rand;

53 r2 = rand;

54

55 %// GENERATE THE NEXT REACTION TIME //

56 dt = (1/a0)*log(1/r1);

57 t = t + dt;

58

59 %// GENERATE THE NEXT REACTION EVENT //

60 r2a0 = r2*a0;

61 mudx = 1;

62

63 for idx=1:1:M

64 testval = acc(idx);

65 if (r2a0 > testval)

66 mudx = mudx + 1;

67 end

68 end

69

70 %// UPDATE THE SYSTEM'S STATE //

71 for jdx=1:1:N

72 X(jdx) = X(jdx) + ∆(mudx,jdx);

73 if (X(jdx) < 0)

74 X(jdx) = 0;

75 end

76 end

77 end

78

79

80 for jdx=1:1:N

81 data(rundx,jdx) = X(jdx);

82 end

83 end
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A.6 Multi-Path Visualization of a Genetic Switch Model

1 function data = mgillespie(state, parms, tau)

2 clear all;

3

4 %%%%%% Genetic Toggle Switch Version %%%%%

5

6 % OonA OnffA OonB OoffB A B

7 X0 = [ 1 1 1 1 1 1 ];

8

9 ∆ = [−1 1 0 0 0 −2 ; % OonA + 2B −> OnffA

10 1 −1 0 0 0 2 ; % OnffA −> OonA + 2B

11 0 0 −1 1 −2 0 ; % OonB + 2A −> OoffB

12 0 0 1 −1 2 0 ; % OoffB −> OonB + 2A

13 0 0 0 0 1 0 ; % OonA −> OonA + bA*A

14 0 0 0 0 0 1 ; % OonB −> OonB + bB*B

15 0 0 0 0 −1 0 ; % A −> empty

16 0 0 0 0 0 −1 ]; % B −> empty

17

18 % Reaction rates

19 c = [0.0005 0.005 0.0005 0.005 0.05 0.05 1e−3 1e−3];

20

21 % [OonA OnffA OonB OoffB A B ]

22 multiplicity = [

23 1 0 0 0 0 2 ;

24 0 1 0 0 0 0 ;

25 0 0 1 0 2 0 ;

26 0 0 0 1 0 0 ;

27 1 0 0 0 0 0 ;

28 0 0 1 0 0 0 ;

29 0 0 0 0 1 0 ;

30 0 0 0 0 0 1 ];

31

32 tau = 100;
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33 Nruns = 30;

34

35 % Repeat states for Nruns

36 state.X = repmat(X0,Nruns,length(X0));

37 parms.Nruns = Nruns;

38 parms.multiplicity = multiplicity;

39 parms.∆ = ∆;

40 parms.c = c;

41

42 Tsim = 15;

43 Tsteps = 1000;

44

45 figure(1)

46 count = 1;

47 spA PathUp(count) = X0(5);

48 spA PathDown(count) = X0(5);

49

50 for tdx = 1:Tsteps

51 data = mgillespie(state,parms,tau);

52 state.X = data;

53

54 % Get molecule count for all runs of species A

55 trace sp5(count,:) = data(:,5).';

56 % Get molecule count for all runs of species B

57 trace sp6(count,:) = data(:,6).';

58

59 % Calculate KDE every 5 steps

60 if (mod(tdx,50)==0)

61 [bandwidth density nmolecules] = kde(trace sp5(count,:),20);

62 [maxv minv] = peakdet(density,0.000001);

63 [pm pn] = size(maxv);

64 % If there is more than one path

65

66 if ( pm > 1)

67
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68 [group med] = getmeans(trace sp5(count,:),nmolecules(maxv(:,1)));

69

70 % Get paths closer to the bottom peak

71 paths down = find(group == 1);

72 meanp down= data(med(1),:);

73

74 % Get paths closer to the top peak

75 paths up = find(group == 2);

76 meanp up = data(med(2),:);

77

78 % Replace corresponding paths with the mean path

79 for idx=1:length(paths up)

80 data(paths up(idx),:) = meanp up;

81 end

82

83 for idx=1:length(paths down)

84 data(paths down(idx),:) = meanp down;

85 end

86

87 spA PathDown(count+1) = trace sp5(count,med(1));

88 spA PathUp(count+1) = trace sp5(count,med(2));

89

90 state.X = data;

91 count = count+1;

92 end

93 end

94 end

95

96 %%

97 figure(1)

98 plot(1:length(spA PathUp),spA PathUp,'b','LineWidth',5)

99 hold on;

100 plot(1:length(spA PathDown),spA PathDown,'r','LineWidth',5)

101 grid on;

102 hold off;
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