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Abstract

Development of a Coupled Fluid and Colloidal Particle Transport Model

by

Scott Ripplinger, Master of Science

Utah State University, 2013

Major Professor: Dr. Heng Ban
Department: Mechanical and Aerospace Engineering

Colloidal systems have received various analytic treatments, though many have involved

a statistical average of properties over time and few have provided detail about what happens

with individual particles. The statistical models provide answers as to what is happening in

a system, but the level of detail in particle tracking simulation provides answers as to why

it is happening. This work provides an integrated lagrangian particle tracking and Com-

putational Fluid Dynamics (CFD) solution for tracking micro-sized solid particles within a

�uid �ow. This is accomplished using tools provided in the OpenFOAM toolkit as a basis

for further development. This simulation code is tested for functionality by looking at the

individual elements being simulated, including drag, buoyancy, collision with walls, collision

between particles, and wall attraction due to colloidal forces. The overall stability of the

code is observed by simulating a case with many thousands of particles. Particle adsorption

onto the microchannel surface is observed and compared with data from other studies. This

provides a versatile code for simulating colloidal suspensions of solid particles in a liquid. By

using this code as a basis, additional solvers can be developed for a variety of applications

which involve solid micro particles being transported in liquids.

(79 pages)
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Public Abstract

Development of a Coupled Fluid and Colloidal Particle Transport Model

by

Scott Ripplinger, Master of Science

Utah State University, 2013

Major Professor: Dr. Heng Ban
Department: Mechanical and Aerospace Engineering

A colloidal system usually refers to when very small particles are suspended within a

solution. The study of these systems encompasses a variety of cases including bacteria in

ground water, blood cells and platelets in blood plasma, and river silt transport. Taking a

look at these kinds of systems using computer simulation can provide a great deal of insight

into how they work. Most approaches to date do not look at the details of the system,

however, and are speci�c to given system. In this study a program called OpenFOAM is

used as a basis to build a computer simulation tool that is �exible and that provides a

detailed look at what is happening with all of the particles within the colloidal solution.

This code is run through a series of tests to verify its usefulness.
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Chapter 1

Introduction

Colloidal systems exist all around us in real life. A rain cloud is a colloidal system. So

is quicksand, smoke, blood, and even milk. In each of these cases there are small particles

or droplets suspended in a liquid or gaseous medium. These particles and droplets are small

enough that the surface forces between them and any other surrounding surfaces become

signi�cant.

The American Heritage Dictionary de�nes a colloid as �a system in which �nely divided

particles, which are approximately 10 to 10,000 angstroms in size, are dispersed within a

continuous medium in a manner that prevents them from being �ltered easily or settled

rapidly.� The chemistry of the continuous medium and the dispersed particles determine the

strength of the Van der Waals and Electric Double Layer e�ects. For particles of this size

these e�ects can become signi�cant and a�ect the way the system behaves.

There are two ways in which colloidal systems have been simulated. The �rst is by

statistical modeling. Data is obtained experimentally and then a best matching function is

applied. The constants used with this function must be �tted from the data. Unfortunately,

this makes the approach somewhat in�exible. The equation and constants used may only

be reused when simulating a system that is very similar to the original experiment from

which the data was obtained. Yet for these particular types of systems, the statistically �t

equations can yield reliable results quickly.

In addition to a limited scope, statistical models also fail to provide any more detail

about how a system is working than the observed data upon which it is based. All those

physical details are smoothed out by the statistically matched equations. The net e�ect can

be modeled, but may not o�er any insight into why the system behaves the way it does.

An alternate approach is to model the detailed physics of the system. Rather than
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observing the general properties in bulk, individual colloidal particles can be tracked. This

could then be used to extrapolate data on a larger scale. This type of simulation would

allow for a great deal of �exibility as the physics are approached at a more re�ned level.

Rather than being tied to a single type of system, di�erent types of force models can be

applied to the particles based on what is appropriate.

The scale between these two methods varies greatly. Statistical models will be much

better suited for simulation of large systems. The physics based particle tracking models will

give �ner detail, but as the size and complexity of the system increase this approach becomes

impractical. Domain setup would be too complex and the number of particles would become

too great to be handled by modern computer memory and processing architectures.

Both of these methods have their place. In fact, both methods can be used together,

the statistical model to obtain general answers and the particle tracking model to gain

insight into why a colloidal system is behaving a certain way. Some of these details could

conceivably then be used to further re�ne and tune the statistical model.

The majority of particle tracking colloid simulation performed so far has been with

droplets. Applications have primarily been for simulation of fuel injection sprays and atmo-

spheric clouds. Solid particle tracking software has been considerably more limited. Most

implementations so far have been on a small scale, used primarily as a proof of concept.

None have provided a basis for a comprehensive colloidal solver which can be adapted and

enhanced. This is the purpose of this thesis.

Some previous work by Gschaider and Hauser and Allen [1] has been done in developing

solid particle tracking software coupled with a Computational Fluid Dynamics (CFD) solver.

Gschaider linked together libraries available in the OpenFOAM open source CFD toolkit

to create a solver for solid particles entrained in an inviscid laminar �uid. Hauser & Allen

took this work one step further by adding colloidal forces to the particles. This work will

be further enhanced by adding additional colloidal models, more vigorous coupling between

�uid and particle momentum, and usage of updated OpenFOAM libraries. The code will be

set up to enable easy insertion of additional force models for the particles and adaptation
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of di�erent OpenFOAM �uid solvers.
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Chapter 2

Review of Relevant Works

Colloidal systems have been a part of a number of studies. Particle transport through

porous media is observed by McDowell-Boyer et al. [2]. Jenny and Smith [3] studied the

colloidal aspects of clay pan formation. Aggregation and coalescence of particulates due

to colloidal forces was observed by Ho and Higuchi [4]. Adamczyk et al. [5] conducted

experiments using impinging jet �ows containing colloidal particles to study the e�ects of

�ow intensity on particle adsorption kinetics. Each of these cases show how studies have

focused on the behavior of colloidal particles in a system under various circumstances by

experimentation and observation.

Simple particulate systems are not the only applicable areas. Microbiology transport

also becomes an area in which colloidal e�ects need to be considered. Bolster et al. [6] pro-

vide work in which the colloidal particles are actually single-celled organisms, E. coli and

C. jejuni. They make the point that water is often tested for the presence of E. coli as

an indicator organism for C. jejuni, which is the actual organism of interest as a pathogen.

Their study looks at the degree to which E. coli and C. jejuni transport properties through

a porous media actually di�er. Hornberger et al. [7] provide another observation of bacteria

transport through aquifer sands. Bradford and Bettehar [8] studied the transport and depo-

sition behavior of Cryptosporidium parvum oocysts in water travelling through sand columns

of various grain sizes. In addition to these studies of bacteria transport in ground water,

numerous studies have been made on the �ow of blood cells, including work by Schmid-

Shoenbein et al. [9]. In each of these cases the cells suspended in either water or blood

plasma constitute a colloidal system.

The examples given so far of studies based on experimental observation. There are

several possible approaches to simulating a colloidal system. Many of the methods developed
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and used to solve these problems today use statistical models. They ignore the details of

the individual particles within a system and focus instead on the macroscopic aspects of

importance to the study. Tan et al. [10] go an extra step by including simulated data

to compare with their experimental results for aquifer bacteria transport. Another model

is o�ered by Barton and Ford [11]. And again, Du�y et al. [12] perform calculations for

residence times of bacteria in a porous media. These models use criteria such as the porosity

of the soil and �uid properties and velocity to determine the mean rate at which bacteria is

transported. These methods, and others like them, have provided reliable results for their

speci�c applications, as demonstrated by comparison with experimental results, with those

results being limited to the macroscopic scope of the problem.

More detailed methods of simulating micro-particle �ows use a Lagrangian approach

for particle tracking and an Eulerian �uid solution. The particles are tracked individu-

ally, each experiencing a range of forces. A simple Lagrangian particle tracking algorithm,

called icoLagrangianFoam, was implemented into the OpenFOAM CFD package by Bern-

hard Gschaider. This solver utilizes the existing icoFoam incompressible �uid solver and

injects particles which are carried by �uid drag forces. This method does not include sur-

face forces. Work by Hauser and Allen [1] resulted in the icoColloidalFoam solver which

augmented icoLagrangianFoam to include Van der Waals forces, electric double layer forces,

inter-particle collisions, and hydrodynamic shear.

Theoretical text on colloidal and surface interactions are provided by Israelachvili [13],

and Israelachvili and McGuiggan [14]. The �rst provides an in depth look at molecular and

surface forces, deriving them using thermodynamic and chemical theories. The second is

more a qualitative description of the pertinent forces. Both discuss DLVO theory as well as

solvation forces (hydration and hydrophobic forces for water).

Simulation of colloidal interactions was performed by Marshall [15] using discrete-

element methods. Particle velocity and rotation is tracked due to �uid drag, particle collision

and van der Waals forces. Simulation is performed for a periodic micro channel �ow and

includes wall adhesion. A similar study is performed by Unni and Yang [16] where parti-
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cle tracking is done using the Langevin equation. Hydrodynamic, Van der Waals, electric

double-layer and gravity forces are all incorporated into the Langevin equation, along with a

term for Brownian motion. The simulation is validated using surface deposition data from a

micro channel �ow experiment. Simulation using Lagrangian particle tracking was also done

by Longest et al. [17] to simulate the transport of blood cells in a non-Newtonian carrier

�uid. Emphasis is placed on hydrodynamic e�ects in a non-Newtonian �uid and colloidal

forces are not considered.

The e�ects of the hydration and hydrophobic forces are least understood when compared

to other colloidal forces. The necessity of this force was determined when it was shown that

the DLVO theory did not account for forces present between particles and surfaces with

water contact angles outside the range of 15-60 degrees [18]. Simulation of particle transport

involving highly hydrophobic or hydrophylic surfaces would necessitate the accounting of

these forces.

While various empirical formulae have been developed to describe each of these phenom-

ena, a detailed look at the behavior of individual particles may be useful in understanding

them better. Empirical formulae generally require constants which are determined based on

experimental data for a very speci�c case. While these are useful for common applications,

�nding the necessary constants needed to simulate additional cases may be cumbersome. In

fact, the empirical model may not even apply to all cases. A particle based model needs

physical properties for the surfaces involved and the �uid that separates them. These prop-

erties are often tabulated though they may also be calculated based on the chemistry of the

surfaces and �uid being considered. Thus a particle model may be adapted to new cases

more easily than an empirical model.

Empirical models typically require less computation time in a CFD code when com-

pared to a coupled Lagrangian particle tracking algorithm. In such an algorithm, individual

particles are identi�ed by their diameter, position and velocity. The position and velocity

of each particle is updated each time step based on the forces acting on these particles. The

particle �eld also obtains data from the �uid �eld to calculate hydrodynamic forces on each
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Table 2.1: Comparison of models included in works cited.

M
ar
sh
al
l

U
nn
i
&
Y
an
g

G
sc
ha
id
er

H
au
se
r
&
A
lle
n

R
ip
pl
in
ge
r

Particle translation x x x x x
Particle rotation x
Particle-wall collisions x x x x x
Particle-particle
collisions

x x x x

Particle-wall colloidal x x x
Particle-particle
colloidal
Fluid drag x x x x x
Fluid-particle
momentum coupling

x

Brownian motion x
Open source
(OpenFOAM)

x x x

particle. The particles within the �eld also reference each other and the surrounding walls

in order to determine the surface forces between them. The resulting computational load

increases exponentially as particles are added to the simulation.

The force models used for particles have been studied for some time, but they have

rarely been implemented on a large scale to track individual particles within a �ow. But

with computational power being greater than ever such a task has become more feasible.

While still being more computationally expensive, a particle tracking model with several

thousands of particles is not unreasonable.
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Chapter 3

Objective and Scope

The purpose of this thesis is to provide the basis for a detailed colloidal transport solver

which can be expanded to serve many di�erent purposes. Using OpenFOAM as a foundation

will allow others to further augment this code to suit their purposes. Potential opportunities

exist to build simulators for studies in river soil transport or blood platelet transport, among

other things. OpenFOAM provides many tools which can be combined with the colloidal

transport model, and the model itself can also be altered to include additional force models

and interactions.

The main objectives are as follows:

� Produce a colloidal transport model that is compatible with OpenFOAM and inte-

grated with a basic �uid solver that has the following capabilities:

� Includes various models for the Van der Waals force as provided by Czarnecky,

Schenkel and Kitchener, and Gregory for a particle near a wall

� Includes models for the Electric Double Layer force as provided by Gregory for a

particle near a wall

� Accounts for wall collisions and inter-particle collisions

� Provides a drag model that is coupled with the �uid solver

� Provides a rudimentary injection model

� Test the functionality of each subroutine in the model

� Compare results from simulation of particle adsorption onto surfaces in a microchannel

with those obtained by Unni and Yang
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The Van der Waals and Electric Double Layer forces will become active when a particle

gets close to a wall surface. Multiple models will be selectable in order to demonstrate the

di�erences between them. Wall collisions are already incorporated into OpenFOAM, but a

particle-particle collision model is also developed. A basic sphere drag model is provided

with OpenFOAM as well, but the drag e�ects are not coupled with the �uid solver, so this

is also implemented here. The injection model developed is simple and intended to generate

particle �ow for a microchannel demonstration simulation.

With the completed simulation tool, each of the elements above have been tested as

independently as possible. The drag model is tested with a single particle far from any

wall surfaces. The particle is placed in free-fall and the terminal velocity determined and

compared with expected values. A particle aimed at a wall, with colloidal forces turned

o�, and two particles aimed at each other is used to test wall and particle collisions. A

single sphere is then allowed to approach a wall under the force of gravity until the colloidal

forces take e�ect using each Van der Waals and Electric Double Layer force model provided.

Finally, a larger scale demonstration using many thousands of particles �owing through a

micro-channel is used to demonstrate the overall functionality of the simulation tool with a

high particle count, and to observe rates of particle adsorption onto a surface.

This tool provides a unique approach to solving the colloidal transport problem by

o�ering broad applicability and a platform for further development. By adapting this tool

to the various �uid solvers provided in OpenFOAM capabilities such as turbulence and

multiphase �uid �ow can be easily added. The colloidal transport tool itself can easily be

augmented to provide di�erent force models and other attributes which may prove useful

for a particular application.
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Chapter 4

Theory

In order to simulate a colloidal system, the physical interactions at play must be under-

stood and appropriate models identi�ed. These models must account for the behavior of the

�uid medium, individual particles, and the interaction between particles and the �uid, each

other, and the surroundings. An overview of the models and equations used in the simula-

tions is given here, along with some scienti�c background on how these models are derived.

Some additional models which are not used at this time, but which may have application in

future versions of the developed code, are also presented here.

4.1 Governing equations

The principal conditions to be satis�ed by a Newtonian �uid as it �ows are described by

the Navier-Stokes equations. In the case of an incompressible �uid with a viscosity assumed

to be constant, Currie [19] o�ers the following reduced set of equations:

ρ
∂uj
∂t

+ ρuk
∂uj
∂xk

= − ∂p

∂xj
+ µ

∂2uj
∂xi∂xj

+ ρfj (4.1)

The subscripts on the velocities uj and directions xj given here follow the tensor notation

standard. As stated already, the �uid density ρ and static viscosity µ are treated as con-

stants. The fj term is a source term used to account for any body forces applied to a �uid

element. If this equation is normalized by the �uid density it becomes:

∂uj
∂t

+ uk
∂uj
∂xk

= − ∂P
∂xj

+ ν
∂2uj
∂xi∂xj

+ fj (4.2)

where P is the pressure divided by the density. In this form, rather than requiring two �uid

terms, the density and static viscosity, only one term, the kinematic viscosity ν is needed.
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This represents a set of three equations, one for each directional component. There

are, however, four unkowns with the three velocity vector components uj and the density

normalized pressure P. The velocity components can be solved for if the pressure �eld is �rst

treated as a constant. In order to solve for the pressure �eld the Pressure Implicit Splitting

of Operators (PISO) algorithm [20] is used.

The forces acting on an individual particle considered here include drag, gravity and

colloidal forces:

FT = FD + Fg + Fcolloidal. (4.3)

The algorithm used in the OpenFOAM solidParticle class involves only drag calculations.

Particle velocities are updated for each time step as:

ut+dti =
uti +DcUdt

1 +Dcdt
, (4.4)

where uti is the velocity vector of the i
th particle at time t, U is the local �uid velocity vector

and Dc is a drag term which will be de�ned later. This equation can be rearranged as:

ut+dti = uti +Dc

(
U− ut+dti

)
dt. (4.5)

It can now be seen that this is a simple update of the particle velocity using the acceleration

due to drag on the particle. The calculation of the drag acceleration merely makes use of

an updated particle velocity in this instance. The additional forces are easily added to this

equation as:

ut+dti = uti +

(
Dc

(
U− ut+dti

)
+

Fg + Fcolloidal
mp

)
dt, (4.6)

where mp is the mass of the particle. This equation can then be changed back to its original

form:

ut+dti =
uti + (DcU + Fg/mp + Fcolloidal/mp) dt

1 +Dcdt
. (4.7)

It can be seen that adding any additional forces is now a simple task by dividing by the

particle mass and adding it to the terms within the parantheses. Should a force which is
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dependent on an updated velocity, such as the drag here, be desired, then it must involve a

term similar to Dc with units of 1/s. This term would be multiplied by dt and added to the

terms in the denominator.

4.2 Drag and buoyancy

The injected particles are strongly a�ected by the �uid in which they are carried.

Particles experience buoyancy e�ects based on their density relative to that of the �uid. They

also experience drag which results from a discrepancy between particle and �uid velocities.

The drag force, in particular, can be dominating where the �uid velocity is high.

The net gravitational force represents the di�erence between the weight and the buoy-

ancy force as:

Fg = Fw − Fb = ρpVpg − ρVpg = (ρp − ρ)Vpg, (4.8)

where ρp is the density of the particle, ρ is the density of the �uid, Vp is the volume of the

particle, and g is the acceleration of gravity vector. A spherical particle may therefore have

a net gravitational force of:

Fg =
π

6
d3p(ρp − ρ)g, (4.9)

with dp being the particle diameter.

The drag force described in the previus section can be de�ned as:

FD = Dc (U− u)mp, (4.10)

where U is the �uid velocity, u is the particle velocity and mp is the particle mass. The Dc

term is de�ned as:

Dc = 24
ν

dp
· 0.15Re0.687 · 3

4

ρ

dpρp
, (4.11)

where ν and ρ are the �uid kinematic viscosity and density, respectively, ρp is the particle

density and Re is the relative Reynolds number calculated as:

Re =
|U− u|dp

ν
. (4.12)



13

In the calculation of Dc the 0.15Re0.687 term can be approximated as Re in the case that

Re < 0.01. For this condition these expressions are equivalent to the traditional form of the

drag equation with a drag coe�cient:

FD =
π

8
d2pρCD |U− u| (U− u) , (4.13)

with:

CD =
24

Re
. (4.14)

For the application being considered now, the fj term in Equation 4.2 can account for

the change in momentum due to particles within the �uid element. The calculation of this

term may be calculated based on Newton's Third Law: For every action there is an equal

and opposite reaction. The force which the �uid imparts on the particle is the drag force,

so the change in particle momentum due to drag is then accounted for in the �uid with fj .

This momentum change is summed for all particles within a �uid cell and then divided by

the density and �uid cell volume as:

fj =

∑
mp (uj − Uj)Dc

ρV
, (4.15)

where uj and Uj are the velocity components of the particle and local �uid velocities, re-

spectively.

4.3 Surface forces

The primary forces, beyond any hydrodynamic or gravitational forces, acting on col-

loidal particles are referred to as surface forces. These forces largely fall under the domain of

electrostatic forces resulting from molecular arrangement on the particle and wall surfaces,

as well as in the �uid medium. These forces are further subdivided into di�erent categories,

the most important of which are van der Waals, electrostatic double layer, and solvation

forces. Solvation forces are most active when particularly hydrophobic or hydrophylic sur-

faces are submerged in an aqueous solution. Electrostatic double layer forces are present
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when surfaces are separated by a solution containing electrolytes. Van der Waals forces are

always present and typically represent a strong attractive force between surfaces, depending

on the surface properties and �uid medium. These last two forces, the electrostatic double

layer force and the van der Waals force, are the main components making up the colloidal

surface forces.

4.3.1 Van der Waals force

The dominating interactions between molecules include chemical bonds, metallic bonds,

and ionic bonds. Beyond these there are many other interactions which exist on a weaker

level, but often over longer ranges. These interactions include dipole interactions where

there exists an electrical polarity in a molecule, creating an electric �eld that can in�uence

neighboring molecules. These, and some other forces, often determine properties of some

materials, such as surface tension, boiling and melting points, etc. They also compose one

of the major forces responsible for molecules aggregating in a medium, the van der Waals

force. Israelachvili [13] points out that the Van der Waals interaction between molecules

is composed of three distinct forces: the induction force, the orientation force and the

dispersion force.

The induction interaction, also known as the Debye interaction, results from a polar

molecule in proximity to a non-polar molecule. As the polar molecule approaches the non-

polar molecule it induces a dipole. The permanent and induced dipoles generate an electric

�eld around each other creating an attractive force. The orientation interaction, or Keesom

interaction, is similar with the exception that both molecules are permanent dipoles.

The dispersion force may be thought to arise from the fact that even in non-polar atoms

which have a time averaged dipole of zero, at any given instant there exists a �nite dipole.

This instantaneous dipole generates an electric �eld that polarizes any nearby neutral atom,

inducing a dipole moment in it. The resulting interaction between the two dipoles gives rise

to an instantaneous attractive force between the two atoms, and the time average of this

force is �nite.
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All three of these have interaction energies which vary with the inverse sixth power of

the separation distance. The sum of these make up the van der Waals interaction:

wvdw(r) = −C/r6 = − [Cind + Corient + Cdisp] /r
6. (4.16)

With the exception of small highly polar molecules, such as water, the dispersion forces tend

to dominate over the induced and dipole-dipole interactions.

The van der Waals force is not only applicable to small molecules and atoms. Large

molecules and micro-particles are also signi�cantly in�uenced by this force. Force models for

larger bodies may be obtained by assuming the molecular van der Waals force is of the form

wvdw(r) = −C/r6, and the further assumption of additivity. Integrating these forces between

all the molecules in two spheres gives the simpli�ed unretarded Hamaker expression [21]:

Vs = − Aaiaj
6(ai + aj)h

, (4.17)

A = π2Cρiρj , (4.18)

where Vs is the interaction energy between the surfaces, h is the minimum separation between

the spheres, ai and aj are the sphere radii, A is the Hamaker constant, and ρi and ρj are the

molecule number densities of the two materials. For the purposes of this study the Hamaker

constant will not be calculated, but rather empirical values found in literature will be used.

Gregory [22] shows that the unretarded Hamaker expression is insu�cient except for

very close separation distances, i.e. h � d. Several di�erent expressions are compared to

exact solutions for cases involving semi-in�nite parallel plates, sphere-sphere, and sphere-

plate interactions. Gregory o�ers the following expression for the interaction energy between

two unequal spheres of radii ai and aj :

Vs = − Aaiaj
6(ai + aj)h

[
1− bh

λ
ln

(
1 +

λ

bh

)]
, (4.19)
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with a value of b = 5.32. The negative of the derivative of the interaction energy with

respect to separation distance is taken to �nd the force:

Fsph−sph = −∂Vs
∂h

= − Aaiaj
6(ai + aj)h2

1

5.32hλ + 1
. (4.20)

The sphere-wall interaction force can be obtained by setting aj =∞:

Fsph−wall = lim
aj→∞

Fsph−sph = −Aai
6h2

1

5.32hλ + 1
. (4.21)

The combined van der Waals force on a particle due to all other particles and walls is then:

Fvdw =
Nw∑
k=1

−Akai
6h2k

1

5.32hkλ + 1
n̂k +

Np∑
j=1

− Ajaiaj
6 (ai + aj)h2j

1

5.32
hj
λ + 1

êij . (4.22)

Gregory also compares an interpolated model o�ered by Schenkel and Kitchener [23]

for unequal spheres:

Vs = − Aaiaj
6 (ai + aj)h

1

11.12hλ + 1
, (4.23)

as well as a modi�ed version for a sphere near a semi-in�nite �at plate:

Vsp = −Aa
6h

1

14hλ + 1
. (4.24)

These two equations can then be di�erentiated with respect to h as before to �nd the force

on the particle:

Fvdw =
Nw∑
k=1

−Akai
6h2k

 1

14hλ + 1
+

14h

λ
(
14hλ + 1

)2
 n̂k (4.25)

+

Np∑
j=1

− Ajaiaj
6 (ai + aj)h2j

 1

11.12hλ + 1
+

11.12h

λ
(
11.12hλ + 1

)2
 êij .
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An exclusive sphere to plate model by Czarnecki [24] is also reviewed. The energy of

interaction is give as:

Vsp = A

[
2.45λ

60π

(
h− a
h2

− h+ 3a

(h+ 2a)2

)
(4.26)

−2.17λ2

720π2

(
h− 2a

h3
− h+ 4a

(h+ 2a)3

)

+
0.59λ3

5040π3

(
h− 3a

h4
− h+ 5a

(h+ 2a)4

)]
.

Di�erentiation with respect to h gives:

Fvdw =
Nw∑
k=1

−A
[

2.45λ

60π

(
2a− h
h3

+
4a+ h

(2a+ h)3

)
(4.27)

−2.17λ2

720π2

(
6a− 2h

h4
+

10a+ 2h

(2a+ h)4

)

+
0.59λ3

5040π3

(
12a− 3h

h5
+

18a+ 3h

(2a+ h)5

)]
n̂k.

A comparison of various sphere-wall models are shown in Figure 4.1. While the models

of Gregory and of Schenkel and Kitchener are comparable, with Schenkel and Kitchener

being a slightly stronger force, the Czarnecki model is distinctly di�erent, beginning to

display higher attractive forces at closer separation distances. As discussed by Gregory, the

Czarnecki model has a restriction of h > λ/4π for valid results. At separations above this

value of about 8 nm the Czarnecki model gives results which are even more accurate than

the alternatives. Conversely, the Gregory and the Schenkel and Kitchener models are valid

only under the restrictions of 0 < h < λ/π and h � a. Speci�cally, Gregory states that

these two expressions are accurate for separations up to 10% of the particle radius. If the

Czarnecki model is to be used for separations greater than 8 nm, then either the Gregory or

the Schenkel and Kitchener models can only be used for particles with diameters of 160 nm

or greater before the Czarnecki model is no longer able to bridge the gap. For the purposes

of this study, however, the mean particle diameters studied are the order of 1 µm, well above
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Fig. 4.1: A comparison of Van der Waals force models between a 1µm polystyrene sphere
and a �at silica surface separated by a distance x. The intermediate medium is a NaCl
aqueous solution of molality 0.01 M and a pH of 7. The solid line represents Eq 4.21, the
dotted line represents the wall portion of Eq 4.25, and the dashed line represents Eq 4.27.

this limit.

For sphere-sphere interaction the Gregory and the Schenkel and Kitchener models per-

form reasonably well for larger particle diameters, such as 1 µm. For particles of diameters

an order of magnitude smaller these models begin to deviate from exact solutions more

rapidly with increasing separation distances. For these smaller particle sizes other models

exist which may be superior, but these will not be considered at this time. While there

still exists a restriction of separation distance being less than 10% of the particle radius, the

forces on these particles begin to become relatively weak at such separations and deviations

from exact solutions have less of an e�ect.

4.3.2 Electrostatic double layer force

The physical source of the electrostatic double layer force arises from the ionization

of surfaces when submerged in a polar �uid, such as water. The ionized surface induces a



19

structure of counter ions known as the electrical double layer (EDL). This consists of the

Stern layer and di�use layer. The Stern layer is adjacent to the surface and includes ions

bound to the surface. The di�use layer is next to the Stern layer and contains freely moving

ions. Israelacvili [13] points out that the origin of the repulsive force between two similarly

charged surfaces in a solvent containing counter ions and electrolyte ions is osmotic, not

electrostatic. When an initially uncharged surface is placed in water the surface groups

dissociate and the counter ions leave the surface against the Coulombic force pulling them

back. This is because the repulsive osmotic pressure between the counter ions dominates over

the electrostatic attraction. Thus, when two such surfaces are brought together the osmotic

pressure of one forces the counter ions onto the other against their entropic equilibrium.

This results in a net repulsion between the two surfaces.

Gregory [25] o�ers expressions for the double layer interaction which are based on a

constant surface potential assumption and a constant surface charge density assumption. He

also points out that in practice neither case is likely to be true. Instead, they may be thought

of as extremes, with the true solution lying somewhere between. A linear superposition

approximation (LSA) of the two solutions is often used as a compromise between the two.

The interaction energy between parallel plates is described by the linear Poisson-Boltzmann

equation for a constant charge as:

Vs =
nkT

κ

[(
y21 + y22

)
(cothκh− 1) + 2y1y2

1

sinhκh

]
, (4.28)

where n is the number of ions per unit volume, k is the Boltzmann constant, T is the

absolute temperature, κ is the Debye-Huckel reciprocal length parameter, and y1 and y2 are

the reduced surface potentials. The reduced surface potentials are de�ned as:

yi =
zeψi
kT

, (4.29)
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with z representing the valency of the counter ions, e is the charge of an electron, and ψi

represents the surface potentials. The Debye-Huckel reciprocal length parameter is then:

κ2 =
2e2nz2

εkT
, (4.30)

where ε is the permittivity of the �uid medium.

Converting this into a force function between two unequal spheres is very simple when

using the Deryagin method:

Fedl(h) =
2πa1a2
a1 + a2

Vs(h), (4.31)

where Vs(h) is the energy of interaction per unit area of �at plates separated by a distance

h. Combining Equation 4.31 with Equation 4.28 results in:

Fsph−sph =
2πa1a2
a1 + a2

nkT

κ

[(
y21 + y22

)
(cothκh− 1) + 2y1y2

1

sinhκh

]
. (4.32)

This can again be modi�ed for a sphere near a �at plate by setting a2 →∞:

Fsph−wall = 2πa1
nkT

κ

[(
y21 + y22

)
(cothκh− 1) + 2y1y2

1

sinhκh

]
. (4.33)

The combination of Equation 4.32 and Equation 4.33 gives the total force on the ith particle

as:

Fedl = 2πai
nkT

κ

{
Nw∑
k=1

[(
y2i + y2k

)
(cothκhk − 1) + 2yiyk

1

sinhκhk

]
n̂k

−
Np∑
j=1

aj
ai + aj

[(
y2i + y2j

)
(cothκhj) + 2yiyj

1

sinhκhj

]
êij

 , (4.34)

where n̂k represents the unit normal vector on the kth wall and êij represents the unit vector

pointing from particle i to particle j.



21

Gregory also provides the following expression for the interaction energy between par-

allel plates based on the linear Poisson-Boltzmann equation for a constant potential:

Vs =
nkT

κ

[(
y21 + y22

)
(1− cothκh) + 2y1y2

1

sinhκh

]
. (4.35)

Again, using the Deryagin method and combining for forces due to nearby plates and spheres

we get:

Fedl = 2πai
nkT

κ

{
Nw∑
k=1

[(
y2i + y2k

)
(1− cothκhk) + 2yiyk

1

sinhκhk

]
n̂k

−
Np∑
j=1

aj
ai + aj

[(
y2i + y2j

)
(1− cothκhj) + 2yiyj

1

sinhκhj

]
êij

 . (4.36)

Equation 4.36 is also the same used by Hauser and Allen [1].

Lastly, Gregory gives the linear superposition approximation (LSA) expression for the

interaction energy between parallel plates as:

Vs =
64nkT

κ
γ1γ2 exp (−κh) , (4.37)

where γ1 = tanh (y1/4) etc. Application of the Deryagin approximation and combination of

force terms acting on a single particle results in:

Fedl = 128πaiγi
nkT

κ

Nw∑
k=1

γk exp (−κhk) n̂k −
Np∑
j=1

γjaj
ai + aj

exp (−κhj) êij

 . (4.38)

Unlike the Van der Waals models discussed in the previous section, the electric double-

layer force models given here di�er greatly. Gregory [25] o�ers a series of plots comparing

these models to each other as well as to the exact solutions for the constant potential and

constant charge cases. The surface potentials of two plates are varied to show the e�ect

that this has on the various models. It is shown that the force model based on Equation

4.28 has poor agreement to the exact solution for the constant charge case. The force model

based on Equation 4.35, however, agrees quite well with the exact solution for the constant
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Fig. 4.2: A comparison of electric double-layer force models between a 1µm diameter
polystyrene sphere and a �at silica surface separated by a distance x. The intermediate
medium is a NaCl aqueous solution of molarity 0.01 M and a pH of 7. The linear Poisson-
Boltzmann approximation for the constant surface charge (Eq. 4.34) and constant surface
potential (Eq. 4.36) assumptions are compared with a linear superposition approximation
(Eq. 4.38).

potential case. Figure 4.2 compares Equations 4.34, 4.36, and 4.38 for a polystyrene particle

near a silica �at plate.

4.3.3 Solvation forces

In addition to the van der Waals and electrostatic double layer forces, some systems need

to consider solvation forces. Israelachvili and McGuiggan [14] describe this force as resulting

from the polar arrangement of �uid molecules between two surfaces in close proximity. For

hydrophylic surfaces the water molecules arrange themselves in an antiparallel orientation

near the surfaces, as shown in Figure 4.3A. This alignment results in a repulsive trend

between the surfaces. Similarly, hydrophobic surfaces create a layer of parallel aligned water

molecules which result in an attractive force, as shown in Figure 4.3B. These repulsive and

attractive forces are also explained by a change in density of the �uid in the gap region
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Fig. 4.3: Schematic illustration of how solvation forces arise

between the two surfaces. For a hydrophylic surface the density tends to increase creating a

repulsive force, as shown in Figure 4.3C. A hydrophobic surface will repel water molecules,

decreasing the density and encouraging an attractive force as in Figure 4.3D.

Solvation forces, like van der Waals forces, are oscillatory with distance. Also like van

der Waals forces they have a monotonic component which can be mathematically modeled.

These forces appear to decay exponentially with distance, having a characteristic decay

length of 6 to 15 Å. This makes hydration and hydrophobic forces long ranged compared

to van der Waals forces, allowing them to potentially dominate the other surface forces.

Subramanian [18] has compiled a list of di�erent force models for the hydrophobic e�ect :

Fh/R = C0exp(−H/D0), (4.39)

Fh/R = −K123/6H
2, (4.40)
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Fh/R = C1exp(−H/D1) + C2exp(−H/D2). (4.41)

In these equations the hydrophobic force Fh is normalized by the mean radius of cur-

vature, R, and H represents the surface separation. Equation 4.39 is a simple exponential

model where C0 is a pre-exponential factor and D0 is the decay length. Equation 4.40

expresses the hydrophobic force in a power law form, which is the same form as the van

der Waals force. This form allows Fh and Fvdw to easily be added by integrating the K123

hydrophobic force constant with the Hamaker constant of the van der Waals force. A third

option is to express Fhas a double-exponential force law, as in Equation 4.41.

Solvation forces are still somewhat of a mystery with research on the topic still actively

proceeding. Empirical data for these equations is very limited for the time being. While

there have been special cases observed where Van der Waals and EDL models do not predict

colloidal forces accurately, these instances are limited to the regime of hydrophobic surface

interaction.

For the purposes of this thesis hydrophobic forces will be neglected. This is not an

entirely accurate assumption as the polystyrene latex particles Unni and Yang used in their

experiment do have a hydrophobic tendency. Solvation forces should play a minor role in

the attraction of the colloidal particles to a silica wall, but colloidal grouping between the

particles may not be as accurately simulated without hydrophobic forces included. For this

reason it would be wise to include the hydrophobic force in future studies.

4.3.4 Brownian motion

One of the principal factors considered by Unni and Yang [16] in their simulation is

the e�ects of considering Brownian motion. This motion is a result of colloidal particles

colliding with �uid molecules and has a Gaussian distribution with zero mean. The variance

is a function of the mutual di�usivity of the particles, Dij . This distribution is de�ned as:

〈
∆rB∆rB

〉
= 2Dij∆t, (4.42)
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where ∆t represents the simulation time step being used.

Brownian motion represents only small perturbations in colloidal movement and is often

eclipsed when signi�cant surface forces or hydrodynamic forces are present. The random

nature of Brownian motion was a necessary aspect in the simulations performed by Unni

and Yang. Simulations performed for the purpose of this thesis will, however, include a

random particle injection algorithm, so inclusion of Brownian motion will not be necessary

at this stage.

4.3.5 Combined e�ects

The total colloidal force is expressed as:

Fcolloidal = Fedl + Fvdw. (4.43)

If hydrophobic e�ects were also considered this would simply be:

Fcolloidal = Fedl + Fvdw + Fh. (4.44)

The DLVO theory of colloidal stability (named for Derjaguin and Landau [26], Verwey

and Overbeek [27]) results in the following four conditions, as per Israelachvili [13]:

1. In the case that the surfaces in dilute electrolyte are highly charged they tend to repel

each other. This repulsive force has a peak, normally at 1 to 4 nm distance, called the

energy barrier.

2. The potential energy between surfaces in contact is known as the primary minimum.

In the case of surfaces in a highly concentrated electrolyte their exists a secondary

minimum outside of the energy barrier. The energy barrier is at times too high to

overcome, so a colloidal system will often either sit in the secondary minimum or

remain totally dispersed. A totally dispersed system is called kinetically stable.
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3. When the surface potentials become weak the energy barrier becomes signi�cantly

lower. At a certain point the the energy barrier will disappear entirely and colloidal

particles will rapidly attract and join with each other. This is called an unstable

colloid.

4. The electric double layer force is completely dependant on the surface potentials.

When these potentials become negligible the interaction between the surfaces becomes

identical to the Van der Waals interaction and the surfaces attract each other.

The points here discuss the e�ects that the electrostatic double layer and van der Waals

forces have for various electrolyte concentrations. In fact, the van der Waals force remains

relatively constant for various electrolyte concentrations while the electrostatic double layer

force tends to be stronger with the higher surface potentials associated with higher electrolyte

concentrations.

When DLVO theory alone is considered, the van der Waals force typically represents

an attractive force while the electric double-layer force is repulsive. The combination of

these two is what results in the primary minimum, secondary minimum and energy barrier.

Figure 4.4 shows the total colloidal force between a polystyrene particle near a silica surface

in an electrolyte solution. The primary minimum exists at contact where Van der Waals

forces dominate and cannot be seen in the Figure. The energy barrier can easily be seen

at about 2.5 nm. The secondary minimum is further out and can be seen better in Figure

4.5at about 25 nm.

4.4 Collisions

The probability of particle collisions with walls or each other is limited due in large part

to the colloidal energy barrier present in an electrolyte solution. Even in a pure aqueous

solution in which Van der Waals forces dominate, the slow �ow of the �uids considered

and the relatively low number of particles injected make the likelihood of collision low. The

enhanced treatment of this possibility, as seen in the works of Wu, et al [28] and Allahyarov et

al [29] is therefore not included in this work. However, the current algorithm does incorporate
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Fig. 4.4: The total DLVO force between a 1 µm diameter polystyrene-latex particle and a
silica wall submerged in a 0.01 M NaCl aqueous solution. The Van der Waals contribution
is computed using Eq. 4.21 and the EDL contribution is computed using Eq. 4.38.

Fig. 4.5: A detail of 4.4 showing the secondary minimum.
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a straight forward binary, elastic, hard sphere collision model for interparticle collision, as

well as a simple inelastic collision model for wall collisions.

4.4.1 Wall collisions

The wall collision model used in this work is the same provided in the OpenFOAM 2.2.x

solidParticle class. Particles are �rst �agged as to whether they are crossing a cell boundary.

If that boundary is a wall patch then the resultant velocity of the particle is calculated using

an inelastic collision model. First the magnitude of the velocity component normal to the

wall is found as:

un = u · n̂, (4.45)

where u is the particle velocity and n̂ is the unit normal vector to the wall. If the value

of this is greater than zero than the particle is approaching the wall and must be re�ected.

The particle velocity is recalculated as:

upost−collision = upre−collision − un (1 + ε) n̂, (4.46)

with ε being an elasticity term with ε = 1 being fully elastic and ε = 0 completely absorbing

the impact energy of the particle.

In addition to energy being absorbed in the normal direction another term, µ, absorbs

energy in the tangent direction. In this case a value of µ = 0 indicates that no energy

absorbed while µ = 1 absorbs all tangent energy. Calculating the new velocity �rst requires

the velocity component tangent to the wall, which is:

ut = u− unn̂. (4.47)

The adjusted particle velocity is thus calculated to be:

upost−collision = upre−collision − µut. (4.48)
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These adjusted velocities are both calculated whenever a particle diameter breaks the plain

of a wall patch. Again, the normal velocity is only recalculated if the particle is found to

still be approaching the wall.

4.4.2 Particle collisions

For hard sphere molecules, when the distance of closest approach between two molecules

is less than:

d12 = 1/2(d1 + d2), (4.49)

the two molecules will collide. In addition, to ensure that two spheres which have already

collided in a previous time step do not have their velocities calculated again should they not

escape from each others diameters a condition is imposed which negates implementation of

the collision if the two spheres satisfy the range requirement but are moving away from each

other.

Elastic collisions imply that there is no exchange of translational or internal energy,

and are thus applicable only between collisions of monatomic species. For two molecules

with mass and pre-collision velocities m1, m2 and c1, c2 respectively, conservation of linear

momentum and energy require:

m1c1 +m2c2 = m1c
∗
1 +m2c

∗
2 = (m1 +m2)cm, (4.50)

m1c
2
1 +m2c

2
2 = m1c

∗2
1 +m2c

∗2
2 , (4.51)

where c1and c∗1 represent the pre and post collision velocities respectively, and cm represents

the velocity of the center of mass:

cm =
m1c1 +m2c2
m1 +m2

. (4.52)
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Equation 4.50 indicates that cm does not vary with pre and post collision interactions. The

pre and post relative velocities are expressed as:

cr = c1 − c2, (4.53)

c∗r = c∗1 − c∗2. (4.54)

From Equations 4.50, 4.52, 4.53, and 4.54 we obtain:

c1 = cm +
m2

m1 +m2
cr, (4.55)

c2 = cm −
m1

m1 +m2
cr, (4.56)

c∗1 = cm +
m2

m1 +m2
c∗r , (4.57)

c∗2 = cm −
m1

m1 +m2
c∗r . (4.58)

From Equations 4.55 and 4.56 it is clear that in this center of mass frame of reference,

the pre-collision velocities c1−cm and c2−cm are antiparallel, and further, if these molecules

are point centers of force, then the force between them initially lies in the same plane as

the pre-collision velocities. The anti-parallelism also occurs for the post-collision velocities

of Equations 4.57 and 4.58. From these last equations we obtain:

m1c
2
1 +m2c

2
2 = (m1 +m2)c

2
m +mrc

2
r , (4.59)

m1c
∗2
1 +m2c

∗2
2 = (m1 +m2)c

2
m +mrc

∗2
r , (4.60)

where the reduced mass is given as:

mr =
m1m2

m1 +m2
. (4.61)
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Therefore, from Equations 4.51, 4.59, and 4.60 we �nd that:

c∗r = cr. (4.62)

We are now in a position to completely specify the post collision velocities, provided

with the masses and pre-collision velocities. For a spherical coordinate system, with θ as

the polar and φas the azimuthal angles, respectively, the probability of c∗r pointing into

an element of solid angle dω = sinθ dθ dφ is uniform. Since dω may also be expressed as

dω = −d(cosθ)dφ, therefore, the probability of c∗r pointing over cosθ and φ is also uniform,

and distributed over -1 to 1, and 0 to 2π, respectively. From the inverse cumulative method

for sampling from a uniform distribution, the values of cosθ and φ may be sampled as:

cosθ = 2ranf − 1, (4.63)

φ = 2πranf, (4.64)

where ranf is a uniformly sampled random number between zero and one. The three

components of c∗r in the Cartesian directions are easily obtained from spherical coordinates

as:

x = c∗rsinθcosφ, (4.65)

y = c∗rsinθsinφ, (4.66)

z = c∗rcosθ. (4.67)

The components of the post-collision velocities can thus be found with the help of

Equations 4.57 and 4.58 as:

u∗1 =
m1u1 +m2u2
m1 +m2

+
m2

m1 +m2
c∗rsinθcosφ, (4.68)

u∗2 =
m1u1 +m2u2
m1 +m2

− m1

m1 +m2
c∗rsinθcosφ, (4.69)
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v∗1 =
m1v1 +m2v2
m1 +m2

+
m2

m1 +m2
c∗rsinθsinφ, (4.70)

v∗2 =
m1v1 +m2v2
m1 +m2

− m1

m1 +m2
c∗rsinθsinφ, (4.71)

w∗1 =
m1w1 +m2w2

m1 +m2
+

m2

m1 +m2
c∗rcosθ, (4.72)

w∗2 =
m1w1 +m2w2

m1 +m2
− m1

m1 +m2
c∗rcosθ. (4.73)

As stated before, the collision velocities are recalculated each time step in the event

that the diameters of two particles overlap. It is possible, however, that the recalculated

velocities are insu�cient for the particles to completely separate. In order to avoid having

the code go through these calculations again, thus throwing the two particles back in towards

each other, an additional condition must be met to ensure that only particle which overlap

and are approaching each other are �agged for collision. Two particles are considered to be

approaching each other if the dot product of their respective velocities is negative. Otherwise

the program knows that while two particles may be overlapping, they are moving away from

each other and likely collided in the previous time step.
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Chapter 5

Implementation and Code Development

In order to reduce the complexity of the software development aspect of this work it

was decided that much of the baseline capabilities needed could be found in third party

software. The focus of this work is not meant to be on the development of a rudimentary

incompressible �ow solver or on a Lagrangian particle tracking algorithm. Therefore, it was

deemed appropriate to identify and utilize an existing code which included these attributes.

OpenFOAM was selected due to the code being freely available under the GTK General

Public License, having the required baseline tools as well as having a large and active online

user community.

5.1 OpenFOAM overview

OpenFOAM stands for Open Field Operation and Manipulation. It is an open source

CFD software package produced by a commercial company, OpenCFD Ltd. It has a large

user base across most areas of engineering and science, from both commercial and academic

organizations. OpenFOAM has an extensive range of features to solve anything from com-

plex �uid �ows involving chemical reactions, turbulence and heat transfer, to solid dynamics

and electromagnetics. Work was begun on the colloidalFoam solver, developed in this work,

using OpenFOAM version 1.4.1. The code was later upgraded to version 2.2.x.

The core technology of OpenFOAM is a �exible set of e�cient C++ modules. These are

used to build a wealth of: solvers, to simulate speci�c problems in engineering mechanics;

utilities, to perform pre- and post-processing tasks ranging from simple data manipulations

to visualization and mesh processing; libraries, to create toolboxes that are accessible to

the solvers/utilities, such as libraries of physical models. Available solvers are included

for incompressible, compressible, laminar, turbulent, multiphase, reacting, and non-reacting
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�ows.

OpenFOAM is supplied with numerous pre-con�gured solvers, utilities and libraries and

so can be used like any typical simulation package. However, it is open, not only in terms

of source code, but also in its structure and hierarchical design, so that its solvers, utilities

and libraries are fully extensible.

OpenFOAM uses �nite volume numerics to solve systems of partial di�erential equa-

tions ascribed on any 3D unstructured mesh of polyhedral cells. The �uid �ow solvers are

developed within a robust, implicit, pressure-velocity, iterative solution framework, although

alternative techniques are applied to other continuum mechanics solvers. Domain decom-

position parallelism is fundamental to the design of OpenFOAM and integrated at a low

level so that solvers can generally be developed without the need for any 'parallel-speci�c'

coding.

The underlying libraries and solvers provide an excellent foundation for development

of new solvers. The tools and utilities, as well as the parallel nature of OpenFOAM, make

it much easier to build and run cases using the newly developed solvers. OpenFOAM

also has some inherent compatibilities with other software packages for mesh generation and

visualization, such as open source packages Gmsh and ParaView, as well as many commercial

applications.

Additional information on OpenFOAM can be found on the code's website, www.openfoam.org,

including a user guide and a comprehensive C++ source guide.

Each case being solved using an OpenFOAM solver is run from a directory with the

same general structure. Some of the �les required by each may vary, but there are some

commonly used by all. The basic directory tree of a case directory is shown in Figure 5.1.

The system directory contains the set of OpenFOAM �dictionaries� for setting param-

eters associated with the solution procedure itself, such as setting discretisation schemes,

simulation time step, data output parameters, etc. Dictionaries for various OpenFOAM

utilities are also placed here, such as the decomposePar utility for decomposing the domain

to be run in parallel on multiple processors.
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Fig. 5.1: OpenFOAM case directory tree structure

The constant directory contains a full description of the case mesh in a polyMesh sub-

directory and �les specifying the physical properties for the application concerned. For the

icoFoam solver this consists of the transportProperties dictionary �le which contains �uid

properties. When the solidParticleCloud class is added, and for the colloidalFoam solver,

two more dictionaries are added specifying a gravity vector (environmentalProperties) and

properties relating to the particle cloud (particleProperties).

The �time� directories are named based on the simulated time at which data is written

and contains individual �les for the �eld data of the problem. In the case of icoFoam this

includes the �les p and U for the pressure �eld and velocity vector �eld, respectively. For

simulations with particles each time directory has a lagrangian directory which contains

the data �les for the particle cloud including diameter, position and velocity. As most

simulations start at a time of t = 0 the initial run usually consists of a single time directory

0 which contains initial values and boundary conditions. Additional time directories are

written at speci�ed intervals as the simulation runs.

5.2 OpenFOAM prototypes

As stated before, OpenFOAM includes a variety of solvers and libraries. These libraries

are separated into various C++ classes which can be used independently or together in simple

or complex solvers. While there are no solvers for modeling of colloidal particles included
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with OpenFOAM, there are some solvers and classes which can be used as prototypes.

5.2.1 The icoFoam solver

One of the most basic CFD solver found in the OpenFOAM package is icoFoam. This

is a simple transient solver for incompressible, laminar �ow of Newtonian �uids. At this

stage of developement of the colloidalFoam solver a complex �uid �ow was not of interest,

so icoFoam serves as an ideal prototype for the �uid solution component of the colloidal

particle model.

The icoFoam solver solves for the velocity and pressure �eld of the supplied mesh. The

pressure �eld is normalized by the �uid density, thus eliminating density as a term in the

equation. Kinematic viscosity becomes the only �uid constant necessary to obtain a solution.

The structure of the icoFoam.C �le is of particular interest and mimicked in colloidal-

Foam.C. The main() function begins by reading in the run parameters and the mesh and

then including the createFields.H �le. This �le contains all the calls to OpenFOAM

After including the necessary OpenFOAM libraries a loop is opened to begin the time-

step iterations. The equation to be solved is de�ned and solved within this loop using a

combination of basic solvers provided within OpenFOAM that correspond to the Navier-

Stokes equations for transient incompressible laminar �ow. This de�nition and solution is

shown in Algorithm 1. As can be seen this solution uses a time derivative, divergence, Lapla-

cian and gradient to solve for an updated �uid velocity �eld. There are various numerical

schemes available to use in solving each of these elements of the velocity equation. The

speci�c numerical scheme can be chosen and set in a dictionary �le at runtime.

After solving for the velocity �eld icoFoam.C goes on to correct the pressure �eld using

the PISO algorithm. This algorithm also uses several basic OpenFOAM tools to solve the

necessary equations using various numerical schemes. As this portion of the code is not

altered in the implementation of colloidalFoam, the details of it are not presented here.

The numerical schemes occupy a layer of OpenFOAM that is not touched in any code

modi�cations and are also not presented here.
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Algorithm 1 De�nition and solution of the velocity equation (UEqn) in icoFoam.C

00056 fvVectorMatr ix UEqn
00057 (
00058 fvm : : ddt (U)
00059 + fvm : : div ( phi , U)
00060 − fvm : : l a p l a c i a n (nu , U)
00061 ) ;
00062
00063 s o l v e (UEqn == −f v c : : grad (p ) ) ;

Another �le used by icoFoam is createFields.H. This �le is primarily responsible for

reading in the pressure and velocity �elds as well as the lone �uid constant, nu. This becomes

important when modifying the solver in any way that requires reading in additional �elds

or constants, as is the case for colloidalFoam.

5.2.2 The solidParticleCloud class

There are various solvers in OpenFOAM which utilize a Lagrangian particle tracking

algorithm to model sprays or molecular dynamics. These all use a common set of Lagrangian

classes, including the cloud and particle classes. One class that stems from these two base

classes is the solidParticleCloud class, along with the solidParticle class. While not uti-

lized by any of the included solvers, this class does provide a framework for a solver that

propogates solid particles through a �uid medium.

The elements of the solidParticle and solidParticleCloud classes include drag, bouyancy

and collision with walls. The particles are treated as rigid spheres with a unique diameter,

position and velocity. All particles are given a common density value for bouyancy calcu-

lation purposes. These aspects of the class provided a good foundation to build on for the

purpose of modeling colloidal particles.

Each particle is capable of querying the local �uid properties based on the cell it is in.

The default con�guration of the solidParticle class involves obtaining interpolated values

for the �uid velocity, density and kinematic viscosity at the particle location.
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5.2.3 Integration of solidParticleCloud and icoFoam

In its default form the icoFoam solver is not set up to directly integrate the solidParti-

cleCloud class. With a few modi�cations, though, a new solver can be set up which combines

the functionality of an incompressible, laminar �ow solver and a lagrangian solid particle

tracking algorithm. This was the �rst step before enhancing the solidParticleCloud class

and adding in colloidal forces. As discussed earlier the icoFoam solver was selected due to

its simplicity so that the focus could remain on the colloidal particle model. However, this

does not preclude the use of other �uid solvers that may better suit a particular application.

There are a few di�erences between the default setup of icoFoam and solidParticleCloud.

The former requires only the kinematic viscosity of the �uid to be read in as a constant. The

latter is set up to read in variables speci�c to the particles and cloud on its own, but requires

both the �uid viscosity and density as a �eld variable from the �uid mesh. A gravity vector

is another requirement in order to compute bouyancy forces. In order to make icoFoam

compatible with solidParticleCloud the createFields.H �le is modi�ed so that a �uid density

value is read in from the same location as the �uid viscosity. These are both then used to

initialize scalar �elds for the properties. This is a bit redundant considering that the �elds

are of a constant value, but it also allows for the solidParticle library to be used as compiled

with the OpenFOAM installation.

5.3 Development of the colloidalFoam solver

A solver based on icoFoam with solid particles has been presented which utilized the

existing OpenFOAM class solidParticleCloud and minimal changes to the icoFoam source

code. More extensive changes to the solver source code, as well as all changes made to the

source code of the solidParticleCloud and solidParticle classes, will now be discussed.

Previous to this point the solver and classes being considered were icoFoam, solid-

ParticleCloud and solidParticle, along with their associated �les, icoFoam.C, solidParticle-

Cloud.C, etc. From this point on the new solver colloidalFoam will be referred to instead of

icoFoam. The solidParticleCloud and solidParticle classes become colloidParticleCloud and

colloidParticle and all associated �les will likewise be referred to based on this name change
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Algorithm 2 Altered createFields.H excerpt to accomodate the solidParticle library

dimens ionedSca lar nu1
(

t r an spo r tP rope r t i e s . lookup ( "nu" )
) ;

d imens ionedSca lar rho1
(

t r an spo r tP rope r t i e s . lookup ( " rho" )
) ;

v o l S c a l a rF i e l d rho
(

IOobject
(

" rho" ,
runTime . timeName ( ) ,
mesh ,
IOobject : :MUST_READ,
IOobject : :NO_WRITE

) ,
mesh

) ;

v o l S c a l a rF i e l d nu
(

IOobject
(

"nu" ,
runTime . timeName ( ) ,
mesh ,
IOobject : :MUST_READ,
IOobject : :NO_WRITE

) ,
mesh

) ;
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(icoFoam.C becomes colloidalFoam.C, etc.).

5.3.1 Initial enhancements

Before moving on to include colloidal surface forces in this new solver, a few additional

enhacements were added.

nu and rho as constants

The solidParticle class required that the �uid viscosity and density be available as

�eld variables. This is useful in the case that it is used in conjuction with a solver that

considers variations in these properties but becomes an unnecessary burden when they can

be treated as constants. The createFields.H �le was modi�ed in order to create nu and

rho �elds for the �uid based on constant values read in from a dictionary �le. In order to

simplify the code and reduce memory requirements these �eld creations may be removed,

but changes must now be made to the solidParticle.C �le, which will now be known as col-

loidParticle.C. The change is simple and involves replacing the �eld interpolation functions

td.rhoInterp().interpolate(cpw) and td.nuInterp().interpolate(cpw) with the �uid property

access functions td.spc().rhoc() and td.spc().nuc(). These property access functions are

written into the colloidParticleCloudI.H �le so that the cloud is able to pass these values to

the individual particles.

Adding basic particle injection

The solver as-is is capable of reading in an initial cloud of particles and then propogating

these particles. This is satisfactory for running the test cases meant to observe the behavior

of one or two particles, but is not capable of running a case in which particles are injected

throughout the simulation. Some of the OpenFOAM lagrangian libraries include injection

algorithms, but the solidParticleCloud class did not have any type of injection associated

with it. Rather than try to mimic some of these complex injection models, a simple injection

subroutine was created for the colloidParticleCloud class.
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The particleProperties dictionary includes an injection section for user supplied param-

eters to control particle creation. These terms include: a mean and variance for the number

of particles to be injected per time step; a mean initial velocity vector and a scalar veloc-

ity variance; two sets of coordinates designating the two opposing corners of a rectangular

block in which particles are created; a mean and variance for the particle diameter; a start

and end time for the injection. Using OpenFOAM's random number generator the number,

diameter, initial position and velocity of the particles to be injected in a given time step are

calculated. This is done for every time step from the designated start time to the stop time.

While this injection method is crude it is su�cient to ensure continuous creation of

particles in a channel �ow test case. The main issue with this is that the rate at which

particles are injected is dependent not only on the injection parameters read in, but also

on the time step chosen for the whole simulation. With some foresight, however, the mean

number of particles injected each time step can be adjusted to acheive the desired injection

rate for a given time step size.

Fluid-particle momentum coupling

The solid particles now integrated into a �uid solver are able to obtain the information

needed from their location within the �uid �eld to calculate the local drag force. While this

allows the �uid to in�uence the particles, it does not take into consideration any in�uence

that the particles can have on the �uid. For many cases the particles will be sparse and

will have negligible e�ect on the �uid. However, some may wish to consider a case in which

particles can begin to accumulate enough that they impede �uid �ow. This consideration

can be met by adding a source vector to the UEqn in colloidalFoam.C which is equal to the

net change in momentum of all the particles within a �uid cell.

Addition of particle collisions

While the solidParticle class models particle collision with the wall, there is no subrou-

tine for handling particles colliding with each other. This consideration is similar to that of

adding particle e�ects on the �uid in that both are relatively insigni�cant when the particle
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�eld is sparse. It is also similar in that it becomes necessary for cases in which particles

begin to become more dense in some �uid cells.

Some of the OpenFOAM lagrangian libraries and classes include various collision algo-

rithms. These are mostly for spray modeling in which the particles that collide can combine.

While this does not match the needs of a solid colloid particle model, the code provides a

good example of integrating a collision model into a cloud-based class.

Once it has been determined that the two particles being considered are indeed collid-

ing, the program enters the speci�c collision algorithm designated in the particleProperties

runtime dictionary. The only options made available in colloidalFoam are hard sphere colli-

sion or no collision. The hard sphere collision model has been described earlier. The coding

of this algorithm is straightforward and will not be described here.

5.3.2 The colloidalParticleCloud class

Now that many of the behaviors expected of spherical particles in a �uid have been

accounted for, we move on to the consideration of colloidal forces. Multiple models for Van

der Waals and Electrical Double Layer forces have been discussed, each requiring several

environmental variables and the calculation of distances between surfaces.

Exclusion of inter-particle forces

In discussing the various models for the Van der Waals and Electrical Double Layer

forces, equations were derived for interaction between a sphere and a �at surface as well as

between two spheres. The attraction or repulsion between colloidal particles can be a signif-

icant consideration for several modeling applications when the rate of particle coalescence

is important. While inclusion of this feature would remain a key goal of future develop-

ment, the implementation of this involves some signi�cant hurdles. Each particle in each

time step would need to reference every other particle being simulated and calculate the

distance to them to determine whether they are within range of the forces. Then the forces

between the particle being considered and all the particles within range must be calculated

and resolved into a net force vector. As the number of particles being simulated goes up,
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the number of computations required each time step rises exponentially, signi�cantly slow-

ing the simulation. As such the feature was deemed out of scope for the current version of

colloidalFoam.

Calculating separation from wall

All colloidal force models being considered require the distance h between the particle

surface and the wall. In order to do this the position vector of the particle in question is

compared to points on a given wall surface patch. The distance between the particle center

and the nearest point on the wall patch is then calculated. This is done for all wall patches

in the mesh with the distance for the current and the previous patch being compared each

time and the smallest being kept. The distance h is needed later as a scalar value, but

a unit vector Sf is also calculated to determine the direction of the force vector later.

Once all wall patches have been cycled through and the smallest value of h determined, the

value is corrected by subtracting half the diameter of the particle. This process is shown in

Algorithm 3.

In querying all wall patches for every particle this approach does tend to eat up CPU

cycles. For a given number of wall patches in the �uid mesh the compute cycles will rise

linearly with an increase in the number of particles being simulated. This is still more man-

ageable than the exponential increase in computation needed if a similarly direct approach

were used to calculate distances between particles. A method for identifying the nearest

wall patch and nearest neighboring particles could drastically cut down on the runtime and

make inter-particle force simulation feasible. Unfortunately, none were identi�ed and work

progressed in order to demonstrate the capabilities of the simulation, rather than focus on

the computational performance of the algorithm.

Inclusion of multiple colloidal force models

Various models representing the Van der Waals and Electric Double-Layer forces have

been discussed, each having their own strengths and weaknesses. The option to choose which

models are used adds �exibility to the solver as well as potential to easily add additional
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Algorithm 3 Wall separation distance calculation

f o rA l l ( patches , patchI )
{

const polyPatch& pPatch = patches [ patchI ] ;
const po in tF i e l d& po in t s = pPatch . po in t s ( ) ;

i f ( pPatch . type ( ) == "wal l ")
{

f o rA l l ( pPatch , f a c e I )
{

po intHit whoo = pPatch [ f a c e I ] . nea re s tPo int ( p o s i t i o n ( ) , po in t s ) ;
hDistance [ newh ] = whoo . d i s t anc e ( ) ;

i f ( hDistance [ newh ] < hDistance [ oldh ] )
{

h = hDistance [ newh ] ;
hDistance [ oldh ] = hDistance [ newh ] ;
Sf = po s i t i o n ( ) − whoo . rawPoint ( ) ;
Sf /= mag( Sf ) ;

}
}

}
}
h −= d_/ 2 . ;
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models and functions. The OpenFOAM dictionary �le particleProperties is modi�ed to

include the colloidal properties of the case being run as well as a speci�cation for which

model is used. Options included in this code are Gregory, SchenkelKitchener and Czarnecky

for the Van der Waals force and constantCharge, constantPotential and LSA for the Electric

Double-Layer force.

Once the separation distance between a particle and the nearest wall is calculated in

colloidalParticle.C it is determined whether the particle is within the range of in�uence. For

the case that h < 10d, where d is the particle diameter, the calculation of colloidal forces

proceeds. The stipulation of h > 0 is also added to ensure that should a particle somehow

end up crossing the wall boundary that forces are not calculated for a negative separation

distance, producing erroneous values. Otherwise the total colloidal force on the particle is

assumed to be zero and the drag and bouyancy forces on the particle are calculated on their

own. The limit of ten times the diameter of the particle is somewhat arbitrary, though based

on plotted force functions for particles with the properties being considered this limit shows

to be a good cuto� value with colloidal forces becoming negligible compared to other forces

acting on the particle. This can be changed easily if needed for cases in which this value is

not appropriate.

Using the scalar value h calculated previously forces are calculated using the particle-

wall portion of Equations 4.22, 4.25 or 4.27 (for the VDW force) and 4.34, 4.36 or 4.38 (for

the EDL force). The scalar values of the VDW and EDL forces are added together and

multiplied by the unit vector Sf to obtain the total colloidal force vector and then divided

by the particle mass m to obtain the colloidal contribution to the acceleration vector of

the particle as shown in Algorithm 4. Because the equations used to calculate the colloidal

force approach in�nity as h approaches zero, a maximum force limit is hard-coded in to

avoid a divide by zero error in the code and to keep the particle from having too great an

acceleration. This implimentation is imperfect and the value of this limit must be chosen

depending on the colloidal properties, the surface elasticity as well as the time step being

used to avoid particle colliding with the wall at too great a velocity and bouncing back too
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Algorithm 4 Total colloidal force vector calculation and combination with other forces to
be integrated and obtain the new velocity vector of the particle.

vec to r Fco l l o i d = vdwWall*Sf + edlWall *Sf ;
i f (mag( Fco l l o i d ) > Fl imi t )
{

Fco l l o i d /= mag( Fco l l o i d ) ;
F co l l o i d *= Fl imi t ;

}

Uco l l o id = Fco l l o i d /m_;
U_ = (U_ + dt *( Uco l l o i d + Dc*Uc + (1 . 0 − rhoc /rhop )* td . g ( ) ) ) / ( 1 . 0 + dt*Dc ) ;

td . spc ( ) . smoment ( ) [ c e l l i ] += m_*(U_ − Uc)*Dc*dt ;

far.

Algorithm 4 also shows the calculation of the new particle velocity using the total col-

loidal, drag and bouyancy forces. This is calculated using the integration method described

in the previous chapter which resulted in Equation 4.7. The change in momentum of this

particle due to drag is also calculated and stored to be used later in calculating the source

term for the �uid as described in Equation 4.15.
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Chapter 6

Simulation Setup

6.1 Simulation setup and parameters

6.1.1 Particle and �uid properties

All simulations represent a suspension of polystyrene-latex particles in a NaCl elec-

trolyte solution. The particle sizes, �uid velocity and electrolyte concentration vary for sev-

eral veri�cation studies, but �uid temperature, density and viscosity, as well as the Hamaker

constant used to compute Van der Waals force values all remain constant. This is meant

to mirror the properties of the system used by Unni and Yang [16] and values for these

properties were obtained from their report. They are shown in Table 6.1. The zeta values

used for computing the Electric Double-Layer force vary with the electrolyte concentration.

Values for these at the concentrations considered are shown in Table 6.2.

6.1.2 Fluid simulation grids

The particle transport algorithm used is connected to a CFD simulation and must have

a grid associated with the physical domain of the �uid. Several of the veri�cation simulations

in this chapter do not necessitate a large complex grid. For the simulations demonstrating

collisions, drag and a single particle approaching a wall, the domain used was simply a cube.

The size of the cube was set to 1 meter dimensions on all sides as this would be large enough

Table 6.1: Fluid and colloidal properties
Property Value

Kinematic viscosity (ν) 0.9× 10−6 m2/s
Solution density (ρ) 1050 kg/m3

Latex-NaCl-glass Hamaker constant (Ak) 0.91× 10−20 J
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Table 6.2: Particle-wall and inter particle zeta potentials corresponding to various electrolyte
(NaCl) concentrations.

NaCl concentration Zeta potentials
ζw ζp

0.1 M -18 mV -14 mV
0.01 M -23 mV -20 mV
0.001 M -28 mV -24 mV

Fig. 6.1: Micro channel surface grid and boundary conditions

to avoid any unwanted boundary interference. All six boundaries were treated as walls with

a constant grid size of 0.1 m. For those simulations of interaction with a wall (wall collision

and wall colloidal capture) the particle will be placed near the center of one of the wall

boundaries. For the drag and particle-particle collision simulations the particles are placed

near the center of the cube.

A �nal set of simulations run uses a geometry meant to mimic the geometry of the mi-

crochannel experiment used by Unni and Yang [16]. Their experiment involved two parallel

glass plates 0.3 mm apart. The simulation grid is shown in Figure 6.1 and consists of a

constant velocity inlet, a pressure outlet, wall surfaces on the top and bottom and cyclic

sides. The simulated length is 10 mm and the width is 1 mm. The gravity vector points

downward from the top wall. Particles are injected near the inlet.
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6.2 Collision models

6.2.1 Wall collision

The wall collision model o�ered in the solidParticle class is used in the solver developed

here. This model uses two user inputs, ε and µ, as terms for absorption of energy at

impact in the wall normal and tangential directions, respectively. The cases discussed here

demonstrate the use of these terms to obtain a fully elastic (ε = 1, µ = 0) collision, fully

inelastic (ε = 0, µ = 1) collision and variations of the two. In order to better observe the

e�ect of the collision alone the gravity vector is set to zero and the �uid density is greatly

reduced to minimize drag e�ects.

The physical signi�cance of the two terms given can be interpreted as normal elasticity

(ε) and a kind of surface roughness term (µ). These values may be calibrated by the user to

best represent the interaction between particles and surrounding surfaces for a speci�c case.

6.2.2 Particle collision

The particle collision algorithm is based on the assumptions of conservation of energy

and momentum. These can be veri�ed by noting the velocities of two particles before and

after collision and then calculating and comparing the total kinetic energy and momentum of

the system (of two particles) before and after the collision. This is tested using two particles

of equal size and density �red towards each other at equal but opposite velocities. In one

case the particles approach each others centers (head-on collision) and in another case they

approach each others tangents (o�set collision).

6.3 Drag model

The drag model, including coupling with the �uid, is tested by comparing the speed

of a simulated free falling particle with the expected terminal velocity analytic solution.

Terminal velocity is de�ned as the point at which an object falling under the force of gravity

no longer accelerates due to the drag force equalling the weight. For a spherical particle
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with diameter d and density ρp the weight is de�ned as

Wparticle = (ρp − ρ)Vpg = (ρp − ρ)
π

6
d3g (6.1)

where Vp is the particle volume and g is the acceleration due to gravity. Assuming the

condition of Stokes �ow, i.e. Re < 0.01, which is reasonable for the small particle diameters

and densities being dealt with, the drag force is

FD =
π

8
d2ρCDu

2 (6.2)

CD =
24

Re
= 24

ν

ud
(6.3)

where ρ and ν are the �uid density and kinematic viscosity, respectively, and u represents

the velocity of the particle in the �uid. Combining Equations 6.2 and 6.3 and setting

FD = Wparticle will show us the terminal velocity of a free falling sphere:

FD =
π

8
d2ρ · 24

ν

utermd
u2term = 3πdρνuterm = Wparticle = (ρp − ρ)

π

6
d3g

Rearranging to solve for uterm gives us

uterm =
d2g

18ν

(
ρp
ρ
− 1

)
. (6.4)

The free falling particle is simulated within a cubic domain. The six sides of the cube

are all walls, creating an enclosed space so the �uid does not gain any net momentum, but it

is also large enough that the particle can achieve terminal velocity well before approaching

any walls. The particle begins at rest in the center of the domain and is allowed to fall

under the force of gravity. The simulation is allowed to run until a near constant velocity is

acheived.

As the purpose of these models is to simulate micro-scale particles for which colloidal

forces will be signi�cant, the particles and �uid simulated have properties similar to what is
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Table 6.3: Values for testing drag model
Variable Value(s)

Particle diameter, d 0.1, 1 and 10 µm
Particle density, ρp 2650 kg/m3

Fluid density, ρ 1050 kg/m3

Fluid kinematic viscosity, ν 0.9× 10−6m2/s

being simulated for the colloidal tests. These properties are listed in Table 6.3.

With the �uid velocity �eld being a�ected by particles passing through each cell there

may arise some grid dependency as the particle drag is calculated based in part on the local

�uid velocity. To ensure that the terminal velocity solution is independent of the grid a

Richardson extrapolation study is done. The cubic domain is 1mm x 1mm x 1mm and

evenly divided in each dimension by 10, 20 and 40 to provide cell sizes of 100µm, 50µm and

25µm, respectively. All simulations are run until a terminal velocity uterm is found and the

apparent order p, approximate relative error ea, extrapolated relative error eext, and �ne

grid convergence index GCIfine is calcualted and reported.

6.4 Colloidal models

The colloidal models used to evaluate the interaction force between a particle and a wall

surface are tested within the framework of the CFD model and compared to expected plotted

values. The simulation involves a single particle being placed a half diameter distance above

a wall surface. The gravity vector is directed perpendicular into the wall surface such that

the particle begins to descend when the simulation commences. As the particle approaches

the colloidal force algorithm is triggered and the colloidal force becomes more signi�cant

the closer the particle gets to the wall. The simulation is run for a length of time signi�cant

enough to allow the particle to either collide with the wall or approach the energy barrier,

depending on the environment variables used in the simulation. The variable being used for

comparison is the �nal at rest separation distance between the surfaces of the sphere and

wall.

The Van der Waals force models used are those provided by Gregory, Schenkel and



52

Kitchener, and Czarnecky [22]. While the Czarnecky model is recommended as more ac-

curate at distances of h > λ/4π, with the Gregory and Schenkel-Kitchener models being

more accurate in closer ranges, these models are tested separately in order to compare how

well the simulated particle matches expected results for each given model. All simulations

are run with the same set of environmental variables used in the calculation of the Van der

Waals force.

The electrostatic double layer (EDL) force models used are the constant charge and

constant potential derivations of the linear Poisson-Boltzmann o�ered by Gregory [25], as

well as the linear superposition approximation (LSA). Simulations and direct computations

are performed for cases with three di�erent NaCl concentrations of the suspending �uid. All

possible combinations of the three Van der Waals models and three EDL models are used

to calculate the total colloidal force.

6.5 Large scale simulations

With the functionality of each element of the colloidalFoam models independently ver-

i�ed as described, it makes sense to test the solver on a more practical scale to ensure that

the code can run stable with collisions, drag, bouyancy, and colloidal forces all active and

thousands of particles being simulated. The micro-channel geometry used by Unni and Yang

has been selected as a test case for this purpose. As described in an earlier chapter a simple

particle injection algorithm has been added to the solver for the purpose of this test.

The Gregory Van der Waals model and the LSA EDL model is used as a baseline in

this set of simulations. The simulation time step dt and the average number of particles

injected per time step ppts are both varied in accordance with Table 6.4. The Van der Waals

and EDL models are also varied using a base time step and injection rate. The simulation

is run for a total simulated time of 2.5 seconds to ensure that particles have the chance

to propogate from the inlet through to the outlet and �ll out the physical domain. The

total number of particles in each simulation is reported as well as any issues or instabilities

observed.

In addition to these large scale simulations run to check general code stability, an
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Table 6.4: Parameters varied for micro-channel simulations
Case # VDW model EDL model dt ppts Mean injection rate

1 Gregory LSA 0.0001 2 20, 000 · s−1
2 Gregory LSA 0.0002 2 10, 000 · s−1
3 Gregory LSA 0.0001 4 40, 000 · s−1
4 Gregory LSA 0.0002 4 20, 000 · s−1
5 Gregory Constant Potential 0.0001 2 20, 000 · s−1
6 Gregory Constant Charge 0.0001 2 20, 000 · s−1
7 Schenkel & Kitchener LSA 0.0001 2 20, 000 · s−1
8 Czarnecky LSA 0.0001 2 20, 000 · s−1

additional simulation of the microchannel was run to observe the rate of particle adsorption

onto the microchannel surfaces. The time step used for this simulation is 0.0001 seconds,

with a mean injection rate of 60,000 particles per second. Particles are given a set diameter of

0.5 µm. The Gregory VDW model and the LSA EDL model are used. All other parameters

remain the same. These changes are meant to more closely approximate the set up for the

experiment and simulations performed by Unni and Yang [16]. The surface coverage due to

particle adsorption is calculated and compared with simulated results from Unni and Yang.

This is done by summing the cross-sectional areas of all adsorbed particles and then dividing

by the total surface area of the wall. A particle is considered adsorbed once the value of

h/ap reaches the primary energy minimum separation, H0. This value is set to H0 = 0.002

in accordance with what Unni and Yang used in their study.
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Chapter 7

Results and Discussions

7.1 Collision models

7.1.1 Wall collision

Figure 7.1 shows the path of a particle which initially approaches a wall at a 45° angle.

In the fully elastic case it can be seen that the particle is perfectly re�ected o� the wall at

a 45° angle. The fully inelastic case shows the particle captured on the wall surface at the

point of contact. For the normally inelastic condition the particle is again captured on the

wall, but it also continues to slide along the surface of the wall, uninhibited in the tangential

direction. The tangentially inelastic case shows the particle re�ecting o� the wall, but with

all tangential energy absorbed at impact.

7.1.2 Particle collision

The resulting paths of the particles for each case are shown in Figure 7.2. The random

term used to close the conservation equations can be seen to a�ect these collisions. In the

case of the head-on collision it would be expected that the particles would rebound directly

back from each other, but instead they are thrown to the sides. The o�set collision would

be expected to have the particles re�ect o� of the 45° plane of collision, but the random

element precludes this.

In both of these cases the velocities of the particles are taken immediately before and

after the collision takes place. These velocities are shown in Table 7.1 and Table 7.2 along

with the calculated momentum and kinetic energy of the whole system for both before and

after the collision. It can be seen that the net momentum of the two-particle system is zero

both before and after the collision
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Fig. 7.1: Representations of fully elastic (top left), fully inelastic (top right), normal inelastic
(bottom left) and tangentially inelastic (bottom right).

Fig. 7.2: An instance of head-on collision (top) and o�set collision (bottom). The random
element of the particle collision model can clearly be seen.

Table 7.1: Comparison of pre- and post-collision momentum and kinetic energy for the
head-on collision case.

Head-on
Particle 1 Particle 2

Initial velocity −0.05k̂ 0.05k̂

Final velocity −0.0375̂i+ 0.0331ĵ + 0.0015k̂\ 0.0375̂i− 0.0331ĵ − 0.0015k̂

Particle mass 4.189e-12 4.189e-12
Initial momentum 0.0
Final momentum 0.0

Initial K.E. 1.047e-11
Final K.E. 1.047e-11
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Table 7.2: Comparison of pre- and post-collision momentum and kinetic energy for the o�set
collision case.

O�set
Particle 1 Particle 2

Initial velocity −0.05k̂ 0.05k̂

Final velocity
Particle mass 4.189e-12 4.189e-12

Initial momentum 0.0
Final momentum 0.0

Initial K.E. 1.047e-11
Final K.E. 1.047e-11

Table 7.3: Terminal velocity results using di�erent grid sizes
Mesh Size, h Terminal Velocity, uterm

100µm 0.922966 µm/s
50µm 0.925141 µm/s
25µm 0.932389 µm/s

7.2 Drag model

For a 1 µm particle, given the properties listed in Table 6.3, the terminal velocity

would be expected to be 0.922751 µm/s, as calculated by Eq. 6.4. Simulating this same

particle using a cell width of 100 µm shows the particle reaching a terminal velocity of

0.922966 µm/s. The only major di�erence between what occurs in the simulation and what

is calculated analytically here is that in the simulation the �uid velocity is a�ected by the

particle. However, with a di�erence of less than 0.03% between these two values the e�ects

of �uid coupling do not signi�cantly alter the drag e�ects on the particle.

The values obtained from the Richardson extrapolation study are reported in Table

7.3. Using these results and the methods detailed in the JFE Statement on the Control of

Numerical Accuracy an apparent order of p = 1.737 is obtained. An approximate relative

error of ea = 0.0078 is found between the medium and �ne grids, and an extrapolated relative

error of eext = 0.0033 is also found. The �ne grid convergence index is GCIfine = 0.0042.

These �gures indicate little variance in the solution as the mesh size is varied.
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7.3 Colloidal models

Simulations were run using all nine combinations of Van der Waals and EDL force

models, and surface properties for three di�erent electrolyte concentrations of 0.1 M, 0.01

M and 0.001 M. The results of the simulated particle were compared with a force plot to

determine the distance o� the wall of the energy barrier.

For the 0.1 M case the plot indicates that the combined colloidal force for all models is

attractive and contains no energy barrier point. The simulations con�rm this as in all cases

the particle collides with the wall repetitively. A small time step was necessary in order to

capture the movement of the particle as it came closer to the wall and accelerated under

greater force. The force models used approach an in�nite attractive force very near the

wall without taking into account the repulsive contact force between the wall and particle.

In order to avoid an in�nity error in the simulation the total colloidal force was limited.

The level of capturability of the particle is controlled by adjusting the elasticity factors for

the wall. The values for the normal and tangential elasticities were both set to 0.5. Under

these circumstances the particle approached the wall and made contact and was continually

re�ected a short distance before being pulled back.

The combined colloidal force plots for the 0.01 M and 0.001 M cases all exhibit an

energy barrier. The distance from the wall at which the total force is zero (including gravity

and bouyancy e�ects) was calculated using each force model combination and compared to

the resting position of the simulated particle. Comparison of the predicted and simulated

particle separation for �uid electrolyte concentrations of 0.01 M and 0.001 M are shown in

Tables 7.4 and 7.5, respectively.

7.4 Large scale simulations

The various micro-channel cases presented in the previous chapter were run successfully.

Particle injection began at the beginning of the simulation, and the particle stream traversed

the domain before simulation termination in each case. A sequence of images showing the

progression of the particle stream through the domain for Case 1 in Table 6.4 is shown in

Figure 7.3.
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Table 7.4: Equilibrium distance of particle from wall for 0.01 M concentration electrolyte
solution.

Van der Waals - EDL Direct Computation Simulation Result Relative Error

Gregory - Const. charge 1.99880E − 08 2.00188E − 08 1.540925E − 03

Gregory - Const. potential 1.99741E − 08 2.00050E − 08 1.547003E − 03

Gregory - LSA 1.98379E − 08 1.98689E − 08 1.562665E − 03

Sch.-Kitch. - Const. charge 2.02801E − 08 2.03121E − 08 1.577901E − 03

Sch.-Kitch. - Const. potential 2.02673E − 08 2.02993E − 08 1.578898E − 03

Sch.-Kitch. - LSA 2.01278E − 08 2.01599E − 08 1.594809E − 03

Czarnecky - Const. charge 1.95627E − 08 1.95940E − 08 1.599984E − 03

Czarnecky - Const. potential 1.95460E − 08 1.95774E − 08 1.606467E − 03

Czarnecky - LSA 1.94049E − 08 1.94364E − 08 1.623301E − 03

Table 7.5: Equilibrium distance of particle from wall for 0.001 M concentration electrolyte
solution.

Van der Waals - EDL Direct Computation Simulation Result Relative Error

Gregory - Const. charge 9.57200E − 08 9.58524E − 08 1.383201E − 03

Gregory - Const. potential 9.57187E − 08 9.58511E − 08 1.383220E − 03

Gregory - LSA 9.51629E − 08 9.52958E − 08 1.396553E − 03

Sch.-Kitch. - Const. charge 9.82027E − 08 9.83378E − 08 1.375726E − 03

Sch.-Kitch. - Const. potential 9.82017E − 08 9.83369E − 08 1.376758E − 03

Sch.-Kitch. - LSA 9.76501E − 08 9.77857E − 08 1.388631E − 03

Czarnecky - Const. charge 9.80099E − 08 9.81471E − 08 1.399859E − 03

Czarnecky - Const. potential 9.80099E − 08 9.81461E − 08 1.399873E − 03

Czarnecky - LSA 9.74475E − 08 9.75852E − 08 1.413069E − 03

Fig. 7.3: Initiation of particle injection into micro channel
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Table 7.6: Resultant run time and particle count of micro-channel simulations
Case # t at simulation end # of particles

1 1.5071 23,264
2 2.5 12,246
3 1.0456 38,141
4 2.5 22,096
5 1.5078 23,258
6 1.5097 23,266
7 1.5043 23,274
8 1.5073 23,176

Because the micro-channel simulation cases were run as a proof of concept, numerical

results of physical signi�cance were not obtained. Instead, in Table 7.6 are listed the simula-

tion time and number of particles within the domain at the time of simulation termination.

These correspond with the cases listed in Table 6.4. Due to a bug in the OpenFOAM parallel

processing subroutine for particles, all cases were run in serial on a single processor. This

resulted in lengthy run-times. A limit of 7 days was placed on code run time, and as a result

not all simulations reached the 2.5 second mark.

In order to obtain results of a more useful nature, the total simulated time must increase

a great deal. The results provided by Unni and Yang in their simulations and experiment

ran for 50 minutes. In order to run a simulation of that scale it was necessary to update the

code to the latest version of OpenFOAM in order to enable parallel computation. Once this

was accomplished the �nal simulation described in the previous chapter was run on between

64 and 128 processors. The simulation was then able to produce results much quicker, on

the order of minutes of simulated time instead of just seconds. In addition, the wall collision

parameters and the colloidal force limit were attenuated in order to ensure that particles

would be adsorbed onto the wall, and not merely bounce o�. With these modi�cations the

code and simulation were able to produce reasonable results when compared to the results

from Unni and Yang. As can be seen from Figure 7.4 the total surface coverage over time is

largely linear in both the results of this study and those provided by Unni and Yang. This

study appears to have a lower rate of adsorption and a slightly longer start up period than

the results provided by Unni and Yang.
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Fig. 7.4: Comparison of surface coverage over time with results provided by Unni and Yang
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The primary di�erence between the simulations performed here and those performed

by Unni and Yang are that they included Brownian Motion, while this study does not. The

e�ect of including Brownian Motion appears to have allowed more particles to be captured by

the wall as the random motion of particles at the edge of in�uence of the colloidal forces can

be nudged closer. This helps to explain the higher rate of adsorption produced by Unni and

Yang. In addition to di�erences in force and motion models, the simulation set up in both

cases is fundamentally di�erent. As was described in the previous chapter, the simulation

used in this study involves a microchannel 1mm wide and 10mm long, with particles injected

at the �uid inlet area. Unni and Yang use a cubic simulation cell with no inlet e�ects and

with a constant number of particles which are recycled back into the domain as they leave.

The inlet region in this study may have a small a�ect on particle adsorption as the �uid and

particles need a short distance in the microchannel to normalize.
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Chapter 8

Conclusions

8.1 Objectives met

All objectives listed in Chapter 3 were met as follows:

� A colloidal particle solver was produced using OpenFOAM as basis and which includes:

� Includes models of the Van der Waals force on a particle near a wall as o�ered

by Czarnecky, Schenkel and Kitchener, and Gregory

� Includes models of the Electric Double Layer force on a particle near a wall as

o�ered by Gregory

� Accounts for wall collisions and inter-particle collisions

� Provides a drag model that is coupled with the �uid solver

� Provides a rudimentary injection model

� Each function of the model was tested individually. Wall collisions and inter-particle

collisions were observed using one and two particles, respectively. All observed be-

haviors were as expected. The drag model and coupling with the �uid was tested

using a free falling particle case which provided results inline with calculated terminal

velocities. The behavior of a particle near a wall under the in�uence of the Van der

Waals and Electric Double Layer forces was observed. The separation from the wall

due to the primary energy barrier was observed and found to be in line with calculated

values. Finally, the injection subroutine was tested using a microchannel case which

included particles being injected at the inlet. The particles were added to the domain

as expected, and the code was stable while running with a large number of particles.
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� The microchannel case was �ne-tuned to mimic the physical experiment provided by

Unni and Yang, including geometry, chemistry and physical properties of the �uid,

particles, and surfaces, and the size and number of particles injected. The surface

coverage as particles adsorbed onto the microchannel walls was observed over time in

the simulation, and data was compared with data produced by Unni and Yang. While

this did not provide an exact match, it did provide results on the same order as those

given by Unni and Yang. Di�erences in the setup and models used account for the

di�erence in values obtained, but in both cases the data follows a largely linear pattern

over time.

8.2 Potential future uses and applications

This solver provides a base that is meant to be adaptable and expanded for many di�er-

ent uses. In its current state the code can be used to simulate colloidal particle deposition

on surfaces. Usage does not need to be limited to this, however. The usage of complex

geometries would allow for the simulation of bacteria transport in ground water. The ad-

dition of inter-particle forces, as discussed above, can allow for the simulation of colloidal

particle cloud coalescence. Enhanced treatment for a high particle density would allow for

the simulation of sediment bed transport. The usage of a non-Newtonian �uid solver, in

addition to 6 degree of freedom (6DOF) simulation of particles movement and a drag model

for non-uniform shapes, would allow for the simulation of blood platelet transport within

veins, arteries, or heart chambers.

With this code being provided online it lays the groundwork for scientists to use it as a

basis for several di�erent speci�c applications, including those listed above and more. Time

to complete research can be cut by using this model and building on it. The colloidalFoam

solver provides a functional base, and with upgrades to the code base and enhancements

of its features can become a powerful and versatile tool for researching colloidal system

behavior.
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