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ABSTRACT 

 
Alluvial Geochronology and Watershed Analysis of the Golo River, Northeastern 

Corsica, France 

 
by 
 

Emilee M. Skyles, Master of Science 

Utah State University, 2013 

 
Major Professor: Dr. Tammy M. Rittenour 
Department: Geology 
 
 

The Golo River in northeastern Corsica, France, is a short, steep, mixed 

bedrock-alluvial river (~95 km, 2706 m relief) in the Western Mediterranean with 

formerly glaciated headwaters. The small size and location of the Golo River 

make this system ideal for observing the response of this watershed to 

fluctuations in sea-level, climate, and tectonics.   

Four aggradational packages of Golo River allluvial sediment are 

preserved on the Marana Plain: two fill terraces and two inset fill-cut terraces.  

Optically stimulated luminescence (OSL) dating of these alluvial terraces 

suggests the younger aggradational deposits are marine isotope stage (OIS) 3 

and Holocene in age, with OIS 2 deposits assumed to be preserved in an 

entrenched channel under the Holocene surface deposits as a result of sea-level 

influence.  The oldest Golo River terrace may be associated with OIS 6-OIS 8; 

however a quartz OSL age for this deposit remains unresolved.  These 

aggradational terrace deposits are interpreted to have formed due to increased 

 



 iv 
sediment production during glacial conditions despite lower sea-level and in 

turn directly related to the coastal geometric configuration.  

Analysis of the hypsometry and slope histograms from the entire Golo 

watershed suggests a mature, fluvially dominated system.  Perturbations are 

evidenced by knickzones and convexities seen in longitudinal profiles and slope-

area plots.  For example, knickzones at and above the Alpine contact advocate 

movement of the Alpine Fault and migrating knickpoints near the boundary of the 

Mte Cinto caldera margin have enhanced convexities in profiles in Golo River 

tributaries, such as the Asco and Tartagine Rivers.  Near the headwaters of the 

Golo and Asco Rivers, convexities are concordant with mapped glacial deposits, 

suggesting the influence of glacial scour.   

The longitudinal profile of the lower canyon reach of the Golo River (lower 

42 km) has a broad convexity in tandem with many stair-stepping knickpoints.  

Similarly, all tributaries in this reach have increased profile steepness and have 

waterfalls above the confluence with the Golo River.  These data suggest that the 

Golo River is incising faster than its tributaries and that a large tectonically driven 

change in base-level may be driving incision.   

(160 pages) 
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PUBLIC ABSTRACT  

 
Alluvial Geochronology and Watershed Analysis of the Golo River, Northeastern 

Corsica, France 

 

The Golo River in Corsica, France, is a short, steep river (~95 km, 2706 m 

relief) in the Western Mediterranean with formerly glaciated headwaters. The 

small size and location of the Golo River make this system ideal for observing the 

influence of climate and sea-level change on river dynamics over the 100,000 

years.  A rapidly advancing dating technique, optically stimulated luminescence, 

was utilized to determine the timing of these river deposits on the coastal plain in 

order to frame them in the context of previous glacial and interglacial episodes.   

Climate fluctuations in the headwaters supplied the vast majority of sediment into 

the system during glacial time periods, which was then transported and 

deposited near the mouth of the Golo River on the coastal Marana Plain.  Sea-

level also played a vital role in defining a geometric configuration that ultimately 

governed whether large amounts of sediment stored onshore or offshore.  

Analysis of the Golo River longitudinal profile and watershed reveals changes in 

steepness and gradient that are related to changes in rock type, fault movement 

and tectonically-driven base-level fall. 

 

Emilee Skyles 
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CHAPTER 1                                                                                                                                                                            

INTRODUCTION AND BACKGROUND 

 
Topics in fluvial geomorphology and landscape evolution have rapidly 

advanced over the last few decades as quantitative analyses have provided new 

ways to understand the influence of climate, sea-level, and tectonics on river 

dynamics.  In keeping with this, the focus of this study is to map and date 

deposits of the Golo River coastal plain and examine the response of river 

profiles with respect to climate, sea-level, bedrock and tectonic controls.  While 

tectonism is suggested to be a minor influence on terrace development on the 

coastal plain over the 100 kyr time-scale investigated, climate and sea-level 

change are expected to have a greater effect due to late Pleistocene glaciation of 

the headwaters and direct interaction with glacio-eustatic changes in the 

Tyrrhenian Sea at the mouth of the Golo River.   

Study Area 

Geography 

Corsica is a small island territory (8732 km2) of France in the western 

Mediterranean Sea and is bordered by the Tyrrhenian Sea to the east and 

Ligurian Sea to the west (Figure 1.1A). The Golo River drains the larger part of 

northern Corsica, flowing east-northeast into the Tyrrhenian Sea. The Golo River 

is a short steep (~90 km, 0.022m/km), formerly glaciated system with a drainage 

area of ~1000 km2.  Its catchment includes Mt. Cinto (2706 m asl), the highest 

peak on the island, and four major tributaries: the Lagani, Tartagine, Asco, and 

 
 



 
 

2 

Casaluna (Figure 1.1B). The spring source of the Golo River (2000m asl) is 

located to the south of the peaks of Paglia Orba (2525 m asl) and Capu Tafunatu 

(2335 m asl).  

The Golo River generally has high stream power and sediment transport 

capacity due to its steep gradients and experiences high-magnitude floods 

throughout the year (Mather, 2009).  The Golo River is a mixed bedrock-alluvial 

river with two distinct bedrock reaches (Hercynian and Alpine) and two alluvial 

reaches (Francardo basin and Marana Plain).  Well-preserved discontinuous 

strath terraces are most common in the schist terrain of the lower bedrock 

canyon, ranging from 5-45 m above the channel.  Previous workers correlated 

these bedrock strath terraces to the alluvial terraces on the coastal plain based 

on their relative position above the river (e.g. Lahondère et al., 1994). Age control 

on their formation is limited as recent optically stimulated luminescence (OSL) 

ages suggest that some of the alluvium overlying these strath surfaces are 

resultant of younger flood deposits as opposed to initial strath planation (e.g. 

Sømme et al., 2011).     

 

Geology 

Corsica has a complex geologic history and geologic rock units can be 

subdivided into four primary provences (Figure 1.2).  The Hercynian complex on 

the western two-thirds of Corsica predominantly consists of Carboniferous 

Hercynian calc-alkaline granites and Permian rhyolites emplaced during the 
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Figure 1.1 Location maps A) General location map of the western Mediterranean 
and digital elevation model of Corsica with the Golo River watershed outlined in 
black and locations referenced within the text.  B) Enlarged view of Golo 
watershed with individual tributaries and prominent peaks labeled.  

Bastia 

Marana 
Plain 
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Late Paleozoic Hercynian Orogeny between Laurasia and Gondwana to form 

Pangea (Tommasini et al., 1995).  The northeastern portion of Corsica (Alpine 

Corsica) is dominated by Late Cretaceous to Eocene oceanic and crustal thrust 

sheets of high pressure/low temperature metamorphic units that were 

metamorphosed during the Tertiary Alpine Orogeny between the African and 

Eurasian plate (Durand-Delga, 1984).  Later, another phase of compressional 

tectonics in the Late Eocene formed the Alps, Apennines, Pyrenees and other 

regional mountain ranges (Malavieille et al., 1998; Michard and Martinotti, 2002).  

In the Early Oligocene, there was a transition to large-scale extension and the 

collapse of the over thickened orogenic wedge accompanied by reactivation of 

the Alpine contacts (Jolivet et al., 1991; Brunet et al., 2000).  Continental rifting 

and counterclockwise rotation of the Corsica-Sardinia block away from mainland 

France continued as the Ligurian Basin (to the northwest) opened during Late 

Oligocene to Middle Miocene (Larroque et al., 2009).  Starting in the early 

Miocene, continued convergence of the African and Eurasian plates resulted in 

the uplift of the Hercynian basement and thrusting of the Alpine units (Mazzoli 

and Helman, 1994; Fellin et al., 2005b). 

Post-Miocene tectonic adjustment and reactivation of multiple extensional 

and compressional faulting is evidenced by apatite-fission track dating (AFT), 

and to a lesser degree, alluvial deposits (Conchon, 1977; Zarki-Jakni et al., 2004; 

Fellin et al., 2005a, 2005b).  AFT ages at the Hercynian-Alpine contact indicate 

extensional faulting in central Corsica at the beginning of the Miocene (~23 Ma)  
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Figure 1.2 Geologic maps A) Corsica with Golo River watershed outlined 
(Modified from Fellin et al., 2005a, 2005b).  B) Generalized map of the major 
geologic provenances described within the text (modified from Reille et al., 
1997). 
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followed by basin subsidence from 20-10 Ma (Zarki-Jakni et al., 2004; Fellin et 

al., 2005b).  Sediments with clasts from the Hercynian calc-alkaline granites were 

deposited in small Miocene basins, such as the St. Florent and Francardo basins 

(Figure 1.1B), implying that the ancestral Golo River once entered the Ligurian 

Sea through St. Florent Bay on the northern part of the island (Fellin et al., 

2005a, 2005b).  Compressional faulting during the Tortonian (11.5-7.2 Ma) 

inverted these basins and likely deflected the Golo River into its current path as a 

result of the uplift of the Tenda Massif (Fellin et al., 2005b; Cavazza et al., 2001, 

Cavazza et al., 2007).  AFT ages also point to the growth of the Cap Corse-

Castagniccia anticline at this time (Fellin et al., 2005b) (Figure 1.2).  As a result 

of anticline growth and topographic reorganization, clasts from the Alpine units 

were deposited on the Aleria Plain south of the Marana Plain (Figure 1.1) during 

the Messinian to Late Pliocene (7.2-2.6 Ma) and are also correlated to the 

reactivation of extension along the mountain front fault (Conchon, 1977, Jolivet et 

al., 1998; Mauffret et al., 1999).  Finally, a pop-up structure on the Marana Plain 

suggests left-oblique compressional-transpressional reactivation during the 

Pliocene to Quaternary (2.6-0.1 Ma) (Fellin et al., 2005b) with eastward tilted 

alluvial deposits suggestive of a response to flexural uplift in the Alpine units 

(Conchon, 1977).  Alternating cycles of compression and extension are mostly 

concordant with the convergence vector of the African- European plates (Fellin et 

al., 2005b).  
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As a result of this tectonic history, present day Corsica can be subdivided 

into four primary provinces: 1) calc-alkaline Hercynian granites and rhyolites 2) 

Jurassic terrestrial sediments, and Miocene conglomerates and continental 

sediments and 3) Cretaceous to Eocene Alpine metamorphic rocks 4) 

Quaternary sediments primarily on the coastal plain (Reille et al., 1997) (Figure 

1.2B). 

Climate 

Climate in Corsica is characterized as sub-tropical Mediterranean with dry, 

warm summers and temperate, wet winters. Corsica’s Mediterranean climate is 

influenced by the interaction between sea-surface temperature, circulation and 

atmospheric conditions.  The Mediterranean Sea is a semi-closed basin that is 

currently connected to the Atlantic Ocean through the Strait of Gibraltar, and  can 

be divided into the eastern and western Mediterranean at the Strait of Sicily 

(Figure 1.1A) (Rohling et al., 2009). Present day sea-surface temperatures at 

10m depth in the Western Mediterranean Sea and the northeastern coast of 

Corsica range from 21-24º C in the summer, 13-15º C in the winter and 17-19º C 

mean annual temperature (Hayes et al., 2005).   

Regional climate is also influenced by atmospheric circulation patterns 

such as the decadal North Atlantic Oscillation (NAO) (Hurrell, 1995).   Operating 

primarily as a result of pressure differences between the Azores high and the 

Icelandic low-pressure cell, the NAO’s positive and negative phases influence the 

jet stream and storm tracks (Hurrell, 1995). Positive NAO conditions push the jet 
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stream farther north and lead to dry conditions in the Mediterranean whereas 

negative NAO conditions lead to wet episodes in the Mediterranean (Hurrell, 

1995).   

The western Mediterranean is subject to both continental and polar air 

masses moving over Europe that become channelized through the Rhone Valley 

(Krumrie, 2009).  This is responsible for the dry air that forms the Mistral winds, 

which cause strong evaporation and reduced sea-surface temperature in the Gulf 

of Lyon (Rohling et al., 2009).  

In Corsica, mean annual precipitation increases from 600 mm per year 

near sea level along the western coast to ~1100 mm per year at 2000 m asl near 

the highest peaks (Bruno et al., 2001). Bastia, in northeastern Corsica, receives 

786 mm of precipitation per year with November as the wettest month and July 

as the driest month (Figure 1.3) (france.meteofrance.com).  During winter, snow 

falls on the high peaks.  While glaciers were present during the Pleistocene, no 

perennial snow fields currently exist in the high mountains.  Vegetation ranges 

from low maquis shrubs into Pinus nigra ssp. laricio forests before transitioning 

into sparse alpine vegetation on the highest peaks (Reille et al., 1997).   

A gaging station at Barchetta (le Golo à Volpajola) has recorded daily flow 

values since 1961 and the Golo River has been dam-controlled at Calacuccia 

since 1968 (Figure 1.4A).  This gaging station is located ~18 km upstream from 

the mouth of the river at 80 m asl and measures stream flow for the contributing 
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Figure 1.3 Nine-year record (2001-2009) of temperature and precipitation for 
Bastia, northeastern Corsica.  High temperatures and low precipitation mark the 
summer months while increased precipitation and cooler temperatures mark the 
transition into winter (france.meteofrance.com). 
 
 
 
926 km2 upstream. The hydrograph for the Golo shows a bimodal distribution 

with high flow seasons in the spring, due to snowmelt runoff, and in the fall, due 

to high intensity precipitation events (Figure 1.4B).  The fall and winter months 

show the most variability and deviation from the mean (Figure 1.4C).  The low 

flow season for the Golo River is predominantly in the summer months (July and 

August) when temperatures are high and precipitation is low.  There is some 

correlation between the period of highest precipitation in November and 

increased stream flow; however, the record also shows a strong spring runoff 

signature in March-April (Figure1.4).  Two events high-flow events in October of  

1976 and 1992 peaked above 300 m3/s, possibly due to heavy rainfall events, as 

October is one of the wettest months (precipitation records were not available for 

this time period).  
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Figure 1.4 Flow statistics for the Golo River, 1961-2009 (hydro.eaufrance.fr). A) 
Daily flow value for the entire record B)Ten year record showing peak flows in the 
spring and fall C) Maximum, minimum and mean flows for the 48 year record with 
high variability of peak flows above the mean in the fall, winter and spring with 
the summer months containing lower and less variable flow. 
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Quaternary Paleoclimate and Sea-level 

 Studies in the Alborán Sea, near the Strait of Gibraltar, have shown the 

sensitivity of the western Mediterranean to changes in the conditions of the North 

Atlantic on millennial scales related to changes in sea-surface temperature 

associated with Dansgaard-Oeschgar (D/O) events and Heinrich Events (HE) 

(Cacho et al., 1999).  Planktonic foraminifera assemblages from throughout the 

Mediterranean Sea indicate that sea-surface temperatures during the Last 

Glacial Maximum (19-23 cal. yr BP) were coldest in the western Mediterranean 

Gulf of Lyon (~7º C) and the warmest near the eastern Mediterranean Aegean 

and Levantine Sea (~16ºC) (Hayes et al., 2005).  

Because the Mediterranean is directly connected to the North Atlantic 

Ocean through the Strait of Gibraltar, the western Mediterranean sea-level record 

is similar to the global eustatic curve (Figure 1.5) (Waelbroeck et al., 2002).  

Relative sea level and shorelines in the western Mediterranean during the LGM 

were approximately 120-150 meters below present day sea level and ~135 m 

below present in Corsica based on hydro-isostatic predictions (Stewart and 

Morhange, 2009).  In western Sardinia, OSL dating of Pleistocene coastal 

deposits show a succession of four unconformity-bounded units with three sea-

level highstands at 186 ± 13 ky (OIS 7, 2.5 ± 1 m asl), 120 ± 10 ky (OIS 5e, 5.2 ± 

1 m asl), and 100 ± 5 ky (OIS 5c, 1.5 ± 1 m asl) and a final unit associated with 

sea-level fall and the beginning of the last glacial phase (OIS 4) (Andreucci et al., 

2009).   
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Calculations of equilibrium line altitudes (ELA’s) from glacial moraines, 

hypsometry, and isolines indicate that the average ELA for the Corsican 

mountains was at ~1600 m asl and temperatures were ~9.5°C cooler during the 

last glacial maximum (LGM) (Krumrie, 2009). Glacial termini extend to elevations 

as low as ~850 m asl along the Tartagine River within the Golo River watershed 

(Kuhlemann et al., 2005).  Large valleys in northern Corsica show higher 

Würmian (OIS 2) ELA’s on south-facing slopes relative to north facing slopes, 

most likely due to less precipitation and greater insolation (Kuhlemann et al., 

2005). Large differences in ELA’s along northwest flanks of the Corsican 

mountains between the cold phases of the late Würmian is explained by a 

intensified moist and cold conditions during the LGM resulting from a southward 

shift of the polar jet (Krumrie, 2009). Due to the steep ELA gradients, Corsica is 

regarded as an extremely sensitive area for paleoclimatic reconstructions 

(Krumrie, 2009).  Conchon (1988b) estimated that deglaciation within the 

Corsican mountains occurred 12,000 years ago through a comparison of 

sediment cores and palynological and radiocarbon dating.  Pollen studies using 

14C to date lake sediments just above a sand and gravel layer at Lac de Creno 

(1,310 m asl) in central Corsica show a steady rise in Pinus nigra ssp. laricio 

(typical of modern Corsican forests) starting at 14,560 ± 100 yr BP (17,255-

18,008 cal yr BP) (Figure 1.1) and indicate the end of Younger Dryas glaciation 

in Corsica at 10,035 ± 85 yr BP (11, 261-11, 829 cal yr BP) (Reille et al., 1997).  
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Previous Work  

The bulk of previous work on Quaternary deposits in Corsica was 

conducted by Conchon (e.g. Conchon 1972, 1975, 1977, 1978, 1979, 1984, 

1985a, 1985b, 1986, 1987, 1988a, 1988b, 1999; Conchon et al., 1986).  She 

used soil characteristics to map and correlate alluvial deposits assuming that an 

island-wide correlation between river catchments is possible.  Seven alluvial 

terraces were identified and differentiated based on soil-profile characteristics 

including the degree of clast weathering, clay content, soil color and clast 

composition.  Alluvial landforms were mapped as terrace units N1-N7, with N1 

representing the oldest terrace (Figure 1.6). Following Conchon’s work, the 

Bureau de Recherche Géologiques et Minières (BRGM) produced similar maps 

of the Golo River catchment (Lahondère et al., 1994).  For comparison of F-

series units, refer to Table 1.1, which synthesizes all the previous mapping 

nomenclature used for the fluvial terraces in Corsica as well as that of this study.   

Although seven, coarse grained, alluvial terraces were mapped by 

Conchon (1977) on the Marana Plain, the oldest terrace (N1) is not attributed to 

the Golo River and is found 4.5 km south of the Golo River along the small 

tributary (ruisseau de Novale) near the mountain front (60-80 m asl).  Conchon 

assigned relative ages for fluvial deposits based on an assumed 4-tier glacial 

chronology.  Deposits were correlated to the Würm (OIS 2-4) (N6-N4), Riss (OIS 

6) (N3), Mindel (OIS 8), (N2) and Güntz (OIS 10) (N1) glaciations.  Relative 

correlation of terraces based on soil color and weathering characteristics of 

 

http://www.hiti-fp6.eu/brgm.htm
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Figure 1.5 Record of A) global ice volume as a function of δ18O where positive 
values indicate warm conditions (less ice) and negative values indicate cold 
conditions (more ice) and B) sea-level over last glacial cycle (from Waelbroeck et 
al., 2002).  Dashed lines indicate boundaries between oxygen isotope stages 
(OIS). 
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alluvial clasts (with particular emphasis on diabases) was a centerpiece of 

Conchon's correlation and chronology.  Conchon found that iron 

monosiallitisation was the primary type of weathering found within the clasts of 

N1-N3 terraces and display decreasing intensity towards the younger units. 

These clasts range from highly weathered and altered rhyolites, grusified 

granites, and many completely disintegrated, ghost stones in N1 to thinner and 

less common weathering rinds on clasts in the N3 terrace deposits (Conchon, 

1978) (refer to Appendix A for more details).  Conchon described soils on the N1-

N3 terraces as characterized by a well-developed red (Conchon 1977, 1986).  N4 

and N5 terraces are characterized by brown soils.  N6 and N7 terraces have 

grey, poorly developed soils.  

This previous work, however, did not utilize geomorphic principles.  For 

example, paired terraces at the same height on each side of the river were 

mapped as different surfaces because younger capping overbank and marine 

onlap sediments produced soils with different degrees of weathering. 

Furthermore, age constraints for fluvial and coastal deposits on Corsica are 

limited.  Available age control for interpreted correlative fluvial deposits includes : 

sediment cores off the coast of Ajaccio, interbedded fluvial (N4) and marine 

sediments near Santana and 14C ages for the on the Aleria Plain (Conchon, 

1978, 1986a, 1986b, 1999).  

More recent work on the Golo River includes OSL ages on fluvial deposits 

from two terraces in the Francardo basin, one terrace on the Asco River and two 
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alluvial terraces on the Marana Plain (Sømme et al., 2011).  On the Marana 

Plain, Sømme et al. (2011) obtained ages of 0.89 ± 0.07 ka and 0.58 ± 0.06 ka 

from the N6 terrace surface and is assigned to Younger Dryas deposition with 

recent overbank deposits accounting for the young ages.  OSL Ages of 76 ± 5 ka 

(OIS4) and 45 ± 3 ka (OIS3) were determined for the N3 terrace surface and was 

used as the cornerstone to construct a depositional sequence for the Golo River 

(Sømme et al., 2011).  Upstream on the Golo River in the Francardo alluvial 

reach, he obtained ages of 58 ± 4 ka (OIS 3) for a strath terrace mapped as the 

N4 terrace and 8.4 ± 0.5 ka and 4.7 ± 0.4 ka for a deposit mapped as the N5; on 

the Asco River, he obtained ages of 7.0 ± 0.4 ka and 8.8 ± 0.6 ka for terrace 

mapped as the N5.    

These previous OSL results are problematic.   For example, despite N6 

ages pointing to 900-600 yrs, Sømme et al. (2011) correlate the N6 to the 

Younger Dryas.  In addition, the younger- than- expected- ages for the N5 and 

N4 strath terrace deposits likely reflects recent deposition, as there is flood debris 

in the trees above these low terrace deposits.  Sømme et al. (2011) associate the 

N5 surface to the LGM (OIS2) based on a relationship between climatic stability 

and the lateral extensiveness of the deposit as well as the correlation of the N4 

with OIS 3-4.  Although not discussed in detail, Sømme et al. (2011) conclude an 

OIS 6 (150 ka) age for the N2 surface based on height above the modern river 

and an assumed steady long-term incision rate.  
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Figure 1.6 Map of fluvial deposits along the Golo River, Marana Plain after 
Conchon (1977) nomenclature. 
 
 
 

Previous work by Conchon (1977, 1978, 1985, 1986) suggested there 

have been four glacial advances.  Similar to the relative age designation of fluvial 

deposits, Conchon used soil development and color to map glacial deposits in 

the highlands and to correlate them to fluvial deposits within the river valleys and 

on the coastal plains across Corsica.  The same numbering system was used in 

order to easily identify the time equivalent deposits; for instance, the G5 glacial 

deposit is correlative with the N5 fluvial deposit (Table 1.2) (Conchon 1986, 

1987).   
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Table 1.2 Comparison of results from Conchon (1978, 1989) and Krumrie 
(2009). 

 

 

 

 

 

 

 

 
 
 
 
 

 
 

More recent research by Krumrie (2009) has improved the glacial 

chronology of Corsica.  10Be cosmogenic surface exposure dating of boulders on 

glacial moraines has constrained four glacial advances during OIS 2-4 

(Würmian).  These include large valley glacier advances at ~30 ka (OIS3/2) and 

24-19 ka (LGM, last glacial maximum) while smaller valley glacier advances 

occurred at 17-14 ka (Heinrich event 1/Older Dryas) and 13-11 ka (Younger 

Dryas) (Krumrie, 2009).  Evidence of more extensive glaciations prior to the 

Würmian are present however these deposits have yet to be dated due to poor 

preservation of datable material.  Krumrie (2009) modified Conchon's previous 

proposed glacial chronology and determined that the age of most glacial deposits 

Glacial  
Deposit/Advance1 

δ18O  
Stage1 Glacial Period2  Krumrie (2009)3 

G7 1 modern to Holocene (13-5 
ka) 

Younger Dryas  
(13-11 ka) 

G6 2 late Würmian        
(24-19 ka) 

Older Dryas     
(17-14 ka) 

G5 3 middle Würmian    
(60-25 ka) 

Last Glacial Maximum         
(24-19 ka) 

 4-5e early Würmian/last 
interglacial  

G3 6 Riss         
(penultimate glacial)  

 8 Mindel  
(antepenultimate glacial)  

  10 Güntz                
(oldest glacial)   

1Glacial advance and assigned marine isotope stages based on Conchon (1986) 
2 Alps glacial periods following original terminology of Penck and Bruckner (1909) 
3 Based on 10Be dating of moraines 
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were overestimated, in some cases by ~10 ky and exemplifies the importance 

of absolute dating (Table 1.2).    

 
Fluvial response to external forcing 

Rivers are important geomorphic agents responsible for sculpting 

landscapes.  Fluvial dynamics and resultant deposits and landforms are 

controlled by three primary external forces: tectonics, climate and base-level 

(Holbrook and Schumm, 1999; Blum and Törnqvist, 2000).  Changes in base-

level can be controlled by eustacy, tectonic uplift, or subsidence, resulting in 

either base-level rise or fall.  However, the relative extent to which these forces 

influence a river system at particular times is not easily determined.  Fluvial 

adjustments to these external forces include changes in stream power and 

sediment transport, channel gradient and concavity, bedload and vegetation.  

The relative proportions of these factors and how they interact affect whether a 

system is constructive or destructive.  Evidence for past shifts in the fluvial 

regime can be seen in the form of terraces.  Stream terraces form in response to 

crossing a geomorphic threshold, where there is a change balance between 

sediment load and stream slope allowing for aggradation, degradation or 

equilibrium conditions (Bull, 1991).  Main types of terraces include fill terraces 

formed by valley alluviation followed by incision; fill-cut terraces formed by 

incision into an older fill deposit; and strath terraces formed by the lateral erosion 

and planation of bedrock followed by incision (Bull, 1991).   
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In general, base-level fall due to tectonic uplift drives incision and leads 

to terraces stranded above the active channel (Bull, 1991).  Strath terraces, like 

those along the lower bedrock reach of the Golo River, have a thin mantle of 

alluvium over a planar bedrock strath (Bull, 1991; Hancock and Anderson, 2002) 

and they are commonly found in tectonically active regions and rapidly incising 

systems (Bull, 1991).  Studies of terrace formation in tectonically active 

landscapes of western North America are good analogues to the Golo River.  

The studies of Merritts et al. (1994) and Snyder et al. (2003) on small watersheds 

(up to 655 km2) in California focus on catchments that are influenced by changes 

in sea-level, tectonics and climate.  Merritts et al. (1994) found that the formation 

of strath terraces is dependent on uplift rates while aggradational fill terraces in 

the lower reaches are controlled by sea-level high stands followed by incision 

during low stands.  

Modeling of strath terrace formation suggests that lateral planation rates 

and vertical incision are in competition and their balance changes as a result of 

stream competency and sediment supply (Hancock and Anderson, 2002).  These 

simulations suggest lateral planation during glacial times when sediment 

production was high, whereas transition to inter-glacial times sparks incision and 

terrace abandonment (Hancock and Anderson, 2002).   

Sea-level fluctuations influence both coastal geomorphology and terrace 

records (Figure 1.7). The rate of change associated with sea-level rise and fall 

will directly affect the response of a river system.  During base-level lowering, 

minor changes and slow rates of change are expected to result in lateral 
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migration, minor channel adjustment and reconfiguration, and channel 

elongation to meet the new sea-level, whereas relatively large changes and 

higher rates of sea-level fall will result in river incision (Schumm 1993; Koss et 

al., 1994).  A large magnitude, rapid lowering of sea-level may cause river 

incision to continue upstream even if sea-level returns to its original position due 

to headward migration of knickzones (Schumm, 1993). In contrast, raising sea-

level may result in the aggradation of sediment in order for the river system to 

compensate and maintain the same transport gradient (Schumm, 1993). Using 

flume experiments, Koss et al. (1994) found that fluvial aggradation only occurred 

during periods of base-level still stand or rise. 

An additional factor that influences fluvial response to sea-level change is 

the slope of the coastal plain compared to the slope of the continental shelf, 

which will control whether a system aggrades or incises (Blum and Törnqvist, 

2000) (Figure 1.7).   Sea-level during the Pleistocene was ~80-125 meters lower 

than Holocene conditions (Figure 1.5) causing Pleistocene river gradients to be 

steeper, with respect to a steep continental slope and shelf.  Marine onlap is 

seen where older Pleistocene deposits are buried by Holocene deposits due to 

sea-level rise.  In the case of the Golo River, the modern gradient of the 

continental shelf is steeper than that of the Marana coastal plain, as in 

Figure1.7B.  During OIS 2 and OIS 6, it is expected that the sea-level lowstand 

caused true base-level fall and increased the effective gradient of the Golo River, 

resulting in incision, as seen in Figure 1.7B.   
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Figure 1.7 Fluvial response to base level change and coastal geometries  
(modified from Blum and Törnqvist, 2000). A) Channel response to highstand 
and lowstand levels as well as directions of change (incision/aggradation) and 
limits of influence.  ΔSL indicates changes in sea-level.   B) When the gradient of 
the coastal plain is less than the gradient of the shelf, lowering sea level with 
cause extensive incision and channel extension. C) When the gradient of the 
coastal plain is greater than the gradient of the shelf, channel extension and 
aggradation will occur.  D) When the gradient of the coastal plain and shelf are 
equal, channel extension with little to no incision or aggradation will occur.  
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Research Objectives 

The objectives for this study are to assess the impacts of sea-level, 

climate and tectonics on the geomorphology and terrace development of the 

coastal plain.   

The research objectives include: 

1. Mapping and describing the Quaternary deposits of the Marana 

Plain associated with the Golo River to provide insight into fluvial 

response to climate and sea-level change.   

2. Provide age control for terrace deposits using OSL to determine the 

timing of alluvial deposition relative to local and regional sea-level 

and paleoclimate records. 

3. GIS/geomorphic analysis of longitudinal profiles and hypsometry of 

the Golo drainage basin to assess potential tectonic and climate 

signals. 

Research Strategy 

Here, a collection of geomorphic and geochronologic data are used to 

help interpret the primary forcings responsible for deposition and alluviation on 

the Golo coastal plain.  Problems with previous work highlights the importance of 

good age control of deposits on the coastal plain.  This research is important 

because it is provides on-shore to off-shore correlation and ties together the 

large-scale dynamics of this source to sink record.  For example, results from this 

research can be used to compare onshore deposits to offshore deposits and 
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understand their formation in relation to sea-level, climate and fluvial dynamics 

in sequence stratigraphy context.  The Golo catchment is a good location for this 

assessment due its small size with direct influence of base-level changes, 

tectonic activity and Quaternary climate change on the fluvial record.   

Although mapping by Conchon and the French Geological Survey apply 

consistent N-series and F-series map units throughout the Golo River and other 

catchments in Corsica, it is not certain that the terrace chronology developed on 

the coastal plain should be applied to the higher and more numerous strath 

terraces of the upper Golo River watershed.  This study applies surface 

descriptions and an OSL derived chronology only to the Marana Plain deposits in 

the vicinity of the Golo River.   
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CHAPTER 2 

GEOMORPHIC AND OSL RECORD OF THE RESPONSE OF THE GOLO 

RIVER TO CLIMATE AND SEA-LEVEL, MARANA PLAIN, NORTHEASTERN 

CORSCA, FRANCE 

 
Age control on the Golo River terrace deposits is needed to assess river 

response to climate (glaciation) and sea-level change over recent glacial cycles. 

This chapter aims to improve previous soil-development based correlations and 

interpretations of alluvial deposits of the Golo River on the Marana Plain and 

improve the age estimates for these deposits through geomorphic mapping and 

optically stimulated luminescence (OSL) dating of fluvial and alluvial terraces, 

alluvial fan and beach deposits.  

Methods 

Geomorphic Mapping and Relative Dating  

Mapping of the Marana Plain was conducted using a topographic base 

map and was facilitated by the use of geologic maps.  Analysis of aerial photo 

stereo-pairs and Google Earth imagery was used to identify subtle changes in 

topography.  In addition, soil profiles and weathering rinds on clasts were 

examined to corroborate previous work as well as to compare the relative degree 

of weathering between surfaces (Appendix A).  In October 2010, new road 

construction in a roughly N-S transect created exposures cutting across Golo 

River deposits and a locally sourced alluvial fan on the Marana coastal plain.  
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The fortuitous timing of our fieldwork created an opportunity to examine deep, 

continuous outcrops and allowed for greater selection in sampling sites.     

All deposits were assigned relative ages based on landscape position and 

stratigraphic relationships.  Although the area had been previously mapped by 

Conchon (1977) and later again by Lahondére et al. (1994), they assumed that 

landforms with surface soil properties and similar elevations were the same 

geologic map unit (Figure 1.6).  To avoid confusion with the previous ‘N’ and ‘F’ 

series terraces names, local place names were used here to identify map units 

and surface deposits.  

Optically Stimulated Luminescence Dating 

The primary method used to provide age control on the Quaternary and 

Holocene alluvial deposits in this study was optically stimulated luminescence 

(OSL) dating.  Previous applications of OSL dating on Corsica focused on dating 

glacial, glacio-fluvial and some fluvial deposits (Krumrie, 2009; Sømme et al., 

2011). However these attempts were largely unsuccessful possibly due to 

feldspar contamination of the quartz samples, lack of sensitization of the quartz 

or poor selection of sediment for sampling.   

In total, 15 samples were collected from the six major alluvial and colluvial 

units within the study area.  Exposures due to active road construction served as 

the basis for most sample site selection due to the excellent lateral and vertical 

exposures. Two samples for OSL were collected from each surface/deposit, with 

the exception of the Canonica Terrace where three samples were taken.  Only 
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one sample was collected from one of the oldest Holocene beach ridges.  

Multiple samples were taken from sediment underneath each surface in order to 

provide a higher degree of confidence in age results as well as to serve as a 

backup if any problems were encountered.  OSL results for each location can be 

found in Table 2.1 and dose rate information associated with each sample can be 

found in Table 2.2.  Site descriptions refer explicitly to the surfaces found on the 

Marana Plain and correlation upstream throughout the valley or island-wide was 

not attempted or intended in this study.  For detailed OSL equivalent dose 

distributions and data refer to Appendix B. 

OSL Background 

The OSL technique provides an age for sediment deposition by 

determining the amount of time that has passed since the sediment was last 

exposed to sunlight, presumably during transport.  Minerals, such as feldspars, 

can be used for luminescence dating, however, due to properties such as 

anomalous fading and internal dosimetry, quartz is the primary mineral used in 

this study. 

During sediment transport, exposure to sunlight ‘bleaches’ the sediment 

and resets the luminescence signal.  The process of resetting occurs as a result 

of the eviction of electrons trapped within defects in the crystal lattice of the 

minerals (Huntley, et al 1985).  Once deposited, the sediment begins to re-

accumulate a signal as a result of radioactive decay of Potassium-40, Rubidium-

87, Thorium and Uranium and exposure to cosmic rays (Aitken, 1998).  Ionizing 
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radiation from alpha particle (α) decay penetrates 3 μm into grains while beta 

decay (β) can extend 3 mm into a grain.  Gamma rays (γ) travel much further and 

influence sediments within a 30cm radius of each grain.  The radioactive 

contribution from alpha, beta and gamma particles and cosmic rays (c) is 

collectively referred to as the dose rate environment for a sample and is 

expressed as grays per thousand years (Gy/ka) (Aitken, 1998).   

𝐷𝑜𝑠𝑒 𝑟𝑎𝑡𝑒 = 𝐷𝛼 + 𝐷𝛽 + 𝐷𝛾 + 𝐷𝑐                        (1) 

Additional factors that contribute to dose rate are depth, sediment density, and 

moisture content.  Moisture content can highly influence dose rate calculation. 

Water filling pore space within the sediment will attenuate and absorb a portion of 

the incoming radiation and if unaccounted for will result in an age 

underestimation (Aitken, 1998). Ionizing radiation expels electrons from atoms 

within the crystal lattice.   These electrons diffuse through the crystal lattice until 

they encounter a defect that is attractive to electrons (such as substitution or 

point defect) known as a ‘trap’ (Aitken, 1998).  The longer the sample is exposed 

to ionizing radiation, the more electrons can accumulate in the traps until 

stimulation by light or heat evicts the electrons (Aitken, 1998).  Eventually, due to 

the filling of available traps, electrons become in competition with each other and 

eventually reach a point where no more electrons can be stored.  This is referred 

to as saturation and the saturation level of a mineral grain limits the maximum 

age attainable.     

  

 



 Ta
bl

e 
2.

1 
O

S
L 

re
su

lts
 fo

r M
ar

an
a 

P
la

in
 a

llu
vi

al
 a

nd
 c

ol
lu

vi
al

 s
am

pl
es

 

 
 

30 



 Ta
bl

e 
2.

2 
D

os
e 

ra
te

 in
fo

rm
at

io
n1  fo

r O
S

L 
ag

e 
ca

lc
ul

at
io

n 

 

31 



 32 
The amount of radiation a sample has acquired over time is referred to 

as the equivalent dose, De, and is determined by comparing the natural 

luminescence of the sample to the luminescence produced in the laboratory by 

applying a sequence of known doses.  The age of the sample is determined by 

the equation where  

𝐴𝑔𝑒 (𝑘𝑎) = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐷𝑜𝑠𝑒 (𝐺𝑦)

𝐷𝑜𝑠𝑒 𝑅𝑎𝑡𝑒 (𝐺𝑦𝑘𝑎)
                             (2) 

The single-aliquot regenerative dose (SAR) protocol (Murray and Wintle, 

2000) is a method for determining the De through multiple cycles of heating, 

dosing, stimulation and measurement on the same aliquot, as well as a test dose 

that corrects for any sensitivity changes during measurement cycles (Table 2.3).  

During stimulation, the amount of photons released during blue-green LED light 

stimulation is proportional to the amount of radiation a sample has received since 

the time of deposition and thus is related to the age of the deposit and dose-rate 

environment.  

The SAR protocol typically involves six cycles where differing doses are 

given and measured in order to create a dose-response curve that is used to 

determine the De (Figure 2.1).  In the first cycle, no dose is given because the 

aliquot already contains the natural burial dose.  Aliquots are then preheated for 

10 s (160-300° C) to release geologically unstable traps (such as the 110° 

thermoluminescence (TL) trap) that would otherwise contribute to the measured 

luminescence.  Next stimulation with blue-green light (470 nm) at 125°C for 40 s 

(to keep the 110° TL traps from refilling) is applied and luminescence is 
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measured.  A test dose is given followed by applying a cut heat of 160-220°C 

for 0 s (to empty the 110°C TL traps) and measurement of this dose at 125°C for 

40 s.  Because the same low test dose is given at the end of each cycle, this 

measurement is used as a monitor for sensitivity changes.  The cycle is repeated 

with three regenerated doses that aim to bracket the natural signal measured in 

the first cycle. A zero-dose cycle is applied to identify if the sample has a 

recuperated signal.  At the end of each SAR sequence, a repeated dose, 

typically the same as the first dose, is applied to determine if the test-dose 

sensitivity corrections are adequate to produce the similar results for the same 

dose given at different times within the protocol.  

During light stimulation and OSL decay, a shine-down curve is created as 

the more easily bleached traps quickly evict their electrons and decay towards a 

lower rate of eviction until the aliquot reaches an asymptotic background level 

(Figure 2.2).  The shape of this curve is seemingly a simple single exponential 

decay.  However typical OSL signals are a modulation of three to five 

components with different decay rates: ultrafast (sometimes), fast, two medium 

components and two to three slowly decaying components (Aitken, 1998). The 

ultrafast component is associated with a shallow electron trap that is thermally 

unstable with a very short lifespan (~1.5 yrs) that is responsible for its absence in 

the natural signal (Jain et al., 2003).  In order to isolate the most readily bleached 

fast component of the OSL signal, it is necessary to subtract the slowly decaying 

component at the end of the signal from the quickly decaying component at the 

beginning (calculated as the first 0.64 s minus the average of the last 5 s of  
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Table 2.3 Single aliquot regenerative dose protocol (after Murray and Wintle 
2000). 
Step  Treatment Observed 
1 Give dose1, Di - 
2 Preheat (260, 240° C for 10s)2 - 
3 Stimulate for 40s at 125° C Li

3 
4 Give test dose, DT - 
5 Heat (220, 160° C)2 - 
6 Stimulate for 40s at 125° C Ti

3 
7 Return to Step 1 for five regen dose 

cycles (N, R1, R2, R3, R0, R1’) 
- 

1 For the natural sample, i=0 and D0 is the natural dose 
2 (USU 797-798 and 864-869, USU 860-863) 
3 Li and Ti are derived from the stimulation curve, typically the first 
1-10 s of initial OSL signal, minus a background estimated from 
the last part of the stimulation curve. 

 
 
decay).   In some cases, unwanted and potentially unstable intermediate 

components are included in the initial signal.  For these cases, an 

alternative approach of integration time is necessary.  A modified equation 

following Cunningham and Wallinga (2010) integrates the signal as the 

sum of the first two channels minus two times the average of the following 

four channels (3-6) in order to isolate the fast component.  This technique 

is referred to as early background subtraction (EBG).    

Because De can be dependent upon preheat temperature, it is important 

to determine where the De form a plateau and variation is at a minimum (Murray 

and Wintle, 2000).  A dose-recovery test assesses the accuracy of the SAR  

protocol in reproducing an applied dose.  The chosen applied dose should be 

similar to the expected natural dose of the sample and the ratio of the measured 

dose to the known dose should result in unity, ± 10% (Wintle and Murray, 2006).  

When plotting the ratio of the given dose to the recovered dose as a function of  
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Figure 2.1 Test dose plot and dose response curve for sample USU-864.  Test 
doses are seen as pink circles on the top graph and show that the SAR 
sequence is capable of correcting for sensitivities to within two standard 
deviations for this aliquot.  The dose response curve is constructed using 
regenerated laboratory doses (blue diamonds) to interpolate the natural OSL 
signal (N, pink square) of each aliquot.  Three regenerative doses (R1, R2, R3), 
one zero dose (R0), and one repeated dose (R1') bracket the natural dose to 
determine an equivalent dose.  Low recuperation (R0 signal) and a good 
recycling ratio (R1:R1') contribute to a good saturating exponential plus linear fit 
for this aliquot.  The green triangle represents the luminescence signal from the 
first test dose. Test dose 1 corresponds with the measurement of the natural 
dose while test dose 6 corresponds with R1'. 
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Figure 2.2 Shinedown curve with the response signals for the various steps 
throughout the SAR protocol.  This curve shows the first 40 out of 250 channels.  
The natural signal is shown in pink. 

 

preheat temperature, the least error and closest reproduction of the given dose 

indicate the best fit preheat temperature for the sample.   

In this study, two preheat-plateau dose-recovery tests were completed on 

two samples of differing age, USU-798 and USU-863 with temperatures ranging 

from 200-300°C and 180-280°C (Figure 2.3). Thirty-five aliquots of USU-863 

were given ~7.3 Gy of radiation.  A rough plateau in De results emerged between 

240 and 260°C.  Recuperation of the signal as well as the recycling ratio were 

lowest at 180°C and 220°C; however, dose recovery was best at 200°C and 
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240°C with less error associated with 240°C.  A 240°C preheat and 160°C cut 

heat was used for USU-863,-862 and -861, which were collected from the 

youngest terrace deposit.  Thirty-five aliquots of USU-798 were given ~129.19 Gy 

of radiation.  A rough DR-PH plateau emerged between 220 and 260°C.  This 

sample returned the lowest recuperation at 220°C and a recycling ratio near unity 

at 220°C and 260°C with lower error associated with the 260°C preheat.  During 

analysis, it was suspected that there was some contribution from an unstable 

ultrafast component so the cut heat was raised to 220°C following Jain et al. 

(2003).  A 260°C preheat and 220°C cut heat was applied to all samples except 

those from the youngest terrace.    

Additional factors affecting De and age determination include partial 

bleaching or incomplete resetting of the OSL signal prior to burial. This becomes 

especially important in the fluvial system due to either turbidity in the water 

column inhibiting penetration of light to grains, transport at night and erosion and 

rapid transport of sediment from river banks of older deposits (Olley et al., 1998; 

Rittenour, 2008, and references within).  Incomplete resetting of the signal results 

in the contribution of a residual signal being included in the measurement.   

Due to the proximal distribution of sediments and influence of glaciation in 

the headwaters of the Golo River, partial bleaching was anticipated.  When 

graphed, partial bleaching can be recognized as an asymmetrical distribution of 

equivalent doses skewed towards higher De values (Olley et al., 1998). Where 

there is a high degree of asymmetry, the lowest doses are thought to represent 

 



 38 

 

 

 
Figure 2.3 Dose recovery, recycling and recuperation results from USU-863 
(filled in circles) and USU-798 (hollow circles). A) Dose recovery test shows that 
240°C is nearest unity with the least error for USU-863 while 220-260°C are likely 
candidate preheat temperatures for USU-798. B) The recycling ratio (R1'/R1) for 
USU-863 is lowest from 220-240°C with the least error on 220°C.  USU-798 has 
good recycling and low error from 220-260°C. C) The percent of the given signal 
recuperated is lowest between 220-260°C for both samples.  Light red bars 
indicate the preheat temperature chosen for USU-863 and the light blue bars 
indicate the temperature chosen for USU-798.        
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the true burial age (Olley et al., 1999).  Statistical age models have been 

developed to address dose distributions in a variety of depositional 

environments.  These include the central age model (CAM) and the minimum 

age model (MAM) (Galbraith et al., 1999). 

Sample Collection and Analytical Preparation 

Fifteen samples were collected from eight sites on the Marana Plain near 

the Golo River.  In general, multiple samples were taken from different depths 

and/or lenses of each deposit to reinforce the validity and reproducibility of the 

OSL-derived ages and monitor for problems with individual samples. 

Samples were collected using opaque steel tubes hammered into sandy 

interbeds.  Sediment from a 30 cm diameter around the sample tube was 

collected for dose-rate calculation and moisture content.  Elevation, latitude, 

longitude and sample depth were recorded for the calculation of the cosmic 

contribution to the dose rate (following Prescott and Hutton, 1988).  All samples 

were processed under dim amber light conditions (~590 nm) at the Utah State 

University Luminescence Lab, Logan, Utah, USA.  Elemental analyses for dose-

rate calculation were performed at ALS CHEMEX Labs, Sparks, Nevada, using 

ICP-MS and ICP-AES procedures.  Small aliquot age estimates on quartz sand 

were determined using the single-aliquot regenerative-dose (SAR) protocol of 

Murray and Wintle (2000).  

In order to reduce the potential of incorporating exposed or mixed-origin 

grains into the target sample, outcrops were cleared back in the field before 
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sampling and in the lab ~2 cm of sediment was discarded from the ends of 

each tube to remove sediment exposed to light during sampling. Samples were 

wet sieved to target grains between 75-250 µm (eg. 75-150, 90-150, or 150-250 

µm, see Table 2.2 for grain size used for each sample).  All samples were treated 

in 10% hydrochloric acid to remove carbonates followed by household bleach to 

remove organic material. Heavy minerals were removed from the remaining 

material using sodium-polytungstate (2.7 g/cm3).  The lighter suspended minerals 

(mostly quartz and feldspars) were then treated in 47% hydrofluoric acid for a 

total of three thirty-minute treatments with the hydrofluoric acid decanted and 

replenished following each treatment.  The hydrofluoric acid step is aimed to 

dissolve feldspars and to etch the outer 5-10 µm of the quartz grains to remove 

any contributions from alpha radiation as well as any iron staining of the grains.  

This was followed by a 37% hydrochloric acid rinse to remove any precipitated 

fluorides.  After rinsing and drying, the samples were dry sieved to remove 

partially dissolved feldspar and quartz grains <75 µm.     

 Aliquots of the remaining quartz sand were adhered in a monolayer to 

stainless steel disks using a silicon spray.  All samples were loaded within a 2 

mm diameter area in the center of the disk and consist of ~120 grains for 

samples sieved to 75-150 µm and ~45 grains for samples sieved to 150-250 µm.  

Due to low luminescence response, sample USU-870 was loaded using a 5 mm 

diameter area mask and consists of ~500 grains for the 90-150 µm grain size 

fraction.  All optical measurements were performed at 125° C on Risø TL/OSL 

DA-20 readers with blue-green light emitting diode (LED) stimulation (470 nm) 
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and an intensity of 40 and 50 mW/cm2, using a 7.5 mm Hoya U-340 detection 

filter, with 90% diode power and a 90Sr/90Y β-irradiation source (dose rates of 

0.1458 and 0.1276 Gy/s).  

Results 

Geomorphic Mapping  

Using geomorphic principles and OSL dating, results of this study suggest 

that there are four discernible Golo River terrace surfaces on the Marana Plain 

(Figure 2.4).  During the course of this study, several inconsistencies and 

problems with previous mapping were addressed and modified.  These include 

four major changes, described as numbered on Figure 2.5:  1) The BRGM Fy1 

and Fy2 map units of Lahondére et al. (1994) were combined here into one unit, 

mapped as the Qat3, Poretta Terrace. 2) The BRGM Fy3 and Fz units were 

modified to reflect younger terraces (Qat1 and Qat2) that are much wider than 

originally mapped and incorporated some of the Fy2 on the southern side of the 

Golo River.  In addition, part of the Fy2 was modified to reflect a gently seaward 

dipping marine onlap overlying the Qat3 near the coastal margins.  3) The BRGM 

geologic map has the Fx unit mapped on the north and south side of the Golo 

River.  The Fx unit on the southern side of the Torra Terrace is an inset terrace 

(mapped here as QatL) that is not associated with the Golo River.  On the 

northern side of the Golo River, the Fx unit is a fan shaped deposit that consists 

of angular, poorly sorted, locally sourced Schistes Lustrés and is referred to as 

the Revinco Alluvial Fan, Qafo. 4).  On the southern side of the river near the 
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mountain front, the Fw unit was revised as Qac (Quaternary alluvium-

colluvium) with additional local tributary sediments cross-cutting this unit now 

mapped as Qal (Quaternary alluvium).   

Sample Descriptions and Locations 

Golo fluvial gravels are differentiated from other coarse-grained alluvial 

deposits on the Marana Plain by the presence of granites and rhyolites sourced 

from the Hercynian basement rocks found in the headwaters.  Field 

investigations identified four terraces of the Golo River, described below (Figure 

2.4, Table 2.4).  Local tributaries and stream catchments emerging onto the 

coastal plain originate in the Schistes Lustrés and consist primarily of angular 

fragments of metabasalts and schists.  Within the canyon reach of the Golo River 

just upstream of the coastal plain, terraces are discontinuous strath terraces and 

difficult to correlate.  However on the Marana Plain, there are fill terraces that are 

more easily identified and correlated and are the focus of this study.  Good 

natural exposures of terrace deposits are rare due to the low gradient of the 

Marana Plain but the aforementioned road cuts proved vital in OSL sample 

collection.  In addition to samples from three of the four terraces, OSL samples 

were taken from two alluvial/colluvial deposits, one laterally continuous sandy 

unit beneath an alluvial fan and from the farthest inland beach ridges in the 

region (Table 2.1, Figure 2.4, Appendix B).   
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Figure 2.4 Geologic map of the central Marana Plain (from this study). 
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Canonica Terrace (Qat1-Qat2) 

The upper and lower Canonica fill-cut fluvial terrace ranges from 0.5-4 m 

above the modern river.  These terraces are interpreted to be inset into an older 

OIS 2 alluvial fill deposit when the Golo River was graded to a lower sea-level 

(Figure 2.6).  The upper Canonica terrace is host to a historic 12th century 

church, Cathédrale de la Canonica, on the north side of the river ~3.5 km from 

the river mouth.  Levees were built on this terrace to mitigate modern flooding.  

The upper Canonica surface (Qat2) is more extensive on the southern side of the 

river; however no samples were collected from this deposit in this study, as there 

were no adequate exposures other than the historic site previously sampled by 

Sømme et al. (2011).  A map of the Marana Plain from 1866 AD shows a portion 

of the river in a more southern position and as a braided stream (Figure 2.7).  

The lower Canonica Terrace (Qat1) may represent an inset floodplain due to 

northward migration of the Golo River.  

On the south side of the Golo River, the Paduloni site is on the lower 

Canonica terrace (Qat1) and is located ~500 m from the modern river and 3 m 

above the modern river (Figure 2.8).  Approximately 3 meters of soil and alluvium 

are exposed at this.  This deposit is characterized by weakly imbricated cobble to 

pebble gravels with sandy interbeds overlain by ~2m of gray silty sandy loam 

(10YR 4/4) interpreted to be overbank deposits and weakly developed soil 

horizons. Three samples were taken at the Paduloni road cut and represent a 

suite of depositional ages, ranging from terrace building to overbank silt 
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deposition.  Sample USU-861 was collected near the base of the overbank 

silts 2.3 m depth from a dark brown (7.5 YR 3/4) medium lower sand-rich bed 

and produced an age of 0.58 ± 0.16 ka.  USU-862 was taken 2 meters below the 

present surface in a cobble to pebble gravel unit within a ~0.4 m thick dark 

yellowish brown (10YR 5/3) medium upper to medium lower sand lens.  This 

sample produced an age of 0.70 ± 0.21 ka.  The stratigraphically deepest 

sample, USU-863, was taken 3 meters below the surface in a fine upper to 

medium lower sand lens within a cobble to gravel unit.  This sand lens contains a 

humic layer with iron staining near its upper boundary, although no identifiable 

samples for 14C were found.  USU-863 produced an age of 1.02 ± 0.23 ka. 

Poretta Terrace (Qat3) 

The Poretta terrace is the most extensive surface on the Marana Plain (Figure 

2.9).  The tread of the Poretta terrace ranges from 2.5-10 m above the modern 

river.  The range in height is due to the Poretta terrace having a steeper gradient 

than the modern river.  The Poretta terrace is evident at the mouth of the Golo 

River, and fans out across the coastal plain with the steepest gradients near the 

mountain front.  This surface was once a large, braided fan of the Golo River as 

indicated by its surface characteristics, clast provenance, and sedimentary 

structures. Imbricated cobbles and gravels with frequent lenticular sandy 

interbeds characterize the Poretta alluvial deposit.  It has well a developed mollic 

soil (7.5 YR 4/4) with a ~1m Bt horizon.  Multiple operating gravel pits exist on 

this surface with one exposure on the seaward side of the Bastia-Poretta airport  
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Figure 2.8 Lower Canonica terrace at Paduloni site on the southern side of the 
Golo River.  Three samples were taken and were OSL dated to 0.58-1.02 ka.  A) 
USU-861. Dark black line indicates the transition from fine overbank sediments to 
fluvial channel deposits. B) USU-862 C) USU-863 D) Composite stratigraphic 
column of Qat1 E) Location map of samples. 

E 
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Figure 2.9 Two Poretta terrace (Qat3) exposures on the northern side of the Golo 
River.  A) Two-meter thick continuous exposure within the Betag gravel pit B) 
Solid black lines indicates sand lens sampled (USU-797) within the gravels C) 
USU-798 sand lens (solid black line). Dashed line separates disturbed soil above 
Qat3 D) Exposure of an intact soil profile in overbank fines overlying rounded 
fluvial cobbles of the Qat3 (separated by the black dotted line) E) Location map 
for Poretta terrace samples and Biguglia beach ridge sample denoted by stars. 
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exposing more than 5 meters of gravel in steep-walled trenches.  The Poretta 

terrace is buried by Holocene coastal sediments and overbank deposits near the 

coast, with the onlap point up to 2.5 km inland from the current shoreline.   

Betag Gravel Pit  

The Betag gravel pit is located on the north side of the river and exposes 

the upper ~2 meters of imbricated, rounded cobbles with occasional sand lenses 

(Figure 2.9 A).  The original land surface and soil profile at this site has been 

modified by erosion and anthropogenic influences; however there is still a soil 

profile visible in places.  Sample USU-797 was taken from a meter thick sand 

lens with redoximorphic features.  This sample was taken 1.9 m below the 

original surface (near the water line in the pit) and produced an OSL age of 49.7 

± 6.5 ka.                                 

Old Golo Canal  

An old canal runs parallel to the mountain front on the north side of the 

river connecting the Golo River to the Mormorana River.  The original surface at 

the sample location was removed; however, less than five meters to the east, an 

exposure of the 0.9 m intact brown soil profile with the underlying fluvial gravels 

is visible (Figure 2.9 B).  The soil exhibits increasing clay content with depth and 

clay films on angular to columnar ped faces (Bt horizon).  The soil is highly 

micaceous with small pebbles and medium to coarse sand and few to no roots.  

Neither the soil nor the matrix of the fluvial gravels reacts to HCl.  The canal 

exposes ~4 meters of clast supported, imbricated river cobbles.  Sample USU-
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798 was taken within a 0.4 m thick, medium to coarse grained sand lens 

~1.95m below the original surface.  OSL results for USU-798 produced an age of 

56.7 ± 6.5 ka.  

 
Torra Terrace (Qat4) 

The Torra Terrace is the highest of the alluvial terraces associated with 

the Golo River on the Marana Plain (Figure 2.10).  This terrace ranges from 20-

40 meters above the modern river and is only preserved on the southern side of 

the river.  This unpaired terrace is the least aerially extensive Golo River terrace 

on the Marana Plain.  The Torra terrace is cross-cut by the Poretta terrace but 

neither the base of this deposit nor the contact between these two terraces were 

seen.  The slope of the Torra terrace is much steeper and distinctly different than 

that of the other terraces.  This terrace is highly dissected by gullies and 

channels and its riser is abutted by a thick alluvial/colluvial apron (Qac) 

composed of reworked gravels along the terrace riser to the north.   

The Torra pit, a small deep pit (50m x 20m x 5m) on the north side of road 

D237 exposes a contact between fluvial gravels and fine-grained alluvial 

slopewash.  Approximately 5 meters of cobbles and gravels is exposed.  The 

surface has been modified through cultivation and erosion with approximately 2 

m removed (but is included in the total depth for OSL determination of USU-868 

and 869). Deposits are interpreted to represent channel facies of the Golo River 

based on the nature of the deposits and clast provenance.  Fluvial gravels 

consist of rounded clast-supported boulders, cobbles and pebbles with 
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uncommon thin sand lenses no more than 30 cm thick.  These gravels contain 

intensely grusified granites, and weathered calcschists, micaschists and 

metabasalts.  OSL sample USU-868 was taken from a 0.25 m coarse-grained 

sand lens 2.5 meters below the present land surface.    USU-869 was taken from 

2 m depth in a structureless 0.3 m fine to medium sand lens with highly 

weathered pebbles.  OSL age results for USU-868 and USU-869 are 51.8 ± 6.0 

and 62.5 ± 12.4 ka. These results are thought to be minimum ages due to the 

extensive weathering and uncertainties in dose rate (see Discussion section). 

 
Torra reworked alluvium (Qac) 

On the southern side of the river, there is a composite alluvial-colluvial 

deposit mapped as a colluvial apron along the terrace riser off the northwestern 

side of the Qat4 (Figure 2.11).  Near the Qat4 terrace tread-riser break, this 

deposit is poorly sorted, clast supported with a coarse grained matrix and 

predominantly consists of rounded Golo River clasts.  Further upslope and 

stratigraphically higher, this deposit becomes finer and contains angular clasts.     

Torra pit 

Within the Torra pit, an inset surficial deposit of poorly sorted, coarsening 

upwards, medium to fine sand containing angular clasts abuts the paleo- 

erosional scarp of the Torra terrace and thickens away from the contact with 

fluvial cobble gravels of the Torra terrace deposits (Figure 2.11A).  This deposit 

also contains layers of matrix supported, poorly sorted, weakly stratified alluvium 

near the top of the outcrop and may interfinger with the Torraccia road cut further  
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Figure 2.10 Torra pit exposure of the Torra terrace (Qat4). Dashed black lines 
represent the contact between the fluvial and colluvial deposits A) Torra terrace 
exposure in the Torra pit B) USU-869 C) USU-868 D) Location map, stars denote 
sample locations. 
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downslope.  Soil development into this deposit is less than with the Torra 

alluvium and there are manganese stains within and along rootlets and pores.   

USU-872 was taken from 2 m depth from a brownish yellow (10YR 6/6) medium 

to fine grained sand and produced and age of 28.6 ± 4.3 ka.   

Torraccia road cut 

Near the toe of the Torra Terrace, a road cut near Torraccia (17 m asl) has 

exposed reddened matrix supported gravels and sand (Figure 2.11 B, C).  This 

exposure is just north of the Torra Pit exposure along the terrace riser between 

the Torra and Poretta terrace.  Within the 2.5 meters of exposure, a thin (~0.6 m) 

horizon of cultural fill overlies poorly sorted, yellowish red, 5YR (5/6) matrix 

supported, rounded boulders and coarse gravels with sparse, subangular to 

subrounded, fine upper to very coarse upper sand (177-2000 μm) interbeds.  

This deposit is interpreted to be reworked alluvium of the Torra deposit draping 

the terrace scarp down to the Poretta terrace.  Two sample tubes were collected 

for each sample due to the coarse-grained nature of the available sand lenses.  

USU-864 was collected from 1.35 m depth within sandy gravel and OSL results 

return an age of 32.6 ± 3.9 ka.  USU-865 was collected at 2 m depth from a 0.4 

m thick, fine to medium sand lens exhibiting massive structure to weak 

stratification with some pebbles. OSL results for USU-865 suggest an age of 41.1 

± 3.7 ka.   
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Figure 2.11 Torra reworked alluvium (Qac) localities on the southern side of the 
Golo River.  A) View north-northwest towards Golo River of the Torra pit.  OSL 
locations are noted by white circles with the X.  The black line indicated the 
contact between the Qat4 and the Qac3.  Arrow in the background indicates 
approximate location of photos in B and C near the trees (~200 m).  B) USU-865 
C) USU-864 Red lines indicate boundaries of internal sand lenses in which OSL 
samples were taken from and dashed red line is where the contact is inferred.  
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Revinco Alluvial Fan (Qafo) 

On the north side of the Golo River, various local tributaries form a radial 

alluvial fan with elevations ranging from 20-80 m asl over 2.2 km.  This landform 

has a steep toe and overlays, and potentially interfingers with, the Poretta terrace 

(Figure 2.12).  Deposits are typified by debris flow deposition with poorly sorted, 

angular clasts of the Schistes Lustrés interspersed with sheet flood deposits of 

fine to coarse grained sand, with some silt and clay (Figure 2.12A).  This deposit 

lacks well rounded, far traveled lithologies indicative of Golo River provenance.  

Samples for OSL were collected from the Canavaja and Sant Antone site. 

Canavaja site 

Near the mountain front, a shallower road cut exposure revealed that 

approximately 1 meter of soil and colluvium has been removed by construction 

leaving 1.7 m of colluvium exposed at this site.  The upper 1.1 m of this exposure 

consists of clast supported angular to subrounded cobbles and boulders as well 

as matrix supported subrounded pebbles to cobbles with a coarse grained matrix 

of Schistes Lustres.  USU-866 was sampled at 1.3 m depth in angular, poor to 

moderately sorted, clay rich, fine grained sand at 51 m asl (Figure 2.12B).   

A fresh road cut exposes ~6 meters of a dark red alluvial.  Most of the exposure 

consists of angular clasts of the Schistes Lustrés interfingered with silty to sandy, 

moderately-sorted units ranging from fine to coarse grained while near the base 

of the exposure there is a ~1m thick lens of fine grained sand with some silt and 

iron manganese nodules.  USU-867 was taken 5 m below the surface at 41 m asl 

in the lower meter of the outcrop (Figure 2.12C).  The sand lens sampled was a 
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homogenous, dark yellowish brown (10 YR 4/6) subrounded to rounded, very 

fine lower to very fine upper sand with some silt and iron and manganese 

nodules.  OSL results from USU-866 and USU-867 produced OSL ages of 43.2 ± 

7.5 and 52.2 ± 10.9 ka, respectively. 

Sant Antone site  

Near the toe of the Revinco alluvial fan, a continuous road cut reveals a 

3.4 m thick and laterally continuous silty-sandy basal unit with an erosional upper 

contact with an overlying ~2.5 m of locally sourced alluvial fan gravels (Figure 

2.12D).  The alluvial fan surface overlying this tabular silty-sandy bed is 30 m asl. 

Two samples were collected from a unique ~6m thick tabular unit exposed in this 

roadcut.  USU-870 was collected 2.5 m below the contact from a yellowish red 

(5YR 4/6) matrix supported, subangular to subrounded, medium upper to very 

coarse upper sand with abundant pebbles >1mm.  USU-871 was collected at 2.9 

m depth below the contact from a deeper recently trenched, exposure saturated 

due to recent rains (Figure 2.12E).  Within the 0.9 m exposed lower profile, there 

are manganese oxide stains on sub-blocky ped faces with few manganese oxide 

stringers.  This unit is poorly sorted with subrounded, very coarse upper sand 

grains in a very fine lower sand to silt micaceous matrix.  Both samples were 

taken from homogenous units with no evidence of bedding or stratification; 

however, clast supported, locally derived sediment is exposed immediately below 

the tabular silty-sand bed (5.9 m below the alluvial fan surface) (Figure 2.12F). 

USU-870 and USU-871 produced OSL ages of 29.4 ± 4.3 and 55.1 ± 12.3 ka.   
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Biguglia Beach Ridge (Hb) 

The coastline of the Marana Plain contains beach deposits that extend 

~500 m inland.  Beach ridge deposits and strand plains enclose the Biguglia 

Lagoon and are found on the north and south side of the mouth of the Golo 

River.  Elevations range from 0-3 m asl.  In some locations, multiple cross-cutting 

beach ridge sets are seen especially near the mouth of the Golo River, indicating 

progressive formation.       

Near the southeastern tip of the Biguglia Lagoon (Etang de Biguglia), 

USU-860 was sampled from a beach ridge at ~1 m depth from homogenous gray 

sand below a brown to red sand with rooting and pedogenesis.  This deposit is 

one of the oldest, most landward beach ridge features along the baymouth bar 

separating the Biguglia Lagoon and the Tyrrhenian Sea.  Sampling occurred 

under very wet conditions and was close to the water table preventing description 

of sedimentary structures.  USU-860 produced an OSL age of 3.18 ± 0.98 ka. 

Discussion  

In most cases, OSL was useful for age determination.  In the following 

discussion, problems with the OSL ages for the Qat4 will be discussed as well as 

proposed depositional influences in response external forcings.    

Age of the Qat4 

The Qat4 is the highest and oldest terrace of the Golo River alluvial 

terraces on the Marana Plain.  OSL age estimates from the Qat4 produced OSL 
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ages ranging from 52 ± 6 to 63 ± 12 ka (OIS 3).  Current OSL ages overlap 

with the Qat3 (50.2 ± 6.4 and 57.5 ± 10.8) suggesting a similar depositional age 

for both terraces. However it is thought that these Qat4 age results are 

underestimates based on geomorphic characteristics, evidence for sediment 

weathering, and changes in dose rates.  Lines of evidence for age 

underestimates include the following: 1) there is a significant difference between 

the degrees of dissection on the Qat4 terrace surface compared to the Qat3 

surface.  2) There is an extensive reworked alluvial deposit in addition to the infill 

of dissected channels. 3) The Qat4 surface is sloping/tilted at a higher angle than 

that of the Qat3 surface. 4) Additions and losses of soluble elements are 

apparent in the chemical signatures of the sediment (Figure 2.13). 5) Intense 

weathering of the rhyolite cobbles within the Qat4 deposit (Appendix A).  Based 

on these observations, there is reason to believe that the OSL results are 

inaccurate and that there are inherent problems with quartz OSL dating in the 

older deposits.  These can arise from problems with intrinsic OSL properties of 

the sediment and dose-rate calculation. 

In order to test the relative age of the Qat3 vs. Qat4 terraces, the soluble 

and insoluble elemental content of each sample was examined.  Insoluble 

elements should have a higher concentration in older samples than soluble 

elements due to weathering of the sediments.  If the Torra terrace were similar in 

age to the Poretta terrace, one would expect the two deposits to have similar 

chemical signatures.   Figure 2.13 shows a moderate increase in Potassium 

while becoming depleted in Sodium and Calcium with increasing age.  When 
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comparing the ratio of resistant Titanium to other elements, Calcium depletion 

stands out as an indicator of a difference in age between the terraces with a ratio 

that is more than twice that of the other two terraces, suggesting significant age 

difference for the two terraces. 

OSL techniques depend on a luminescence signal dominated by fast 

decaying components. Some quartz OSL signals are dominated by the 

intermediate or slow OSL decay components and can result in age 

 

 
Figure 2.13 Chemistry for fluvial terrace samples on the Marana Plain.     
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underestimates (i.e. Jain et al., 2003).  The ratio of the fast component to the 

intermediate and slow components should be greater than 20 (Durcan and 

Duller, 2011).  Marana Plain samples have ratios that range from 6-24 with an 

average of 11-13 and few very aliquots over 20.  This low ratio suggests that 

these samples are not necessarily dominated by the fast component.  

Furthermore, thermally unstable intermediate components can be identified when 

the dose equivalent is plotted versus stimulation time, Det plots (Wintle, 2010).  

This ratio will decrease and show falling Det plots if the medium component is not 

thermally stable (Wintle, 2010; Bailey, 2000).  The older Qat4 samples show this 

general trend and indicate that the medium component is contributing to the OSL 

signal and may require an alternative OSL analysis method.  Early background 

subtraction helps to mitigate the effects of these unwanted components by 

isolating the fast component (Cunningham and Wallinga, 2010) and was 

performed on all OSL samples, excluding the youngest samples.   

Age determination of this terrace could also be complicated as a result of 

luminescence saturation of the sample or the overall sensitivity of the quartz.  

Sediment within the Golo River valley and its tributaries only has a short distance 

to travel (~90 river km, at most) with limited storage potential in the bedrock and 

alluvial reaches, with the exception of the coastal plain.  It is possible that the 

quartz traveling within this system has not experienced enough cycles of 

exposure to light and subsequent burial to 'sensitize' the imperfections within the 

crystal lattice and acquire a representative luminescence signal.  A measurement 

of the quartz sensitivity within the Golo system averages 75 counts per Gray, 
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which is sufficient for luminescence dating.  These older samples, while not 

fully saturated, may be approaching saturation (based on examination of the 

saturating exponential growth curves) however, this may not be the only 

contributing factor to age underestimation.  

A number of factors could lead to an age underestimation of this surface 

such as overestimation of dose rate. Over time, soil and sediment weathering 

can increase the dose rate due to additions, losses and translocations of 

minerals (Jeong et al., 2007).  If the dose-rate measured at the time of sample 

collection is higher than the mean dose-rate over the length of burial, it will result 

in an age underestimate.  This variability in dose rate through time makes it 

difficult to correctly deduce which rate adequately represents the system. 

Microdosimetry can also lead to uncertainty in dose-rate calculation and occurs 

when some quartz grains are deposited near more radioactive particles and 

increase the dose rate in a localized region.  Secular disequilibrium in the decay 

series between Uranium and Thorium, two major components of radioactive 

decay, can also affect the dose-rate calculation; however the ratio of these two 

elements ranges from 4-5 in the Qat4 samples and does not indicate 

disequilibrium.    

Overestimated, high dose-rates associated with the two Qat4 samples 

may be contributing to age underestimation.  For the Golo River samples, the 

dose-rate progressively increases as the sample age increases (Figure 2.14).  

The younger samples from the Qat1 have dose rates that range from 2.4-2.85 

Gy/ka while older samples from the Qat4 have dose rates that range from 3.38-
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4.02 Gy/ka.  However, samples from the Sømme et al. (2011) study on the 

Marana Plain (Qat2) also returned high dose rates ranging from 3-3.95 Gy/ka. 

Dose-rate problems and saturation are thought to be the primary causes of age 

underestimation for the Qat4.  Assuming that the dose-rates were too high, an 

average of dose-rate of 3.0 Gy/ka was used and yielded an age of ~70 ka (OIS 

4).   

Given the geomorphology discussed earlier, this surface is likely older 

than suggested by the OSL age.  In addition to reasoning discussed above, there 

is considerable overlap of OSL ages (and their associated error) for the Qat3 and 

Qat4 (Figure 2.15), thus there is good reason to believe that the ages for this 

 

 

 
Figure 2.14 Plot of the dose-rate of individual samples from three Golo River 
terraces studied vs. relative age.  Note that dose-rate increases with older 
terraces. 
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terrace can only be regarded as minimum ages and deposition occurred pre-

OIS4.   

River response to climate  

Evidence of glaciations throughout the high mountains of Corsica is 

substantiated by moraine complexes and wide, U-shaped valleys.  Although 

there is a lack of dated glacial sediments in the headwaters older than the LGM, 

evidence of older glaciations further down valley from dated LGM deposits 

suggest that Corsica experienced more extensive glaciation during older glacial 

periods, such as OIS 3-4, 6 and 8.  Glacial processes scouring, plucking and 

abrading bedrock in the headwaters would have resulted in increased sediment 

production.  The Qat3 terrace is the most laterally extensive surface on the 

Marana Plain.  During the deposition of this unit, the Marana Plain would have 

been an extensive coastal braid plain.  The expanse of the coarse gravel deposit 

suggests sustained high sediment load and transport capacity that may have 

been in response to changes in the hydrologic system, such as changes in 

glaciation, vegetation or climate.  Fluctuations in glacial advance and retreat at 

the transition from OIS4 to OIS3 are interpreted to have had increased sediment 

supply to the Golo, causing aggradation and deposition of the broad Qat3 

braidplain.   

During OIS 3, there was also increased hillslope activity at the mountain 

front.  OSL ages from the Qafo suggest coeval alluvial fan deposition with the 

Qat3 throughout OIS 3, and progradation slightly into OIS 2 (Figure 2.15).  
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Sometime after the main deposition of this unit, avulsion resulted in the 

northern Qafy unit, which was not sampled in this study.  Also, deposition of the 

reworked Qac near the Qat4 terrace suggest mobilization of sediment as a result 

of increased activity from local tributaries, most likely due to increased 

precipitation in eastern Corsica during OIS 3.     

River response to sea-level 

The slope of the modern continental shelf (~11 m/km) is steeper than that 

of the modern Golo River as it flows across the coastal plain (~2.5 m/km) and 

coastal terrace gradients.  While this geometric configuration exerts a primary 

control on the occurrence of degradation or aggradation, other factors to consider 

are the magnitude and extent of base-level change (Schumm, 1993).  Based on 

present-day geometry in which the slope of the coastal plain is less steep than 

that of the shelf, one would expect that the Golo River would respond to sea-level 

fall with localized incision of the coastal plain, such as that represented in Figure 

1.6B.  

With respect to the present morphology of the continental shelf margin, 

only sea-level lowstands more than 120 m below sea-level (lower than the 

present-day shelf break) would drive incision across the coastal plain, which 

occurred during OIS 2, 6, and 8. Sea-level lowstand during OIS 2 was ~120 m 

below present sea-level (Waelbroeck et al., 2002).  During sea-level lowering, 

there would have been localized incision of the channel; however, progressive 

channel extension to meet the new base-level eventually resulted in extension  
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across the shelf break.  A rapid increase in channel gradient would have 

driven incision across the coastal plain and fixed the incised OIS2 Golo River 

channel.  Extensive glaciation in the headwaters would have likely maintained an 

elevated level of sediment supply and discharge contributing to a steepened 

gradient. OIS 2 deposits are hypothesized to be well below the modern channel 

that has since aggraded and backfilled with sediment during sea-level rise as the 

river gradient shallowed but maintained high sediment supply from the 

headwaters. With respect to the position of the present day Golo River and 

Canonica terraces, it is further likely that the total width of the Qat1 and Qat2 

represent the valley width of the incised LGM Golo River.   

     During OIS3/4, sea-level was ~80 m below present sea level 

(Waelbroeck et al., 2002).  The channel gradient during OIS 3-4 may have been 

slightly steeper than the modern gradient due to a larger grain size fraction 

bedload; however extension of the river channel most likely did not connect to 

the shelf break (Figure 2.16).  A braidplain encompassing most of the Marana 

Plain would have been the result of high sediment load of the Golo River, leaving 

extensive channel gravel deposits and some sandy interbeds.  Post LGM sea-

level rise led to the onlap of Holocene sediments (up to 2 km inland) and created 

a wedge that makes the Qat3 and Qat1-2 gradients appear to flatten sea-ward.  

A depositional setting for the Qat4 is difficult to hypothesize without accurate 

OSL ages.  If Qat4 deposition is associated with a glacially dominated signal, ie 

OIS 6 or 8, what were the governing factors that preserved it onshore abutted to 

the mountain front?  This suggests that the Qat4 could have undergone major 
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uplift after deposition or that it could be an OIS5 or OIS7 highstand deposit 

where accommodation space would allow for large aggradation.    

The OSL ages of the Biguglia beach ridge suggests that the modern 

coastline of the Marana Plain was established by at least ~3 ka.  Marine onlap of 

sediments on top of the steeper dipping Poretta Terrace resulted in a gentle 

seaward dipping gradient near the coast.  With stabilization of sea-level, beach 

ridges and strand plains formed along the wave dominated eastern margin of the 

Marana Plain and continued prograding seaward (Johnston et al., 2007).   

 Response to tectonics 

Although the mountain front of the Marana Plain has triangular facets 

typical of extensional faults, the Qat4 terrace maintains a notably steeper terrace 

tread profile, opposite of what would be expected from normal faulting.  On the 

northern end of the Marana Plain, just south of Bastia, there is a pop-up structure 

with exposed (questionably) Pliocene to middle Pleistocene (OIS 6) tilted gravels 

(Fellin et al., 2005b).  The tilted surface of the Qat4 has been linked to the left-

lateral transpressional reactivation along the mountain front responsible for the 

pop-up structure (Conchon, 1977 and Fellin et al., 2005b).  Results in this study 

suggest that 1) The Qat4 is older than OIS 4 and has undergone considerable 

uplift and tilting or 2) The steeper gradient is reflective of a steeper gradient river 

channel during deposition.  An OSL sample from the gravels within the pop-up 

structure would be a good start for constraining the timing of related events. 
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Conclusions 

This study identified four Golo River alluvial terraces on the Marana Plain 

and is pivotal in shifting away from the previous paradigm set in place.  Revised 

mapping of the coastal plain centered on the Golo River is based on geomorphic 

principles and geochronologic results.   While OSL results have not resolved the 

age of the Qat4, these results have helped refine the chronology of the other 

alluvial terraces and deposits on the Marana Plain.  The expanse of the OIS 3-4 

Qat3 is the end result of the combination of an increase in stream power and 

sediment supply in tandem with base-level lowering that did not cross the shelf 

break.  In contrast, the OIS 2 deposits are buried and onlapped by Holocene 

sediments due to sea-level fall that resulted in channel extension beyond the 

shelf break and subsequent incision of the river channel.  While sediment 

production and river discharge is governed by climate in the headwaters, 

preservation potential near the mouth is constrained by coastal geometry and 

eustacy.  

All colluvial deposits in this study are dated to OIS 3 (Figure 2.15 B) 

suggesting that while glaciers were forming and receding in the headwaters of 

the Golo River, there was also increased hillslope activity from local tributaries 

along the mountain front on the Marana Plain.  Both the Qafo and Qac deposits 

overlie the Poretta Terrace (Qat3) indicating that fan building continued well 

through OIS 3 and potentially into OIS 2. 
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CHAPTER 3                                                                                                                                                                 

WATERSHED ANALYSIS OF THE GOLO RIVER, NORTHEASTERN CORSICA, 

FRANCE 

 
The primary external variables of tectonics, sea-level and climate along 

with internal hydrologic and geologic characteristics govern the evolution of a 

drainage basin.  These controls can generate various fluvial responses 

depending on the rate and location of change.   In this study, topography and 

geology are assessed in a GIS-based analysis to help understand landscape 

evolution of the Golo River watershed (~1000 km2).  The Golo River drainage 

network consists of five major tributaries and sub-basins: the Lagani, Tartagine, 

Asco, Upper Golo and Casaluna (Figure 1.1 and 1.2).  All major tributaries 

converge with the Golo River at Ponte Leccia, 42 km upstream from the mouth.  

(See Chapter 1 for a review of the geologic history of Corsica.)  

Previous Geochronologic and Thermochronologic Studies  

Long-term exhumation, erosion, uplift and incision in northern Corsica 

have been investigated by a number of researchers over the last few decades.  

In general, there is no age-elevation relationship throughout Corsica, which is 

thought to be a result of intense tectonic adjustment after cooling of the 

basement during the Early Miocene (Fellin et al., 2005a; Danišík et al., 2007).  

Apatite fission track (AFT) and apatite (U-Th)/He (AHe) dating from the Tenda 

Massif record rapid exhumation at rates greater than 1 m/ky (1000 m/My) during 

the early to middle Miocene, but decreased to less than 0.4 m/ky (400 m/My) 
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after the middle Miocene (Fellin et al., 2005a).  In comparison, detrital AFT on 

a pebble in the Saint Florent Basin in northeastern Corsica inferred upland 

erosion rates of 0.12-0.20 and 0.05-0.17 m/ky (Fellin et al., 2005a).  Quaternary 

erosion rates were reconstructed s using in situ 10Be surface exposure dating of 

granitic bedrock and indicate Pleistocene valley incision rates (0.25-0.45 m/ky) 

are an order of magnitude higher than on the relict summit surfaces (0.05-0.024 

m/ky)  (Kuhlemann et al., 2008) 

Longitudinal Profile Analysis 

The longitudinal profile of a river represents the relationship between 

slope and elevation and commonly is concave in profile with decreasing slope as 

drainage area increases.  Two variables for quantifying the shape of a 

longitudinal profile include the steepness index and concavity.  The normalized 

steepness index (ksn) is a generalized form of the stream-length gradient index of 

Hack (1973) that allows broad comparison between drainages based on a 

reference profile concavity, θref. The calculation of profile concavity and ksn 

assumes that the profile is in steady-state and that uplift rate and erosion are 

uniform throughout each reach (Snyder et al., 2000). In order to first quantify the 

change of river-bed elevation, the difference between uplift and erosion is 

expressed as: 

 𝛿𝑧
𝛿𝑡

= 𝑈 − 𝐸 =  𝑈 − 𝐾𝐴𝑚𝑆𝑛, (3) 

where 𝛿𝑧
𝛿𝑡

 is the time rate of change of river-bed elevation, U is uplift rate, K is a  
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dimensional coefficient of erosion, A is upstream drainage area, S is slope, E 

is erosion rate, and m and n are variables related to basin hydrology, hydraulic 

geometry, and erosion processes (Whipple and Tucker, 1999; Snyder et al., 

2000; Wobus et al., 2006). In a steady-state landscape, in which  𝛿𝑧
𝛿𝑡

 = 0, E = U, 

equation (1) can be solved to give the equilibrium slope, Se: 

 𝑆𝑒 = �𝑈
𝐾
�
1/𝑛

𝐴−𝑚/𝑛, (4) 

where m/n is a measure of profile concavity, θ, and �𝑈
𝐾
�1/n is a representation of 

profile steepness, ks (Snyder et al., 2000; Kirby and Whipple, 2001). Assuming 

reach uniformity of U and K, this power function can then be written as: 

 𝑆 =  𝑘𝑠𝐴−𝜃, and (5) 

Finally, ks is normalized according to a representative reference concavity, θref, to 

give the normalized steepness index, ksn: 

 𝑆 =  𝑘𝑠𝑛𝐴−𝜃𝑟𝑒𝑓. (6) 

 

The value of θref is chosen based on the characteristic concavity of stream 

profiles, and typically 0.4 ≤ θref ≤ 0.6 in steady-state landscapes (Wobus et al., 

2006; Kirby and Whipple, 2012). 

Longitudinal profiles tend to have prominent convexities in tectonically 

active environments (Burbank and Anderson, 2001) and are useful for identifying 

zones of irregularity (convexities or knickzones) along the river profile.  

Knickpoints are the inflection points separating steep reaches (knickzones) along 

the longitudinal profile from lower gradient reaches.  Knickzones may occur as a 
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result of more resistant bedrock, a localized coarsening of the bedload 

(Knighton, 1998) or bedrock bedding orientation (Frankel et al., 2007); however 

they may also point to lowered base-level by way of tectonic uplift or eustacy 

(Merrits et al., 1994; Pazzaglia, 2003; Wobus et al., 2006).  Knickzones retreat 

headward due to focused energy expenditure and migrate and diffuse through 

the system (Seidl and Dietrich, 1992; Crosby et al., 2005; Crosby and Whipple, 

2006; Wobus et al., 2006; Hayakawa and Oguchi, 2009), the rate of which is 

proportional to discharge (Burbank and Anderson, 2001).   

Although high ks can indicate active tectonic influence, normalized 

steepness values (ksn) are more useful for interpreting regional patterns, whereas 

concavity values can indicate small-scale changes along the channel profile 

(Wobus et al., 2006).  In a tectonically active setting, Snyder et al. (2000) found 

that concavity was uniform throughout the study area regardless of uplift rate 

while the ks values vary in step with rates.  In contrast, the concavity of a profile 

is greatly influence by mean annual rainfall intensity-peak annual discharge while 

steepness values have no correlation to climatic influences (Zaprowski et al., 

2005). 

Fellin et al. (2005a) attribute the large-scale convexity in the lower Golo 

River profile to farfield stresses and/or Pliocene-Miocene tectonic perturbations 

resulting in differential uplift and suggest that these convexities do not correlate 

to changes in lithology.  Collectively, the vast disconnect between exhumation, 

erosion and incision rates coupled with the presence of knickpoints imply that this 

area is not operating under steady-state conditions, where incision and 
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exhumation are balanced (Fellin et al., 2005a; Kuhlemann, et al., 2008; 

Sømme et al., 2011).   

Aerial analysis 

Hypsometric analysis provides a representation of how elevations are 

distributed throughout a basin.  A hypsometric curve is a cumulative area-altitude 

expression that turns basin topography into a normalized unitless form, making it 

possible to compare basins of different sizes and properties (Strahler, 1952).  In 

general, hypsometric curves follow three shapes: concave (mature landscapes), 

S-shaped (equilibrium), and, less commonly, convex (youthful) (Strahler, 1952; 

Hurtrez et al., 1999).  In the past, analysis of hypsometric curves had been 

primarily focused towards understanding the basic stage of topographic 

evolution, or maturity, of a given basin (Strahler, 1952).  Some recent studies 

have shifted to using hypsometric curves to provide clues about tectonic activity 

(Hurtrez et al., 1999; Pérez-Peña et al., 2009) as well as the topographic 

signature of glaciation (Brocklehurst and Whipple, 2004).  Slope histograms can 

be used in conjunction with longitudinal profiles and slope-area analysis to help 

interpret landscape evolution (Wolinsky and Pratson, 2005).     

Project Goals 

This investigation aims to incorporate longitudinal profile analysis, 

hypsometry and slope histograms to assess the tectonic and bedrock influences 

within each tributary catchment of the Golo River watershed.  Specifically, the 
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influence of the Alpine Fault in western Corsica and uplift and folding in 

northeastern Corsica on river profiles are investigated.        

Methods 

Longitudinal Profile 

The relationship between the slope and elevation of a river channel 

can be expressed in the form of a longitudinal profile.  In order to create 

longitudinal profiles and compute concavity and steepness values for the 

Golo River and its tributaries, the Stream Profiler tool was used (Whipple 

et al., 2007).  ASTER (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer) data (http://asterweb.jpl.nasa.gov/gdem.asp) were 

used for the 30-m DEM in ArcGIS.  The cell size of 26.863 pixels was 

derived directly from the DEM and dependent on the resolution of the 

ASTER data set.   

User-defined parameters were established to obtain unique steepness 

(ksn) and concavity (θ) values (Whipple et al., 2007).  Theta ref (θref) refers to a 

chosen reference concavity that best represents the area in question (Wobus et 

al., 2006).  The smoothing window length averages the elevation data and 

removes DEM artifacts before slope values are calculated (lower resolution 

requires a longer window) (Wobus et al., 2006).  To test for sensitivities to these 

two input parameters, the model was iterated five times (three to test the 

sensitivity of the initial theta_ref value and twice to test the influence of the 

smoothing window).  The smoothing window has little to no effect for values of 
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250 and 500, so a 250 m window was chosen.  In contrast, the θ value has 

dramatic effects on the outcome of steepness values.  Reference values of θ=0.4 

reduced the anomaly of steep reaches while reference values of θ=0.5 enhanced 

the steepness values of less steep reaches.  For this analysis, I chose to run a 

reference concavity of 0.45 in order to capture a middle ground.  The sampling 

interval is the specified change in vertical distance between slope calculations 

and 12.192 m (40 feet) was chosen.  Auto ksn is also a moving window used to 

calculate normalized steepness indices along the river profile at a 5 km interval.  

The normalized steepness values (ksn) themselves are relative to the chosen θref 

(Wobus et al., 2006).  A minimum (min) accumulation value of 10 pixels was 

used to define how much contributing area leads to channel initiation.  After 

these parameters are set in ArcMap, channel profiles were exported to MATLAB.  

In MATLAB, the longitudinal profiles, steepness, and concavity plots were 

created. Elevations for river origins were taken from topographic maps and river 

lengths were calculated based on data extracted using the Stream Profiler Tool.  

Positive concavity values indicate a concave-up profile, negative values 

represent a convex profile and values near 0 resemble a straight line.    

For stream profile analysis, the main stem Golo River was broken 

into four primary reaches based on geologic substratum and the Golo 

River above the Alpine contact was additionally divided into four sub-

reaches.  Reach selection in the upper Golo River and other sub-

catchments were identified based on groupings of steepened reaches and 
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knickzones on slope-area plots to identify average values for these 

components of the profiles.  

Hypsometry 

Hypsometry for each sub-catchment was extracted in ArcGIS using 

CalHypso (Pérez-Peña et al., 2009).  Histogram bins of elevation display the 

frequency and distribution of elevation within a catchment.  A cumulative 

hypsometric curve plots elevation (h) relative to the total relief (H) on the y-axis 

(ℎ
 𝐻

) and the ratio of the cumulative area (a) upstream of a point relative to the 

entire area (A) of the basin on the x-axis (𝑎
𝐴
), both on a normalized scale of 0-1 

(Strahler, 1952).  The hypsometric integral, the area below the ground surface 

that has not been eroded, is calculated in order to quantitatively assign stages of 

‘maturity’ and typically vary from 0.25-0.7 (Strahler, 1952).   

Slope Histograms 

Slope histograms were created using the same DEM that was used 

for longitudinal profile and hypsometry generation.  Slope information was 

exported using the Spatial Analyst extension in ArcGIS and reclassified 

into 2° slope bins.  These data were then imported into Sigma Plot and 

plotted as a histogram.  Statistical values (mean, median, maximum and 

minimum) were taken from the DEM.  
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Results 

In order to assess tectonic and bedrock controls, each of the sub 

catchments of the Golo watershed were analyzed in terms of steepness, 

concavity, hypsometry and slope histograms.  Slope-area results for all of the 

catchments are summarized in Table 3.1.   

Longitudinal Profile 

The main stem Golo River has four primary reaches based on general 

lithologic characteristics from the headwaters to the mouth (Figure 3.1): I. 

Carboniferous Hercynian calc-alkaline granites and Permian rhyolites 

characterized by steep reaches and fixed stream channels; II. Jurassic terrestrial 

and marine sediments and Miocene conglomerates in a wide valley with multiple 

fill terraces (Francardo Basin); III. Late Cretaceous to Eocene Alpine Schist’s 

(Schistes Lustres) with deeply incised meanders; and IV. Quaternary alluvial 

sediments (Marana Plain) on a low-gradient coastal plain.  The Tartagine and 

Asco Rivers have the same lithology as reach I and II while the Casaluna River 

lithology is the same as reach III.  The Lagani River flows over the Balagne and 

Nebbio units (ophiolite sequences).  

The trunk Golo River originates at 2000 m asl.  In the upper Golo profile, 

there is a prominent convexity near the headwaters associated with mapped 

glacial deposits (Figure 3.1). Volcano-sedimentary units (350 m asl) within the 

Scala di Santa Regina stretch of Reach I mark the boundary of continuously 

preserved alluvium in the river valley. Reach III of the Golo catchment flows 
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Figure 3.1 Golo River  A) Longitudinal profile of the Golo River broken into 4 
primary lithologic reaches, labeled I-IV. Reach I is primarily Hercynian granitic 
bedrock with deeply incised canyons and is divided into 4 sub-reaches identified 
by changes within the slope-area plot in B). The Alpine Contact serves as the 
boundary between the bedrock Reach I and alluvial Reach II. Blue crosses on 
the profile in A) represent knickpoints chosen based on the longitudinal profile 
and correspond to the open circles on the slope-area plot in B).  Box colors in A) 
correspond to box colors in B).  Dark blue lines are the profiles predicted by the 
regressed channel concavity, θ, and the cyan lines are for the specified reference 
concavity, θref=0.45.  Red squares are log-bin averages of the slope area data.  
Black lines represent the divisions between primary reaches.  B) slope-area plot 
with steepness and concavity values calculated for primary and sub-reaches.  
Reach III and IV are lumped on the slope-area plots due to the relatively small 
change in drainage area of Reach IV.  C) Photos of corresponding reaches 
discussed in A) and B). 
 
 
 
perpendicular to the Castagniccia anticline axis and is characterized by negative 

concavity with some stair stepping knickpoints.   Reach IV is comprised of 

Quaternary sediments, however due to its comparatively small elevation change 

and area, it is indeterminable from Reach III in the slope-area plots and can only 

be distinguished by the isolated low gradient, high drainage area log-bin average 

(Figure 3.1B).    

The Asco River occupies the valley north of the Golo and originates at 

2300 m asl with mapped glacial deposits found at 980-1640 m asl (Figure 3.2).  

There is continuously preserved alluvium in the river valley below 310 m asl, with 

minor mapped alluvium appearing in conjunction with volcano-sedimentary units 

at 360 m asl.  The Asco River is characterized by positive concavity, with minor 

protuberances in the longitudinal profile from 500-1200 m asl.  This part of the 

profile is also correlative with high steepness values.  There is a prominent 
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knickpoint in the profile at the Alpine Contact.  Above this knick, the river is 

deeply incised, similar to the Scala di Santa Regina reach on the Golo.   

The Tartagine River is the next tributary to the north of the Asco and it 

originates at 1780 m asl.  The Tartagine River is also mostly concave up with 

three knickpoints in the upper reaches of the longitudinal profile that can be 

correlated to mapped landslide deposits.  Continuous alluvium is preserved in the 

river valley at 320 m asl (Figure 3.3).  There is also a prominent knickpoint at the 

Alpine Contact; however, the Tartagine does not have a deeply incised river 

channel above the knick.   

The Lagani River has the most graded, concave up profile of all the 

tributaries (Figure 3.4).  The Lagani River, the northernmost river in the Golo 

River watershed, originates at 1100 m asl. Cretaceous to Eocene flysch and 

nappes, and ophiolitic pillow basalts, sheeted dikes and gabbros (Nappe 

Ophiolitic de Balagne) typifies all reaches, except the lower reach.  The Lagani 

River does not cross the Alpine Contact and has the lowest overall steepness 

values.     

The Casaluna River originates at 1150 m asl and flows parallel to the fold 

axis of the Alpine units and has a concave up longitudinal profile. The Casaluna 

River profile has a steepened reach and convexity above a confluence that is 

also coincident with a major fault on the western limb of the Castagniccia 

anticline and a change in lithology (Figure 3.5).  A knickpoint further upstream is 

associated with the confluence of a tributary.  
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All of the profiles exhibit stair stepping knickpoints.  Longitudinal profiles 

of the Golo, Asco and Tartagine Rivers were superimposed to compare 

convexities and knickpoints based on the similarity of bedrock geology in reach I 

(Figure 3.6). These profiles all show an increase in steepness values and a 

broad north-south trending convexity above the Alpine contact.  High steepness 

values are primarily associated with the more resistant Hercynian granites and 

Mte Cinto rhyolites.    

   

 
Figure 3.2 Asco River A) Longitudinal profile; crosses represent knickpoints B) 
Slope-area plot with average steepness values and concavity.  Refer to figure 
caption 3.1 for explanation of symbols. 

B 
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Figure 3.3 Tartagine River A) Longitudinal profile; crosses represent knickpoints 
B) Slope-area plot with average steepness values and concavity.  Refer to figure 
caption 3.1 for explanation of symbols. 

B 
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Figure 3.4 Lagani River A) Longitudinal profile; crosses represent knickpoints B) 
Slope-area plot with average steepness values and concavity.  Refer to figure 
caption 3.1 for explanation of symbols. 
  

B 
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Figure 3.5 Casaluna River A) Longitudinal profile; crosses represent knickpoints 
B) Slope-area plot with average steepness values and concavity.  Refer to figure 
caption 3.1 for explanation of symbols. 
  

A 
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Figure 3. 6 Golo, Asco, and Tartagine correlation A) Longitudinal profiles with 
knickpoints in relation to lithologic and structural boundaries.  B) Slope-area plots 
with vertical black bars representing steepened reaches above the Alpine 
contact.   

A 
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Hypsometric Analysis  

Hypsometric integrals range from 0.28-0.42 (Lagani and Casaluna River, 

respectively). While the hypsometric integrals of the catchments are not 

significantly different (Figure 3.7A), there are notable differences in hypsometric 

curves between the catchments (Figure 3.7C).  The Upper Golo, Asco and 

Tartagine constitute a central grouping of similar hypsometric curves that appear 

to be in transition between concave and S-shaped.  These curves also have an 

unusual merger near ~75% of the area.  This central grouping is bookended by 

the concave Lagani curve and the S-shaped Casaluna curve. The low 

hypsometric integrals and overall shape of the curves suggest that the tributaries 

in northeastern Corsica are in the mature stages of development (Strahler, 1952) 

and most likely have not been subjected to recent large-scale tectonic 

adjustment. 

The elevation distribution within the entire Golo River watershed has a 

modal distribution centered on 400-500 m asl (Figure 3.7B).  When compared to 

the distribution of each tributary catchment, the Upper Golo River has the highest 

proportion of high elevations, while the Asco is more evenly distributed, with a 

broad plateau around ~1700-1000 m asl.  The Tartagine and Lagani have a 

higher proportion of lower elevations and the Casaluna has a broad distribution 

of average elevation.
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Slope histograms 

Slope histograms for the five sub-catchments of the larger Golo River 

drainage network are all normally distributed (Figure 3.8).  The Asco River has 

the narrowest distribution and the highest mean and median slope.  These data 

suggest that this watershed has been subject to the most recent perturbation of 

all the watersheds in the Golo River catchment.  Slope histogram distributions of 

the other four watersheds suggest mature, fluvially dominated systems.  

Discussion 

Within the Golo River watershed, three groupings emerge that need to be 

considered individually within the watershed: the Lagani River; the Upper Golo, 

Asco and Tartagine Rivers; and the Casaluna and lower Golo River (below Ponte 

Leccia). The mixed bedrock-alluvial Golo River watershed crosses every 

geologic domain on the island, so it is not inconceivable that lithology will have a 

large part to play in longitudinal profile response.    

 The Lagani River is the only river in the watershed that flows over the 

flysch and ophiolitic Balagne units.  These units seem to be easily erodible 

without presenting much resistance to maintaining a relatively graded profile as 

suggested by the hypsometry of this sub-catchment, which is the most mature of 

the group.   There are two notable knickpoints present in the longitudinal profile. 

The upper most knickpoint is associated with a small fault that separates two 

different units of flysch and the lower knickpoint is at a tributary confluence.  
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Figure 3.8 Slope histograms A) Upper Golo catchment slope histogram with 
steep transition from higher angle slopes to a more broad distribution of slopes 
less than 30°  B) Casaluna catchment slope histogram with a more normal 
distribution of slopes C) Asco catchment D) Tartagine catchment E) Lagani 
catchment. 
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The Upper Golo, Asco, and Tartagine Rivers all cross the Alpine 

contact and they all have major convexities and high steepness values above the 

Alpine contact (Figure 3.6).  In addition both the Asco and the Tartagine Rivers 

flow over the Mte Cinto caldera margin in the upper reaches.  A prominent bulge 

and an increase in steepness values in both river profiles highlight this margin.  

Although the Golo River does not flow over the caldera margin, it does have a 

subdued concavity above the Alpine contact up to ~1100 m asl. When the 

geology is overlaid with ksn values, the bright red segments of the stream 

profiles suggest that the more resistant Hercynian granitic and rhyolitic bedrock is 

able to restrict the upstream migration of knickpoints in the Golo, Asco and 

Tartagine Rivers resulting in convex profiles (Figure 3.9). While the Golo and 

Asco Rivers have deeply incised bedrock reaches that are cut into 

granites/monzogranites, the Tartagine River, on the other hand, is not deeply 

incised just above the Alpine contact and flows over vertically dipping gneisses.  

These observations could also be interpreted as either the Alpine contact is 

controlling knickpoint migration upstream and is getting ‘stuck’ on the caldera 

margin creating a more prominent bulge or there may be two zones of differential 

uplift above the Alpine contact. 

Below the Mte Cinto margin, the Upper Golo, Asco and Tartagine Rivers 

show distinct transitions from higher to lower steepness values when crossing 

the Alpine contact into the Francardo Basin.  In all cases there is a broad 

convexity in the profile upstream. It is noteworthy that there the knickpoints 

associated with the Alpine contact are all at approximately the same elevation 

  



 97 
(~300-330 m asl) and mark the beginning of continuously preserved alluvium 

in the river valleys and Francardo Basin.  This could suggest that either 

extensional reactivation of the (previously compressional) Alpine contact 

generated a localized fall in base level resulting in a knickpoint.  Alternatively, the 

change in lithology at the contact could be controlling deposition and knickpoint 

formation. 

In the upper reaches of the Golo and Asco Rivers, there are convexities in 

the river profile that range from 1100-1300 m asl.  The Golo River also has a 

smaller convexity around 1500-1700 m asl that has a high steepness value 

(200).  Krumrie (2009) mapped moraine deposits at 1450 and 1700 m asl in the 

upper reach of the Golo River and assigned relative ages of Younger Dryas and 

Older Dryas to these deposits.  Within the Niolo Valley above Calacuccia Dam, 

Krumrie (2009) mapped six other moraine ridges from 1075-1400 m asl just 

south of the Golo River (along the Colga River) and one dated to 27.9 ± 5.4 ka.  

These moraines are interpreted to span from the middle Würmian (OIS 3) to the 

three advances of the LGM (LGM, Older Dryas and Younger Dryas) (Krumrie, 

2009) and most likely account for the upper perturbations in the longitudinal 

profile.   The upper three knickpoints in the Tartagine profile correlate well with 

mapped landslide deposits in pyroclastics, breccias and tuffs.  

The Casaluna River does not cross the Alpine contact and has the same 

bedrock geology as reach III of the Golo River.  These units have been uplifted 

more recently than the granites and rhyolites in the west (Fellin et al., 2005b).  
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Figure 3.9 Comparison of ksn to geology and topography.  A) DEM overlapped 
with steepness values for all tributaries and 1:50000 geologic maps.  High 
steepness values are noted when transitioning across the Alpine contact into the 
softer sediments in the Francardo basin.  B) Catchment topography also 
delineates large-scale reaches.  Roman numerals refer to primary reaches 
discussed within the text. 

A 

B 
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Also, it is subject to a different climate and vegetation regime due to its 

orographic position in relation to the western rivers and parent rock, to name a 

few.  The Casaluna watershed hypsometric curve has the highest hypsometric 

integral and youngest expression of all the curves, signifying that it has 

experienced the most recent perturbation.  

 Along the lower Golo River profile, there are multiple stair-stepped 

knickpoints in conjunction with a convexity that could be a response signal due to 

base-level fall. Approximately 10-15 km upstream from the mouth of the Golo 

River, there is a ~50 m drop in the river profile of that may be a migrating 

knickzone associated with changes in sea-level over the last few glacial cycles.  

However, it may also be associated with range front faulting and basin 

subsidence along the eastern Corsica margin or strictly due to the change in 

lithology.  Geochronology along the strath terraces along with high resolution 

GPS data may help resolve this particular piece of the puzzle. 

 In addition, tributaries flowing into the lower Golo River in Reach III all 

show an increase in ksn values upon confluence suggesting that the main stem 

of the Golo River is incising faster than its tributaries (Figure 3.10A).  This is also 

evidenced by the abundance of waterfalls at tributary confluences throughout 

Reach III (Figure 3.10B).     
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Figure 3.10 Ksn in relation to the watershed. A)DEM with steepness overlapped 
shows a tendency of higher steepness values where tributaries merge with the 
Golo River, especially in the Schistes Lustres reach (III).  White arrow indicates 
location of waterfall in photo below. B) Example: waterfall in lower reach. 

B 

A photo below 
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Conclusions 

Within this watershed, a combination of climatic, lithologic, structural and 

glacio-eustatic controls factor are governing the landscape.  Climate signatures 

and surface processes in the upper reaches of these rivers has led to 

oversteepened reaches and knickpoints while lithologic variation has influenced 

the overall variability of the longitudinal profile.  Longitudinal profile analysis 

shows broad convexities in the schist and granitic-rhyolitic units that do not 

significantly correlate with any major changes in lithology.  These convexities 

most likely reflect the contrast in dominant controls between the two distinct 

geologic reaches.  In the upper reaches of the granitic-rhyolitic Golo and Asco 

Rivers, less pronounced concavities seem to be correlated to mapped glacial 

extents while a broad convexity, in tandem with knickpoints in the Asco and 

Tartagine, are caught up on Mt. Cinto caldera margin.  Knickzones with high 

steepness values and deeply incised canyons above the Alpine contact are 

suggestive that there is movement on the fault with base-level lowering driving 

incision.   Although Corsica is commonly considered tectonically quiescent, 

thermochronologic studies in conjunction with evidence presented here suggest 

deformation is taking place. 

Minor changes in lithology and/or foliation orientation may be influencing 

small-scale, stair-stepping knickpoints, as seen in Reach III of the Golo River; 

however, these are more likely a result of oscillating sea-level propagating up 

through system.   
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CHAPTER 4                                                                                                                                             

LOOKING FORWARD 

Corsica is an ideal location for investigating fluvial and landscape 

responses to climate, sea-level and tectonics due its small size and direct 

influence of base-level changes, tectonic activity and Quaternary climate record.   

Earlier use of U-series dating and 14C has been troublesome (Conchon, 1986) as 

well as most attempts at OSL (Krumrie, 2009; Sømme et al., 2011).  Due to 

limited material suitable for 14C dating, OSL is the best tool to use for age 

determination.  Sample selection is of vital importance and could prove 

challenging due to limited outcrop exposure and reworked alluvium overlying 

bedrock straths.  It is possible that the quartz sediment from this system is not 

suitable for OSL dating due to poor luminescence properties of the quartz grains 

and dominant intermediate to slow components of the signal that can lead to an 

age underestimation (Jain et al., 2003).  New advancements in infrared 

stimulated luminescence (IRSL) may be more applicable for this system.  

Potassium feldspar has a much brighter luminescence signal than that of quartz 

and can measure higher dose equivalents because it does not saturate as 

quickly as quartz (Buylaert et al., 2009.)  IRSL ages may resolve the true 

depositional age of the Torra Terrace and corroborate the quartz-OSL EBG ages 

determined for the OIS 3 and younger samples.  In order to build a 

comprehensive framework of fluvial response to climate and sea-level in this 

area, future work could also extend to correlate onshore fluvial deposits to 
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offshore deposits using sequence stratigraphy and OSL ages from cores 

taken by IFREMER/Exxon Mobile (in progress).    

The Golo River was a gravel-bedded river choked with coarse sediment 

during glacial periods.  Exposure, accessibility and availability of outcrops in 

addition to the scarcity of sand lenses are the two limiting factors for OSL sample 

collection.  It would be useful to employ the services of a backhoe in order to dig 

large trenches into fluvial terrace deposits on the coastal plain and within the 

river valley to create better exposures and allow for better descriptions of the 

internal architecture of these deposits.  Creating new exposures may reveal 

structural and stratigraphic relationships between the various fluvial terraces and 

strath terraces within the river valley that are not currently understood. 

Kuhlemann et al. (2008) present a good baseline for upland erosion rates 

based on 10Be inventories, but age control in the lower reaches of the catchment 

need improvement.  A study of erosion rates within the entire Golo River 

catchment using cosmogenic nuclides (CRN) would be a good method for 

understanding erosion rates and sediment supply in northeastern Corsica.  CRN 

derived sediment yield can be used as an indicator of major changes in sediment 

production and transport.  Evaluation of erosion rates can help estimate changes 

in overall sediment contribution throughout the watershed.  Because erosion 

rates can vary based on elevation, hillslopes, uplift, etc., (Burbank, 2002) erosion 

rates from individual catchments as well as the entire watershed may help 

delineate the variable contributions at different locations throughout the 

watershed.  Collecting a sample of fine-grained sediment at a downstream point 
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above major confluences in each catchment would be useful for capturing the 

individual rates of erosion in addition to a sample from the mouth of the Golo 

River to represent the watershed as a whole.  CRN determined rates could also 

be compared to incision rates based on updated luminescence geochronology to 

further assess landscape evolution. 
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Appendix A.  Weathering Rinds and Soil Color 

  
Traditionally, Corsican deposits are correlated based on the intensity of 

weathering within the matrix and the clasts.  This study made of broad sweep of 

the N2 terrace to determine the usefulness of this method of comparison and 

concluded that it was unnecessary to continue with the other terraces on the 

coastal plain.    
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Previous mapping used the degree of weathering of ophiolite clasts 

(metabasalts, serpentinites, eclogites and metagabbros) in which thicker 

weathering rinds (1-4 mm) represent older deposits and thinner to absent 

weathering rinds represent younger deposits (Conchon 1978).  The intensity of 

weathering of the matrix and clasts has served as the criteria for mapping and 

correlation of all the Quaternary deposits of Corsica, with the N1-N6/7 regional 

sequence first established in the Bravona valley (Conchon, 1972).  This was also 

used to correlate deposits and assign a relative age.  Rubified deposits represent 

the older units while grey, weakly developed soils represent younger units.  

Conchon (1978) noted a matrix resemblance (both with 7.5 YR 6/6) between the 

two oldest terraces (N2 and N3) with a slight difference in the abundance of 

rhyolite and the intensity of the weathering rind.   

Five sites, two within the river valley and three on the Marana Plain, were 

chosen to distinguish the differences between deposits (Figure A.1).  Four sites 

occur at elevations ranging from 50-25 m above the modern river channel and 

are mapped as the Fw (N2).  The last site is 5 m above the modern river and 

mapped as the Fy1 (N4) geologic unit (Lahondére, et al 1994).  This method of 

comparing Munsel color and weathering is the common way in Corsica to 

determine which terrace/age deposit one is looking at.      

Two-meter horizontal clast-count transects at varying depths were used to 

compare the four highest study sites (Figure A.2).  These transect’s determine 

the relative percentage of weathered clasts within each in order to compare 

deposits mapped as the same unit.   
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Figure A.1 Geologic map and site locations for weathering and transect studies. 
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Figure A.2 Two-meter horizontal transects for the N2/Fw deposit.  A) The overall 
weathering shows no systematic distribution for the same deposit.  B) Variation 
has a low R2 value and is not a function of elevation.    
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Table A. 1 Geographic Coordinates and metrics for study sites. 

 

 

 

 

Degree of weathering determination was based on the audible response of clasts 

to tapping and prodding with a metal trowel and was not delineated by lithology.   

Separate weathering rind measurements were conducted on randomly selected 

clasts.  Terraces are referenced to the Conchon (1977) and Lahondère et al. 

(1994) nomenclature to reduce confusion.  Coordinates and metrics are 

summarized in Table A.1. 

Lahondère 
et al., 1994 

N# Conchon 
Soil Color Site Name Soil Color 

(this study) Location Elevation 
(m) 

Fw N2 7.5 YR 6/6 Torra Pit 5YR 5/8 N 42.51554      
E  9.46299 

26 

Cassamozza 
South 

5YR 5/8 N 42.51615             
E  9.44472 

40 

Cassamozza 
North 

7.5 YR 5/8 N 42.51658      
E  9.43173 

65 

Barchetta 
Strath 

7.5 YR 5/6-
5/8 

N 42.50903      
E  9.36713 

137 

Fy1 N4 10 YR 6/6 San Giusto 2.5 YR 4/4 N 42.52130      
E  9.47034 

15 
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Study Sites 

 Sites were chosen to assess the consistency of the degree and intensity 

of weathering.  Sites were named in a similar fashion as sampling sites for OSL 

age dating and refer to nearest townships. 

 Torra Terrace (Fw/N2) 

 On the southern side of the modern river (16 m above the modern river), a 

large pit has exposed fluvial gravels and colluvial sediments.   Fluvial gravels 

consist of rounded clast-supported cobbles and pebbles.  These gravels contain 

intensely grusified granites, calcschists and micaschists with weathering rinds 

ranging up to 1mm while metabasalts typically had weathering rinds ranging from 

1-2 mm (Figure A.3).  The matrix consists of Golo pebbles and very coarse 

grained sand and is yellowish red (5YR 5/8).  Two 2-meter transects were 

measured near OSL sample USU-868, one at 2 meters depth and another closer 

to the surface.  Transects indicate that this deposit exhibits 33% weathering.   

Cassamozza South Roadcut (N2/Fw) 

Where the Golo River emerges from the schistic bedrock river valley onto 

the coastal plain, an outcrop on the south side of the Golo River, 25 m above the 

modern river (50 m asl), consists of rounded cobbles and pebbles with weak 

bedding and imbrications and is yellowish red (5 YR 5/8) (Figure A.4).  This 

deposit is matrix supported with subrounded, fine-coarse sand with some pea 

gravel in a clay rich matrix.  This deposit displays intense grusification of granites 
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and rhyolites tend to show more through-going weathering with alteration of 

feldspars to clay and in situ disintegration.  This outcrop has many highly 

weathered pebbles but there is extreme variability between and within lithologies.  

One metabasalt exhibits the largest weathering rind observed (4 and 6 mm) while 

other metabasalts have no rind.  Based on two transects at 1 and 1.5 m depth, 

24% of the clasts in this outcrop are weathered.   

Cassamozza North Roadcut (N2/Fw)  

Near the crest of a hill (~10 km from the mouth) on the north side of road 

N193A, a limited exposure of a strath terrace is, 40 m above the modern river (65 

m asl) with a strong brown (7.5 YR 5/8) matrix.  The exposure is moderately 

covered by vegetation with approximately 2.5 m of alluvial overlying schists.  Two 

transects 1 and 2 m below the surface show that 21% of the clasts are 

weathered.  Weathering rind analysis was not addressed at this location. 

Barchetta Strath (N2/Fw) 

A southwest facing exposure of a strath terrace above the town of 

Barchetta consists of 1.4 m of poorly sorted, rounded granitic cobbles to boulders 

and subangular to angular cobbles of schists and metabasalts.  The poorly 

sorted alluvium sits directly on top of 1.2 m of exposed micaschists and 

calcschists of the Schistes Lustrés that are separated by an erosional, scour 

contact (Figure A.5).  The matrix of this deposit is strong brown (7.5 YR 5/6-5/8).  

Within the alluvial sediments, micaschists have the largest weathering rinds at 

2mm while rhyolite and metabasalt clasts lack any rind.  Based on 2 transects, 
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36% of the clasts at this site are weathered.  This unit is 50 m above the 

modern river at 136m asl.  This strath terrace is mapped as the same geologic 

unit as the Fw/N2 in the Torra Pit.   

 

San Guisto (N4/Fy1) 

A northwest facing roadcut (15m asl) exposes sediments on the Torra 

Terrace riser near the tread of the Poretta.  This outcrop consists 1.5-2 m of 

rounded cobbles and pebbles with a reddish brown (2.5 YR 4/4) matrix (Figure 

A.6).  Rhyolites and calcshists have weathering rinds ~1mm thick and granites 

are commonly grusified.  Micaschists are heavily altered along schistose planes 

and metabasalts are highly weathered with alteration penetrating up to 4 mm.  

Weathering transects were not measured at this location.  
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Figure A.3 Torra pit sample location and weathering rinds.  A) fluvial gravels B) 
rhyolite C) grusified granite D) micaschist E) metabasalt. 
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Figure A.6 San Guisto outcrop 
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Appendix B. OSL samples 

Ages were calculated using the minimum age model (MAM) for the 

youngest Canonica terrace and beach deposits while the central age model 

(CAM) was used for all other samples following Galbraith et al. (1999).  Errors on 

OSL ages are reported at two-sigma standard error, unless otherwise noted.  

Early background subtraction (EBG) was used to determine the equivalent dose 

on all samples except the youngest.  All OSL age results and corresponding 

sample information can be found in Table 2.1 and 2.2.   

 

  



Golo-0315-1 Poretta Terrace (Qat3) Individual Aliquot Data
USU-797

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 165.90 8.48 50.18 6.37 67.83 14.90 20.52 2.60
MAM = 127.75 8.60 38.64 4.90 74.10 15.46 22.41 2.84

89.61 27.68 27.11 3.44
Median = 178.47 54.0 6.8 104.73 20.15 31.68 4.02
Min = 67.83 20.5 2.6 124.77 20.67 37.74 4.79
Max = 213.98 64.7 8.2 131.00 10.77 39.63 5.03

136.01 66.01 41.14 5.22
n = 31 Aliquots 143.50 12.48 43.41 5.51

144.38 25.97 43.67 5.54
S.D. = 44.57 157.51 30.48 47.64 6.05
Standard error = 8.01 163.47 16.94 49.45 6.27
Random Errors= 10.48 % 165.91 63.33 50.19 6.37
Systematic Error= 7.15 % 169.12 24.24 51.16 6.49
Total Error= 12.69 % 170.62 25.95 51.61 6.55

176.37 18.26 53.35 6.77
Bin Width = 10.00 Gy 178.47 17.27 53.98 6.85

182.64 35.25 55.24 7.01
Overdispersion (%) = 22.4 ± 4.4 184.36 59.23 55.77 7.08

184.44 55.28 55.79 7.08
+/- 185.74 25.12 56.18 7.13

dose rate= 3.31 0.20 Gy/ka 185.83 16.96 56.21 7.13
U = 2.70 0.2 ppm 188.90 18.09 57.14 7.25
Th = 11.70 1.1 ppm 189.61 50.10 57.35 7.28
K2O = 3.01 0.08 wt. % 191.14 54.38 57.82 7.34
Rb2O= 146.0 5.8 ppm 195.91 16.73 59.26 7.52
H2O= 20.0 6.0 wt. % 204.49 54.13 61.85 7.85
Cosmic= 0.16 Gy/ka 207.88 28.86 62.88 7.98
depth = 1.9 m 213.98 36.88 64.73 8.21
latitude= 42 degrees (north positive) 219.40 28.36 66.36 8.42
longitude= 9 degrees (east positive) 238.11 22.01 72.02 9.14
elevation= 0.01 km asl 261.16 41.94 79.00 10.02

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo-0316-2 Poretta Terrace (Qat3) Individual Aliquot Data
USU-798

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 185.66 16.06 57.51 10.75 70.10 24.47 21.72 4.06
MAM = 114.02 17.31 35.32 6.60 116.32 16.02 36.03 6.74

120.18 32.04 37.23 6.96
Median = 181.72 56.3 10.5 122.09 53.35 37.82 7.07
Min = 70.10 21.7 4.1 125.32 21.80 38.82 7.26
Max = 352.40 109.2 20.4 128.02 14.63 39.66 7.41

144.04 16.48 44.62 8.34
n = 19 Aliquots 159.34 12.89 49.36 9.23

177.20 44.20 54.89 10.26
S.D. = 76.06 181.72 18.04 56.29 10.52
Standard error = 17.45 186.12 16.60 57.66 10.78
Random Errors= 17.29 % 214.33 17.03 66.39 12.41
Systematic Error= 7.12 % 220.87 80.72 68.42 12.79
Total Error= 18.69 % 225.90 22.58 69.98 13.08

240.54 51.28 74.51 13.93
Bin Width = 20.00 Gy 259.59 32.73 80.41 15.03

285.08 22.02 88.31 16.51
Overdispersion (%) = 33.5 ± 6.7 324.07 48.59 100.39 18.77

352.40 28.75 109.16 20.41
+/-

dose rate= 3.23 0.19 Gy/ka
U = 2.50 0.2 ppm
Th = 12.40 1.1 ppm
K2O = 2.89 0.07 wt. %
Rb2O= 146.0 5.8 ppm
H2O= 20.0 6.0 wt. %
Cosmic= 0.16 Gy/ka
depth = 2.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.02 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Sample # Golo 10-11-10-15 Biguglia (Hb) Individual Aliquot Data
USU-860

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 8.22 0.48 3.78 1.19 4.08 0.73 1.88 0.59

MAM = 6.80 0.15 3.13 0.98 4.70 2.64 2.16 0.68

4.90 2.45 2.26 0.71

Median = 7.98 3.7 1.2 5.36 2.64 2.47 0.78

Min = 4.08 1.9 0.6 6.14 1.58 2.82 0.89

Max = 12.65 5.8 1.8 6.18 0.66 2.84 0.90

6.56 1.02 3.02 0.95

n = 22 Aliquots 6.84 1.44 3.15 0.99

6.86 0.19 3.16 0.99

S.D. = 2.55 7.66 0.84 3.52 1.11

Standard error = 0.54 7.78 1.36 3.58 1.13

Random Errors= 30.78 % 8.18 0.31 3.76 1.18

Systematic Error= 6.69 % 8.44 0.38 3.88 1.22

Total Error= 31.50 % 8.45 0.87 3.89 1.22

8.80 0.92 4.05 1.28

Bin Width = 0.50 Gy 10.33 1.94 4.75 1.50

10.43 1.59 4.80 1.51

Overdispersion (%) = 21.5 ± 4.8 11.12 0.57 5.12 1.61

11.21 3.29 5.16 1.62

+/- 11.62 2.50 5.35 1.68

dose rate= 2.17 0.11 Gy/ka 11.98 1.51 5.51 1.74

U = 1.10 0.1 ppm 12.65 2.24 5.82 1.83

Th = 5.20 0.5 ppm
K2O = 2.17 0.05 wt. %
Rb2O= 103.8 4.2 ppm
H2O= 15.6 4.7 wt. %
Cosmic= 0.17 Gy/ka
depth = 1.4 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.00 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000

              CAM and MAM from Galbraith et al., 1999
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Sample # Golo 10-7-10-10 Canonica Terrace (Qat1) Individual Aliquot Data

USU-861
De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±

CAM = 2.31 0.19 0.82 0.22 1.26 0.51 0.45 0.12

MAM = 1.65 0.24 0.58 0.16 1.30 0.22 0.46 0.12

1.38 0.57 0.49 0.13

Median = 2.30 0.8 0.2 1.59 0.23 0.56 0.15

Min = 1.26 0.4 0.1 1.79 0.28 0.63 0.17

Max = 3.48 1.2 0.3 2.06 0.53 0.73 0.20

2.07 0.44 0.73 0.20

n = 20 Aliquots 2.10 1.43 0.74 0.20

2.12 0.94 0.75 0.20

S.D. = 0.66 2.24 0.79 0.79 0.21

Standard error = 0.15 2.35 1.14 0.83 0.22

Random Errors= 26.16 % 2.77 0.64 0.98 0.26

Systematic Error= 6.14 % 2.88 0.81 1.02 0.27

Total Error= 26.87 % 2.97 0.56 1.05 0.28

2.99 0.56 1.06 0.28

Bin Width = 0.50 Gy 3.13 1.46 1.11 0.30

3.15 1.15 1.12 0.30

Overdispersion (%) = 24.4 ± 7.9 3.25 0.56 1.15 0.31

3.41 0.51 1.20 0.32

+/- 3.48 1.54 1.23 0.33

dose rate= 2.83 0.13 Gy/ka

U = 1.80 0.1 ppm

Th = 9.70 0.9 ppm

K2O = 2.28 0.06 wt. %

Rb2O= 107.7 4.3 ppm

H2O= 11.6 3.5 wt. %

Cosmic= 0.15 Gy/ka

depth = 2.3 m

latitude= 42 degrees (north positive)

longitude= 9 degrees (east positive)

elevation= 0.01 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000

              CAM and MAM from Galbraith et al., 1999
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Sample # Golo10-7-10-8 Canonica Terrace (Qat1) Individual Aliquot Data

USU-862
De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±

CAM = 2.61 0.18 1.09 0.33 1.19 0.18 0.50 0.15

MAM = 1.67 0.23 0.70 0.21 1.24 0.41 0.52 0.16

1.47 0.84 0.62 0.18

Median = 2.25 0.9 0.3 1.49 0.35 0.62 0.19

Min = 1.19 0.5 0.1 1.61 0.50 0.67 0.20

Max = 2.62 1.1 0.3 1.63 0.71 0.68 0.21

1.83 0.02 0.76 0.23

n = 35 Aliquots 1.87 0.93 0.78 0.24

2.13 1.12 0.89 0.27

S.D. = 0.75 2.13 0.96 0.89 0.27

Standard error = 0.13 2.17 0.75 0.91 0.27

Random Errors= 28.81 % 2.21 0.34 0.92 0.28

Systematic Error= 8.57 % 2.29 1.10 0.95 0.29

Total Error= 30.06 % 2.32 0.95 0.97 0.29

2.33 1.11 0.97 0.29

Bin Width = 0.20 Gy 2.37 0.23 0.99 0.30

2.38 1.04 0.99 0.30

Overdispersion (%) = 31.3 ± 5.8 2.51 0.43 1.05 0.32

2.60 0.95 1.09 0.33

+/- 2.62 0.81 1.09 0.33

dose rate= 2.39 0.18 Gy/ka 2.70 0.68 1.13 0.34

U = 2.00 0.1 ppm 2.76 0.07 1.15 0.35

Th = 8.20 0.7 ppm 2.81 0.51 1.17 0.35

K2O = 2.35 0.06 wt. % 2.92 0.18 1.22 0.37

Rb2O= 80.3 3.2 ppm 3.03 0.49 1.27 0.38

H2O= 28.7 8.6 wt. % 3.06 1.50 1.28 0.38

Cosmic= 0.16 Gy/ka 3.15 0.98 1.32 0.40

depth = 2.0 m 3.24 1.37 1.35 0.41

latitude= 42 degrees (north positive) 3.24 1.11 1.35 0.41

longitude= 9 degrees (east positive) 3.28 1.36 1.37 0.41

elevation= 0.01 km asl 3.49 0.15 1.46 0.44

3.92 0.64 1.64 0.49

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000 4.33 0.26 1.81 0.54

4.49 0.34 1.87 0.56

4.81 0.27 2.01 0.60

              CAM and MAM from Galbraith et al., 1999
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Sample # Golo 10-7-10-9 Canonica Terrace (Qat1) Individual Aliquot Data

USU-863
De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±

CAM = 3.73 0.40 1.31 0.29 1.99 0.57 0.70 0.16

MAM = 2.89 0.18 1.02 0.23 2.15 0.99 0.76 0.17

2.34 0.43 0.82 0.18

Median = 3.19 1.1 0.3 2.45 0.37 0.86 0.19

Min = 1.99 0.7 0.2 2.55 1.09 0.89 0.20

Max = 9.25 3.3 0.7 2.55 1.31 0.90 0.20

2.92 0.40 1.03 0.23

n = 21 Aliquots 2.96 0.37 1.04 0.23

3.01 1.05 1.06 0.24

S.D. = 2.13 3.07 2.42 1.08 0.24

Standard error = 0.46 3.19 0.32 1.12 0.25

Random Errors= 21.55 % 3.19 1.18 1.12 0.25

Systematic Error= 6.07 % 3.48 0.05 1.22 0.27

Total Error= 22.39 % 3.73 0.82 1.31 0.29

3.75 2.13 1.32 0.30

Bin Width = 0.50 Gy 4.03 1.36 1.42 0.32

4.45 1.05 1.56 0.35

Overdispersion (%) = 40.9 ± 8.6 6.46 2.33 2.27 0.51

7.25 0.82 2.55 0.57

+/- 7.86 0.92 2.76 0.62

dose rate= 2.85 0.13 Gy/ka 9.25 0.80 3.25 0.73

U = 1.70 0.1 ppm

Th = 7.90 0.7 ppm

K2O = 2.55 0.06 wt. %

Rb2O= 108.8 4.4 ppm

H2O= 10.0 3.0 wt. %

Cosmic= 0.14 Gy/ka

depth = 3.0 m

latitude= 42 degrees (north positive)

longitude= 9 degrees (east positive)

elevation= 0.01 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000

              CAM and MAM from Galbraith et al., 1999
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Golo 10-11-10-13 Torra alluvium-colluvium (Qac) Individual Aliquot Data
USU-864

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 124.22 6.17 32.64 3.93 93.06 8.28 24.45 2.94
MAM = 98.03 5.70 25.76 3.10 94.99 9.27 24.96 3.00

102.27 51.40 26.87 3.23
Median = 126.32 33.2 4.0 103.99 2.96 27.32 3.29
Min = 93.06 24.4 2.9 110.12 17.76 28.93 3.48
Max = 193.26 50.8 6.1 117.75 21.11 30.94 3.72

118.68 41.22 31.18 3.75
n = 16 Aliquots 123.29 5.32 32.39 3.90

126.32 20.99 33.19 3.99
S.D. = 26.01 130.42 2.94 34.27 4.12
Standard error = 6.50 135.33 16.48 35.56 4.28
Random Errors= 10.28 % 135.51 31.18 35.60 4.29
Systematic Error= 6.25 % 142.78 21.26 37.51 4.52
Total Error= 12.04 % 152.68 15.08 40.12 4.83

157.37 6.71 41.35 4.98
Bin Width = 10.00 Gy 193.26 48.62 50.78 6.11

Overdispersion (%) = 15.0 ± 4.2

+/-
dose rate= 3.81 0.19 Gy/ka
U = 2.70 0.2 ppm
Th = 15.60 1.4 ppm
K2O = 2.92 0.07 wt. %
Rb2O= 139.7 5.6 ppm
H2O= 13.1 3.9 wt. %
Cosmic= 0.16 Gy/ka
depth = 1.9 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.02 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo 10-4-10-6 Torra alluvium-colluvium (Qac) Individual Aliquot Data
USU-865

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 128.97 7.62 41.07 3.65 44.19 33.05 14.07 1.25
MAM = 96.52 8.83 30.74 2.73 53.11 15.86 16.91 1.50

91.56 13.91 29.16 2.59
Median = 126.05 40.1 3.6 93.39 27.77 29.74 2.64
Min = 44.19 14.1 1.3 93.50 38.58 29.78 2.65
Max = 211.26 67.3 6.0 100.45 5.70 31.99 2.84

102.67 5.77 32.70 2.91
n = 21 Aliquots 106.75 13.11 34.00 3.02

112.87 18.42 35.95 3.19
S.D. = 36.45 112.90 15.49 35.95 3.19
Standard error = 7.95 126.05 1.70 40.14 3.57
Random Errors= 6.48 % 133.16 8.76 42.41 3.77
Systematic Error= 6.08 % 147.38 30.86 46.94 4.17
Total Error= 8.89 % 149.16 16.14 47.50 4.22

152.68 42.36 48.62 4.32
Bin Width = 10.00 Gy 159.36 11.41 50.75 4.51

162.30 44.45 51.69 4.59
Overdispersion (%) = 22.0 ± 4.8 164.88 7.38 52.51 4.67

172.80 9.41 55.03 4.89
+/- 176.92 29.20 56.35 5.01

dose rate= 3.14 0.14 Gy/ka 211.26 32.19 67.28 5.98
U = 1.80 0.1 ppm
Th = 10.35 0.9 ppm
K2O = 2.77 0.07 wt. %
Rb2O= 136.4 5.5 ppm
H2O= 10.0 3.0 wt. %
Cosmic= 0.16 Gy/ka
depth = 2.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.02 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo10-11-10-11 Revinco Alluvial Fan (Qaf3) Individual Aliquot Data
USU-866

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 96.21 7.84 43.22 7.51 45.41 15.61 20.40 3.54
MAM = 51.71 1.92 23.23 4.04 51.37 1.69 23.08 4.01

52.76 9.60 23.70 4.12
Median = 96.15 43.2 7.5 59.12 5.71 26.56 4.61
Min = 45.41 20.4 3.5 60.87 2.05 27.34 4.75
Max = 244.82 110.0 19.1 78.30 0.80 35.17 6.11

83.48 16.88 37.50 6.52
n = 22 Aliquots 86.23 2.00 38.73 6.73

87.27 3.35 39.20 6.81
S.D. = 43.87 88.45 10.64 39.73 6.90
Standard error = 9.35 90.05 4.18 40.45 7.03
Random Errors= 16.31 % 102.25 1.40 45.93 7.98
Systematic Error= 6.00 % 106.10 5.30 47.66 8.28
Total Error= 17.38 % 106.55 1.78 47.86 8.32

110.49 3.01 49.63 8.62
Bin Width = 10.00 Gy 113.68 21.94 51.06 8.87

122.72 16.75 55.13 9.58
Overdispersion (%) = 36.8 ± 5.9 124.60 7.88 55.97 9.73

127.13 3.73 57.10 9.92
+/- 148.82 11.78 66.85 11.62

dose rate= 2.23 0.10 Gy/ka 152.94 1.41 68.70 11.94
U = 1.50 0.1 ppm 244.82 6.91 109.97 19.11
Th = 7.10 0.6 ppm
K2O = 1.75 0.04 wt. %
Rb2O= 72.8 2.9 ppm
H2O= 10.4 3.1 wt. %
Cosmic= 0.15 Gy/ka
depth = 2.3 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.05 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo 10-3-10-3 Revinco Alluvial Fan (Qaf3) Individual Aliquot Data
USU-867

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 77.33 7.64 52.19 10.86 33.67 0.63 22.72 4.73
MAM = 33.72 0.66 22.76 4.73 37.71 6.89 25.45 5.29

46.69 13.48 31.51 6.56
Median = 82.17 55.5 11.5 55.18 2.59 37.24 7.75
Min = 33.67 22.7 4.7 59.11 19.90 39.90 8.30
Max = 135.69 91.6 19.1 61.63 18.92 41.60 8.65

65.56 12.66 44.25 9.20
n = 18 Aliquots 67.36 3.56 45.46 9.46

71.08 13.88 47.97 9.98
S.D. = 31.26 93.26 1.50 62.94 13.09
Standard error = 7.37 94.27 5.86 63.63 13.24
Random Errors= 19.74 % 96.88 10.82 65.38 13.60
Systematic Error= 6.56 % 97.61 34.64 65.88 13.71
Total Error= 20.80 % 101.16 5.06 68.27 14.20

114.15 3.00 77.04 16.03
Bin Width = 5.00 Gy 119.81 3.25 80.86 16.82

130.48 11.50 88.06 18.32
Overdispersion (%) = 38.6 ± 7.5 135.69 33.49 91.58 19.05

+/-
dose rate= 1.48 0.08 Gy/ka
U = 0.70 0.1 ppm
Th = 3.80 0.3 ppm
K2O = 1.42 0.04 wt. %
Rb2O= 34.3 1.4 ppm
H2O= 14.5 4.4 wt. %
Cosmic= 0.11 Gy/ka
depth = 5.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.06 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo10-4-10-4 Torra Terrace (Qat4) Individual Aliquot Data
USU-868

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 209.57 13.34 51.82 6.01 100.81 8.65 24.93 2.89
MAM = 5.23 0.00 1.29 0.15 104.41 8.44 25.82 3.00

108.57 16.04 26.85 3.11
Median = 201.66 49.9 5.8 114.81 11.37 28.39 3.29
Min = 100.81 24.9 2.9 123.32 10.11 30.49 3.54
Max = 342.34 84.7 9.8 125.94 8.84 31.14 3.61

126.71 13.39 31.33 3.64
n = 34 Aliquots 149.65 4.13 37.00 4.29

164.59 2.02 40.70 4.72
S.D. = 74.37 176.55 6.31 43.66 5.07
Standard error = 12.75 182.73 6.60 45.18 5.24
Random Errors= 7.16 % 195.05 17.02 48.23 5.60
Systematic Error= 9.13 % 201.66 7.67 49.86 5.79
Total Error= 11.60 % 208.53 6.24 51.57 5.98

210.52 5.72 52.06 6.04
Bin Width = 10.00 Gy 211.90 11.99 52.40 6.08

212.24 5.21 52.48 6.09
Overdispersion (%) = 36.6 ± 4.6 213.46 7.86 52.78 6.12

217.23 8.72 53.72 6.23
+/- 222.11 4.11 54.92 6.37

dose rate= 4.04 0.34 Gy/ka 225.41 10.34 55.74 6.47
U = 3.30 0.2 ppm 235.55 4.32 58.25 6.76
Th = 17.10 1.5 ppm 257.56 1.77 63.69 7.39
K2O = 2.90 0.07 wt. % 260.47 9.05 64.41 7.47
Rb2O= 165.7 6.6 ppm 279.35 14.66 69.08 8.01
H2O= 10.0 10.0 wt. % 308.84 54.84 76.37 8.86
Cosmic= 0.12 Gy/ka 313.25 23.80 77.46 8.99
depth = 4.5 m 318.93 30.59 78.86 9.15
latitude= 42 degrees (north positive) 330.14 5.19 81.63 9.47
longitude= 9 degrees (east positive) 330.96 3.14 81.84 9.49
elevation= 0.03 km asl 337.39 26.44 83.43 9.68

338.36 9.73 83.67 9.71
Notes:  Quartz SAR OSL age following Murray and Wintle, 2000 339.32 1.00 83.90 9.73

342.34 0.41 84.65 9.82              CAM and MAM from Galbraith et al., 1999
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Golo10-11-10-14 Torra Terrace (Qat4) Individual Aliquot Data
USU-869

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 211.11 20.03 62.53 12.44 96.22 10.42 28.50 5.67

96.89 32.62 28.70 5.71
119.03 1.22 35.26 7.01

Median = 200.48 59.4 11.8 134.95 25.07 39.97 7.95
Min = 96.22 28.5 5.7 171.54 2.81 50.81 10.11
Max = 405.21 120.0 23.9 171.69 4.11 50.86 10.12

172.71 14.32 51.16 10.18
n = 20 Aliquots 176.37 26.68 52.24 10.39

191.21 39.17 56.64 11.27
S.D. = 97.26 197.27 0.04 58.43 11.63
Standard error = 21.75 203.70 29.06 60.34 12.00
Random Errors= 18.90 % 215.39 0.53 63.80 12.69
Systematic Error= 6.22 % 247.73 40.62 73.38 14.60
Total Error= 19.90 % 295.12 15.63 87.42 17.39

300.54 127.76 89.02 17.71
Bin Width = 20.00 Gy 323.36 64.58 95.78 19.06

359.30 7.44 106.43 21.17
Overdispersion (%) = 39.7 ± 7.1 365.44 109.87 108.24 21.54

379.45 42.29 112.40 22.36
+/- 405.21 7.22 120.02 23.88

dose rate= 3.38 0.16 Gy/ka
U = 2.50 0.2 ppm
Th = 10.90 1.0 ppm
K2O = 2.88 0.07 wt. %
Rb2O= 148.7 5.9 ppm
H2O= 12.1 3.6 wt. %
Cosmic= 0.12 Gy/ka
depth = 4.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.03 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo 10-5-10-7 Sant Antone (Qaf3) Individual Aliquot Data
USU-870

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 80.86 5.36 29.38 4.31 48.16 2.22 17.50 2.57
MAM = 48.67 0.41 17.68 2.59 52.26 2.73 18.99 2.79

53.24 5.69 19.34 2.84
Median = 81.65 29.7 4.4 53.94 5.85 19.60 2.88
Min = 48.16 17.5 2.6 57.86 16.99 21.02 3.09
Max = 136.52 49.6 7.3 61.45 0.51 22.33 3.28

64.53 2.59 23.45 3.44
n = 22 Aliquots 72.90 9.53 26.49 3.89

73.90 0.08 26.85 3.94
S.D. = 26.22 74.73 4.99 27.15 3.98
Standard error = 5.59 78.83 1.70 28.64 4.20
Random Errors= 13.36 % 84.46 16.51 30.69 4.50
Systematic Error= 6.07 % 88.23 8.96 32.06 4.70
Total Error= 14.67 % 96.87 21.99 35.20 5.16

97.44 7.30 35.40 5.19
Bin Width = 5.00 Gy 98.67 10.59 35.85 5.26

98.71 0.13 35.86 5.26
Overdispersion (%) = 29.5 ± 4.9 100.03 4.99 36.35 5.33

104.62 2.71 38.01 5.58
+/- 125.61 2.24 45.64 6.70

dose rate= 2.75 0.12 Gy/ka 133.19 5.98 48.39 7.10
U = 1.40 0.1 ppm 136.52 18.42 49.60 7.28
Th = 8.70 0.8 ppm
K2O = 2.39 0.06 wt. %
Rb2O= 106.5 4.3 ppm
H2O= 10.0 3.0 wt. %
Cosmic= 0.11 Gy/ka
depth = 5.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.03 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo10-11-10-12 Sant Antone (Qaf3) Individual Aliquot Data
USU-871

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 132.04 13.85 55.08 12.30 68.45 3.25 28.55 6.37
MAM= 67.27 4.20 28.06 6.26 70.52 20.63 29.42 6.57

79.45 19.49 33.14 7.40
Median = 127.86 53.3 11.9 90.00 6.36 37.54 8.38
Min = 68.45 28.6 6.4 91.11 18.49 38.00 8.48
Max = 276.52 115.3 25.7 99.66 11.14 41.57 9.28

110.97 9.92 46.29 10.33
n = 16 Aliquots 127.06 7.63 53.00 11.83

128.67 3.06 53.67 11.98
S.D. = 62.86 130.86 12.27 54.59 12.19
Standard error = 15.71 165.13 19.30 68.88 15.38
Random Errors= 20.90 % 177.11 30.99 73.88 16.49
Systematic Error= 7.85 % 198.52 8.58 82.81 18.49
Total Error= 22.32 % 202.75 3.84 84.57 18.88

239.62 7.28 99.95 22.31
Bin Width = 10.00 Gy 276.52 19.62 115.34 25.75

Overdispersion (%) = 40.2 ± 7.7

+/-
dose rate= 2.40 0.16 Gy/ka
U = 1.10 0.1 ppm
Th = 7.10 0.6 ppm
K2O = 2.59 0.06 wt. %
Rb2O= 78.8 3.2 ppm
H2O= 22.7 6.8 wt. %
Cosmic= 0.10 Gy/ka
depth = 5.4 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.03 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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Golo 10-4-10-5 Torra alluvium-colluvium (Qac) Individual Aliquot Data
USU-872

De (Gy) ± Age (ka) ± De (Gy) ± Age (ka) ±
CAM = 108.77 7.35 28.60 4.27 53.75 6.20 14.13 2.11
MAM = 72.71 16.35 19.12 2.85 54.84 26.71 14.42 2.15

57.62 18.56 15.15 2.26
Median = 96.98 25.5 3.8 76.65 22.18 20.16 3.01
Min = 53.75 14.1 2.1 87.84 1.31 23.10 3.45
Max = 205.76 54.1 8.1 88.40 8.94 23.25 3.47

88.45 4.00 23.26 3.47
n = 22 Aliquots 89.90 9.91 23.64 3.53

94.47 7.03 24.84 3.71
S.D. = 38.18 95.19 7.25 25.03 3.73
Standard error = 8.14 96.96 8.01 25.50 3.80
Random Errors= 13.68 % 97.00 10.52 25.51 3.80
Systematic Error= 5.95 % 99.91 7.16 26.27 3.92
Total Error= 14.92 % 133.36 5.58 35.07 5.23

136.39 6.40 35.86 5.35
Bin Width = 5.00 Gy 136.71 11.58 35.95 5.36

137.26 25.26 36.09 5.38
Overdispersion (%) = 29.2 ± 5.0 139.11 18.28 36.58 5.46

148.45 6.35 39.04 5.82
+/- 151.21 2.08 39.76 5.93

dose rate= 3.80 0.18 Gy/ka 153.95 11.27 40.48 6.04
U = 2.45 0.2 ppm 205.76 14.30 54.11 8.07
Th = 16.40 1.5 ppm
K2O = 2.72 0.07 wt. %
Rb2O= 148.2 5.9 ppm
H2O= 10.0 3.0 wt. %
Cosmic= 0.16 Gy/ka
depth = 2.0 m
latitude= 42 degrees (north positive)
longitude= 9 degrees (east positive)
elevation= 0.03 km asl

Notes:  Quartz SAR OSL age following Murray and Wintle, 2000
              CAM and MAM from Galbraith et al., 1999
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