
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2014 

Automatic Registration of Multiple Texel Images to Form a Automatic Registration of Multiple Texel Images to Form a 

3-Dimensional Texel Image 3-Dimensional Texel Image 

Neeraj S. Badamikar 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Badamikar, Neeraj S., "Automatic Registration of Multiple Texel Images to Form a 3-Dimensional Texel 
Image" (2014). All Graduate Theses and Dissertations. 2064. 
https://digitalcommons.usu.edu/etd/2064 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/2064?utm_source=digitalcommons.usu.edu%2Fetd%2F2064&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


AUTOMATIC REGISTRATION OF MULTIPLE TEXEL IMAGES TO FORM A

3-DIMENSIONAL TEXEL IMAGE

by

Neeraj S. Badamikar

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Dr. Scott E. Budge Dr. Jacob Gunther
Major Professor Committee Member

Dr. Don Cripps Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014



ii

Copyright c© Neeraj S. Badamikar 2014

All Rights Reserved



iii

Abstract

Automatic Registration of Multiple Texel Images to Form a 3-Dimensional Texel Image

by

Neeraj S. Badamikar, Master of Science

Utah State University, 2014

Major Professor: Dr. Scott E. Budge
Department: Electrical and Computer Engineering

Three-dimensional (3D) imagery has gained a lot of importance in todays world, be

it in the field of entertainment, documentation, or defense. Multiple methods for creating

3D images have been proposed in the past. A few famous methods used for 3D image

matching are those that include usage of 2D images as stereo pairs or computing 3D rigid

body transformations based on range information of points. The Iterative Closest Point

algorithm (ICP) and its variants are well known for registration of point clouds, which can

be used to create 3D surfaces.

This thesis provides an algorithm, which is a continuation of the work done previously

at Utah State University, to create accurate 3D images based on “texel” images obtained

from the handheld texel camera built at USU.

The first part of the thesis briefly reviews the structure and working of the handheld

texel camera and the technique of creating texel images using the device and calibrating the

images to mitigate the effect of lens distortions. A method is then suggested to reduce the

errors in the range information in the image caused by walk error and wiggling error and

also to compensate for the timing error induced in the individual pixels of the lidar sensor.

A way to add a correcting factor to the range information to compensate for any offset in

the origin assumed by the sensor and the actual center of perspective (COP) of the sensor
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is suggested in the later part of the thesis, thus correcting the images for the inaccuracies

caused by the offset.

The second half of the thesis briefly goes over the work previously done on 3D image

matching and registration to produce 3D images. A few changes are suggested in some parts

of the existing method, which use concepts of epipolar geometry in the RANSAC algorithm

and use planar interpolation to accurately obtain the 3D co-ordinates of points from 2D co-

ordinates. An iterative solution is proposed to correct erroneously chosen correspondences

or reject bad correspondences to improve the rigid body transformation. The transformation

thus obtained is used to compute more point matches, which are in turn used to estimate

a more accurate least squares solution for the rigid body transformation.

Results show that the calibration techniques and the changes implemented in the point

cloud matching algorithm, suggested in this thesis, improve the accuracy of the images and

produce 3D images with correct matching.

(91 pages)
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Public Abstract

Automatic Registration of Multiple Texel Images to Form a 3-Dimensional Texel Image

by

Neeraj S. Badamikar, Master of Science

Utah State University, 2014

Major Professor: Dr. Scott E. Budge
Department: Electrical and Computer Engineering

Three-dimensional (3D) imaging has found a lot of use in modern era, owing to the

fast ongoing advancement in electronics, processors, and sensors, all available at affordable

prices. Three-dimensional television, games, and 3D projectors are some of the commonly

found utilities which use 3D imaging. 3D images used for surveillance, exploration, target

acquisition equipment, etc., are few of the military applications of 3D imaging. As the need

increases, more techniques are being introduced to create 3D images which improve upon

previously stated techniques. This thesis proposes an algorithm which uses “texel” images,

which are images that have digital imagery fused to 3D points, to stitch together a 3D

image of an scene.

A brief overview of the methods of calibration developed previously is given, followed

by a method to improve the quality of range information obtained from the lidar sensor,

which is prone to errors common to the type of sensor used. These errors cause the range

measurements to deviate from the true values.

The second half of the thesis briefly goes over the work previously done on 3D image

matching to produce 3D images. A few changes are suggested in the method proposed previ-

ously. Additional improvement using epipolar geometry, which is a geometric interpretation

of 3D projective geometry, helps improve the results obtained. A solution is suggested that
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makes use of the transformation computed initially to delete bad or incorrect points from

the set of points which are used to compute the initial transformation. A solution obtained

from this new set of correct points is more accurate than the one computed initially. This

solution is used to generate more points in the point set, which are used to compute the

final transformation.

The results show that the methods implemented previously and the ones suggested in

this thesis provide accurate 3D images, at low computing cost.
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Chapter 1

Introduction

Three-dimensional (3D) Geometry and Imaging Techniques has been a topic of research

for many years, for many researchers in different institutions all over the world. Introduction

of new applications has given way to rise in interest in 3D geometry and imaging, which

in turn has resulted in more number of applications using 3D imagery. Applications like

3D videos, games with 3D views, motion sensors, etc., are few of the applications used

for recreation. Applications like 3D imaging of internal body organs, historical sites, etc.,

have been helpful in proper documentation and studying purposes. Other applications

like 3D terrain mapping, automatic target recognition (ATR) have been useful in getting

information or surveying of things or places which are not easily accessible for humans.

The list goes on. To improve on the performance and accuracy of such applications, much

interest is being taken in improving the technology for building 3D images using different

techniques.

Multiple techniques have been developed to combine images or other information from

multiple sensors at a location to create a 3D surface, with texture information.

A widely used method to extract 3D depth information from images is using stereo

vision. A pair of cameras captures an image of the same target from two different views,

and the range information is extracted using the common feature points in both the images.

A single camera taking images of a scene from two different positions can also be used for

stereo matching. A projective transformation is computed using the common points in both

the images. This transformation is computed and used to match two images of a scene taken

from different poses. From this, 3D points are found using triangulation.

Another method, which is used widely to reconstruct 3D surfaces using multiple dis-

tance measurements in a scene, taken from different perspectives, is the Iterative Closest
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Point algorithm (ICP). The method is simple and uses sets of 3D points called point clouds

to match and create a 3D point cloud combining information from individual point clouds.

This method was first introduced by Besl and McKay in 1992 [1]. The method is con-

ceptually straightforward. It minimizes the distance (error) between the points in the two

sets and adjusts the transformation, which is in the form of rotation and translation, with

each iteration until the error is minimum. Multiple variants of the ICP technique have

evolved over the years, as given by Rusinkiewicz and Levoy [2]. Point-to-point error and

point-to-plane [3] error are the two types of error functions used commonly when ICP is

implemented on point clouds.

Many other techniques have evolved from the basic ones mentioned above. An effort

to combine the properties of 2D and 3D image matching techniques mentioned before was

made and a method which uses feature-based point cloud matching was introduced by

Huang and You [4]. This method uses the property of self-similarity, which is the principle

on which 2D image matching algorithms work, on 3D point clouds to overcome the problem

of the preprocessing needed when the point clouds are partially overlapped. The sensors

used in this method need to be highly accurate in their measurements and noise free for

the algorithm to detect accurate correspondences in the two datasets.

A method proposed by Schouweaars et al. [5] used multiple visual cameras which were

mounted on a road vehicle to form stereo pairs. The range measurements were obtained

using a global positioning system (GPS) device installed on the vehicle. Combining the

range information and visual information thus obtained, an effort was made to model the

street view in a city.

USU has developed a unique solution to create 2.5D images. A 2.5D image can be

thought of as 2D image with range information in one plane or along one direction only. A

range sensor and an imaging sensor are mounted on a single device in such a way that both

sensors view the same target. The information collected from these sensors is combined at

the time of image acquisition. The device so formed is called the “Texel Camera.” A lidar

sensor acts as the range sensor and a simple electro-optic camera is used as the imaging
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sensor. The 2.5D image obtained from combining the data received from these sensors is

called as the “Texel Image.” More information about the texel camera and the 2.5D texel

image is given in Chapter 2 of this thesis.

Combining these texel images to generate 3D images was tried by Boldt in his master’s

thesis [6]. Boldt used the homography technique for calculating the transformation matrix

and image registration. Boldt’s algorithm is discussed in detail in Chapter 3.

In this thesis, a method has been proposed to modify and improve upon Boldt’s algo-

rithm. The method uses concepts of epipolar geometry and projective geometry to detect

correct points, and planar interpolation to increase accuracy of the 2D to 3D transformation

of points. In addition to this, a few extra iterations have been added to improve upon the

correctness of the transformation calculated by eliminating bad points, and also to increase

the count of points used in calculating the final transformation, thus making it more robust.

This method is discussed in Chapter 3. Results obtained by this method are better in terms

of accuracy, within the limitations of the sensors used. The results are presented in Chapter

4 and Chapter 5 concludes the thesis.
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Chapter 2

Texel Camera, Texel Images, and Calibration

A 3D image consists of information pertaining to distances of all the points in the

image from the sensor, called the range information, and the texture information at all

the points in the image as observed from the direction of the sensor. Multiple devices

or sensors can be used to get the range information and the texture information, which

when merged together, form a 3D image with texture information. A device built at Utah

State University has a lidar sensor and an image sensor mounted on it, which acquire the

range and texture information required to construct a 3D image. The following section

talks about lidar technology and the next section talks about the texel camera built at

Utah State University and the components used in it. The last two sections in this chapter

describe the texel images and the calibration of the texel camera, respectively.

2.1 Lidar Technology

Lidar is an acronym for LIght Detection And Ranging. It is synonymous with ladar,

which stands for LAser Detection And Ranging. For consistency, the term lidar is used

in the subsequent sections and chapters of this thesis. Lidar is one of the many methods

known to obtain depth information or range information of a real-world object in the view

of the sensor [7]. Lidar uses techniques similar to those of a radar. However, lidar operates

on much higher frequencies than radar. This restricts the use of lidar to a shorter range,

but the range measurements of a lidar are highly accurate.

Lidar is classified mainly into three types, based on how the range is calculated: pulsed

time-of-flight, frequency modulated continuous wave and amplitude modulated continuous

wave [7]. All the three techniques effectively measure the time-of -flight of the transmitted

signal and the range information is derived from it. Pulsed time-of-flight lidar emits a
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pulse of light and calculates the range information based on the time taken by the light

pulse to return, given that the time taken is linearly dependent on the distance between the

sensor and the reflecting surface or the target. The frequency modulated continuous wave

sensor transmits a beam which has a varying frequency as a function of time to produce a

symmetrical frequency modulated waveform. The echo signals received after reflecting off

an object are frequency shifted, as a function of range and Doppler shift, from the signal

being transmitted at that time instant. Range information is derived from this frequency

shift [8]. The amplitude modulated continuous wave sensor transmits a burst of light signal

at a known modulating frequency and phase and measures the time taken for the light

pulse to return based on change in the phase of the reflected signal. This time, like in the

pulsed time-of-flight sensor, is linearly dependent on the distance of the object from the

sensor. Thus the phase offset is measured and used to calculate the range information in

an amplitude modulated continuous wave sensor.

Most lidar systems generate a dataset called as point cloud, which is a set of points

in 3D space. Usually the points are placed so as to describe the shape, size and distance

of the real-world object that is in the view of the lidar sensor. Each point in the point

cloud is described with values which describe the position of the point in 3D space, with

respect to a known origin, and the power of the light reflected from that point. These

values can be termed as range and intensity, respectively. The lidar sensor used in the texel

camera assembled at Utah State University is an amplitude modulated continuous wave

sensor, which measures range information and internally converts the range into depth

information. It is assumed that depth is the distance measured along principle axis (z-

axis) of the texel coordinate system.

2.2 Texel Camera

A texel camera is a device which has a lidar sensor and an image sensor mounted on

the same device. The lidar sensor provides with the range information and the image sensor

adds the texture information of the target scene to generate a texel image. A texel camera

was assembled at Utah State University which consists of a lidar sensor and an image sensor,
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installed in a way that their optical pathways coincide. This is ensured by the process of

coboresighting of the two sensors. Coboresighting reduces the errors introduced due to

parallax. If two sensors have parallax, then there is a difference in the angle in which an

object is viewed by the two sensors individually [9]. This change in angle between the views

of the two sensors varies with distance. Hence, if parallax exists, the two sensors cannot

view the same object from the same point of view. This results in erroneous matching of

range and texture information obtained by individual sensors. The process of coboresighting

is described in the ensuing sections.

The components of the texel camera built at Utah State University are mentioned in

the next part of this section. The image of the assembled texel camera is shown in Fig. 2.1.

2.2.1 Lidar Sensor

A Canesta 64 x 64 CMOS TOF lidar was used as the lidar sensor on the texel camera.

The 64 x 64 array of sensors give 4096 pixels or points in the point cloud, which are captured

simultaneously at multiple frames per second. Since the capture is done simultaneously for

all points and the fact that the entire view of the sensor is illuminated by a low-powered

light, no mechanical mechanism is needed to facilitate movement of the sensor. The sensor

is built on a CMOS chip. Hence, the production of such sensors can be done easily and the

cost of the sensor is not high.

Multiple parameters need to be taken into account while using the lidar sensor. These

include:

1. Shutter Time,

2. Frame Rate,

3. Common Mode Rejection ratio (CMR),

4. Modulating Frequency,

5. Power of the light which is used for illumination of the scene,

6. Count of Rows and Columns.



7

Fig. 2.1: Handheld texel camera.

The characterization of the sensor with respect to the above mentioned parameters is

described in Boldt’s thesis [6].

2.2.2 Image Sensor

The image sensor used to capture texture information is a Micron 1280 x 1024 CMOS

color Electro-Optical sensor, or EO sensor, packaged into a stand-alone development board.

The sensor takes a picture and stores it in a RGB image format. Originally the field of

view (FOV) of the lidar camera was approximately fifty degree and that of the EO sensor

was twenty three degree. As a result, for the two images to match together, the lidar data

outside the FOV of the EO camera would be wasted. Hence, to accommodate more EO

data, the lens of the EO sensor was changed. The lens chosen for the EO sensor has a focal

length of 2.5 mm, and the FOV of the EO sensor is approximately equal to 72 degree which

is larger that the FOV of the lidar sensor. For consistency, the EO sensor is referred to as

EO camera in this thesis.

2.2.3 Cold Mirror

The texel camera used one of the better ways to merge the range information and the

texture information obtained from the respective sensors. The merging was done at the
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time of image capture, and in order to facilitate this, it was imperative to ensure that both

the sensors had the same view of the target, without any parallax. This meant that the

sensors’ optical pathways should be coinciding. To ensure this, a cold mirror was used.

A cold mirror reflects light of high frequencies and transmits light of lower frequencies.

This property of the cold mirror enables the user to separate the infrared light and the visual

light. The visual light is reflected by the cold mirror, while the infrared light is transmitted

through it. Thus, the cold mirror is able to separate the incoming light into infrared light,

for the lidar sensor, and the visual light, for the EO camera. The positioning of the cold

mirror and the two sensors is shown in Fig. 2.2.

Since the source of the lidar signal and the receiver are placed very close to each other,

the infrared light emitted by the source leaks through the cold mirror and causes interference

with the visual light. To rectify this, a small baffle screen is placed between the lidar source

and the cold mirror. The baffle is made up of thick black paper, which absorbs the infrared

light incident on it, thus preventing it from interfering with the EO camera. However,

introducing a baffle causes less power to be emitted on one side of the system, which in

turn results in the power of reflected light to be less on that side, thus causing errors or

distortions on one side of the image. The positioning of the baffle with respect to the cold

mirror and the two sensors is shown in Fig. 2.3.

2.2.4 Mechanical Mount

A custom mechanical mount was designed to enable positioning of the two sensors at

right angle with respect to one another, and the cold mirror at an angle of close to 45

degrees, so as to reflect visual light on the EO camera and transmit the infrared light to

the lidar sensor. Adjustable screws are provided on the mount to adjust the position of the

cold mirror to fine tune the angle and the position with respect to the two sensors. Two

out of the three screw are marked in Fig. 2.1.

2.3 Texel Image

The image obtained by merging the range information received from the lidar sensor
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Fig. 2.2: Top view of texel camera without baffle.

Fig. 2.3: Top view of texel camera with baffle.
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and the texture information from the EO camera results in a 2.5D texel image. A 2.5D

image can be described as a 3D image viewed from only one point of view. The important

difference between a 3D image and a 2.5D image is that in a 2.5D image, range information

is available only for the points that are in direct field of view of the sensor. The range

information for the points on the target that are obstructed by some part of the target or

are not in direct field of view of the sensor is not measured. As a result, such points are

not seen in the texel image, which is a 2.5D image.

The lidar sensor measures the range information and provides a depth image and an

intensity image as outputs. A point cloud is computed using this information, which gives

the x, y, and z coordinate for each pixel or point obtained from the sensor, assuming the

origin to be at the COP of the sensor. A mesh or a tessellation of triangles is formed within

these points and a wireframe surface or a mesh of triangles is created. The texture infor-

mation obtained from the EO camera is then superimposed on this triangulated wireframe.

Thus the resulting image is a 2.5D image with texture information superimposed on the

surface. This merged dataset is called as a texel image.

The handheld texel camera built at Utah State University is designed to output texel

images of the target in the field of view. The images or datasets obtained from individual

sensors and the texel image formed by merging the individual images are shown in Fig. 2.4.

2.4 Calibration

Calibration deals with reducing of any distortion or error caused by the lens of the

EO camera or the lidar sensor on the EO image or the depth image, respectively, and then

mapping the EO image on the depth image to create an accurate texel image. The steps

involved are:

1. Focusing the image sensor, or the EO camera;

2. Coboresighting the EO camera and the lidar sensor;

3. Calibrating individual sensors to mitigate the distortions caused due to the lenses on

the sensors (Geometric Calibration);
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(a)2D EO image

(b) Left hand side view of the triangulated
wireframe.

(c) Left hand side view of the 3D texel im-
age.

(d) Front view of the wireframe. (e) Front view of the texel image.

Fig. 2.4: Texel image.
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4. Determine a mapping between the depth image and the EO image;

5. Calibrate for the range imperfections caused due to systematic error in range mea-

surements of the TOF sensor (Range Calibration).

These steps are explained in detail in this section. Of the above mentioned steps, step

1 and step 2 need to be done before the image calibration process begins (step 3 through

step 5). Step 1 and 2 involve adjusting the position of the cold mirror using the screws

that hold the cold mirror in place. Two out of the three screws can be seen in Fig. 2.1.

Once step 1 and step 2 are completed, the mechanical adjustments are completed and the

settings must not be disturbed any time in the future. If changed, the entire calibration

process needs to be redone. Steps 3 and 4 form the process of “Geometric Calibration”

of the texel camera while step 5 deals with the “Range Calibration” of the lidar sensor in

particular.

2.4.1 Focusing the EO Camera

It is important to focus the EO camera in order to obtain a sharp EO image of the

target in view. The EO camera can be focused by screwing the lens of the EO camera in

or out till a sharp image is obtained.

2.4.2 Coboresighting the EO Camera and Lidar Camera

Before the actual calibration, it must be ensured that the fields of view of the two

sensors are the same. Since the texture information (the EO image) is obtained from the

EO camera, it is of immense importance that the FOV of the EO camera and the lidar

sensor coincide. If the light reflected by the cold mirror is not aligned with the principle ray

of the EO camera, it causes linear distortion or “shift” in the image, which is not desirable.

This distortion can be minimized by adjusting the position and the angle of the cold mirror

using the three screws on the mechanical mount that facilitate the rotation of the cold

mirror about two axes and translation along the third axis. Also, the effect of parallax in

both the sensors needs to be removed.
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The point at which the camera can rotate about, without suffering a parallax effect is

called the center of perspective (COP) [10, 11]. In order to minimize the parallax between

both the sensors on the texel camera, the individual COPs of the sensors should coincide

optically. The position of the mirror is adjusted until the principle axes of the two sensors are

coaxial and the COP of the lidar sensor coincides with the virtual COP of the EO camera.

This procedure can be carried out using a panoramic mount, which helps in finding out the

COP of a camera. The panoramic mount is a device that can be mounted on a tripod, and

is used to capture scenes that can be stitched together to form a panorama. It allows the

camera to rotate about vertical and horizontal axes, which can be measured relative to the

camera.

The process of coboresighting is done in four steps [12]. Also note that it is convenient

to use the “brightness image” that is obtained from the lidar sensor, than using the depth

image.

The steps involved for coboresighting the two sensors are:

1. Match the fields of view: The position and the angle of the cold mirror is adjusted

such that the center of view of the EO camera matches the center of field of view of

the lidar sensor.

2. Find COP of both the EO camera and lidar sensor: The texel camera is

mounted on the panoramic mount to first find the COP of lidar. Since the mechanical

mount is designed in a way to position the cold mirror and the two sensors such that

the virtual COP of the EO camera is located at the COP of the lidar, both the sensors

can be checked simultaneously. When the COP of the lidar is found in either of the

two axes, rotation about that axis will cause no relative shift in objects closer to the

sensor with respect to objects far away in the scene. If the virtual COP of the EO

camera is also located at the same point, there will be no shift in objects closer and

further away in the EO image during rotation.

3. Re-adjust the cold mirror: The position of the cold mirror must be adjusted, by

means of the three screws on the mechanical mount, so that the virtual COP of the



14

EO camera coincides with the COP of the lidar sensor.

4. Repeat: Iterate in steps 1 - 3 till the COPs of the sensors coincide.

Once the process of coboresighting is completed, the screws on the mechanical mount

should be fixed to their positions and must not be re-adjusted, as this would result in shifting

of the COPs of the two sensor with respect to each other. The camera is now ready to be

calibrated. The calibration process further can be divided into two major steps. The steps

consist of geometric calibration, applicable to both sensors, and range calibration which is

applicable to the lidar sensor.

2.4.3 Geometric Calibration

Geometric calibration minimizes errors and distortions in the images which are caused

due to the lens or the cold mirror. Since both the sensors have different lenses, one approach

would be to calibrate them individually and then find a mapping between them. A method

was chosen to calibrate the lidar sensor first, and then a mapping was found from the EO

image to the calibrated lidar image, so that the EO image gets calibrated through the

mapping [12].

2.4.3.1 Calibrating the Lidar Sensor

A point in 3D space can be defined as P r = [Xr, Yr, Zr]
T , where Zr is the distance

measured along the principal axis of the camera coordinate system.

The principal axis is the line passing through the center of curvature of the lens and

is normal to the plane tangential to the lens. Here we assume the principal point, which

is the point at which the principal axis intersects the sensor array, as the origin [0, 0, 0]

in a Cartesian coordinate system where x-axis is parallel to the rows of the sensor array,

y-axis is parallel to the columns of the sensor array and the z-axis is normal to the sensor

array. The object is assumed to be in −z direction, meaning the z coordinate of a point

on the target decreases as it goes further from the principal point, along the principal axis.
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Comparing it to the ideal pinhole camera model [13], the projected coordinates of the the

3D point into 2D space are given by

pn =

XrZr
Yr
Zr

 =

xn
yn

 . (2.1)

Here pn is called as the normalized coordinate of the point P r.

However, owing to the distortions introduced due to the lens, the normalized point is

changed. The distorted point can be defined as

pd =

xd
yd

 = dr

xn
yn

+ dt, (2.2)

where dr is due to the radial distortion and dt is due to the tangential distortion. We can

define these by

dr = 1 + k1r
2 + k2r

4 + k5r
6, (2.3)

dt =

2k3xnyn + k4(r
2 + 2x2n)

k3(r
2 + 2y2n) + 2k4xnyn

 , (2.4)

and

r2 = x2n + y2n. (2.5)

This definition is according to the model of camera distortion given by Heikkila and Sil-

ven [13]. The coordinates of the point on the sensor array can be determined using the
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distorted points pd and the camera calibration parameters using

pp =


xp

yp

1

 = K


xd

yd

1

 , (2.6)

where pp is the pixel position on the sensor array, given in pixel coordinates, and K is the

camera matrix containing the intrinsic parameters,

K =


fx s cx

0 fy cy

0 0 1

 . (2.7)

Here fx and fy are the focal distances in the x and y direction, s is the skew factor, cx

and cy are the horizontal and vertical position of the principal point. All these parameters

are defined in pixel coordinates. The principal point is defined with respect to the origin

of the pixel matrix, in which the origin is at the top-left corner. The intrinsic parameters

or the K matrix is calculated using the Camera Calibration Toolbox in Matlab [14]. The

procedure for finding these parameters along with the distortion coefficients is described by

Boldt [6]. These camera parameters are useful in transforming a point on the sensor array

pp to distorted point coordinates pd. These parameters are constant for a fixed optical

setup, and need to be calculated only once. However, if the position of the mirror or the

lens is disturbed, these values need to be recomputed.

2.4.3.2 Computing the Normalized Image Coordinates

The distorted point locations pd and the distortion parameters dr and dt can be used

to transform points from the sensor array pp to points in normalized space pn. This is done

by first inverting the camera matrix K, and obtaining distorted point locations pd. Using
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the mapping defined for the distortion parameters dr and dt in (2.4) and (2.5), given as

xd(xn, yn) = xn + k1 xnr
2 + k2 xnr

4 + k5 xnr
6 + 2 k3 xn yn + k4(r

2 + 2x2n), (2.8)

yd(xn, yn) = yn + k1 ynr
2 + k2 ynr

4 + k5 ynr
6 + k3(r

2 + 2 y2n) + 2 k4 xn yn. (2.9)

From this, an approximate solution for pn(xn, yn) can be found, given as p̃n(x̃n, ỹn), using

the approach given by Melen [15].

The normalized values p̃n are fixed for each pixel, given that the calibration matrix

and the distortion parameters are unchanged. Hence, the p̃n values can be computed once

and stored in a look up table, and can be used when needed. The p̃n values are important

in transforming the points on sensor array into 3D space.

2.4.3.3 Transforming 2D Points on Lidar Sensor Array into 3D Space

Equations (2.1)-(2.6) describe how to map a 3D point in space onto the lidar sensor

array. The location of the point in space using 3D coordinates (x,y,z), can be computed

based on the measurements of the lidar sensor. The lidar sensor measures the range of the

point. In addition to this, only the pixel points pp are known. Using this information, the

location of the point in 3D space P̃ r can be computed as follows.

As mentioned before, the normalized points p̃n are computed approximately by invert-

ing the camera matrix K and the expressions given in (2.8) and (2.9). Once the p̃n are

known, the 3D point P̃ r can be computed using the range λr.

P̃ r =
λr

(x̃2n + ỹ2n + 1)
1
2


x̃n

ỹn

1

 = λr


x̃nzc

ỹnzc

zc

 = λr


xc

yc

zc

 , (2.10)

where

zc = (x̃2n + ỹ2n + 1)
− 1

2 . (2.11)
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2.4.3.4 Lidar to Visual Image Transformation

As mentioned before, both the sensors on the texel camera have different optical systems

and the cold mirror is positioned to enable both the sensors to view the same scene. However,

the position of the cold mirror is still prone to shifts and errors. Also, the fields of view of

both the sensors are different, the EO camera having a larger field of view than the lidar

sensor. Hence, a mapping function needs to be formed, in order to match the two sensors

so that they view the same scene. The procedure to find and use the mapping function is

described by Budge and Badamikar [12].

Since the EO camera is also subject to distortion caused by the lens, the mapping

function should be such that it minimizes the abnormalities caused by the lens. The mapping

function is based on the camera model described in equations (2.8) and (2.9). The mapping

is found between the pixels in normalized space pn and the corresponding points in EO image

(u,v). Since the lidar pixels in normalized space have already been corrected for radial and

tangential distortion, the imperfections added by the lidar sensor lens are removed. In order

to correct the EO image, an unknown camera matrix KI is applied to the camera model

for lidar sensor. The mapping then can be given as


u

v

1

 = KI


x̃d(x̃n, ỹn)

ỹd(x̃n, ỹn)

1

 =


f Ix x̃d(x̃n, ỹn) + sI ỹd(x̃n, ỹn) + cIx

f Iy ỹd(x̃n, ỹn) + cIy

1

 . (2.12)

After combining constants, the resulting mapping is given by

u = g1 x̃n + g2 x̃nr
2 + g3 x̃nr

4 + g4 x̃nr
6 + g5 x̃n ỹn + g6(r

2 + 2 x̃2n) + g7 ỹn+

g8 ỹnr
2 + g9 ỹnr

4 + g10 ỹnr
6 + g11(r

2 + 2 ỹ2n) + g12

v = h1 ỹn + h2 ỹnr
2 + h3 ỹnr

4 + h4 ỹnr
6 + h5(r

2 + 2 ỹ2n) + h6 x̃n ỹn + h7.

(2.13)

The high order r6 term in this polynomial can lead to an ill-conditioned solution.

Secondly, it would be unreasonable to assume that the radial distortion is strictly circular,

because the imperfect positioning of the cold mirror may cause the radial distortion to be
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slightly eccentric. Hence, a more appropriate mapping is derived by removing the higher

order terms and the coefficients g4, g10 and h4, and decoupling terms to express the mapping

as a function on xn and yn, we get

u = g1 + g2x̃n + g3x̃
2
n + g4x̃

3
n + g5ỹn + g6x̃nỹn + g7ỹ

2
n + g8ỹ

3
n + g9x̃

2
nỹn+

g10x̃nỹ
2
n + g11x̃

5
n + g12ỹ

5
n + g13x̃nỹ

4
n + g14x̃

4
nỹn + g15x̃

3
nỹ

2
n + g16x̃

2
nỹ

3
n

v = h1 + h2ỹn + h3ỹ
2
n + h4ỹ

3
n + h5ỹnx̃n + h6x̃

2
n + h7ỹnx̃

2
n + h8ỹ

5
n + h9ỹnx̃

4
n+

h10ỹ
3
nx̃

2
n.

(2.14)

Finally, since the skew parameter s is negligible for nearly all focal planes, and to allow for

rotation between the lidar and EO sensors, the mapping can be reduced to

u = g1 + g2x̃n + g3x̃
2
n + g4x̃

3
n + g5ỹn + g6x̃nỹn + g7ỹ

2
n + g8x̃nỹ

2
n + g9x̃

5
n+

g10x̃nỹ
4
n + g11x̃

3
nỹ

2
n

v = h1 + h2ỹn + h3ỹ
2
n + h4ỹ

3
n + h5x̃n + h6ỹnx̃n + h7x̃

2
n + h8ỹnx̃

2
n + h9ỹ

5
n+

h10ỹnx̃
4
n + h11ỹ

3
nx̃

2
n.

(2.15)

To formulate the mapping, the coefficients g and h need to be estimated. Vectors g and

h represent the mapping coefficients given in (2.15). These are estimated using multiple

corresponding points in the EO image and the brightness image (xi ↔ p̃ni), where xi

represents 2D points selected from the EO image and p̃ni represents normalized coordinates

of points in the brightness image obtained from lidar sensor. The corresponding points are

obtained by using a checkerboard, with clear and individually distinguishable corners, as

a target. Multiple images of the checkerboard can be taken in order to pick points in the

entire field of view of the lidar sensor. The points can be picked manually or automatically

by using a corner-finder algorithm, which is a part of the Camera Calibration Toolbox in

Matlab. Once sufficient number of points in lidar brightness image and their corresponding
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points in the EO image are picked, the mapping coefficients can be estimated by a maximum-

likelihood fit to the points, as given by

(ĝ, ĥ) = arg min
(g,h)

N−1∑
i=0

d(p̃ni, ˆ̃pni)
2 σEO
σlidar

+ d(xi, x̂i)
2, x̂ =

û
v̂

 = F (ˆ̃pn, g,h), (2.16)

where ˆ̃pni and x̂i are the estimated positions of the correct (noiseless) observations, σEO
σlidar

is the ratio of EO image pixel size to lidar pixel size, d(·) is the Euclidean distance, and

F (p̃n, g,h) is given by (2.15) [16].

2.4.4 Range Calibration

The lidar sensor obtains two types of information for each image that it takes. Firstly,

the brightness information, which is the data about the intensity of the light reflected back

from the target; and secondly, the depth image, which is derived from the range informa-

tion, or the distance to the object from the sensor. The range information that is obtained

is not highly accurate and is prone to some errors due to imperfections in the sensor. These

errors can be broadly classified into two types, a systematic error caused due to non-ideal

modulating function, also called the “wiggling error,” and an error caused by difference in

the amount of light reflected off the surface, known as “walk error.” A detailed explanation

for the wiggling error is given by Frank et al. [17]. Walk error is observed between objects

with contrasting reflectivities, and the camera needs to be calibrated to reduce the error

caused by this. An effective method to reduce this error is to create a 2D calibration surface,

which is a function of the reflected intensity and range. Additional studies based on the

location of pixel in the array, in order to account for vignetting, is given by Lindner and

Kolb [18]. However, since real-time creation and calibration of texel images was the aim of

this effort, a simpler three step approach was attempted.
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2.4.4.1 Flat-Field Correction

It was observed that in the lidar sensor, there are slight differences in the location of

depth origin for each of the 64 x 64 pixels. This means that, for a flat target with the sensor

positioned such that the principle-axis (z-axis) is normal to the flat target, the pixels in

the image were not exactly flat. The mesh formed by the 3D points in the texel image was

not flat as it should have been. This is caused due to the timing and response difference

experienced by each pixel. It was assumed that the sensor associated with each of the pixel

in the array had a slight timing offset with respect to each other due to the aging or the

latency associated with the electronic circuit of each sensor.

In order to reduce the effect of the timing imperfections associated with each pixel, a

flat target was used and the distance along the z-axis of the sensor was measured, with

respect to a point of reference on the sensor. A correction value for each pixel was generated

by calculating the difference between the distance measured physically and the distance

measured by the sensor. The same procedure was carried out for different depths, and

a maximum-likelihood correction for each pixel was computed, over all the depths. The

correction was converted to range, and stored in a look-up table (LUT). The corrections

are added to the measured range for each pixel in the first step of range calibration. This

method is similar to the one given by Kahlmann et al. [19] in the effort to correct the range

data for fixed pattern noise.

This step in the process of range calibration corrects for the timing mismatch in the

sensors for each pixel, such that each pixel is corrected with respect to the reference point

on the sensor. This is analogous to a flat-field correction for each pixel, over measured

depths.

2.4.4.2 Range Error Correction for Walk Error and Wiggling Error

As mentioned before, the walk error results from differences in the target reflectivity

and wiggling error results from the imperfections in the modulating signal transmitted by

the lidar source. Since the signal is common for all pixels in the lidar sensor array, the

correction for the wiggling error or the walk error can be assumed to be the same for all
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pixels, unlike the flat-field correction, which was pixel dependent.

It is observed that the error in range is significantly dependent on two things. The

magnitude of the error differs according to the intensity of the light reflected from the

target object. It is observed that the reflectivity depends on the colors on the surface in the

sense that the IR light often reflects better off surfaces that are brightly colored than those

with dark colors. For an object with highly contrasting surface colors like a checkerboard

pattern on a flat wall, it is observed that the range obtained for pixels corresponding to

black squares is higher in magnitude than that for pixels corresponding to white squares.

This can be seen in Fig. 2.5. The pixels in the dark squares are projected backward. Figure

2.5(b) shows the texel image tilted in a way that the back of the texel image is seen. The

significant difference in range measured for the dark pixels and the range for the white

pixels can be seen.

The range error also depends on the actual range of the object. The resulting error is

dependent on range, forming a “wiggle pattern.”

(a) Flat view of the chequered board texel
image

(b) Tilted view of the chequered board texel
image

Fig. 2.5: Range error: “walk error” is evident in Fig. 2.5(b) which shows the back view of
the target. The dark squares are projected backwards, compared to white areas.
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A simple yet effective method to correct the range to compensate for wiggling error

is to create a LUT based on correction values for different values of range and intensities.

As was suggested before, since the error is dependent on range and intensity values, a 2D

correction-surface can be created, which is a function of brightness or the intensity value of

a pixel, and the measured range for the pixel. This surface is called a “calibration surface.”

A calibration surface was created using a flat target and ensuring that the focal plane

of the lidar sensor was parallel to the target (the z-axis normal to the target). The range

information and the brightness (intensity) information obtained from the sensor for each

pixel were recorded. A correction value for range was computed, based on the range given

by the sensor and the range measured physically from a reference point on the lidar sensor,

called the “true range.” This reference point is the same point which was used for reference

in the flat-field correction. Thus a correction value for all pixels with varying range and

intensity measurements were obtained.

This experiment was repeated over a set of ranges from the target, and for each range

the power of the light emitted was varied from maximum value, which avoided saturation of

pixels, to a lower value, which ensured at least 75 percent of the pixels were above a threshold

intensity of 14 units. The threshold value of 14 was chosen because range measurements for

pixels with intensity below 14 units have large error. Thus a dataset was obtained which

had data for each pixel with correction values for a wide number of ranges and brightness

(intensities).

This data set was quantized with respect to range and intensity values and the correc-

tion values were averaged for each cell. The cell size is based on a trade-off between the

size of LUT and the accuracy of the correction.

This process of computing the calibration surface is given by Budge and Badamikar [12]

and the calibration surface thus computed is shown in Fig. 2.6.

In Fig.2.6, the z-axis represents the correction values for the range with respect to

the measured range and intensity values, x-axis and y-axis, respectively. The “wiggling”

nature of the error, and hence the correction can be observed in Fig. 2.6.
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To calibrate the range measurement λr(m,n), the range and brightness (B(m,n)) are

used as input for the LUT, and correction value for range is obtained by interpolation

between the closest points known in the LUT. The correction is then added to the range to

get the calibrated range λcalr (m,n).

2.4.4.3 COP Offset Error

There is a possibility that the origin for the coordinate system assumed by the lidar

sensor for processing and calculating range information might differ from the COP of the

sensor. This can cause an error in the back-projection of 3D points from the sensor array as

the back-projection value depends on the measured range, as mentioned in section 2.4.3.3.

For a geometrically calibrated sensor, a COP with a positive Zr value (the origin

assumed by the lidar sensor lies in between the COP and the target) will cause all the

computed 3D points to be closer to each other than the actual distance. This can be shown

in Fig. 2.7.

Fig. 2.6: Calibration surface: shows the correction values (z) corresponding to given inten-
sity or brightness (x) and range (y).



25

In this figure, it can be seen that the COP of the lidar sensor has a positive z-coordinate

as compared to the origin assumed by the sensor. The range for a point in 3D space can be

computed from depth and normalized coefficients of points on sensor array using (2.10) and

(2.11). Since the origin assumed by the lidar sensor is closer to the target along the z-axis,

the range λ̃r measured by the sensor is smaller than the true range λr. As a result, the

depth measured by the sensor is less than the actual depth of the 3D point on the target.

This, in turn, results in the x-coordinate of the point in 3D space, computed using (2.10)

and (2.11) to be different than the true value. It can be seen in Fig. 2.7 that since λ̃r is less

than λr, the point A’ back-projected in 3D space has a x-coordinate lower in magnitude

than the true value (shown by point A), such that it is closer to point “B.” As a result, the

distance d(A′, B′) is less than the true distance d(A,B).

Similarly, Fig. 2.8 shows the case where the COP of the lidar sensor has a negative z-

coordinate as compared to the origin assumed by the sensor. The resulting range measured

by the sensor λ̃r is larger than the true range λr, resulting the x-coordinate of the point

“A” computed using (2.10) and (2.11) to be different than the true value. It differs such

that the x-coordinate of A’ is larger than the true value and the back-projected point A’

moves away from the point “B.” Similarly, coordinates of point B are computed such that it

is back-projected as B’ which away from point A. As a result the distance d(A′, B′) appears

larger than the true distance d(A,B).

Figures 2.7 and 2.8 show how the offset between the COP of the lidar sensor and

the origin assumed by it affects back-projection of points by showing the variation in x-

coordinate of the projected point. Similar logic can be applied to see the change in the

y-coordinate caused due the offset. As a result, the overall distance between the points in

3D space differs from the true distance.

To alleviate the error caused due to the COP offset, an offset zo is assumed to be the

difference in the z-coordinate in the actual COP and the assumed origin. The optimal value

of zo is calculated such that the distances between 3D points obtained by the sensor are

equal to the true distances between the corresponding points in real world. Since the true



26

value of zo is unknown, only the (Xr,Yr) values are used to estimate zo. The process to

estimate the optimum zo, given by Budge and Badamikar [12], is as follows.

A checkerboard pattern is taken as a target scene, and the 2D points corresponding to

corners are measured and defined as Pm,k
r , k = 0, . . . ,K, for a given depth. K is the number

of points in an image taken when the target is at a particular depth from the sensor. Such

images are taken over a range of depths l = 0, . . . L, L being the number of different depths

at which images were taken, ensuring that the flat target is parallel to the focal plane of

lidar sensor. The 2D points computed from the sensor measurements can then be defined

as

P̃
l,k
r =

xkcλl,kr + zox̃
k
n

ykcλ
l,k
r + zoỹ

k
n

 , (2.17)

and the optimal value of zo is computed by minimizing the error between the measured

points and true distance, over all the depths. It is given as

zopto = arg min
zo

L∑
l=0

Kl∑
j=0

Kl∑
k=j+1

[
d(P̃

l,j
r , P̃

l,k
r )− d(Pm,j

r ,Pm,k
r )

]2
. (2.18)

Fig. 2.7: A ray diagram showing the zo correction: for COP having a positive z- coordinate
compared to origin assumed by lidar sensor.
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Fig. 2.8: A ray diagram showing the zo correction: for COP having a negative z- coordinate
compared to origin assumed by lidar sensor.

Thus the final calibrated 3D point is given by

P̃ r(m,n) =


Xcal
r (m,n)

Y cal
r (m,n)

Zcalr (m,n)

 =


xc(m,n)λcalr (m,n) + zox̃n(m,n)

yc(m,n)λcalr (m,n) + zoỹn(m,n)

zc(m,n)λcalr (m,n) + zo

 . (2.19)
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Chapter 3

Point Cloud Matching and Image Registration

As mentioned previously, the list of applications which use 3D imaging is endless and

more applications are being thought of as more accurate and “real” 3D images are generated.

Multiple techniques have been developed over the years and efforts are being taken in order

to improve the performance of existing techniques and develop new ones which perform

better and yield good results. A common technique to create 3D images includes feature-

based image registration using projective geometry on 2D images captured from different

poses. Two-dimensional images of an object can be used to create a 3D image of the

object using stereo methods [20]. Stereo based image matching techniques compute depth

information, given the disparity between the COPs of the sensors used to capture the images.

A segment based stereo matching algorithm is given by Medoni and Nevatia [21].

However, image matching using 2D images has some disadvantages due to the envi-

ronment in which images are captured, and also because range information for the target

is not measured directly. It is difficult to compute the depth information of a target if the

disparity between the two positions from where the images are captured is unknown. Also,

finding adequate and accurate features in areas with low light intensity is a tedious task.

The issue of difference in perspective between the poses of the camera also causes difficulty

in determining corresponding pairs of feature points in the images. Difference in perspec-

tive causes the feature matching based on correlation to work poorly, because of the shift

in shape of the projection of an object on two image planes, when the images are captured

from two different positions. This problem is now being assessed and a few techniques like

modifying the shape of correlation window to account for the difference in perspective have

been suggested by Tuytelaars and van Gool [22] and Kanade [23]. Multiple other variations

of this method, depending on the applications, are also being used widely. However, the
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problem of extracting depth information at low-detailed areas or dim light still persists.

Since no range information is available on the points in the image, the issue of scaling

makes it impossible to guess the actual range and size of the objects in view. This means

that it is impossible to differentiate between an object which is big in size and held at a

large distance, and a similar object which is smaller in size but held close to the observer.

The issue of scaling can be resolved if range information such as the distance between points

on the object and the observer, and the distance between individual points on the object

are known [16]. This range information can be obtained using lidar sensors. Lidar sensors,

as described in Chapter 2, can be used to measure range information to the target. The

lidar sensor generates a dataset of points with range information for each of the points.

Such datasets are known as point clouds. An algorithm that merges multiple point clouds

that are captured from different perspectives was developed by Besl and McKay, known

as the iterative closest point method (ICP) [1]. ICP method computes the transformation

by minimizing the overall distance (error) between corresponding points in the two point

clouds. However, this technique fails when the two point clouds to be matched are only

partially overlapped. Since no information about the amount of overlap is known, often the

error converges incorrectly, giving a poor solution. Preprocessing the data sets such that

the information of the overlap is provided, so that the error is computed and minimized only

over the region of overlap can help address this issue. A method suggestion by Chetverikov

et al. [24] addresses this issue to a certain extent. A few variations of ICP have been

introduced, as per requirements of the application in which it is used [4, 5].

The handheld texel camera developed in USU generates texel images which have texture

information, which is similar to 2D texture images, imprinted on wiremesh formed by points

whose range information is known. These points form a point cloud which is similar to the

dataset used in ICP. The method used to generate and calibrate the texel images is given

in Chapter 2. A texel image is a 2.5D image, which can be described as a 3D image viewed

from one point of view. The range information and the texture information is available only

for the points that are in direct field of view of the sensor. The points that are not in the
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field of view of the sensor are not seen in the texel image. Hence, texel images captured from

multiple perspectives can be merged to form a complete 3D image of an object. Moreover,

since the texel image contains 2D texture data an 3D range information for lidar points,

both 2D and 3D image matching methods can be employed to merge the datasets in a

better way. This merging of multiple images is called image registration, and a method for

registering multiple texel images based on principles of projective geometry and epipolar

geometry is proposed in this chapter of the thesis.

3.1 Previous Work Done on Texel Image Matching at USU

Some previous work has been done on image registration to match two texel images

of a scene, captured at different locations, using visual and range information. This thesis

extends the work previously done by Boldt [6] and Nelson [25]. This section gives a brief

background of the methods developed previously. Detailed information of the work can be

found in the MS thesis “Point Cloud Matching with a Handheld Texel Camera” by Boldt

and “Image-Based Correction of Ladar Pointing Estimates to Improve Merging of Multiple

Ladar Point Clouds” by Nelson. This method, along with some variation to improve the

performance is given in the work done by Budge and Badamikar [26].

The final aim being matching two texel images, the process followed to achieve desired

results can be summarized as:

1. Detect Harris features,

2. Find putative correspondences,

3. Establish a model that fits the corresponding features,

4. Optimal estimation of the model,

5. Estimate final orientation using lidar points.

The first three steps are carried out using the 2D EO images of the scene. The final

3D transformation to register the texel images is computed using the 3D points obtained
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by the lidar sensor. Since the texel images are a fusion of texture information and range

information, if the point clouds are registered, the texel images are also registered, and vice

versa. The steps listed above are discussed more in detail in the following sections.

3.1.1 Detect Harris Features

The first step in matching the point clouds is to detect common features in the two

EO images. A corner detector algorithm is used to find features, or distinct points, in

the EO images. These features are of high importance since the set of features which are

common to both the images are used to find the transformation between the two images.

The corner detector algorithm was developed by Harris and Stephens [27]. This algorithm

was an improvement on Moravec’s corner detector [28].

The corner detector functions by considering a local window in the 2D image. The

average changes in the image intensity are measured that result from shifting the window.

The shifting is done such that all neighboring pixels are considered. The difference in the

intensities for each shift are measured and compared to a threshold value, described in the

Appendix, and the following inferences are drawn based on the changes noted.

1. If the intensity is approximately constant, i.e., the difference in the intensity is low

over all the neighboring pixels, the window is flat, i.e., has no features.

2. If the window is at an edge, then the shift along the direction of the edge will result

in small change, but a shift in the direction perpendicular to the edge will result in a

large shift in intensity.

3. If the window is at a corner, then a shift in any direction will result in a large change

in intensity. A corner can thus be detected when the least change in intensity due to

any shifts is large.

Harris and Stephens improved upon Moravec’s corner detector by making changes like

using a circular window instead of a square one and made it more efficient by making the

response close to isotropic, by shifting in all possible directions around the window. The
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window size of the Harris corner detector is discussed in the Appendix. The basic properties

of the corner finder algorithm is illustrated in Fig. 3.1.

The mathematical details are given in Harris’ and Stephens’ work [27]. Since the EO

images captured by the texel camera are colored, they are divided into three image planes

(R, G, B) and the corner finder algorithm finds feature points in all the image planes

individually and combines them to form a list of feature points in the EO image. Figure

3.2 illustrates the feature detection with an example. The features that are detected using

the Harris detector are marked with red points in the images.

3.1.2 Find Putative Correspondences

Since the goal is to find points that are common to both the images, the task after

finding features in individual images is to find which feature in one image corresponds to

a feature in the other image. This steps acts as a limiting filter for the next step, which

involves finding a 2D transformation for the two EO images. The process of finding putative

correspondences is based on correlation. The process is given as follows:

1. Measure the correlation score of a window centered about each feature in one image,

with another window centered about each feature in the second image using (3.1) and

(3.2).

2. If the correlation score is higher than a threshold, then the corresponding features are

assumed to be putative correspondences.

3. If multiple features in the second image have correlation scores with a feature point

in the first image that are higher than the threshold, the feature in the second image

with the highest correlation score is chosen as the corresponding feature point.

The correlation score (Xc) of a feature point in image 1 with a feature point in image

2 is calculated using:

Xc = XR +XG +XB, (3.1)
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(a) Harris feature detector window traversing
an edge.

(b) Harris feature detector window traversing
a plane surface.

(c) Harris feature detector window traversing
a corner.

Fig. 3.1: Harris corner detection algorithm.
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(a) Image 1. (b) Image 2.

Fig. 3.2: Harris features: results of the Harris corner detector for two EO images.

where

XR =

NR
2∑

r=−NR
2

NC
2∑

c=−NC
2

(I1R(x+ r, y + c)− µ(I1R))(I2R(x+ r, y + c)− µ(I2R))√
(I1R(x+ r, y + c)− µ(I1R))2 + (I2R(x+ r, y + c)− µ(I2R))2

XG =

NR
2∑

r=−NR
2

NC
2∑

c=−NC
2

(I1G(x+ r, y + c)− µ(I1G))(I2G(x+ r, y + c)− µ(I2G))√
(I1G(x+ r, y + c)− µ(I1G))2 + (I2G(x+ r, y + c)− µ(I2G))2

XB =

NR
2∑

r=−NR
2

NC
2∑

c=−NC
2

(I1B(x+ r, y + c)− µ(I1B))(I2B(x+ r, y + c)− µ(I2B))√
(I1B(x+ r, y + c)− µ(I1B))2 + (I2B(x+ r, y + c)− µ(I2B))2

.

(3.2)

In (3.2), NR and NC are the number of rows and columns in the correlation window, given

in pixel coordinates. I1R(x, y) and I2R(x, y) are the intensities of the point at (x, y) in

the first and second image, respectively, in R (red) image plane, where x and y is the row

and column for the point, given in pixel coordinates. The average intensities in image 1

and image 2, computed over the correlation window centered about the feature points in
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R image planes, are given by µ(I1R) and µ(I2R). Similar notations are used for G (green)

and B (blue) image planes. The correlation window size and the correlation threshold value

are described in the Appendix.

The results of the correlation based method are illustrated in Fig. 3.3. The correspon-

dences found are marked with similar color points.

3.1.3 Establish a Model to Fit Putative Correspondences

Having a good correlation between features is not a sufficient condition to decide if they

are matching points in the two images. There can be multiple features in an image that

are similar to features in the other image. In such a case, finding correspondences based on

the constraint of correlation only can result in incorrect matches. Hence, in order to find a

model that fits most of the correct correspondences, called the inliers, and to eliminate the

the wrong correspondences, the outliers, a parameter estimation technique called Random

Sample Consensus (RANSAC) is used [29]. RANSAC does not depend on the assumption

that most of the dataset is not corrupted with gross errors. RANSAC has the ability to fit

the data set better and eliminate the outliers in the data sets. RANSAC generates a model,

based on randomly picked data points and then decides the accuracy of the model based on

how many how many of the total number of data points fit the model. The model used by

Boldt with RANSAC to find putative correspondences is called the homography model [6].

Homography, also known as projective transformation, studies the effects of relations

between linear spaces where any given point in open space corresponds to one and only

point in any other linear space [30]. This model can be used to relate between images of

the same scene, taken from different poses. For 2D images, this relationship can be defined

as xA = HxB, where xA and xB are points in homogeneous coordinate system in the two

images and H is a matrix having dimensions of (9 × 9). To determine a homography model,

a minimum of four data points are required [30].

Using the model of homography, RANSAC is used to find the best model that fits the

given set of putative correspondences as given in Algorithm 1.

Even though the model determined by the method described in Algorithm 1 fits many
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(a) Image 1. (b) Image 2.

Fig. 3.3: Putative correspondences.

of the points in the data set, this model is not the optimal homography transformation,

since it is computed using just four points out of the set of data points. The optimal

transformation is computed using all the inliers obtained for the best model, instead of just

Algorithm 1 RANSAC to find the best model that fits the data points that satisfy the
correlation constraint.

Input:
• List of putative correspondences, (pi ↔ p′i)
• Number of iterations, m

Output:
• Best fit homography model, H
• List of inlier points that fit H, (Pt ↔ P ′t), t = 1..N

Begin
For m Iterations

• Randomly select four pairs from the putative correspondences
• Determine planar projection (homography) [30],
using the correspondences chosen in the previous step.
• For All the putative correspondences

• Count the pairs of correspondences that fit the homography model.
Let this number be n.

• End For
• End For
• Choose the model with maximum n as the best fit model, H.

End
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four used in RANSAC. This is calculated using Singular Value Decomposition [25].

3.1.4 Estimate Final Orientation Using Ladar Points

RANSAC gives the best 2D model that fits the two EO images. The final aim is to

find a transformation such that the texel images are registered. Hence, a 3D transformation

needs to be computed to match the individual point clouds. The following process uses the

information available from previous processing to compute the 3D transformation.

1. Estimate the position of 2D feature points in terms of azimuth and elevation using

the position on 2D image using a pixel to polar coordinate mapping.

2. Estimate range of the corresponding points by bilinear interpolation of the closest

lidar points.

3. Compute the position of the point in 3D space in Cartesian Coordinates.

4. Use these points to determine 3D transformation for two images captured.

The 3D transformation, also know as the rigid-body transformation can be defined

as [R,T ], where R is a 3 x 3 rotation matrix and T is a 3D translation vector. The

transformation maps two corresponding point sets mi and ni, where i = 1..N, N being the

number of point correspondences, such that they are related by

mi = Rni + T + noise. (3.3)

Solving for an over-determined system, the optimal transformation [R̃, T̃ ] is estimated

by minimizing least squares error E2 given by

E2 =
N∑
i=1

(mi − R̃ni − T̃ )
2
. (3.4)

The method to find a least squares solution, given an over-determined system is given by

Arun et al. [31].
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3.2 Improvements on the Existing Technique

As stated previously, this thesis proposes a method that improves upon the method

described by Boldt and Nelson. A few changes were implemented in the process of fusing

range information to texture information using a different mapping function described in

section 2.4.3.4. The texel images obtained after the fusion were calibrated for errors in

range using a method based on a LUT and flat-field correction as described in section 2.4.4.

The calibration process reduces the error introduced due to the walk error in the 3D lidar

points. Apart from these, a few iterations were added to the process of determining the

final 3D transformation. The changes are listed as follows:

1. Added additional constraint to RANSAC using concepts of epipolar geometry.

2. Used planar interpolation instead of bilinear interpolation for better accuracy in find-

ing 3D point coordinates from 2D image points.

3. Added a second iteration to the computation of the 3D transformation to eliminate

“bad” points which were not eliminated by RANSAC or correlation in the previous

iteration.

4. Added a third iteration, based on previous iterations, to add more points to the set

of inliers that are used to determine the 3D transformation.

5. Computed the final 3D transformation by minimizing the reprojection error, using a

nonlinear optimization method known as the Levenberg-Marquardt method.

The changes were incorporated in only a few steps of the method described by Boldt

and Nelson. The rest of the steps, which included detection of Harris features, finding

putative correspondences and the method of determining 3D transformation using a given

set of corresponding 3D points, were unchanged. The changes made and the improvements

caused by them are described in brief in the following sections.
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3.2.1 RANSAC Based on Epipolar Geometry

The method described earlier computes a homography model using four randomly

picked pairs of points and uses that model as a constraint to find inliers for that model.

This method is made more general by using a model and a constraint based on epipolar

geometry [16]. This method uses eight point correspondences to determine the model [32],

and the transformation model based on the principle of epipolar geometry is known as the

fundamental matrix [16].

Epipolar geometry is the geometry of stereo vision. As shown in Fig. 3.4, it is the

geometry associated with the intersection of the individual image planes (image 1 and image

2) with the plane which is formed by the baseline (line joining the two camera centers) and

a point on the object in 3D space, as given by the triangle formed by vertices C, C ′ and

X in Fig. 3.4. Epipolar geometry gives a relationship between a point X in 3D space that

is visible in two images captured from different perspectives, and the corresponding image

points x and x′, which are the projections of X on the two image planes. Figure 3.4 shows

that the points x and x′, 3D point X and camera centers C and C ′ are coplanar. This

plane is known as the epipolar plane corresponding to point X and two camera centers,

C and C ′. The rays back-projected from x and x′ intersect at X, and lie on the epipolar

plane of X. The intersection of the epipolar plane with the image plane of C ′ is a line , say

l′. This line is the image of the ray back-projected from x, on the image plane of C ′ and

the point x′ lies on this line . Thus, l′ is the epipolar line corresponding to point x. The

point x′, which is the point corresponding to X in image plane of C ′, will be limited to the

line l′. This constraint on the projection of a 3D point in the other image plane is called

the epipolar constraint. Mathematically, it is given as

x′TFx = 0, (3.5)

where F is the fundamental matrix [16] and x and x′ are the homogeneous image coordinates.

The fundamental matrix is computed using a minimum of eight correspondences, as

given by Hartley [32]. The best model that fits most of the points in the set of putative
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correspondences is determined using the epipolar constraint in the RANSAC algorithm.

This method is described in the work given by Budge and Badamikar [26]. It is given in

Algorithm 2.

Once the best transformation model and the list of inliers that fit the model are ob-

tained, the optimal transformation is computed using all the inliers obtained from RANSAC.

This transformation is then used to test the list of putative correspondences to get a final list

of inliers, resulting in a set of points that satisfy the correlation and the epipolar constraints.

The results of RANSAC and the final test is given in Fig. 3.5, where the corresponding

inliers that meet the correlation constraint and the epipolar constraint are marked by points

of same color. The white lines are the epipolar lines corresponding to each inlier.

3.2.2 2D to 3D Transformation Using Lidar-to-Image Mapping and Planar

Interpolation

The 3D points corresponding to the 2D inliers obtained after RANSAC are used to

determine the 3D transformation. These 2D points do not lie exactly on the existing lidar

pixels and hence, the 3D coordinates of the points of interest need to be calculated using

interpolation between the existing 3D lidar points.

A set of parameters, (u,v), are used to map the 2D image coordinates to 3D lidar

points in a texel image. The (u,v) give the 2D image coordinate to lidar point mapping

where u corresponds to the value along the columns of the image (along x-axis) and the v

value corresponds to the value along the rows (along y-axis). They are normalized, such

that 0 ≤ u, v ≤ 1, where u = 0 maps 2D image coordinates to 3D lidar point that is to

the extreme left in 3D space, and u = 1 gives the mapping to the 3D point to the extreme

right. Similarly, v = 0 corresponds to the top-most lidar pixel (along y-axis) and v = 1

corresponds to the bottom-most lidar pixel. The origin is assumed to be at the top-left

corner of the 2D image. The (u,v) values are assigned such that the span along x-axis is

equal to the span along y-axis, in order to maintain the square shape of pixels. Hence, for

example, if the span along y − axis for an image is more than the x-axis, then the (u,v)

values are assigned in a way that the u value will range from 0 to 1 (0 ≤ u ≤ 1), but the v
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Fig. 3.4: Epipolar geometry.

Algorithm 2 RANSAC to find the best model based on epipolar constraint, that fits the
data points that satisfy the correlation constraint.

Input:
• List of putative correspondences, (pi ↔ p′i)
• Number of iterations, m

Output:
• Best fit model (Fundamental matrix), F
• List of inlier points that fit F , (Pt ↔ P ′t), t = 1..N

Begin
For m Iterations

• Randomly select eight pairs from the putative correspondences
• Determine fundamental matrix, F , as given in [32]
using the correspondences chosen in the previous step.
• For All the putative correspondences

• Check for inliers using epipolar constraint (3.5).
Count the pairs of correspondences that satisfy (3.5)
within a certain tolerance threshold.
Let this number be n.

• End For
• End For
• Choose the model with maximum n as the best fit model, F .

End

value will range between 0 to a value n (0 ≤ u ≤ n) that is linearly scaled using the ratio



42

of the span along x-axis and y-axis, given as

n =
Spanx
Spany

, (3.6)

where Spanx is determined by computing the distance between the lidar point on extreme

left and the lidar point on extreme right along x-axis, and Spany is determined by computing

the distance between the top-most lidar point and the bottom-most lidar point along y-axis,

using the 3D coordinates of the point.

Thus, the (u,v) mapping is such that the position of each lidar point corresponding

to the 2D image coordinate is known. Thus any 2D point T = (p, q) can be converted to

(u,v) values using uT
vT

 =

 p
NumCol

q
NumRow

 , (3.7)

where p, q are 2D coordinates of a point in pixel coordinates, and NumRow and NumCol

are the row count and column count, respectively, in the 2D image.

The (u,v) mapping is used to determine the four lidar points in terms of lidar rows

and columns that are closest to the 2D feature point. Since three points are necessary and

(a) Image 1. (b) Image 2.

Fig. 3.5: RANSAC using epipolar constraint.
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sufficient to define a plane, only three closest lidar points out of the four points surrounding

the 2D feature point are chosen and planar interpolation is used to obtain the 3D coordinates

of the feature point.

Since the indices of the closest pixels are known in terms of row number and column

number, their normalized values xin and yin, where i = 1, 2 or 3, can be used to compute

the normalized values x̃n and ỹn of the point of interest.

The equation of a plane passing through three points in Cartesian Coordinate system

is given by

∣∣∣∣∣∣∣∣∣∣
(x− x1) (y − y1) (z − z1)

(x2 − x1) (y2 − y1) (z2 − z1)

(x3 − x1) (y3 − y1) (z3 − z1)

∣∣∣∣∣∣∣∣∣∣
= 0 =

∣∣∣∣∣∣∣∣∣∣
(x− x1) (y − y1) (z − z1)

a b c

d e f

∣∣∣∣∣∣∣∣∣∣
, (3.8)

where (x1,y1,z1), (x2,y2,z2) and (x3,y3,z3) are 3D coordinates of the measured lidar pixels.

In (3.8), let

a = (x2 − x1), b = (y2 − y1), c = (z2 − z1);

d = (x3 − x1), e = (y3 − y1), f = (z3 − z1).
(3.9)

The 3D coordinates of the point of interest, P̃= (x̃,ỹ,z̃), can be expressed using the

normalized values in (2.1) as

P̃ t = (x̃nz̃, ỹnz̃, z̃). (3.10)

The 3D coordinates of the point of interest can be computed by substituting (3.10) in

(3.8) and as the x, y, and z point in the plane equation and solving for z̃,

z̃ =
x1(bf − ce)− y1(af − dc) + z1(ae− bd)

−x̃n(bf − ce)− ỹn(af − dc) + (ae− bd)
. (3.11)

The actual 3D coordinates for the point of interest can then be computed using (3.10).
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3.2.3 Eliminating Points on Edges

It is observed that 3D lidar points that lie on edges of surfaces which have a large

difference in depth (along z-axis) are more prone to error or inaccurate measurement. This

is because the surface is oblique to the transmitter and the receiver of the lidar sensor. The

reflectivity of the surface is affected due to the angle, and hence the information received is

prone to noise.

An effort is made to check and select only those points which were on flat or relatively

plain surfaces in the texel images for determining the 3D rigid body transformation. A

two-fold test is conducted on each 2D point feature.

1. Determine the three lidar points that are closest to the feature point using planar

interpolation, as described in section 3.2.2. Calculate the difference in depth between

all the three points, taking one pair at a time. If the maximum difference in the points

is less than a threshold distance, pick the point as a valid inlier. Else proceed to step

2.

2. Use the three lidar points determined in step 1 to compute the plane equation and

the equation of the normal to the plane. Determine the angle made by the normal

and the ray incident on the plane from the origin, i.e., COP of the sensor. If the angle

is less than a threshold value of the angle (described in the Appendix), pick the point

as a valid inlier.

The above mentioned test ensures that the 3D point picked as an inlier does not lie on

an edge. This is ensured by determining the angle made by the normal to the plane and

the incident ray, and checking if it is less than a certain threshold angle. One possibility,

however, exists such that the feature point lies on a flat surface, which is parallel or close

to parallel to the sensor array, yet the angle made by the plane in which it lies has an angle

greater than the threshold value set. Since the range measurements of the lidar sensor are

noisy, the difference in depths due to noise can cause the angle of the plane with the sensor

array to be larger than the threshold value, if the three points that define the plane are

closer to each other in x and y directions. Since the points are closer, the small difference in
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depth causes the plane to tilt, resulting in an angle which may sometimes be larger than the

threshold angle used to eliminate points on edges. In order to prevent such false elimination

of points, step 1 checks if the maximum difference in depths is large enough to be certain

of the point lying on an edge, and only then proceed to step 2.

If the angle made by the normal and the incident ray (step 2) is large, the plane on

which the 3D point lies is expected to be at an angle, larger than the threshold value, with

the sensor array of the lidar sensor. This could mean that the plane lies along a fringe or

an edge, and so does the point lying on the plane. This possibility is tested in step 2 of the

given test.

If a point fails both the tests, it can be concluded that the point lies on an edge and is

discarded.

3.2.4 A Corrective Iteration to Improve Accuracy of Inlier Points

It can be seen that the epipolar constraint and the correlation constraint are necessary,

but not sufficient conditions for a pair points to be correct inliers. Any pair of points which

are highly correlated, and lie on the epipolar line can be assumed to match correctly, even

though they actually may not be the same point in 3D space. This is illustrated in Fig.

3.6. The points marked with dots having same color are the points which are picked as

inliers. It can be seen that some points are picked as inliers, inspite of being incorrect

correspondences. As shown in Fig. 3.6, the points are highly correlated and satisfy the

epipolar constraints since they lie on the same epipolar line as the correct correspondences

do.

A solution to this is to use the 3D transformation estimated in the first iteration to

guide the selection of matching points from the list of putative correspondences. Assuming

that the first transformation is reasonably close to being correct, the initial R̃ and T̃ can

be used to eliminate incorrect correspondences.

The epipolar test given in section 3.2.1 results in a set of correspondences that may

be one-to-many for each feature point in the first EO image. This is likely to happen

when multiple points in the second EO image satisfy both the epipolar constraint and
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(a) Image 1. (b) Image 2.

Fig. 3.6: Incorrect matches inspite of meeting correlation constraint and the epipolar con-
straint.

the correlation threshold for a single point in the first EO image. The one-to-many list

of correspondences needs to be pruned such that the correct feature point is picked, or

alternately, the bad correspondence is discarded from the list of inliers.

Choosing of incorrect correspondences as inliers can result from two cases. One, if

the one-to-many list contains the correct correspondence for a given feature point, yet the

wrong one is chosen because of a higher correlation score with the feature point. The second

case is when the correct correspondence does not exist in the one-to-many list. This might

happen if a 3D point is picked as a corner by the Harris corner detector in the first image,

but not in the second image. As a result, some other point, which has the correlation score

higher than the threshold and satisfies the epipolar constraint may be chosen as a likely

correspondence. Both the cases result in incorrect choice of correspondences, hence leading

to a poor solution.

A correcting method is used, either to rectify the incorrect choice of correspondences,

which can be possible in the first case mentioned above, or discard the incorrect correspon-

dence completely, which works for the second case.

Given the list of 2D inliers in first EO image, x, and the initial estimate of the 3D
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transformation, R̃ and T̃ , each 3D point corresponding to the 2D point xi in first EO

image is transformed into 3D coordinate system of second image using R̃ and T̃ and then

projected into the second EO image as 2D point, x̃′i. If the feature point in the first image

and its corresponding feature point in the second image is a correct match, the projected

point x̃i should be such that the distance between x̃′i and the corresponding feature point

x′i, in second EO image, is very small. By using this principle, a two-step corrective test is

conducted in order to ensure that the correspondence for a given feature point is correct.

1. From the one-to-many list of correspondences in the second image, chosen for the

point xi in the first image, the feature point xi having the smallest Euclidean distance

to the projected point x̃′i is selected.

2. If the Euclidean distance between the selected point and the projected point x̃′i is

below a threshold value (described in the Appendix), which is chosen to be a small

value, the selected point is picked as the correspondence in second image for point xi

in the first image.

If none of the points in the many-to-one list of correspondence pass the corrective test,

the point xi and its correspondence is removed from the list of inliers. The process of

correcting an incorrect match or discarding the match altogether is illustrated in Fig. 3.7

and Fig. 3.8.

Figure 3.7 illustrates the case of correcting an incorrect match, given that the correct

match exists in the one-to-many list of correspondences for a given feature point in the first

image. The points are incorrectly matched if multiple points satisfy the epipolar constraint

and an incorrect match point, satisfying the epipolar constraint, has a higher correlation

score than the correct point. This case in illustrated in Fig. 3.7(a). The points A′, B′ and

C ′ satisfy the epipolar constraint and have correlation scores with point A which are higher

than the threshold. Hence, the one-to-many list of correspondences for point A consists of

points A′, B′ and C ′.

Even though points A ↔ A′ are correct pair of inliers, the pair of A ↔ B′ is chosen to

be the correct one. As mentioned before, this can be the result of points B′ and A having a
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(a) Step 1.

(b) Step 2.

(c) Step 3.

Fig. 3.7: Corrective iteration: correcting inaccurate correspondences.
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higher correlation score than the correlation score of points A and A′. It can be seen that

both the points A′ and B′ satisfy the epipolar constraint. Since the correct correspondence

for point A exists, this pair of inliers can be corrected. Using R̃ and T̃ , the 3D point in the

first lidar image, corresponding to the point A in the first EO image, is transformed into the

3D coordinate system of the second texel image. This point is then projected as a 2D point

Ã′ on the second EO image, as shown in Fig. 3.7(b). Since the 3D transformation R̃ and

T̃ is close to correct, if not accurate, the point Ã′ is projected close to its correct match,

A′, and the Euclidean distance between points Ã′ and A′ is the least in the one-to-many

list of inliers for the point A. Hence, according to the corrective test, point A′ is chosen as

the correct match for point A, as shown in Fig. 3.7(c).

Figure 3.8 illustrates the case of eliminating an incorrect match by discarding the point

correspondence altogether. An incorrectly matched pair of inliers is formed if the correct

match for the feature point in first image does not exist as a feature point in the second

image. Instead, a correspondence is picked from a list of points which satisfy the epipolar

constraint and correlate with the feature point in the first image. This case in illustrated

in Fig. 3.8(a). The points B′ and C ′ satisfy the epipolar constraint and have correlation

scores with point A which are higher than the threshold. Hence, the one-to-many list of

correspondences for point A consists of points B′ and C ′.

Even though the correct match for point A does not exist in the list of feature points

in the second image, the pair of A↔ B′ is chosen to be the correct match. Using R̃ and T̃ ,

the 3D point in the first lidar image, corresponding to the point A in the first EO image,

is transformed into the 3D coordinate system of the second texel image. This point is then

projected as a 2D point Ã′ on the second EO image, as shown in Fig. 3.8(b). Since the

3D transformation R̃ and T̃ is close to correct, the point Ã′ is projected such that the

Euclidean distance between point Ã′ and B′ is greater than the threshold value set. Hence,

according to the corrective test, since no point in the one-to-many list satisfy the conditions

in the test, the correspondence is discarded and point A and its matching correspondence

is removed from the list of inliers, as shown in Fig. 3.8(c). Since the correct correspondence
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(a) Step 1.

(b) Step 2.

(c) Step 3.

Fig. 3.8: Corrective iteration: discarding inaccurate correspondences.
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for point A does not exist, this pair of inliers cannot be corrected.

All the inliers are checked and only those which are correct or are corrected are retained.

The 3D transformation is recomputed using the method described in section 3.1.4 using the

retained inlier points as inputs. The resulting 3D transformation results in a new R̃2 and

T̃ 2, where the subscript indicates the iteration in which the solution is determined.

3.2.5 Recomputing 3D Transformation Using Additional Points

The number of points used to determine the transformation is usually larger than the

minimum number of points required, which is eight [32], resulting in an over-determined

system. A least squares solution is estimated using the points selected [31]. For a least

squares solution of an over-determined system, more data points usually result in a better

least-squares fit. Hence, to get additional points which are corresponding inliers in the two

images, an additional iteration is introduced in the algorithm.

For the least squares fitting method used to compute the 3D transformation between

two texel images, the best solution would be obtained if all the points that lie in the region of

overlap of the two texel images are in the list of inliers, without any incorrect matches. That

is difficult to achieve, since existing techniques enable the user to identify distinct points

only, like Harris features, and use them as inliers with good confidence. Using similar logic,

a large set of inliers which is distributed uniformly over the region of overlap gives a better

result than a set of points concentrated in a small area of the overlapping region. Hence,

this step aims at generating more points in the texel images that can be assumed to be

matching correctly, in order to get a better 3D transformation.

These additional points are selected from the list of Harris feature points detected pre-

viously. They are selected using the transformation computed in the previous iteration,

which is assumed to be close to correct. This ensures that the added points are not outliers

but instead are corresponding feature points within tolerance of the initial 3D transforma-

tion. The additional points generated in this iteration are used along with those used to

determine the previous transformation to compute the final 3D transformation (R̃3 , T̃ 3)

using the method described in section 3.1.4.
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The method proposed to add new points uses the list of Harris features in both the

images, the 3D transformation (R̃2 , T̃ 2) computed using method suggested in section 3.2.4

and the test used to eliminate points which lie on edges of 3D objects in the scene. The

steps involved in selecting new points is given in Algorithm 3.

3.2.6 Optimizing the 3D Transformation Using Nonlinear Optimization

The 3D transformation is estimated using the method described in section 3.1.4 is a

linear solution. Using this 3D transformation as an initial guess, a better transformation is

recomputed by minimizing the reprojection error, which is calculated using the 3D points

in the two image planes and the transformation that maps points in one image onto the

other. This method involves adjusting the values of individual elements that form the 3D

Algorithm 3 Addition of new Inlier points to compute the 3D transformation.

Input:
• Count of Harris Features in first and second image, N1 and N2.
• List of Harris feature points detected in the first image, (xi), i=1...N1,
• List of Harris feature points detected in the second image, (x′

k), k=1...N2,

• 3D transformation (R̃2 , T̃ 2)
Output:

• List of additional 3D inlier points, (Pt ↔ P ′t), t = 1..M
Begin
• For Each Harris feature point (xi) in first image

• If 3D point Xi, corresponding to xi, does not lie on an edge in the 3D scene

• Using (R̃2 , T̃ 2), transform Xi → X̃ ′i.

• If X̃ ′i is in the FOV covered by second image

• Project X̃ ′i on 2D EO image from the second texel image to get x̃′i.
• For Each Harris feature point (x′k) in second image

• By computing Euclidean distance, d(x̃′i, x
′
k),

find the feature point x′k closest to x̃′i.
• If The d(x̃′i, x

′
k) ≤ distance threshold,

• Find 3D point X ′k corresponding to x′k.
• Store Xi and X ′k as Pt and P ′t .

• Else Discard xi and choose next feature point.
• End For

• Else Discard xi and choose next feature point.
• Else Discard xi and choose next feature point.

•End For
End
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transformation, as well as the 3D coordinates of the points used to determine the transfor-

mation to account for noisy measurements of the lidar sensor.

3.2.6.1 Reprojection Error

Reprojection error is an error based on geometric distance between measured and

estimated coordinates in the respective images. Unlike other distance-based error functions,

reprojection error takes into account the error in measured points in both image coordinates.

In the present case, we seek a 3D transformation (R̃ , T̃ ) and pairs of 3D inlier points (x̃i

↔ x̃′
i) that minimize the total error function given by

E2
rep =

N∑
i=1

d(xi − x̃i)2 + d(x′i − x̃′i)
2
, (3.12)

where

x̃i = R̃x′i + T̃ . (3.13)

Points xi and x′i in (3.12) are the 3D points measured by the lidar sensor. These

measured points are assumed to be noisy and a noise-free estimate of these points, x̃i and

x̃′i, respectively, is obtained by minimizing the reprojection error, along with correcting the

3D transformation. The concept of reprojection error is explained in more detail by Hartley

and Zisserman [16].

3.2.6.2 Levenberg Marquardt Method for Nonlinear Optimization

A method called the Levenberq Marquardt algorithm is implemented to minimize the

reprojection error in order to improve upon the linear solution obtained by the method

described in section 3.1.4. The minimization proceeds iteratively. Given trial values for

parameters, the procedure attempts to improve the trial solution. This procedure is then

repeated till the error reduces below a given threshold value. This method closely resembles
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the gradient descent method to find a local minima for a known error function. This method

is described in brief by Press et al. [33].

The function to be minimized is given as an error function (χ2(a)), where a is the list

of m parameters which are to be adjusted in order to minimize the error function. In this

case, the error to be minimized is the reprojection error given by (3.12) and (3.13). This

procedure develops iteratively and each iteration takes the solution one step closer to the

optimum solution. This step is denoted by δ, which is a vector with m elements. The step

δ gives a small correction value for the parameters to be optimized (a), in order to reduce

the error defined by χ2(a), such that χ2(a) > χ2(a+ δ). The step δ taken towards the

optimum solution depends on the first derivative; i.e., the gradient, a m element vector β,

and the second derivative; i.e., the Hessian, a m × m square matrix α, of the error function

χ2(a). The step in each iteration is computed by solving for the following equation

N∑
l=1

αk,lδal = βk, (3.14)

where

βk =
∂χ2

∂ak
, (3.15)

and

αkl =
∂2χ2

∂ak∂al
. (3.16)

Equation (3.14) corresponds to the steepest descent formula and translates to

δl = k · βl. (3.17)

The constant k is given by λαll, where λ was introduced as a damping factor to scale the

step size. The damping factor is used to scale the diagonal elements of α. Thus step δ can

be computed using steepest descent formula as

δl =
1

λαll
βl. (3.18)
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Incorporating (3.18) in (3.14) to get a new set of equations

N∑
l=1

α′k,lδal = βk, (3.19)

where

α′jj = αjj(1 + λ),

α′jk = αjk.

(3.20)

This equation can be solved linearly to compute δ.

The Levenberg Marquardt method can be summarized in the following steps:

1. Compute χ2(a),

2. Pick a small value for λ, such as λ= 0.01,

3. Solve linear equation (3.19) for δ and evaluate χ2(a+ δ),

4. If χ2(a+ δ) ≥ χ2(a), increase λ by a factor of 10 and go back to step 3,

5. If χ2(a) ≥ χ2(a+ δ), decrease λ by a factor of 10 and update trial solution a = a +

δ.

Thus, using the Levenberg Marquardt method, the 3D transformation (R̃ , T̃ ) is op-

timized after each iteration. The linear solution (R̃n , T̃ n) is used as a starting point for

this method.
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Chapter 4

Results

The Camera Calibration methods described in Chapter 2 and the image matching

techniques given in Chapter 3 were implemented and then tested experimentally on different

setups. These setups consisted of different arrangements of plain colored boards, checkered

boards, specific patterns that would help observe a particular effect and various 3D objects.

The results obtained on these experiments are discussed in this chapter. The first part of

this chapter presents the results of various steps of the calibration process and later the

results of the point cloud matching algorithm are discussed.

4.1 Calibration Results

The calibration as given in Chapter 2 consisted of three major steps:

1. Correcting the lidar image for lens distortions,

2. Mapping the EO image on the lidar image, while correcting the EO image for lens

distortions,

3. Correcting the lidar image for range errors.

The results for each of these steps are discussed. These results are also given in the article

presented by Budge and Badamikar [12].

The lidar camera was calibrated, and the lens distortion parameters given in (2.3)-

(2.5) and the camera matrix given in (2.7) were computed using the CCTM [14]. These

parameters were used to estimate normalized image coordinates (x̃n, ỹn) for all the detectors

on the sensor using the method described in section 2.4.3.2. These values are plotted in

Fig. 4.1 as a grid, representing the pixel positions of the lidar sensor. It can be seen that

the lidar pixels are not uniformly positioned with respect to each other. The array is not
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rectangular due to the lens distortion. This type of distortion, where the outer pixels in

the array are pulled towards the center, is known as pin-cushion distortion. The values of

different parameters obtained from the CCTM are listed in Table 4.1.

The lidar to image mapping was computed as described in section 2.4.3.4. The mapping

parameters can be estimated using (2.16). Since this mapping uses lidar points that are

calibrated so that they are linear, the mapping parameters correct for the lens distortions

of the EO sensor as well. This eliminates lens distortions in the EO image. This is shown

in Fig. 4.2. It can be seen that the raw image is barrel distorted, and the mapping corrects

for the distortion, which results in the corrected image being almost linear.

The mapping of the EO image on the lidar pixels is shown in Fig. 2.4. It can be seen
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Fig. 4.1: Corrected lidar pixels: the position of lidar pixels to remove lens distortions.
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Table 4.1: Calibration results: distortion parameters for the lidar sensor.

Parameter Symbol Value Tolerence

Focal Distance (fx,fy) (80.4527 , 80.3708) ± (0.2318 , 0.24581 )

Principal Point (cx,cy) (34.8945, 31.6703) ± (0.3637, 0.3564)

Skew (s) 0.0000 0.0000

Distortion Parameters: (k1) -0.19969 ± 0.01315

(k2) 0.05126 ± 0.04457

(k3) -0.00077 ± 0.0.00079

(k4) 0.00411 ± 0.00083

(k5) 0 ± 0.0000

Pixel Error (σx,σy) (0.06693, 0.06836)

that the individual images captured by the lidar sensor and the EO sensor match very well.

The edges and corners of the 3D objects match in both the images, showing that the FOVs

of both the sensors match correctly.

The texel images were corrected for range error using the method described in section

2.4.4. The results were tested using a target which consisted of eight bars of different shades

of a dark color, each representing a different reflectance for IR light. This target was chosen

such that the effect of walk error due to difference in the amount of IR light reflected by

different colors was observed. The error was observed to be reduced, but was not completely

eliminated. This is illustrated in the Fig. 4.3. Figure 4.3(c) represents the raw texel image

without any range calibration. It can be seen that walk error is evident on pixels that

correspond to the bars that have dark shades. The effect of walk error can be seen more

significantly in Fig. 4.3(e) which shows a colored representation in terms of range for the

same texel image. Figure 4.3(d) and Fig. 4.3(f) represent the texel image that has been

corrected for range using the calibration LUT. It can be seen that the walk error in the

corrected image is less as compared to the raw image.

The final step involved testing the accuracy of points projected in the 3D space. This

was carried out by comparing the distances between known points in the texel image com-

puted using the 3D coordinates of the points of interest and the actual distances between

the corresponding points in the real world. The distance computed using the 3D points is

denoted as “measured distance” and the true world distance is denoted as “true distance.”

This experiment was carried out for different positions and distances of the target from
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(a) Raw image. (b) Corrected image.

Fig. 4.2: Correction for lens distortion for the EO sensor.

the texel camera. The error associated with each distance, mean error and the standard

deviation for each experiment were recorded. The results are in illustrated in Table 4.2.

The first two columns show mean error and the standard deviation in the measured

distances between known points in the texel images obtained for different depths, without

any corrections for the lens distortion or range error. The following two columns show the

results after incorporating the corrections for the lens distortions given in (2.3)-(2.5). This

shows that the error is reduced by about 30% by incorporating the nonlinear correction

methods. The next two columns illustrate the results after implementing correction for

the nonlinearities and includes an estimated value of the zo offset between the COP of the

lidar sensor and the origin assumed by the sensor firmware. It can be seen that the after

correcting for zo, the error reduces to about 3% of the initial mean error in the measured

distances. The zo computed has a value of 2.98 cm (towards the focal plane).

The final two columns show the results after all the calibration steps are completed,

including the flat-field correction and the correction for wiggling error and walk error using

the LUT, as described in section 2.4.4.1 and section 2.4.4.2. It was observed that the average

flat-field correction offset for all the lidar pixels was 2.0 cm with a variance of 0.23 cm. This
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(a) Front view of the raw texel im-
age.

(b) Front view of the corrected texel
image.

(c) Top view of the raw texel image.
(d) Top view of the corrected texel
image.

(e) Top view of the raw texel image
with colormap showing the error in
depth.

(f) Top view of the Corrected texel
image with colormap showing the er-
ror in depth.

Fig. 4.3: Range calibration: the correction in the distortion due walk error is seen in the
figures showing the corrected texel image.
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offset was included before the calculation of zo. The zo was recomputed after the correction

for wiggling error, walk error, and the flat field correction, and was found to be 0.87 mm.

This shows that the reference point assumed during the flat field correction is close to the

actual COP of the lidar sensor. It can be seen from the results presented in Table 4.2 that

the mean error and the standard deviation for the measured distances reduce after each step

of calibration is implemented. The final error is observed to be only 1.26% of the original

error.

4.2 Point Cloud Matching Results

The calibration process improved the accuracy of the texel images, which were used in

the Point Cloud matching algorithm given in Chapter 3. The algorithm was implemented

and tested using various flat and 3D targets.

The Harris corner detector, described in section 3.1.1, was used to find distinct corners

or feature points which were used to compute the transformation later. The algorithm was

tested using different 2D images. Figure 4.4 illustrates the result of the corner detector for

set of images of a bookshelf setup that were captured from different perspectives.

The list of features in both the images was sorted to find feature points that are common

to both the images using the correlation technique, as mentioned in section 3.1.2. Though

not sufficient, this condition is good enough to eliminate majority of mismatches. The

results of the correlation based method to find the putative correspondences is illustrated

in Fig. 4.5. The corresponding pairs of matching points are marked with dots of same color

Table 4.2: Calibration results: point cloud measurement error after each calibration step.

Depth zo = 0 zo = 2.98 cm zopto = 0.87 mm

cm. k1...k5 = 0 k1...k5 from calibration values k1...k5 from calibration values k1...k5 from calibration values

(zr) No Range Calibration No Range Calibration No Range Calibration Range Calibrated

µ σ µ σ µ σ µ σ

50 2.222 1.540 1.715 0.845 0.287 0.276 0.026 0.198

70 1.398 0.567 1.067 0.406 0.013 0.276 0.143 0.270

90 1.294 0.523 0.797 0.420 -0.293 0.371 -0.113 0.276

110 1.414 0.604 0.884 0.535 -0.180 0.356 0.025 0.245

Overall 1.582 0.796 1.116 0.671 -0.043 0.385 0.020 0.260
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in the images taken of the bookshelf setup.

RANSAC was used to compute a best-fit model (fundamental matrix) from the set of

putative correspondences. Each pair of putative correspondences is subject the epipolar

constraint described in section 3.2.1, and the best model is determined by counting the

number of inliers for each model. The points that satisfy the epipolar constraint and are

chosen as inliers are shown in Fig. 4.6. The matching pair of points in the two images are

marked with the same color and the white lines are the epipolar lines corresponding to each

feature.

Once the 2D correspondences are found, they were projected into 3D space using the

method described in section 3.2.2 and the 3D transformation (R̃1, T̃ 1) was determined us-

ing a least-squares method, as described in section 3.1.4. The 3D transformation computed

is optimized further by adjusting the values of the 3D points used to compute it and the

transformation itself. This is accomplished using the Levenberg Marquardt method, de-

scribed in section 3.2.5. It was observed that this further reduced the reprojection error

which was computed using all the points used to determine the transformation. The graph

of reprojection error in meter vs. iteration count for one particular instance is shown in

Fig. 4.7.

The initial transform (R̃1, T̃ 1), computed using the 3D point correspondences that were

determined using just the correlation and the epipolar constraint, was observed to be close to

correct, though not exactly correct for all target setups. It was seen that though most of the

inliers selected using RANSAC were correct, in some cases some of the points did not match

correctly. The conditions that would result in such erroneous matching and the method to

improve the accuracy of the matches or discard them altogether using a corrective iteration

are discussed in section 3.2.4. The transformation (R̃2, T̃ 2) is recomputed in the corrective

iteration. The Levenberg Marquardt method is used to optimize the 3D transformation

(R̃2, T̃ 2) after it is computed using linear least squares fitting method. It uses (R̃2, T̃ 2)

and the list of inlier points used to compute the linear solution as the starting point for the

algorithm.
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(a) Image 1. (b) Image 2.

Fig. 4.4: Harris features: results of the Harris corner detector for two EO images.

(a) Image 1. (b) Image 2.

Fig. 4.5: Putative correspondences.

The advantage of the corrective iteration is evident in Fig. 4.8, which shows how

the corrective iteration helps in improving the registration of two texel images of a flat

wall setup having some geometrical figures and patterns of different colors embedded on it.

Figure 4.8(c) shows the registration of texel images based on transformation computed using

incorrectly matching points. The inaccurate transformation (R̃1, T̃ 1) results in mismatch
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(a) Image 1. (b) Image 2.

Fig. 4.6: RANSAC based on epipolar geometry: inlier pairs marked with same colors.

in the registration as seen in regions close to the grey bar chart and the broken edges

of the black square and the rectangle on the right side of the merged texel image. The

transformation (R̃2, T̃ 2) was observed to improve significantly after the corrective iteration

was implemented and Fig. 4.8(d) shows evident improvement in the registration of the texel

images. The mismatches seen in Fig 4.8(c) are largely corrected.

The quantitative results of the corrective iteration are shown in Table 4.3. The MSE is

observed to reduce significantly after the transformation is recomputed using correct pairs

of inlier points.

The transformation (R̃2, T̃ 2) was then used to compute additional points from the list

of features. The computation of additional points helps in finding more common feature

points in the two images in addition to the ones which have already been found. A larger

number of feature points give more data to compute the 3D transform. A better fit is

obtained if the feature points are well distributed over the region of overlap, than having a

points concentrated in a smaller area. The main purpose of this step is to add more points to

the set from which the 3D transform is computed, without the addition of significant error

to the transform. The steps involved in the process of adding more points are described

in section 3.2.5. The added set of inlier points are appended to the list of points used to
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Fig. 4.7: Reprojection error vs iteration count: graph showing the result of the Levenberg
Marquardt method.

determine the transformation (R̃2, T̃ 2). The 3D transformation is recomputed by the least

squares method, as described in section 3.1.4, using the extended list of inlier points, and

is denoted as (R̃3, T̃ 3). The transformation (R̃3, T̃ 3) is then optimized further using the

Levenber Marquardt method.

Table 4.4 shows the results of the third iteration for the three different target setups

used as examples in this thesis. It can be seen that the MSE increases for two out of the three

target setups. The reason for this is the addition of extra points, and hence extra noise,

to the existing set of points. The noise results from the measurement errors introduced

due to the techniques used to compute these points, like the Harris corner detector or the

interpolation method used to project a 3D point on the EO image or to back-project a 2D

point into 3D space. However, it can be seen that the MSE remains somewhat constant

after the additional points are added.

The results for matching the texel images of the 3D setup and a bookshelf are illustrated

in Fig. 4.9 and Fig. 4.10, respectively.

Thus, it can be seen that the methods described in Chapter 3 work satisfactorily and

the matching is observed to improve with each additional iteration that was implemented.
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(a) Front view of the first texel im-
age.

(b) Front view of the second texel
image.

(c) Matching before the corrective it-
eration.

(d) Matching after the corrective it-
eration.

Fig. 4.8: Illustration of the improvement due to the corrective iteration.

Table 4.3: Results: corrective iteration.

Setup Transformation (R̃1, T̃ 1) Transformation (R̃2, T̃ 2)

Description Point Count MSE (Meter squared) Point Count MSE (Meter squared)

Flat Wall 20 0.00043 16 0.000073

Table 4.4: Results: after adding additional feature points.

Setup Before Adding Additional Points After Adding Additional Points

Description Point Count MSE (Meter squared) Point Count MSE (Meter squared)

Flat Wall 16 0.000073 19 0.000069

3D Setup 64 0.000040 74 0.000063

Bookshelf 32 0.000057 40 0.000058
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(a) Front view of the first texel im-
age.

(b) Left top view of the first texel
image.

(c) Front view of the second texel im-
age.

(d) Left top view of the second texel
image.

(e) Front view of the combined texel
images.

(f) Left Top view of the combined
texel images.

Fig. 4.9: Example of 3D registration implemented on texel images of a 3D setup.
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(a) Front view of the first texel im-
age.

(b) Left top view of the first texel
image.

(c) Front view of the second texel im-
age.

(d) Left top view of the second texel
image.

(e) Front view of the combined texel
images. (f) Left top view of the combined

texel images.

Fig. 4.10: Example of a matching implemented on a bookshelf setup.
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Chapter 5

Conclusions and Future Work

The calibration methods described in Chapter 2 were tested and found to be effective

in creating texel images which are significantly more immune to lens distortions in either

sensors. The resulting texel images yield good results for the matching of lidar and EO

images and the 3D objects in the image are represented with accurate dimensions, which is

reflected in the results given in Chapter 4. The calibration process described in Chapter 2

reduces the average error in the 3D measurements in a texel image from 1.582 cm to 0.02

cm, which is 1.26 % of what the error is when the texel image is not calibrated.

Individual sensors capture images simultaneously. This reduces the possibility of error

introduced due to the time difference between the events of image capturing by individual

sensors. This advantage of simultaneous image capturing is seen significantly when the

camera or the target is in motion, causing the view of the target to change with time. Also,

both the sensors and the cold mirror are positioned such that the FOV is the same for both

the sensors, reducing parallax between individual sensors.

The calibration procedure described in Chapter 2 uses parameters with fixed values.

These values need not be computed during the capture process, but can be used directly

from a LUT. As a result, the texel images are calibrated at low computing costs. This

property, coupled with the advantage of simultaneous capture and fusion of point cloud

and EO image at the time of acquisition makes use of texel images possible in real-time

applications like automatic target recognition or security and surveying purposes. Though

the calibration methods specified in this thesis were tested using a TOF lidar, they can be

applicable to any camera that uses the combination of lidar sensor and EO sensor.

The images can be used to create 3D images of a scene by taking multiple images of

the scene from different positions using the method described in this thesis. Results show



70

that the method performs well in registering 3D images to form a mosaic describing the

scene with texture and range information. Since the texel image is a combination of both

texture (2D) and point cloud (3D), the advantages of both the 2D and 3D registration

techniques are combined to overcome the drawbacks in methods that use either of them

individually. The problem associated with the scale ambiguity faced in decomposition of

2D transformation is avoided due to the fact that 3D points, with known range data, are

used to determine the transformation. The requirement of preprocessing for the point clouds

to provide information about the overlap that is necessary for ICP to work is unnecessary

due to the use of 2D EO images to find inlier points in the region of overlap, as described

in Chapter 3.

5.1 Drawbacks of the Point Matching Algorithm

The main drawback of the Point Cloud matching algorithm described in this thesis

is that the process begins with extracting feature points in 2D images of the scene which

works only if there is adequate light incident on the scene. This completely eliminates the

possibility of using images taken in darkness and limits its usability. For example, if the

camera is mounted on a UAV for surveillance purposes, this method will not work at times

when the ambient light is not adequate or in areas where the light is not sufficient for the

Harris corner detector to work efficiently, and the user will be “blinded.”

Since the correlation windows in this method are fixed in terms of size and shape, the

effect of difference in perspectives in the two images is observed when the disparity or the

angle between the two positions from where the images are captured is large. This leads to

incorrect correlation matches or inability to find correct putative correspondences.

Another drawback is that the added iterations after the initial computation of the

3D transformation depends on the initial transformation to be close to correct. If the

initial transformation is far off from correct, due to incorrect matches, the second iteration

would fail to correct the incorrect matches efficiently. Since each iteration depends on the

transformation computed in the previous iteration and assumes it to be close to correct, this

may lead to divergence of error with successive iterations and eventually cause the method
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to fail.

5.2 Future Work

The work reported in this thesis is analogous to the tip of the iceberg and much more

work can be done on this topic to improve the results, the efficiency and to include corrective

measures in the algorithm.

This thesis gives a method to match the 3D points in the texel images. The 3D points

are matched using the 3D transformation, merging the two point clouds. The texture,

however, is fused with the individual point clouds and is merged according to the registration

of point clouds. This poses a problem of the texture in one image overlapping that of the

other image in the region of overlap when the two texel images are registered. Since texel

images are 2.5D images, the texture is mapped on the point clouds such that the points that

are not in the FOV are not visible to the sensor, and hence do not appear in the texel images.

Texel image of a scene taken from one perspective contains visual and range information

about the object that may not be measured by the sensors while capturing the texel image

from the other perspective. Hence, when such images are registered, even though the point

clouds are registered correctly, the overlapping texture information prevents viewing of

the actual texture of the object. This overlap of texture information could be avoided by

devising a technique to register texture information that can be fused on the registered

point clouds.

Another drawback of the method described in this thesis is the dependence on 2D

image processing technique to begin with. Alternative methods using the same logic of

Harris corner detectors to detect features or corners on point clouds, instead of 2D images

can be implemented and added to the algorithm given in this thesis as an alternate starting

point in the case of failure of the Harris corner detector on 2D EO images. This will improve

the reliability and robustness of this method, enabling it to work without relying on the

ambient light while capturing images.

A method can be developed which will enable the algorithm to adapt the correlation

window shape and size based on the angle or pose, in order to be able to detect the matching
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features more efficiently. This will result in more points being included to the list of inliers

and thus help the matching to improve.

Multiple threshold values are used in the point cloud matching algorithm, and the

values are assumed to be known before the images are processed. These values, however,

are not the same for all types of targets. A method can be developed to adjust these

values based on the merits of the images. This would truly facilitate real-time usage of this

method.
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Explanation of the Parameters Used in Point Cloud

Matching Algorithm

1. Threshold for Harris feature detection: the Harris corner detector measures the change

in intensity between a window centered on one pixel, and the shifted window in all

directions around the pixel. The threshold value decides the amount of the change in

intensity between the window at a point and the shifted window around that point for

the point to be selected as a feature. Lowering the threshold will increase the number

of features detected.

2. Window size for Harris feature detection: this parameter decides the size of the window

used in the Harris corner Detector. This parameter is defined in pixel coordinates and

depends on the other parameters like the resolution and noise in the image. Having a

larger window improves the performance against noise, but the corner to be detected

needs to be large as well. A smaller window detects a smaller corner, but also is prone

to noise and can detect incorrect corners due to intensity changes caused by noise or

bad pixels.

3. Threshold for correlation: the threshold for correlation comes into the picture when

deciding the putative correspondences. The higher the correlation threshold, the

more accurate the putative correspondences are. However, increasing the correlation

threshold results in loss of some putative correspondences which may be affected by

noise.

4. Window size for correlation: the correlation window is a square window over which

the correlation of two feature points is calculated. The size of the window depends on

the noise in the image and also its resolution. A smaller window size is preferred for
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accuracy, however one runs a risk of reducing the number of putative correspondences

as the effect of difference in perspective is higher on smaller correlation windows.

5. Threshold for angle made by normal to plane: the threshold for angle made by the

normal to the plane in which the 3D point corresponding to a 2D feature point is used

to decide if a point lies on an edge or ridge. This threshold is set close to 45 degrees

in order to accommodate for the noise in the lidar image.

6. Distance threshold for the corrective iteration: distance threshold is the maximum

distance given in pixel coordinates that the closest feature point must lie within from

the point projected from one image to the other. This threshold must be small enough

to avoid incorrect points to be selected, but must be large enough to accommodate

the noise in the images and the errors in the first transformation.
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