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ABSTRACT

The first launch of a pair of 90 gram Sinclair Interplanetary ST-16 star trackers was in November, 2013 on-board
the Skybox Imaging SkySat-1 satellite. The sensor performance — as captured by the sensors’ availability, accuracy,
and bad-match rate — fell significantly below expectations. This paper explores the flight qualification campaign
undertaken by the sensor developers to bring the sensors back to their intended level of performance. No single fix
was sufficient and many small incremental improvements were necessary for success. We discuss the fault diagnosis
procedures employed by the team and highlight some of the key improvements to star detection, star measurement,
rate estimation, and catalog generation algorithms. Presently the ST-16 sensors on Skysat-1 are reporting availability
of around 98% and cross-axis accuracies of roughly 10 arcseconds over an entire orbit in a nominal Earth-observing
attitude.

INTRODUCTION

The Skybox Imaging SkySat-1 satellite launched on
November 21, 2013 carrying a pair of Sinclair Interplan-
etary ST-16 Star Trackers. Amongst more prominent ob-
jectives, one of SkySat-1’s goals was to validate the per-
formance of the ST-16. While the sensors were able to
achieve a stellar lock, the availability and accuracy of
the ST-16s was far worse than expected: the sensors fre-
quently lost their lock, they saw fewer stars than expected,
and the attitude fixes were far noisier and less consistent
than observed during ground testing.

Concerned by these results, engineers at Skybox Imaging
(SB), Sinclair Interplanetary (SI) and Ryerson University
(RU) embarked on an aggressive and comprehensive flight

qualification program to understand the causes of these
problems and to re-attain our expected performance tar-
gets. Two months later (February, 2014) we made the last
of a sequence of software, catalog and parameter modifi-
cations that have met these goals. In this paper we detail
the series of individual improvements that helped make
success possible. We concentrate on technical improve-
ments, but also discuss the collaborative framework be-
tween vendors, customer, and researchers that made suc-
cess possible.

The remainder of this section introduces SkySat-1, the
ST-16 star tracker, and describes our approach to diagnos-
ing performance problems with ST-16. The second sec-
tion describes the logistics of collecting data, developing
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and uploading new sensor software, and the benefits of
manufacturer-user relationships. The remaining sections
of the paper go onto to describe the various problems we
observed, and how we fixed them.

Skybox Imaging and SkySat-1

Skybox Imaging, a venture-backed information and an-
alytics company, recently deployed their first high-
resolution imaging satellite, SkySat-1. SkySat-1 was
launched on November 21, 2013, out of Yasny, Russia
into a 580 km Sun-synchronous orbit. The satellite has
been collecting sub-meter resolution images and video,
demonstrating a new high-end platform for monitoring
global activity on a daily basis. Skybox will launch and
operate several additional satellites in the near future, cre-
ating a massive and unprecedented source of data for min-
ing and analytics.

For the imaging products to be useful, the geographic lo-
cation of each satellite image must be known to high accu-
racy. The demand for high-quality geolocation knowledge
can only be met with precise onboard attitude sensors,
namely, star trackers. Historically, volume, mass, and
power requirements limited star trackers to large space-
craft. The mechanical and software complexity of early
star trackers made them among the most expensive sen-
sors, and arguably the most difficult to calibrate and oper-
ate.

Through the utilization of modern, commercial, high-
performance electronics, the ST-16 star tracker has
achieved levels of performance that have previously been
exclusive to its larger predecessors. As a small satellite
heavily constrained by mass and volume, SkySat-1 has
taken full advantage of the ST-16 capabilities in a minia-
turized package. The star trackers have played a major
role in making SkySat-1 a world-class earth observation
satellite.

The ST-16 Star Tracker

The ST-16 star tracker is a relatively new nanosatellite-
class star tracker that became available in 2011. It was
developed through a collaboration between Sinclair Inter-
planetary, the University of Toronto’s Space Flight Labo-
ratory, and the Space Avionics and Instrumentation Lab-
oratory at Ryerson University. It is distinguished from
other devices by its powerful internal computer, small size
and weight, and low power. Although it is able to fit
into a nanosatellite, it is also applicable to larger space-
craft (microsatellites). Some key specifications are listed
in Table 1, and image of the sensor is shown in Figure 1.
For more information, please see1,2,3.

Table 1: Key Parameters of the ST-16 Star Tracker

Accuracy < 7 arc-sec RMS cross-boresight
< 70 arc-sec RMS around boresight

Availability > 99.9%
Size 59 x 56 x 31.5 mm
Mass ≈ 90 g

Field of
View

7.5 deg (half axis)

Exposure
Time

100 ms

Catalog 3746 stars

Figure 1: The Sinclair Interplanetary ST-16 Star Tracker.

The ST-16 star tracker has had initial market success with
over 40 flights units delivered to customers. The two units
onboard SkySat-1, designated in this paper as Sensor-A
and Sensor-B, were among the first off the production line
and together represent the maiden voyage of the ST-16
into space.

Diagnosing Performance Problems: Our Approach

Shortly following launch, it was evident that something
was wrong with both ST-16s onboard SkySat-1. The ac-
curacy and availability of both units was significantly be-
low specification, see Table 2 vs Table 1. Using an ini-
tial batch of collected telemetry and full frame images,
we immediately began to look for the source of problem.
Following a brief, and unsuccessful, period of looking for
a single dominant fault, we realized that the poor perfor-
mance of the star trackers was due to a combination of
several smaller faults. Everything was working, but noth-
ing was working well. At this point, we took a step back,
and examined the problem from a system-level perspec-
tive. This allowed us to establish direct links between
top-level star tracker performance metrics and the func-
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Table 3: Typical Operational Chain of a Star Tracker
Process Description

1 Imaging Optically focus the light onto the
detector and digitize the image.

2 Star
Detection

Image processing to identify star
candidates and isolate their cor-
responding intensity patterns.

3 Star Vector
Computation

Centroid each star image and
calculate the corresponding star
vector using a camera model.

4 Matching Identify the observed stars from
the onboard star catalog

5 Attitude
Solution

Estimate the attitude of the ST
from the identified star vectors.

tionality of basic star tracker processes. Tracing these
links helped us identify where the various problems were,
so we could then begin to fix them. This subsection de-
scribes this top-down approach and how it enabled us to
locate the individual processes limiting the performance
of SkySat-1’s star trackers.

The operational chain of a star tracker can be described by
five basic operations: imaging, star detection, measuring
star positions, matching, and finally the attitude solution.
A short description of each operation is given in Table 3.
The top-level performance criteria of a star tracker are:

• Accuracy, which describes the uncertainty in the
orientation measurement.

• Availability, which describes the fraction of celes-
tial sphere over which an attitude solution is possi-
ble.

• Bad matches, which represent successful matches
of observed stars to an erroneous star scene in the
catalog.

These top level metrics are useful for describing the gen-
eral performance of a star tracker. However, in a case
where one, or all, of these metrics is low, they do not il-
luminate the source of the problem. Breaking down these
top-level metrics leads a more descriptive set of lower-
level, algorithm metrics which align roughly with the ba-
sic operations of a star tracker. These are listed in Table 4.

Identifying these lower-level performance metrics and
their contributing functions and process enabled us to
trace the the performance of subsystems back to the top-
level performance metrics. This illuminated which met-
rics needs the most revision, and what mechanisms we
should utilize make those revisions.

DATA COLLECTION, SOFTWARE UPDATES, AND
KEY ASPECTS OF WORKING AS A TEAM

The debugging and development process for the star
trackers runs very differently when the sensor is on or-
bit compared to when it is in the lab. Spacecraft activities
are scheduled several days in advance, and so data collec-
tion and software updates must be coordinated with the
operations team and must respect constraints imposed by
other activities.

The very high value of SkySat-1 as an operational orbital
asset produced conflicting pressures. On one hand, there
is a deeply conservative desire to not endanger the satellite
with hasty or untried software loads. On the other hand,
there is a desire to rapidly commission the spacecraft to
begin producing a valuable payload data product.

Data Collection

Skybox began collecting star tracker data immediately af-
ter launch. As early as 24 hours after launch the initial
star tracker performance was examined and we knew that
we had a problem.

Three different types of star tracker telemetry were col-
lected. Initially, when we knew very little about what
might be going wrong, we downloaded a number of full-
frame still images from the detector. These images are
approximately 10 MB, and so each downlink is a signif-
icant burden on the ground segment. Analysis of these
images was key to our understanding of changes in the
point spread function of the optics, as well as true charac-
terization of the environmental noise.

Next we switched to collection of full telemetry packets
from the star tracker. These packets are approximately 2
kB each, and so 5000 can be downloaded for the same cost
as a single image. The telemetry packets contain a list of
the star centroids detected, along with their matched cata-
log ID. The on-orbit recalibration process requires a large
number of full telemetry packets as input to the optimizer.

Finally we moved to collection of primary telemetry only.
These packets are very small, and contain only the quater-
nion, angular rate, and validity flags. Primary telemetry
can be collected at full rate over the course of an entire
orbit. By comparing the primary telemetry streams from
both star trackers the star tracker error can be determined.

Sensor Software Updates

Following the discovery of a specific problem, the engi-
neering team would then work to find a solution. Depend-
ing on the type of the problem, testing the solution would
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Table 2: Measured performance of SkySat-1 star trackers
Availability (%) Accuracy (arc seconds)Operating

Scenario Time Period Sensor-A Sensor-B Roll Error (1σ) Pitch Error (1σ) Yaw Error (1σ)
Tumbling Launch 34 31 – – –
Tumbling Init. Recal. 80 61 – – –
Pointing Init. Recal. 89 85 21.6 61.5 161.9
Pointing Final 99 98 10.0 23.0 74.0

Table 4: Algorithm-level performance metrics of Star Trackers
Metric Criteria Contributing Effects and Processes

Star Detection
Reliability

Detection performance Focus, Chromatic Aberration, Detection
Routines, Artifacts from Baffle

Star Measurement
Accuracy

Accuracy of star vectors formu-
lated from the image.

Centroiding, Camera Model, ERS com-
pensation, Rate Estimation

Matching
Robustness

Ability to reject false detections. Matching

Catalog Quality Accuracy of cataloged positions,
and ensuring we have the right
cataloged star population

Star Positions (proper motion, binary
stars), Chromatic Aberration, Stellar Aber-
ration

either involve only simulated data, or additionally, post-
processing existing on-orbit data (telemetry and images).
To minimize risk to the spacecraft, changes to the ST-16
flight software followed a specific quality assurance path
before being uploaded to SkySat-1. This path is summa-
rized by the following 6 steps:

1. Develop fix as standalone tool, typically in MAT-
LAB, and test using a limited set of either simu-
lated, or actual, on-orbit data.

2. Implement the fix into a offline PC-based version
of the sensor software, and assess performance im-
provements by reprocessing collected on-orbit data.
Reprocessing of telemetry utilizes only a partial
implementation of the sensor software (beginning
with star centroids and brightnesses). Reprocess-
ing of images utilizes the entire end-to-end sensor
software.

3. Assess performance improvements in all scenarios
(different orientations, rates, etc.) by reprocessing a
large suite of synthetic images using the PC-based
sensor software.

4. Verify performance improvements with hardware-
in-the-loop (HITL) tests that utilize an ST-16 engi-
neering model (EM) with a small subset of the syn-
thetic images from step three loaded into memory.

5. Upload sensor software to SkySat-1.

Over the course of this work we updated almost every byte
of software and data on the star trackers. There are four
different classes of configuration change, ranging from
least to most extensive.

The star tracker contains dozens of non-volatile parame-
ters which control its processing. These are ‘knobs’ that
were introduced to allow for on-orbit tuning. Parameter
modifications are trivial to revert, and changes were made
on an almost daily basis with minimal oversight burden.

Each star tracker has a unique calibration structure which
contains the geometric model of its camera. Several new
calibration structures were generated by the Ryerson team
based on modelling of the on-orbit telemetry. The upload
of new calibration structures was straightforward.

Several new star catalogs were generated as we came to
understand the deficiencies in our original data. The star
tracker stores a star table ( 70 kB), and then a massive
explicit enumeration of all of the potential triangles ( 40
MB). Fortunately in the months prior to launch we had
written the software to allow the star tracker to build its
own triangle table on-orbit. We were able to upload a new
star table, and then send a command to begin the 3-minute
process of triangle table generation.

Finally, we performed uploads of new executable code for
the star trackers. Unlike the other data uploads, new soft-
ware revisions required an extensive QA process at Sky-
box before they could be uploaded. This was generally
incompatible with the team’s work tempo, and in the end
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only two code updates were performed.

After each configuration change was made a standard star
tracker test was run. Known as the ‘4 orbit test’, this
collected a particular set of data with the spacecraft in
a particular set of attitudes. This allowed for apples-to-
apples comparisons to determine whether the configura-
tion change was helpful.

Collaborative Relationship

Restoring the star trackers to full function was do-or-die
for both Skybox Imaging and Sinclair Interplanetary. Sky-
box had invested in the spacecraft, and Sinclair in the star
tracker product, and neither could afford to fail. While
stressful, this unity of purpose was in no small part re-
sponsible for timely success. Skybox operations was ex-
tremely accommodating in collecting and delivering large
quantities of data. Sinclair and Ryerson focused exclu-
sively on this problem for a two month period. In a more
relaxed and less motivated environment the necessary ad-
vances might not have been made.

IMAGING AND STAR DETECTION

One of the first insights into the poor performance of both
sensors was the poor reliability of star detection. Both
star trackers were detecting significantly fewer stars than
expected in each scene. On top of this, Sensor-B was
detecting even fewer stars than Sensor-A. Detection per-
formance is directly related to the signal-to-noise ratio
(SNR) of star’s intensity distribution on the image de-
tector. There are two main drivers that impact the SNR
of an imaged star: focus of the sensor optics, and detec-
tion logic used to separate signal from background image
noise. Given that detection performance directly impacts
matching performance, and attitude accuracy, diagnosing
poor detection performance was a priority early in the
qualification campaign. This section describes our anal-
ysis of sensor focus and the performance of the ST-16’s
star detection routines.

Focus Evaluation

The full frame images showed some stars that appeared to
be larger, and as a result, dimmer in each individual pixel,
than those which were observed during ground testing. In
light of the knowledge that both ST-16s were detecting
fewer stars than expected, one of the potential causes we
examined was a change in focus. A minor change in focus
is expected due to the change in imaging conditions (air
vs. no air) between the lab (where sensor focus is set), and
the ultimate operating environment, space. However, this
minor change would not account for the observed changes

in star size as seen in the on-orbit images.

A typical method to quantify the focus on a set of optics is
to examine the encircled energy from a star source. This
is done during the initial focusing and calibration of each
sensor. The star source in the lab has a color temperature
of 2800K, and hence it only represents a small fraction of
the stars within the ST-16’s catalog. In addition, the shape
and size of a star image vary throughout the sensor field
of view (FOV) due to lens aberrations. When comparing
these lab results with an on-orbit image that contains stars
with vastly different star colors, a specific assessment of
sensor focus is difficult. We found that we just didn’t have
enough images of a star similar to our lab source to con-
clude a change in focus.

However, the few on-orbit images we did have allowed
us to make relative comparisons of star size between im-
ages. By examining the appearance of similar stars, in
various parts of the sensor FOV, we were able to conclude
that changes in the apparent star size were not due to a
bulk change in focus, but rather a varying change in focus
dependent on the color temperature of the star we were
examining. In more simple terms, we were observing the
chromatic aberration of the ST-16’s optics.

Due to the fact that we have no control over the physical
focus of the ST-16 remotely, we could not change how
the stars appeared in the image. However, knowing how
these stars looked allowed us to make logical modifica-
tions to the ST-16’s detection routines which ultimately
lead to significant improvements in the detection reliabil-
ity.

Tuning Detection Parameters

Following directly from the assessment of focus using full
image, we revisited the star detection routines used by the
ST-16. In the downloaded images from both sensors we
noticed that there were many stars that were easily dis-
cernible by eye, but the detection routines failed to de-
tect them. The source of this problem was not singular
nor immediately obvious. Stepping through the detection
routine, we found that various control parameters we had
set to reduce false detections were much too conservative.
Using downloaded images, combined with knowledge of
which stars must be in the same scene from various cat-
alogs, we iteratively tuned detection parameters to maxi-
mize detection performance.

Before we can describe our tuning approach, we must in-
troduce the star detection logic of the ST-16. This routine
can be summarized by describing a moving window, and
three threshold parameters:
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• Moving Window. In order to deal with spatial
gradients in the background illumination of a star
scene, the ST-16 detection scheme utilizes a mov-
ing average filter to estimate the local background
level for each pixel. Typical processing utilizes a
window 128 pixels in width, and a single pixel in
height. The average value of this window is used
to define the local background level for the current
pixel.

• Lit Pixel. This threshold defines the minimum in-
tensity, relative to the local background, of an im-
age pixel that is considered to be lit by star light,
as opposed to just sensor noise. Pixels above this
threshold are labeled lit pixels. The launch config-
uration utilized a lit pixel threshold of 90 detector
counts, out of a possible 4095.

• Blob Size. This defines the minimum number of
contiguous lit pixels that each candidate star must
possess before it can be considered as a valid de-
tection. Configuration at launch required at least 6
contiguous pixels for each valid star detection

• Integrated Intensity. This value describes the min-
imum integrated intensity (summed detector re-
sponse) of all contiguous lit pixels that compose a
candidate star. Candidate stars above this thresh-
old are considered valid detections. Configuration
at launch utilized an integrated intensity threshold
of 1000 detector counts.

Stars that satisfy these criteria are considered candidate
star detections and are passed to the next portion of the
processing chain. The ST-16 employs various mecha-
nisms in the matching phase to discard any false stars from
this step.

Our approach to tuning detection parameters was to re-
process downloaded images with varying parameter val-
ues and examine the resultant star detections and sub-
sequent star matches. Our goals were to maximize star
detections, while minimizing false detections. To aid in
process, we assembled custom mini-catalogs for each star
scene we had an image for. These mini-catalogs catalogs
included additional dim stars on top of the existing stars
listed within the onboard ST-16 catalog. By surveying
various lit pixel, blob size, and integrated intensity param-
eters combinations, we created a map of expected star de-
tections given a set parameter settings. Using this map, we
were able to suggest updated detection parameters for use
with both sensors. After implementing these changes, we
saw the availability of both units increase to above 98%
(see Table 2).

Table 5: Tuned Detection Parameters for Sensors A and B
Value at
Launch

Final ValueParameter Value at
Launch A B

Lit Pixel 90 70 60
Blob Size 6 6 6
Integrated Int. 1000 800 500

Using the parameter settings at launch, our analysis of the
downloaded images showed the detection performance
of Sensor-A exceeds that of Sensor-B. While we were
never able to conclude a reason for this discrepancy, we
were able to remedy this difference by lower the detec-
tion threshold on Sensor-B. Theoretically this does make
this unit more susceptible to false detections, but from our
analysis of the various on-orbit images, we didn’t see any
increases in the false detection rate.

Baffles and Stray Light

Even prior to launch, we anticipated that some refinement
of the ST-16’s stray-light handling logic would be neces-
sary. This subset of the the star detection algorithms is
responsible for improving the performance of the sensor
when bright objects fall within the FOV. Possible sources
of non-stellar light include the moon, the earth, planets,
other satellites, and the bright edges of the baffle vanes.
These sorts of scenarios are difficult to replicate in ground
tests and simulations, so rather then rely on ground tests
alone, we developed a flexible processing framework that
could be tuned after launch.

Instead of a single block of stray-light-control logic, we
formulated a number of simple heuristics designed to min-
imize the impact of stray light on the processing chain:

1. Adaptive Threshold Logic. This algorithm in-
creases the sensor’s tolerance to bright backgrounds
and large extended sources. In normal processing,
pixels bright enough to warrant further attention are
flagged on the first pass through the image. This
routine excluded affected areas of the detector from
further attention based on a simple image contrast
calculation.

2. Region-of-Interest (ROI) Calibration. When baffle
vanes extend into the field of view of the sensor, the
areas of the detector behind the baffle vanes will
not be in view of the stars. The useful region of the
detector is static and can be measured during cali-
bration. Because bright reflections from vane edges
can create illumination gradients near the edge of
the ROI, our routines require that any candidate
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stars must be separated from the boundary by some
dark pixels.

3. Large, Bright Object Rejection. Bright areas of
the image that had good contrast against the image
background could be rejected based on the area of
the object.

These first three routines attempt to improve processing
effectiveness by reducing the likelihood that parts of the
image would be mistakenly detected as stars. Imple-
mented before launch, we were aware that the routines
would required some tuning once on-orbit. During the
initial qualification we discovered persistent performance
problems caused by falsely detected stars. Analysis of the
sensor telemetry led to the following additional improve-
ments.

1. Star Cluster Rejection. Even with the above strate-
gies, diffuse stray light would sometimes be inter-
preted as a cluster of stars inside the FOV. Figure 2
shows the telemetry from an exposure taken with
Sensor-B soon after launch. The telemetry shows
three ‘real’ stars, along with a dense line of false
detections caused by a bright reflection off a baffle
vane edge. These sorts of clusters can also some-
times be found next to bright objects like the moon.
Although the star matching algorithms are reason-
ably tolerant of false stars, clouds of false detections
greatly increases the chance of a false match.

2. Tight Matching Tolerances. With improvements in
the accuracy of the catalog and centroid determi-
nation, the star matching routines could be much
stricter about the expected geometry during the star
matching process.

3. Strict solution acceptance criteria. One of archi-
tectural principles in the ST-16 software was state-
less operation: each measurement did not rely on
prior measurements. The sensor performance en-
countered post launch required us to make some
small adaptions to the operating concept to help re-
duce the number of false matches. From the flight
data we could see that if the sensor could match
four stars, the matching solution was almost al-
ways correct. Although most three-star matching
solutions were correct, there were an unacceptably
large number of incorrect matches when only three
stars were identified. To help balance the need
for high availability, even when only three stars
were detected, and a very low tolerance for false
matches. we introduced some very limited reading-
to-reading persistent state: any match with four or
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Figure 2: False star detections from edge of baffle vane.

more stars would be considered ‘good’ and a three-
star match would be considered good if the attitude
estimate was not too different from an immediately
prior good reading.

COMPUTING STAR VECTORS

Despite the fact that most scenes had sufficient star detec-
tions, most of which were subsequently identified during
matching, the attitude accuracy was significantly worse
than expected. In addition to generally poor accuracy,
many of the returned attitude solutions were bad-matches
to incorrect star scenes. There we many separate fac-
tors contributing to these observed drops in performance.
The first issue we discovered was that our measured arc
lengths between stars were different from known values.
We traced this symptom to three causes: inaccurate cen-
troiding, improperly set camera model parameters, and
a noisy rate estimator. This section describes how these
three causes introduced error into our arc length measure-
ments, and the corresponding fixes we made to restore the
performance.

Centroiding Algorithm Improvements

The lowest-level processing that can affect the measured
arc lengths between stars is the determination of the lo-
cation of the star on the image detector. This routine is
commonly referred to as centroiding, because the typical
way to compute this is the first-moment of illumination
of the observed intensity pattern4. During star detection,
routines onboard the ST-16 identify and group pixels that
belong to the same star image into a blob. In an attempt to
minimize the contribution image noise, the centroid was
calculated using only pixels within the blob. After care-
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ful examination of full frame images, we discovered that
this decision was negatively impacting our centroid ac-
curacy. When viewing dim stars in various unfavorable
imaging conditions (high rate, or around bright bodies),
we found that many times, only an asymmetric portion of
the actual star image was identified by the blob. When
centroided, this asymmetric selection resulted in a erro-
neous centroid measurement — biased towards the group
of selected pixels. To correct this behavior, we developed
a window-based centroiding routine that utilizes a circu-
lar window to select which pixels are to be used in the
centroid estimate.

In ideal lab conditions, the mean centroid accuracy of the
ST-16 was measured to be approximately 0.2 pixels or
0.44µm (1-σ). These conditions result in the best pos-
sible signal-to-noise ratio (SNR) of the imaged star. The
lab star source is tuned to be as bright as possible with-
out saturating the ST-16’s image detector. This enables
the best separation of the star’s intensity pattern from the
background image noise. As the brightness of the star
decreases, the SNR of the star image drops, and it be-
comes progressively more difficult to accurately separate
the blob from the image background. In ideal imaging
conditions (no rate, and no image background gradients),
this results in an approximately symmetric loss of pixels
about the true centroid. In non ideal imaging conditions
(especially during high rate), a low SNR enables noise
contributions to break up the blob. Current detection logic
utilizes 4-connectivity to identify pixels within the blob.
When the blob is thin, and long, as it would appear at
high rate, noise contributions can pull pixels critical to es-
tablishing a connection between parts of the blob below
the detection threshold.

After experimenting with various changes to the ST-16
detection logic, we determined that the approach most re-
silient to unfavorable imaging conditions was a window-
based approach. Following star star detection, an ini-
tial centroid estimate is computed using the existing tech-
nique. We then revise this estimate by computing the star
centroid using all pixels (regardless of whether they are
part of the blob) within a circular-shaped window cen-
tered on the initial centroid estimate. The ideal radius of
this window was empirically determined to be 7 pixels by
analyzing full frame on-orbit images.

On-Orbit Recalibration

Before the matching process can begin, each detected star
must be converted into a star vector through the use of
a camera model. The camera model used onboard the
ST-16 describes the optical characteristics of the sensor
with 11 parameters, see Table 6. These parameters are

determined in the lab through an offline calibration pro-
cess that utilizes a single star source, and a 3-axis mo-
torized gimbal. Shortly following launch, the ST-16 was
re-calibrated on-orbit using collected telemetry. This type
of re-calibration is typical for star trackers, primarily due
to changes in focus as a result of vacuum and having pris-
tine access to real star sources. The role of the ground
calibration is simply to enable successful matching of an
initial batch of on-orbit telemetry, which is then used for
re-calibration. Following an initial re-calibration process,
subsequent analysis highlighted two potential pitfalls our
re-calibration approach:

• Our camera model contained some parameters that
had minimal impact on the calibration residual, and

• Chromatic aberration from the ST-16’s optics
caused a star-color-based dependence on focal
length.

This subsection discusses our analysis of these pitfalls,
and describes our approach to implementing solutions.

Camera Calibration

The initial re-calibration of the ST-16s allowed signifi-
cant improvements in sensor availability and a reduction
in false matches. However the overall performance of the
sensors — particularly Sensor-A — still fell below ex-
pectations. A detailed examination of the effect of the
calibration procedure offered some insights into further
improvements.

Although the lab calibrations and on-orbit calibrations are
parameterized in a similar way, the cost function for the
two optimizations are quite different. The lab-calibration
uses the residual error between the star vector estimate
derived from the sensor, and the true star vector obtained
from the test platform kinematics. On-orbit, because we
do not have any source of attitude truth, we must adopt a
different scheme. The cost-function for the on-orbit cal-
ibrations considers the arc-length between pairs of stars.
As long as we have a good match for these stars, the true
values of these arc-lengths can be calculated from the star
catalog and is independent of attitude.

In our lab-calibrations we used an 11-element parameter
set that included the scale parameter, gy . This scale pa-
rameter represents a slight variation in the pixel pitch be-
tween the x- and y-directions. The original calibration
results yielded very similar results (see Table 7), and we
assumed that the difference in values was attributable to
the inherent calibration and sensor variability. When we
re-calibrated Sensor-A on-orbit, the optimization found a
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Table 6: Summary of Camera Calibration Parameters
Quantity Symbol Number of

Parameters
Lab

Calibration
Onorbit

Calibration
Focal Distance f 1 Yes Yes
X/Y Pixel Scale gy 1 Yes No
Optical Centre m0, n0 2 Yes Yes

Radial Distortion b1, b2 2 Yes Yes
Axial tilt a1, a2 2 Yes Yes

Detector Rotation α1, α2, α3 3 Yes No

set of camera parameters that optimized the cost-function
value. However, when we looked at the arc-length esti-
mates for a number of star pairs (see Table 8, third col-
umn), there was a consistent under-estimation of many of
these distances — with the parameters that the optimiza-
tion could vary, this error could not be corrected. Similar
tests with the re-calibrated Sensor-B revealed no evidence
of the same trend. The calibrated values for gy represented
a 0.5 − 0.8 pixel offset across the whole detector. Al-
though we could envision a rationale for gy to differ from
unity, there was little justification for individual detectors
having different values. When we repeated the on-orbit
calibration using same gy (from the Sensor-B calibration)
in both sensors, the consistent arc-length bias disappeared
(arc-length variability remain unchanged). As a conse-
quence, we have removed gy from the laboratory calibra-
tion optimization and simply use a constant value.

The results from this series of tests highlighted a number
of potential problems with the laboratory calibration pro-
cedures. The original gy used on Sensor-A allowed the
on-orbit re-calibration to get stuck in a local minimum.
In contrast to the weakly-separable nature of some of the
other parameters — e.g., (m0, n0) and (a1,a2) — a more
complex interaction between gy and several other param-
eters permitted distinct, steep minima in the optimization.
Early sensitivity studies showed that calibrations were ex-
tremely sensitive to both f and gy , but while f had a sin-
gle optimum value, the non-unique nature of the gy opti-
mization was overlooked. Night-sky qualification testing
of other EM units was generally successful and the noise
levels in the night sky tests were generally low. Conse-
quently there was little impetus to closely evaluate the
statistics of the arc-length measurement performance for
systematic biases. Reviewing many of the calibrations for
the EM units used in qualification revealed that not only
were incorrect values of gy often found by the laboratory
calibration optimization, but that the arc-length biases are
clearly present in the night-sky tests.

Chromatic Effects

Table 7: Comparison of Pixel Scale Values
Sensor gy

A 0.99975
B 0.99960

Following from the initial focus assessment from on-orbit
images, we believed that our lens possessed significant
chromatic aberrations. Satisfied that we had mitigated the
effect of these aberrations on star detection by tuning de-
tection parameters, we investigated the impact they had
on discrepancies observed in the measured arc lengths,
namely through a change in focal length. Our investiga-
tion consisted of separating the collected on-orbit teleme-
try into two groups based on star color, and then per-
forming separate limited re-calibrations with each subset.
To simplify the analysis, these re-calibrations consisted
of only letting the focal length vary, while keeping the
remaining camera model parameters constant. Group A
consisted of hot stars which includes spectral classes: O,
B, A, and F. While group B consisted on cold stars which
includes spectral classes; G, K, M, and C. The result of
this investigation showed that the separate re-calibrations
lead to different determined focal lengths. To illustrate
this, Figure 3 shows the residual of the re-calibration (de-
fined as the RMS of the arc length error) as a function
of focal length, for both spectral groups. The optimal fo-
cal lengths determined by the re-calibration procedure for
each group lie at the vertex of each parabola.

Figure 3 highlights the dependence of optimal focal
length (as defined by the on-orbit re-calibration) on star
color. Initially, we considered a solution for this depen-
dence that involved implementing a variable focal length,
based on matched star color, to revise the computed star
vector. However, implementing this solution would re-
quire substantial modifications to ST-16 processing rou-
tines. Due to time constraints, we chose to utilize the ex-
isting re-calibrations, not based on spectral class. These
corresponding focal lengths are also shown in Figure 3.
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Table 8: Sensor-A Recalibration Effect
Pair Arc-length

(deg.)
Mean Arc

Error (asec)
Std. Dev. Arc
Error (asec)

Mean Arc Error
(asec,gy-fixed)

Std. Dev. Arc Error
(asec,gy-fixed)

1 0.87 −6.53 11.14 −0.21 10.60
2 3.38 −6.79 10.52 3.77 10.20
3 3.43 −8.16 9.48 1.99 9.34
4 0.79 −5.23 9.84 −1.67 9.82
5 3.89 −17.41 11.18 −3.31 11.28
6 3.79 −18.07 9.23 −5.30 9.33
7 2.03 −6.50 12.71 −0.09 12.05
8 5.35 −46.03 7.44 −6.60 7.71
9 4.77 −38.70 11.03 −6.44 10.30

10 3.88 −34.88 9.74 −5.65 9.61
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Figure 3: The effect of star temperature on focal length.

A second generation star tracker, titled the ST-16RT, is
already in final stages of development. Leveraging the
lessons learned from this analysis of chromatic aberra-
tions, the ST-16RT utilizes a custom lens design with sig-
nificantly better chromatic performance.

Need for Better Rate Estimates

The detector integrated with the ST-16 uses an electronic
rolling shutter (ERS) to control pixel exposure. The pri-
mary effect of the ERS is to introduce a time offset be-
tween the exposure of different rows on the detector. If
uncorrected, this offset skews the observed inter-star ge-
ometry and adds error to the attitude estimates. Our algo-
rithm for ERS compensation is described at length in En-
right and Dzamba5. The effect of the rolling shutter is rel-
atively simple to correct if the angular velocity is known.
Thus with a calibrated star tracker we can calculate star
vectors from the detector centroid position, (mi, ni), and

angular velocity, ω:

bi = F (mi, ni,ω) (1)

The ST-16 has no internal rate sensor, so our ERS com-
pensation algorithms estimate the angular velocity of the
sensor using paired centroids in two successive images:

ω̃ = G (mA,nA,mB ,nB) (2)

This velocity estimate, ω̃ is used in (1) to remove the
effect of the rolling shutter.

The effectiveness of the ERS correction depends on the
accuracy of the velocity estimates. The difference be-
tween the estimated and the true angular velocity is the
angular velocity error: I.e., ω̃ =ω + δω. Figure 4 shows
how δω affects the ESOQ2 attitude solution. This plot
was generated using a number of simulated scenes across
the sky and shows the magnitude of the optimal rotation
between the two sets of vectors b = F (m,n,ω) and
b̃ = F (m,n, ω̃). The exact distribution of stars in each
scene and the true value of the angular velocity will cause
some spread in the results, but there is an apparently linear
relationship between the rate error and the additional at-
titude error. The attitude solution is much more sensitive
to x-axis (cross-boresight) error components than z-axis
(about-boresight) components, but since the largest errors
in the velocity estimates are about the boresight axis, the
δωz contributions are usually dominant.

In normal operations the velocity estimates on the ST-16
are derived from pairs of star centroids identified in se-
quential images. These pairs of images are δt = 0.1 s
apart. As is typical with finite-difference type rate es-
timates, short sampling intervals effectively amplify any
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Figure 4: Attitude sensitivity to angular velocity error.

angular errors in the measurements. A one-dimensional
approximation to the sensor motion provides some insight
into the relationship between angular orientation errors,
σθ, and the angular velocity error, σω:

σω ≈
√

2σθ
δt

(3)

Here the errors assumed to be zero mean and character-
ized by their standard deviations.

From this analysis, it is clear that centroid errors can
have a compounded effect on the attitude accuracy of the
ST-16. Not only do noisy centroid measurements lead to
noisy star vector measurements, but these centroid errors
also lead to inaccurate rate estimates and additional geo-
metric warping from the ERS effects. Once the star vec-
tor errors exceed a certain level, scene-matching becomes
more difficult and availability will also suffer.

Initial night-sky testing with the ST-16 did not reveal sig-
nificant problems with the ERS performance (consider the
first row of Table 9). About the x- and y-axes the ERS rate
error approximately 2 arcseconds of attitude error; about
the z-axis the contribution was about 5 arcseconds. These
error levels represented sizable but manageable fractions
of the error budget on these axes. After launch, the rate
errors were significantly higher than the ground tests (the
ground tests reported in this table were not made with the
same flight unit, but with an engineering model calibrated
to about the same level of performance). In this regime,
the error contributions were about 7 arcseconds and 25
arcseconds, respectively.

Table 9: Rate Estimator Performance
Rate (×10−3deg/s)

δt (s)
σx σy σz

Single Reading
(night-sky)

0.1 3.89 4.03 39.6

Single Reading
(on-orbit)

0.1 17 13 175

Reading-to-
Reading

(calculated)

0.5 3.40 2.60 35.0

Sparse Dataset
(calculated)

40 0.042 0.032 0.438

Sparse Dataset
(on-orbit)

40 0.211 0.168 0.614

Although poor centroid accuracy may have been the root
cause of the poor rate estimates, the problem was made
worse by the short time between observations. As part
of the flight qualification campaign, we introduced addi-
tional logic into the flight software in the ST-16. Instead
of relying solely on the rate estimates derived from a sin-
gle sensor reading, the sensor would also calculate an es-
timate based on the reading-to-reading change in orien-
tation. Provided that the two estimates were close, the
sensor would prefer to use estimate derived from reading-
to-reading motion. In normal 2 Hz operation, the longer
interval between measurements should give a five-fold re-
duction in noise. Note that this remains a finite difference
rate estimate, we have merely increased δt.

The advantage of longer baselines can be extended even
further; the last few rows of Table 9 show the calcu-
lated response and observed noise when we reprocess
a sparsely sampled telemetry set with this reading-to-
reading algorithm. Data from several orbits are shown
in Figure 5. This figure contrasts the single-reading es-
timates (top) with those derived from the sparse attitude
measurements (bottom). Sudden jumps in the ω com-
ponents indicate invalid reading-to-reading measurements
and the use of the single-reading value. Although the
noise observed in our orbital data during this last test is
good, it is not as low as we would expect from (3). A
closer look (Figure 6) at ω̃x reveals that much of the vari-
ability that contributes to the this discrepancy is actually a
periodic variation (once per orbit). This variability in ω̃z
is less pronounced than that observed in the other axes, so
the predictions are a better match to the observations.

MATCHING AND THE ATTITUDE SOLUTION

Following the star vector calculations, a star matching al-
gorithm is executed to find matches between these star
vectors and the star vectors calculated from the onboard
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Figure 6: Rate error orbit dependence (δt=40 s).

star catalog. A successful match allows for the final step
of calculating the attitude of the star tracker. From the
full images and telemetry received from the star trackers,
it was known that scenes with sufficient numbers of stars
were not being properly matched. Since the issues of star
detection and star vector calculation were addressed, the
remaining issue must be in the star matching process. This
section describes improvements to the onboard star cata-
log to improve the performance of the star matching pro-
cess.

Catalog Re-population

The original onboard star catalog was constructed using
stars listed in the Sky2000 stellar database. Stars were
chosen based on their visual magnitude which represents

a response more sensitive to the green region of the emis-
sion profile. The spectral response of the ST-16 detector
however, covered the entire visual spectrum and portions
of the infrared. Consequently, the use of visual magni-
tude underestimated the expected photon response of the
detector.

To solve the poor matching issue a new catalog was de-
veloped using a combination of the Hipparcos/ Tycho-2
(HT2) and the Next Generation Spectral Library (NGSL)
astronomical databases. The HT2 database contains in-
formation including right ascension (RA) and declination
(DE), broadband magnitudes, and proper motion for all
stars of visual magnitude less than 8. The NGSL database
provides synthetic full spectrum (i.e. visible and near in-
frared) emission profiles for a subset of stars from the HT2
database.

Using the quantum efficiency (QE) response of the ST-16
detector, the expected photon flux for the ST-16 can be
determined from integrating the NGSL emission profiles
with the QE response. A custom metric for the broad-
band magnitude response was then developed through a
transformation of the photon flux. A mapping between
the known Johnson UBVRI magnitudes and the custom
metric was derived for the NGSL database stars. This re-
lationship was then applied to the HT2 database to esti-
mate the expected photon flux for each star.

Utilizing the initial on-orbit star observations, the quality
of the custom magnitude metric was assessed. Through
analysis of the empirical detections, the threshold for star
inclusion became a linear weighting of the custom magni-
tude metric and the infrared magnitude from the Johnson
UBVRI system. Stars were included in the catalog if the
expected photon flux met the probability of detection.

Additionally, stars were added to the catalog based on the
star density of the observation area. To accomplish this
task, the celestial sky was evenly divided into a set of over-
lapping observation areas. Stars were added until each
area contained at least ten stars. As consequence of this
approach, moderately bright stars in a high density area
might not be included, while dim stars in low density area
would be included.

Handling of Troublesome Stars

With an improved star catalog, particular stars, while suf-
ficiently bright to be detected, were still not matched.
They were rejected due to errors between actual and ex-
pected positions; and these errors were caused by a failure
to correct for proper motion or the presence of a binary
star system or both.

Dzamba 12 28th Annual AIAA/USU
Conference on Small Satellites



The star catalog was first corrected for proper motion to
the current year. Secondly, the positions of star clusters
were corrected by one of the following methods:

1. Apparent Binaries. Two distinct stars appear joined
due to the optics of the star tracker and thus prevent
a quality estimate of the component star positions.
Since the centroid of the conjoined star cannot be
effectively estimated, the apparent binaries are not
included in the star catalog. During the matching
process, their detection would be treated as an out-
lier.

2. Equally bright binaries. A binary star system is
composed of two or more stars that are less than
2 magnitudes difference between the stars of the
group. Since the stars are sufficiently close, the pair
is treated as a single entry in the star catalog. The
position on the binary system is approximated to be
the magnitude weighted average of the component
star positions.

3. Differently bright binaries. A single star in the
group is significantly brighter, more than 2 magni-
tudes difference, to the next star in the group. The
binary group is again treated as a single entry in
the star catalog, with the position of the binary sys-
tem taken as the position of the brightest star in the
group.

CONCLUSIONS

In the preceding sections we have outlined the improve-
ments to sensor processing on the ST-16 that were nec-
essary to bring the sensor performance back up to their
intended specifications. These changes include improve-
ments in the logic for star detection, star measurement,
rate estimation, and catalog management. Together the al-
gorithmic improvements yielded higher availability, better
accuracy, and much-lower bad-match rate. Although new
launches may require a short qualification period to tune
calibration and operating parameters, we expect that the
core software is stable.

The root causes of some of our post-launch difficulties
rest with how we allocated qualification resources be-
tween simulation, laboratory, and night-sky tests. Our
general approach sought to resolve most of the difficult
performance questions in laboratory or simulation stud-
ies whereas the night-sky tests provided qualitative con-
firmation that ‘things were working correctly’. For ex-
ample, methodical laboratory tests were used to help set
ideal detection thresholds; night sky tests were used to
verify that the sensors could detect stars with the chosen

settings but the whole parameter optimization was not ac-
tually validated. Overall, the night-sky testing conditions
were almost too benign and many anomalies in the test
telemetry were blamed on test conditions (e.g, clouds, vi-
bration, etc.) without sufficient analysis. Our testing ap-
proach was not unreasonable, but would have benefited
from more scrutiny for confirmation bias.

In addition to the many performance issues that have been
fixed, there are a number of improvements under devel-
opment that lay outside the scope of the flight qualifica-
tion campaign. First we foresee considerable utility in
modifying the camera re-calibration code so that it can
run online, on the sensor. This would drastically reduce
the need for our involvement in qualification activities af-
ter each sensor launch. Second, investigations into the
rolling shutter compensation underlined the criticality of
the rate estimates. Recursive filtering could be used to
provide better estimates of angular velocity beyond our
simple finite difference implementation. Finally, the chro-
matic aberrations in the ST-16 lens affect the system level
performance more than we initially estimated. A follow-
on to the ST-16, the ST-16RT, uses a custom lens design
with better chromatic performance.

Overall we pleased with the improvements we were able
to make in the ST-16. Good communication and oper-
ational integration between all three teams provided the
support necessary to successfully diagnose and remedy
many of the performance problems. The ST-16 is a suc-
cessful sensor and we foresee few problems with future
launches.
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