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Abstract

In any conformally invariant metric-connection theory of 4-dimensional spacetime, there
are 26 ways that a body can distort. This follows from the absence of any preferred meltric, and is
equivalent to the ability of an observer to consider objects on any given world line to be distortion
free. Within the simplest conformally invariant theory of distortions that allows metric compatible
spaces as trivial solutions, we find the maximal classical solution. This solution corresponds to the
bosonic sector of the heterotic string: 26 left-moving fields plus 10 right-moving fields.

1. Introduction

One of the outstanding tasks facing string theory[1}] is to relate the unique predictions of the
higher-dimensional theory to the results of experiments carried out in a 4-dimensional universe.
There are two principal approaches to this difficulty: compactifications and the introduction of
symmetries.

Compactifications, including Calabi-Yau{2}, orbifolds[3}, or other low-energy gravitational
solutions[4], attempt Lo find ground states of the string system with all but 4 of the dimensions
compactified. As a result, such solutions suffer from their perturbative nature. While
compactifications can be produced with a typical scale that is consistent with the low energy
approximation, one can have little confidence that such solutions are the ones actually chosen by
the system. It seems far more likely that the com'pacliﬁcatiou occurs neac the Planck fength -- just
the point where the perturbation series diverges. Even if an approach to non-perturbative solutions
can be found, one stitl must solve a gravitational problem exactly before looking at particle fields
pertucbatively.

While the inclusion of supersymmeltsy has led to the very successful 10-dimensional
heteratic steing[5], the introduction of other internal symmetries(6] has ted to a different kind of
uniqueness problem. There may be literally thousands of possible reductions, any of which might
give plausibte models. The predictive power that led one to string theory in the first place is lost.

Work in these directions is promising, but there is a deeper unanswered question posed by

the success of string Lheory -- why should strings be the fundamental building blocks of the
physical world?

Here we follow a line of reasoning that differs from the standard interpretation of string
theory. We suppose at the outset that the world is well modeled by some 4-dimensional geometry.
The problem is then to find parameters describing that geomelry that obey dymanical equations
which resemble the equations of motion for a string. The “string’ will then be just a mathematical
description of the behavior of some of the fields required for a description of 4-dimensional
spacetime. In contrast to the standard picture of string theory, the higher-dimensional space in
which the string moves is a parameter space, and not the physical spacctime.

[n particular, we consider a manifold M. with fixed, torsion. free connection D‘u‘,. The
conunection is independent of any specification of metric, and may be such that there does not exist

any metric for which it is the Christoffel connection. It describes the change in the components ol



tensor fields which propagate in spacetime. Such geometries have been proposed by a number of

authors|7]. N

Tensors are used to describe physical objects. We take a tensor field to model a physical
system well when the measurable properties of that physical system transform and propagate in the
same way as the tensor field transforms and propagates on M. For example, an infinitesimal
vector may be identified with one edge of a small, {reely moving cube. The components of a
symmetric tensor field, g (x), may be defined in a particvlar coordinate system by the following

procedure:

Let each side of a small cube be our standard of length in each of three orthogonal
spatial directions and fet an associated clock tick unit seconds, Taking the associated
- unit vectors to be mutually orthogonal (this is what defines the box to be a cube), we
assign a coordinate along each direction and define a diagona! matrix gap(P) which
gives the lengths of and angles between the sides.

Now we allow the cube to move as determined by the connection. We assume that
the cube is rigid in the sense that the partial derivatives of the lengths of the sides
vanish, or equivalently, that the sides do not appear to fluctvate to a nearby comoving
observer. At each point of the world-line, x(3), of the cube, Bap®) is defined as the
mairix that makes these four unit vectors orthonormal.

Finally, gop(x) is an arbitrary smooth extension off of this world line to the rest of

" spacetime.

If two identical cubes with associated clocks ace allowed to move along different
trajectories then compared, they may no longer be identical. Therefore, the tensor fields
determined by the above procedure will not be equal. If we had wished to use one of the tensor
fields as the meiric, then lengths computed with that metric would be path dependent,

The metric will be regarded as a measurement tool defined by a given observer. Note the
similarity between the procedure described above and typical experimental procedure. In practice
an experimenter always assumes the constancy of the size of the measuring apparatus, Thisis a
metric choice. In choosing a meter rod to compare lengths, the observer disregards the possibility
that the rod itself may fluctuate in length relative to other rods on distinct trajectories. While this
assumption is certainly justified at macroscopic scales, it may [ail at small scales where the

corresponding energies are sufficient to excite the longitudinal modes of the metric.

In most cases a metric is necessary in order Lo produce a number capable of measurement.
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In the present work this is still true, but no metrig gives consistent results for measurements along
different paths. What is required is some kind of average over metrics. Such an average is
expected 10 be equivalent to quantization of the system. In the present work, an arbitrary
distinction between "classical’ and 'quantum’ realms will be made. Only a classical treatment will
be given. Investigation of the ‘quantum’ aspects of this theory is still in progress.

This distinction between metric averaged and classical solutions is somewhat arbitrary. It
will be seen that some results which properly depend on quantum behavior are already present in
the classical version. The most notable instance of this is the appearance of the 26 dimensional
character of the string solution. It is presumed, though it has not been demonstrated, that the 26
arises because of the deep connection in this theory between the classical and the quantum arenas.

In solving the classical theory, we will assume that we are free to choose any metric. This
assumption is perturbatively sound if the connection differs only slightly from the Christoffel
connection computed from the chosen meteic. In this case, the metric averaging will praduce only
small deviations from the chosen metric, Since the solution found below is already perturbative,
these small deviations are negligible.

Nonetheless, there are consequences of chaosing a metric arbitrarily. It is impossible to
write a classical lagrangian for the connection without using a metric, so there are equations of
motion for the metric. These equations are reinterpreted as constraints on the connection. It is
these constraints on the solutions considered that restricts them to be stringlike. In fact, the
solulion presented for the connection replicates the bosonic sector of the classical heterotic string.

But unlike the heterotic string, the space in which the string moves is the space of physical
connections and not the spacetime itself,

In the following section, we examine the space of distortions and show it to have 26
physical dimensions. In seclion 3 we develop some formal aspects of metric-connection theories,
including a necessary and sufficient condition for metcic-connection compatibility. A lagrangian is
proposed in section 4, and a solution is found to the equations of mation resuiting from its
variation. This solution is maximal in a sense described below. In the penultimate section we
relate the solution found in section 4 to the usual solution for the heterotic string, and examine the
Poisson brackets in sufficient detail to see how quantization will proceed. Section 6 provides a
summary and some discussion of these results.



2. The space of distonions. N

If we choose a symmetric tensor field Bap. Whether by the prescription above, or by any

other means, the contractions formed with it will not be invariant quantities. The changes in

apparent scalars such as the length of a vector when the vector is paraltel transported around the
manifold involve the covariant derivative of the metric, Quw =Dgop (aBu = 0,1,2.3). To

see this, parallel-transport a vector v* in the direction of a vector field w,

wHD v® = wht (@ v 4 WP T® ) = 0. : .1
H M P

The change in (length)? of vo is then given by:

n
w"D’l[}= wh Dp(gapv“v") = Qp vV 2.2)

Even though the components have been transported as constantly as possible, the vector stiff is
altered in length. This is a generalization of the change in orientation experienced by a vector

displaced around a closed path in a Riemannian space. In a non-Riemannian space the length may
change as well.

Qqpy may always be divided into a trace pat, A, E;' 8% Qug, and atraceless part Sopy

Qopy = Bap Ap + Sopy- @3

These parts reflect the two types of possible change in spacetime scale: volume changing scalings

and volume preserving distortions. Volume changing spacetimes are precisely those [irst
discussed by Wey![8] and later by others[9], for which Sapy = Oand

D = .
1 Bap Au Eop @4

To see that these describe scalings, consider the covariant derivative of the volume element:
DJfg = Lpop g =2A Jg . .
Je = qetho, Je =24 [ @.5)
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The change in volume is fully described by the vector field A, here called the Weyl potential. We
will not follow Weyl's interpretation of A,, as the efectromagnetic potential. In the particular mode!
we consider, Ay will be a pure gradient.

The main focus of this paper is the distortions Supy: volume-preserving covariant changes
of the metric. We wilt show:

1. In any conformally invariant theory of distortions, Sapp has a maximum of 26
independent components. This follows from the absence of any preferred
metric. It is equivalent to the ability of any observer to consider objects on his
or her world line to be distortion free.

2. Within the simplest conformally invariant theory of distortions that allows metric
compatible spaces as trivial sofutions, we find a classical sotution that realizes
this maximum, and which is equivalent to the right-moving sector of a bosonic
string in 26-dimensions plus the left-moving sector of a bosonic string in 10-
dimensions.

The remainder of this section will be concerned with the proof of claim |. We begin by
studying the dependence of Saupy on the conformal factor. Let

» ¢
Bup = By 2.6)
Then
A _ U A
Qol}p = e Quﬁu+ gaﬁ ¢'ll' @70
which according 10 eq. (2.3) may be decomposed into
A=a
wo T ¢.u 2.8)
and ’
§ =¢s
opu =~ Zopu” @.9)

The Weyl potential is shifted to Ay + 9.y, just like an electromagnetic gauge transformation.
Historically, this i% one reason that Ay, has been mistaken for the electcomagnetic potential.



The distoction potential is scaled, so that its norm is indeterminate:

N ~
= -4 o Py
sofu Saw e? s Sam‘ 2.10)

Since Qqp,, has 40 independent components, Sy, has 36. The conformal invariance of the theory
therefore means that the components of Sy, form a projective space of dimension 35, equivalent

to 2 35 dimensional psevdo-sphere.

Now consider the dependence of Syg,, on the remaining part of g,g. For 2 fixed,
torsion free connection, [V, consider the covariant derivative of the Minkowski metric fop =
diag(-1, {, 1, 1). This matrix can be forced to be 2 tensor field by choosing a set of coordinates,
defining Mg to be diag(-1,1,1,1) at each point in those coordinates, then declaring the components
to transform as a tensor under coordinate changes. We have

Q =D C= NPO 2.11
Q™ Dy Mg = Mg NP0 @1

where

N =500, 5P

2.12
atn = % Tpu T % T 2.12)
depends only on the connection. For any other metric g,y we find
Quw = Dpﬂab = apgaa + 8o NPGUW' (2.13)

{t will be convenient below to represent a symmetric pair of indices (ep) by a single latin index,
ab,... running from 1 to 10. With this notation (2.13) becomes:

Qap=Dyga = 9,82 + gp NYy,. (2.139)

Changing the metric does not change the connection, but only the division of the connection into
compatible (Christoffet) and incompatibte (Qupy) parts:

1l . o )
L0t A8, 8D 1@ Q-0 ) Q4

T
afp o apf " Ppe

Compare the refationship between eq.{2.11) and eq.(2.13) to a gauge transformation. If
8ap in the second term of eq. (2.13) was T, then our freedom to choose the metric would make it

a gavge field for Qup,. If the metric is perturbatively Minkowski and Qg, is small, then to lowest
order the refation is exactly that of a gauge ransformation. Even with the extra factor of the metric
multiplying NPOQB”, we can stitl use the choice of metric to reduce the freedom in Qaw, The
question is, how much of Qqp,, is metric-gauge dependent? There are 10 degrees of freedom in
Bup- Is it possible to reduce the ber of independent compoenents of Qupy by 10?

We conclude this seclion with a demonstration that the answer is yes. In fact, the metric
described in the intcoduction is one metric-gauge choice that maximally reduces Qopy- Wecan
always choose 2 metric defined locatly to coincide with a small cube and a clock. Since distortion
is then defined relative to the cube, such a metric will be distortion free along the observer's world
tine. What we have is a principle of relativity of distortion . It is, simply, that an observer can
always choose a metric-gauge that is distortion free along any given world fine . There is no such
thing as absolute distortion, so the observer in question has only to define the metric by the size
and shape of objects in an appropriate {ocal, covariantly tcansported neighbochood.

Notice that these observer-metrics are not the only ones that reduce the freedom in Qepye-
In the third section we will make use of a metric-gavge in which 9,Qupt = 0. Itis a simple

exercise to show perturbatively that there exists a metric for which this condition holds.

Theorem 1: There exists a metric-gauge which reduces the number of independent
distortions to 26.

For proof we need only calculate explicitly the metcic described above, Let the metric be
given by the Minkowski metric on an initial spacelike hypersurface. If it remains covariantly
constant along some timelike path x*(A) then we have:

8.5 Mop 2.15)

on the initial spacelike hypersurface and

kD =0 .
u unup (2.16)

where utt = dxI'/ d} is tangent to the path.

Let the given world line x(A) be smoothly extended to a congruence of timelike curves
*(L; El) so that the tangent vector v is smoothly extended to a timelike divergence-free vector
field vi(A; E1) = dx#(X; Ei) /dA. Here the i i=123 parameterize the A = constant hypersurfaces
in M. We assume that we restrict our consideration to some region of M where such an

extension is possible. We will have the metric we need once we solve the equation



viD g =vHQ =0 217
nof afin <

with the initial condition, €q.(2.15). In terms of N2 by this becomes:
Hag -g N =0 2.18
vPo g, -5, N, ul 2.18)
Letting Ny, v = N%, we may formally integrate along the congruence to find
fa = Ma + fgoNO, dA 2.19)

which is then iterated to produce the series expansion

A
ga = Ma + [npNd, 0k + [npNbak [Ne, aA' + ... (2.20)

The tensor-valued integrands pose no problem since we have chosen an orthonormal coordinate
system. If we denote "lime ordering" in the parameter A by A, this may be written as:

Bop = A expl[NO I, (2.21)

£q.(2.17) now provides |0 constraints on Qupy- From the decomposition in equation (2.3) we see
that the Weyl and distortion potentials now satisfy

WA =0 222
w (222)

and

Wws =0 .
o a2

Since the trace of eq.(2.23) vanishes by eq.(2.3), eq.{2.23) provides 9 constraints, reducing
to 26 arbitrary functions,

Sopn

3. Formal Developments.

We wish to construct a conformally invariant Lagrangian for the 26 allowed distortions.
While Qg is a convenient tensor for discussing length change for a given metric and establishing
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the number of true distortions, it is not appropropriate for formulating a theory in which the metric
is a gauge field. What we need is a metric-invariant field strength. A nonzero value for this field
strength should measure true distortions. Conversely, its vanishing will indicate the existence of a
connection-compatible metric.

We begin this section by developing metric-invariant formalism. The section continues
with a proof of the necessary and sufficient condition for the existence of a connection-compatible
metric. Finally, a convenient metric-independent criterion for the existence of nontrivial distortion
is presented. All of the results of this section hold in an arbilcary number of dimensioas, d.

First, define the covariant derivative 1-form
D = duiD, (3.1)

where the action of D, on a vector is defined by eq.(2.1). Greek indices run from | to d, while

fatin indices run from 1 toda’u. Forms, denoted by boldlace type, are always assumed to be

multiplied vsing the wedge product. The action of D on covariant, symmetric second rank tensors,
written as ‘K(;—'n—dimensional vectoss, is given by

DH, = dH, - HyNb, (3.2)
where
N3, = N2y, dx# (3.3)

and d is the usual exterior derivative. For contravariant tensors the minus sign in eq.(3.2) is
replaced by a plus and the sum is on the other index of N3, If we require

D2g, =-gpMb, (3.4)
where .
i |
M3y, = 2 Mab,w dxh dxv (3.5
then
M%, = dN?3, . Na NC¢, (3.6)

M2y, obeys the Bianchi identity:



DM2, = 0. ' 3.7

It is a simple matter to show that the components of M2, are given in terms of the usual curvature
tensor constructed from ™, by

MoB, g = 28, RB,, . (3.8)
This is manifestly metric-invariant.

Scaling and distortion parts of M, may be defined as before. We find that a gauge-
invariant form of A,, in d-dimensions is given by:

Nag = - A Ldinyg ) 3.9

with A = dx#A,. The corresponding field strength is

d(d -
M2, = .@da = .—%ﬂls. (3.10)

The tracefree part of N3, will depend only on the distortions. Therefore, let

8% = -N#%, + d(—:,,—)ﬁ’chc- 3.11)
For any particular metric g,p, Q,p, may be written as a 1-form;
Qa = Dg, (.12)
The distortion tensor of section 2 is then given by:
Sa = Qa -7 8ag%Q (.13)

8%, is related to S, by:
1
goSPa = -S3 + dgy - 78adinVg 3.14)
We shalt now prove:

Theorem 2: The necessary and sufficient condition for the melric gb to be

connection-compatible is:

geMb, = 0. (3.15)
Proof: The necessity of the condition eq.(3.15) is trivial, for if g, is connection-compatible
then
Qa = Dga =0 (3.16)
immediately implies

0 = D%, =-gyMb, (317

The sufliciency of eq.(3.15) follows by explicit construction of the compaltible metcic. The
metric we need is just that given by eq.(2.20), only now the expression must hold for acbitrary
vectors v, To begin, note that go(P) is an arbitrary symmetric matrix at the point P, Choose
locally Lorentz coordinates so that g(P) = 1,. Because of the metric freedom, we can simply

declare these coordinates to be lorentzian throughout the entire coordinate patch. Then our
integrals are well-defined locally, and we can write:

A
ga (M = Ny(0) + oIga(k')Nbaa') a (.18)

which whenr iterated leads to eqs.(2.20) and (2.21). What we require is that when eq.(3.18) is

integrated around an arbitcary closed path, the melric is unchanged from its original value.
Setting ga(A) = g4(0) in eq.(3.18) for such a path gives:

b
§Nﬂ ) g M)A < 0. (3.19)
C

We may now apply Stoke's theorem. Letting u® = dx®/dA, and remembering the definition of
Na", we find:

b b
1o e, - 01, g, Jowtw o 62w
S

The integrand must vanish since S is an arbitrary surface bounded by C. Because we require
2q.(3.18) to give g, along any path, we inay use it to calculate Bb.y in €q.(3.20). This gives

it



go(MND,,, - Nbg o+ N NE,, - NB. NS} = 0 (3.21)

This is precisely gyMP, = 0 where MY, is given in terms of N"a’, by eq.(3.6).

We have shown that gyMP, = 0 is a necessary and sufficient condition for the existence of
a connection-compatible metric. [f we do not require the metric to be invertible then this condition
is equivalent to the vanishing of the curvature tensor. To see this, choose 4@_2:1), independent basis
vectors gal (=12, ..., ‘K';#Q) spanning the space of symmetric matrices. If gg Mb, =0 for
each i then MP, must vanish, and with it, R¢,,. However, if we restrict consideration to

invertibte matrices as candidate metrics, there may be nontrivial solutions. ln order to decide
whether or not a given spacetime is connection-compatibie we might have to compute ngba for

every metric.

We can devise a simple test for nontrivial distortion that avoids this problem for the
distortions that we wish to consider. If

det MYy} = O (3.22)
for any pair (v}, the corresponding M, may be inverted, forcing g5 = 0. We then have
nontrivial distortion. The determinant in eq.(3.22) refers to the 421 "-("2;'1 matrix labeted by

the indices a and b.  Note that if det[M%,,,] does vanish for all d(d_;.y_ values of [uv] then 2

solution of eq.(3.15) for nonzero g, may exist for noavanishing My, Such an M?%,,, might not

correspond to nontrivial distortion.

While this test does not provide all of the conditions necessary (26 in 4-dimensions)
for the existence of 2 compatible metric it does provide a relatively simple set of sufficient
conditions, enough for our purposes. To check that a given nonzero solution for the distortions is
nontrivial, we need only verify that eq.{3.22) holds for some value of fuv].

4. Lagrangian and Solutions.

We now return to 4-dimensions and consider lagrangian densities L which may be
constructed purely from the metric-invariant field strength 2-form, M2y, its dval, ‘Mah, and the
metric go. It is desirable for the field equations to have trivial sofutions since we know spacetime

to be well modeled maccoscopically by metric compatible spaces. We therefore requice L to be
quadratic in M3, . There are two natural choices:

Lp= M3, Mb, @.1
Ly= M3y *Mb, . » (42

The ficst of these is the Pontryagin characteristic density. It is not conformally invariant,
violates parity, and gives a topological invariant when integrated. Its variation gives a pure
divergence plus a term which vanishes identicaily due to the Bianchi identity, eq.(3.7).

L on the other hand, is conformally invariant, and does not violate parity. lts variation
leads to Maxwell-like field equations.

We therefore use L. Notice that it differs from the Weyl lagrangian[?],(8] in two
respects. First, the square of the trace of M@, is subtracted from the usual Weyl term. Secondly,
and most importantly, the vpper index on M3, is contracted with the tower index on *M?, and
vice-versa. This avoids unnecessary vuse of the melric, resulting in a simplification of the field
equations. [t also changes the conjugate momentum, which turas out to be cruciat for correct
quantization of the string solutions.

Notice that Ly depends on the metric. This dependence is necessary. Since all of the

components of the distortion tensor are not independent we should not be able to solve
independently for all 36 components of Syp,. Variation of the lagrangian with respect to the metric

gives 10 equations. When these equations are regarded as constraints on the distortion tensor, and
not equations for the metric, only the requisite 26 components of Sy remain independent.

The variation of Ly with respect Lo NAy, and g,,,, straightforwardly Jeads to the following
equations of motion:

DMAgEY - 24 MB WY = 0. (4.3)

b
g'wMabpu Mbav[‘l - ;gnliMabuv Mba B = 0. (4.9)

13



The local conformal invariance of the lagrangian insures that the trace of eq. {4.4) is automatically
satisfied. While N2, | has been varied to produce eq.(4.3), varying either Quap or Mp, leads to an

equivalent result.

Note that N3, depends on the entire torsion-free connection and therefore contains ail 40
degrees of freedom of Qg We will seek a sofution for all 40 components, separating out scaling

and distortion parts only after a solution to the equations of motion is found.

Also note that eq.(4.4), from the metric variation, is nol trivially solved by choosing any
special metric. It is solved identically if M3y, vanishes, for any metric. This supports the claim
that this set of equations be regarded as constraints on My, | rather than equations for the metric.

In finding a solution to this system, we will make 3 assumptions:

1. We will assume that we are free to choose any metric which might reasonably arise as the
macroscopic Jimit of a small-scale metric-averaged theory. In particular, it must be
possible to find sotutions with a conformally Minkowski metric, since we know (up to
scalel) that the Mikowski metric is well approximated at large scales. It remains to be
shown elsewhere that this metric actually can arise as the limit of some averaging
process.

2. Suppose that in orthonormal coordinates, INab“dx# << f along all timelike paths, for
each value of 2 and b, and for some function f. Then a perturbation expansion is justified
since the distortions can be made small even for long times by an appropriate conformat
transformation (See eq.(2.21)). Keeping only terms quadratic or lower in N‘b" in the
lagrangian, we find that eq.(4.4) remains the same, with M,y = 2Ny, ) , while eq.
(4.3) becomes:

3, Nayfuvl = o, “.5)

3. The only further assumption that will be made is that we will seek solutions which keep
as many as possible of the components of NAy,,, independent. Such sotutions will be

called maximal. While there may be many non-maximal solutions, only this further
property is required to lead us 1o strings. Only stringlike solutions have the property of
decoupling all components of the distortion tensor from one another.

There is an important subtlety in the combination of conditions ), and 3. above. It will do
us 10 good to find a supposedly maximal solution having 26 independent functions if a change of
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melric can remove some of those functions without adding others. One way to insure that our
metric choice allows a iculy maximal solution is to also require there to be some vector field wi
such that Q,, wH = 0. That way we know by construction that Tqp is a ‘good’ choice of metric, in

the sense that it is some observer's local reference frame, We will assume that the vector field ‘wh
is non-spacelike,

We now specifly g 8" nua and substitute for N3, (x) in terms of its Fourier transform
N2y, (k). Eq.(4.5) then reads

k”(Nab" k¥ - N3GV, = 0, (4.6)

If we impose the condition 9, N = 0 in order to reduce eq.{4.6) to the wave equation, then we
have already used many of the degrees of freedom of Nay,,. However, if we do not, then k2 = 0
and we can solve for the transform of N%,, in terms of its divergence and ky:

N2y, = 1:_2 (N3, k) &, = 0, 4.7

This decomposition reduces Ny, to at most 14 independent functions. We therefore take Nay, o
be divergence free on the final index and k‘, to be null, and seek to satisly the constraint equation,

Consider Fourier expansion of the first term of eq.(4.4):
Jo%k 802)[otm B(m2) [Nog, &, Nag ke HNOmY - Nb k] eitksm)x (4 8)

There will be nontrivial constraints introduced unless this can be substantiafly simplified. We must
make use of the constraint we already have,

k Nb (k) = 0, (4.9)
but the expression (4.8) includes instead terms like
K Nb# (mY) = 0, (4.10)
Also, there is a term containing
Nap,, (k%) Nb,, (mP) k-m (4.11)

which will give 10 new refations among the Nay,,, unless kymt = 0. Only if K is paraflel to mt

will (4.10) and (4.11) vanish without constraining N4, It is this reduction of the allowed

15



momentum space required by the metric-constraint equation that forces this solution to depend on -

one coordinate instead of all four, making the solution stringlike,

We can now proceed to solve eq.(4.5). The restriction of the momentum space can
achieved by letting each component of N%,,, depend only on the amplitude of a single uniform
wave. Let ¢(xM) be any function with nonvanishing gradient, and let

Ny, = N3y, (¢). (4.12)

Then ¢(x*) must satisfy
9,8v¢ = 3,¢3vp = 0. {4.13)

and N#,, is restricted by
N, ‘ot = 0, (4.14)

where the prime (') denotes differentiation with respect to ¢. Substituting into eq.(4.4) now
requires only one condition:

Na, 'Nb, u'= 0, 4.15)
Finally, the conformal factor may be chosen so that;
N3y, Nb p= 1 4.16)

Now consider the restriction of the solution above to each of the separate pieces of Nay,,.
Eqs.(4.14) and (4.15) together imply that N@,,, is the gradieat of A(¢), where A is an arbitrary
function of ¢. Therefore, M, v= -10(Ay - Ay ) = 0. In particular, we can identify A with ¢,
since @ was arbitrary to begin with. Therefore, N, reduces essentially to S&,,, which now
satisfies:

8%, nk = 0 S, =0 Sy, Shyu= 1 4.17)

and

S%p,'Sb, k'= 0, 4.18)

Itis easy to show that the field strength M3, , calculated from this solution satisfies eq.(3.22).

These therefore represent true distortions.

Eqs.(4.17) leave 26 of the components of S?,, arbitrary. Each component satisfies the 4-
dimensional wave equation, and the components are together subject to the constraint, eq.(4.18).
This is easily recognized as being related to the form of the solution to the classical string equations
in the critical number of dimensions, once it is realized that the quadratic constraint (4.18)
corresponds to the usual orthonormality condition on the string coordinates.

Before drawing out the exact correspondence with the string, we must apply the maximum
criterion to the condition

Qauwt =0 : ’ 4.19)

where wh is non-spacelike. Notice that this condition already holds for the solution above,
eqs.(4.12) - (4.16). Il we let @F be a constant nuil vector then integration of eq.(4.14) leads to

NAp,, + h2pu (@, y. 2) (4.20)
so that if we take h3,, = 0 then
Nipy ¢4 = 0, 421
and it follows that
Qby §# = NNy, o# = 0. 4.22)
However, this choice is not maximal. To find the maximat solution, notice that Mg,y
and the equations of motion are invariant to lowest order under changes in N, of the form:
Nop, —> Ry, = Nog, + ney . (4.23)

If b3, is of the form 8(®ghi),ythen this corresponds to 2 metric gauge transformation. The

particular gauge choices of our solution;
 Nay, =0 “.24)
and
3,0 Nap, = 0 (4.25)

are also preserved as long as 3,0% h3, = 0. With our choice of Ny as the metric, we have given

up our freedom to remove such an additional term. Therefore we have 1o consider what form of

t7



h3y, satisfies eq.(4.19) while intcoducing the maximal number of new fields. .

For simplicity fet @ lo be a simple nufl coordinate, 9 =x +t, and let ¢=x - t. Then in general

the solution is of the form:
Ry, = Na,(9) + b%,(03. 5. 2) (4.26)
Let us assume that the vector field w# is constant. Then it may be decomposed as;
wh = ot + Bip# + s 4.27)

where &t and [ are constants and s is a constant vector lying in the yz-plane. After sepacation of

variables, and assuming eq.(4.21), eq.(4.19) becomes the pair of equations;

_ dhy,
BPHQp () + 3 Qpu(p) + IBSE— =0 (4.28)
dhy
202 4+ By, =0 (4.29)
ap
Eq.(4.28) implies
bp = [IBQbo + Qo) + # Qo) do + Ty, 2). (4.30)

There are no further constraints on hy, if ¢t and $* are taken to vanish, so that

— A
P*Qpy =0 4.31)
Here 6bu =M, lf\l"’bu = Qpu(9) + hp.,- Taking B = 0 instead of &t =0 forces
dh
5o, (4.32)
%
which is not as general.

Finally, hy must solve the wave equation:

ahy, Ay, 9y
Tenm oy
39ap 4

=0. (4.33)

The first term vanishes leaving an equation with only exponentially divergent sotutions. To
maintain finiteness at infinity, hp, must be a function of § alone. Since we desire hy, to be in the
form of a metric-gauge transformation, this determines h?, enticely. The solution for ﬁlab” may be

wrilten as:

A
Nabp = Naby(@) + auhab@ - 9 (Ngo + Ny )dg 434
and satisfies eq.(4.31).

The result is that, assuming reasonabte boundary eonditions, the maximaf aflowed form of
A
Nay,, has 10 right-moving fields and 26 left-moving fields on a 2-dimensional subspace. This is

peecisely the bosonic sector of the heterotic string.

5. Comparison with the heterotic string.

Let vs make the comparison with the string explicit. We begin with a brief review of the
bosonic string. The standard bosonic string is desceibed[1] by 26 functions XA (A=1,2, ...,
26) of two variables, &i = (6,1) satisfying:

99l XA = 0. 5.1
We also have the orthonormality condition:
(3,XA + 3,XA2 = 0. 5.2)

Requiring the usval end conditions X'A(0=0, T) = X'A(0=n, 1) = 0, the wave equation restricts XA
to the form:

Nxoo . .
XA(U.'I:) =X, Ay At Z(a_”A e 4 a A e_m) cosno  (5.3)
n=|

The orthonormality condition (5.2) becomes a function of (G + 1) only:

" =00

A da{o+1))2
[Xna e Foo (5.4
n=-00
This is the form of the constraint regardless of the boundary conditions.

The combination 3 XA + d; XA is the Fubini-Veniziano {10] momentum PA(z), evaluated
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on the unit circle, z = eit%*7), [ts conjugate momentum QA(z), when evaluated on the unit circle, is
aiso a function of (G+1T) only.

n=oo

QM) = 3, izl (5.5)
n=-co
d o
PA(z) = iz-—-‘%: = Z naAzn (5.6)
n=-co

These variables are conjugate when the bosonic string is quantized and the constraint of

€q.(5.2) may be expressed in terms of the operators

= (92 e ey 5.8
Ly = -3 J’zm 2 P2y (5.8)

where : : denotes normal ordering,

The heterotic string is composed of the left-moving sector of a bosonic string, compactified
to §0-dimensions then combined with the right-moving sector of a 10-dimensional superstring. To
simplify the comparison, we will examine only the relationship between the left-moving sector of
Nba,, and the left-moving sector of the bosonic string. The right-moving sectors are similarly

related. The teft-moving sector is completety characterized by the Fubini-Veneziano variables QA
and PA, The right-moving sector has its own set of variables built from 9 XA — 3, XA.

First, identify ¢ with o+ 1. Then it seems natucal to identify the independent components
of Nbau with QA., but this is not quite right. Because of the staggering of contracted indices in the
lagrangian, the cannonical momentum conjugate to N3y, is:

Maby = N, o + NPy (5.9)
so that the Poisson brackets become:
lNabw Mg%) = 8adacb“uv- (5.10)

It is the crossing of the indices that yields the positive definite Kroniker 8's here, instead of
products of Ngg. This means that the quantization will proceed without introducing extra ghosts.

But it also means that the conjugate pairs are
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Ny, TG0 5.11)
instead of
N2, . [Tp?y) (5.12)

Since the Fubini-Veneziano pairs are (QA; PA) we must ideatify the various QA with sums or
dilferences of the Nab“, for example:

Qoo (N E NP D PA <o L (TT%, £ [1%,). (5.13)

The actual numbering of the variables is of course unimportant, as long as only
independent N3y, , and [I?,, are included. One possible identification is detailed in the Appendix.

It is also important to notice that the negative brackets that arise in eq.(S. 10) because of the
remaining 1),, are dependent because of the gauge condition, eq.(4.21) or eq.{4.31). The
requirement that wh in eq.{4.31) be non-spacelike is sufficient to guarantee that N3y, can be
expressed in terms of N4y,

wi
Niyo = =5 N (5.14)

thereby expressing the potential negative norm states in terms of positive norm states.

We end this section with some comments on the interpretation of the solution. This is to be
regarded as a theory of distoctions in 4-dimensional spacetime. The fact that it can be interpreted as
the heterotic string foliows from the existence of 26 distortion fields and 10 metric-gavge fields.
The space in which this ‘string’ moves is simply the solution space of these fields, and not the
actual spacetime in which we live. The solution for the 'motion’ of the string in the space of
physical distortions gives us the values of these fietds, and therefore gives us a solution for the 4-
dimensional spacetime that these fields describe.

This interpretation provides a neat separation of the left and right movers of the heterotic
string. Tn the standard interpretation of the string the "heteroticity’ is achieved by pasting togethec
the left-moving modes of a bosonic string with the right-moving modes from a superstring. While
this produces quite satisfactory results and is pefectly reasonable mathematically, it is conceptuatly
a bil bizarre. In the present model, however, the left-movers are intrinsically related to the
connection while the right-moving fields are linked to the metric. Presumably, the supersymmetry
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of the heterotic string can be achieved here by supersymmetrizing the metric only. The connection

may remain unaltered, so that only the 10 metric-gauge fields have superpartners.
6. Summary and Cbservations.

We regard motion in spacetime as a fundamental physical property, and the measurement of
that motion to be derivative. The reat influence of nature is to determine the dynamics of fields
{hence, the connection). The measurement of those fields must be formulated in a way that is not
only independent of how we choose coordinates, but of how we choose to measure in a deeper

sense -- it must be independent of certain choices of metric.

It may seem at [irst odd to speak of a [reedom to choose the metric when there is plentiful
macroscopic evidence for metric-connection compatibility. Compatibility leads us to a preferred
metric. But this is like choosing a static coordinate system on the rotating earth -- it makes sense
only so long as the effects of the choice are unobservable. Ultimately, we have no reason to
assume that a preferred microscopic metric exists.

1f spacetime has no compatible melsic at small scales, then objects foflowing different paths
will distoct relative to one another. In such a world, the freedom to select the metric arbitrarily is
manifest. No choice will give universal correspondence with measucements. The best that one can
do is to choose a metric that is covariantly constant afong one's own world line. This is the
principal of relativity of distortion . It parallels the statement that one can always work in the rest
frame in special relativity, or that one can atways pick a local Lorent2 frame in generaf relativity.
The principal implies that there are no more than 26 independent components to the distortion
tensor in any conformally invariant theory.

If we adopt the requirement that metric compatible spaces should be trivial solutions to our
theory, then we can easily recover the metric of macroscopic spacetime as an emergent property.
Any metric-connection compatible spacetime will be an exact solution to the theory. This
requirement leads us to write the quadratic {agrangian of eq.(4.2). At large scales, to the degree
that noncompatible small-scale oscitlations can average out, there will be a reasonably effective
average measure on the spacetime. This is the same phenomenon that occurs with the averaging
out of any net eleciromagnetic charge, or the modeling of the universe as homogeneous.

The maximal solution to the field equations resulting from eq.(4.2) is equivatent to the
bosonic sector of the heterotic string, that is, 26 lefi-moving fields and 10 right-moving fields.
This model has the advantage over standard steing models of not requiring compactification. It
already directly describes a 4-dimensional spacetime.
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The correct quantization of the distortions follows from their relationship to the string.
Linear combinations of the 52, and of the §'3, correspond to the conjugate variables QAel)
and PA(e“). and obey cannonical commutation refations. A full development of the quantization
of this system will be presented in 2 subsequent paper.

Finally, we remark about the critical dimension. The number of independent distortions
depends on the dimension of the original spacetime. In d-dimensions, the ber of independ

¥

components of 3, is d(d2-3)/2. 1f 26 degrees of freedom are really required for consistent

quantization of this system, then the quantization will only work in 4-dimensions. Therefore we
have two possibilities: )

1.The theory of distortions will produce consistent quantum theories with critical
number different from 26 when correctly quantized in other dimensions. Such
theories need not be string theories.

2. The quantization is inconsistent in other dimensions.

The first possibility predicts a new class of consistent quantum theories if we can find the correct
means of quantizing them. If the second possibility holds instead, it provides a strong argument
that spacetime must be 4 dimensional. Either outcome will therefore prove interesting.

I would like to thank Harry Braden, Frank Cuiper, Bernard Kay, Yukio Kikuchi, Caren
Marzban, Jack Ng, Marcello Ubriaco, Bernard Whiting, and Jim York for discussions. This

research was supported in part by U. S. Department of Energy grant number DE-FG05-85ER-
40219.
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Appendix

Here a specific mapping between distortion and string fields is presented in detail. The
geometric variables N%, , are defned by :

NeByp = 28, TP, (a1

and will be taken to salisfy the constraints:
0 = NNy, Pt = (= Ny, + Ny, + N, + N0y o=k (A2)
0 = 1PQy, = NaNdN, = (- NIy, + N5, + Nog, + N10yq,) (A3)

Here we have adopted the following index convention for the 10-dimensional indices.

For a-(af): 1 - 00 2-01 3 -0 4 - 03
S- 11 6 - 12 7-13 8 -22
9-23 10-33

The constraints suggest the variables
Kpy = Nalfy, (A.9)

with Kpg =Ky, and Ky, = Kg + Ky, + Kyq,. This choice leads to the following combinations of
the N3, as independent variables:

~ Nljj + N¥; = Ny + Ny NS
~ Nig+ Nt N; + N8g; Neg; , (A.5)
NS5+ N10y, Nég; + N1y N1

wherei =1, 2,-3. The problem with this set is that the conjugate variables are not included, since
for example the conjugate of Nly; is IT)2%; = 3; N2;;. Fortunately, there are relations among the
Niy., such as NSy, _ N2 of exacily the form needed so that we can instead choose:

= Nl + N2y, - Nlyi+ N3y NS5
- Nig+ Né; N3¢ + Nés; gy (A.6)
N33 + N7g; Neg; + N, NI,

24

as a set of 27 variables which are independent modulo conformal transformation. These variabtes
may be identified with the Fubini-Veneziano variables QA since if we let, eg.,

!
Q'=75 (Wa+Nog) (a7
then the conjugate momentum is
P! = Tfl‘f (N5, + N 3g;) = 7’_2- (N3 + N6y = Q1 (A.8)

where the dot denotes a time derivative. The asymmetry in the pairings has been overcome. For
the difference combinations we still have {Q', P} = 1, but now P! =— Q. While P =- @ is

usually an indication of a non-positive definite metric, the crossing of the indices preserves positive
definite Poisson brackets.

The Minkowski bracket of bosonic string theory
(Q4, PB) =nAB A9

can be matched by taking N3 + Nbsy instead of N, + NS, (or any other change of a final ‘1*
index to a final ‘0’ index) as an independent variable. This makes use of the Tjg term in eq.(5.10)

to produce one negative bracket.
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