
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2014

Engaging Alternative High School Students Through the Design, Engaging Alternative High School Students Through the Design,

Development, and Crafting of Computationally Enhanced Pets Development, and Crafting of Computationally Enhanced Pets

Maneksha Katrine DuMont
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Education Commons

Recommended Citation Recommended Citation
DuMont, Maneksha Katrine, "Engaging Alternative High School Students Through the Design,
Development, and Crafting of Computationally Enhanced Pets" (2014). All Graduate Theses and
Dissertations. 2079.
https://digitalcommons.usu.edu/etd/2079

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F2079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.usu.edu%2Fetd%2F2079&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/2079?utm_source=digitalcommons.usu.edu%2Fetd%2F2079&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ENGAGING ALTERNATIVE HIGH SCHOOL STUDENTS THROUGH THE

DESIGN, DEVELOPMENT, AND CRAFTING OF COMPUTATIONALLY

ENHANCED PETS

by

Maneksha Katrine DuMont

A dissertation submitted in partial fulfillment

of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Instructional Technology and Learning Sciences

Approved:

____________________________ ____________________________
Victor Lee Mimi Recker
Major Professor Committee Member

____________________________ ____________________________
Brett Shelton Deborah Fields
Committee Member Committee Member

____________________________ ____________________________
Andrew Walker David Smellie
Committee Member Committee Member

Mark McLellan
Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2013

ii

Copyright © Maneksha Dumont 2013

All Rights Reserved

iii
ABSTRACT

 Engaging Alternative High School Students Through the Design, Development, and

 Crafting of Computationally Enhanced Pets

by

Maneksha Katrine DuMont

Utah State University, 2013

Major Professor: Dr. Victor R. Lee
Department: Instructional Technology and Learning Sciences

 Hybrid design technologies, a combination of physical crafting, construction or

art, and computing, have the potential to broaden participation in computing by appealing

to youth through existing interests and hobbies. Expanding participation in computing is

important because computational thinking, for example debugging, is a set of skills

fundamental for success in our society. Youth can participate in and gain exposure to

multiple disciplines with various hybrid design technologies. Yet alternative high school

students, those labeled failing and been moved from the conventional school to a facility

that focuses on building adult skills and remediated instruction, are not often the

beneficiaries of innovative learning environments. There is reason to believe that these

students could benefit from a new way of learning with new hybrid technologies

including learning about debugging, art and craft, technology design, and aspects of

computer programming.

iv
 This dissertation investigates whether a novel hybrid technology can provide

alternative high school students with new forms of access to computation and encourage

participation in debugging. This dissertation will serve as a multi-faceted report of one

cycle of design, implementation, analysis, and refinement of a hybrid technology

intervention with a diverse, oft ignored, and challenging population. In this project,

students at an alternative high school worked to create interactive pets, similar to some

commercially available, popular toys and then shared them with the community. The pets

were virtual, existing on the computer screen, and tangible, existing in the physical

world. Students worked predominantly by reusing and modifying existing programming

code.

 In the end, there were a number of encouraging results, such as observed

instances of high engagement, success in dealing with programming bugs, and the

connections some students made to computing and mistake making. There were also

some areas in which the design and implementation could be improved for future

iterations, namely through refinement of the activities and technologies to encompass a

wider range of student interests, a more concentrated effort to cultivate a nurturing

community of designers, and a more consistent fostering of motivation for and

understanding of the final product and its intended audience.

(298 pages)

v
PUBLIC ABSTRACT

Maneksha Katrine DuMont
Ph.D. Instructional Technology and Learning Sciences

Engaging Alternative High School Students Through the Design, Development, and
Crafting of Computationally Enhanced Pets

 A new kind of technology combines making in the physical world with computing
in the virtual world. These technologies are simultaneously physical and virtual, require
the design of artifacts like computer programs and the crafting of physical components.
Combining approaches encourage youth to participate in computing who might not
otherwise be interested by harnessing existing hobbies and interests. Because fluency
with computing is important to success in a 21st century society, increasing the ways in
which young people can experience and connect to computing is important.
Computational thinking, and with it the process of debugging computer code, is an
example of the skills young people can learn.

 This dissertation is a report of the design, implementation, analysis, and
refinement of a hybrid media intervention in an alternative high school. Students
designed, crafted, developed, and shared interactive pets. The pets were physical
creations that users could interact with via an external microprocessing board and
corresponding computer program. The investigation included questions concerning
whether students could complete the project, how students engaged with the design tasks,
how students participated in addressing programming errors (bugs), and whether students
exhibited elements of empowerment. The results suggest youth were engaged, successful
in addressing bugs, and some students made personal connections to computing and
mistake making.

 The empirical work in this dissertation contributes to theory related to design of
constructionist learning environments and student collaboration with hybrid media.
Limitations of the project and next steps for research are also discussed.

vi
ACKNOWLEDGMENTS

First I would like to thank my committee for continuously pushing me to think

more deeply about and attend more thoughtfully to my work and writing. I especially

would like to extend sincere gratitude to my chair and advisor, Victor Lee, who took an

extraordinary risk by taking me on as his student and then persevered through my

cynicism, back talk, and revisions to the end, even when circumstances became, at times,

nearly impossible. I will always be endeared to the ways in which you were able to guide

me through this process and will continue look to you for much needed advice. Also, I

am grateful for all the support and feedback from fellow students at the VITAL

Collaborative. To the students at Winder Alternative School, don’t ever let anyone tell

you that you can’t do it. I appreciate your willingness to join me on this crazy project and

I learned a tremendous amount from all of you. None of this would have been possible

without my friend and colleague at Winder as well as the dedicated and inspirational

staff, administrators, and teachers there.

To my family and friends, thank you, thank you for not letting me quit and

encouraging me unconditionally despite continuous claims of not knowing what I was

doing and why it was taking me so long.

Finally, to Joel and Ewan, with whom everything is possible.

Maneksha DuMont

vii
CONTENTS

 Page

ABSTRACT .. iii

PUBLIC ABSTRACT .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

CHAPTER

 1. INTRODUCTION.. 1

 Rationale ... 6

 A Path Forward ... 11
 Research Goals/Questions .. 14
 Outline for the Thesis ... 16

 2. POPULATION, SETTING, AND
 THEORETICAL PERSPECTIVE ... 18

Context ... 18

 Theoretical Perspective .. 24
 Constructionism .. 25
 Programming in Constructionist Environments 26
 Studies in Constructionist Programming Environments 29
 Hybrid Design Technologies .. 32

 Examples of Hybrid Design Technologies 35
 What Makes for a Constructionist-inspired Learning Environment? . 41

 3. METHODOLOGY AND LEARNING ENVIRONMENT
 DESIGN .. 45

A New Kind of Hybrid Design Technology 45

 Learning Environment Design .. 48
 Three Principles for Learning Environments with
 Technology .. 49
 Facilitating Connections ... 50

viii

 Developing a Supportive Culture 51
 Promoting Creative Expression 53
 Learning Activities .. 54
 Planned Activities .. 56
 Opener.. 56
 Workshop.. 57

Round Table.. 59
 Design Exhibit Night... 59

 Research Plan ... 62
 Data Collection .. 62
 Author's and Faculty Involvement ... 65
 Sampling and Recruitment ... 66
 Resultant Participant Numbers ... 69
 Data Collection Instruments ... 70

 4. HOW INDIVIDUAL STUDENTS ENGAGED
 WITH THE PROJECT ... 73

 Narrative Construction ... 74
 Design Versus Realization: Time ... 76
 Tegan .. 81
 Jamal ... 99
 Carlos .. 115
 Hybrid Design Technologies and Limitations
 on Engagement: Dino .. 123
 Summary ... 128

 5. HOW STUDENTS INTERACTED .. 129

 Why Should We Care About Collaboration

 and How Was It Encouraged? .. 130
 Operationalizing Collaboration ... 131
 Collaboration Analysis .. 135
 Collaboration Results .. 140

 Accounting for Absence ... 144
 Why Else Student Collaboration Was Limited 145

 Expertise And Interest Lead To
 Divided Roles and Goals ... 147
 The Difficulty Of The Task Prevented Students from
 Taking Up Collaborative Opportunities 150
 Modularity: A Population Characteristic 153
 A Proprietary, Wary Population 154

 An Emotional Technology ... 158

ix

 Conclusions About Student Interactions .. 163

 6. DEBUGGING .. 165

 Analysis Methods ... 167
 Operationalizing Bugs in Computational Crafts..................................... 170
 Categories of Bugs ... 172
 What Did Debugging Look Like? .. 184

 Accounting for Overall Numbers of Bugs 188
 Bug Fates by Group .. 190
 Individual Student Groups & Bug Fates 192

 Modes of Debugging: Student Problem Solving Activities 195
 Minimal Support Versus Coaching ... 199
 Implemented Direct Solution Idea ... 204

 Tinkered .. 204
 Used Brute Force Repeated Failure ... 205

 No Strategy .. 205
Deleted Buggy Code ... 206

 Gave Up .. 206
Post Assessment on Bugs ... 207
 The Debugging Assessment Task Explained 208

 Results from the Debugging Task .. 211
Conclusions About Bugs .. 216

 7. STUDENT IMPRESSIONS OF THE PROJECT 217

 Ideas About Making Mistakes .. 218
 Ideas About Computing .. 225

 Overall Impressions of the Project .. 227
Conclusion ... 229

 8. CONCLUSION .. 232

Theoretical Contribution …... 235

 Relative Notions of Sharing ... 235
 The Hybridity Continuum ... 236
 Reflections on the Results ... 240
 Limitations and Steps For Improvement ... 243
 Next Steps and Final Thoughts .. 249

REFERENCES .. 251

x

APPENDICES .. 262

 Appendix A: Sample Lesson Plan ... 263

Appendix B: Pre and Post Survey ... 266
Appendix C: Field Notes Sample .. 272
Appendix D: Debug Journals ... 278

VITA .. 281

xi
LIST OF TABLES

Table Page

1 Digiblepets Intended Activity Sequence, Weeks 1 and 2..60	

2 Digiblepets Intended Activity Sequence, Weeks 3 and 4 ... 61	

3 Student Projects .. 76	

4 Digiblepets Realized Activity Sequence. Items in red were omitted from the original
planned activity sequence and items in blue were added to the new activity sequence
based on shorter time blocks... 80

5 Debugging Task Days: Bug tasks students were given with corresponding

programming concepts explored during the initial two workshops with a prototype
DigiblePet (PicoBoard) and corresponding scratch program 83

6 Student Groups, Projects and Number of Bugs Encountered on the 4 Days Selected

For Analysis. The student group for whom the day represented the biggest bug day
is highlighted... 139

7 Number of Collaborative Episodes, Total Collaborative Exchanges, Length of

Workshop, and Percentage of Collaborative Exchanges Versus the Structured Day
for Tegan, Rocky and Ted's Group... 141

8 Minutes of Collaboration Time for Each Group During Workshop 1 and Then

During the Combined Independent Workshops Numbered 4, 9, and 12................ 142

9 Student Design Teams and Roles .. 147	

10 Tangible Bugs Encountered During Representative Workshop Days.................... 175	

11 Virtual Bugs Encountered During Representative Workshop Days....................... 177	

12 Summary of the Code Categories, Examples from the Data Corpus and Fixes
Implemented ... 179

13 Debugging Modes, Counts, Frequencies, Student Group Employment of Modes and

Percentage of Bugs Where Mode Was Employed By Group................................. 198

14 The Debugging Task Assessment Items, Programming Concepts Covered and Text

From the Worksheet.. 210	

xii
15 Students' Debugging Task Assessment Results. Students received two points for

correct solutions and solutions with minimal support and one point for solutions
with moderate support .. 212

16 Students' Survey Responses for Statement: "I Am Confident I Can Fix A Bug/Error

When My Computer Code Isn’t Working Right.".. 219

17 Students' Survey Responses to the Statement: "I Lean Best When I Have to Figure

Out My Mistakes"... 220

18 Students' Survey Responses to the Statement: "I Like Figuring Out How to Fix My

Mistakes" .. 221

19 Students' Interview Responses to the Mistake-Related Interview Questions 222	

20 Students' Interview Responses to Feelings About Computers................................ 227	

21 Students' Interview Responses to How They Felt About the Project Overall 230	

xiii
LIST OF FIGURES

Figure Page

1 A Zhu Zhu Pet. (www.zhuniverse.com). .. 4	

2 An online game featuring Zhu Zhu Pets. (www.zhuniverse.com) 4	

3 A Webkinz aadvark. At center is a picture of the physical pet, at top is the virtual
character, and at bottom is the pet's ant hill thrill pit accessory.

 (www.webkinz.com)... 5

4 A game from Webkinz World. The game features your pet and allows you to earn

coin to buy pet accessories for your Webkinz. (www.webkinz.com). 5

5 A partial timeline of microprocessing boards designed for learning.......................... 7	

6 Winder Alternative High School's daily bell schedule. Taken from the school's
website. ... 22

7 Scratch and its interface. Scratch has repositories for imported or created sounds and

costumes. Users can incorporate many characters, known as sprites and program
them via chunks of code found in the menu. The sprites then enact the programming
code in the stage area when the program is run. ... 28

8 Topobo. (http://www.topobo.com). The large blue pieces are motors that can be

programmed through motion. The yellow, green and red pieces attach to form a
creature's structure. ... 36

9 A PicoBoard. The board features light, resistance and sound sensors, a button and a

slider.. 38

10 PicoCricket and an interactive lamp project using PicoCricket where the light

changes colors based on sensor input.
(http://images.businessweek.com/ss/09/12/1209_25_world_changing_products/19.ht
m). ... 39

11 Lilypad Arduino and a turn signal jacket project using Lilypad Arduino.

(http://www.arduino.cc/en/Main/ArduinoBoardLilyPad,
http://web.media.mit.edu/~leah/LilyPad/build.html).. 40

xiv
12 How DigiblePets work. Users pet the fluffy pet on left, depressing the button on

the embedded PicoBoard. The Scratch program interprets the button press and
computer code translates it to cause the sprite on screen to roll over and bark out
loud. .. 48

13 Cujo: A prototype DigiblePet. The pet was made out of fur and pipe cleaners with a

cork body to hold its shape. The PicoBoard is embedded beneath........................... 68

14 Research Design. .. 72	

15 A reproduction of Tegan's background modification in Scratch. 86	

16 Some of Tegan, Rocky, and Ted's monkey costumes. Each one was painted by hand
onto the original monkey stock sprite. The costumes all refer to "Cujo" the original
prototype pet because students were using the prototype project as a guide............ 89

17 Tegan, Rocky, and Ted's Scratch Program. Their monkey climbed the ladder and

jumped on the bed... 90

18 The original prototype walking script... 90	

19 Tegan and Rocky working in parallel on different components of the monkey
project. Tegan works on the physical monkey and Rocky on the Scratch

 program. .. 95

20 Tegan's Monkey.. 98	

21 Jamal's Wild Thing walking in the woods. ... 104	

22 Jamal's hand-painted tree in progress. .. 105	

23 Jamal's walking code that never worked correctly. ... 105	

24 Jamal using the paint editor to paint Nike 6.0s for his unicorn. 107	

25 Jamal zooming in to fix his high top problem. ... 107	

26 Jamal working on his tangible pet design, facing away from all the other students in
the class... 108

27 Jamal's finished zebra with eye pointing downward and tail up, the PicoBoard in

embedded beneath and not visible. ... 109

28 Jamal's hand painted zebra sprite.. 110

xv

29 Jamal's zebra doing a backflip in the dance club. ... 112	

30 Carlos, Dino, and Maya's alien Scratch program.. 117	

31 Maya, working on the many-eyed alien, Carlos, touching the computer, and Dino,
looking at the Scratch program. .. 121

32 The prototype Scratch code for debugging task #1 that Tegan and Rocky are

engaged in. The collaborative exchange is considered as beginning with contribution
#1 (from Rocky).. 134

33 Collaboration between groups during the sampled workshops. All groups

collaborated with Tegan, Rocky, and Ted's group.. 143

34 Steph and Tabitha's final project. The unicorn on the left was Steph's physical
 pet design whereas the hippo on the right was Tabitha's virtual pet design. The head

feathers are one visual aspect the two creatures, that are intended to be
representations of the same pet, share. ... 146

35 Tabitha's two-costume approach to dancing. .. 151	

36 Total bugs by category during representative workshop days................................ 177	

37 Overall bugs per day by workshop group. .. 185	

38 Number of individual bugs by student group per day. ... 187	

39 The fates of all bugs encountered during independent design workshops by
percentage. .. 191

40 Students' bug fates by group (in percentage). ... 193	

41 Frequency of debugging strategies used by students.. 197	

42 The debugging assessment Scratch project. ... 209	

CHAPTER 1

INTRODUCTION

 In the 1960s, a new system emerged to help disconnected, vulnerable youth by

providing an alternate education for students at-risk of dropping out of or being expelled

from traditional schools (Lange & Sletten, 2002). This system involved the development

of "alternative schools," a catch-all term used to describe a wide variety of educational

programs separate from the conventional system. It was designed for students who

typically have a history of limited academic achievement, disciplinary problems, and lack

of engagement in school. Students can struggle in school for myriad reasons including

learning disabilities, English language deficiencies, and chronic truancy due to behavioral

or psychological disorders, pregnancy or parenting, incarceration, addiction, difficulties

at home and/or full time employment responsibilities (Pang & Foley, 2006). To help

attending youth satisfy high school graduation requirements, many alternative schools

have increased autonomy within districts to focus on more individualized programs that

center on discipline, structure, community building, developing trusted adult relationships

and remediated general education, and sometimes also including adult or job skill

building (Aron, 2003; Pang & Foley, 2006). Alternative schools support disenfranchised

students in meeting state and national academic standards, yet most do not have access to

essential facilities like science laboratories or computer labs (Pang & Foley, 2006).

Proponents find the prospect of an equitable, non-conventional educational program

enticing, however alternative schools are often perceived by the public as not much more

than a holding place for problem students (Aron, 2003). Limited large-scale studies

2
provide evidence promoting the effectiveness of alternative schools and programs

(Lange & Sletten, 2002).

 Alternative schools are not typical spaces for testing radically new educational

technologies because the demands placed on new technologies are already considered

high, yet these technologies and encompassing design-based learning environments are

thought of as powerful because they provide new forms of access and encourage many

different ways of knowing (Eisenberg, 2003; Turkle & Papert, 1991). The latter point

about new technology-enhanced learning environments is resonant with Constructionism,

a theoretical and philosophical perspective that there may be many legitimate

epistemologies and ways of tapping into individual’s knowledge and engagement in

service of learning (Papert, 1980; Turkle & Papert, 1991). In that regard, students who

are initially seen as having difficulty can actually be seen as having potential for success

so long as they are given the opportunities to engage with “powerful ideas” through

expressive media and a supportive learning environment.

 This project investigates whether novel hybrid technologies can provide

alternative high school students with new forms of access to computation, promote

debugging, and encourage different relationships to learning and mistake making, despite

difficult circumstances. In this project, students at an alternative high school worked

individually or in groups to create a new kind of digital pet, similar to some commercially

available, popular toys. This digital pet was virtual, existing on the computer screen, and

tangible, existing in the physical world. The pets were meant to piggyback on the

popularity of recent toys of similar spirit like ZhuZhu Pets (see Figure 1 and Figure 2)

3
and Webkinz1 (see Figure 3 and Figure 4) Those commercial toys combine physical

stuffed animals with online personas. In the online world, pet owners can play games and

interact with other pets. In the case of Webkinz, children can earn coins online to buy

new accessories for their pet's virtual habitats. The pets students made in this project are

similar in that they had both a physical body and online character. However, the pets

designed in this project were intended to more closely integrate the physical and virtual.

Interacting with the pet in the physical world was to cause things to happen in the virtual

world2. The toy emphasis was intended to engage youth who may not necessarily relate

to computation, but could be captivated by the process of designing and crafting a

familiar type of computationally-enhanced and engrossing toy (as described by Turkle,

2005). For five weeks, students in this project, all novice programmers, designed,

developed, programmed, and crafted their own virtual pets with interactive fluffy and

fuzzy physical bodies to share with members of their school and local community, in an

open-ended, semi-structured learning environment. Students explored the design cycle

and computer programming, namely through modification/reuse of existing code and

debugging, using the Scratch media-rich programming language (Maloney et al., 2004)

coupled with PicoBoard microprocessing boards (see Rusk, Resnick, Berg & Pezalla-

Granlund, 2008), along with supplementary craft, art and found materials.

1 Launched in 2005, Webkinz was estimated to be worth $2 billion and had sold
over 2 million toys by 2008. (http://www.wired.com/entertainment/theweb/magazine/16-
11/st_webkinz)
2 The pet's embedded logic board could be thought of as functioning like a multi-
sensory mouse where pressing buttons, changing lighting, talking, moving a slider and/or
engaging resistance sensors provides the computer program with inputs that can then be
programmed to cause certain reactions on screen.

4

Figure 1. A Zhu Zhu Pet. (www.zhuniverse.com).

Figure 2. An online game featuring Zhu Zhu Pets. (www.zhuniverse.com)

5

Figure 3. A Webkinz aadvark. At center is a picture of the physical pet, at top is the
virtual character, and at bottom is the pet's ant hill thrill pit accessory.
(www.webkinz.com).

Figure 4. A game from Webkinz World. The game features your pet and allows you to
earn coin to buy pet accessories for your Webkinz. (www.webkinz.com).

6
Rationale

 A project such as this is possible in large part because of the increase in

commercial availability of small inexpensive microprocessing boards, including but not

limited to Arduino, Programmable Bricks, GoGoBoards etc. (See Figure 5).

Microprocessing boards have galvanized the area of inexpensive tangible computation in

the spirit of broadening participation in computation through physical design. Principles

that foster this aim hinge on a physical construction component accompanied by the

metaphors low floor (ease of use), wide walls (flexibility to support varied interests and

intuitions), and high ceiling (robustness to allow for intellectual growth) (Maloney et al.,

2004; Papert, 1980). Arduino and their more specific counterparts can include various

sensors for processing the external world and can sometimes perform simple functions

like activating motors and lights. These physical boards are simplified and low cost

enough to begin to allow for researchers to further broaden participation in computing by

moving from studies in out-of-school environments to studies within traditional

classrooms with known constraints like time and resources (Buechley, Eisenberg, &

Elumeze, 2007).

 Young designers have used microprocessing boards to develop scientific

instruments (Sipitakiat, Blikstein, & Cavallo, 2004; Resnick, 1998), themed robotics

(Eisenberg, Elumeze, MacFerrin, & Buechley, 2009; Rusk, Resnick, Berg, & Pezalla-

Granlund, 2008), e-textiles (Buechley et al., 2008), interactive miniature rooms (Meyers,

LaMarche, & Eisenberg, 2010), and interactive paper art (Eisenberg et al., 2009). Early

documentation in out-of-school contexts show youth can engage simultaneously in

7
multiple subject areas with these "hybrid" media technologies including art, craft, circuit

design, industrial design, sewing, and computer programming (Rusk, Resnick, Berg, &

Pezalla-Granlund, 2008; Kafai, Fields, & Searle, 2012).

Figure 5. A partial timeline of microprocessing boards designed for learning.

 The integration of multiple modalities, tangible and virtual, is designed to harness

young people's emotions and desire for expression as a way to promote the development

8
of cognitive skills and encourage the perseverance needed for computer programming

(Eisenberg et al., 2002). Computational crafts are a form of hybrid media technology that

integrates hobbies, like painting, sewing or crafting, with computing. They are part of a

growing maker or DIY movement that endeavors to use hybrid design technologies to

capitalize on certain affordances, for instance, connecting to young people's interests,

thus presenting young people with alternative ways to relate to computing, especially

those who may not otherwise have an interest (DuMont & Fields, 2013; Kafai & Peppler,

2011).

 Beyond supporting engagement and emotional connection, the relevance of

hybrid technologies also stems from their potential to encourage young people to engage

in computational thinking. Computational thinking has been characterized as a set of

cognitive resources used to define, approach and solve problems with the aid of

computers, but useful and relevant to many domains (Grover & Pea, 2013; Lu &

Fletcher, 2009; National Research Council, 2010; Wing, 2006). These cognitive

processes, termed procedural thinking (Papert, 1980), include activities like planning,

modeling, systems thinking, algorithm building, testing, feedback, and debugging (NRC,

2010; Resnick, 1998; Wing, 2006). The advent of computational thinking has drastically

altered fields like statistics, biology and the understanding of complex aggregate systems

(Wilensky & Reisman, 2006) through computational modeling, simulating, and solving

power (Wing, 2006) and can be useful in computer free contexts as varied as the teaching

of journalism (NRC, 2010), and even when playing tabletop board games (Berland &

Lee, 2011).

9
 Providing ways for more young people to relate to and participate in computing

is represented, in principle, in the growing national interest in computational thinking.

Several recent prominent reports have made urgent calls toward the importance of

developing computational thinking in all students (National Research Council, 2010;

Wing, 2006). The National Research Council (2010) stated computational thinking is

fundamental for individual success, as an outlet for self-expression and empowerment,

and to advancing innovation in a technological society. Indeed, some have likened it to an

essential 21st century literacy (diSessa, 2000). The conceptualization of computational

thinking as a literacy suggests that the processes involved in computational reasoning are

both ubiquitous and elemental. A literacy has the power to expand the ways individuals

think and know (diSessa, 2000; Papert, 1980). The process of designing and developing

videogames or software in novice programming environments, such as Logo or Scratch,

or building robots to perform specific tasks all require computational thinking.

 One common form of computational thinking appears in the process of

debugging. Debugging is the process of locating and fixing errors that cause disparities

between a programmer’s intent and a program’s output (Pea, 1983). Activities involved

in debugging are critical for two reasons: 1. They are a fundamental part of the iterative

design cycle prompting programmers to creatively solve problems and refine their

thinking, and 2. They can allow individuals to develop new relationships to learning

through the process of dealing with errors (Papert, 1980).

 The positive impacts of technology design projects, including media or software

design, robotics or construction, have been documented in a number of case studies (see

10
Harel & Papert, 1991; Kafai, 1996; Rusk et al., 2008). Yet, efforts to capture specific

student outcomes or outcomes at scale have reported mixed findings. For example

students learned aspects of circuitry and computer programming through e-textiles

classes, but in some early instantiation students' overall programming knowledge

decreased (Buechle et al., 2007). In another study, students learned a number of

important science concepts in after-school robotics programs (Sullivan, 2008). However,

in other studies, learners struggled to develop transferable thinking practices used to

approach and solve problems, which is so pertinent to programming and design. For

instance, after a full year learning Logo, students showed no gains over their non-

programming language learning peers in programmatic thinking skills (Pea, Kurland, &

Hawkins, 1985). Similarly, in a large-scale quantitative study, K-12 students did not

improve in problem-solving ability after a class in Lego Mindstorms, a robotics kit for

students (Hussain, Lindh, & Shukur, 2006). Promisingly however, in other research,

students improved their debugging skills through a specific Logo debugging curriculum

(Klahr & McCoy Carver, 1988). The studies, in some cases, involved years of supported

student interventions and computer savvy and/or academically advanced student

populations and schools, which are necessarily difficult to replicate with the broader

population. A conclusion from these studies may be that the transfer research paradigm

does not fully capture the changes that are involved in being able to better solve

problems.

 Along with supporting the development of cognitive skills there is a sense that

enticing a broader swath of young people into computational domains through designing,

11
programming, and building artifacts may be also be empowering, in the sense that

young people may develop greater understanding about aspects of learning as well as a

new interest in computing. Although developing deep personal connections to learning

and knowing is part of what designers and learning scientists consider an ideal product of

students' participation in hybrid media design projects (Ackerman, 1996; Eisenberg et al.,

2009; Papert, 1980; Turkle & Papert, 1991), limited research exists to support the claim

that this sense of empowerment develops after participating in a media design project.

While we may hope for students to feel confident, interested, and excited, it could be, for

example, that the amount of time investment and the difficulties associated with building

and programming lead students to feel frustrated and uninterested. With students who are

placed in alternative schooling, those latter outcomes could potentially be more likely.

A Path Forward

 As stated above, alternative high school students are not typically beneficiaries of

educational research studies involving innovative technologies. Yet, hybrid technologies

have potential for developing necessary thinking skills, promoting aspects of

empowerment and appealing to a diverse population who may not otherwise relate to

computing. Therefore, it is reasonable to anticipate that students from an alternative high

school may ultimately benefit from participating in a design project with hybrid

technologies. Given the lack of empirical work done already with this population, a way

to approach this hypothesis is to design and implement a project with a new hybrid

technology in an authentic alternative high school. The environment would necessarily be

12
designed to welcome youth with diverse, non-computing interests, and provide

necessary supports. At the same time, it would largely provide young people time and

space to develop their own ideas in their own ways. Ideally, it would encourage deep,

connected engagement with the design process and programming. The research paradigm

known as "design research" can be suited to this purpose, with its focus on iterative

implementations of designed interventions in messy, real-life classrooms rife with

constraints and independent variables. Design researchers aim to conceptualize new

learning designs with an emphasis on "principles derived from prior research" (Collins,

Joseph, & Bielaczyc, 2004, p.15) and implement them in an intact learning setting.

 The benefits of design research include greater capacity for deep understanding of

a particular instance of a designed intervention within an authentic learning setting.

However design research is frequently highly variable and intensive for a researcher or

research team. It often requires re-design efforts in the midst of implementation, and

success hinges on the ability to continuously shift and modify plans according to student

needs. Furthermore, researchers who go on this path must be willing to change planned

analyses based on unanticipated observations within and outcomes of the study (Brown,

1992). Learning in authentic settings is challenging to study because it is social, cultural,

and personal and involves students' educational histories and interactions between

students, teachers and established classroom norms. Students can be absent, reticent,

refusing, ill-prepared. Teachers and facilitators must be on their toes, know when to

intervene, follow-up, provide guidance or leave things be while collecting and immersing

themselves in copious video and observational data during the study itself. The researcher

13
can often be highly involved in the intervention, thus allowing her to have first hand

knowledge of all that occurs. However, that involvement can also limit researcher

objectivity. Data collected in design research studies are abundant. They can be both

qualitative and quantitative, but small participant sizes can limit statistical rigor and

generalizable robustness (Brown, 1992). At the same time, attending to so many different

issues of implementation can make it hard to do the in-depth work required for rigorous

qualitative research. Finally, analytical methods in these settings are necessarily emergent

because design researchers never know exactly what will occur beforehand. These

challenges all contribute to discussions that have positioned design research as an

occasionally contentious research paradigm (Edelson, 2002).

 Yet, since this is a new population and setting for hybrid technologies (which are

themselves “new”), a project such as this one that seeks to provide access to computation

and characterize the interactions of atypical students with new technologies should

involve high levels of active researcher support and also flexibility in implementation. In

short, design research may not be the only empirical path forward for studying this

population, but it can be an apt and flexible one. It is admittedly, interventionist in

character, and thus not fully free of bias. However, given the expected challenges, design

research provides a set of research methods that can enable success and generate useful

knowledge for better supporting implementation efforts in the future.

 It is important to note also that design research often relies on cycles of

implementation and refinement that occur both during an implementation and between

multiple implementations. Although, multiple implementations are currently beyond the

14
scope of this project, as it involved a tremendous amount of time and resources and

had limited personnel, the objective for me was to parallel the characteristics of design

research in the development, realization, analysis, and improvement of the project with

the intent to iterate in the future based on what was learned through this particular

implementation.

Research Goals/Questions

 This project draws inspiration from design research, but is knowingly narrowed to

a single iteration of a design. Given the constraints and challenged expected with this

particular instantiation, I considered there to be many things that could be thoughtfully

examined for this project. Specifically, I am attempting to investigate the following

questions:

 1. Can these students successfully complete a hybrid technology design project,

 given the constraints and challenges associated with their experiences,

 histories, and school? Potentially, students at an alternative high school

 may not be equipped, willing or capable of completing a complex

 academic task even with the designed supports and given the

 aforementioned challenges that are associated with alternative education.

 2. How do alternative high school students engage in the designed learning

 environment? What is the nature of their participation? Potentially, student

 engagement could be really positive and students could participate in multiple

15
 disciplinary areas including computer programming. This could radically shift

 students' relationships to learning and computing or, also not unlikely, the project

 could be seen as unrelatable and irrelevant, thereby generating resistance.

3. Assuming students will participate in debugging by virtue of the task and

technologies used, in what ways do students engage with bugs? What is the nature

of students' debugging strategies? Finding and fixing bugs is an elemental type of

computational thinking, pertinent to problem solving skills and fundamental to

design. It is conceivable students may face considerable adversity in the face of

debugging which could have profound implications for students' subsequent

reactions and activities.

4. Do students exhibit indications of empowerment as a result of participating in

this project? Namely, do students reflect in a productive and positive way about

their experience, especially with respect to their ideas of making mistakes, their

feelings toward participating in computing in general, and their enjoyment of the

experience? The learning intervention will be a drastic departure from what these

students are used to. Thus it could be really engaging, having the potential to

change how students' view mistake making in relation to learning and computing

in general, or it could be insurmountably frustrating and counter to what they

expect and desire.

16
Outline for the Thesis

 This dissertation will serve as a multi-faceted report of one cycle of design,

implementation, analysis, and refinement of a hybrid technology intervention with a

diverse, oft ignored, and in some respects challenging population. It documents efforts to

get students using a new hybrid technology for the purposes of completing an

independent design project. In the end, there were a number of encouraging results, such

as observed instances of high engagement, the success students had in dealing with

programming bugs and the connections some students made to computing and mistake

making. There were also some areas in which the design and implementation could be

improved for future iterations, namely through refinement of the activities and

technologies to encompass a wider range of student interests, a more concentrated effort

to cultivate a nurturing community of designers, and a more consistent fostering of

motivation for and understanding of the final product (i.e. the designed pet) and its

intended audience.

 In the following chapter, I will discuss the population of students and one of the

central theoretical perspectives grounding this work, Constructionism (Papert, 1980). I

also discuss and provide examples of related youth programming and hybrid media

technologies. In Chapter 3, I discuss additional literatures related to the design of open-

ended technology environments, how those literatures informed the design of the project

and outline the research strategy and data sources. In Chapter 4, I provide narrative

summaries of the actual experience of four students throughout the five weeks of the

project. These summaries are intended to both familiarize the reader with the individuals

17
who figure prominently in subsequent chapters and also give a sense for how the

project played out from start to finish for a subset of alternative school students. In

Chapter 5, I examine group interactions in which the students were involved, focusing

specifically on cooperative design. In this chapter, I discuss when collaboration happened

most and least often, and offer some explanations for how the activity design and the mix

of media appeared to influence how and when collaboration took place. Chapter 6 is

about students engaging with debugging. I analyze debugging in two ways. One is an

approach where I analyzed observed bugs as they happened during the implementation

with groups of students. The other is an assessment of students’ debugging performance

after the project was complete. In Chapter 7, I begin to explore the question of student

empowerment, namely through post-project responses related to how students perceived

of the overall experience. I report and discuss students' comments about mistake making,

their feelings about computing, and their overall impressions of the project. Finally, in

Chapter 8, I discuss what this project implies for the design of hybrid technologies and

their potential for supporting learning in alternative high schools with a diverse student

population. In that final section, I will discuss what I learned as a researcher and consider

some specific steps for how this project could be better reiterated in the future.

18
CHAPTER 2

POPULATION, SETTING, AND THEORETICAL

PERSPECTIVE

 In the introductory chapter, I discussed some of the intentions and challenges

associated with alternative schooling. For example, struggling students often have

difficulty engaging in school (Finn & Rock, 1997) and alternative schools have limited

access to laboratories and computing technologies (Pang & Foley, 2006). Alternative

schools are not an environment highly represented in the literature on educational

technology. Furthermore, the context, professionals, and students mattered greatly both

with respect to the ability to pursue this project and with respect to how the project

ultimately unfolded. Therefore, in this chapter I will dedicate several pages describing the

partnering alternative high school site and the kinds of students who are enrolled there.

Then I will discuss my theoretical orientation. Specifically, I situate this project as

building upon key ideas related to Constructionism. I also focus on one new kind of

technology that lends itself to some of the central commitments of Consructionism:

hybrid media.

Context

 Winder Alternative High School,3 the partnering alternative school site for this

project, is located 30 miles east of a major metropolitan area in a mixed rural/professional

county in the Mountain West. This area is one of rapid growth and new development over

3 All names used are pseudonyms.

19
what was previously open space and ranchland. To the west of the school is a view of a

major fast food restaurant and beyond that the mountains. To the north is a view of a long

county highway dotted with ranches, horses and a new condominium complex.

According to census records, in the past 10 years, the county population has grown by

over 50% with a large influx of immigrant populations and professionals. The

encompassing school district covers 1,200 square miles and has approximately 5,000

students. Winder is a mile away from the lone conventional high school. According to

administrators, Winder's student population is made up of 92% of students on free or

reduced lunch, 10% of students parenting or pregnant and a 30% Latino population. In

one-on-one conversations with teachers at the school, I learned that to be considered for

the school, students must be in grades 10-12 and so far behind on course credits that they

cannot feasibly graduate from the conventional high school. The enrollment at Winder

has doubled since 2011. As a former teacher in the district, I was acquainted with some

individuals who worked at Winder who helped me to negotiate access to the school.

 In the district, students are considered failing if they have received an F, or

multiple Fs, in one or more courses or have not received credit for courses due to

unexcused absence. Current district policy, as presented to me by a Winder teacher, states

that absences can be made up either after school or in Saturday school. However

participation in Saturday school begins at 6 am and costs the students $3 per hour. An

example student at Winder was a senior who had completed seven total academic credits.

He needed to earn 21 credits in one academic year in order to graduate with a district

20
high school diploma.4 A teacher told me of another student who arrived at Winder this

fall as a junior with zero credits; she had been working on her grandparents' dairy farm

instead of attending school since third grade.

 Students are identified for Winder based on individual meetings with school

counselors, parents and administrators, but according to teachers, some students simply

drop out of the conventional high school. As she shared with me in a conversation, the

principal of Winder prided herself on "finding" a student. This involved tracking a

dropout student down and arriving at the students' house to convince them to come to

Winder so they could still graduate. This involved communicating to students that the

school was an intervention aimed at remediating and supporting struggling students in

earning a high school diploma, meeting minimum state and national academic standards,

and learning relevant life skills. The school website highlights Winder's mission to help

every student develop fundamental skills necessary to a productive life. Approximately

66% of Winder students successfully earn a district high school diploma. That number

does not tell the entire story. In keeping with district policy, after the academic year in

which a student turns 18, that student is dismissed from Winder and referred to adult

education, where he or she can earn a GED. Those students' outcomes are not fully

known.

 At Winder, as is the case for other alternative high schools (Pang & Foley, 2006),

students have innumerable reasons for struggling in conventional high school. These

include teenaged pregnancy or parenting responsibilities, trouble with the law, drug

4 A typical year of coursework is normally 6-8 credits.

21
addiction, chronic illness, working to provide for their families, and persistent truancy

for a variety of reasons, including absence due to lack of interest in school activities.

According to teacher reports, their perception is that about 80-90% of students have used

drugs, 25% have addiction issues, and 20% are on the regular juvenile or adult court

docket. Teachers say it is not uncommon for the school day to be interrupted by the local

police barging in to handcuff a student and take them to jail.5 Students are often unable to

stay after the school day to finish needed work because of mandated counseling sessions

or work commitments.

 There is one bathroom at Winder, in plain sight of the main large classroom

presumably so teachers can monitor students going in and out. As an acknowledgement

of the teen parents who attend the school, it is equipped with an infant changing station.

Various baby paraphernalia litters one corner of the main classroom as teachers are

continuously collecting used car seats, strollers and other necessities for their teenaged

parent students. Students choose to attend the alternative school and continue to pursue

high school diplomas despite all of the challenges mentioned. The expectation and

pattern for others who have attended Winder is that the high school diploma will most

likely be a terminal degree.

 Because of the nature of the student population, students attend school for either

the morning or afternoon session, which abbreviates the length of the school day (see

Figure 6 for Winder's bell schedule). Students may also attend some classes at the

traditional high school at the same time, although they are required to find their own

5 In fact this happened during the project to one of the student participants and will
be described later.

22
transportation between campuses. In general, the school day is broken into fairly

languid segments and the teaching team has the autonomy to modify the day and

curriculum as needed. For example, the school oftentimes has speakers come in - such as

when a representative from the local credit union came in to talk to the students about

basic finance. Five full-time teachers, including one special education specialist, work

individually with students to make up needed credits. Making up credits largely consists

of completing lengthy packets of workbook materials pertaining to a certain subject until

the teacher determines the student has demonstrated knowledge sufficient to warrant

course credit. For some courses, like geometry, which are required for graduation and

have been flunked repeatedly by many alternative school students, the teachers hold a

more traditional remedial class. School policy dictates students at Winder refer to

teachers by first name and choose which courses they wish to work on in order to

encourage positive relationships and autonomy.

Figure 6. Winder Alternative High School's daily bell schedule. Taken from the school's
website.

23
 All students at Winder attend a class entitled “Adult Roles” (see Figure 6)

which teaches preparedness for life after high school. On the school's website, the

essential learning for adult roles is based on money management, occupational skills,

parenting skills, how to maintain healthy relationships, productive citizenship, and

awareness of addiction. These goals tie back to Winder's mission to focus on fundamental

life skills. The school also incorporates art, and one of the full-time teachers is

credentialed as an art teacher. From conversations with members of the school staff, I

determined that many Winder educators are proud of this opportunity for arts education

because they believe it engages many students who might otherwise not participate in

school.

 The majority of Winder students have no experience computer programming.

Winder does not have a course offering for students to learn programming. Programming

is a technical elective class offered through the state's Career Technical Education

program but not offered in this district.6 Winder does have a "computer lab," which

occupies one of three total classrooms at the school. The "lab" has approximately 15

desktop machines from the late 1990s placed in a long row. When asked about using the

"lab" in our initial meeting, the teachers chuckled at me, probably because the lab is

rarely used except to hold excess school supplies because the machines were so outdated.

The teachers asked if I would be able to bring my own machines for the project because

they felt their computers would be woefully inadequate.

6 The district does offer some of the other Information Technology courses like a
course on Digital-Media or Network Administration.

24
 Winder is also a place where the staff aims to make students feel more in

control of their own learning by giving students choices and treating each student as an

individual. As a result, many of the school's structures provide affordances for doing this

sort of project. Even though there is a schedule, teachers do not adhere to strictly to it nor

to a specified curriculum. This made it possible to partner with the school and have

students participate in the project. Students speak freely and voice their opinions openly,

meaning many of the traditional classroom norms and power relationships that can hinder

open-ended learning with independent projects may not be as prevalent. The staff was

invested in the students and amenable to this research project. Indeed teachers dropped by

every day to monitor student's projects, offer praise and came to see first hand what their

students were accomplishing. One teacher, particularly proud and enthusiastic about my

involvement with Winder, wrote an article about the project that was later published in

the local newspaper.

Theoretical Perspective

 Winder's values, a combination of helping young people develop the skills to lead

a successful life and engaging young people in learning through art education, overlaps to

some degree with Constructionism (Papert, 1980), the theoretical perspective that greatly

influenced the conceptualization of this project. Constructionism can be seen as both a

theory of learning and also an educational philosophy. At its core, Constructionism is

premised on the idea that people learn deeply when they are working to create an artifact

they care deeply about and can share with others. Constructionism often involves design,

25
independent projects, and open-ended learning along with a bit of whimsy related to

the artifacts that are created.

Constructionism

 Constructionism was developed by Seymour Papert to highlight and explore the

potential of computers to revolutionize youth's thinking and learning (Papert, 1980), but

has gone on to be applied more broadly. Based on the theory of constructivism,

Constructionism is a reference to Piaget’s theorizing that knowledge is actively

constructed coupled with the idea that designing and constructing personally meaningful

projects to share provides a rich environment for learning (Bruckman, 1998; Kafai &

Resnick, 1996; Papert, 1991). Constructionism crosses traditional academic domains and

aims to leverage affect, curiosity, deep thinking, and play (Resnick, 2006). It is believed

working on personally meaningful artifacts can provide youth ways to relate to powerful

ideas, like planning and carrying out a complex project or debugging (Papert, 1980).

 In addition, there are implications about epistemology nestled within

Constructionism. A key part of Constructionism is a focus on different ways of learning

and knowing. Learners have the freedom to work in individual ways, for instance very

relational and organic, bottom-up approaches to programming, called "bricolage," or

more logical top-down methodologies, called "planning" (Turkle & Papert, 1991). The

opportunity to work in an individual way can contribute to youth gaining more pluralistic

beliefs such as the belief that there are multiple valid ways to approach and solve

problems (Resnick, 1998). An extension of Constructionist learning environments,

described in one of Papert's later books, is that they have an atmosphere where young

26
people can take breaks, watch what peers are doing, move around and daydream as

well as work directly on their projects, which is not commonplace in "instructionist"

classrooms (Papert, 1991). This connects to the idea of a Samba school where people of

differing levels of expertise and interests learn together in preparation of a creative

production for Carnivale (Papert, 1980). This open form of interaction and cross-talk

among novices and experts represented by Samba schools is often an important model for

constructionist learning environments (e.g., Bruckman, 1998). Computers are appropriate

for Constructionist learning environments because computers have tremendous

expressive potential. Given the right software environment, children can learn and make a

whole range of interactive software tools, animations, and displays. However,

Constructionism is not limited to computers, having expanded to include many learning

environments with other designable media including crafts (Eisenberg, 2003) and the

study of knots (Strohecker, 1991).

Programming in Constructionist Environments

 Logo, a programming language for novices, is the typical tool associated with

Constructionism. Logo involved an on-screen turtle with drawing capabilities (Papert,

1980). The premise was young people, often thought of as too young to learn the

concepts of programming, could leverage "body syntonicity," a basis for knowing how

one's own body moves in the world and mapping the desired movements to a Logo turtle

(Papert, 1980). Students interacted with the Logo turtle by typing individual commands

and eventually building entire routines and computer programs. In the process of using

Logo, young people also could learn about debugging methods, design cycles, and how

27
computers think. Logo inspired a multitude of similar programming and development

environments for young people with the same basic underlying assumptions. Some

examples include: Boxer (diSessa, 2000), MOOSECrossing (Bruckman, 1998), StarLogo

(Resnick, 1996), and NetLogo (Wilensky & Reisman, 2006).

 One of the most widely used and current instantiations of a Logo-based

environment is Scratch (Maloney et al., 2004). Scratch is a multimedia programming

environment used to develop video games, music videos, interactive stories and art.

Scratch was developed based on Logo, specifically with an eye toward youth who

attended and were part of Computer Clubhouses. Computer clubhouses were an effort to

design spaces out-of-school spaces for youth in inner cities where youth could engage in

“Samba school” like interactions involving computer programming. Scratch was intended

to be a media-rich programming environment that was culturally resonant, easy to begin

using, complex enough to continue learning, and supportive of many different kinds of

media projects (Maloney et al., 2004).

 One distinguishing feature of Scratch relative to Logo is that it involves a visual

programming interface rather than a command-line one. In Scratch computer

programming code blocks are dragged to a scripting area and fit together like puzzle

pieces, eliminating many syntax errors, such as forgetting a comma. Scratch also exposes

programmers to sophisticated and parallel programming concepts seen in professional

programming languages including constructs like statements, Boolean logic, loops,

variables, conditionals, threads and events (see Figure 7).

28
 Scratch is media-designed intentionally to be media-rich. This means users can

incorporate and customize imported sounds and pictures into a project. The design is

intended to support youth as young as eight in creating multimedia artifacts (e.g., music

videos) or software (e.g., computer games). Scratch also has a large online community,

complete with a storehouse of open-source projects shared and commented on by

members (Monroy-Hernandez & Resnick, 2008).

Figure 7. Scratch and its interface. Scratch has repositories for imported or created
sounds and costumes. Users can incorporate many characters, known as sprites and
program them via chunks of code found in the menu. The sprites then enact the
programming code in the stage area when the program is run.

29
 Given its simplified syntactic structure and emphasis on creation of multimedia

animations, Scratch bears some similarity to other visual programming environments like

Alice (Cooper, Dann, & Pausch, 2000) and ToonTalk (Kahn, 2004). These visual

programming environments follow three recent trends in novice and youth-oriented

programming languages: they more closely resemble spoken language, have the power to

allow users to produce relevant, meaningful content, and can provide instant feedback

(Guzdial, 2003). At the same time, the Scratch programming environment familiarizes

users with the structure of more expert languages (such as Java). Scratch stands out from

other novice languages in that it has grown and sustained a tremendous user. Scratch

users shared over 250,000 projects online in the 18 months after the launch of the Scratch

website (Resnick et al., 2009). Although intended for a young audience interested in

making video games, interactive virtual art or stories, there are even some studies that

show Scratch can even help introduce college students to more formal languages like

Java (e.g., Malan & Leitner, 2007).

Studies in Constructionist Programming Environments

 Early studies showed children were able to successfully design and program

projects including software (Harel & Papert, 1991), video games (Kafai, 1996), and

music videos or interactive art (Kafai et al., 2009) using Logo and Logo-variants. In

Logo-based programming environments children connect deeply with important complex

concepts (diSessa, 2000; Papert, 1980; Wilensky & Reisman, 2006), can effectively

design and program independent projects (Harel & Papert, 1991; Kafai, 1996), and

become thoughtful about their own learning (Evard, 1996; Papert, 1980). Case studies

30
that highlight accomplishments and struggles of a select few learners have been the

predominant evidence used to support these claims.

 Indeed, some modestly larger studies have shown that students in Constructionist-

inspired programming environments seem to do well. For instance, Harel and Papert’s

(1991) mixed-methods study is a primary example of student achievements. The study

showed students who developed interactive fractions software projects in Logo as a way

to learn fractions and computer programming outperformed control groups, those who

just learned fractions and programming in a separate and more traditional way, in

debugging ability, programming knowledge, and fractions concepts. Analysis of

observational and assessment data showed the students learning fractions and Logo

concurrently were more reflective, showed greater metacognitive skills, and had deeper

understanding. The researchers attributed learning gains to the flexibility and support of

the complete learning environment combined with the deep relationships to learning

Constructionism fosters. In a similar, later study, fourth graders successfully designed

video games in a six-month long Logo intervention (Kafai, 1996). Results from this

investigation showed that young people were capable of carrying out sophisticated

software design projects in a Constructionist learning environment and that the learning

environment for this type of Constructionist activity must be suitably flexible to

accommodate a wide range of possible learning styles.

 However there has been some uncertainty about how consistently Constructionist

inspired programming environments can easily support youth in learning major

programming concepts. It has been difficult to isolate and replicate some of the computer

31
programming gains shown in the previous studies. Some more recent studies indicate

that the process of learning to program remains difficult even with technologies designed

to be novice and Constructionism friendly, like Logo-like programming languages or

hybrid craft technologies (Buechley, Eisenberg, Catchen, & Crockett; 2008; Kafai et al.,

2009). In some studies, youth found it interesting enough to make projects using tools

offered within Scratch, like the paint editor and ability to compose different media,

without having to program (Kafai et al., 2009). In these cases, young people did not

participate in aspects of programming critical to learning programming concepts.

 Similarly, creating an independent meaningful project in a Constructionist

environment has been shown to be difficult. For instance, when youth were engaged in

developing video games, a tension was observed between students programming abilities

and their ideas about the video games they wanted to produce (Kafai, 1996). In many

cases, students' capabilities as programmers and debuggers were not robust enough for

them to develop the sophisticated games they loved to play at home. When design ideas

became too cumbersome or increasingly when students struggled with programming

errors, they often compromised ideas and settled for easier alternatives.

 Beyond conceptual difficulties involved with writing or placing code, another

challenge associated with computer programming in Constructionist learning

environments is whether young people can gain broadly applicable thinking skills. Recent

interest in computational thinking (National Research Council, 2010; Wing, 2006) deems

these types of thinking skills important. Evidence suggests youth can struggle to transfer

important programmatic thinking concepts, like planning and algorithm building, in both

32
open-ended Constructionist environments and more structured learning environments

(Pea et al., 1985). Some research suggests there may be a connection between the amount

and type of support students receive when learning to program and gains in thinking

skills (Littlefield, Delclos, Bransford, Clayton, & Franks, 1989). In particular, researchers

caution that students do not spontaneously learn important powerful ideas like debugging,

an important skill involved in computational thinking (Grover & Pea, 2013; Wing, 2006),

when learning to program in any environment. Regardless of setting, novice

programmers find debugging difficult (Pea, 1983). Taken together, these studies suggest

there is much promise in Constructionism but that critical aspects of developing and

applying programming and thinking skills associated with computation continue to be

challenging for young people to learn. The field asserts that research that aims to increase

our understanding of young people in relation to learning computer programming

concepts and skills, especially debugging, with Constructionist-inspired technologies are

paramount (Grover & Pea, 2013).

Hybrid Design Technologies

 The kinds of tools used in line with the Constructionist philosophy and are still

inherently computational are not all screen-based. This is exciting because there are new

playful ways for young people to access computing who may not naturally relate to the

domain (Rusk et al., 2008). In recent years, new sorts of media have been designed to

broaden participation in computing and design through computationally enhanced

materials (Eisenberg et al., 2002). Computationally enhanced materials are a type of

"hybrid" technology that combines aspects of programming with the design of physical

33
objects, thereby combining tangible and virtual media. Hybrid media technologies

exist on a continuum of programmability and designability in both physical and virtual

worlds. For instance, with Topobo, children too young to read can construct creatures out

of connectable plastic pieces and program them to move using motor pieces (Raffle,

2006). The programming aspect of Topobo is not transparent however, as programming

occurs through physical manipulation. This means that although young children could use

Topobo to learn aspects of designing physical artifacts and kinesthetics, Topobo cannot

be used to learn formal, language-based computer programming. In another example, e-

textiles allow youth to sew interactive clothing, learning about electronics, circuitry,

fashion design, sewing, and aspects of computer programming (Buechley et al., 2008).

Similarly, young people can design and build themed devices using various external

microprocessing boards or Arduino (Eisenberg et al., 2009; Rusk et al., 2008). In a final

example, young people use Craftopolis, miniature rooms crafted from clay, LED lights,

sensors, and speakers, to create computationally enhanced roomscapes and share virtual

versions with friends online (Meyers et al., 2010). Unlike the other examples, with

Craftopolis, young people are designing both a physical artifact, a miniature clay room

with sensors and lights, and a corresponding virtual environment, the online

representation of the room with the ability to control the real world sensors and lights.

Because of their newness, hybrid design technologies are just beginning to be the subject

of rigorous empirical research beyond that of user studies.

 Hybrid design technologies are exciting because they can simultaneously build

upon elements of affect and cognition; they connect to youth culture, are motivated by

34
youth's existing interests and the artifacts created can often be held, traded, collected,

and sometimes even "loved" (Eisenberg, 2003). For instance, after crafting electronic

textiles in workshops, students can take their working creations home to keep and wear

(Buechley et al., 2008). Similarly, in another example, a young person developed a

hybrid media project to address needs she saw in her real life, inventing a prototype for a

self-rocking carriage for her sister that was set in motion when the baby cried (Blikstein,

2011). Also, hybrid technology designers promote the idea of learning through play,

meaning that learning should be fun, engrossing, intrinsically motivated, and have some

whimsy (Resnick, 2006).

 Designers of hybrid technologies espouse the principle of multiplicity, meaning

that the technologies should make new ways of thinking prominent and also foster the

development of deep connections to knowledge through interactions with the world

(Resnick, 1996, 1998; Resnick, Bruckman & Martin, 1996). In doing so, the idea of

multiple ways of connecting, for instance through one's body or through one’s emotional

attachment with an object, to computing is resonant. Recently, the potential of hybrid

computational environments to foster engagement and learning has just begun to be

explored because of their motivational, emotional and collaborative affordances (Raffle,

2006; Zuckerman, Arida, & Resnick, 2005). Examples of this work are described in the

next section.

 In making multiple ways of approaching computing salient and by potentially

promoting perseverance, hybrid design technologies may have potential to support

various types of learning in all types of young people (Alper, Hourcade, & Gilutz, 2012;

35
Falcao & Price, 2010). If tangible computational objects can be less intimidating, more

broadly appealing to a wide audience and allow youth access to ideas in a

developmentally appropriate way, then these environments may be able to foster

exploring ideas about thinking and learning while further downplaying memorization of

programming syntax and structure.

Examples of Hybrid Design Technologies

 Hybrid design technologies combine design in the form of art, construction and/or

crafting in the physical world with computation. The focus of this section is to describe

some of these new technologies that support playful, independent learning through the

design and development of physical artifacts, keeping in mind that there are many other

tangible technologies and virtual design technologies not included. I will describe three

types of these technologies, construction toys, computational construction kits, and

computational crafts7.

 One example of a toy-like hybrid design technology is Topobo (see Figure 8) the

aforementioned kinetic construction toy that is programmed through physical

manipulation of the pieces (Raffle, Parkes, & Ishii, 2004). Children can build creatures

by connecting various plastic pieces that resemble bones. Then the child can attach motor

pieces to parts of their creation and program the motors to move in sync or separately. In

this way young children can learn about kinetics and development of interactive toys by

7 I have conscientiously omitted robots, like Lego Mindstorms, from hybrid design
technologies because robotics generally focuses on the tasks the objects can perform, for
example getting balls into a goal, rather than the aesthetic and functional appeal of the
object.

36
thinking through processes of how bodies move and how to plan and create a figure

that will also move. User-studies with Topobo showed youth as young as kindergarten

can effectively make moving creatures and found the construction kit motivating (Raffle,

2006). These user-studies lend credence to the idea that hybrid computational

environments can build on children’s natural play and design instincts, fostering

exploration of ideas (DuMont & Lee, 2012).

Figure 8. Topobo. (http://www.topobo.com). The large blue pieces are motors that can be
programmed through motion. The yellow, green and red pieces attach to form a creature's
structure.

 Computational crafts and construction kits are two other varieties of hybrid design

technology. For this project, external microprocessing boards, commonly available as

37
Arduino,8 were used to couple craft or construction activities with electronics to make

something interactive and aesthetically pleasing, much like an interactive art project.

Historically speaking, there have been and continue to be many types of electronic logic

boards available for purchase. For example, MIT’s Lifelong Kindergarten group

developed and supports PicoBoards, which is a replacement of sorts of PicoCrickets.

When commercially available, PicoCrickets could be purchased bundled with many

sensors and craft supplies. On the other hand, PicoBoards interface directly with Scratch,

which has a substantial user base and is accessible for novices, but the boards have more

limited sensor capabilities (see Figure 9) (Rusk et al., 2008). Other examples include

LilyPad Arduino, a thin, flexible Arduino invented specifically for creating e-textiles

(Buechley et al., 2008). GoGo Boards were designed to provide a low cost alternative to

fancier proprietary boards for use in low-income communities, and thus the assembly

instructions are freely available online (Sipitakiat et al., 2004). However, they still require

specific skill and tools to build.

 Every one of the above-mentioned boards is programmed through a computer and

allows youth to build physical objects that interact with the environment. In some cases

the boards have been altered to accommodate a particular craft or hobby, for example e-

textiles (Buechley et al., 2008) or interactive paper art (Eisenberg et al., 2009). In other

cases, the boards are used to facilitate the constructing of a device, like the self-rocking

baby carriage mentioned earlier or a lamp whose light changes color based on sensor

input (see Figure 9) (Rusk et al., 2008). The ability to incorporate these boards in existing

8 www.arduino.cc

38
hobbies or in the creation of a custom object is motivated by the belief that combining

computation with hands-on craft or construction can provide youth an opportunity to

learn complicated conceptual ideas in math and engineering in natural, intrinsically

motivating ways (Resnick, 2006), thus making programming more manageable and

accessible (Eisenberg et al., 2009).

Figure 9. A PicoBoard. The board features light, resistance and sound sensors, a button
and a slider.

 In exploratory case studies, youth used Crickets (see Figure 10), and even earlier

predecessors Programmable Bricks, to create a wide range of interactive creatures,

39
autonomous atmospheres, and scientific inventions (Resnick, 2006; Resnick et al.,

1996). Youth became deeply involved with their physical designs and naturally followed

an iterative design cycle by trying new ideas, testing and debugging with tangible

computational construction technologies (Resnick et al., 1996). Researchers espoused the

potential of hybrid media for learning provided that youth are given multiple culturally

relevant and personally meaningful ways to connect with interactive tangible construction

projects (Rusk et al., 2008).

Figure 10. PicoCricket and an interactive lamp project using PicoCricket where the light
changes colors based on sensor input.
(http://images.businessweek.com/ss/09/12/1209_25_world_changing_products/19.htm).

 Youth, and in several cases, girls who may not have otherwise been interested in

computing, have been highly motivated to create interactive e-textiles with LilyPad

40
Arduino (see Figure 11) (Buechley et al., 2008; Fields, Kafai, & Searle, 2012). By the

same token, youth who were initially interested in computing and used e-textiles also

broadened their interests and knowledge to circuitry and sewing (Fields, Searle, et al.,

2012). By making the artistic, inventive, imaginative component of learning even more

salient through familiar physical materials and activities, tangible computational

environments is hypothesized to promote deep engagement, and can be leveraged to

promote learning in multiple disciplines like programming, electronic circuitry and

sewing (Fields, Kafai, et al., 2012).

Figure 11. Lilypad Arduino and a turn signal jacket project using Lilypad Arduino.
(http://www.arduino.cc/en/Main/ArduinoBoardLilyPad,
http://web.media.mit.edu/~leah/LilyPad/build.html)

41
 In some cases, artistry and computing compete for young designers' attention.

For instance, without guidance, youth in an e-textile design program tended to avoid

programming in their projects in favor of focusing more on artistic quality and

embellishment (Buechley et al., 2008). The aesthetics of personally relevant craft projects

can drive computing, but it can also interfere with completing the computing

functionality of a project or realizing the design as desired (Fields, Searle, et al., 2012).

Supporting young people in integrating both the artistic and computational components

of projects is paramount to helping youth explore programming concepts and thinking

processes.

 To summarize, there are a number of current instantiations of hybrid media

technologies that link some kind of external microprocessor in some fashion to physical

crafting or construction. Recently, microprocessors have become less expensive and more

straight forward to use. Combined with the rise of the DIY (Do-It-Yourself) movement

(Kafai & Peppler, 2011), microprocessors are promising to open computing to even

broader audiences by integrating programming with crafting or constructing a physical

object out of known materials.

What Makes for a Constructionist-inspired Learning Environment?

 As described earlier in this chapter, Constructionism was founded on the model of

young people actively building knowledge through designing artifacts in an open-ended

environment. A Constructionist-inspired learning environment should pay homage to the

spirit of Constructionism by remaining true to the principles put forth by Papert (1980,

42
1991) in the areas of pedagogy, epistemology, technology, and affect. Technology, the

first principle, was a core inspiration behind Constructionism (Papert, 1980). Papert’s

ideas about the revolutionary capacity of computer programming to change how young

people think and learn and to expand what youth were capable of accomplishing helped

drive the first articulations of Constructionism. However, many young people today do

not relate to computing or computing culture (Buechley et al., 2008; Rusk et al., 2008).

As mentioned earlier, some young people, like the students at Winder, do not have access

to computer programming courses and would not at the current school district even if

they were interested. A prominent report states that youth will be much more likely to

participate in computing when it is not only available, but also relevant to them and

within a discipline of interest (AAUW, 2000). Hybrid design technologies are capable of

this for two reasons, because they have a hands-on, physical component and because they

can combine elements of art, craft, construction, and computer programming, normally

disparate domains. The inclusion of art, craft and physical materials with computing has

the potential to attract young people who may not otherwise have been interested in

participating in computer programming and ultimately makes computing more

approachable (Buechley et al., 2008; Eisenberg et al., 2009).

 The pedagogical principle of Constructionism is founded on the ideas that

learning should be youth-directed, based on youth's individual interests and motivated by

youth's individual projects (Piaget, 1980; Piaget, 1991). Likewise, a personally

meaningful project can provide young people with intrinsic motivation, the impetus for

the affective principle of Constructionist-inspired learning environments. Ideally,

43
working on projects permits young people to form a deep and personal relationship

with complex concepts, like debugging and planning, not usually encountered in school

learning. The students at Winder were enrolled in a remedial curriculum and had not

necessarily been exposed to many complex ideas that are critical to adult life in a

technological society. These students had not participated in learning through developing

and completing projects, but instead completed worksheets to accrue course credit for

failed classes. Students at-risk for academic failure struggle specifically to engage with

school and traditional formats for learning (Fredricks, Blumenfeld, & Paris, 2004). As a

result, having the opportunity to complete a personally meaningful project could give

these alternative school students a new reason to invest in learning and might even have

profound implications for these students.

 Finally, the epistemological principle of Constructionism asserts that young

people can explore more accepting ideas about what it means to know and what kinds of

knowing are valid through computer programming independent projects in an open-ended

environment (Papert, 1980). For example, in programming there are multiple suitable

styles and variable ways to approach and solve problems (Turkle & Papert, 1991).

Changing youth's relationships to knowing is important because, according to Papert

(1980), students who struggle with the traditional teaching of math and science deserve to

find productive ways to interact with concepts like building algorithms, planning, testing,

and debugging. Ensuring that youth have the opportunity to approach and engage in

computer programming in natural, rather than mandated, ways is fundamental to

Constructionism. The facilitator in a Constructionist-inspired learning environment

44
should then pay particular attention to embracing different ways of approaching

computer programming and in giving students the freedom to pursue their projects in

individual ways.

 Given the description of Winder Alternative High School at the beginning of this

chapter and the description of some of the central ideas associated with both

Constructionism and hybrid technologies, I hope to have conveyed the opportunity and

potential match between the research site, theoretical perspective, and intervention

technologies. However, I have not yet addressed the resulting design of instruction. To do

that properly requires consideration of more literatures beyond those associated with

Constructionism. The Constructionist perspective is notable in that it establishes a vision

and set of ideals for what a learning environment could look like. What it does not feature

as prominently are the specific steps, activities, and trade-offs that must be considered

and organized. In the following chapter, I discuss the literature that informed my thinking

and the unit I subsequently conceptualized and designed for implementation at Winder. I

will also begin to describe the sources of data I collected so that I could appraise the

design both during and after the unit was completed. The combination of these two

upcoming sections will help establish what was a baseline for the design and why and

how the resultant unit had to be adapted in the actual course of implementation.

45
CHAPTER 3

METHODOLOGY AND LEARNING

ENVIRONMENT DESIGN

A New Kind of Hybrid Design Technology

 As mentioned in Chapter 2, hybrid design media that include computer

programming involve physical objects – often microprocessing boards or Arduino– that

can be controlled through some separately prepared programming code. At the time of

this project, PicoBoards and Scratch were available, affordable, and compatible with one

another. Recall that Scratch is an environment that enables low threshold creation of

animations, games, and media compositions (refer to Figure 7 from Chapter 2).

PicoBoards enable the development of interactive physical artifacts. When coupled these

two technologies could be used to support young people designing, developing and

crafting their own physical objects that interact with both the user and with virtually

programmed components. One opportunity for hybrid computing to add something

special resides in the potential for emotional connection and connections to youth's

existing interests. This could, in principle, further expand the types of young people who

engage in computing and also encourage young people to participate in activities that

span multiple disciplines. This new type of hybrid design technology combines the facets

of rich media design, through Scratch, with the promising aspects of interactive, craft-

oriented physical materials.

46
 Also, in the previous chapter I described the setting, population and theoretical

background for the research project. In this chapter I outline the designed intervention

and describe the learning activities I developed. Then I describe the overarching research

plan, which includes how the study was designed, what data were collected, and how

participants were recruited.

 I organized the project's instructional unit around both Scratch and PicoBoards as

tools from which students could design and build their own “DigiblePet.” DigiblePets are

both Digital and Tangible. The pet component was important to encourage and support

whimsy and emotional connection. Interactive pets draw from the idea that an object

could be both a companion and a toy or both fun and in need of nurturing. In other

studies of hybrid design media, youth have chosen to develop independent hybrid

projects that included interactive animals, like light-sensing paper caterpillars and felt

meowing cats (Rusk et al., 2008). Recently designers have even created a prototype

software system, PlushBot, to help young people use LilyPad Arduino to design and

develop interactive plush toys (Huang & Eisenberg, 2011). These ideas suggest that

designing interactive pets may be motivating and interesting to young people and worth

investigating. DigiblePets build on this existing documented interest in making pets in

that they are computationally enhanced pet toys comprised of known technologies

combined in a new way. The DigiblePets for this project were made from an embedded

PicoBoard, a pre-formatted microprocessor (shown Figure 9 from Chapter 2) that

interfaces with the Scratch programming environment through USB (as shown in Figure

12)

47
 I have already identified how the crafting aspect of these technologies is

critical. I conceptualized DigiblePets as a toy that could be designed and crafted by users

out of materials such as wood, fur, feathers, googly eyes, fabric, pie pans, cork and other

found supplies. The designed pet would have a physical body and a virtual persona linked

to that body via the PicoBoard and USB cable. The embedded PicoBoard would let users

interact with the pet. Sensors, buttons, and sliders, accessible through the pets' bodies,

could be programmed to allow the user to interact with the virtual version of the pet. For

instance, a furry dog might be designed and built so that when petted in the physical

world, the motion depresses a button, and the dog then rolls over and barks in her virtual

room (see Figure 12). DigiblePets are different from recent commercially-produced

popular interactive pet toys. For example Webkins are a plush toy with no interactive

capabilities that link to an online world where the owner can play games and earn items

for the virtual version of their pet. ZhuZhu pets can move and react to users in the

physical world and have a virtual version users can play with (see Figure 1 and Figure 3

in Chapter 1). However, DigiblePets have both an interactive physical component and an

interactive, modifiable, and programmable virtual component that are connected together.

Therefore interacting with the physical pet causes reactions on the screen. This enables

DigiblePets to be a more robust and integrated user experience than the commercial pets.

48

Figure 12. How DigiblePets work. Users pet the fluffy pet on left, depressing the button
on the embedded PicoBoard. The Scratch program interprets the button press and
computer code translates it to cause the sprite on screen to roll over and bark out loud.

Learning Environment Design

 In keeping with design research tradition (Brown, 1992; Collins, 1990), the

process of designing the learning environment was itself intended to be a key

contribution of this project. Constructionism allows for young people to deeply engage in

learning by following their interests through completing open-ended projects. Hybrid

media technologies broaden the types of young people who may be interested and willing

to participate in computing by providing access to computing through crafts and art. By

combining a new way of accessing computing with a unique kind of personal learning, I

hoped to encourage struggling high school students to complete a complex design

project. While there were many important ways in which Constructionist ideas were well

49
suited for this environment, there were also some important recommendations from

other bodies of research related to technology-based learning environments (e.g.

Bielaczyc, 2006; e.g. Bruckman, 1998). Thus I designed the learning environment around

the tenets of Constructionism with core commitments garnered from research on how to

effectively design learning environments with technology. I will use the following section

to describe the core commitments, informed by contemporary literature related to

technology-enhanced learning environment design that informed my conceptualization of

the broader DigiblePets activity that was to be introduced at Winder. Following that, I

describe some of the recurring activities that were planned.

Three Principles for Learning Environments with Technology

 Drawing from existing literature, I developed a set of core commitments to impel

the learning environment design, influenced by Constructionism but with specific intent

to consciously facilitate connections, develop a culture of support, and promote creative

expression. These promises stem from a call to increase consideration of socio-cultural

aspects of technology rich learning environments (e.g., Bielaczyc, 2006; Edelson, Pea, &

Gomez, 1996), creativity in education (e.g., Sawyer, 2012) and emotional engagement,

especially for at-risk students, in school (e.g., Fredricks et al., 2004). The idea was to

preserve Papert’s vision of a Piagetian-inspired, intrinsically motivated learning

environment, to do so in a way that emphasized play and deep commitment, as Papert

outlined, while simultaneously increasing initial guidance and working to develop a

supportive design community. In the subsequent sections I expand on the core

commitments and describe their foundations in the literature.

50

 Facilitating connections. The idea of facilitating connections, borrowed from

Resnick, and colleagues (1996), highlights that affect and intellect are intimately

connected (Minsky, 1985). Independent projects should connect to youth's interests,

giving young people a way to express themselves and also allowing youth the tie

previous experiences and knowledge to new computing domains (Resnick et al., 1996).

By facilitating connections, I meant to infuse the design of the learning environment with

as many different ways to capture and promote students' engagement as possible. The

learning technology itself represented this commitment because it was both tangible and

virtual and connected to students' presumed inherent interests in aspects of art and craft.

Recall that teachers at Winder felt their art program was effective in promoting some

students to engage in school at all (discussed in Chapter 2). Finding ways to encourage

at-risk students to engage in learning is paramount to these students' academic success

(Fredricks et al., 2004). Combining art and craft with the potential to integrate projects

with culturally relevant tokens from outside of school, such as popular music and

decorative accessories, may help promote these students to participate and engage in the

task. Furthermore, this project was designed to be known to students, meaning that

students would have first-hand expertise with the kind of toy we were creating. Lastly,

the project was intended to foster an increased sentimental component as an attempt to

harness the idea that pets are companions. Animal companions are known for fostering an

emotional connection. For example the use of pet training and care is an increasingly

popular therapy method for developing empathy, care giving skills, responsibility, and

compassion in inmates in the United States (Furst, 2006).

51
 In addition to the project students embarked on, the designed activities for the

unit promoted connections for a number of reasons. These reasons included providing

copious craft and found materials9 for building pets that students could discover and use

as they wished. Also, I intended to demonstrate a variety of open-source model Scratch

projects to students hoping to incite curiosity and give students a sense of what was

possible with the programming environment. I planned also to invite expert designers and

software developers to answer student questions and give students a professional

perspective. Finally, I promoted the integration of media from other software already

loaded on each machine, when students showed interest in these types of tools. The

project was also designed to give students an opportunity to show off their creations to

friends, family and teachers. Finally, I intended to communicate to students, as both a

researcher and the primary facilitator, that it was acceptable and sometimes desirable to

scrap designs or parts of designs when students felt their inspiration heading in a different

direction. In all the ways mentioned, I attempted to promoted deep commitment to the

design process in ways that suited each student's ways of learning and working.

 Developing a supportive culture. Constructionism largely assumes a productive,

supportive learning community. An effective learning culture is not inherent to learning

environments but must be actively nurtured through sharing, collaboration, discussion

and reflection (Brown & Campione, 1996; Edelson et al., 1996). A culture of support

9 Found materials were important as this project was done independent of any
funding source. However, purchasing or finding objects for use in schools is standard
practice for professional educators.

52
must be cultivated through peer interactions (Bruckman, 1998). This may be

particularly true of students at Winder who do not normally learn together. To help

develop a supportive culture, I designed the learning unit to include structured times for

sharing, reflection, discussion and brainstorming ideas, namely through round table

discussions and openers. Knowing that these kinds of discussion can be challenging to

manage for many teachers, and that the technologies and computer programming were

unfamiliar to the classroom teacher, I decided to act as the primary facilitator during the

project as I had prior experience as a teacher, prior knowledge of the tools and resources

available, and a sense for the kinds of interactions that I expected to see.10 As the

facilitator, I wanted to foster peer interaction by encouraging students to ask one another

for help, to seek each other for ideas, to show off new designs to others and to work in

small groups. Finally, the project was not graded or assessed; there was no competition

structure. As agreed upon by the classroom teacher, Anna, and me, all students who made

a concerted design effort during the project workshops were entitled to course credit. The

intention was to create a studio environment characterized by students working on a large

authentic problem with constraints, with fading support from a facilitator, much like

problem-based learning (Barrows, 1996), and for students to engage in sharing and

reflection while also balancing the work of learning aspects of programming with desires

to pursue creative expression (Sawyer, 2012).

10 The researcher acting as primary teacher and/or facilitator has precedent in
educational research. See for example the work of Deborah Ball, Magdalene Lampert,
Richard Lehrer, or Tobin White.

53
 Promoting creative expression. The third commitment concerned the

character of the task students' pursued, creative design. Creativity is considered by some

to be a fundamental skill associated with the future success of society (National Advisory

Committee on Creative and Cultural Education, 1999; Sawyer, 2012). Creativity involves

flexible thinking (McCrae, 1987) and the ability to develop novel artifacts or ideas

(Csikszentmihalyi & Wolfe, 2001). The combination of creativity with design

intentionally emphasized the importance of a fun, challenging, and engaging environment

modeled after children’s play where students were free to explore unique ideas. Learning

through play is active, intrinsically motivated and demanding, but the term "play"

admittedly does not necessarily adequately portray the intellectual seriousness of the

endeavor (Resnick, 2006).11

 Design, which is interdisciplinary by nature, often combines aspects of art,

science, engineering, and technology with problem solving, and thrives on elastic

thinking, improvisation, and original ideas (Sawyer, 2006). With the possible exception

of art class, Winder students were not typically learning in a multidisciplinary way nor by

working on independent projects. Both of these, it could be argued, actually more closely

resemble skills fundamental to a productive life than remediated drill learning. By

designing artifacts using technology, the students in the project would need to be actively

involved in the iterative design process and engaged in aspects of complex thinking

including defining problems, developing solutions, testing, and debugging. The

commitment to creativity, realized through design projects, capitalized on the importance

11 This is changing slowly. For example, see a recent volume entitled Design, Make,
Play edited by Margaret Honey and David Kanter.

54
of fostering creativity in students to help them develop as elastic, diverse thinkers and

the value of play-like learning for motivation, extended engagement and cognitive

growth. For the students at Winder, this would be a drastic departure from their normal

school routine.

Learning Activities

 As described in Chapter 2, the values of Winder and the core ideas behind

Constructionism shared some compatibilities. Winder went by different rules than a

conventional school; it had an open-ended school day structure and informal setting with

learning goals developed to meet individual students' needs. These features are part of

what made Winder unique and suited to this design and research project, but also made

Winder a challenging setting for the project. Activities planned as part of the research

project needed to be fairly open-ended to be flexible enough to accommodate teachers'

and students' needs, which matches Constructionist ideals. On the whole, I planned the

learning activities, classroom participation structures, and facilitator interactions to

support students in a complex design task without taking away from the independence

aspects integral to both Constructionism and Winder. The activities and supports were a

way to attempt to cultivate the norms and customs of a learning community in a school

where students were most often engaged in teacher-approved, rote work. For an overall

picture of the designed learning intervention see Table 1 and Table 2. Detailed daily

lesson plans can be found in Appendix A.

 The designed intervention had two components. First, students were to work in

self-selected groups, if elected, over the course of one week to find and fix a series of

55
pre-programmed bugs in prototype tangible digital pets that I designed. Students would

be given PicoBoards, Macintosh Powerbooks or MacBooks loaded with the prototype

Scratch project and USB cords to connect the boards to the computers. The idea was that

students would tinker, a relevant playful way of learning by mucking around and trying

new things (Resnick & Silverman, 2005), with the prototype pet and corresponding

programming code to learn how the pet's worked and what they could do. Then students

would be given a list of seven pre-programmed bugs in the program code (see chapter 4

for more information about the bug tasks) and asked to find and fix each bug in the

programming code. This strategy was based on debuggem's, used successfully for

exposing students to effective programming design examples and critical programming

concepts (Griffen, Kaplan, & Burke, 2012) with Scratch, suggesting its potential

usefulness as an instructional technique for computational crafts as well.

 Second, for the remaining four weeks, the students would design, develop and

craft their own interactive pets in open-ended workshop sessions where I planned to

circulate around the room answering questions and checking in on students. Students

were encouraged to use and modify code from the prototype pet, reducing the need for

robust programming knowledge. This would be an explicit opportunity to reuse and

remix existing code (Kafai & Peppler, 2011). Additionally, I had planned for specified

sharing and discussion times so that discoveries and challenges could be made public and

be informative across groups. At the end of the project, students exhibited their designs in

front of invited guests and community members in an evening design show.

56
 Planned activities. The DigiblePets project was comprised of a collection of

activities developed to foster the core commitments of the previous section. Daily project

work was designed to follow a planned pattern including a short opener, a workshop

session and a concluding round table discussion. As I discuss in the next chapter, the

planned unit was altered because of last minute constraints to the amount of uninterrupted

time the students were able to spend on the project. As a result, sessions were split across

two days of shorter duration rather than longer, less frequent sessions, often with the

opener and workshop occurring on one day and the conclusion of the workshop time and

round table discussion on the following day (see Table 1 and Table 2 for details). True to

the sharing component of Constructionism, the project concluded with a culminating

design exhibit with invited guests that took place after classes at the school, a location

that the students chose instead of a more public arena.

 Opener. I intended to begin each session with a brief opener to provide students

with a way to switch gears from the routines of the alternative school (e.g., filling out

worksheets) to the design workshop. These sessions were to consist of one of the

following: brainstormed sessions on design and programming, invited expert designer

software engineer Q & A, or an infusion of potentially new ideas through Scratch

program models or other sources. I did not plan to lecture on programming concepts;

instead I planned to share prototype and online projects with students as models and

examples from which code or ideas could be borrowed. I intended to invite expert

programmers and designers, from the community, to share ideas and insights about

design over Skype to provide guidance from outside experts as outlined by the

57
educational frameworks of Edelson et al. (1996) and Bielaczyc (2006). I planned to

maintain an explicit focus on creating a collaborative learning community through

encouraging peers to share, problem solve together, and support one another's ideas

through full group discussion.

 Workshop. Free, open design time called workshops of 35-50 minutes in length

were planned to comprise the basic structure for the 5-week program (see Tables 1 and

2), as described in Harel and Papert (1991). By making the bulk of the time unstructured,

the intent was that each student would be able to find ways that allowed him or her to be

most productive. I wanted the atmosphere to be less like traditional school and instead

share some similarities with Computer Clubhouses, where young people are welcome to

work on the computers or glue pieces of fabric, talk, watch or seek feedback and advice

from other members or the present mentor (Kafai, Peppler & Chapman, 2009).

 The first two workshop sessions were planned to allow time for students to

engage in the debugging protocols. These workshops intended to introduce students to

debugging and programming through the process of modifying the code given to make

the pet interact differently than programmed. I knew before the project commenced that

students had never seen the Scratch programming environment or PicoBoards previously.

However, there was no formal programming instruction planned. Instead, the students

were to be allowed to play freely with their prototype pets to figure out how the pets

functioned. By having a working prototype, I envisioned students experimenting with and

exploring the ways in which the pet interacted as well as the virtual environment in which

the pet lived by importing new media, changing values and moving code blocks. I

58
planned also to encourage students to borrow, modify and reuse code from these

prototypes because I believed seeing and interpreting code that was already structured

was perhaps more important than learning to create code from a blank slate. Code reuse

and modification were the main avenues for creating programming projects and are

considered a preeminent component of computational literacy (National Research

Council, 1999) and a culturally relevant exercise (Kafai & Peppler, 2011). Code reuse

and modification means that students would explore existing code to figure out how the

programming code worked and then change parts of working code to achieve different

and desired results. Combined with targeted debugging activities, code reuse and

modification also provide students with a model for how to create working code and can

help introduce concepts that are not always naturally explored by novices, like variables

(Griffen et al., 2012). Modifying code, sometimes called remixing, a strategy often used

by professional programmers and those learning a new programming language is just

beginning to be studied as a valid programming practice (Shelton et al., 2010), but is not

often encouraged in school settings (Kafai & Peppler, 2011).

 In the activity design, once the students worked through the series of debugging

protocols given, the remaining workshops were to be dedicated to students' individual

projects with regular opportunities for sharing progress and opportunities to look at more

examples available online.12 Again, student teams were to be encouraged to borrow code

from the prototypes and work on ideas together.

12 Going online was actually a bit troublesome because at Winder you need special
permission to use the Internet, which could be granted when students expressed interest,
but added a level of friction to the process.

59
 Round table. Full group sharing, critical discussion and reflection, called round

table, was designed to briefly follow each workshop session. The class was to physically

come together to share ideas, receive feedback from me and each other, work through

specific problems, or contribute to a question posed by the facilitator. I intended to

encourage every member of the community to participate, but participation was not

mandatory. I allotted 10 minutes for round table discussions. The intention of the round

table was to create a safe place to vent frustrations, ask for advice from the full group,

share ideas and show off new ideas. Some goals were to work toward being able to

provide targeted constructive feedback, reflect on learning and gain the confidence to

share ideas. Some round table discussions were designed for general sharing, others had

more specific aims for the community, for instance we attempted to define bugs,

elucidate our individual ways of engaging in the debugging process, and understand what

exactly design is.13

 Design exhibit night. I designed the culmination of the project to be a Design

Exhibit. One of Constructionism’s main ideas is to create an entity to be publicly shared,

whether that is through display within a classroom for peers or demonstration to the

intended audience (Papert, 1991). Similarly, Brown and Campione (1996) have argued

for an authentic consequential task to provide the impetus for a learning unit. In this

project I planned for students to have designed and developed a tangible/digital pet for

children and then to demonstrate the designs in a design exhibit. The intent was for the

13 As will be discussed more in Chapter 3, some round table discussions were not
enacted due to time constraints. Students often felt rushed and as a result were sometimes
reticent to abandoning their projects to discuss and share ideas.

60
Table 1

DigiblePets Intended Activity Sequence, Weeks 1 and 2

DigiblePets Intended Activity Sequence

 Week 1 Week 2
Day/Time Tuesday Thursday Tuesday Thursday
10 opener Opener Opener opener

(+
programming
intro ~ pb&j

bugs)

(what do
we know

about
digital
pets?)

(+ expert
design

perspective
(skype))

10.15 Workshop workshop workshop

10.30

(+ survey)
(+

programming
intro)

10.45 workshop

(@
debugging
prototypes)

11 round table

(@ debugging
prototypes)

(@
digiblepet
projects)

(@
digiblepet
projects)

11.15 round table round
table

round
table

 (* debug
journals)

(* debug
journals)

(*
discussion:
what is a

bug?)
(* debug
journals)
(share 2)

(* debug
journals)
(share 2)

61
Table 2

DigiblePets Intended Activity Sequence, Weeks 3 and 4

DigiblePets Intended Activity Sequence
 Week 3 Week 4

Day/Tim
e Tuesday Thursday Tuesday Thursday
10 opener opener Opener Opener

(+ design
exhibit

planning)

(+ expert
design

perspective
(skype))

(+ scratch
models from

online)

(+ survey)

10.15 workshop workshop workshop Workshop

10.30

10.45

(@
digiblepet
projects)

(@
digiblepet
projects)

(@
digiblepet
projecst

(prepare for
design

exhibits))

11 round table round table round table

(@
digiblepet
projects

(deadline
tangible
bodies))

11.15 round table round table
 (* debug

journals)
(discussion:
what makes

a good
digible pet?)

(* debug
journals)

(discussion:
what's your

style?)

(* debug
journals) (*
discussion:

how to
debug?)

(* debug
journals)

(*
discussion:
what was

this project
like for
you?)

the class to invite parents, friends, influential local officials and other members of the

community at large to attend the Exhibit. During the exhibit, each student team was to

62
showcase their DigiblePet. Modeled after a professional art exhibit, the assembled

guests would then be given a chance to wander to the projects and interact with pets and

design teams. Guests would also be encouraged to fill out feedback cards, developed by

the class as a rubric for what we discovered makes for good design, on each design they

have visited. I intended to serve refreshments and appetizers, believing that a less formal

atmosphere would be more familiar and comfortable for the student participants, but had

planned to formally discuss and co-plan the event with the students during the unit.

Research Plan

 Beyond trying to design and implement a new unit for the sake of introducing

students to a new technology, this project was also driven by research questions. In

pursuing this project, I had questions about how successful students would be, how

students would engage in the design project and debugging and how, by the end of the

project, students would talk about making mistakes, computing and the overall

experience after everything was finished.

Data Collection

 Given my interest in understanding if this project could be successful, seeing how

students engaged with the technologies and one another, and the likelihood of students

needing to do debugging throughout the unit, videorecording each day of the project

63
seemed appropriate.14 Three video cameras (2 High Definition cameras and one older

Mini-DV camera) on tripods arranged behind the groups documented what the groups of

students and teacher were doing. PZM Microphones were initially placed on each table,

but students moved about so much that the microphones often got knocked around or

unplugged. I eventually decided to capture student talk using the in-camera microphones.

I recorded video of both the students' computer screens and the students themselves so

that I could get a clear record of what they were working on and how they engaged with

one another. At the end of each session, student teams were asked to complete a short,

written debugging journal; most often they did so. I photographed students' DigiblePets

and collected their computer programs at the end of the unit. Design feedback cards,

developed by the students, were distributed to observers at the design exhibit. The

attendees of the exhibit filled out the cards and gave them to me and I kept these as an

additional data source.

 In the early stages of this project, I had intended to identify and collect data from

students who exhibited a range of proficiency. To this end, I also planned to use the

surveys coupled with observations of the first day to select a low technological

proficiency pair, a high technological proficiency pair and one pair that fell somewhere in

between for in-depth study. This strategy would give me a subset of six students selected

to represent three different levels of initial proficiency. However, after looking at the

surveys of the prospective participants, I found that none of the students had any

14 Guidelines for video research, as outlined by (Derry et al., 2010), such as camera
positioning, clip segmenting, and recording with the intent to produce narratives or
moment-by-moment analyses of conversation, was followed.

64
experience of any kind with computer programming. Therefore, choosing a subset of

students based on proficiencies none of them had became irrelevant. Also, absenteeism

was rampant. For practical reasons, I subsequently chose six students from four groups to

participate in more in-depth research based pragmatically on attendance. All four groups

were a focus for group level analyses, but I made more concerted efforts to obtain and

keep video and field note records of six of the students represented in those groups. The

six students chosen were present for at least three of the first four sessions of the

project.15 This meant these students participated in most of the preliminary activities that

were intended to get students acquainted with computional logic, debugging and the

DigiblePets technologies. In addition to the data collected from all students, these six

students participated in a post-project interview, which included a debugging task

assessment on the computer. In this case, the idea of debuggem's, formerly used in the

project as a way to engage students for instructional purposes, was used as an assessment

tool (e.g., Fields et al., 2012).

 Student participants completed a survey regarding prior experience with

programming and attitudes toward technology, design, and mistake making at the

beginning and end of the project (see Appendix B). Students self-selected pairs for the

duration of the project. Students were encouraged to work in pairs because they have

15 A subset of students was chosen for two reasons. Firstly, being absent for 50% or
more of the initial sessions might prevent students from fully engaging in the project and
its components. Therefore, the more prevalently absent students were not asked to
demonstrate their debugging skills or speak frankly with me about the project. Secondly,
paring down to six students was necessary for feasibility. I was the only researcher on
site.

65
been shown to be a fruitful structure for encouraging motivation and peer learning in

studies of learning computer programming (Webb, Ender, & Lewis, 1986). Also, I was

largely interested in the interactions between students and the technology and expecting

student discourse to be a valuable source of data. Because of the nature of the student

population it seemed most appropriate to let the students self-select pairings. This also led

to two groups of three students because some students were absent the first day, when we

formed teams and wanted to join a group in progress. One student, Jamal, did not want to

work with any other students in the class and elected to work alone.

 Students worked on their designs for 2-3 hours per week and received one

quarter's high school elective credit for successful completion of the project, which meant

they made a pet and either participated in the design exhibit or wrote an essay about their

experience for the classroom teacher. These terms were negotiated and agreed upon with

the faculty at Winder.

Author's and Faculty Involvement

 In keeping with design research, I was very involved with the planning as well as

day-to-day implementation of the project. As a former professional software designer and

mathematics teacher at more conventional high schools,16 I worked closely with the

classroom math/science teacher to implement a five-week (the designed intervention was

four weeks, but the project ran a full five weeks due to shifts in scheduling and student

time) long project on designing digital pets. I encouraged the math/science teacher at

16 One of my teaching placements was at the conventional high school in Winder's
district.

66
Winder to participate in the project by making her own DigiblePet alongside the

students, helping to foster the idea that teachers are learners too and that knowing is an

ongoing process regardless of age or status (Koschmann, Myers, Feltovich, & Barrows,

1993; Papert, 1980). Other teachers, students and administrators were very interested in

seeing what the students were doing and frequently visited the classroom. Students often

interrupted their work to show off their designs to visitors, which I believed to be

valuable in keeping with the spirit of publicly sharing the creations. The art teacher was

particularly popular in this regard.

 To help foster a supportive learning culture, Bruckman (2000) called for

ubiquitous support, where support is available at any time and for any reason when asked

for. Assistance was available from me, and I deliberately focused on providing coaching

and then fading my support in order to encourage peer collaboration and student

autonomy. I attempted to refrain from dictating steps or telling students the answer to

questions for which I saw a viable path for students to generate those answers on their

own with support. I was always present throughout the workshop days and times, ready

to answer questions, help guide students and work through ideas. However, students were

encouraged by me throughout the unit to ask one another for help and try to work through

their bugs independently.

Sampling and Recruitment

 Students were selected for the DigiblePets Project from the entire population of

alternative high school students based on interest, but participation was subject to the

discretion of the teacher and principal. I had an initial meeting with staff at Winder

67
during the preceding summer break where I demonstrated the technology tools and

discussed my vision for the project. The staff expressed excitement about the opportunity

to bring innovative technologies and learning environments into their school. However,

they identified some initial caveats. Because the purpose of the school was to provide

support for students who were not succeeding, Winder teachers would not have complete

rosters until well into the school year, as students from the traditional school would be

identified as "failing" and then subsequently processed through the system. As a result,

the DigiblePets project needed to wait nearly three months to commence. Similarly,

because students have generally struggled with school for a long period of time, I was

warned that they often drop out of the alternative high school program. Recruiting and

maintaining students in a 5-week long course would be a primary challenge according to

the teachers.

 The teachers also expressed to me that they wished to encourage students to

participate in the project that they believed would be enthusiastic, receptive to an

unfamiliar learning environment and goals, and had shown some success within the

Winder setting. For instance, they did not want students to participate that were resistant

to learning or had very poor attendance. However, when the time arrived to invite

students to participate two months later, the staff shifted slightly in their position and felt

that it would be better for the students to not limit access to the learning experience,

believing the uniqueness of the project might be similarly or even more beneficial for

even the most difficult students. The staff invited me to speak to the entire group of

68
morning students about the project and encouraged me to give participation materials

to any student who had interest.

Figure 13. Cujo: A prototype DigiblePet. The pet was made out of fur and pipe cleaners
with a cork body to hold its shape. The PicoBoard is embedded beneath.

 When introducing the project, I presented a prototype DigiblePet (see Figure 13)

that I made, described how the pet functioned and explained that the students would be

responsible for designing, developing and crafting their own pet using art materials,

found materials and computer programming. I also explained that the time required for

69
the project would replace class time during which the students could be making

progress towards their graduation requirements. Approximately 25 students were present

in the morning group. After my presentation, I asked students to raise their hands if they

might be interested in participating in the project. It took several seconds before students

volunteered, but to my surprise every student did. I distributed participation materials to

all the students and informed them about their rights as prospective participants. The

teachers asked me to leave a few extra forms for absent students and absent-minded

students who may lose their forms in the coming week.

Resultant Participant Numbers

 Eleven students (grades 11 and 12) participated in the project. Two students

dropped out after the first few sessions for reasons of too much other academic work that

they needed to complete, or too little interest in continuing, or a combination of the two.

The remaining students were 4 females and 5 males (n=9) arranged into groups as

follows: group 1 - 2 males, 1 female; group 2 - 2 males, 1 female; group 3 - 2 females;

group 4 - 1 male. Student groups worked on large tables with Macintosh MacBook or

PowerBook laptops that I obtained from various individuals for temporary use during this

project, a PicoBoard, a set of alligator clips, a USB cord, and various craft materials.

Tables were arranged in two rows in a V formation such that all student chairs faced

towards the center of the room. The craft materials, glue, tape, scissors etc., not

introduced until later in the project, were placed on their own table so students would

have to move about the room to retrieve needed items and thus encounter or see other

students and their projects. I moved the tables and chairs to the more communal

70
arrangement at the beginning of each session and returned them to their original places

after each session. The project took place in 13 sessions, 12 workshops and one

introductory session, over the course of 5 weeks and culminated in an after-school design

exhibit. Each session was between 35 and 70 minutes long (the original plan was to have

90 minute sessions) depending entirely on what other activities were planned that day by

the Winder staff.17

Data Collection Instruments

 The data collected during and immediately following the project were intended to

capture, as much as possible, how students approached and engaged with the design task,

how students dealt with errors, and how students felt about their experiences. For an

overview of the research design, see Figure 14. The corpus of data include:

• Daily video recordings of design teams as they engaged in activity,

• Post-project interviews,

• The students' designs and programs,

• Daily debug journals,

• Pre and post surveys,

• Design exhibit feedback cards,

• My field notes.

 I expected important things to take place through interactions with the

technologies and tasks, so I captured video and then selected portions of the video corpus

17 Recall in Chapter 2 that Winder was flexible with their schedule and would often
make impromptu changes to accommodate guests or special activities that were
considered beneficial for the students.

71
to analyze in greater detail. These data facilitate analysis of students' conceptual

processes as they worked together to solve problems and learn about hybrid design media

and computer programming. All together, I collected approximately the equivalent of 136

hours of recordings, including nearly 12 hours of observation time. A brief written survey

I had prepared was given to each student so that I could get more information about

students’ ideas about making mistakes in relation to learning and feelings about

computing and the project experience. The interviews were conducted after the project,

when trust with the facilitator had been established, and were intended to give students an

opportunity to talk about their experiences. Because of small participant numbers and the

formative nature of the work, these surveys and interviews were considered as being

useful for providing more details about each individual student, rather than as data from

which I would be determining statistically significant differences associated with the

project. The remainder of the data were intended to triangulate what happened during the

project and why.

 I kept a journal of field notes and personal reflections for each session in the spirit

of Lampert’s (2011) work using her own mathematics classroom as an object of study.

The journal provided was a tool for me to reflect upon and consider how to immediately

revise and modify activities and support structures as needed depending on what I

perceived as student needs and qualities of student interactions. My field notes also

served as a modest design record (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) as

the project unfolded (see Appendix C for a sample page of field notes).

72

Figure 14. Research design.

73
CHAPTER 4

HOW INDIVIDUAL STUDENTS ENGAGED

WITH THE PROJECT

 Despite a number of challenges, all student groups successfully designed and

developed a tangible/digital pet with a crafted physical body and corresponding virtual

pet with at least some functionality that differed in ways from the given prototype project

(see Table 3 for student projects). Students were engaged in aspects of the project,

connected to their pets, and showed pride in their work. There were, as expected, several

times in which students were challenged or frustrated with the project and periods when

the students were not interacting with each other collaboratively. Additionally, students

did not uniformly engage in all the facets of media design. Still, on the whole, the project

showed promise using computational crafts with an academically struggling population.

 My goal for this chapter is to provide some more detailed images of what

individual participation looked like. What Eisenberg (2003) and others have described as

a path to promote learning in computational domains through an artistic, hands-on,

crafting domain, was indeed apparent for some students in this project. There were also

some clear derivations from this. For example, one student took on the role of a

programmer who worked only on programming the virtual pet and another who took to

programming right away but then dropped programming to devote all her time to crafting

the physical pet. The latter student was drawn away from computation because of an

unequivocal attachment to the ensuing physical pet design.

74
 Prior to providing the illustrations of how individual students engaged with the

project and the technologies, it is necessary for me to first discuss in more detail one

important factor that led to modification of the unit. Specifically, the amount of available

workshop time for the project changed how the workshops needed to be run and

consequently the ways in which students engaged with the task. Following a discussion

of the role that available time played, I will provide four narratives of student experiences

with the project based on my records and observations. Using their own words and

descriptions of their activities throughout the design life cycle, I highlight and reflect

upon how different students' approaches to and work throughout the project shifted my

ideas about ways participating. The final portion of the chapter will speak to the

recognition that a hybrid design technology and design activity that has the potential to

broaden the ways in which students can engage with computation can still have features

that can also limit or narrow individual participation.

Narrative Construction

 I developed the student narratives below based on the various data collected (see

Chapter 3 for details). There were nine students involved throughout the project. Six were

the primary focus for intensive data collection. Between the combination of field notes,

observations, and video review, four students were selected for further development as

descriptive narratives because of the contrasts they represented from one another and the

ways they participated in different facets of the project. For instance, one student, Tegan,

shifted her focus during the project. This was something I noted in my field notes and

75
wished to trace over time. Another student, Jamal, focused almost entirely on the more

artistic portions of his project and only programmed his project on the final day of the

workshop. Despite this, he had a very successful project. I wished to better understand

how his project developed over time. Another student, Carlos, was focused solely on

programming his pet's functionality and did not craft the on or off screen pet. I wished to

understand how Carlos engaged in the project. A final student, Dino, had difficulty

throughout the research project and struggled to reconcile his hatred for computers with

the pet his group was making. Thus, I selected him as what may be considered a negative

example.

The process of narrative preparation involved an initial review of my own field

notes, observations, and interviews for contrasting cases. The four above were identified

for the qualities described, based on the records I used in that initial pass. Following their

identification, I reviewed the entire video corpus and proceeded to identify and transcribe

portions of video in which these individuals figured prominently in an interaction with

another student or with the technology. I subsequently annotated these transcripts and

began to create a timeline of events for these students. Using these, I began to posit what

factors may have influenced the ways in which students had engaged. For example, as I

will discuss later, affective connection to a pet become a potential candidate for

influencing one student’s engagement. When I had identified that, I re-reviewed video

and transcripts to identify specific word usage (such as referring to the pet with a

personal pronoun rather than ‘it’) and to transactions between the case student and their

peers that related to the candidate influence (such as speaking possessively about the pet).

76
The result was then crafted into and iteratively refined as the narratives that appear

below. While this was not formally part of the analysis process, some of these were

submitted for peer review and presentation at conferences for feedback (e.g., DuMont &

Lee, 2012) and were revisited and refined further based on suggestions from scholars in

the field.

Table 3

 Student Projects

Students in Group DigiblePet Project

Tegan, Rocky & Ted Monkey

Steph & Tabitha Feathered Unicorn/Hippo

Dino, Carlos & Maya Alien

Jamal Zebra

Design Versus Realization: Time

 The constraints of real classrooms caused me to have to modify the activity

design, as outlined in the previous chapter, during the implementation of the project at the

alternative high school. I conceptualized the project, based on initial conversations with

77
the faculty at Winder, into 90-minute blocks with students twice per week. However,

due to unforeseen scheduling constraints, which are minimal at Winder but still existent,

the available time with students was altered just prior to implementation to be three to

four 35-50 minute sessions per week, essentially splitting the original sessions across two

days but resulting in about 10 hours of time versus the planned 12 hours. Additionally,

days when students fell behind on "packets," the main way of making up course credits

by completing large workbooks of practice problems, were often days students would

choose to stay or were asked to stay by another teacher at Winder in the main room and

miss the project day entirely. To deal with this change in schedule, I made sure to set up

each laptop and pet in progress before students arrived and broke down the room after

students left to capitalize on the brief stints of time students had.

 With shorter sessions, the intent to give students have ample time to wrestle with

ideas and make progress was threatened. This meant that there was less time for round

table discussions, important for promoting a collaborative culture, and less time for

openers, a way to introduce new ideas. It was too difficult to try to fit everything in

because students were enthusiastic about starting their projects right away when entering

the room, sometimes arriving nearly 10 minutes early to get started (so long as they

weren't behind on packets), getting their in-production pets out of plastic bags and

starting up their Scratch programs, so I improvised and decided to keep the main activity

structure as before, but opted to in certain cases distribute daily activities over two days

(see Table 4). Therefore, I endeavored to stick to planned openers and round table

78
discussions but sometimes pushed them or, on a few days, omitted them entirely to

make room for students' open-ended development time.

 These changes alone created challenged as the continuity that could be established

with one and a half hour long sessions was disrupted. Although some students often

arrived early each day, others would amble in 10 minutes late. These students often

showed trouble recalling the ideas and tasks they had left hanging from the last

workshop. Students complained to me regularly about not having enough time. Once

students began work on their pets, there was student reluctance to switch from their pets,

which further discouraged completion of some roundtables.18

 One example of the imposition of time was during workshop 6, the day that my

expert software designer Skyped in to give his perspective on design and answer student

questions. Students wanted to continue their discussion past the allotted 15 minutes. I

wanted to allow the students to continue talking with the professional programmer, who

did not go to college and instead taught himself programming and eventually worked his

way through a company to a lucrative programming job at a stylish local company,

because the students found his insights to be relevant and useful. However, letting the

conversation continue meant that our workshop session for that day was all but

eliminated. Making tradeoffs like this one were a continuous part of the project where

development time was precious but so were opportunities to share and discuss.

18 In my lesson plan notes for lesson 7, next to a round table discussion plan to
revisit the idea of what students do in the face of bugs, I have the representative
comment, "Students are so far behind on their projects that I let them work rather than
revisit this. Will touch on it in interviews" (M. DuMont, field notes, November 21, 2011).

79
 When asked in interviews how to improve the project multiple students

interviewed mentioned increasing time specifically. Tabitha, who struggled with

confidence as well as computer programming throughout the project talked about the role

of time.

 Tabitha I think just more time. I think that's pretty much what I
 would want...I really wanted to get it. And I thought I
 would. It just wasn't enough time for me. It wasn't enough
 time for me.

 Jamal reiterated Tabitha's idea that time was an issue for him with the following

suggestion on how to improve the project.

 Jamal And maybe make the time we do it, we only did it for what
 like an hour or 45 minutes or something like that, maybe
 extend that...Yeah. Cause we would set up and just start
 doing stuff and getting ideas and then we'd have to go or
 whatever.

 Students' complaints centered on having a difficult time transitioning into the

project and then feeling the session would end abruptly just as they were getting into the

project mindset or making progress on a problem.

 While it is true that increased time dedicated to the project would have allowed

more design time and better adherence to planned activities, feeling time constrained is a

catchall for student struggles and does not provide insight into how to manage additional

or existing time in more productive ways. I would have wanted more opportunities for

students to participate in dedicated sharing, discussion and idea generation, more

80
Table 4

Digiblepets Realized Activity Sequence. Items in Red Were Omitted from the Original
Planned Activity Sequence and Items in Blue Were Added to the New Activity Sequence
Based on Shorter Time Blocks

Day/
Time 10.26 10.28 11.02 11.08 11.11 11.16 11.18
9:10 opener opener opener opener opener opener opener

Survey Pb & j bugs Demo cujo Intro craft
materials
Design
perspective -
D. S.

What makes a
good digital
pet? Plan for
design exhibit

Demo Scratch
projects

Post survey

9:20 workshop workshop workshop workshop workshop workshop workshop

Peanut butter
& jelly intro

Debug
Prototype

DigiblePet
projects

DigiblePet
projects

DigiblePet
projects

DigiblePet
projects

DigiblePet
projects

9:30

9:40

round
table

round
table

round
table

round
table

9:50

What did
you learn
about
instructions?

What is a
bug?

Share Share

 10.27 11.01 11.03 11.09 11.15 11.17 11.22
9:10 opener opener workshop opener workshop opener workshop

Intro cujo Digital pet
brainstorm

DigiblePet
projects

Design
perspective -
N. B.

DigiblePet
projects

Demo Scratch
projects

DigiblePet
projects

9:20 workshop workshop
 workshop

Play with
Cujo

1.
Debugging
prototypes

DigiblePet
projects

9:30
 workshop

 2. Begin own

pet
 DigiblePet

projects

9:40

 round

table

9:50
round
table

round
table

round
table

round
table

round
table

round
table

Advice for
next year's
students.

Share What is a
bug?

Share Share What makes a
good digital
pet?

How do you
debug? design

exhibit

81
exposure to Scratch projects and existing digital pets. However, regardless of the time

allotted, the fact that students seemed rushed and somewhat reluctant to the structure of

the sessions also speaks to the complexity of the independent project task for these

students. Restrictions on time were an unintended challenge and non-negotiable. Despite

the constant pressure of time within a real school setting, students were able to make

connections to the project and successfully design and build their DigiblePets. To get a

picture of how the project unfolded for students, I provide a description of the project

through brief narrative accounts of four student's experiences below.

Tegan

 Tegan was a junior transfer student who chose to work with two senior boys,

Rocky and Ted. She was a confident and charismatic girl with blond hair that changed

artificial hues almost daily. Tegan talked easily with her group mates mostly about

relationships, movies and their network of acquaintances. Unlike her schoolmates, Tegan

claimed to enjoy math, saying she was good at it. She was always smiling and often toted

a large frozen coffee concoction from the nearby fast food restaurant to class. Tegan

moved to the district the previous year from Florida with her Mom. Tegan described an

aspect of her relationship with her Mom on one occasion during class. She told another

student across the room that her Mom had asked to borrow enough money from her

daughter to buy cigarettes that morning. In her reporting of that exchange, Tegan was

dismayed by the request and told the student she did not comply. The student she was

speaking to was incredulous about a Mom acting this way. It was clear that the family

82
relationship was strained and that Tegan's mother was not always as responsible as her

daughter wished.

 Why Tegan moved was not clear, but after the move, Tegan struggled at the

traditional high school for her sophomore year. She earned virtually no credits, failing

nearly every class. The math-science teacher at the alternative school expressed to me her

confidence in Tegan's abilities and believed she would do well in the Winder

environment. Tegan only missed one of the 12 workshop sessions, an unusually high

attendance record for the project, and she was one of the few students who voluntarily

attended the design exhibit at the end of the project.

 In keeping with her outward confidence, Tegan did much of the initial

programming for her team in the workshops prior to the craft materials arriving. Tegan

controlled the keyboard for the majority of the initial debugging task workshop (recall the

structured debugging task took place over two workshop sessions) and with her partner

Rocky's input, they were able to solve six of seven bugs with minimal facilitator support,

even though neither of them had any previous programming experience (see Table 5 for

debugging tasks). Noticing their bug-fixing prowess, two other teams asked Tegan and

Rocky for advice during the initial structured debugging task workshop. No other teams

were solicited for advice in this way.

 Tegan and Rocky also made three independent design changes to the prototype

code of their own volition on the initial structured debugging task day, workshop 1. In

fact, Tegan was ready and excited to implement aesthetic changes to the prototype project

in the very first minutes of seeing the Scratch program.

83
Table 5

Debugging Task Days: Bug Tasks Students Were Given with Corresponding
Programming Concepts Explored During the Initial Two Workshops with a Prototype
Digiblepet (Picoboard) and Corresponding Scratch Program

Bug Programming Concepts

Covered

Bug Text

1 Events; Basic Programming

Statements; Multi-media:

Speaking Bubbles

The grasshopper is annoying. When Cujo bumps Mr.

Jumps he should say "pesky bug" not "hello."

2 Input: Button Pressed; Multi-

media: Sound Editor

Cujo barks. All wrong. He is really supposed to be a

cat. Make him meow instead.

3 Threads; Stage as Coordinate

Plane; Programming Modules

The car (a VW Bug) always starts in the same spot.

It's the wrong spot. Make it so the car always starts at

the very bottom left of the screen.

4 Conditionals; Input: Resistance

Sensor

Cujo can eat and eat with no effect. Lame. Make it so

when Cujo eats he grows bigger.

5 Threads; Variables: Initializing,

Posting

Cujo has a happiness score. But it goes up and up and

up. Figure out how to make sure the score is zero

when you start a new session.

6 Multi-media: Paint Editor; Input:

Light Sensor; Costumes; Wait

When it's too dark, Cujo gets scared. When this

happens, he is supposed to turn green. Make that

happen. (Don't forget to turn him white again when he

isn't scared anymore)

7 Variables; Conditionals; Event

Handling Across Sprites

Cujo can ride in the bug. Then the car self-destructs.

Figure out how he can ride in the bug 2 times (but no

more than that).

 In the following episode, Tegan wanted to begin the debugging task with a design

idea for the prototype pet. Students were supposed to be working on fixing given bugs,

84
but instead, Tegan was interested in making the pet's environment look different. The

that time in the unit, other teams were still trying to figure out what was being asked of

them and what Scratch and PicoBoards were.

Tegan Let's change his (the pet's) house.

Rocky How do we change his house?

Tegan I don't know.

Rocky Can we figure it out?

Tegan MmmHmm.

Tegan Ok. Let's change his house.

 (she moves the computer towards her)

Rocky Well we've gotta wait for instructions first.

Tegan No we don't.19

 Tegan's first utterance once the Scratch program was opened on the structured

workshop was "Let's change his house." Not only was she already developing her own

ideas, she felt confident that they could realize the ideas. Tegan then reiterated interest in

implementing her idea. She was motivated to work with the technologies and took the

computer from Rocky to do so. Tegan also did not think the group needed to wait to

begin their design, even though making aesthetic changes had not been specifically

offered by the facilitator as a thing to do at this point. After this episode, Tegan

19 The language of all interview quotes has been recorded verbatim to retain the
authenticity/ originality/ spontaneity of the text.

85
proceeded to scroll through the computer code, which she had never encountered

before, clicked on the stage icon, clicked on the backgrounds tab, clicked on import and

found a beach background, which she chose (see Figure 15 for reproduction). She then

imported a woods background instead. This was representative of what Tegan would do.

She would develop an idea about some aspect of the pet development and figure out how

to accomplish it.

 This episode suggests two important things to me: one Tegan seemed excited

about the project and eager to begin implementing design ideas, and two, Tegan, as the

programmer, seemed able to understand aspects of Scratch and the ensuing programming

code even though she had no previous programming experience. Tegan and Rocky

together, with Tegan at the helm, were the most successful group at finding and fixing the

given bugs during workshop 1, solving the given bugs more quickly and with less

facilitator support than any of the other groups, and also were a creative group during that

day, going above and beyond the requirements to make unique changes to the project. No

other groups made so many changes to the prototype pet, Jamal made one and the other

groups none, during the structured debugging task. After a fixing a particularly complex

bug #6 (see Table 5 for the debugging tasks), near the end of the workshop 1, Tegan and

Rocky decided to change their cat sound to the shutup sound they recorded themselves

using the microphone built into their laptop. This was not part of the debugging tasks, but

something the pair had developed on their own, to make the prototype pet say, "shut up"

out loud when the button was pressed.

86

Figure 15. A reproduction of Tegan's background modification in Scratch.

 In the episode, Tegan changed the code to enable the shutup to play and Rocky

pressed the button on the PicoBoard to cause the announcement.

 Tegan Ok. Wait.
 Where is it again?
 (changes play sound cat to shutup)

87

 Rocky Go push start.

 Tegan (clicks start)

 Rocky (presses button on PicoBoard)

 ("shutup" plays on speaker)

 Tegan Yay! We are so smart
 Ours is the coolest one!

 It seemed Tegan was excited about the new functionality the pair developed for

the prototype pet when she said, "Yay! We are so smart! Ours is the coolest one!" In this

episode, Tegan added further evidence that she found the project fun and exciting even

when only the computer programming portion of the design project was available for use.

 The following workshop day, Tegan worked alone in Rocky's absence to solve the

final and most intricate bug (bug #7), which involved understanding variables, altering

mathematical conditional statements and event handling between different sprites,

challenging programming concepts (see Table 5). Tegan was the only student to

successfully and completely solve this final bug. Tegan worked 49 minutes to fix bug

seven, but even then she was not completely satisfied and expressed a desire to make the

car disappear after having fixed the car-related bug. The instructions for the bug did not

include this final aesthetic fix, but Tegan was determined to work on it even though it

was not required.

88
 The following several workshop days, Tegan and Rocky, and eventually Ted

who joined them after a brief stint of mandated time away from school,20 worked to make

their own virtual pet and corresponding functionality. Tegan controlled the computer and

Rocky supported her by adding ideas and sometimes directing her in what to try.

Together they created a monkey with many costumes (see Figure 16) that walked,

danced, ate, "partied" and climbed a ladder to get onto the bed in his room (see Figure

17). The monkey spoke, listened to music and had an elusive bunch of bananas to chase.

Tegan led the functionality changes the group made, remixing the prototype code. During

workshop 5, Ted's first day, Tegan was absent, and Rocky showed off the pet to their new

partner. Ted was impressed with the project, he asked, "How'd you design all this?"

Rocky replied, "We know what's up." That Ted was impressed with the group's work

adds to the idea that in two days of independent project work, Rocky and Tegan created

an interesting virtual pet that required what appeared to another student to be a

remarkable amount of programming. Rocky's response implied he was confident about

his and Tegan's abilities as programmers and designers.

 Tegan alone developed much of the team's resulting functionality. One of the

most complicated pieces of functionality she developed was to remix the pet's walking

code. The pet walked across the screen based on input from the slider that was translated

via mathematical expression into coordinates (see Figure 18 for the original prototype

walking script). No other student attempted to understand the mathematical code but

Tegan was unsatisfied with the way her monkey moved and determined to fix the

20 Ted was physically taken from the school on the first workshop day by the police
in handcuffs and because he was 18, put in jail.

89

Figure 16. Some of Tegan, Rocky, and Ted's monkey costumes. Each one was painted by
hand onto the original monkey stock sprite. The costumes all refer to "Cujo" the original
prototype pet because students were using the prototype project as a guide.

90

Figure 17. Tegan, Rocky, and Ted's Scratch Program. Their monkey climbed the ladder
and jumped on the bed.

Figure 18. The original prototype walking script.

problem. In the excerpt below Tegan tinkered with the mathematics in the code until she

achieved the desired result.

91

 Tegan Ok. I'll figure it out then.

 Facilitator Sure you will.

 Tegan Ok.
 y.
 (changes y = -130 to y = -150)
 (tests)
 (changes back to y = -130)
 (tests)
 (changes y = -110)
 (tests)
 (changes x = "sensor value *4 - 200")
 (tests)
 Oh cool, I did it!

 Steph What are you doing Tegan?

 Tegan Just messin with stuff.

 This episode illustrated how Tegan tinkered with code in a playful but

sophisticated way. During the short excerpt (less than 60 seconds), Tegan changed small

pieces of code and tested the results four times. She made small modifications and based

on the results ascertained whether she should make a further change. At the end of the

excerpt, Tegan exhibited pride by saying "Oh cool, I did it!" Then Steph asked Tegan

what she was doing. Tegan's response was "Just messin with stuff." Her "messin"

changed how Tegan's pet walked in its virtual space in a way that was pleasing to Tegan.

Again, Tegan determined an idea then set out to figure out how to accomplish it

independently.

92
 Another unique idea that Tegan decided to embark on occurred during

workshop 4. However, in this instance, Tegan's previous exhibition of enthusiasm and

perseverance in programming were subverted. Tegan, alone again, decided, with some

idea brainstorming with the facilitator, to make a new piece of functionality where the

monkey would climb a ladder to get up onto the bed in his room. She got very excited

about implementing the idea saying, "Oh my God. That's cool. I wanna do that!" The

functionality required several pieces of development. First Tegan had to draw a realistic

ladder by hand and position it to look authentic. Second, Tegan had to establish that when

the monkey touched the ladder, he would climb. Third, Tegan had to program the

monkey to climb. Tegan worked hard on the first piece of the design. At the end of the

workshop, Anna, the classroom teacher, came over to check out what Tegan had been

working on. After seeing the ladder idea, the classroom teacher exclaimed "Oh that's

cool!" and "That's a good idea!" Tegan immediately rebuffed, "Thanks. Don't take it!"

 That response showed Tegan's personal investment in the ladder climbing

functionality. She wanted others to see her work but not copy her ideas, "Don't take it!"

The classroom teacher's response confirmed to Tegan that her idea was unique and

interesting. Tegan displayed feelings of ownership and interest in the ladder climbing

idea. However, the idea was unrealized until Rocky and Ted took it up. After workshop

4, Tegan ceased to touch the computer neither implementing nor providing insight into

any other aspects of the virtual design. Why Tegan immediately and completely stopped

her involvement with computer programming and an idea she showed interest in was

observed to be due to the introduction of the craft materials during workshop 5.

93
 Throughout the project, Tegan showed a personal connection to the group's

DigiblePet initially through her interest and enthusiasm for programming aspects of the

pet and subsequently, in her dedication to creating the physical pet. However, when the

physical development of the pet commenced, Tegan devoted all of the remaining

workshops to creating a physical version of the monkey, letting her partners handle the

virtual design, even leaving the climbing on the bed idea, that she was very excited about

initially, unfinished (see Figure 19) In an interview, Tegan described the group's working

style and her own role within the design.

Tegan Well, at the beginning when Ted wasn't here you know, I
 just did all of that (programming) and when he got back
 and I was working on the monkey I just let them do
 whatever they wanted to add to it.

Facilitator So before Ted came you think you did more of the
 programming?

Tegan Well yeah. Because that was all we were doing. Then
 when we started making it (the physical pet), I just did it.

Facilitator So did you and Rocky work on the programming stuff
 before Ted came? Or was it mostly you or mostly him or?

Tegan I like did it. He just told me if he wanted to add something,
 I'd do it. I guess. Cause he doesn't really know how to do
 that good.

Facilitator Ok. So you think.

Tegan Well, maybe he does cause then him and Ted made him
 like party and stuff. Cause when I wasn't here, they were
 working on it. So.

Facilitator Yeah.

94

Tegan Yeah, they figured their own stuff out.

Facilitator Yeah. Why do you think your team broke up the
 responsibilities like that? Why were you the only one that
 did the crafty part and.

Tegan Well, cause they're not really crafty and also they'd just
 mess it up. Cause I had an idea in my head.

Facilitator Ok. And why do you think you didn't do as much
 programming once Ted came?

Tegan Just cause I was working on the thing (physical pet) and I
 wasn't going to do both at once. You know?

 Tegan talked about how she had done most of the programming before Ted came

back from jail and then, when he appeared, she was already working on the physical pet

and so she let them "do whatever they wanted" to the virtual Scratch program. When

asked why they split up the responsibility like that, Tegan explained that the boys were

not adept at programming, but then she retracted her statement admitting that maybe

Rocky and Ted were good at programming since they had made the monkey "party and

stuff". "They figured their own stuff out," she said. Tegan chose to work solely on the

physical pet because the boys were "Not crafty" and "They'd just mess it up. Cause I had

an idea in my head." Tegan seemed to have a feeling of responsibility to do the crafting

for the team because she deemed her group mates to be not crafty. But importantly too,

she added that she had an idea that she wanted the opportunity to realize, she did not want

the boys to mess it up. The physical monkey design was Tegan's alone.

95

Figure 19. Tegan and Rocky working in parallel on different components of the monkey
project. Tegan works on the physical monkey and Rocky on the Scratch program.

 After conceptualizing the physical pet prior to beginning the crafting of the

monkey, Tegan grew very attached to the physical monkey during the design process.

She showed her pet off to other students, teachers and the principal multiple times during

the project. In an interview, Rocky talked about how the group had broken up

responsibility by giving Tegan sole ownership over making the physical pet. He admitted

that this arrangement made the group get along better because Tegan would "Get mad at

us if we tried touching her monkey." For example, in the following excerpt, Rocky tried

to assist Tegan with attaching a felt face piece to the already crafted and furred monkey

96
head, during workshop 8. Tegan did not allow him to do so. She followed him around

the room and forcefully took the pet back.

 Tegan Lemme see this (the monkey).

Rocky (grabs the head of the monkey)
 Is this good?
Tegan (reaching for monkey)

 No I have to fix it.

Rocky This?
 (grabs felt for monkey face that Tegan has been cutting off
 of the desk)
 No you don't.
 (grabs stapler off desk. aims to staple felt face to fur head)

Tegan Wait. No.
 (gets up from her seat)

Rocky (walks toward front of room with monkey and stapler)

Tegan It's not perfect!
 (chasing Rocky and monkey around room)
 Gimme it!
 I'll make a new piece.
 Gimme it.
 (catching Rocky)
 You stapled it already!
 (returns to her seat)
 You know I'll just pull it off.
 I can't believe you're doing this.

 In this episode, Tegan said things like "It's not perfect!" and "You know I'll just

pull it off" about Rocky's attempted contribution to the physical pet. She insisted on

affixing the felt face herself, even though she had already designed and cut the felt. The

97
episode suggests that Tegan was not willing to share the responsibilities of physical pet

creation with her partners.

 Tegan's monkey was very professional looking, almost like a commercially

available stuffed animal (see Figure 20) However, Tegan spent so much time attending to

the monkey's appearance that on the final day she was forced to glue the PicoBoard onto

its back in plain sight because she didn't have time figure out how to embed it. The other

students in the project took note of Tegan's work. During workshop 11, Ted commented,

"You’re so talented Tegan. You just whipped that thing up like it was a birthday cake."

Tabitha, in an interview, talked specifically about Tegan's monkey and how successful

Tegan was at the project. When the project was over, Tegan asked to keep her monkey,

even without its interactive components, as the PicoBoard had to be returned.

 Attachment and connection to a physical design is precisely what I hoped would

occur with DigiblePets, drawing young people into computing through emotional

connections to known interests and hobbies (Eisenberg et al., 2007; Resnick et al., 1996).

Tegan shifted her time from virtual pet development to physical pet creation once the

craft materials arrived. Tegan showed off her monkey to others, was reluctant to let her

partners contribute to the physical design, and wanted to keep her physical pet. This

suggests Tegan was emotionally and personally connected to the creation of the physical

pet.

 For Tegan, her relationship to the physical design component was so powerful

that she ignored computing after having been quite interested and successful at it initially.

98
Contrary to expectation, Tegan's affiliation with the project did not lead her to continue

to explore programming concepts but instead effectively derailed her computational

learning by shifting her attention away from computing entirely. The tangible craft held

too much attachment for Tegan, preventing her from participating in both areas of design.

Figure 20. Tegan's monkey.

 Also, Tegan was not able to work collaboratively with the physical design

because of her inability to relinquish control over the product. In an interview, Tegan

99
talked about how making a digital/tangible pet influenced her decision to join the

project because she thought programming would be boring but making an interactive

physical pet sounded interesting. Therefore the tangible craft provided a way for Tegan to

connect to programming and was effective at getting Tegan interested and engaged in

computing. But then the tangible pet became a powerful draw, luring Tegan away from

the programming she was interested and proficient in. What had been expected to be a

way into computing for young people who are interested in the craft components was

actually a way out of computing in this case.

Jamal

 Jamal was a senior student who worked alone on his project, saying on the first

day of the project that he did not need anyone else. Jamal was tall, lanky, and reserved.

He had a nearly shaved head and a gold chain around his neck. Jamal dressed in baggy

shorts and oversized single-colored t-shirts with new looking athletic sneakers. From the

beginning, Jamal always seemed very occupied with whatever he was working on and not

easily distracted. While the other students seemed to constantly be interacting with one

another, Jamal kept to himself often with large headphones hanging around his neck

pumping gritty rap music towards his ears. Jamal listened to the gossiping of other

students, but rarely joined in. However, by the final workshop (12), Jamal joined in

several bantering sessions with the full class including talking about a cartoon rooster

whose hair looked like a student he knew, hypothesizing about making a zipline from the

high school to the alternative school and even engaging the principal in conversation

100
about her choice of clothing for the day. He poked fun of her by saying, "You're,

dude, you're like a whole color outfit? Like one shade? That's cool. That's cool. Even

your shoes, look. Pretty nice."

 Jamal came into this his senior year with seven total high school credits,

essentially one year's worth, in various subjects. This meant Jamal was trying to make up

14 year-long classes in addition to needing to still complete the seven classes required of

seniors, in one year. As Jamal had already turned 18 when the project commenced,

district policy dictated that this was his final year in high school (he would be moved to

the adult education program after the spring). In workshop 5, Jamal came slouching into

the classroom late, unusual for him, chattering about having to take a photo outside for

getting a certificate for passing all his alternative school courses in the fall quarter. He

said to me that he had never gotten an academic accolade in his life before this occasion

and now he was going to be in the newspaper with his new certificate. From my field

notes of our talk, I wrote, "All he (Jamal) really wants to do is get off probation. He says

he's been on probation since he was 13. He still needs to keep up with the counseling but

he feels like he is making progress. I asked him about college and he said he wasn't sure"

(M. DuMont, field notes, November 8, 2011).

 Jamal's family life was troublesome. His mother and father were both, at the time

of this project, serving time in prison and his Grandmother was raising him in a remote

location within the large rural district. Jamal had trouble getting to and from school

saying that the bus ride took over an hour each way. Jamal spoke a little about his past,

talking to me in interviews about several "mistakes" he had made and the consequences

101
including mandated weekly counselor and parole officer meetings. In class Jamal was

quiet, bounced to his music and always greeted my warmly when he saw me.

 Initially, Jamal solved six of the seven bugs on the two debugging task days. He

abandoned the final bug without concern for leaving it unfinished. Jamal rarely asked for

help, but when I would walk by his machine and prompt him about his work, he often

needed assistance, but had not wanted to ask for it directly. Jamal was not afraid to

change things as he went and to tinker with the programming code. For instance, he made

some unique alterations to the prototype code on that first structured debugging task day

(workshop 1) to make the car change colors and to change the backgrounds of the

prototype Scratch project. In the following episode, Jamal worked during workshop 1 to

fix two bugs (#3 and #4) and also changed the car to be yellow. During the process,

Jamal talked to himself. He made only one comment to another team, "Whoa, my car

changes colors."

 Jamal Nnnn, Nnn, Nnnn.
 (makes car background yellow, clicks ok)
 Ahhh. Alright look. I'm gonna put.
 Where's the negative sign?
 Ok. So.
 (makes car go around)
 Alright.
 (fixed bug #3)
 Whoa. My car changes colors.
 (scrolling code, makes change to code)
 (tests eating, connects clips)
 Boom! Right there!
 That's how you do it.
 (fixed bug #4)

102

 When Jamal got a bug fix to work, he expressed his pride by saying "Alright."

and "Boom! Right there! That's how you do it." He said these things to himself, as if he

could not help but make the comments. He only told his neighbors that his car "changes

colors" because it seemed he wanted them to know that he had made a unique code

change.

 In the three days of independent project work prior to the craft materials arriving,

Jamal decided to begin with a blank project, instead of using the prototype code as a

starting point like all the other students.21 He imported and modified a "Wild Thing"

creature from the Scratch library (see Figure 21) reminiscent of the characters from the

popular children's book, and tried to program it to walk to the end of his outdoor forest

scene, turn around and come back. He had significant trouble making his idea happen,

but instead of exhibiting frustration, Jamal had a working pattern that included tinkering

with the walking code, running into a bug, trying to tinker around the bug and then, when

not successful, moving to another aspect of the project. Jamal worked for a time on

walking. Then, stuck, he tried to figure out how to import a picture from the internet,

which was not allowed because internet access was prohibited by the district. He worked

on walking some more. Then he worked on some sounds. Finally he freehand painted a

tree (see Figure 22) a meticulous and precise process including lots of erasing and

revision, to use as a stimulus to cause the Wild Thing to turn. Many of Jamal's ideas went

unfinished. With Jamal's haphazard approach (see Figure 23 for Jamal's walking code), it

21 One other student group ended up using a blank project without prototype code, but
this did not happen until later in the project.

103
seemed he was not fully connecting to the project. Jamal's code did not work for a

number of reasons that could have been mitigated had he used some prototype walking

code, which he chose not to. For instance, the "wait until" command has no qualifying

statement, so it would not work. Also, the motion commands said "walk 20 steps" and

"go to x= 52 y=-68", meaning the sprite would walk a short ways and then appear at the

coordinates given. This was not the walk down the stage, turn, and walk back that Jamal

had mentioned wanting to achieve. During the rest of the 40 minute workshop, Jamal

added a wait command and then removed some of the initializing blocks of his code.

When compiled, the code never did anything at all.

 At the beginning of workshop 5, Jamal said out loud, "I don't really like my

dude." For the first six minutes of class, he proceeded to work on and show off his tree to

another student, saying "Unn, check out my tree! Yeah Sonny!" Then during minute

seven, Jamal deleted his Wild Thing sprite, along with all of the code he had generated.

He did not make any verbal remarks when doing so, just began to look for a new sprite.

When asked in an interview about why he deleted his entire project he said, "I guess I just

lost interest." At this point in the project, Jamal stopped creating programming code and

focused solely on the aesthetics of his design, taking time to make sure the new virtual

pet looked the way he wanted.

 During the next three workshops (5 through 7), Jamal worked diligently on parts

of the project that mattered to him personally. He was not satisfied with his original

character or project. So, Jamal imported a new sprite, a unicorn, and spent a long amount

of time, over 30 minutes over workshops 6 and 7, painting sunglasses that he referred to

104
as "Stella Shades" and sneakers, referred to as "Nike 6 point 0s" (see Figure 24) in

Scratch. These two accessories seemed to carry personal importance for Jamal. Jamal

wore athletic sneakers similar to the sneakers he was painting in Scratch many days to

class.

Figure 21. Jamal's Wild Thing walking in the woods.

105

Figure 22. Jamal's hand-painted tree in progress.

Figure 23. Jamal's walking code that never worked correctly.

106
 Jamal worked without talking much to others and without breaks, sometimes

quoting the music in his ears out loud. At one point he got very frustrated that one of the

sneakers he had been working on looked like a high top, when it was not supposed to be a

high top shoe. In the following episode, after over 20 minutes of creating the shoes, Jamal

believed his last sneaker looked too high, but he was not sure how to fix the problem

without erasing part of the zebra's leg as well. He figured out that he needed to zoom in

and recreate the zebra's leg at a more pixilated level (see Figure 25).

 Jamal Shit. That sucks dude. Hey if I put eraser on the zebra, it'll
 erase him right?

 Oh yup. Dang it dude.
 I just hafta like erase the black, cause they're too high.
 They can't be high tops.

 For Jamal, it was important that the sneakers "can't be high tops." When I asked

him that day about his project he declared that he had no scripts (programming code)

"Mostly because it took so much longer to make it (the accessories) look awesome on the

computer screen". He wanted the relevant pieces of his project to "look awesome" and

was willing to put in the time and effort to make that happen. He then declared that he

would not be finished with his pet by the end of the project.

 Jamal's transformation from a programmer who seemed satisfied to place code

without fully understanding how it would work, to a dedicated designer continued

throughout the next several workshops. For workshops (8-10) Jamal designed his

physical pet, a purple felt creature with big eyes and zebra skin stripes. He built the pet

107
around a curved pie pan, found by Anna in one of recycling bins in the teacher's

kitchen, with seriousness of purpose.

Figure 24. Jamal using the paint editor to paint Nike 6.0s for his unicorn.

Figure 25. Jamal zooming in to fix his high top problem.

108
 Jamal hunched over his project, and rarely gossiped with the others (see

Figure 26). Notice Jamal chose not sit facing the other students in the class. Instead,

Jamal situated himself at the end of the table, looking towards the wall. Although the

original intention was to create the unicorn with the incredibly detailed Nikes from the

Scratch project, Jamal's physical creature took on a persona of its own and became a

zebra.

Figure 26. Jamal working on his tangible pet design, facing away from all the other
students in the class.

109
 Jamal's physical pet was very deliberately constructed (see Figure 27). He

spent three days of concerted effort crafting the pet and devised a way to embed the

PicoBoard to allow users to interact with the buttons and sensors without altering the

pet's appearance. Some other groups, like Tegan's did not embed the board at all and

others like Carlos' had trouble embedding their board and required continued support to

get past bugs and design flaws. At the end of the tangible design phase Jamal declared,

""Yeah! I got my little guy! Unnn. Done. Little man."

Figure 27. Jamal's finished zebra with eye pointing downward and tail up, the PicoBoard
in embedded beneath and not visible.

110
 As a result of the physical pet becoming something unintended, Jamal had a

mismatch between his Scratch sprite, the unicorn with the sneakers and sunglasses, and

his tangible pet, a zebra. After realizing the issue, Jamal spent a considerable time during

workshop 11 painting a new on-screen sprite that matched the physical zebra exactly (see

Figure 28). When finished painting his new sprite, Jamal said to himself, "Almost total

likeness. Yeah. Yeah. He's pretty tight." No other group paid so much attention to the

exact replication of their two designs. In fact Tegan's group decided that having monkeys

that looked different did not really matter and Tabitha's group, save for a couple head

feathers, had a completely different creature in the real world versus on screen. Instead of

deleting the other character that Jamal spent so much time making aesthetically relevant,

Jamal integrated the unicorn into the background of his dancing scene to make the scene

more authentic.

Figure 28. Jamal's hand painted zebra sprite.

111
 On the final workshop day, Jamal began programming again. I had not forced

him to program earlier, although I reminded him during several workshops that he needed

to think about coding at some point, because Jamal appeared very invested in his physical

pet development and I had not wanted to divert him. No other group spent so long

without programming any code for their pet. Recall that Jamal played around with some

characters and functionality and then deleted it all because he did not really care for the

character he had made. This time, Jamal again used a blank project and not the prototype

project I provided. It seemed important to him that everything was his own idea and own

implementation. At the end of class, Jamal was not satisfied and told the classroom

teacher, "I’m not even done, sorry, I’ve gotta stay here.” He stayed for an additional 30

minutes after class was over to complete his program. No other students ever stayed late.

 During the final workshop, Jamal ran into four bugs and resolved them by

tinkering his way through the problems and asking the facilitator for coaching. He was

the only student to resolve every bug he encountered on his independent project; he never

ignored, worked around or left a bug unsolved. Recall Jamal did leave bug #7 from the

structured debugging task unsolved without any consternation, however he did not do this

on his own project. On average, groups tinkered, meaning played with changing bits of

code to fix a bug, 14% of the time whereas Jamal tinkered 57% of the time when he

encountered a bug. This difference is explained by Jamal's playful approach to his work

and his dedication to the parts of the project that were personally meaningful. For

example, Jamal, after asking about who might appear at the design exhibit and hearing

teachers and administrators as the response, spent upwards of 20 minutes taking samples

112
of different music from his iPod to find the most pleasing song fragment with the

least offensive language. Jamal did not want to have any offensive language that his

classroom teacher had already disapproved of. The functionality Jamal implemented

included the zebra dancing to music using different costumes repeated in succession,

responding to Jamal's voice, doing backflips when the slider was moved a certain way

(see Figure 29), and speaking when the button was pressed. Using the slider to control the

pet's back flipping in succession was a unique bit of functionality. No other group

explored any way of using the slider besides walking.

Figure 29. Jamal's zebra doing a backflip in the dance club.

113
 Jamal then showed off his pet to an outside student who came to visit the

class, explaining all the parts proudly. As Jamal was cleaning up to leave that final day, I

asked him "How’d it turn out? Do you like it?” He responded, "Yeah, it’s alright.” This

from Jamal was a very positive reaction.

 Jamal had a shoddy academic history and was very reserved in the beginning of

the project. However, Jamal came to the design exhibit despite living so far away that he

was not sure how he would get home. Only four of the nine total students attended the

exhibit. He was the only student to bring a guest to the event, a friend of his. This show

of dedication was unusual for Jamal and speaks to his connection to the project. The

following excerpt from an interview describes how Jamal felt about the project as a

whole.

Facilitator How did this project compare to what you normally do in
 school.

Jamal It was pretty tight. Normally I do, normally school's like
 hella lame. But this was pretty fun.

Facilitator What's lame about regular school?

Jamal Like everything. (laughs) What do you mean what's lame
 about regular school?

Facilitator Like what kinds of things do you do? What do they make
 you do?

Jamal Like all book work and stuff. It's like DT (juvenile
 detention) kind of. Be all quiet. Can't talk. I'm surprised
 they don't make you walk down the middle of the hall with
 your hands behind your back.

114
Facilitator That's not a very glowing review of regular school. And
 then what was different about doing this?

Jamal I don't know it was fun. We just got to take it and go
 with it. It was kind of like a project. It was hands on. And
 we got to make things.

- - -

Facilitator What was it like working on the project?

Jamal It was fun. Like when I first started making my own I didn't
 really know where to start so that's why I kind of didn't do
 anything for a while. But then once I figured out what to do
 and everything, it came together.

 Jamal claimed regular school was stifling, boring and most often students had to

"be all quiet". In contrast he found the project to be fun and intellectually interesting. He

said, "We got to take it and go with it". He enjoyed being able to decide how and what to

build and create. For Jamal, the beginning of the project was somewhat difficult to relate

to. He said, "I didn't really know where to start so that's why I didn't really do anything

for a while". He was referring to the period where he deleted all his code. But it seemed

Jamal was able to make a personal, culturally resonant connection to his pet through

painting accessories for his sprite and creating the tangible pet that grew into a zebra.

Other studies show young people making culturally resonant connections to computing

through developing multi-media designs, like youths' music video creations and 'low rida'

interactive art projects in Scratch (Peppler & Kafai, 2001).

 After Jamal developed these artistic parts of his project, the rest of the project

took off as well. In Jamal's case, the physical pet creation combined with being able to

customize his project to reflect the things he liked, the shoes and shades, in real life

115
seemed to allow him to discover something relevant and personally meaningful in

programming and design. The tangible aspects of the project were important; in an

interview, Jamal said he signed up because "It was more hands on and I'm into hands on."

However, it may have been even more important to have the freedom to pursue interests,

how and when he wanted to. Jamal appeared to use time and freedom to learn and

explore to connect to the project in a way that engaged him profoundly, but once he

discovered that connection, he was dedicated, effective and successful. Personal meaning

realized in a combination of both tangible and virtual media appeared to provide Jamal a

way to connect to the project, whereas just one medium alone may not have.

Carlos

 Carlos was a Hispanic student with a heavy accent when he spoke English. He

was a junior with a car. Carlos never stayed in town long, going on extended trips,

sometimes a month long, to visit his girlfriend in California, where he claimed he would

go to college and live off his parents' money. Carlos had dropped out of the traditional

high school, for reasons no one explained to me, and then left town. He was one of the

students the principal of Winder was particularly excited about because she heard about

him having left the high school and personally tracked him down at his house to convince

him to attend the alternative school. She referred to him as "so smart". Carlos declared to

me one workshop that he ate two egg sandwiches chased by a Monster caffeinated energy

drink from the local gas station every morning, saying they were delicious and necessary

to survive school.

116
 Carlos's story provides insight into a different way of connecting with the

DigiblePets project. Carlos worked with Dino and Maya, the other Hispanic students

participating in the project. The threesome seemed to be friends before the project began.

They spoke and joked a lot with one another, much of the time giving Maya grief about

her boyfriend, another friend of theirs, talking about her pregnancy, or talking about

electronics. Carlos began the project wholly interested in programming and ended the

project with expertise in only that discipline. In an interview, Carlos claimed his interest

in the project stemmed from an interest in fixing computers for his friends and family. He

was the only student to mention programming as the sole reason for participating.

According to his survey, Carlos signed up for the project because he felt confident and

capable with computers even though he had no programming experience. He declared

about computers, "It always comes easy to me."

 Despite being absent for the first introductory workshop (workshop 0), Carlos

jumped into the computational aspects of the project right away. He instantly took over

control of the computer from Dino (Maya never had control of the computer, touching

only on two occasions, when Anna asked her to run the group's program because none of

the other group members were in the room at the time, which she could not do, and when

Carlos told her to paint a new version of their sprite alien with many more eyes) and the

direction of the group's pet development. At first Dino assisted with programming

problems, but after the third workshop, Dino lost interest and stopped offering advice.

Carlos's pet, for the functionality was all Carlos' doing, had many intricate features and

lots of programming complexity. At the end of the project, the alien could do the

117
following: make alien noises, put on sunglasses, wait for permission to ride a magic

carpet, ride the carpet, get off the carpet, jump on a trampoline to a different world,

differentiate between being fed "food" or a person's hand in the physical world, and walk

around, all based on interactions with the PicoBoard (see Figure 30) Carlos worked to

create all the different functions for his pet and refused to dismiss any of his ideas, even

when his partner Dino told him it would be easier to do so during workshop 9. Carlos'

project included myriad programmatic changes to the prototype code. Upon getting a

piece of his magic carpet idea to work, Carlos said, "Alright, I figured it out." He seemed

to take pride in his ability to create complex code and functionality.

Figure 30. Carlos, Dino, and Maya's alien Scratch program.

118
 When it came time to create the physical pet, Carlos told Maya and Dino that

they were "the art people" and dictated they do the work. He rarely touched the physical

pet or the rendition of the pet in the virtual space (see Figure 31 for the group's working

style). During workshops 8 and 9, Carlos declared himself finished with the programming

part of the project and proceeded to watch Dino and Maya as they struggled to finish the

physical design. Dino and Maya also worked on user interactions, embedding the

PicoBoard into the pet's body and frequently had to ask the facilitator for help. Carlos

spent the first half of workshop 9 fixing a phone that Maya brought to class, claiming she

found it in the street. When Anna, the classroom teacher came by to see why the group

did not appear to be working on the project, Carlos stated that they were finished, even

though the PicoBoard was not yet installed in the pet. Anna asked Carlos if he was

interested in going to the other room to do his coursework considering he was finished

with his pet. Then Carlos insisted they were not finished at all. This episode is

representative of Carlos' way of being authoritative, by declaring something that may not

have been true but quickly recanting it, if that was in his best interest.

 Instead of helping his group Carlos reported that he "did all the programming" as

if fairness dictated the other group members should be responsible for something. Carlos

all but refused to be physically involved with the crafty and art-like parts of the project,

only using the scissors to help them in the last few minutes of class. Instead of being

physically involved, Carlos preferred to sit back and bark out commands to the others,

sometimes making disparaging remarks, and acting as spokesman whenever an adult

came by to ask how the group was doing. For example, during workshop 9 Dino and

119
Maya physically manipulated the craft materials to embed the PicoBoard within their

cardboard box alien, a task that was more difficult than expected because of the multiple

items, sensors, buttons, and sliders that needed to be accessible simultaneously. Carlos

spent the time making a video of the others working on the phone he had just fixed for

Maya. He also offered the group unsolicited advice but let Dino do all the construction

work.

 Dino It works, see?
 It's not like they'll be checking the bottom.
 You know?

 Maya Maybe they will.

 Dino Says who?

 Carlos You gotta glue that (the paperclip mechanism they created
 to access the slider) to the side so it stops moving.

 Dino MmmHmmm.
 Gotta tape it to the side now.
 Somehow.
 Let's stick the tape through here and stick it to the side right
 here.

 Carlos Yeah. That's what I said.

 Dino (only one touching pet)

 Dino Duct tape fixes everything.

 Carlos That's not duct tape though.

 Maya It's ok. It's pretty tape.

 Carlos For anyone who's watching, that's not duct tape cause this
 kid is stupid.

120
 Dino (pushes Carlos)

 Carlos And she's like confused.
 (points camera towards Maya)
 She doesn't know what's going on.

 Carlos was vocal about his perception of his artistic abilities, saying, "I suck at

art" and "It's just that I'm not good at art and they are." Yet, when faced with the other

two doing the work, Carlos's banter is pejorative and authoritative. He told Dino, "You

gotta glue that to the side" and then when Dino explained how he might accomplish that

task while inspecting the alien, Carlos responded, "Yeah, that's what I said." When Carlos

did not say anything about how to "glue that to the side". Following that, Carlos made

several comments like "That's not duct tape though", "This kid is stupid" and "She doesn't

know what's going on", that are neither helpful nor nice. This sequence is representative

of Carlos' interactions with his group mates. He often displayed feelings of superiority,

commanded the others to do certain things, and made remarks that reflected poorly on the

others.

 Carlos was a confident programmer. He referred to his pet as "the best one" and to

his own programming skill as "the most advanced". However, when faced with bugs, his

group encountered the most bugs of any group (50% more than the group with the next

most bugs) 22 due primarily to the complexity of their project as a whole, Carlos never

tinkered, he either implemented a direct solution idea or required assistance or coaching

22 39 in total versus, 26, 22 or 14.

121
to fix bugs.23 When talking in an interview Carlos said about his personality, "If I get

something wrong I want to know why so I can get it right the next time." This sentiment

was reflective of his debugging style where he normally asked the facilitator; he wanted

not just to fix the bug by trial and error but really understand what went wrong. On day 4,

a particularly busy programming day where Carlos was implementing trampoline

functionality, Carlos worked through 10 bugs total, a large number for student groups

during this project.

Figure 31. Maya, working on the many-eyed alien, Carlos, touching the computer, and
Dino, looking at the Scratch program.

23 See Chapter 6 for more details on bugs.

122
 On average student groups asked for help from the facilitator as 42% of all

debugging strategies. In contrast, Carlos asked for help 93% of the time (see Chapter 6

for more details on student debugging). Additionally, Carlos received coaching, a step-

by-step method of providing assistance with bug fixes in 50% of cases whereas on

average, students received coaching in 17% of all debugging strategies. In an interview,

Carlos reported he was happy with the project overall and how his group's pet turned out.

About the project as a whole, he stated in an interview, "It was fun" because "I learned

how to program it and I got to mess around with the computer".

 For some designers of computational crafts, getting youth to participate in

computing is the goal, meaning a student who comes into the project with an interest in

programming is already on the hoped for path. The notion that the hybrid design

technology did not hinder Carlos' ability or interest in pursuing programming should

perhaps be heralded. However, for other computational craft designers (DuMont &

Fields, 2013; Fields et al., 2012), computational crafts should not just provide individuals

with an interest in crafts with experience in programming but vice versa as well. One goal

of the DigiblePets project was to broaden student participation in ways of thinking and

design in both physical and virtual media and the interplay between them, reflective of

the latter notion. Therefore the fact that Carlos, quite successful as a programmer, did not

participate in multiple aspects of design is not entirely desirable. He began the project

believing he was not good at art and finished the project with renewed faith that he was

good with computers but without any increased exposure to art. To be more aligned with

the project's goals, Carlos's interest in programming would have translated to a

123
willingness to engage more fully with the more artistic parts of the project. Although

Carlos' case sets parameters for greater success, he was deeply engaged in the project and

gained experience in programmatic thinking. Other students struggled to engage with the

project in any discipline.

Hybrid Design Technologies and Limitations on Engagement: Dino

 For some, hybrid media did not provide access to either artistic or programmatic

design. For a small subset of students, lured by one or the other discipline or simply

willing to give the project a try because of the promise of elective course credits and a

seemingly new way of learning, struggled throughout the project to find a meaningful

way of connecting. For instance, Dino, who reported in an interview that he joined the

project because he liked art and wanted to build things, also said he could not get past his

dislike and distrust of computers to make a meaningful contribution to any aspect of the

project save some work embedding the PicoBoard into the physical pet. The stigma Dino

attached to computers ran deep. For instance, whenever anything went amiss, Dino

immediately provided commentary like "I hate computers" and "you can't tell them what

to do". He used his views of computers as an excuse for not participating more fully in

the project.

 Dino was a small Hispanic junior with a moderate accent when he spoke English.

Dino would often speak to Maya in Spanish and refer to Carlos with Spanish expletives.

The teachers I spoke to about Dino were concerned about his lack of engagement in any

aspect of school and his tendency toward insubordination. Dino's academic past and

124
personal history were elusive, but he spoke occasionally to his group mates about

making money by "finding" electronic equipment (phones, Ipods, game players) in

various places like inside other people's backpacks, as he stated during workshop 9 to his

group, and fixing them up to sell to others. He was often sullen and not very responsive

to me during workshops. When we talked during one workshop about what some of the

students might be interested in pursuing after they left Winder, Maya said she would like

to become a pediatrician, Rocky a diesel mechanic, and Steph a record store owner. Dino

said he would like to move to California to open a pharmacy, the kind that could sell

marijuana legally, and make a lot of money.

 In our interview, Dino said he considered himself to be an art person. He enjoyed

art at Winder and claimed his favorite class was an ACAD, a software program for

technical drawing, design class at the traditional high school. Dino was very forthright in

our interview and gave me great insight into his thinking about school and life. I

appreciated his unconstrained opinions and willingness to share them. Along with his

hatred of computers, Dino was vocal about hating math. In particular, Dino described

having to do math problems exactly the way teachers told you to even when you got the

right answer in a different way as stifling and bad for humankind. In the following

excerpt from our interview, Dino discusses in depth how being told exactly what to do in

math threatens human creative thinking.

"Because it's like. I hate it how you, it's always like the same thing.
Teachers teach in a way and supposedly it has to be done that way. A lot
of students think it's got to be done that way. And they figure it out and
they all do it that way. Cause one time I got this same answer in a different
way. And the teacher said it was wrong because it was in a different way.
And I was like "Why if it's the same answers?" And he's like "But it's this

125
rule in math". And then I'm like "But why do we have to do that rule in
math?" You know? And he said he doesn't, he didn't even answer. He's
like "I don't know, that's just how math is." So I thought that was kind of
gay because it was the same answer in a different way. And he said it was
wrong. So like I hate it how everybody, if they're taught in a way they all
try to figure out in that same way and they always follow the same order,
always, always, always. Well, if you tried out something different then a
lot of things would be different. For example if we all figured out math the
same way we would all think the same, wouldn't we? So if we all try
different ways then we would all have different ways to do things. Like if
we all thought the same way in drawing we would all have like the same
ideas, the same drawings, the same paintings. But if we had different ways
to think about it we would think about different ideas to draw, different
paintings and the world would be different and with more variety and
more things to choose from and not just the same thing."

 Dino's insight into the importance of creative mathematical thinking and its

parallels to the importance of artistic expression is poignant, especially for a student who

was widely seen as unsuccessful. This excerpt opened my eyes to Dino's way of viewing

the world and made me understand why Dino was having so much trouble with the

traditional school system. He wanted an opportunity to realize his expression and was not

given ways to do that productively and was able to articulate that need fairly

sophisticatedly. This interview made me realize that Dino was struggling with authority

in situations where authority made no sense to him and that he was indeed a thoughtful

person.

 During the project, Dino was most of the time very subdued and pessimistic.

When I came by to help the group, Dino often made an excuse to visit the bathroom or

leave the area for other purposes. For instance, when Carlos summoned the facilitator on

one occasion during workshop 4, Dino got up and wandered around the room until both

the facilitator and Anna, who came by to see what was going on, had left. Then the next

126
time the facilitator came to help, Dino declared, "I'm going to throw this away" and

left the room again. When a bug occurred, during that same workshop he said, "See you

can’t work with computers. They don’t do what you want them to." Once the craft

materials arrived, I thought Dino would become more involved with the project.

However, save for workshop 9, where Dino helped Maya embed the PicoBoard such that

all the buttons, sliders and sensors were accessible beneath the alien, Dino did not

participate in the creation of the alien. When I asked him during workshop 5 why he was

not interested in developing the physical pet, his reason was because, "It's weird". Carlos

insisted, "You're going to make it." To which Dino responded, "No. I'm done."

 On the debugging task assessment at the end of the project, Dino refused to

complete the debugging questions after spending a minute or two on the first one. He

said, "I don't know. I'm just not even going to try. I hate computer shit." During the same

interview he declared there were too many numbers in Scratch, too much complexity in

programming and that programming was boring. These comments were reflective of my

observations of Dino throughout the project. He thought the project would be about

pressing buttons to make simple changes to the pet but not about programming.

Similarly, Dino chose not to participate in crafting the physical pet because he "thought it

would be different". He believed the physical pet construction would be more like

industrial design and less like crafting or art, which he said he liked earlier in the

conversation:

"That was I think because all we had was like a box. But like, I like to, I
thought we were going to build things because when you said we were
going to build our own thing and then we were going to build it like,
because I like using, I like building things. I like working with my hands

127
you know? Like you, I thought we had to build like an actual Cujo, but
not build it with like tape and glue and like that. I thought we had to build
it using like scissors and wire cutters and wires and sticks, stuff like that."

 It seemed like aspects of the programming had gotten Dino so disenchanted with

the project that he was then disinclined to give the more artistic physical pet design a

chance. He could easily have used scissors and wire and sticks to make the physical pet.

Other students used pie plates, balloons, cardboard boxes, pipe cleaners, cork and other

found objects. There were no limitations to the materials or creativity of the construction.

Clearly, for Dino, the project was not successful in encouraging him to participate in

design or development in the way I would have wanted. Dino's frustration with and the

reinforcement of his prior perceptions of computers seemed to influence his thinking in

negative ways, manifesting itself in avoidance of nearly all aspects of the design project.

Hybrid design technologies did not provide an effective way for Dino to engage in

design, but also worked to negatively manipulate his already tumultuous relationship with

computational technology.

 Although I observed that the hybrid design technology increased the possible

ways young people could engage in computing and artistic design, many of whom would

not otherwise have participated in a programming project, the hybrid design technology

did not necessarily provide a way for everyone. For instance, Dino thought he would be

interested in some aspect of the design project, but then was not. Some of this could have

been mitigated in part by the design of the project as a whole, but the observation begs a

reevaluation of how to envision, design and use computational craft technologies to best

broaden participation in computational disciplines and artistic design. The simple link

128
between art and technology in the design of a relevant artifact is not always enough to

promote young people to participate in and engage meaningfully with programming and

physical design.

Summary

 In total, four student groups and one classroom teacher designed five DigiblePet

projects. Carlos, Dino, and Maya's many-eyed alien was functionally complex, thanks to

Carlos, but none of the group members attended the design exhibit to demonstrate the

project to the community. Jamal's zebra was carefully crafted physically and represented

virtually and lived inside a Scratch project that Jamal began from nothing on the final

days of the project. Jamal and his friend came to the design exhibit. Jamal was the only

student to invite someone who attended. Tegan, Rocky, and Ted's project had an

elaborately constructed physical pet, Tegan's monkey that she took home with her. Tegan

and Ted came to the design exhibit, but Rocky had to work, so could not attend. Steph

and Tabitha struggled throughout the project, with ideas, attendance, their personal

relationship and programming, but created a feathered physical unicorn that was a

feathered hippo on screen. The pet had limited functionality because Steph accidentally

deleted their code near the end of the workshops and the girls had difficulty making much

progress afterwards. Tabitha came to the design exhibit and explained her troubles to the

audience, who were very sympathetic. In the next chapter, I will explore how the students

interacted with one another during the project and how these interactions contributed to

how project designs unfolded.

129
CHAPTER 5

HOW STUDENTS INTERACTED

 One of the main goals of the project was to use innovative means to allow

students access to new domains of expertise and learning. Because the majority of

creative artifact production occurs in a collaborative atmosphere (Sonnenburg, 2004),

sharing and building upon ideas was anticipated to be a critical component to realizing

this goal. In principle, hybrid technologies should be well suited for supporting

interaction. Multiple individuals can observe the actions of others, make suggestions, and

take turns producing and implementing solutions. Also, and perhaps even more critically,

hybrid technologies combine multiple academic disciplines where students can have a

sense of expertise. A student who does not feel as comfortable with programming could

begin by expressing ideas about the tangible portions and from there, encounter and

resolve problems that would naturally appear as they moved beyond physical structure to

computational behavior. A student who was more comfortable with the programming

would eventually need to refine her understanding by configuring and building the

external sensing or response apparatuses. The open and flexible workshop time should

allow students to engage in informal sense-making discourse and negotiation as they

worked toward a shared endeavor.

 However, the quality of interaction ultimately took on different characteristics,

some of which were alluded to in the descriptions of individual students’ experiences

from Chapter 4. In this current chapter, I will describe the nature and frequency of

student interactivity observed during the project. Specifically, much more interaction

130
about the project occurred between students during the structured task than during the

open-ended design project. The dual nature of the hybrid technologies on several

occasions seemed to actually support modularization over collaboration. Furthermore,

there were some qualities of the population that may have mediated their ability to

consistently collaborate with one another.

Why Should We Care About Collaboration

And How Was It Encouraged?

 Collaboration is considered important to a broad range of creative artifact

production activities such as improvisation (Sawyer & DeZutter, 2009), creative writing

(Vass, Littleton, Miell, & Jones, 2008) and even web-page creation (Fernandez-Cardenas,

2008). Similarly, collaboration is paramount in helping young people to develop

collaborative agency (Kafai, Fields & Burke, 2011) because collaboration is thought to

inherently inspire and improve product development (Vass et al., 2008) through

participation, communication and negotiation (Fernandez-Cardenas, 2008; Sonnenburg,

2004). Studies have also shown young novices can learn computer programming better

when working collaboratively (Webb et al., 1986). A meta-analysis of computer-based

instruction in K-16 classrooms concluded that collaboration made computer-based

instruction more enjoyable and motivating for students (Del Marie Rysavy & Sales,

1990). Yet, despite efforts to encourage collaboration, observation and field notes from

this project highlight the fact that collaboration was a very limited component of students'

group design projects.

131
 There were deliberate efforts to support students engaging with one another.

By working in and across groups, I aimed to have students sharing, building upon and

negotiating ideas pertaining to the development of their shared design projects. Students

were recurrently referred to one another when there were questions, asked to share their

project ideas with each other and the class and verbally encouraged to come up with ideas

together, especially in opener and roundtable sessions by me, the facilitator. In addition,

the project was built upon reusing and modifying another's ideas, namely the prototype

developed by the facilitator, the code from which was to be reused and modified by

students for their own projects. The small group configurations were left to the

preferences of the students so that they could, in principle, select students with whom

they had rapport and would comfortably share ideas. Yet, the overall sense I had and

recorded in my notes was that collaboration waned. To examine that, I proceeded to

analyze in detail video records of student activity.

Operationalizing Collaboration

 Collaboration can be thought of in a number of ways both verbal and non-verbal.

During the project, students interacted verbally, through speaking exchanges, and non-

verbally, by taking turns manipulating the external PicoBoard, pet, craft materials, USB

cords or computer keyboard and mouse. For this analysis, collaboration was counted, as

when a verbal exchange of ideas, or combination of verbal and non-verbal exchanges by

students, occurred with a minimum of three separate turns. Also, the exchange must be in

reference to the task at hand. For instance when a group was working on a specific

132
debugging task, talk and manipulations related to that debugging task was considered

collaboratively relevant. In general Student One says something, Student Two adds his or

her input or manipulates the technology in response, and Student One incorporates or

otherwise responds to the contribution of Student Two’s turn either verbally or through a

nonverbal manipulation. Exchanges could be comprised of many more turns and

extended until the interaction was interrupted or concluded. Those were still counted as a

single collaboration episode. Three-turn exchanges of ideas in which one of the

contributors was from the facilitator were not counted as collaboration between the

students. However, if a three-turn (or longer) exchange between the students took place a

few moments after a contribution from the facilitator, then that was counted as an

instance of collaboration. Verbal (or verbal with nonverbal) exchanges were not counted

as collaboration when one group member commanded another group member to do

something and then reacted when the other member fulfilled his or her task because,

although enacting the behavior could be seen as a turn, the responding student did not

visibly share his or her thoughts or ideas. However, unsolicited behaviors were included

as part of a turn.

 The following excerpt provides an example of collaboration that fits the

operationalized definition above and includes an example of how physical manipulation

as well as verbal utterance was important to collaboration in this project. In the following

excerpt, during the structured debugging task, Rocky identified an issue in the program –

namely, they lost their sprite on the screen - after the pair believed they had solved bug

#1. This first portion of the transcript was not coded as collaboration because there were

133
only two exchanges, Tegan talking as she changed the code and Rocky expressing to

the facilitator that they had fixed the bug. The second portion of the transcript was coded

as collaboration because Tegan and Rocky participate in four verbal/non-verbal

exchanges that result in successfully testing the bug fix.

Tegan (scrolling through code) manipulation computer
 Mmm. Oh hello. Ok. referring to computer
 He should say pesky bug.
 (finding "say Hello." command code change
 typing "pesky bug" in textbox)
 Ok. Ok. We did it! exclamation of success

Rocky I think we did it! calling Facilitator to view

Facilitator I'm coming.

 - - -

 (trying to test program but they
 can't see the grasshopper on screen)

Rocky We lost him (the grasshopper). #1 -
 Push the green flag again. idea about virtual program

Tegan (clicks red sign, #2 -
 clicks green flag to start program) manipulation computer

Rocky (moves pet to hopper using slider, #3 - manipulation
 pet says "pesky bug!") PicoBoard

Tegan Yay! Ok, we did it! #4 - reaction of success

134

Figure 32. The prototype Scratch code for debugging task #1 that Tegan and Rocky are
engaged in. The collaborative exchange is considered as beginning with contribution #1
(from Rocky).

 In this episode, Tegan, as the “programmer” made changes to the code so that the

words "Pesky Bug!" would appear on screen instead of "Hello." (See Figure 32 for the

Scratch programming code Tegan and Rocky were working on.) Meanwhile, Rocky

closely attended to Tegan’s activities on the screen even though he was not touching the

computer or making code changes, observing, “We lost him” when the grasshopper

moved off screen. He suggested a test of the code and directed Tegan to “Push the green

flag again.” Tegan followed Rocky’s instructions while Rocky then decided to also make

some adjustments to the slider on the Picoboard that allowed them to test whether

Tegan’s new code worked. Tegan also focused on Rocky’s manual adjustments,

alternating between her focus on the screen and Rocky’s adjustments on the pet. Upon

seeing the pet and hearing the new sound “Pesky Bug!”, they were able to recognize that

they had resolved the bug. The result was a success and Tegan exclaimed, “Yay! Okay,

we did it!” The “we” in both Rocky’s and Tegan’s comments in addition to their attention

135
to each other’s work on and off screen manifested the shared nature of their

collaborative work.

 Tegan and Rocky were both part of the group that built the Monkey pet and thus

this was intragroup collaboration. Collaborative exchanges could also take place between

groups. However, intergroup collaborations were quite rare during the project. During the

structured debugging task workshops (workshops 1 and 2), the debugging task sheet I

created stated specifically that students could seek out other groups for advice and help.

"Here are Cujo's bugs. Your job is to figure out how to fix them. Save
often. You can get help from other teams or ask me for advice. When you
figure one out, wave me down so I can take a look at it. If I think it works,
then write down what you did (the code you changed or added) on this
sheet. Good luck!!"

 Since all students were working on the same tasks with the same prototype

computer program, it would have been very easy to share ideas across groups. However,

only six instances of inter-group collaboration occurred, for a total of 6 minutes of multi-

group interaction, and all of these exchanges included the same group (Tegan and Rocky)

as one of the collaborators. Tegan and Rocky's group always took the role of the provider

of knowledge and two other groups, Dino, Carlos, and Maya (group 1) and Tabitha,

without Steph, (group 2) were on the receiving end. Rocky was especially interested in

sharing his expertise, sometimes offering debugging advice, and subsequently giving it.

He did this even when the other group did not make a request nor accept Rocky’s offer to

provide it.

Collaboration Analysis

136
 Based on careful consideration of all project days, I selected four days for

which all groups were fully transcribed for analysis. These transcriptions included

utterances, physical and computational manipulations to the technology or pet (for

example scrolling through code, changing code or pressing the PicoBoard button etc.),

and student activity (for example leaving the room, going to get a piece of fabric etc.)

Reducing the data to classes that meet certain criteria for the purposes of fostering

productive analyses in this way has been seen to be an effective sampling strategy in

other design research projects (Berland, 2011). It is also a practical matter as the amount

of data collected for such a project can easily exceed the amount that can be fully

prepared and analyzed within a reasonable amount of time.

 The selected workshop days were workshop sessions where student groups were

engaged in development work on their designs and would have occasion to share and

build ideas. I further determined that days when students encountered a lot of bugs would

provide insight into how those student groups shared and built ideas together on their

projects, instead of capturing days where groups were gossiping most of the time for

instance. I also wanted to compare what the bug heavy groups were doing to what the

other groups were doing on those days. In the end, each group would have been

productively engaged in developing some aspect of their pets for at least one of the days

chosen.

The four workshop days selected were workshop 1, the first of the structured

debugging task workshops, because all groups were involved in aspects of programming

and debugging on that day. In addition to workshop 1, I selected the three independent

137
project work days during which each student group encountered the most bugs (see

Table 6). For instance, Jamal encountered six bugs in workshop 1, the structured

debugging workshop, and then between zero and two bugs per workshop day until the

final workshop, 12, where he encountered four bugs.24 Therefore, I selected workshop 12

to represent Jamal's most buggy independent project work day. I also chose workshops 4

and 9 to represent the other student groups during their most buggy independent project

work days. This strategy would have resulted in five selected days, the structured

debugging task day plus the most buggy day for each of the four student groups, but the

Monkey group and the Hippo/Unicorn group coincidentally had their largest bug day on

the same workshop, workshop 4. Because of the selections I made, I had a chance to

investigate what all the groups were doing during the chosen days as well. Recall that I

transcribed the activities, manipulations, and utterances of all student groups for all of the

selected days, thus giving me a more well-rounded picture of all groups' working

patterns.

 In the transcripts from each of the sampled days (16 transcripts in total), each

instance of three or more turns of interaction, taken as a combination of verbal and non-

verbal, was highlighted as a potential collaborative episode. For each highlighted episode,

I reviewed the corresponding video excerpt two to three times to determine what the

students were engaged in doing, what the verbal utterances were referring to, and where

the students were focusing attention to determine whether the episode fit under the

24 Although Jamal worked alone and was not considered part of the intragroup
collaboration analysis, he did encounter bugs and so his most productive bug day was
also included in the overall selection of workshops to analyze. The same four selected
workshops were used for analysis of collaboration and debugging.

138
working definition of collaboration. For instance, if one of the students in the

exchange was talking about a piece of programming code and the other student was

speaking in turn about the feathers he or she was putting on the physical pet, an instance

of collaboration was not coded even though it may have appeared on paper as though the

students were interacting with one another and not just in tandem. In this case, it would

be more useful to call the exchange one of cooperation, defined as individual pursuits

combined to make a collection of results, rather than engaging in a shared task together

through negotiation and joint knowledge building, known as collaboration (Stahl,

Koschmann & Suthers, 2006). Therefore, students had to be attending to the same idea

for collaboration to be coded. Every change in control over the technology/design was

also viewed again to ensure the exchange took place. Finally, each episode deemed

collaborative was placed on a timeline to illustrate a collaborative summary of the

project.

139
Table 6

Student Groups, Projects and Number of Bugs Encountered on the Four Days Selected
for Analysis. The Student Group for Whom the Day Represented the Biggest Bug Day is
Highlighted

Workshop
Day

Student Group Project Number of Bugs
Encountered

1 Rocky, Tegan & Ted

Carlos, Dino & Maya

Tabitha

Jamal

Monkey

Alien

Hippo/Unicorn

Zebra

7

9

6

6

4 Rocky, Tegan & Ted25

Carlos, Dino & Maya

Steph & Tabitha

Jamal

Monkey

Alien

Hippo/Unicorn

Zebra

4

10

3

2

9 Rocky, Tegan & Ted

Carlos, Dino & Maya

Steph & Tabitha

Jamal

Monkey

Alien

Hippo/Unicorn

Zebra

1

1

4

1

12 Rocky, Tegan & Ted

Carlos, Dino & Maya

Steph & Tabitha

Jamal

Monkey

Alien

Hippo/Unicorn

Zebra

0

4

3

4

25 Tegan, Rocky, & Ted encountered four bugs on workshop day 4, which was the
most bugs they encountered during an independent workshop day. Thus workshop 4 was
selected for analysis.

140
Collaboration Results

 The resulting analysis showed that student interaction differed between the more

structured workshop days and the independent project days. On average, the collaborative

episodes of groups whose members were present26 accounted for 67% of the overall time

of workshop 1, a structured debugging task workshop. For example, Tegan and Rocky,

for Ted was absent workshop 1, engaged in 18 episodes of collaborative exchange for a

total of 169 exchanges or turns considered to be collaborative (see Table 7). These data

suggest groups were highly interactive and also spent a great deal of time on task. In

contrast, groups spent an average of 16% of time collaborating during the other three

workshop days combined. For example, Tegan, Rocky, and Ted's group engaged in 13

collaborative exchanges during the three other workshop days, workshops 4, 9, 12, for a

total of 43 collaborative exchanges in workshop 9 and 45 collaborative exchanges in

workshop 12. Tegan worked alone and therefore could not collaborate with her group

members in workshop 4. These data suggest that Tegan, Rocky and Ted participated in

about 25% of the collaborative exchanges during an independent day versus during the

structured debugging task day. These results are representative of how all the student

groups collaborated.

 Carlos, Dino, and Maya collaborated for 24 minutes the initial day and then for a

combined 30 minutes the following three workshop days taken together (see Table 8).

26 Some groups had only one member present on workshop 1, like Tabitha was the
only member of the Tabitha & Steph group. She did not collaborate on day 1 because she
worked alone. Therefore Tabitha was not included in this data figure. Also, Jamal worked
alone and could not collaborate with himself.

141
Table 7

Number of Collaborative Episodes, Total Collaborative Exchanges, Length of Workshop,
and Percentage of Collaborative Exchanges Versus the Structured Day for Tegan, Rocky,
and Ted's Group

Workshop Group

members
present

Number of
collaborative
episodes

Total number
of
collaborative
exchanges

Number
of
minutes
of
workshop

Percentage of
collaborative
exchanges
versus
structured
debugging
day

1 Tegan,
Rocky

14 169 ~ 34 100%

4 Tegan 0 0 ~ 40 0%

9 Tegan,
Rocky, Ted

6 43 ~ 50 25%

12 Tegan,
Rocky, Ted

7 45 ~ 49 27%

 Tabitha worked without Steph on the initial day because Steph was absent. In the

following three workshop days, Tabitha and Steph collaborated for a total of 17 minutes.

Finally, Jamal worked alone and therefore is not counted in the within group

collaboration analysis.

 All inter-group collaborative episodes coded involved a member of the Tegan,

Rocky, and Ted group (see Figure 33). Carlos, Dino, and Maya, any or all of the

members therein, collaborated with Tegan, Rocky, and Ted five times during the project.

The two groups exchanged ideas for eight total minutes. A member of Steph and Tabitha

collaborated with Tegan, Rocky, and Ted seven times for a total of seven minutes. Jamal

142
did not collaborate on any occasion with another student in the class. In total, 22

minutes of workshop time (in roughly 10 group hours of workshop time where

approximately 7 of the total hours were spent working independently) were spent sharing

ideas across groups. This accounted for approximately 5% of workshop time.

Table 8

Minutes of Collaboration Time for Each Group During Workshop 1 and then During the
Combined Independent Workshops Numbered 4, 9, and 12

Workshop/s Steph & Tabitha Tegan, Rocky &

Ted
Carlos, Dino &
Maya

1 n/a 24 24

4, 9, 12 17 14 30

 One of the design commitments for the project was to encourage productive

exchange of ideas through the cultivation of a learning community. The initial

collaboration analysis suggests students were able to effectively collaborate when

working through the structured debugging task. However, after the structured debugging

task took place and despite efforts to encourage student sharing and building of ideas

throughout the project sequence, through facilitator guidance, opener and round table

discussions and by having students fill out a design journal each workshop that asked

143
specifically about whether students worked with one another that day (see Appendix

D.), students then did much less interacting about their projects when working on their

independent projects.

Figure 33. Collaboration between groups during the sampled workshops. All groups
collaborated with Tegan, Rocky, and Ted's group.

 Many reasons may account for why collaborative occurred as observed. One

possible reason for less interaction during independent designs could be that students did

not work well together, even though the students chose their own partners or decided to

work alone. Indeed there was evidence of this during workshop 9, when Tabitha and

Steph, best friends, refused to speak to one another for the duration of the session because

of an out of school conflict. It is also possible that debugging may have lent itself to

solitary pursuit. Working through difficult problems may naturally have promoted

144
individuals to work alone. But that does not explain why when asked specifically to

debug, on the structured debugging task, students were more highly collaborative. Also,

other studies have shown debugging to be a distributed activity (Berland & Lee, 2010).

These hypotheses do not adequately describe the way students interacted during the

project. Students were able to collaborate on structured debugging tasks then chose to

interact more infrequently on their shared projects. In the subsequent sections, I describe

potential reasons for the interaction observations and provide collaborative episodes from

the transcripts that help illustrate the collaboration observed in the project. But first, I

highlight an aspect of the population that may have confounded the overall picture of

collaboration.

Accounting for Absence

 First, before outlining hypotheses for the collaborative structures observed, I

should address the issue of absence. Absence within the alternative school was prevalent.

Students had chronic truancy problems, were routinely sent to detention centers, jail or

into foster care locations and often disappeared for days or months at a time. During

workshop 1, Steph, Tabitha's partner was absent, meaning that Tabitha's group could not

be included in that days' collaboration analysis. She had no group member to collaborate

with. The fact that only two of the three groups could be analyzed for workshop 1

reduces the robustness of the collaboration analysis, but the results from the other two

groups are so striking they cannot be ignored. Ted was also absent from workshop 1, but

his group Rocky and Tegan were able to collaborate without him. Not to mention the fact

145
that he was again absent one of the three subsequent workshop days chosen for in

depth analysis. Tegan worked alone one of the workshop days because both Rocky and

Ted were absent. For her group, the total collaborative minutes in the independent

workshop days, 14, was taken from only 100 total minutes of workshop time instead of

140 minutes for the other groups. By counting only days where at least two group

members were present, I attempted to alleviate the absentee problem since it was difficult

to collaborate with group members that were not present. Therefore, absence was not a

mitigating factor in the collaboration analysis.

Why Else Student Collaboration Was Limited

 In many respects there are things beyond absence to discuss. Other dynamics

were at work to explain students' collaborative structures and were visible empirically.

Students in the project were able to collaborate by interacting with one another because

they did so during the structured debugging task. However, students did little interacting

about their project design or development in subsequent workshops. During the

independent project workshop sessions, as I will describe below, student collaboration

was highly modularized, more like definitions of cooperation rather than collaboration

(Stahl et al., 2006). Rather than jointly building upon ideas and design plans with one

another, the emphasis was on students taking distinct roles and responsibilities therefore

working on independent goals, within the larger goal of making an interactive pet. It was

interesting to observe this modularization because the pet projects were integrated and

combining individual portions at the end sometimes led to groups having an end result

146
that made little sense, for instance in Steph and Tabitha's case, a unicorn physical pet

and a hippo virtual pet (see Figure 34) This form of modular collaboration took place, I

suspect and will discuss below, because of tendencies among students to treat their work

as proprietary and to distrust other students. Also a partitioning of work occurred across

the board reifying existing interests and expertise and resulting in a tendency to become

emotionally attached to specific parts of the design process.

Figure 34. Steph and Tabitha's final project. The unicorn on the left was Steph's physical
pet design whereas the hippo on the right was Tabitha's virtual pet design. The head
feathers are one visual aspect the two creatures, that are intended to be representations of
the same pet, share.

147
Expertise And Interest Lead to Divided Roles and Goals

 Despite collaborative intentions in both planned activities and in facilitator

interactions with students, full review showed that every multi-student group naturally

distributed responsibilities on their independent projects according to perceived strengths

or preexisting interests, not opening new opportunities for students (see Table 9 for

details).

Table 9

Student Design Teams and Roles

Pet Student Sex Role

Monkey Rocky M Programmer

 Ted M Comic Relief

 Tegan F Tangible Pet Designer

Unicorn Steph F Tangible Pet Designer

 Tabitha F Programmer

Alien Carlos M Programmer

 Dino M Tangible Interaction Designer

 Maya F Tangible Pet Designer

Zebra Jamal M Programmer & Pet Designer

148
 Other work highlights this same problem, in that naturally distributed roles in

collaborative Constructionist learning have been shown to potentially exacerbate

students' social and academic identities (Abrahamson & Wilensky, 2005). In the

DigiblePets Project, each team had one programmer, one physical pet designer and if

applicable, a third member who contributed predominantly when asked to assist with a

specific task or took on the role of tangible interaction designer.27 Once the craft

materials arrived, teams deviated from this structure only in circumstances when a

student was absent.

 Perceived expertise influenced students’ participation within their groups. For

instance, when asked why the group broke up responsibilities in an interview, Tegan

replied, "Well, cause they're (Rocky and Ted) not really crafty and also they'd just mess it

up because I had an idea in my head." The perception that the boys were not crafty,

shared by the boys, resulted in the boys' lack of opportunity to design with the crafts. The

assumption that computational crafts provide a pathway to computation and also deliver

students to engage in new disciplines does not always hold. In this case, the opposite was

true, as described in Chapter 4, Tegan abandoned programming in pursuit of her interest

in physical pet design; Rocky and Ted were not encouraged to craft and were rebuked by

Tegan when either one attempted to contribute. Similarly, Tegan and others in the role of

crafter rarely accessed the computer and did little to no programming. Carlos echoed the

same idea in his interview regarding role assignment based on expertise, stating that his

27 A tangible interaction designer's role was to integrate the sensors, buttons, clips,
and slider within the physical pet to allow for the user to interact with them and cause
virtual reactions on screen.

149
group divided responsibilities because, "They're better at making stuff with their

hands and I'm better at the computer". Strict role distribution contrasts flexible role

shifting styles of groups of youth making music videos (Peppler & Kafai, 2001). In this

case, students assumed roles within the overall context of the project and remained within

them.

 However, distribution of work and collaboration are not necessarily mutually

exclusive. Just because each individual has a specific role within a larger task, does not

mean the individuals within a group will not interact. Highly collaborative yet distributed

working styles have been observed in classroom implementations of other computer-

based technologies including seamless thinking of a pair using the Constructionist

software tool, Boxer (diSessa, 2000). Different from a computer-based technology like

Boxer, the DigiblePets technologies can support multiple designers at the same time,

which might suggest that they would be even more collaborative. Also, by having both

craft, popular toy, and computational components, DigiblePets technologies aimed to

make use of multiple areas of potential expertise, meaning giving youth who do not relate

to computing an opportunity to play a vital role in other aspects of the project

development process. As a result, I expected to observe more interaction within groups.

However, not only did students in the DigiblePets project distribute roles, they also

isolated themselves by attending to individual goals. This is a critical difference. Students

using the Boxer programming environment had the same goals, much like the students in

the project during the structured debugging task, whereas during the open-ended

workshops students divided both roles and goals, separating themselves and their ideas.

150
For instance, during workshop 8, Maya (the crafter) asked her team member Carlos

(the programmer) for advice on the design of their physical alien.

 Maya Wouldn't it be cool if he had so many eyes?

 Carlos I don't know. I don't care.

 Instead of participating in Maya's design process, Carlos simply responded, "I

don't know. I don't care." This is striking because the project as a whole reflected all of

the students' efforts. Although Carlos did not see it, a functionally superior pet with a

visually poor physical pet would make the whole group's project appear to me to be less

integrated and less successful overall.

The Difficulty of the Task Prevented Students from Taking Up Collaborative

Opportunities

 Additionally, computer programming is conceptually difficult (Guzdial, 2003).

The difficulty students had implementing their own personally meaningful ideas

especially because the students were isolated by roles and goals often caused

collaborative opportunities to not be taken up. Even in instances when one partner was

seeking collaborative interaction, many times the other student/s in the group were so

preoccupied by the demands of their own work they were not able to take up the

collaborative interaction. For instance, Tabitha and Steph worked side by side on the

programming code (Tabitha) and pet construction (Steph). In the following two-minute

episode, during workshop 9, Tabitha was working on getting the unicorn to dance by

151
repeating a switching costumes (see Figure 35) command that would make the

character look as though it was rearing up and down.

Figure 35. Tabitha's two-costume approach to dancing.

 Tabitha had worked for four minutes on implementing the two-costume approach

and was getting increasingly frustrated with the lack of results. Tabitha was in the process

of identifying a two-fold bug because the PicoBoard became un-paired28 and needed a

reboot, meaning no buttons were working, and although her dancing code would work,

she added a glide command as an afterthought that caused the unicorn to glide out of the

28 The PicoBoard needed to be paired with the computer in order for the computer to
recognize the device. On occasion, for no discernable reason, the two would come
unpaired, causing no data to be transferred to the computer. In this case, the PicoBoard
would need to be essentially manually reintroduced to the computer.

152
stage area. This caused a situation where essentially the unicorn would leave the

visible area of the screen and then proceed to dance where no one could see it. Steph was

working on building the physical unicorn. Even though Tabitha was quite vocal about her

difficulties and frustration, Steph never acknowledged that Tabitha seemed to be

struggling. Instead, Steph asked Tabitha for advice on her physical construction. Tabitha,

so deeply entrenched in her programming bug did not answer Steph's question, instead

reiterating her own difficulty. At the end, both girls continued to work on their own

pieces of the design without ever helping one another.

Tabitha (double clicks unicorn icon, stops and starts again)

 Where the fuck did our unicorn go?

 (steph no response)
 (moves monitor back, checks through code)
 (goes to costumes, goes back to scripts)
 (double clicks some code, clicks arrow, clicks stop, start,
 double clicks to start)

Steph Hey, can I glue this to this button or no?

Facilitator Sure.

Tabitha (clicks on forever loop by itself in corner)

Steph You want these things on the bottom?

Tabitha I don't care dude. I don't know where the fuck our horse

went.

 (stops program)

Steph (working with button on pet)

Tabitha (stopped working on bug)

153
 (changes steps, degrees to 10 and degrees to 50)

 Steph, the physical pet designer, and Tabitha, the programmer, have different

roles within the project and seemed wholly engrossed in their own component of the

overall design. Tabitha was vocally frustrated with her programming bug, which seemed

to prevent her from being able to switch gears and attend to Steph's question. Similarly,

Steph continued to work on her physical design while Tabitha struggled with the

disappearing unicorn. Distributed roles and goals combined with the difficulty of the

project seemed to discourage productive interaction, even in instances when one or more

the students expressed an interest in sharing ideas. This episode reflects an interesting set

of problems. That students became so occupied in implementing their design ideas within

their individual domains was exciting, however the design ideas could become

cumbersome because of the difficulty of the programming and the potential for multiple

embedded bugs, leading to frustration, which, as the episode suggested, did not lead to

sharing or building ideas. This excerpt of parallel but separate work was representative of

observed student interactions within groups during the independent design.

Modularity: A Population Characteristic

 Several observed factors contributed to an isolated working style within and

between groups. In the previous section, I described how divergent roles and goals

combined with the difficulty level of the task contributed to a more isolated working

style. In this section I will talk about how characteristics of the population further

154
exacerbated students' isolated working structures and contributed to why students

chose to both segregate roles and hold on to their ideas.

 A proprietary, wary population. The alternative high school was chosen for

study specifically because students struggled academically and were not accustomed to

learning in open-ended environments or with new technologies. I hypothesized students

would work together, especially when encouraged, in a creative, community environment

that was not graded. Contrary to this assumption, students were highly proprietary about

their ideas and distrusting of others' capabilities.

 One factor affecting collaboration concerned students' beliefs that design ideas

were proprietary. In several instances, students showed off aspects of their designs to

other students. For instance, Tegan worked alone during workshop 4 because her group

was absent. At the end of the workshop, Tegan showed off her pet design to Anna, the

classroom teacher, who was developing her own pet. I alluded to this episode when

talking about Tegan's engagement in the project, during Chapter 4. Here I will describe it

in full detail. In this episode, Anna visited Tegan's computer and looked at the new

functionality. Recall from Chapter 4, Tegan had been working on painting a ladder

character and putting it in the scene so that her monkey, the pet, could use the ladder to

climb onto the bed. In the excerpt, Tegan was proud to show Anna her work but wanted

to make sure that Anna did not use her idea.

Anna Oh and you made a ladder as a character. So you can make
 it do different things, like.

Tegan Yeah.

155
Anna Like you can move it and stuff.

Tegan Yeah, but I'm going to figure that out next time.

Anna Oh, that's cool! And if he touches that maybe he jumps
 on the bed or something.

Tegan Yeah, I guess so.

Anna Cool. That's a good idea!

Tegan Thanks. Don't take it!

Anna I won't. I'm totally on a different track. Don't worry.

Tegan K.

 In this episode Tegan did not really reveal what she planned to do with the ladder,

Anna filled in some possibilities. Despite the lack of in depth ideas shared, Tegan quickly

claimed ownership, "Don't take it." It seemed she was simultaneously grateful for the

positive feedback, "Thanks" and afraid that the praise may mean she would lose some of

her autonomy, "Don't take it!"

 Proprietary feelings over design ideas prevailed throughout the independent

workshops. Tegan's sentiment was representative of all students observed during the

project. In another example, during workshop 3, when another designer expressed interest

in having an outer space theme, Carlos shouted, "Get off my moon!" Carlos believed he

came up with the idea to use the moon background, which he did not create just simply

imported from the stock options, and wanted to prevent anyone else from using it. Again,

in workshop 9, Anna sought advice from Maya on her tangible pet design. In the

following episode, Carlos refused to allow Maya to share ideas with Anna.

156

Anna Hey, give me an idea. How do I make this dinosaur?

Carlos Why are you asking her?

Anna Because she's like really clever. She did all that
 (gestures to tangible alien pet).

Facilitator Yeah, look how creative she is.

Dino Oh yeah.

Carlos Why don't you make it yourself? That's what this is about.

Anna I'm just looking for ideas man.

 Carlos was reluctant to allow Anna to brainstorm with Maya. Anna attempted to

foster the building and sharing of ideas, but was met with resistance. The potential for

collaboration broke down due to Carlos' ideas of ownership and fairness, "Why don't you

make it yourself, that's what this is about." The students' ideas of proprietary knowledge

is in stark contrast to the collaborative processes of students engaged in software design

(Kafai & Harel, 1991) and cooperative, code-sharing working style of computer

clubhouse youth designing with a combination of computers and repurposed materials

(Millner, 2009).

 Along with a proprietary nature, another factor contributing to a distributed

working style stemmed from students' wariness of others' capabilities. For instance, in her

interview, Tabitha said she programmed by herself because her partner and best friend

was, "Kind of a slacker". It is true that during workshop 11, when Tabitha was absent,

Steph decided to try some programming for the first time. She incidentally deleted all the

157
girls' programming code by deleting their main sprite and was unable to retrieve it. It

could be that Tegan referred to Steph as "a slacker" because she was both discouraged by

the code deletion and had thought something like that might occur. Tabitha was not alone

in having doubts about the capabilities of her partners. In another example, Tegan

claimed in an interview that she developed the tangible pet by herself because her

partners would "Just mess it up." In final example, during workshop 4, Carlos made it

apparent what he thought of Dino's ability. During this example, Carlos asked the

facilitator for help on a design idea. Dino was not in the room at the time. When Dino

reappears, the facilitator addressed him instead of providing an answer, trying to

encourage the two to build ideas together.

 Facilitator Are you going to help out? Because I think Carlos needs
 some help.

 Dino I know.

 Carlos Dino's not smart.

 Dino Really Carlos, you need help again?

 The boys exchanged remarks that I am interpreting as put-down statements

between friends, but the underlying message was one of discrediting one another's

competence. Despite the idea that the boys were in the same group, working on the same

project together, Dino said, "Really Carlos, you need help again?" This suggests that

Dino felt the programming component of the work belonged to Carlos and that helping

him with it would be somewhat of an imposition on Dino, who had up to this point not

158
been engaged in the development of the pet in any way. After this exchange, Carlos

continued to work on the programming bug he had been attending to and Dino continued

to make off-handed comments, never working to help Carlos. The pervading atmosphere

of distrust permeated all aspects of students' projects from how students worked in their

groups to how students treated other groups. These short episodes summed up how

students felt in general about one another and how they questioned another's competence

in contrast to their own. There were no instances observed where a student sanctioned the

borrowing and reusing of an existing idea. Students believed that ideas should not be

shared or appropriated by others. Students were predisposed to claim and delegate

ownership over a specific segment of the work and ensure creative ideas were not

communal. In some respects, this is not surprising. The culture of school these students

have encountered has potentially involved them getting in trouble for ‘cheating’ off of

other people.

 An emotional technology. The observed distributed approach to design projects

can be partly explained by characteristics of the participating population, but technology-

specific factors also affected how students interacted. The physical portion of the design

task promoted the cultivation of strong emotional connections and for some students,

very positive sentiments about their resulting work. Indeed, it appeared the technology

was perhaps too effective in promoting these ideals thereby further contributing to

students' segregated structures.

 Students exhibited some sense of pride with respect to what they made and were

able to demonstrate with their pets. Showing off a design to others was also a way

159
students exhibited personal involvement in the project. For example, Steph ran out of

the room during workshop 9 with her pet to show it off to a staff member in another part

of the school saying, "I'm going to show Evelyn". I was surprised when reviewing the

video to see this episode because I had assumed through my observations that Steph,

especially with her sporadic attendance, limited productivity, and constant gossiping, had

not felt a personal connection to the project. Her desire to seek out approval on her

physical design from another adult in the building suggested she was more involved than

I had thought. Steph's interest in showing off her pet to others was representative

behavior of the students in the project.

To illustrate this further, consider that Tegan showed her monkey off five times

during workshop 4 (40 minutes in length) including to the facilitator, two students and

the classroom teacher. In a display of connection to the project also during workshop 4,

representative of students in the project as a whole, Carlos showed off his group's pet

design to the principal of the school, by getting the principal's attention, who had arrived

in another part of the room for other reasons, and guiding her over to his computer.

 Carlos Look, look, look! What I made it do.
 I'm the most advanced right now.
 Carrie (coming over)

 Are you? Ok. Show me.

 Carlos I made it so it rides the carpet on the moon to the tramp and
 then it jumps to the stars.
 - - -

 Administrator Wow, I'm impressed.

160
 Carlos See? No one had a magic carpet to ride to a trampoline.

 Carrie I agree. How did you get a magic carpet?

 Carlos Cause I'm pro like that.

 Carrie Ooooh!

 In this excerpt Carlos was impatient to get the principal's (Carrie's) attention,

"Look, look, look." Then he shared with her, "I'm the most advanced right now",

suggesting he wanted her to be proud of his accomplishments during the project. Notice,

Carlos did not say "we," he said "I." When he described the pet to Carrie, "I made it so it

rides the carpet on the moon to the tramp and then it jumps to the stars", he told her the

functionality of the pet but nothing about what the pet looked like, a domain of the design

project that was his partners' responsibility. As discussed in Chapter 4, Carlos was very

functionality focused. Following watching the pet in action, Carrie said "Oooh!" and

another administrator, who came by to look, said, "Wow, I'm impressed." Carlos received

very positive feedback on his work.

 Another way students showed their connection to their projects was in how they

spoke of their pets while working. Most commonly, students referred to their pets as "he"

or "him" instead of "it." By using a pronoun students personified their designs, viewing

the pets as having life-like qualities. For example during the project, Steph, Tabitha and

Tegan always systematically referred to their pets as "he." Using pronouns is one way

researchers assess the effectiveness of computational agents in appearing real or life-like,

in promoting affect and relational qualities (Catrambone, Stasko, & Xiao, 2002; Lee,

161
Kiesler, & Forlizzi, 2010). This was representative of how students saw their projects

as more than just glue, feathers and pixels. This accompanied by other positive language

related to their pets. For instance, Steph and Tabitha talked fondly of their pet. During the

course of workshop 4, after trying out seven different potential pet characters and

settling, for the moment, on a lion, the girls made comments suggesting their enthusiasm

for their character. In the excerpt, Steph and Tabitha, with input from Byron, another

student who dropped out of the project, work together to come up with their lion pet. The

girls expressed excitement during this playful episode.

 Steph I like the lion. Let's do him.

 Tabitha Let's paint him.

 Steph I wanna paint him!
 (chooses paint brush and orange. puts a dot on his mouth.)
 No I need.

 Tabitha Make his eyes red.

 Steph Ok.
 (selects paint bucket tool. clicks eyes they turn red)

 Tabitha laughs

 Byron Rrrr!

 Steph laughs
 Let's make him all cool looking.
 Rrrrr!
 (makes lion green outlined.)
 Ahhh!
 What color was that before?

 Tabitha I don't know.

 Steph (clicks cancel.)

162
 Let's make him tongue tie dye.
 Let's leave him like that.
 (clicks enter.)
 Our lion's chilly chill!

 The girls were able to customize their pet on screen to look how they intend. After

several iterations of changing certain aspects of the lion, Steph referred to the lion as

"chilly chill", a positive comment on how cool the lion with red eyes was. Making

comments such as these about the pet as it developed to look and act more like what the

students intended was representative of how all students in the project reacted to and

connected with their pets' development.

 Tegan showed the most attachment of all the students to her pet. In addition to

showing of the pet five times, she referred to the monkey as "cute" 19 times during the 40

minutes of workshop 4. "Cute" was unambiguously the only word she used. However,

Tegan worked alone on this particular day. The majority of her utterances about how

"cute" the monkey was are simply to herself. It was as if she could not hold back how

fond she was of her design, it came spilling out. Tegan's attachment to her pet monkey

was more extreme than the other students in the project, however all student exhibited

portions of attachment to the project through the way they talked about their pets,

customized their pets and showed pets off to other people.

 It makes sense that students would feel a sense of emotion and ownership over

their project ideas and pets. Hybrid technologies are designed to be emotional and

absorbing (Eisenberg, 2003). For example, students showed pride in their PicoCricket

creations when demonstrating them at an exhibit (Rusk et al., 2008). Interactive pets

themselves have these qualities as well. For example, interactive pets have begun to be

163
used for therapeutic reasons to encourage emotional response and attachment in

severely disabled children (Marti, Pollini, Rullo, & Shibata, 2005). Also, in a study,

children showed rapid emotional attachment to an interactive dog, calling it a playmate

and empathizing with it, after interacting with the pet for an average of only 20 minutes

(Weiss, Wurhofer, & Tscheligi, 2009). However, the personal connections students made,

instead of leading students to share and build ideas with one another, instead facilitated

students' isolated working styles. Students held their ideas close because they seemed to

genuinely care about their projects and felt they owned those ideas. This, however

positive, subverted the idea that students should share and build ideas together.

Conclusions About Student Interactions

 As hoped, the tangible/digital pet design project provided multiple starting points

for students with different interests, some interested in crafting or building and others in

programming. However, rather than being interdependent, the craft and computational

media were dichotomized by students, allowing prior interests and expertise to dictate

participation. Characteristics of the student population may have further encouraged the

distributed working structure. Students divided tasks and attended to different portions of

the design, which has potential implications for the development of new interests and

learning. Students took control over the separate parts of the hybrid technology because it

made sense for everyone to be working at the same time. The observed distributed

working structures were naturally devised by students as a way to divide tasks in an effort

to efficiently complete the project task, which all student groups did. Students did not

164
share and build upon ideas as much as intended, and that could be a feature of the

population or the hybrid technology. However, the initial collaboration was there during

the structured debugging task, suggesting that collaboration was possible, perhaps in a

more deliberately constrained environment.

165

CHAPTER 6

DEBUGGING

 One emphasis of this study was debugging, how students approached and dealt

with bugs, often described as unexpected results from executing programming code (Pea,

1986). As described in the previous chapter, one hypothesis was that students would

spend a great deal of time engaged in elements of debugging. For example, a recent study

of third year college computer science students showed that students spent on average

from 38% to 47% of their programming time debugging (Chmiel & Loui, 2004). I

designed the project to revolve around debugging and remixing code as strategies for

learning aspects of programming and design thinking. Bugs were fundamental to progress

and the learning environment centered on finding and fixing errors in a playful way, free

from academic stigma or personal consequence. The field continues to highlight the need

for research on debugging as part of the larger landscape of understanding student

computational practices, especially in learning environments with Constructionist-

inspired technologies (Grover & Pea, 2013).

 As mentioned in earlier chapters, debugging is important because it requires that

students can both read and understand aspects of a computer program and can invent and

implement a strategy for finding and fixing the bug (Winslow, 1996). Research suggests

that debugging is intellectually challenging for novices (McCauley et al., 2008; Murphy

et al., 2008). The debugging process often incites novices, even in Constructionist

programming environments, to work around errors or give up in frustration (Murphy et

166
al., 2008; Pea, 1983). In addition to seeing how students engaged with each other

(Chapters 4 and 5), I was interested in looking at what kinds of bugs students encountered

with the hybrid media and how students reacted to and, in most cases, used strategies to

resolve bugs.

 Students encountered bugs in three ways during the project. First, students were

introduced to programming through finding and fixing a series of preprogrammed bugs in

my prototype pet Scratch project during the first two days of the workshop (see Chapter 4

for more detailed discussion of student activity during this task). Second, students faced

bugs that appeared by virtue of completing their independent project work while trying to

reuse and modify existing and sometimes create new programming code. And third,

during interviews after the project, students performed a debugging task assessment on

the computer while I observed and recorded them. The assessment was similar to the

original structured debugging tasks. Students used a different prototype Scratch program

I created that they had not seen previously and worked through a set of bugs I developed

based on functionality I observed students implement in their own projects.

 Though the design of the activity allowed students to wrestle with debugging as

part of the process of developing independent hybrid design projects, it was necessary as

a first step for me to examine the nature and variety of bugs students encountered. Hybrid

design media are so new that we are still understanding the types of bugs students

produce using Scratch and the ways in which physical media can have bugs [e.g. for an

introductory exploration of the use of debugging in Scratch see Griffen et al., 2012)].

This chapter begins with a characterization of the types of hybrid design technology bugs

167
observed during the project. Next I examine the general bug landscape during the

project by student group. Then I describe the ways in which students handled various

bugs and illustrate contrasting student debugging methods that were recorded during the

project. Finally, I discuss results from the debugging task assessment that occurred after

the project was complete.

 In this chapter, I will highlight instances of where students encountered

unexpected results while engaged in design and development. Bugs are typically thought

of as programming problems. However, I observed that bugs can occur in both the virtual

environment, for instance when a new piece of programming code does not perform as

planned, and also in the physical environment, for instance when a method of user

interaction with a button subverts the user's ability to move a slider. This idea, that

programmatic thinking is not necessarily limited to computational domains has been

raised previously (Eisenberg, 2003; Berland & Lee, 2011). However, a systematic

examination of the types of virtual and real-world bugs that can occur and how students

address different types of bugs in different domains is a unique contribution of this work.

Analysis Methods

 To analyze bugs and debugging, transcripts of daily student activity, video, and

field notes were used. I took multiple passes through the data to generate codes. First I

identified discrete episodes of bug occurrences for each student group over the course of

the entire project. I also captured duration of each debugging instance, marking the

beginning and end of each episode. This reduced the data to distinct episodes comprised

168
of activity, what students did, and interaction, what students said or conveyed around

a single problem-solving event. Even situations where students found a discrepancy and

chose to ignore it are important in this analysis and were considered to be potential

debugging instances. This initial collection of bugs included 102 total bugs encountered

by students over the 12 workshops. To reduce the data, I created a bug timeline for each

potential debugging instance for each student group for just the sampled workshop days,

which recall were chosen for specific reasons (see Chapter 4 for more details). This

meant that 64 bug instances were analyzed in detail.

 In the next analysis cycle, I reviewed original video and transcript data for each

elected episode. I needed to capture both the kinds of bugs students were encountering

and also what students were doing in the face of bugs. Following a descriptive coding

progression (Miles & Huberman, 1994), I extrapolated from each episode the attributes of

the bug and reduced the bugs to a short phrase summary.29 I then synthesized the coded

data by comparing and contrasting codes for types of bugs, looking for themes, overlap

and inadequacies. I combined codes that had redundancies and expanded codes in

instances where one code represented discrepant kinds of bugs. For instance, tangible

bugs had different qualities depending on whether they were hardware or user-interaction

related. This process uncovered two central types of bugs, virtual, having to do with the

computer program, and tangible, having to do with the physical pet or user interactions

with the physical pet and/or PicoBoard.

29 In descriptive coding, usually a one-word summary is used. In this case a few
words helped me better synthesize the data.

169
 For each bug instance, I then described characteristics of the activities the

students engaged in when faced with the bug. I took another pass at the same bug

instance timeline data looking at a separate dimension - that of student processes rather

than the characteristics of the bug. For each bug instance, I detailed what students did to

deal with the bug. Student activities ranged from ignoring the bug to asking for help. The

resulting codes were then examined. Instances where codes could be collapsed, refining

the essence of what students were doing in the code names and adding codes when I

determined students were doing more than one activity during a single coding instance.

For example, in some cases a student would try to implement some changes to their

programming code to fix a bug, but then asked for help when that method did not solve

the bug quickly. When collapsing codes, I reviewed the video excerpts that represented

the disparate codes to ensure that collapsing the codes would capture the nature and

essence of each debugging instance. For instance, for the tinkering code in the face of a

virtual bug, students had to exhibit the following: a cycle of at least two instance of

scrolling through existing programming code, changing an element or more of the

programming code, and testing the change without asking the facilitator or another

student group for support. If at minimum all of these activities existed, then tinkering was

used.

 Process codes were not mutually exclusive but were sequential in that students

often used more than one method to identify and fix a bug. Although multiple codes

could be employed in a single debugging instance, normally students employed methods

in a linear fashion. For instance, a student might initially have implemented a set of

170
solution ideas to fix a bug, but then might decide to delete the buggy code instead of

continuing to figure out how to resolve the bug. By having more than one activity in each

debugging episode, I hoped to better capture the nuances of students' activities and find

parallels in students' methods.

Operationalizing Bugs in Computational Crafts

 As described earlier, a bug is most often thought of as a situation where executing

a computer program reveals a discrepancy between what the programmer intended and

the program's output (Pea, 1986). Encountering a bug is a type of what Schank, Fano,

Bell, and Jona (1993) called expectation failure, when an individual expects something to

hold true based on prior patterns but instead it does not, creating a memorable and

important opportunity for learning. In the case of hybrid design technologies, as is

probably the case in other design and engineering endeavors that require design thinking

around physical artifacts, bugs can occur with computer code and also with physical

artifacts. This is different from many other uni-modal design projects, like projects that

just use Scratch or other software programs. Researchers have begun to explore the idea

of computation without a computer (Berland & Lee, 2011; Eisenberg, 2003); debugging

with physical artifacts is an example of this type of thinking.

 Instances of bugs are somewhat nebulous to define in retrospect, especially in

others' work. The key was to be able to identify situations when students encountered an

inconsistency between intent and result; this often produced a puzzling moment.

Therefore, when a student was in the process of trying to develop new functionality, the

171
student may be frustrated, seek help, have questions and so on, however, none of

these qualities are exclusive of instances where there is a bug although they may be

symptomatic of many bug situations. To capture instances of bugs, I looked for two main

elements. One, a student verbalized an expectation problem after running his or her

program (called testing) or testing an implementation of an idea with the physical artifact.

The student might say something like, "Wait a second, why did that happen?" for

example. Or two, the student made known what he or she was trying to do but when

testing, the program or physical artifact, a different outcome occurred. For instance, a

student might say aloud, "I want to turn him green" then she might engage in changing

the color of the animal using the painting tool and then run the program, signaling that

she wanted to test her implementation of "green". If the animal remained white during the

execution, this would indicate a bug instance. Running the program, in this case, showed

the student's intent to see if her idea worked, suggesting that she believed the changes she

made should affect the program the way she anticipated.

 If I could not determine with certainty that an instance was indeed a bug or

something different, it was not included because I wanted to ensure I was capturing

students in the process of dealing with expectation failure. By the same reasoning,

instances where students noticed something was wrong but decided to ignore the

problem, for example by saying, "Oh forget it. If it wants to stay white then that's fine"

and moving on to another idea, were included as potential debugging instances. Therefore

a bug instance was any situation where a bug was detected regardless of whether the

response was to identify and fix the bug or ignore the bug. It was important to note not

172
only all types of bug instances, for classification purposes, but also how students dealt

with bug instances, meaning that choosing not to deal with a bug was telling of students'

methods. In some cases it might have been too much effort to reconcile a design idea

with a problem in code, as some researchers have observed in other Constructionist

media-design projects (Kafai, 1996).

Categories of Bugs

 As part of the overall understanding of bugs and debugging during this project, I

wanted to capture, classify and categorize the types of bugs students encountered. 30 As

discussed earlier, virtual bugs are most commonly thought of as computer programming

bugs and tangible bugs are unique to design and engineering endeavors where a physical

artifact is created. I developed the taxonomy of bugs based on literature about conceptual

and syntactic programming bugs encountered by novice programmers. According to the

literature, bugs, in this case virtual bugs, occur in two varieties, syntactic and conceptual

(Kelleher & Pausch, 2005). Syntactic bugs are defined as how to convey instructions to

the computer and conceptual bugs are how to arrange the instructions to the computer.

Recall the designers of Scratch intended to reduce the occurrence of syntax bugs through

the puzzle piece metaphor of the software program. Syntax bugs are very common for

novice programmers (Guzdial, 2003; Kelleher & Pausch, 2005). I further attempted to

reduce syntax errors by providing students with working prototype code that they could

30 I did no bug analysis with the structured debugging workshop because the bugs
during those two days were provided by me and did not occur naturally during students'
development work. I discuss some aspects of these structured workshops in Chapter 4.

173
reuse and modify as they wished, on which to build their programs. Syntax bugs did

occur during the project, as described subsequently, but with less frequency than

conceptual bugs.

 Conceptual bugs are described as errors that transcend programming language,

pertaining instead to ways of thinking about programming (Pea, 1986). The study of

conceptual bugs, rather than simply syntax bugs, has been deemed especially important

and essential to understanding how students develop computational thinking skills

(Grover & Pea, 2013). However, conceptual bugs are not often the focus of study with

novice programmers (Grover & Pea, 2013). Cunniff, Taylor, and Black (1986) created a

framework for categorizing conceptual bugs that novice programmers' encounter. The

framework consisted of categorizing errors based on programming code that has elements

either missing, spurious, misplaced or malformed. Evidence of missing, misplaced, and

malformed programming code bugs was observed during this project. These bugs were

especially well suited to describe some of the types of errors students made when creating

new code. Recall, in this research project, students made Scratch projects from a

combination of code reuse and existing code modification combined with the creation of

new programming code. When students reused and modified code, they sometimes

encountered conceptual bugs not adequately described by Cunniff et al. (1986).

 Pea (1986) also developed a set of categories of conceptual bugs novice

programmers encounter, based on the hypothesis that all conceptual bugs stem from the

same underlying assumption young novice programmers have that the computer has a

kind of hidden mind, much like a person. The idea that conceptual bugs are due to an

174
overarching misconception about computers having minds (Pea, 1986) helps to

provide insight into some of the remaining bugs observed during the project. According

to Pea (1986) conceptual bugs include erroneous assumptions having to do with:

parallelism, intentionality, and egocentrism. Parallelism is an order of operations problem

that occurs when a programmer assumes a computer will be able to interpret what comes

earlier in a program based on information given later. Intentionality occurs when a

programmer assumes the computer has goals that it will enact even if they may conflict

with the instructions given. For instance a programmer may assume that the computer

wants to continue within a loop even when the condition is not met. Finally, egocentrism

occurs when a programmer attributes more meaning to a collection of code than what the

code explicitly states. An example would be a student who believes the computer knows

what the programmer was trying to create and will simply fill in the missing details as a

human might. Specific instances of both intentionality and egocentrism were observed in

code reuse bugs during the project. Parallelism was not observed, probably because the

students were not creating typical novice programming code with conditionals, variables,

and loops used to create precise objects on screen like geometric shapes.

 To create the categorization of bugs observed during the project, both virtual and

tangible bugs encountered by all student groups had to be considered. I used the

categorizations from previous literature of novice programming bugs as a frame to help

me understand and classify the types of errors I observed during the project. Pairing the

codes developed by previous research with the specific consolidated instances of bugs

observed with the hybrid (Scratch and PicoBoard) design technology was considered the

175
best way to account for the types of problems students encountered. The types of

bugs and their frequencies during the project are listed in Table 10 and Table 11. The

total bugs and frequencies are shown in Figure 36.

Table 10

Tangible Bugs Encountered During Representative Workshop Days

Tangible Bugs

Hardware 6

User interaction 1

Craftware 2

Total 9

 Students encountered three times as many virtual, or traditional, bugs (27) than

tangible bugs (9) during the sampled workshop days (the sampled days are described in

Chapter 5). This may be partially related to how difficult it was to determine when a

physical artifact was providing unexpected feedback. Determining a virtual bug was

oftentimes much more straightforward because students systematically tested their new

code by restarting, or executing, the program. Each time a student ran a program

indicated a potential bug instance whereas other indicators were needed to mark a

tangible bug instance. To find tangible bug instances I noted "testing" implementations in

176
the same way students tested their computer programs, they also tested their physical

pets in more subtle ways. For instance a student might have put the pet on the table and

sat back to observe it carefully. Or, a student might have run their computer program and

tested a piece of tangible functionality they had just created or refined, like pressing the

button. If something unexpected occurred, an eyeball that a student had just finished

figuring out how to adhere fell off and the student said something like "Why did that

happen?" to reveal his expectation being different from the observed outcome, or if the

button could not be pressed as expected, an instance of tangible bug was recorded. These

were considered tangible bugs because in both instances of expectation failure, students

used similar processes to address the errors as they did when encountering virtual bugs.

 The variety of virtual bugs (7) also exceeded the types of tangible bugs (3).

PicoBoards are relatively simplistic compared to their Arduino counterparts and do not

require soldering or interaction with output sensors which may have made tangible bugs

more prevalent. Furthermore, because more tangible bugs existed, the tangible bugs could

be broken down from a broad category like "conceptual bugs" to more nuanced but

universally encountered novice difficulties like "Misplaced/malformed initialization" and

"Deletion of code presumed to be spurious." Thus creating more categories.

177
Table 11

Virtual bugs encountered during representative workshop days

Virtual Bugs

Type of
Programming
code Basis in Literature

Generic computer
knowledge N/a

Generic computational
knowledge 2

Incompatibility of
reused code Reuse Intentionality (Pea, 1986) 5
Deletion of code
presumed to be
spurious Reuse

Egocentrism (Pea, 1986),
Missing (Cunniff, Taylor & Black,
1986) 1

Misplaced code New
Misplaced (Cunniff, Taylor &
Black, 1986) 5

Insufficient
knowledge of new
programming code
(Syntactic) New

Syntactic (Kelleher & Pausch,
2005) 6

Initialization
missing or not
updated New/reuse

Missing or malformed
initialization (Cunniff, Taylor &
Black, 1986) 6

Uncategorizable New/reuse 2
Total 27

Figure 36. Total bugs by category during representative workshop days.

0	 1	 2	 3	 4	 5	 6	 7	

hardware	
user	 interaction	

craftware	

computer	 knowledge	
incompatability	 of	 code	 reuse	

deletion	
misplaced	
syntactic	

initialization	
uncategorizable	

ta
ng
ib
le
	 b
ug
s	 	

vi
rt
ua
l	 b
ug
s	

178
 The final set of codes (see Table 12) included three types of tangible bugs:

hardware, user interaction and craftware, and seven types of virtual bugs: computer

knowledge, incompatibility of code reuse (an instance of intentionality), deletion of code

presumed to be spurious (an instance of egocentrism), misplaced code (misplaced),

insufficient knowledge of new code (syntax), initialization missing or malformed

(malformed initialization), and uncategorizable. Hardware bugs involved some aspect of

the physical technology and often were due to oversights or errors in plugging in or

pairing devices. User interaction bugs described problems in design implementations that

prevented users from interacting with the physical technologies through the pet as the

designer intended. Craftware bugs encompassed all unexpected outcomes from working

with craft materials to make the pet's physical body and often happen during adhering

and/or molding parts of the pet. Generic computer knowledge bugs referred to instances

where limited experience with computers caused a problem. Incompatibility of reused

code bugs were a form of intentionality (Pea, 1986) bug that occurred when a student

expected existing prototype programming code would accommodate a new design idea

because the computer had a certain human like ability to understand what it should do.

Deletion of code presumed to be spurious bugs were instances of egocentrism (Pea, 1986)

and missing (Cunniff et al., 1986) bugs where a student deleted a piece of pertinent code,

usually because he or she thought the programming code left in place was sufficient to

achieve the desired result. A misplaced code bug, borrowed from Cunniff et al. (1986)

occurred when students created the correct code to achieve their objective but have put

the code in the wrong physical (on screen) location. These bugs are pertinent to Scratch

179
where each sprite & background had its own scripting screen. Insufficient knowledge

of new programming code bugs were syntax bugs or problems with how to express

instructions (Kelleher & Pausch, 2005).

Table 12

Summary of the Code Categories, Examples from the Data Corpus and Fixes
Implemented

Category Type Description Example Fix
Tangible Bugs

Hardware PicoB
oard

In a hardware
bug some
physical part of
the technology is
not functioning as
expected
primarily due to
the user being
unaware of some
part of the
technology, cords
etc. but also
sometimes due to
unforeseen
circumstances,
like device
pairing, that
cannot be readily
explained.

Rocky noticed the
pet was eating
haphazardly
without him
interacting with
the PicoBoard.
Eating normally
occurred when
the pet's alligator
clips were
manually touched
together.

The USB cord
was plugged
into wrong
computer port.

User
interactio

n

PicoB
oard

A user interaction
bug occurs when
the designer tries
to implement a
way for the user
to interact with
the furry pet
body and at the
same time cause
a sensor to read

Maya and Dino
worked to embed
the PicoBoard
within their
alien's cardboard
box body. They
made strategic
slits in the side of
the alien and
attached a

The button
extending
device needed
to be made
taller, rather
than changing
the
slit/paperclip
implementation.

180
this interaction so
that some
reaction can
occur on screen.

paperclip to the
slider so that a
user can move
the slider inside
the pet's body by
moving the paper
clip outside the
pet's body (see
Figure XX.).
However, when
Maya and Dino
tried to put a
cork on top of the
button so that
pressing on the
alien from the top
would depress
the button it
doesn't work.
They realize the
slider
slit/paperclip was
too far down.

Craftware Craft A craftware bug
refers to any bug
that concerns the
craft materials
being used.

Jamal worked on
the physical
appearance of his
pet zebra. He
attached some
googly eyes to
the front and a
pom pom tail to
the back using
glue, then set the
pet down and
looked at it. The
tail fell onto the
table.

After much trial
and error and
abandonment of
some eyes,
Jamal used duct
tape to adhere
the pet.

Virtual Bugs

Generic
computer
knowledg

e
(Comput

er)

Comp
uter

Generic computer
knowledge bugs
refer to instances
where limited
experience with
computers causes
a problem.

Carlos and Dino,
forgot what they
named their
newest program
version on
workshop 4. So
they opened a
program in
Scratch that
made it seem
like all their code
from last

The group
figured out to
open the correct
version of their
Scratch
program.

181
workshop was
lost.

Incompat
ability of

reused
code

(Intentio
nality -
Reuse)

Reus
e

Incompatibility of
reused code bugs
are a form of
intentionality
(Pea, 1986) bug
that occurs when
a student expects
existing prototype
programming
code will
accommodate a
new design idea
because the
computer has a
certain human
like ability to
understand what
it should do.

Tegan expected
the pet monkey
to move all the
way to the edge
of the stage
where she had
imported a
bunch of
bananas. The
existing "slider
movement" code
did not allow the
monkey to walk
that far to the
right of the
screen.

Tegan reworked
the code that
interpreted
slider location
and translated it
via
mathematical
manipulation to
an x coordinate
that extended
the width of
walking.

Deletion
of code

presumed
to be

spurious
(Egocent

rism)

Reus
e

Deletion of code
presumed to be
spurious bugs are
instances of
Egocentrism (Pea,
1986) and Missing
(Cunniff, Taylor &
Black, 1986) bugs
where a student
deletes a piece of
pertinent code,
usually because
he or she
attributes more
meaning to the
programming
code he or she
keeps in place.

Carlos pressed
the PicoBoard
button but did
not hear the pet
meow, as
programmed.
The meow
functionality was
in place but the
meow sound
import was
deleted.

Carlos and Dino
recorded a new
sound.

182
Misplaced

code
(Misplac

ed)

New
Code

A misplaced code
bug, borrowed
from Cunniff,
Taylor & Black
(1986) occurs
when students
create the correct
code to achieve
their objective but
have put the code
in the wrong
physical (on
screen) location.
These bugs are
pertinent to
Scratch where
each sprite &
background has
its own code
screen.

Jamal wrote code
to make the
zebra he painted
dance in
workshop 12.
When he tested
the functionality,
the background
character danced
while his zebra
remained still.

Jamal copied
and pasted his
new code from
the wrong
character's
scripting area to
the zebra's
scripting area.

Insufficien
t

knowledg
e of new
program

ming code
(Syntacti

c)

New
Code

Insufficient
knowledge of new
programming
code bugs are
syntax bugs or
problems with
how to express
instructions
(Kelleher &
Pausch, 2005).
With syntax bugs,
a student thinks
he or she
understands what
a chunk of new
Scratch code will
do but then
realizes the
command does
something
different than
expected.

Jamal wanted
the entirety of
the song he
imported to play
when the zebra
heard a loud
noise. He used a
forever loop to
mean the song
should play
forever length of
time until it was
done. However,
when he tested
the change, the
first two notes of
the song played
again and again
and again
because the
forever loop got
called over and
over.

Jamal replaced
the forever loop
with a play until
done code
chunk.

Initializati
on

missing or
not

updated
(Malform

ed

New
Code

/Reus
e

An Initialization
missing (in the
case of new code)
or not updated (in
the case of
reused code) bug
was taken from

Carlos
programmed the
alien to jump on
a trampoline on
the moon and
end up in
outerspace. It

Carlos did not
realize that he
must set the
moon to be the
initial stage if
he wanted the
stage to revert

183
Initializa

tion)
Cunniff, Taylor &
Black's (1986)
conceptual bug by
the same name.
Although a
specific variety of
missing or
malformed bug
according to the
authors, it
occurred quite
frequently in the
research project.
This bug occurs
when
programming
code change the
state of an object
that must be put
to its original
condition when
the program
begins again.

worked when
tested. However,
when tested
again, the alien
started off in
outerspace
instead of
starting on the
moon as
intended.

back to the
moon every
time he
executed the
program. He
added
initialization
code to the
beginning of the
program to
make the stage
begin at the
moon.

Uncategor
izable

(Uncateg
orizable)

New
Code

/Reus
e

The
uncategorizable
category refers to
bugs that did not
fit the other codes
because it cannot
be identified.

Maya and Dino
cannot figure out
why the alien
was placed so
low down on the
screen when
they ran their
program.

The facilitator
and both
students could
not figure out
where the bug
stemmed from.
We created a
work around
that overwrote
the original
placement.

 With syntax bugs, a student thought he or she understood what a chunk of new

Scratch code would do but then realized the command did something different than

expected. Finally, the uncategorizable category was a catchall for any remaining bugs

that could not easily be assigned to a code. For the most part, these bugs defied

184
categorization because the students and facilitator could not identify the root cause of

the bug. In some cases these bugs were solved despite not knowing their origin and in

others the facilitator told students to ignore the bug and developed a work around

solution.

 The codes were not intended to be exhaustive, but to represent the bug landscape I

observed during the three sampled workshop days. The resulting bug catalog provided an

illustration of the panorama of bugs students encountered and a lens through which to

understand students' activities in the face of bugs.

What Did Debugging Look Like?

 In the previous section I categorized the types of bugs students encountered

during the project. In this section, I provide an overview of the student groups and the

bugs they faced. Based on the data, I discuss trends, patterns and their implications.

 Overall, the students did encounter a considerable number of bugs during the

workshop (see Figure 37). Together, student groups encountered between three and 27

bugs.

 On some days, some groups dealt with no bugs, like Rocky and Tegan on

workshop day 12. However, since bugs and debugging are only one of a set of productive

activities students could have been engaged in doing, like implementing design ideas,

showing off their design to others, coming up with new ideas, working with the physical

materials, stewing over what to do next, it cannot be said that groups with few bugs did

less work or that those days were not fruitful. Day dreaming, observing others, and

185
starting over are all part of a host of activities acceptable to Constructionist learning

and explain the importance of time in personally relevant projects (Papert, 1980).

Figure 37. Overall bugs per day by workshop group.

 This process is described as "diving in and stepping out" (Ackerman, 1996, pp.

29), where diving in refers to the deep personally connected way of learning through

0	 5	 10	 15	 20	 25	 30	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

#	 of	 Bugs	

W
or
k
sh
op
	 D
ay
	

Number	 of	 Bugs	 Per	 Day	 Per	 Workshop	 Group	

Steph/Tab	

Rocky/Tegan	

Dino/Car/Maya	

Jamal	

186
developing a project, or accommodation of knowledge, and stepping out coincides

with reflection, or assimilation of knowledge by stepping away from the project in a

reflective way. This also helps explain why some days were big debugging, or diving in

days, and others were more reflective, stepping out days, with little debugging activity.

Of note was that there tended to be a lull in bug activity during the middle of the project,

on days 5 through 8, for example. Looking at each group independently (see Figure 38), a

similar ebbing trend appeared across all groups.

 There were more debugging instances during workshop 1. This was likely

because students encountered more bugs during the structured debugging task

workshops, when the intent was to have students work through a list of itemized, solvable

novice bugs that gradually increased in complexity. Therefore the structured, intentional

bug-solving environment was more effective at getting students to face bugs than their

strict independent design work. However, as the independent project commenced and

perhaps students began to feel comfortable trying to implement their design ideas, for

instance on day 4, the number of bugs was large, indicating the divide between students'

ideas and their programming capabilities was also large.

 The craft materials arrived in class on the 5th workshop, explaining why each

group experienced a dip in bugs as they played with the new materials and thought about

how to transform them into a fluffy companion. Evidence from field notes suggested the

next several workshop days were comprised mainly of tangible pet development and little

new programming efforts. As described in Chapter 4, Jamal, for example, did no

programming or computer work at all between workshops 5 and 11.

187

Figure 38. Number of individual bugs by student group per day.

 There were fewer bugs during this central time, the middle of the project.

Whether students' focus on tangible creation correlated to fewer bug encounters or

whether students' stamina for the project and general enthusiasm waned during the

middle of the project accounting for less programming and therefore fewer bugs was not

clear. Both ideas will be explored further later in this chapter.

188
 Finally, the last two days of the project saw a renewed flurry of bugs, with

eight bugs during workshop 11 and 11 bugs during workshop 12. During these final days,

students began to ramp up efforts to complete their projects in time for the design exhibit,

held after school. Again, Jamal programmed his entire project on the 12th workshop day.

The culminating event and along with it the promise of course credit, was effective in

prompting students to complete their work. Finishing projects meant tying up loose ends

and ensuring everything worked as expected. This process naturally uncovered bugs,

especially when the tangible pets and virtual programs were largely developed in

isolation and had to be somewhat integrated together, though not always effectively, as

explained in chapter 5.

Accounting for Overall Numbers of Bugs

 The overall number of bugs encountered during any given workshop day may

seem relatively low. For instance, four groups of students faced 11 total bugs during the

45-minute workshop 12, which was a lot of bugs for the project in relative terms. In reuse

and modification of code, simple changes, like making a sprite meow instead of bark

when the button was pressed, are very different in programming complexity than big

changes, like making a sprite do back flips instead of meowing when the button was

pressed. Students were able to make simple changes without much difficulty. However,

in general, students sometimes struggled with three aspects of their pet project designs.

First, students struggled to come up with their own design ideas. Second, students

struggled to sustain interest in developing new functionality, especially during the middle

of the project. Third, students had trouble conceptualizing a narrative focus for their

189
"pets". By a pet narrative I mean an encompassing story for the companion, for

instance a story would include personality traits, a setting, needs and desires, and ways of

addressing them. For instance, a dog needs exercise and food every day and might be

made more content by being petted, fed treats, given a bath or a fluffy bed to sleep on.

 One of the exciting potentials for using interactive pets as a design technology

was to tap into the idea that digital pets have "alive" qualities. Pets, by their definition,

need to be nurtured. Pets, as companions, promote attachment. I hoped this attachment

would be apparent not only for the user but also for the designer, the students. I hoped

students would naturally incorporate some of these ideas about the nature of pets and pet

ownership into their pet projects. However, most of the students' pets were piecemeal

functionality with little or no overall direction. The closest a group got to an integrated

narrative was Carlos' group who created an alien that ate people's hands, rode a magic

carpet and jumped on a trampoline to the moon. But yet, the alien had no needs, fears or

desires, or a name for that matter. Because students' projects were less an integrated

whole "pet" and more small cool bits of reuse, the groups spent less time programming

new functionality for their pets. On a similar note, students spent a great deal of time on

the physical appearance of their pets. This led to fewer bugs overall because students

programmed less. As a result, the groups were implementing fewer entirely new ideas

than I expected and therefore encountered fewer bugs than expected as well. However,

because the project was 12 workshop days, students did encounter many bugs in total,

enough to spend a good deal of time dealing with bug encounters. Carlos, Dino, and

Maya had the most bug instances (39). Recall, their group implemented intricate eating,

190
flying and jumping functionality. Jamal had the fewest bug instances (15). Recall

Jamal did no programming at all for seven of the workshops.

Bug Fates by Group

 Students encountered a large quantity of bugs overall meaning that students had

many opportunities to deal with bugs in different ways. I expected bugs to occur and was

interested in what students did when encountering instances of bugs during their projects.

Looking at the overall project, the majority of bugs students faced, 81%, were resolved

(see Figure 39) Most often, when students encountered a bug, they identified and fixed it.

This was encouraging because I wanted students to develop debugging strategies and be

willing to persevere through the process of finding a solution to bugs. Research shows

that in personal open-ended projects, students will abandon their ideas, scrapping large

portions of code, instead of facing difficult bugs and coding issues (Kafai, 1996). In this

project, only 8% of bugs were ignored and 5% were worked around, meaning students

either deleted code or altered a design idea to more easily accommodate a bug. During

the project, only 6% of the total bugs remained unresolved. There were three main

reasons for unresolved bugs. First a bug could occur that did not directly affect students'

design ideas and could be left. Second, the students and the facilitator could not identify

and resolve some bugs. Third, a rare case, students gave up on a small number of bugs

even though the bugs detrimentally affected the functionality of their projects. From these

data, despite expectations from previous research, students were fairly successful at

debugging and left bugs unresolved, ignored or worked around relatively infrequently.

191

Figure 39. The fates of all bugs encountered during independent design workshops by
percentage.

 Another factor affecting the number of bugs encountered was the length of time

spent on debugging. Since the data show students were most often solving the bugs they

encountered, instead of ignoring them or leaving them unsolved, I knew students were

engaged in a good deal of debugging. In the data, if groups were engaged in solving one

bug for a long duration, it would appear as one bug. Simply counting the number of bugs

provided an inadequate picture of how much debugging really happened. For example, in

independent workshop sessions, Tabitha and Steph's group spent nearly 20 minutes on a

single bug, and Dino, Carlos, and Maya's group spent more than 25 minutes on a bug on

two different occasions (between workshops two and three and again between workshops

four and five). These data suggest students sometimes spent more than half a workshop

81%	

8%	

5%	

6%	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	

resolved	

ignored	

worked	 around	 	

unresolved	

R
es
u
lt
s	

192
period engaged in finding and fixing one bug and provide another reason for a smaller

number of total bugs, in some cases. For these students to spend a significant amount of

time struggling with a single problem was unusual because they were used to solving

copious drill problems during school time in their make-up packets.

Individual Student Groups and Bug Fates

 Overall, students solved the majority of the bugs they encountered, but

individually, student groups had varied success fixing bugs, choosing sometimes to

ignore, work around or leave bugs unresolved (see Figure 40 and Table 14). The

differences in bug fates between groups can be explained in part by the groups' working

styles. Jamal, a student who chose to work alone, had the fewest bugs (15), but resolved

them all. His working alone may account for this because he did not have to reconcile

others' opinions on whether to persevere and how to proceed. He also did the majority of

programming on the final day when he was invested in making the pet he had worked so

hard to perfect physically interact in the way he wanted (recall from Chapter 4 that he

was the only student to ask to stay late). Conversely, ignoring bugs suggested a

willingness to have partially functioning programming code, to have imperfections in

code and to be able to move on to other ideas when one was not working as expected.

Two groups, the hippo/unicorn group and the monkey group, had the highest percentage

of ignored bugs. Tegan, Rocky, and Ted, the monkey group, had a style that included

developing functionality into the computer program piecemeal, as ideas arose. The group

also had the highest percentage of worked around bugs, suggesting that when they

discovered a problem with implementing a new idea, the group sometimes altered their

193
ideas to get around difficulties. Steph & Tabitha, the hippo/unicorn group, struggled

to get their project underway and had trouble maintaining continuity between days, most

workshop sessions they introduced new pieces of functionality haphazardly along with

new characters. The girls lost all their programming code one of the final days of the

project and as Tabitha explained in interviews, they suffered from frustration and lack of

confidence. This reflected in the girls' bug fates. The girls had the lowest percentage of

resolved bugs, and highest percentage of both ignored and unresolved bugs.

Figure 40. Students' bug fates by group (in percentage).

64%	

14%	

9%	

9%	

69%	

12%	

4%	

4%	

90%	

0%	

5%	

5%	

100%	

0%	

0%	

0%	

resolved	

ignored	

worked	 around	 	

unresolved	

Jamal	

Dino/Car/Maya	

Rocky/Tegan	

Steph/Tab	

194
 In contrast, Carlos' working style, from the alien group differed from the

others. Carlos was dedicated to his design ideas, coming up with the grand picture of his

virtual pet's complex functionality from the start and working tirelessly to succeed in his

endeavors, as described in Chapter 4. He did not participate much in the physical pet

design. The group had the most total bugs (39), a high percentage of resolved bugs (~90

%), no ignored bugs and very few worked around or unresolved bugs. Interestingly, the

unsolved bugs both came on the day Carlos was absent and his partners, who did not

program previous to the absence, struggled to figure out how to run the program let alone

make changes to code that was not working properly. The episode that followed between

Carlos and Dino helped further illustrate how serious Carlos was about realizing his

ideas. After a long bout of bugs in workshop four, Carlos ran into yet another problem.

He programmed the alien to ask to ride the magic carpet then ride over to the edge of the

screen, jump on a trampoline and end up in an outer space scene. The final difficulty, the

9th bug of the day, was that the alien did not get off the carpet once he arrived in the

stars. Dino created a workaround that deviated entirely from Carlos' idea. Dino had not

participated in solving bugs that day except for this instance where he essentially chose to

tell the alien not to ride the magic carpet, thereby alleviating the need for the alien to get

off the carpet.

 Carlos You messed it up!
 You're supposed to write three letters. Enter. It rides it.
 Uhn! To the stars!

195
 Dino Well why don't you just press "no" so he doesn't get on
 the carpet and you don't have to worry about him getting
 off in the first place?

 Carlos Cause I want to.

 Dino Uuuhhh. Fucker.

 Carlos Alright he didn't fix anything. He just fucked it up.
 (talking to facilitator)

 Carlos blamed Dino for the way he worked around the problem, "You messed it

up!" Then Carlos showed Dino how to correctly use the functionality. Dino contended

that it would be much less work to do it his way, "Then you don't have to worry about

him getting off". Finally, Carlos rejected Dino's idea again, explaining his motivation to

do the work, despite realizing how hard it had become, "Cause I want to." Carlos,

regardless of the fact that he had to fix nine bugs that day and cannot figure this bug out,

regardless of the amount of extra effort it will take to make the alien flying idea work.

Modes of Debugging: Student Problem Solving Activities

 During the project, students encountered a variety of bugs, solved many bugs and

dealt with others in accordance with how they worked on their projects in general.

However, still left to explore was precisely what novice programmers did when faced

with a bug. One of my fears that I noted in my field notes was perhaps students simply

always sought immediate help from the facilitator, never allowing themselves to explore

potential problem-solving approaches. Even more concerning, perhaps, when seeing

students struggle, I had unintentionally provided students with step-by-step instructions

196
for fixing bugs more often than I intended, never enabling students to learn debugging

strategies.

Figure 41. Frequency of debugging strategies used by students.

0	 5	 10	 15	 20	 25	 30	

Tinkered	

Received	 Minimal	 Support	

Received	 Coaching	

Implemented	 Direct	 Idea	

Used	 Brute	 Force	

Deleted	 Buggy	 Code	

No	 Strategy	

Gave	 Up	

Frequency	 of	 Debugging	 Strategies	

Frequency	

197
 It turned out that most often, students did ask the facilitator for advice or help

during the course of debugging (58% of the all debugging activities were either asked

facilitator, received minimal support or asked facilitator, received coaching) (see Figure

41). Students cannot be blamed for employing this strategy, as asking a knowledgeable

adult is a sensible activity especially in a school setting. However, I developed a

distinction in the codes between asking the facilitator and receiving minimal support

(42% of all debugging activities) and asking the facilitator and receiving coaching (17%

of all debugging activities), with the latter reserved for times when the facilitator gave

explicit instruction and the former for instances when the facilitator provided more

general strategy tactics to guide students towards finding their own solutions (examples

to follow). The difference between the pedagogical methods being teaching students

ways of approaching debugging problems, a strategy modeling method, versus helping

students out of an immediate dilemma, a fire fighting method with less potential for

extrapolation. Also of note was the number of other activities in which students also

engaged. For instance, students tinkered, implemented effective direct solution ideas, used

brute force repeated failure, a frustration inducing novice strategy, deleted buggy code

and sometimes, but not often, gave up. Significantly, students sometimes tried their own

strategies to identify and fix a bug first, and then baring failure asked for help or asked

first and then realized they could solve the bug on their own.

198
Table 13

Debugging Modes, Counts, Frequencies, Student Group Employment of Modes and
Percentage of Bugs Where Mode Was Employed by Group

Modes # Frequency
Student
Group

Student
Group
Employment

Percentage of
Bugs Where
Mode Was
Employed

 Jamal 4 in 7 bugs 57%

Tegan,
Rocky &
Ted 2 in 5 bugs 40%

Carlos,
Dino &
Maya 2 in 14 bugs 14%

Tinkered 9 14%
Steph &
Tabitha 1 in 10 bugs 10%

Carlos,
Dino &
Maya 13 in 14 bugs 93%

 Jamal 5 in 7 bugs 71%

Tegan,
Rocky &
Ted 4 in 5 bugs 80%

Asked
facilitator,
received
minimal
support 28 42%

Steph &
Tabitha 6 in 10 bugs 60%

Carlos,
Dino &
Maya 7 in 14 bugs 50%

 Jamal 2 in 7 bugs 29%

Steph &
Tabitha 2 in 10 bugs 20% Asked

facilitator,
received
coaching 11 17%

Tegan,
Rocky &
Ted 0 in 5 bugs 0%

 Jamal 2 in 7 bugs 29%
Implemented
direct idea

7 10.5%
Carlos,
Dino &
Maya 3 in 14 bugs 21%

199

Tegan,
Rocky &
Ted 1 in 5 bugs 20%

Steph &
Tabitha 1 in 10 bugs 10%

Steph &
Tabitha 3 in 10 bugs 30% Used brute

force
repeated
failure 5 7.5%

Carlos,
Dino &
Maya 2 in 14 bugs 14%
Tegan,
Rocky &
Ted 2 in 5 bugs 40%

Deleted
buggy code 3 4.5% Jamal 1 in 7 bugs 14%

No strategy 2 3%
Steph &
Tabitha 2 of 10 bugs 20%

Gave up 1 1.50%
Steph &
Tabitha 1 of 10 bugs 10%

Minimal Support Versus Coaching

 When students asked for help, two possible outcomes arose. In line with the

pedagogical approach outlined in the curriculum design section (Chapter 3), the first

outcome provided students with just enough direction to allow them to be independently

successful. The asked facilitator, received minimal support code was reserved for

instances of modeled meta-debugging skills, intended to foster developing strategies that

transfer to other debugging instances, rather than explicit solution support for a specific

bug.

200
 The following excerpt was representative of how the facilitator interacted with

students who asked for help and was representative of the type of minimal support given.

 Tegan Why does he keep turning green?

 Facilitator from across the room
 Check the eating. Where's he eating?
 (directs student to look for eating code to identify the bug)

 Tegan I don't know. Um. Right here.
 locates eating code

 Facilitator Ok.
 comes closer to look at screen
 So you're changing costumes. But you didn't make a
 costume that's green?

 Tegan No.

 Facilitator So look through here (the eating code) and find out what
 might be changing his color.

 Note that I did not instruct the student how to find or fix the bug. The process of

support was to encourage students to verbally elucidate the problem, then narrow the

problem space, and productively focus their efforts without eliminating the students'

sense of confidence and accomplishment in finding a solution. I needed to figure out

quickly what was going wrong and at the same time help Tegan figure out what was

going wrong for herself. I narrowed down potential reasons for the bug, of which I had

two hypotheses, a costume issue or a directly coded visual alteration. Finally, I helped

Tegan restrict the problem space by directing her to look through a subset of

201
programming code for something that would turn the character green, focusing her

efforts and reminding her specifically of the problem. In this process, known as cognitive

apprenticeship (Brown, Collins, & Duguid, 1989), is common in other educational

approaches like Problem Based Learning (Barrows, 1996), where experts model expert

practices and support novices in adapting the practices for themselves. Although Brown

et al. (1989) described the method as coaching and fading, I reserve the term coaching for

more specific and directed debugging support, the second potential outcome from a

student's question.

 Carlos, Dino, and Maya most often engaged in asked facilitator, received minimal

support (in 90% of bugs, see Table 13) because, as discussed earlier, Carlos' stated in an

interview he liked being told exactly what he did wrong so he could learn from his

mistakes. Carlos almost always asked for help when faced with a bug, oftentimes figuring

out the solution before receiving any assistance, but sometimes needing coaching (50%

of the time), probably because his coding ideas were complex. Carlos created an effective

facilitator calling mechanism. When he got stuck, Carlos would continuously press the

PicoBoard's button, making the alien noise repeat again and again, until I ignored all the

other students and came over to help. But far from being helpless or inadequate at solving

bugs, Carlos also had a high frequency compared with other groups in implementing

spontaneous solution ideas (21%).

 For asked facilitator, received minimal support the facilitator never took control

of the computer mouse or keyboard or gave step-by-step instructions for solution. When

either of these methods was present, the code asked facilitator, received coaching was

202
used. Coaching was not thought to be a pedagogical ideal, but was reserved for

instances when students seemed visibly agitated, discouraged or unreceptive to ask

facilitator type modeling. In an effort to keep students engaged in the project, I

sometimes resorted to coaching students through difficult situations, especially very

complex or frustrating bugs by modeling the exact programming code I would

implement. Surprisingly, considering the difficulty of the task for novices, coaching

represented only 17% of all debugging activities.

 Students most often asked the facilitator for assistance as part of a larger set of

debugging activities for each bug encountered. The results suggest that students did not

always immediately and merely ask for help. For instance, in workshop 9, Tegan and

Rocky encountered only one bug, a hardware bug that occurred because they had

inadvertently plugged the USB cord from their PicoBoard into the incorrect hole in their

laptop. At first Rocky tinkered by testing the issue, moving the PicoBoard directly in

front of himself, adjusting the board slightly, and testing the results several times. Then

Rocky scrolled through the monkey's scripts to see if he could identify the problem. Then

not reaching a solution, Rocky asked facilitator, received minimal support and was able

to successfully solve the bug because the facilitator asked Rocky a series of probing

questions about the bug until we figured out together that the cord was incorrectly

attached. In this instance, Rocky used two debugging methods, tinkered and asked

facilitator, received minimal support.

 Sometimes students' instincts were to ask questions first, probably a result of

years of school endorsed behavior, and try their own solution strategies after receiving

203
some encouragement and an indirect hint. For instance, on Carlos' group's fourth bug

on the 4th workshop day, Carlos encountered a bug because he had programmed the alien

on the magic carpet to fly to another stage after touching the trampoline. However, the

alien and magic carpet just stayed on the moon. The problem was that the new

background was in place but not being accessed when the event occurred. In this case,

Carlos first asked facilitator, received minimal support. I asked him to recreate the error

and then tell me whether the code he had just created was being accessed, which would

be highlighted when run. As soon as Carlos ran the program, he realized on his own his

error was due to the fact that the alien sprite and the alien + magic carpet sprite were

different. The code he had just created had been misplaced under the wrong sprite. After

figuring this out independently, Carlos then implemented the direct solution idea. I

guided him to check whether the code he had written was being accessed and from that

he determined that the sprites were different, the code was in the wrong place, and that he

needed to edit the scripts for the intended and misused sprite. After solving the bug,

Carlos uncharacteristically, he rarely expressed emotion, showed his pride in figuring out

the bug fix on his own by stating, "Oh I did it! Yessa!"

Implemented Direct Solution Idea

 In some cases (<11% of all debugging activities), students encountered a bug and

almost immediately knew what had gone wrong and how to fix it. In the following

example, Tegan implemented a direct solution idea to a tangible hardware bug. When she

ran her program near the beginning of workshop 4 she noticed the monkey was not

eating, as he should have been when she connected the alligator clips, from attached to

204
the PicoBoard, to each other. Tegan acted surprised that the eating did not occur but

then immediately replugged the alligator clips into the board and resolved the issue.

 Tegan (touches clips together)
 Wait. Why isn't he eating?
 (pulls over PicoBoard, tightens alligator clips in ports,
 humming)
 (touches clips together)
 (monkey eats on screen)

 This example was described as implemented a direct solution idea because Tegan

was able to resolve the bug by directly trying an idea that occurred to her. If she had gone

through multiple iterations of possible ideas and tests before finding one that worked,

Tegan's activity would have been coded tinkered. Carlos' group (in 21% of bugs) and

Jamal (in 29% of bugs) most often engaged in this activity compared to other groups.

Jamal enjoyed working alone and wanted to figure out everything about the project,

including bugs, on his own, asking for facilitator support only as a last resort.

Tinkered

 The tinkered activity (14% of all debugging activities) described how students,

when faced with a bug they could not solve right away, many times chose to try out

several potential fixes by changing a bit of code, retesting, then returning to the previous

code and trying out another fix. The term tinkered reflects the playfulness of this strategy.

Jamal engaged in the most tinkering (in 42% of bugs) and Tegan, Rocky, and Ted in the

next most (in 20% of bugs).

205
Used Brute Force Repeated Failure

 Used brute force repeated failure (<8% of debugging activities overall) referred

to an instinct students sometimes exhibited to literally bang on the technology until

something changed, especially Steph and Tabitha (in 30% of all bugs). Watching students

attempt over and over again to fix something by repeating the same failed execution

process with increased force and frustration, to learn only that the program continued to

do the unexpected thing again and again, was an act of desperation. An example of used

brute force repeated failure might be a student who pressed the PicoBoard button again

and again and again eventually pounding on the button and continuing to express dismay

at the continued result. This type of activity is well documented in design realms as the

gulf of execution/gulf of evaluation problem (Norman, 1991). The student, in this case,

was unable to reconcile the divide between her action and the problem that ensued.

Eventually the student must change her tactic, but she often stuck to the original approach

for an unseemly length of time.

No Strategy

 The no strategy code (3% of all debugging activities) was used in situations

where students identified a discrepancy between intent and outcome but pointedly

decided to ignore the problem. The bug does not disappear, but often students could

continue work on another portion of the project without interference from the bug.

Alternatively students sometimes decided to simply leave the problem and abort their

original intention. Steph and Tabitha ignored the most bugs, employing no debugging

activities for 20% of their total bugs.

206
Deleted Buggy Code

 Students sometimes decided to scrap an idea instead of trying to reconcile a bug.

In this case, the deleted buggy code (<5% of all debugging activities) code was used to

describe the physical erasing of programming code to make the bug go away. For

example during workshop 4, Tegan, whose group employed deleted buggy code the most

often (in 40% of all bugs) had trouble with some existing prototype code that she and her

partners had tried to remix from a car to a helicopter that flew around. Instead of trying to

figure out why the helicopter kept ending up upside down or sideways after its flight, she

just deleted the offending sprite and all its scripts. She got rid of the helicopter and

corresponding code without hesitation, throwing in the towel on all the work the group

had done to change the original programming code.

Gave Up

 In an extreme case, only one documented instance during the three representative

workshop days, a student gave up on a bug that was causing their program not to run

properly. The code described Tabitha's utter frustration and inability to work through a

bug on the 9th workshop day. The gave up code, used only once, provided a valuable

counter to emphasize the unexpected success of most novice students in the project. The

gave up code marked Tabitha's decision to withdraw from developing her project,

although she did attend the design exhibit. During a bug Tabitha found during workshop

9, Tabitha used brute force repeated failure, already described as a frustration enhancing

activity, then asked facilitator and received minimal support, made little progress and

finally gave up, abandoning the bug and programming. She said, "I am not doing any

207
more". And indeed, she did not. Tabitha was notably absent the next two workshop

days, reappeared the final day, workshop 12, but refused to touch the computer or speak

to Steph, who had inadvertently deleted all Tabitha's dysfunctional programming code

during workshop 11. This combined with an outside of school incident caused tension

between the girls.

 The students had tremendous overlap in their individual debugging activities;

seven codes accounted for all student employed bug-solving strategies. The strategies

stretched along a continuum from productive, expert-like to unproductive, and even

disadvantageous. The asked facilitator codes, reminiscent of doing school, were expected.

However received coaching, the most helpless of activities, was used minimally and

students were most often successful in identifying and fixing bugs with limited, strategy

modeling support given by asked facilitator, received minimal support. Tinkered and

implemented a direct solution idea are both productive, positive strategies used by

experts and in many cases also developed and employed by the novice students. In

contrast deleted buggy code, no strategy, and gave up, despite the program not working

correctly, are unproductive debugging strategies. Finally, used brute force repeated

failure was a convoluted, deleterious and ultimately unproductive strategy derived from

principled intentions mixed with inexperience and frustration.

Post Assessment on Bugs

 The previous sections describe how students in their groups approached bugs in

situ during the project. How much problem solving skill related to debugging individual

208
students acquired during the project, however, has not yet been discussed. Debugging

skills are important for a number of reasons including the idea that "errors benefit us

because they lead us to study what happened, to understand what went wrong, and,

through understanding, to fix it" (Papert, 1980, p. 114). In this section I discuss the

debugging task assessment administered after the project was completed.

The Debugging Assessment Task Explained

 In the debugging task assessment, each student identified in the beginning of the

project for in-depth study was asked to complete four debugging tasks on the computer

while the facilitator observed. Students were asked to think aloud as they worked.

Occasionally the interviewer, who was also the project facilitator, would ask the student

what he or she was thinking to prompt think aloud behavior. Students could ask questions

but the interviewer specifically told students she might not supply answers because she

was interested in how the students were thinking independently. The students were

provided with a new, never before seen prototype Scratch project (see Figure 42) a

plugged in PicoBoard and a sheet of paper describing the debugging tasks (see Table 14

for debugging task assessment protocol). Students were told they could skip to any task

they wished and come back to others as they saw fit but also that the tasks generally

increased in difficulty. The tasks were developed in direct relation to errors I observed

students encounter, and encounter frequently, and modifications to code students often

wished to enact during the project. Tasks ranged from changing a sound associated with a

particular interaction, to understanding how and when to initialize objects, to

understanding the computer needed explicit instruction to wait between switching

209
costumes so the human eye could detect the change, to understanding the relationship

between actions concerning two sprites at once and modifying how and when the sprites

broadcasted and received broadcasts. The debugging assessment was video-recorded.

Students had as much time as they wished to complete the assessment.

Figure 42. The debugging assessment Scratch project.

210
Table 14

The Debugging Task Assessment Items, Programming Concepts Covered and Text from
the Worksheet

Bug Idea Behind Bug Programming

Concepts
Covered

Bug Text

1 Understanding the
computer needs explicit
wait instructions
between switching
costumes

Events; Basic
Programming
Statements;Multi-
media: Costumes,
Wait Command

When it gets too sunny, Cujo is supposed
to put on his shades. But it's not working.
Fix it so we can see that he puts his shades
on.

2 Changing a sound
associated with a
particular interaction

Input: Keyboard
Pressed; Multi-
media: Sound
Editor

Cujo can walk left, right and up and down.
When he walks there is the sound of a
horse galloping. But I don't like the sound.
Make a new and better sound for when he
walks.

3 Understanding when
and how to initialize
sprites

Initializing
Sprites,

Sometimes when you start the fire hydrant
is upright and sometimes it has fallen over
already. I want the fire hydrant to always
start out normal when you start a new
session.

4 Understanding the
relationship between
actions concerning two
sprites at once.
Identifying how, when,
and why sprites
broadcast and receive
broadcasts.

Event Handling
Across Sprites

When Cujo touches the fire hydrant, it
falls over and spills water. When that
happens, the baddie (check the characters)
is supposed to fly out, but he's not. Figure
out how to make him fly out. The scripting
for flying out is already there - the baddie
just doesn't know when to go.

 The table (Table 15) shows students' successes with the debugging task

assessment. For each correct independent or minimally supported answer, students

received two points. Minimal support and moderate support were reserved for times

when a student was stuck and asked for explicit help. For minimal support to be coded, I

provided help akin to the asked facilitator, received minimal support code used earlier.

This meant that I might ask the student some questions about what they were doing or

211
read the code where the student was looking or tell the student they seemed to be in

the right spot, but would not provide any specific help on the debugging fix. On the other

hand, moderate support meant I guided a student towards understanding the bug given

but then the student interrupted the explanation to provide the correct fix. I felt that a

student who determined part of the bug fix should be given some credit for partially

resolving the bug. For each answer achieved with moderate support, students received

one point and for each answer incorrect, meaning students either gave up, received step-

by-step coaching to achieve the answer or made a fix that was unsuccessful but did not

change the fix to be successful, students received zero points.

Results from the Debugging Task

 In general, students were quite successful on the assessment. On average, students

received a score of 67% correct. However, more telling was that two thirds of the

students were able to achieve a score of 87.5% or better, with two perfect scores. Dino

struggled to connect to the project at all, and unsurprisingly was unable and unwilling to

make progress on the assessment. Dino worked on the first bug task for almost four

minutes and then declared, "I don't know. I'm just not even going to try. I hate computer

shit." When I asked if he would like to move on to another bug, he said "no". When I

asked if he would like to quit he agreed. Tabitha, who struggled to understand

programming and conceptualize of the project as a whole, was able to make progress on

several of the tasks and solved one independently.

212
Table 15

Students' Debugging Task Assessment Results. Students Received Two Points for Correct
Solutions and Solutions with Minimal Support and One Point for Solutions with
Moderate Support

 Task 1 Task 2 Task 3 Task 4 Total

Tegan

Correct
(with
moderate
support)
= 1 point

Correct
= 2 points

Correct
= 2 points

Correct
= 2 points 87.5%

Rocky

Correct
(with
minimal
support)
= 2 points

Correct
= 2 points

Correct
(with
moderate
support)
= 1 points

Correct
= 2 points 87.5%

Carlos
Correct
= 2 points

Correct
= 2 points

Correct
= 2 points

Correct
= 2 points 100%

Dino
Incorrect
= 0 points

Not
Attempted
= 0 points

Not
Attempted
= 0 points

Not
Attempted
= 0 points 0%

Tabitha
Incorrect
= 0 points

Correct
= 2 points

Incorrect
= 0 points

Incorrect
= 0 points 25%

Jamal
Correct
= 2 points

Correct
= 2 points

Correct
= 2 points

Correct
= 2 points 100%

Even though her overall score may seem unimpressive, given Tabitha's struggles

during the five weeks, for her to be willing to participate in the individual assessment and

to correctly identify and fix a given bug within it was quite remarkable. Also Tegan

213
would have solved all four bugs without support had she realized there was a piece of

paper covering the light sensor on the PicoBoard making the sensor transmit a low

instead of the usual high number. In general, the students were highly successful at

identifying and fixing bugs of varying difficulty in prototype code after approximately

ten hours of total workshop time working with the tools.

 For some students, the debugging task assessment was difficult. They did not

prepare ahead of time for the assessment and some students mentioned they were

uncertain how they would perform when when having me watch their progress. However,

despite mild protests on some accounts and the exception of Dino, all the students

attempted the debugging tasks with varied success (see Table 15) In many cases, students

needed minimal or moderate support from the facilitator to make progress on some bugs,

but then were successful in fixing the bugs. Note that debugging strategies were never

explicitly discussed during the project; students learned only through direct experience

with bugs during the debugging task day, where the bugs were intentional and provided,

and through their independent project work.

 What I noticed during the assessment was that the students felt personally

responsible for fixing the errors given. For the majority, it was important to the students

to do well, even though there were no grades or ramifications for doing poorly. Students

had already received their elective credit for completing the course and would not receive

a grade from me of any kind. For this reason, I chose to provide some support to students

who asked for it in the form of asking questions, telling students they had correctly

identified the bug and/or helping them translate code language into English. For example,

214
in the following excerpt, Rocky, asked me to show him how to fix the two bugs he

did not immediately fix on his own without any support.

Rocky So I got two out of three?

Interviewer Yeah.

Rocky I mean two out of four?
 Ok. Now show me how to do it.

Interviewer You want me to?

Rocky Yeah.

 For Rocky to spend extra time learning about the bugs he could not quite get right

on his own was impressive to me. When I began talking about the first debugging task, he

immediately knew and fixed the bug on his own. I refer to this episode as one of

providing minimal support because I did not provide any explicit assistance or

suggestions, I only told Rocky he had correctly identified the bug and then interpreted the

computer code already written in that section of the program.

Interviewer So, the sunny part. Um. Where's the. You were in
 the exact, in the exact right spot here. That he's
 sensing the light and then he's switching to that costume
 and then switching back. And if you look at this costume.

Rocky I just have to have him Wait.

Interviewer (nods.)
 Why don't you fix it?

215
Rocky (dragging a wait command from the menu to the
 scripting area and putting it in between the costume change
 commands)
 I should have known that.

 Rocky immediately knew how to fix the bug after the interviewer explained to

him that he was "In the exact right spot" for identifying the bug and then proceeded to

translate the code there into common English, "He's sensing the light and then he's

switching to that costume and then switching back." After fixing the bug himself, Rocky

added, "I should have known that."

 In another example, Carlos, who solved three of the four debugging tasks quickly,

went back to fix the fourth task after bouncing around and completing the others without

support. When I asked Carlos whether he wanted to try number four again he said, "Yes.

I have to finish it". Carlos felt compelled to get all the answers right and was motivated

by this compulsion. When he did solve the bug on his own he added, "Alright. Alright

then." This again, from a student who had failed so many times in traditional school that

he could no longer graduate and who had no academic incentive to do well on the

assessment. Carlos' pride in his abilities propelled him to persevere through successfully

fixing all four bugs on his own.

 The fact that students expressed a desire to do well on the assessment and had a

personal stake in finding and fixing the bugs given was highly satisfying. The exception

to students wanting to do well on the assessment was Dino, who was so frustrated with

his experience in the project that he worked for only a minute on the first bug before

declaring that he did not want to continue with the assessment. He then proceeded with a

216
poignant and in-depth interview about his experiences, see Chapter 7 for details,

which was helpful in allowing me to understand the root of his frustrations and provided

me with many modification ideas for a next iteration of the project, as discussed in

Chapter 8.

Conclusions About Bugs

 One main focus of this project was to engage novice programmers in debugging

as a way of learning aspects of computer programming and programmatic thinking.

Students dealt with many bugs both those designed and provided for them and those that

occurred in situ. Furthermore, students most often figured out ways to solve the bugs they

encountered and oftentimes were able to do so on their own or with minimal support.

Also, students were generally successful on the debugging task assessment. Students

showed they were, on the whole, interested in finding and fixing the bugs. For instance, a

student, Rocky, spent independent time engaged in finding out answers to debugging

tasks on the assessment he could not complete on his own. Students revealed a personal

stake in doing well on the post-project assessment despite the fact that there were no

academic consequences to doing so.

217
CHAPTER 7

STUDENTS' IMPRESSIONS OF THE PROJECT

 Despite the successes of student participants, there were definitely times of

frustration during the project that escalated to the point that some students quit engaging

with their projects or refused do the post assessment. As a result, I wanted to get a sense

for how students thought about or perceived aspects of the DigiblePets experience, an

experience far different from customary school. I did this in two ways. First, I gave

students a brief pre and post survey that I created about their feelings about making

mistakes in relation to learning and perceptions of computer programming. Second, I

asked questions specific to students' views of their experiences during the project and

about computing in general in the interviews I conducted after the project was over. In

this chapter I report on some of the information from these data sources to communicate

how students felt about the DigiblePets experience after the project had ended. I break the

results into three parts. One part is how students responded to questions about mistakes.

A second part is how students responded to questions about computing. The third part is a

reporting students' impressions of the unit as a new learning experience. The reason I

highlight these three ideas is because the activities of the project were so different than

what these students normally experience in school and involved technologies that were so

atypical from what these students had previously used that I wanted to get a sense for

what students' would say about the unit and different aspects of the unit after the project's

completion.

218
Ideas About Making Mistakes

 Being exposed to an open-ended, independent learning environment was new to

these students in particular who were used to spending their days filling out workbook

pages and having them marked correct or incorrect. As described in Chapter 3 (the

learning activity design), and Chapter 6, (debugging), making mistakes, and subsequently

finding and fixing them, was a large component of this project. To get a sense for what

students thought about making mistakes in the context of the project, I asked students to

give impressions about mistake making statements in the pre and post surveys and also

respond to mistake-related questions during our interviews after the project had ended.

From these responses, I tried to get an initial impression of students' views about

mistakes related to working on the project, knowing that this was a first iteration and

fairly complex project to implement

 On the survey, students responded on a scale from 0 - 10 (where 0 was "don't

agree at all" and 10 was "completely agree") to a series of statements. Given the

exploratory nature of how students feel about mistake making, I created three items to

help me see if there was any change in student perceptions. The mistake related

statements were, "I am confident I can fix a bug/error when my computer code isn’t

working right," "I learn best when I have to figure out my mistakes" and "I like figuring

out how to fix my mistakes." Survey numbers based on these statements can be found in

Table 16, Table 17, and Table 18. For several students, the numbers seem affirming. All

five students reported feeling more confident fixing errors in computer code after the

project. This makes sense because none of the students had any experience computer

219
programming before the project. Three of the five felt fairly confident about being

able to debug their computer programs after the project (reporting either an 8, 9 or 10

score). Four out of five students, in the case of learning best when figuring out mistakes

and liking to figure out mistakes, reported positive increases in their responses to the

statements.

Table 16

Students' Survey Responses for Statement: "I Am Confident I Can Fix a Bug/Error When
My Computer Code Isn’t Working Right"

Student Pre-Survey Post-Survey Change

Rocky not answered n/a31 n/a

Jamal 1 5 +4

Tabitha 0 9 +9

Carlos 1 10 +9

Dino 0 2 +2

Tegan 0 8 +8

31 Rocky refused to complete the post survey.

220
Table 17

Students' Survey Responses to the Statement: "I Lean Best When I Have to Figure Out My
Mistakes"

Student Pre-Survey Post-Survey Change

Rocky 10 n/a32 n/a

Jamal 1 5 +4

Tabitha 6 5 -1

Carlos 5 10 +5

Dino 1 3 +2

Tegan 5 8 +3

 In the interview, I asked a series of questions asking students to reflect upon their

experiences making mistakes during the project. The interviews had a defined protocol,

but were intended to be somewhat open-ended as to accommodate specific follow-up

questioning based on what the students said. In all cases, the following two questions

were asked:

 1. Do you feel differently about making mistakes than you did before the project?

 2. Did making mistakes or errors in this project make you feel dumb?

32 Rocky refused to complete the post survey.

221
Table 18

Students' Survey Responses to the Statement: "I Like Figuring Out How to Fix My
Mistakes"

Student Pre-Survey Post-Survey Change

Rocky 10 n/a n/a

Jamal 1 4 +3

Tabitha 1 4 +3

Carlos 7 10 +3

Dino 5 3 -2

Tegan 6 8 +2

 When asked whether they felt differently about making mistakes as a result of the

project (see Table 19 for details), four students said no and two students said yes, in some

way. Both Jamal and Tabitha alluded to some aspect of the idea that being able to fix

your mistakes was in some way productive. Tabitha reported that being allowed to fix

your mistakes was different from other domains. Jamal reported that fixing mistakes

during the project might have helped his thinking skills in general. The remaining four

students interviewed did not share the same sentiment, mostly answering in one word that

their feelings about making mistakes did not change. The only student to elaborate was

Rocky who reported that learning from your mistakes continued to be his view.

222
Table 19

Students' Interview Responses to the Mistake-Related Interview Questions

Do you feel differently about making
mistakes than you did before the
project?

Did making mistakes or errors in this
project make you feel dumb?

Tegan No. NnnMmm.

Rocky

Not really... Learn from your mistakes.
The past is the past and move on pretty
much. That's pretty much how I still feel.

MmmHmm. Just cause the stupidest stuff
that you just couldn't see and then you
show you and you're like, "yup".

Dino NnnMmm.

Not really. Well, kind of because I hate
computers because I never understand
them, so. Like when I am around
computers I feel dumb because like you
never get them to work the way you
want them to and if you do something,
something else comes out wrong and you
can't fix it. It's just it's like.

Carlos No. No. Because I know I'm smart.

Tabitha

Yeah cause you have more opportunity
to try to fix them on here (the computer)
than in other things I guess.

Kind of because everyone else was
getting it. Like people who don't care
about school were getting it.

Jamal

Well maybe a little. It didn't have a big
impact. But maybe a little, I guess it would,
it might help maybe I guess like
cognitive thinking skills or something.
Being able to think back and figure out
what step you went wrong and give you a
better idea of how to fix it.

No not really. Just cause like, no not really
cause I could like fix them and stuff. And
they were just like little mistakes, so.

223
 Only two of six students reported in the interview that they felt that making

mistakes in programming had to do with intelligence or academic success, suggesting

that making mistakes in programming made them feel less intelligent. For example,

Jamal did not feel less intelligent as a result of making mistakes during the project

because he was able to fix the mistakes he made. The idea of being encouraged to fix

mistakes without repercussion was a fundamental part of the project that I hoped students

would come away with. Jamal's sentiment parallels his views about mistakes being

somehow productive from the first question.

 However, Tabitha, stated that making mistakes in the project made her feel less

intelligent because she felt that she was not able to understand when everyone else gave

the appearance that they were able to.

Facilitator Did making mistakes during this project make you feel
 dumb?

Tabitha Kind of because everyone else was getting it. Like people
 who don't care about school were getting it.

Facilitator Do you feel like you are someone who cares about school
 so you should get it more easily?

Tabitha Well yeah I care a lot more now so, yeah I guess.

Facilitator Did you feel like you were going to be graded or judged
 based on what you would get done?

Tabitha Kind of. Cause I thought that like there was going to be a

bunch of people at the last show thing.

Facilitator Yeah me too.

224
Tabitha So I didn't want to bring something... Like ours looked
 just stupid. Everyone else's was way good.

Facilitator Did you feel like someone would be like "oh you get a
 D" or something? Or did you feel like it would be more
 personal?

Tabitha Well, like everyone is judgmental so I know they'd just be
 thinking like "what is that?"

Facilitator Ok. And you didn't want people to think you were just
 goofing off during your class time.

Tabitha Yeah.

 In the excerpt Tabitha stated that she felt caring about school should somehow

have been reflected in how successful she was at the project. Also, Tabitha reported that

other people's potential judgments about her project and whether she had taken it

seriously made her feel badly. Recall that Tabitha had become insurmountably frustrated

with debugging her code and that her programming code had been inadvertently erased

during workshop 11. Subsequently she struggled to finish her project. Despite this

setback, Tabitha attended the design exhibit and displayed what Steph had managed to

replicate of their work. Steph, her partner, did not attend due to a conflict with a

scheduled counseling session. For Tabitha, the public component of the project seemed to

make her feel uneasy because she wanted those who saw her project to understand that

she cared about school more than she used to.

 In summary, these students generally reported feeling more positively towards

learning by fixing mistakes after the project. Students also reported feeling more

confident about fixing errors in programming code after the project. This suggests that

225
elements of the activity design and experience with the project may have supported

these students in becoming more positively inclined towards mistake making and more

confident in debugging. A small number of students reported feeling differently about

making mistakes after the project, feeling that mistakes were in some way more

productive than previously. Many students did not report feeling differently about

mistakes at all. The term "mistake" can take many contexts. The reporting suggests that

after the project some students may not have felt differently about making mistakes in

general, as Rocky said, "Learn from your mistakes. The past is the past." Also, it is

possible students may have associated the interview question about making mistakes with

making mistakes in life rather than school, as Jamal talked at great length in his interview

about how he was raised by his parents to fix his own mistakes. That is not incompatible

with how students felt when asked to respond directly to specific statements about

learning by fixing mistakes in the surveys. From the survey reports, students answered

after the project that they did feel like they learn better when given the opportunity to fix

their mistakes and they more positively associate learning by fixing their mistakes.

Ideas About Computing

 During interviews, I asked students directly, "Did the project change how you feel

about computers?" After all, one of the goals of the project was to broaden participation

in computing through an experience creating a personal project with an innovative hybrid

technology. If the students gained a new appreciation for computing, then perhaps they

would consider participating in academic or personal activities involving computer

226
programming again. On the contrary, if the experience with the project worked to

strengthen or bring about new negative feelings about computing technologies and

computer programming then continued broadened participation by these students would

probably not occur. Knowing what students felt about computing after their involvement

with the project could provide insight into students' future participation in computing.

Students' reports were varied (see Table 20).

 Four of six students, Tegan, Jamal, Carlos, and Tabitha, reported feeling

positively or more positively toward computing than they had originally mainly because

of the way the project opened them up to new opportunities and ideas they had not

realized existed. One student, Jamal, even stated that he was now thinking about pursuing

a career involving computing. And finally, two of six students, Dino and Rocky, reported

disliking computers more than previously. In the excerpt below, Rocky stated that the

project furthered his negative feelings because he believed computer programming would

be easy given prior experience with the Internet and instead it was difficult.

 Rocky (I thought) That they were easy...Because the stuff I've
 done on them, just the internet and stuff is easy. But, the
 programs that they actually make, isn't...Well, I just don't
 like. I don't want to ever program anything again...Cause it
 just wasn't my thing. I didn't like it.

 In general, most students reported that they feel either positively or more

positively than previously towards computing after their experience with the DigiblePets

Project. Some students reported that the experience with computing broadened their ideas

in a positive way about what people could accomplish with computers.

227
Table 20

Students' Interview Responses to Feelings About Computers

 Did the project change how you feel about computers?

Tegan
"Yeah. I didn't know it was all like. Well, I knew but I never did
anything like that. Just internet and stuff."

Rocky

"(I thought) That they were easy...Because the stuff I've done on
them, just the internet and stuff is easy. But, the programs that they
actually make, isn't...Well, I just don't like. I don't want to ever
program anything again...Cause it just wasn't my thing. I didn't
like it."

Dino "I hate computers...No. It made it worse."

Carlos "No it didn't change it. I still like them."

Tabitha

"Kind of. I mean this is one program and you can do a lot more. I
don't know. Tegan, you know who that is? Her little like monkey
thing. I don't know. I think it's pretty cool that you can like do
this and it's just a program and codes and stuff."

Jamal

"A little bit yeah. I thought about going into a field with
computers. I hadn't really ever thought about it before but after
this, I'm thinking about it."

Overall Impressions of the Project

 The final component involved the students’ overall impression of the project. In

general, the project was intended to help students learn about computing and the design

process in a fun and interesting way. Many students expressed satisfaction throughout the

228
project, for example cheering, but I elicited this information through the final

interviews. In the interview I asked all students "What was it like working on this

project?" to get a sense for their overall impressions. When answering the question, many

students expressed positive feelings but the enjoyment was sometimes augmented by

frustration. Four of six students, Jamal, Tegan, Tabitha, and Carlos had positive things to

say about the project, that it was fun, unique and interesting, even if sometimes

frustrating (see Table 21).

 In the following excerpt Carlos stated how he felt about the project overall.

 Facilitator What was it like working on this project?

 Carlos It was fun.

 Facilitator What was fun about it?

 Carlos I learned how to program it and I got to mess around with
 the computer.

 Facilitator Did you feel like that the whole time or did it change
 throughout the project?

 Carlos Well in the middle I was like frustrated cause I couldn't do
 some stuff but, yeah, I still liked it at the end.

 Dino, Tabitha, who had both positive and negative comments, and Rocky all

mentioned that participating in the project was at times frustrating and difficult. This

result suggested that at least two students, Dino and Rocky, were driven away from

hybrid design technology projects and the computer programming and design work

involved with them. However, all students, excepting Dino who was not asked, reported

229
they would probably or definitely sign up for the project again given the chance. Even

those students who never wanted to program again or found the project frustrating would

choose programming in the context of designing a personally meaningful project over

what was normally offered in school.

Conclusion

 The sentiments of the students who participated appeared to be mixed. In general,

most students did not report changing their ideas about making mistakes and learning.

Yet, many students did report they felt more positively towards learning by fixing their

mistakes and more confident about their ability to debug computer programs. Many

students gained a greater appreciation of computers and computer programming,

suggesting that many of these students may consider themselves part of a larger, and now

indeed broader, computational community. But other students did not. Some students

enjoyed their experience in the project; others found it difficult and frustrating. Despite

this, all but one student reported they would participate in the project again if the

opportunity arose.

 Thus, while there was a mix of responses, I take the comments from students to

be positive with some important design implications. The project was difficult for

students and included times of frustration and confusion. Many things could have been

done differently to make the negative experiences more positive in both aspects, making

and fixing mistakes and computing in general.

230
Table 21

Students' Interview Responses to How They Felt About the Project Overall

Student What was the Project like?

Tegan

"Interesting. Different. I've never done
something like that before. I don't know. It's
frustrating sometimes."

Rocky

"Um, I just didn't like having to debug
everything. I don't like computers anymore.
They're harder than I want them to be. So."

Dino

"Yeah it was hard because I didn't get it. But I
didn't want to try to change it because if I ruined
something it would just make it worse, you know?
Then I wouldn't be able to fix it. "

Carlos

"It was fun. I learned how to program it and I got
to mess around with the computer. Well in the
middle I was like frustrated cause I couldn't do
some stuff but, yeah, I still liked it at the end."

Tabitha

"I've never done something like this...Well, it was
cool because we don't really do that many hands
on projects. That was really cool...Um what's the
word. I don't know. I got really frustrated. Just
cause I couldn't figure it out and my partner is
gone a lot. So. It was hard for me to do on my
own."

Jamal

"It was fun. Like when I first started making my
own I didn't really know where to start so that's
why I kind of didn't do anything for a while. But
then once I figured out what to do and
everything, it came together. "

 For example, designing activities to more saliently center on the productivity of

fixing mistakes in learning may have supported students in becoming even more

positively inclined towards finding and fixing mistakes in their work. Similarly, limiting

231
the amount of frustration students dealt with during their projects, through more

concrete, strategic supports, could potentially have helped students have a more positive

experience overall. Both of these changes could also have an effect on students'

confidence in fixing programming errors and in students' enjoyment of and satisfaction

with the project as a whole.

232

CHAPTER 8

CONCLUSION

 This dissertation began with the hypothesis that students from an alternative high

school could complete and even benefit from an open-ended learning experience with an

innovative hybrid design technology. I designed the DigiblePets project and implemented

it at Winder Alternative High School with nine students. For five weeks, students

designed, developed, and crafted their own interactive pets by creating a tangible body

out of physical materials embedded with a microprocessor and programming a

corresponding virtual program.

 The primary goal of this project was to engage students in computing by

encouraging those who may not normally relate to computing or have had limited access

to computing to engage in a hybrid design project. Hybrid design technologies were

thought to be well suited to this goal because they combine elements of known interests

and hobbies with computer programming (Eisenberg, 2003) and include a physical

component that can be both engaging and familiar (Eisenberg, et al. 2002). The

DigiblePets project was also designed around an interactive pet, much like popular

children's toys, thus known to and liked by students. In addition, a goal of this research

project was to use debugging and code modification/reuse as strategies within a

Constructionist-influenced learning environment as a way for novice programmers to

learn aspects of computer programming. I also used other relevant literature on designing

learning environments with technology to frame a set of commitments for the design of

233
the project. In keeping with the design research tradition, an intent of this research

was not only to gain practical understanding of how young people think and learn with

hybrid technologies but also to further develop theoretical ideas in the areas of hybrid

design technologies, computer science education, and the learning sciences.

 Overall, students were successfully in creating their own interactive pet projects

with at least some functionality that differed in ways from the given prototype project.

However, there were some areas for improvement within the project. For example, most

students did not participate in all facets of media design. The implications of students'

limited participation across disciplines are relevant to the Maker community as well as

designers, educators and researchers of hybrid media inside and outside of classrooms.

The implications are further discussed in this chapter.

 Also, the Constructionism community touts the benefits of Constructionist

learning environments. The learning environment for this project was designed to remain

true to the spirit of Constructionism. In particular, the tenet of sharing, seen as a vital

component of Constructionism, was integrated into the project as an important part of the

learning/making process. However, how, when, and where sharing occurred during the

project differed from intended and designed sharing experiences, which has potential to

shift perceptions of how to view and support sharing as a part of learning. Later in this

chapter I discuss the notion of sharing and how this research provides different insight

into how sharing should be thought of.

 Part of the focus of the final chapter, beyond making theoretical contributions is

to make practical contributions that highlight potential areas for improving classroom-

234
based approaches to learning with hybrid design technologies and iterating upon the

overall project design for additional implementations. An iterative approach is an

important part of design research, allowing researchers and designers to discover and

improve their learning implementations through execution, evaluation, and enhancement

in real scenarios (Edelson, 2002). I intend to highlight areas where results and

observations countered assumptions I had based on previous research and literature to

create a baseline for other designers of learning environments with hybrid technologies.

Thus, as a community, we can use previous design approaches such as this one to think

about how learning with hybrid technologies can be improved. Also, another intent was

to use students' results from this study to refine the DigiblePets Project for another

implementation. I wanted to reflect on the design as a whole and evaluate potential

opportunities to refine the project. In the remainder of this chapter, I discuss how the

discovered limitations of the project may actually have important implications for

Constructionist-inspired learning environments. I describe ways to improve the overall

design of the project to tackle the issues observed.

 In the final sections of this chapter, I synthesize how the outcomes of the project

connect back to the original research questions. This provides a summary of the research.

I also discuss limitations of the research.

Theoretical Contributions

Relative Notions of Sharing

 Constructionism reports and highlights an intuitively sensible set of conditions

235
and requirements for learning to happen including sharing as an important part of the

learning process. Sharing is not only part of Constructionist learning but also motivating

for youth designers. Based on relevant literature, the theoretical assumption at the

beginning of the project was that sharing would be motivational, especially with a group

of students who do not often have a chance to be recognized in a positive way for their

academic work. As a result, I designed several aspects of the activity structure to promote

sharing with the community, for example daily round table discussions and the

culminating design show event. The notion of sharing was consistent with

Constructionism in some ways, for example, at certain times, students wanted to show off

to friends, favored teachers and administrators. However, sharing most often occurred

spontaneously with students dictating the parameters and players of the sharing. In

observed cases where students shared on their own terms, students exhibited pride and

excitement in their work. Contrary to expectation, students were oftentimes reluctant to

share in designed and deliberately sanctioned ways. For example, Chapter 4 highlighted

how round table discussions were often cursory, with students more interested in

continuing work on their individual projects than contributing. Later in this chapter I also

discuss how students were very reluctant to attend the culminating design show, where

sharing was intended to be the impetus, focus and reward of the event. Of note is that

with this population of students there were a lot of histories and structures in place that

also discouraged sharing, for instance the sharing paradigm discussed in Chapter 5 when

students were quick to claim ownership over ideas and discourage one another from

helping others with ideas. A theoretical take away is that the notion of sharing a public

236
artifact has an overlooked relative dimension. With whom you want to share, when

you share, and how you share are important issues to explore. Sharing has a vulnerability

aspect and students chose with whom to share. For example, in Chapter 5, I observed that

Steph chose to share her physical design with the school secretary, not the classroom

teacher, me or another student. It may be that the models of great sharing are not only

supportive but they are also consistent with a broader history students bring with them to

the learning environment. Sharing is conditional, situational, and sensitive to the sharer.

In the Constructionist literature, Samba schools exemplify the sharing ideal (Papert,

1980). Samba school participants know all about carnival, they know what’s desired,

they know that it’s not a proprietary environment or space, they know there is some sense

of collective ownership. Proponents of Constructionism should think about the notion and

nuances of sharing in learning spaces and explore how these notions and nuances can

potentially contribute to the learning process.

The Hybridity Continuum

 One reason hybrid design media are exciting and garnering interest is because of

their potential to engage young people in multiple disciplines of design, for example

computer programming and crafting. This is especially important because these media are

designed to appeal to young people who may not otherwise be interested in or willing to

attempt a discipline like computer programming. Researchers and designers of hybrid

design media intend for the technologies to act as a bridge between the known, familiar

interests and computing or vice versa in ways that are relatable, natural, and motivating

(Eisenberg, 2003). A theoretical assumption underlying this project was that students

237
would naturally navigate this bridge between tangible and virtual, craft design and

computer programming, taking part in exploring both facets of design. I hypothesized

students would become engrossed in an area of interest, like crafting, and through the

development of their physical pets would feel compelled to participate in bringing their

efforts to life by programming the pet to interact. Similarly, I believed students who

joined the project because of an interest in computer programming would eventually

desire to help bring their virtual creations into the physical world by crafting a physical

pet. Rather than adding credence to these ideas, in the project, students strictly divided

roles, demonstrating a desire to pull apart and isolate the computational and physical

elements of the multi-modal design project (see Chapter 5). Although students did

connect to computing in different ways and many students who might not have otherwise

participated in computing were compelled to participate in the project, students did not

always participate in all aspects of the project. Rather than providing multiple means of

entry into different disciplines of design, in most observed cases, the fact that there were

multiple modalities to the design of students' pets allowed for division of labor, which

segregated and solidified instead of integrating the different elements. For example, as

discussed in Chapter 4, Tegan was drawn away from computing by a compulsion to take

ownership over the physical pet design. Also in Chapter 4, Carlos was never persuaded to

participate in crafting the physical pet or helping develop how users would interact with

the alien that he had essentially created and developed independently in the virtual space.

Carlos was in charge of the computer programming, but stopped participating in the

design process when the group shifted focus to their physical pet, maintaining that he was

238
not artistic through to the end of the project. Steph and Tabitha relegated themselves

to their own design spaces, physical and virtual, and only when Tabitha gave up on the

project did Steph attempt to computer program with disastrous effect (Steph deleted all

the girls' code as discussed in Chapter 5).

These examples are disconcerting because they contradict assumptions made by

the hybrid media community. The observations from this project provide evidence that

even when the intent of both the designer of the media technology and the designer of the

activity structure of a project using hybrid media technology are to integrate multiple

disparate modalities into one design project, like art and computer programming, hybrid

media can be and may likely be dichotomized by students. The desired fusion of tangible

and digital media in an innovative way was not enough to incite all students to participate

in multiple domains. Hybridity is complex and has ramifications for the opportunity for

developing new interests. Aspects of this complexity became visible when collaboration

broke down and students strictly divided labor. This result is particularly pertinent to the

burgeoning idea of integrating hybrid deign media into classroom learning environments

where exposing students to multiple disciplines and supporting students in developing

new interests might well be essential outcomes, critical to key learning goals.

 Students' segregation of the design media in this study suggests the need for

developing models that consider hybridity as part of a continuum that encompasses the

technologies and the structures of the learning environment. For example, as discussed in

Chapter 5, group design projects have the potential to be collaborative but are not

necessarily so, even when the learning environment, like in this project, was designed to

239
foster shared ideas and effort. In an effort to guide collaboration and learning, some

designers dictate exactly how students should interact, for example the FCL jigsaw model

provides students with specific tasks to master and then bring back to their groups

(Brown & Campione, 1996). However, supports that would make more stringent

mandates on how students work together on complex tasks have both inherent costs and

benefits. The costs include counteracting the open-ended, exploratory learning

environment designers and proponents of these media strive for. Having the ability to

organically renegotiate and reconsider ones role in a collaborative learning effort has

been shown to be important for students' development of new ideas and success in

complex problem solving activities (White & Pea, 2011). Providing instances where

students have the opportunity and motivation to reestablish their roles may be the type of

support that could broaden students' participation in multiple design domains. The results

of this study provide a word of caution to educators and researchers excited about the

potential of tangible/digital design media. How youth engage in design projects with

these media may not always align with the goals and notions of designers. Rather than

assuming that hybrid media are promising simply because they offer a way to bridge

disciplines, we need to further research effects of these media on learning and interest

development and use the findings to develop a framework for understanding the hybridity

of multi-modal design media as a function of the technologies and how they are

integrated into learning environments.

240
Reflections on the Results

 In this section I summarize my findings, linking them back to the original

research questions. In doing so, I describe what was learned during the project, and how

that affects research and design of hybrid design technologies in education.

 The first result of the research is that this population can effectively complete a

hybrid design technology project given the constraints associated with their experiences,

histories and school. This addresses research question 1. Can these students successfully

complete a hybrid technology design project? The students were willing, equipped and

capable of completing a complex academic task in a Constructionist-inspired

environment, with the designed supports. Students used the experience of debugging

prototype code to use programming concepts and structures. Then, students adapted what

they had learned to create their own computer programming projects by reusing,

modifying, and writing original code. Students constructed physical pets from craft, art,

and found materials and then programmed the pets to interact via embedded

microprocessing boards. The pet projects were imaginative, functional, and unique.

Students continued to attend class despite absences. They participated in all aspects of the

designed activities, and showed signs of sustained engagement. On occasion students

arrived early and others stayed late to work on their projects, such as Jamal described in

Chapter 4. Despite the challenges associated with an extended design and programming

project, these students did not give up. Recall that the staff at Winder were supportive

about the project overall but believed perseverance and with it productive and prolonged

participation would be one of the biggest challenges. I consider the completion of the

241
project, as represented by several students in Chapter 4, to be an important story

about real possibilities for students to do meaningful work.

 Second, students participated in aspects of programming, debugging, crafting,

designing interactions, and design thinking, although all students did not participate in all

of those areas. This addresses research question 2. How do alternative high school

students engage in the environment? What is the nature of their participation? When

provided a more structured environment, students took part in collaborative problem

solving, as described in Chapter 5. With less structure, students worked in a cooperative

rather than collaborative way by distributing tasks, roles, and goals during the project.

Without the explicit structuring of the task, groups still completed the work. However,

the groups functioned cooperatively – they each worked on separate pieces important to

the resultant whole – rather than collaborative – in which they would have talked with

and engaged one another with ideas and suggestions based on what other group members

had contributed immediately before. All students enrolled in the project succeeded in

earning course credit for their efforts.

 Third, I address research question 3. In what ways do students engage with bugs?

What is the nature of students' debugging strategies? Students willingly participated in

debugging activities. Students employed many strategies for facing bugs including

tinkering and were most often able to resolve most of the bugs in their projects. For

instance, tinkering represented 57% of Jamal's debugging activities and 40% of Tegan,

Rocky, and Ted's debugging activities. Students resolved 80% of the bugs they

encountered in their independent projects. In many cases students identified and fixed

242
bugs without or with minimal support. Some students engaged in fixing a single bug

for long stretches of time. Given their experiences debugging, the majority of students

were then successfully able to debug parts of a new program after the project was

completed. Some students were able to debug all parts of the program given. This too is a

very encouraging result.

 Fourth, there were some ways in which it appeared some of the students felt

empowered by this project. This addresses research question 4. Do students exhibit

elements of empowerment with respect to computing? More specifically, how do students

think about their experience with the project, especially with respect to their making

mistakes and their feelings toward participating in computing in general? On the whole,

the majority of students reported more positively associating learning by making and

fixing mistakes after the project. All students reported they felt more confident, with

some feeling very confident, with finding and fixing errors in computer code after the

project. Many of the students reported that they felt more positively about computing

because of their experience. Some students mentioned having learned more about the

possibilities of computing. Many students reflected positively on their experience, but

there was definitely frustration at times in the project. Nearly all students reported they

would participate in the project again if given the opportunity.33 One student, Jamal,

reported interest in pursuing a career in computing as a result of his experience with the

DigiblePets project.

33 Recall Dino was inadvertently not asked the question.

243
 Finally, because of the target population, this research project had a set of

unique design challenges including questionable content appropriateness, absenteeism,

and wariness towards one another. It was far from Papert's (1980) model of learning in a

collaborative, harmonious samba school, in which groups of people with different levels

of expertise work together to create something meaningful. Yet, some important ideas

from Constructionism held true. Students were engrossed for a long stretch of time in

creating projects that seemed to have personal meaning, even when that meaning was not

sanctioned in school. Students successfully worked in an open-ended, independent,

entirely new kind of learning environment. Students explored aspects of computer

programming and programmatic thinking.

Limitations and Steps for Improvement

 First, there are a series of questions that could inform the project that deserve to

be addressed. For instance, I noted in Chapter 6 that there was a lull in programming

effort when the craft materials arrived during workshop 5. Should there have been

different kinds of supports or structure to avoid this type of lull or is this to be expected

when a new set of materials arrives? Students debugged and resolved many bugs, but

many times needed facilitator support in doing so. Were there things that could have or

should have been done differently to get better debugging? In Chapter 5, I discussed the

way students segregated work. Did the separation affect the quality of what the students

could be accomplished, or was it an appropriate way for the students to proceed given the

newness of the entire project to them? These questions are substantial and could all be

244
part of a larger discussion on using hybrid technologies for learning in similar

learning environments. Many more iterations of the project with different populations in

different settings would have to be undertaken before headway could be made regarding

them. My goals for this project were more modest. At the most fundamental level, I was

trying to design and implement an intervention with a set of underlying theoretical

assumptions and characterize the nature of what happened. Yet I still recognize there are

important ways the implemented project could be refined to increase student engagement

and potential for learning.

 As acknowledged previously, the design and implementation of the DigiblePets

project was a single iteration. Design research is most often considered several cycles of

design, implementation, analysis, and refinement (Edelson, 2002). However for the

purposes of this study, only one instantiation of the project cycle was completed. Given

the results and what I have learned, I hope to enact further implementations in the future,

taking into consideration that I intend to continue my work in this domain.

 Also, this research was conducted with a small population. Because I wanted to

realize my research in an authentic classroom environment with struggling students, I did

not have the ability to choose who and how many students participated. The small sample

size was an unintended consequence of the setting, constraints, and demands of the

school and students within it. Perhaps it would be possible to recruit more students at a

larger alternative school or even by implementing a second iteration at Winder where

word of mouth from other students may encourage more students to sign up.

245
 As with any research project, there are things that for any number of reasons

could have been done differently. Every aspect of the design and implementation of the

new kind of technology and the activities of the project were carefully thought through

based on prior research and grounded in literature. However, had aspects of the design or

research strategy been modified, the outcomes could have been made more salient. Recall

that this instantiation was meant to be a first endeavor at a project of this kind. This is

why design research can be seen as so important. Different groups differ in their needs

and interests and design research has the potential to keep us accountable to those

differences and accountable to developing theories and approaches that answer to these

changing variables.

 During the DigiblePets project, I oftentimes had to make modifications and in-

the-moment decisions to meet student needs and react to unanticipated events. For

instance, I was not prepared to deal with a student being taken to jail in handcuffs like

Ted was, or another student confiding in me that he had never done anything important

academically before receiving a paper certificate for passing a class, like Jamal. I

witnessed students struggle with frustration and tried to use my background as a teacher

to continue to push them to develop important skills to deal with the errors and problems

they were encountering instead of telling them the answer. I sometimes was faced with

problems I did not know the answer to, for example Maya and Dino encountered a

programming bug during workshop 12 that I had to honestly explain I could not identify.

Despite this I tried to help the group the best that I could. I also had to put honest effort

into simply trying some things out that ultimately were not successful, like the

246
culminating event and having students share and improve on one another's work. I

hoped the project would begin to change how students viewed learning and computing,

but realistically, five weeks was not enough time, in most cases to achieve that change.

 Even when students worked in deeply committed ways, situations arose

pinpointing limitations in the overall project realization. The pet theme was successful at

promoting initial student involvement, for example, recall from Chapter 4, Tegan

reported in an interview that she chose to sign up for the project specifically because we

were making pets and not just computer projects. The pet theme also provided some

students an affective means to relate to their projects, for example Tegan and her monkey

and Jamal with his zebra and accessories. However, the overarching design goal of the

pet project was not well defined nor well inculcated for the students. The intended

reasons for designing pets include: to create an interesting, integrated, sensible,

interactive toy for young children and to show the product to and get reactions from a

group of outside individuals. Students were informed of the intended audience, but the

audience was not well explored or explained to students nor, as a result, internalized by

students. Students needed more intimate and specific knowledge of their audience in

order to make their projects appropriate for and interesting to the intended users.

 Resulting student projects were interesting and unique but lacked purpose or

overall integration and were not always audience appropriate. Students' projects were

oftentimes inappropriate for a general audience. For example all student projects, at one

point or another in the design process, made use of vulgar language, gestures and/or

illegal activity. Students delighted in the fact that they could make their pets say curse

247
words or derogatory statements by either speaking out loud or in a speech bubble.

Students made their pets "party" with alcohol and illicit drugs. As a result, students lost

sight of the purpose for making the pets in that they were not designing for the intended

audience of young children.

 The evening design show at the end of the project was intended to be the

culminating activity where students demonstrated their pets to friends, family, invited

school personnel and community members. However, the design show was poorly

attended by both students and invited guests. Of the nine students in the project, only four

were cajoled into attending, even when attendance was compulsory for course credit.

Students reported that course credit was a major motivating factor in their participation in

the first place.34 Although disappointing, the result is consistent with what one might

anticipate. Most of these students have limited, if any, relationships with their parents,

teachers or any other adults. The students have little academic identity, making it

awkward at best to encourage friends to attend. They have many binding outside of

school commitments that trump academic involvement atypical of students from a

conventional high school. Expecting the students to relish a consequential task that did

not mesh with their circumstances and conflicted with their outside of school lives did not

make sense.

 One final thought on the purpose of the Digible Pet projects must include the

limited overall sensibility and lack of integration of student designs. Students created lots

34 After the poor showing at the event, Anna, the classroom teacher, allowed those
students with legitimate excuses write an essay about their experience with the project in
order to earn course credit.

248
of unique functionality for their pets but did not really encompass the overall idea

behind creating an interactive pet, versus an interactive object. The eventual responses to

button presses and sensor inputs were not consistent with what one might expect of a pet.

Students did not see the pet theme as a driver for innovative, imaginative but related ideas

having to do with real pets. Students were not concerned with their pets being virtual

companions that need care like water, food, exercise, and a place to sleep or play. They

also did not see user input as a way for individuals to interact with their pets as beings.

My hope, as mentioned in Chapter 5, was that students would have intimate knowledge

of interactive pets, like ZhuZhu pets and Webkins. Their knowledge of or interest in these

toys was either limited or not accessed. Therefore, in future project iterations, so long as

the pet metaphor continues, more attention must be paid to familiarizing students with

what interactive pets actually are and why they are popular. Giving students an

opportunity to access and increase their domain expertise before they design their own

pets could promote student projects to be much more integrated, pet-like and improved

overall. Studies of computational crafts show similar findings about the benefits of

allowing students to experiment and get to know how the media can function before

embarking on a long-term product (Buechley et al., 2007). This would also have

encouraged students to think about their projects conceptually before embarking on a host

of functionality changes that may not have been well integrated. In addition, attending to

the issues above would help students be more focused by providing an incentive for

purposeful, directed design decisions and allow for better DigiblePet Projects overall.

249
Next Steps and Final Thoughts

 On a broad level, this project presses on various theoretical constructs, impelling

researchers and designers in computer science education, learning sciences, and hybrid

design media to further explore issues related to debugging as a motivational learning

tool, the nuances of sharing in learning, and implications of prospective hybridity of

tangible/digital media. On a more local scale, possible future iterations of this project are

exciting as there are many ways new opportunities could be explored based on the results

of this first project. In this section I highlight a few potential next steps regarding future

research projects. For example, in a next iteration of this project students could work on

individual projects, but more time could be dedicated to exploring the realms of

interactive pets and audience/users and include much more discussion of ideas together as

a group. This could potentially encourage students to participate in more aspects of the

project, as they would be responsible for developing every part of their pet. I would like

to investigate the differences in students' interactions when working on individual

projects in a supportive learning community. Also, the original project participants could

be included in a new instantiation to work alongside novices as mentors and "expert pet

developers". The experts could potentially help foster more peer interaction and peer

learning as well as limit frustration the novice students reported. I would like to examine

whether students interact more in this type of environment and whether feelings of

proprietariness and wariness are as abundant. Likewise, the next iteration could be

necessarily lengthened and include more students. Even if the workshop times could not

be extended, the overall duration of the project could be increased to give students more

250
time to try out ideas, plan their projects, and become experts in all types of interactive

pets. I would like to explore the types of projects students could develop given more

supports, more peers, more time, and more experience. A combination of these ideas

could work to improve the overall quality of the projects students create as well as in

some ways limit frustration, increase the productive exchange of ideas, and provide more

direction for students' pets. By attempting to extend the project in some these ways, I

would hope to provide a richer environment for learning and more influential experience

with computing overall.

 In summary, the DigiblePets project successfully compelled a group of struggling

students to engage in computing, crafting, and interactive toy design. It is indeed

possible, and I hope to have shown also fruitful, to work with and explore processes of

technology design and engagement with students who have been formally moved out of

mainstream educational systems. For these students, the project was a radical departure

from school learning and the students persevered within the new learning environment.

The project gave students an opportunity to feel a sense of pride in their work and for

many, to enjoy learning in school, perhaps for the first time in a long time. Like Tegan

said to the principal of Winder during the final workshop while holding up her monkey

and smiling, "I did it, all by myself!"

251
REFERENCES

AAUW. (2000). Tech-Savvy: Educating Girls in the Computer Age. Washington, DC:
American Association of University Women.

Abrahamson, D., & Wilensky, U. 2005. The stratified learning zone: Examination of the

pros and woes of collaborative-learning design in demographically-diverse
mathematics classrooms. Paper presented at the annual meeting of the American
Educational Research Association. Montreal, Canada.

Ackerman, E. (1996). Perspective-taking and object construction: Two keys to learning.

In Y. Kafai & M. Resnick (Eds.) Constructionism in practice: Designing, thinking
and learning in a digital world (pp.25-35). Mahwah, NJ: Erlbaum.

Alper, M., Hourcade, J. P., & Gilutz, S. (2012). Adding reinforced corners: designing

interactive technologies for children with disabilities. Interactions, 19(6), 72-75.

Aron, L. (2003). Towards a typology of alternative education programs: A compilation of
 elements from the literature. Washington, DC: The Urban Institute.

Barrows, H. (1996). Problem-based learning in medicine and beyond: A brief overview.

New Directions for Teaching and Learning, 68, 3-12.

Berland, L. (2011). Explaining variation in how classroom communities adapt the

practice of scientific argumentation. Journal of the Learning Sciences, 20(4), 625-
664.

Berland, M., & Lee, V. (2011). Collaborative strategic board games as a site for

distributed computational thinking, International Journal of Game-Based
Learning, 1(2), 65-81.

Bielaczyc K. (2006). Designing social infrastructure: Critical issues in creating learning

environments with technology. Journal of the Learning Sciences, 15(3), 301-329.

Blikstein, P. (2011). One Fabrication Lab per School: the FabLab@School project. Tedx

Talk, Manhattan Beach, CA. http://tedxmanhattanbeach.com/past-
events/conference-october-2011/speakers/paulo-blikstein-2/

Blikstein, P. (2013). Digital fabrication and 'making’ in education: The democratization

of invention. In J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of machines,
makers and inventors. Bielefeld: Transcript Publishers.

252
Brown, A. (1992). Design experiments: Theoretical and methodological challenges in

creating complex interventions. Journal of the Learning Sciences, 2, 141-178.

Brown, A., & Campione, J. (1996). Psychological theory and the design of innovative

learning environments: On procedures, principles, and systems. In L. Schauble &
R. Glaser (Eds.), Innovations in learning: New environments for education (pp.
289-325). Mahwah, NJ:Erlbaum.

Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of
learning. Educational Researcher, 18(1), 32-42.

Bruckman, A. (1998). Community Support for Constructionist Learning. The Journal of
Collaborative Computing, 7, 47-86.

Bruckman, A. (2000) Situated support for learning: Storm’s weekend with Rachel.
Journal of the Learning Sciences, 9(3), 329-372.

Buechley, L., Eisenberg, M., Catchen, J., & Crockett, A. (2008). The LilyPad Arduino:

using computational textiles to investigate engagement, aesthetics, and diversity
in computer science education. In Proceedings of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing Systems (pp. 423-432).
Florence, Italy, April 05 - 10, 2008. New York, NY: ACM.

Buechley, L., Eisenberg, M., & Elumeze, N. (2007). Towards a curriculum for electronic

textiles in the high school classroom. ACM SIGCSE Bulletin, 39(3), 28-32.

Catrambone, R., Stasko, J., & Xiao, J. (2002). Anthropomorphic Agents as a UI

Paradigm: Experimental Findings and a Framework for Research. Technical
Report GIT-GVU-02-10. Georgia Institute of Technology, Atlanta.

Chmiel, R., & Loui, M. C. (2004). Debugging: from novice to expert. In ACM SIGCSE
 Bulletin, 36(1), 17-21.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments

in educational research. Educational Researcher, 32(1), 9-13.

Collins, A. (1990). Toward a design science of education. In E. Scanlon & T. O’Shea

(Eds.), New directions in educational technology (pp. 15-20). Berlin: Springer-
Verlag.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and

methodological issues. Journal of the Learning Sciences, 13(1), 15-42.

253
Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory

programming concepts. Journal of Computing Sciences in Colleges, 15(5), 107-
116.

Csikszentmihalyi, M., & Wolfe, R. (2001). New conceptions and research approaches

tocreativity: Implications of a systems perspective for creativity in education. In
K. A. Heller, F. J. Manks, R. Subotnik, & R. J. Sterberg (Eds.), International
handbook of giftedness and talent (pp. 81–93). Oxford, UK: Elsevier.

Cunniff, N., Taylor, R. P., & Black, J. B. (1986). Does programming language affect the

type of conceptual bugs in beginners' programs? A comparison of FPL and
Pascal. ACM SIGCHI Bulletin, 17(4), 175-182.

Del Marie Rysavy, S., & Sales, G. C. (1991). Cooperative learning in computer-based

instruction. Educational Technology Research and Development, 39(2), 70-79.

diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge,

MA: MIT Press.

DuMont, M., & Fields, D. (2013). Hybrid shmybrid: Using collaborative structure to

understand the relationship between virtual and tangible elements of a
computational craft. Madison, Wisconsin: International Society of the Learning
Sciences.

DuMont, M., & Lee, V. R. (2012). A Technologically Enhanced Construction Kit as a

Support for Children’s Collaborative Computational Thinking. Paper presented at
the 2012 annual meeting of the American Educational Research Association,
Vancouver, BC.

Edelson, D. C. (2002). Design research: What we learn when we engage in design.

Journal of the Learning Sciences, 11(1), 105-121.

Edelson, D., Pea, R., & Gomez, L. (1996). Constructivism in the collaboratory. In B.G.

Wilson (Ed.), Constructivist learning environments: Case studies in instructional
design (pp. 151-164). Englewood Cliffs, NJ: Educational Technology.

Eisenberg, M. (2003). Mindstuff: Educational technology beyond the computer.
Convergence, 9(29), 29-53.

Eisenberg, M., Eisenberg, A., Gross, M., Kaowthumrong, K., Lee, N., & Lovett, W.

(2002). Computationally enhanced construction kits for children: Prototype and
principles. Proceedings of the International Conference of the Learning Sciences,
(pp. 79-85).

254
Eisenberg, M., Elumeze, N., MacFerrin, M., & Buechley, L. (2009). Children’s

programming, reconsidered: Settings, stuff, and surfaces. Paper presented at the
8th annual conference on Interaction Design and Children. Como, Italy.

Evard, M. (1996). A community of designers: Learning through exchanging questions

and answers. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice:
Designing, thinking and learning in a digital world (pp. 223-239). Mahwah, NJ:
Erlbaum.

Falcão, T. P., & Price, S. (2010). Informing design for tangible interaction: a case for

children with learning difficulties. In Proceedings of the 9th International
Conference on Interaction Design and Children (pp. 190-193). Barcelona, Spain.

Fernández-Cárdenas, J. M. (2008). The situated aspect of creativity in communicative

events: How do children design web pages together? Thinking Skills and
Creativity, 3(3), 203-216.

Fields, D., Kafai, Y., & Searle, K. (2012). Functional aesthetics for learning: Creative

tensions in youth e-textiles designs. In van Aalst, J., K. Thompson, M. Jacobson,
& P. Reimann (Eds.), The Future of Learning: Proceedings of the 10th
International Conference of the Learning Sciences (ICLS 2012, pp. 196-203).
Sydney, Australia: International Society of the Learning Sciences.

Fields, D., Searle, K., Kafai, Y., & Min, H. (2012). Debuggems to assess student learning

in e-textiles. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education (pp. 699-699). Raleigh, NC.

Finn, J., & Rock, D. (1997). Academic success among students at risk for school failure.

Journal of Applied Psychology, 82(2), 221-234.

Fredricks, J., Blumenfeld, P., & Paris, A. (2004). School engagement: Potential of the

concept, state of the evidence. Review of Educational Research, 74(1), 59-109.

Furst, G. (2006). Prison-based animal programs a national survey. The Prison Journal,

86(4), 407-430.

Griffin, J., Kaplan, E., & Burke, Q. (2012). Debug'ems and other deconstruction kits for

STEM learning. Integrated STEM Education Conference (ISEC), 2012 IEEE. Vol.
2, 1-4.

Grover, S., & Pea, R. (2013). Computational thinking in K–12 A review of the state of

the field. Educational Researcher, 42(1), 38-43.

255
Guzdial, M. (2003). Programming environments for novices. Computer Science

Education Research, 2004, 127-154.

Harel, I., & Papert, S. (1991). Software design as a learning environment. In I. Harel &

S. Papert (Eds.), Constructionism: Research reports and essays (pp. 41-84).
Norwood, NJ: Ablex.

Huang, Y., & Eisenberg, M. (2011). Plushbot: an application for the design of

programmable, interactive stuffed toys. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction (pp. 257-260).
Funchal, Portugal.

Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils’

school performance in mathematics, problem solving ability and attitude: Swedish
data. Educational Technology & Society, 9(3), 182-194.

Kafai, Y. (1996). Learning design by making games: Children’s development of design

strategies in the creation of a complex computational artifact. In Y. Kafai & M.
Resnick (Eds.) Constructionism in practice: Designing, thinking and learning in a
digital world (pp. 71-96). Mahwah, NJ: Erlbaum.

Kafai, Y., Fields, D., & Burke, Q. (2011). Collaborative agency in youth online creative

production in Scratch. In Proceedings of the 19th International Conference on
Computers in Education, Chiang Mai, Thailand.

Kafai, Y., Fields, D., & Searle, K. (2012). Making learning visible: Connecting crafts,

circuitry & coding in e-textile designs. In J. van Aalst., K. Thompson, M.
Jacobson, & P. Reimann, (Eds.), The Future of Learning: Proceedings of the 10th
International Conference of the Learning Sciences (ICLS 2012; pp.188-195).
International Society of the Learning Sciences: Sydney, Australia.

Kafai, Y., & Harel, I. (1991). Learning through design and teaching: Exploring social and

collaborative aspects of constructionism. In I. Harel & S. Papert (Eds.),
Constructionism: Research reports and essays (pp. 85-110). Norwood, New
Jersey: Ablex.

Kafai, Y., & Peppler, K. (2011). Youth, technology, and DIY: Developing participatory

competencies in creative media production. In V. L. Gadsden, S. Wortham, & R.
Lukose (Eds.), Youth cultures, language and literacy. Review of Research in
Education, 34.

Kafai, Y., Peppler, K., & Chapman, R. (2009). The computer clubhouse. New York, NY:

Teachers College Press.

256
Kafai, Y., Peppler, K., Chiu, G., Maloney, J., Rusk, N., & Resnick, M. (2009). From

photoshop to programming. In Y. Kafai, K. Peppler, & R. Chapman (Eds.), The
computer clubhouse (pp. 136-144). New York, NY: Teachers College Press.

Kafai, Y., & Resnick, M. (1996). Constructionism in practice: Designing, thinking and

learning in a digital world. Mahwah, NJ: Erlbaum.

Kahn, K. (2004). Toontalk-steps towards ideal computer-based learning environments. In

L. Steele, & M. Tokoro (Eds.), A Learning Zone of One's Own: Sharing
Representations and Flow in Collaborative Learning Environments (pp. 253-
270). IOS Press.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy

of programming environments and languages for novice programming. ACM
Computing Surveys, 37(2), 83 -137.

Klahr, D., & McCoy Carver, S. (1988). Cognitive objectives in a LOGO debugging

curriculum: Instruction, learning and transfer. Cognitive Psychology, 20, 362-404.

Koschmann, T., Myers, A., Feltovich, P., & Barrows, H. (1993). Using technology to

assist in realizing effective learning and instruction: A principled approach to the
use of computers in collaborative learning. Journal of Learning Sciences, 3(3).
227-264.

Lampert, M. (2001). Teaching problems and the problems in teaching . New Haven, CT:
Yale University Press.

Lange, C. & Sletten, S. (2002). Alternative education: A brief history and research
synthesis. Project FORUM, National Association of State Directors of Special
Education, Alexandria Virginia, February 1, 2002.

Lapidot, T., & Hazzan. (2005). Song debugging: Merging content and pedagogy in

computer science education. SIGCSE Bulletin, 37(4), 79-83.

Lee, M. K., Kiesler, S., & Forlizzi, J. (2010). Receptionist or information kiosk: how do

people talk with a robot?. In Proceedings of the 2010 ACM conference on
Computer supported cooperative work (pp. 31-40). Savannah, GA.

Littlefield, J., Delclos, V., Bransford, J., Clayton, K., & Franks, J. (1989). Some

prerequisites for teaching thinking: Methodological issues in the study of LOGO
programming. Cognition and Instruction, 6(4), 331-366.

Lu, J., & Fletcher, G. (2009). Thinking about computational thinking. Chattanooga, TN.

ACM. Academic Press.

257
Malan, D., & Leitner, H. (2007). Scratch for budding computer scientists. ACM

SIGCSE Bulletin 39(1), 223-227.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch:

A sneak preview. Second International Conference on Creating, Connecting, and
Collaborating through Computing. Kyoto, Japan (pp. 104-109).

Marti, P., Pollini, A., Rullo, A., & Shibata, T. (2005). Engaging with artificial pets. In

Proceedings of the 2005 annual conference on European association of cognitive
ergonomics (pp. 99-106). Athens, Greece.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: A review of the literature from an educational
perspective. Computer Science Education, 18(2), 67-92.

McCrae, R. (1987). Creativity, divergent thinking, and openness to experience. Journal

of Personality and Social Psychology, 52(6), 1258-1265.

Meyers, J., LaMarche, J., & Eisenberg, M. (2010). Craftopolis: Blending tangible,

informal construction into virtual multiuser communities. Paper presented at the
9th Annual Conference on Interaction Design and Children. Barcelona, Spain.

Miles, M., & Huberman, A. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks,

CA: Sage.

Millner, A. (2009). Interface designs with hook-ups. In Y. Kafai, K. Peppler, and R.

Chapman (Eds.) The Computer Clubhouse: Constructionism and creativity in
youth communities (pp. 58-70). Teachers College Press. New York, NY.

Minsky, M. (1985). Society of mind. New York, NY: Simon and Schuster.

Monroy-Hernández, A., & Resnick, M. (2008). FEATURE Empowering kids to create

and share programmable media. interactions, 15(2), 50-53.

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C.

(2008) Debugging: The good, the bad, and the quirky - a quantitative analysis of
novice’s strategies. SIGCSE Bulletin, 40(1), 163-167.

National Advisory Committee on Creative and Cultural Education. (1999). All our
 futures: Creativity, culture and education.

www.cypni.org.uk/downloads/alloutfutures.pdf

National Research Council. (1999). Being fluent with information technology.
 Washington, DC: National Academy Press.

258

National Research Council. (2010). Report on a workshop on the scope and nature of

computational thinking. Washington, DC: National Academy Press.

Norman, D. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction:

Psychology at the human-computer interface (pp. 17-38). New York, NY:
Cambridge University Press.

Pang, L. S., & Foley, R. M. (2006). Alternative education programs: Program and student

characteristics. The High School Journal, 89(3), 10-21.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY:

Basic Books.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),

Constructionism: Research reports and essays (pp. 1-12). Norwood, NJ: Ablex.

Pea, R. (1983). Logo programming and problem solving. Paper presented at an American

Educational Research Association Symposium (Montreal, Canada, April 1983) as
‘Chameleon in the Classroom: Developing Roles for Computers’.

Pea, R. (1986). Language-independent conceptual “bugs” in novice programming.

Journal of Educational Computing Research, 2(1), 25-36.

Pea, R., Kurland, D., & Hawkins, J. (1985). Logo and the development of thinking skills.

in M. Chen & W. Paisley (Eds.), Children and microcomputers: Research on the
newest medium (pp. 193-212). Beverly Hills, CA: Sage.

Peppler, K., & Kafai, Y. (2001). From SuperGoo to Scratch: Exploring Creative Media

Production in Informal Learning. Journal on Learning, Media, and Technology, 32,
7, 149-166.

Raffle, H. (2006). Kinesthetic media: Touch, toys & interactive materials. In ACM

SIGGRAPH 2006 Educators program (p. 8). Boston, MA: ACM.

Raffle, H., Parkes, A., & Ishii, H. (2004). Topobo: A constructive assembly system with

kinetic memory. Proceedings of the Conference on Human Factors in Computing
Systems (pp. 869-877). Vienna, Austria.

Resnick, M. (1996). New paradigms for computing, new paradigms for thinking. In Y.

Kafai & M. Resnick (Eds.), Constructionism in practice: Designing, thinking and
learning in a digital world (pp. 255-267). Mahwah, NJ: Erlbaum.

259
Resnick, M. (1998). Technologies for lifelong kindergarten. Educational Technology

Research and Development, 46(4), 43-55.

Resnick, M. (2006). Computer as paintbrush: Technology, play, and the creative society.

In D. Singer, R. Golikoff, & K. Hirsh-Pasek (Eds.), Play = Learning: How play
motivates and enhances children's cognitive and social-emotional growth. Oxford
University Press.

Resnick, M., Bruckman, A., & Martin, F. (1996). Pianos not stereos: Creating

computational construction kits. interactions, 3(6), 41-50.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Milner, A., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming
for all. Communications of the ACM, 52(11), 60-67.

Resnick, M., Martin, F., Sargent, R. & Silverman, B. (1996). Programmable bricks: Toys

to think with. IBM Systems Journal, 35(3&4), 443-452.

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for

kids. In Proceedings of the 2005 conference on Interaction Design and Children
(pp. 117-122). Boulder, CO.

Rusk, N., Resnick, M., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into

robotics: Strategies for broadening participation. Journal of Science Education
and Technology, 17(1), 59-69.

Sawyer, R. (2006a). Educating for innovation. Thinking Skills & Creativity, 1, 41-48.

Sawyer, R. (2006b). Analyzing collaborative discourse. In The Cambridge handbook of

the learning sciences (pp.187-204). New York, NY: Cambridge University Press.

Sawyer, R. (2012). Learning how to create: Toward a learning sciences of art and design.

In Proceedings of the International Conference of the Learning Sciences (ICLS
2012), Sydney, Australia, 2012.

Sawyer, R., & DeZutter, S. (2009). Distributed creativity: How collective creations

emerge from collaboration. Psychology of Aesthetics, Creativity, and the Arts,
3(2), 81-92.

Schank, R., Fano, A., Bell, B., & Jona, M. (1993). The design of goal-based scenarios.

The Journal of the Learning Sciences, 3(4), 305-345.

Shelton, B. E., Stowell, T., Scoresby, J., Alvarez, M., Capell, M. & Coates, C. (2010). A

Frankenstein approach to open-source: The construction of a 3D game engine as

260
meaningful educational process. IEEE Transactions on Learning
Technologies, 3(2), 85-90.

Sipitakiat, A., Blikstein, P., & Cavallo, D. (2004). GoGo board: Augmenting

programmable bricks for economically challenged audiences. In Proceedings of
the International Conference of the Learning Sciences (ICLS 2004), Los Angeles,
CA.

Sonnenburg, S. (2004). Creativity in communication: A theoretical framework for

collaborative product creation. Creativity and Innovation Management, 13(4),
254-262.

Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative

learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook
of the learning sciences (pp. 409-426). Cambridge, UK: Cambridge University
Press.

Strohecker, C. (1991). Elucidating styles of thinking about topology through thinking

about knots. In I. Harel & S. Papert (Eds.), Constructionism: Research reports
and essays (pp. 215-234). Norwood, NJ: Ablex.

Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process
 skills, and systems understanding. Journal of Research in Science Teaching,
 45(3), 373-394.

Turkle, S. (2005). Computer games as evocative objects: From projective screens to

relational artifacts. In J. Raessens & J. Goldstein (Eds.), Handbook of computer
game studies (pp. 267-279). Cambridge, MA: MIT Press.

Turkle, S., & Papert, S. (1991). Epistemological pluralism and the revaluation of the

concrete. In I. Harel & S. Papert (Eds.), Constructionism: Research reports and
essays (pp. 161-192). Norwood, NJ: Ablex.

Vass, E., Littleton, K., Miell, D., & Jones, A. (2008). The discourse of collaborative

creative writing: Peer collaboration as a context for mutual inspiration. Thinking
Skills and Creativity, 3, 192-202.

Webb, N. M., Ender, P., & Lewis, S. (1986). Problem-solving strategies and group

processes in small groups learning computer programming. American
Educational Research Journal, 23(2), 243-261.

Weiss, A., Wurhofer, D., & Tscheligi, M. (2009). “I Love This Dog”—Children’s

emotional attachment to the robotic dog AIBO. International Journal of Social
Robotics, 1(3), 243-248.

261
White, T., & Pea, R. (2011). Distributed by design: On the promises and pitfalls of

collaborative learning with multiple representations. The Journal of the Learning
Sciences, 20(3), 489-547.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning

biology through constructing and testing computational theories -- an embodied
modeling approach. Cognition & Instruction, 24(2), 171-209.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),33-35.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM

SIGCSE Bulletin, 28(3), 17-22.

Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending tangible interfaces for

education: Digital montesory-inspired manipulatives. Proceedings of the
Conference on Human Factors in Computing Systems (pp. 859-868). Portland,
Oregon.

262

APPENDICES

263

Appendix A. Sample Lesson Plan

264

Lesson Title
Tangible Digital Pets I

Date
11.1.11 -
11.2.11

Lesson #
3

Objectives
1. Students begin to design their own digital pet from "scratch".
2. Students begin to remix/reuse code from prototype pets to create their own pet.
3. Students learn to use round table sharing to get advice and learn from others.

Opener 10 min What do we know about Digital Pets?

 Brainstorm! (on post-it notes)

• 5 min - What is a digital pet? Types of digital pets.
• 5 min - Brainstorm ideas for types of interactions between pet and

human or pet and computer.

Materials Needed
3 cameras
3 mics
3 tripods

pack of post it
notes

3 prototype pets
3 laptops
3 PicoBoards
craft materials

Workshop 30 min + 30 min Digital Pet Designing

• Introduce students to PicoBoards and how to get them working.
Introduce students to craft materials. Say, "Your job is to design and
develop a tangible digital pet of your own. Your pet should be designed
for a 2nd or 3rd grader. We are going to work on these for the rest of
the project. At the end, we are going to host a design exhibit, which we
need to schedule, where you will each get a chance to show off your pet
to family, friends, teachers and anyone interested .It will be just like an
art exhibit with cheese and crackers and little napkins. The people who
come will each get to give you feedback on your design, telling you what
parts are good and what doesn't work so well. So you have a real
reason to make your pet great. Any questions?"

• Anticipate questions about "we don't know how to program" and "how
do we even start?"

• Explain how to save new program on desktop!! (Blah-blah-
blah_intitials_version.scr)

• Give students debug reports and tell them to fill them out as they work.
• Walk around and help students with figuring out how remix/reuse

code.
• Ask questions and see how students are going about this endeavor.

Materials Needed
daily debug reports

265
Roundtable 10 min Share

• Collect debug reports

Use prompts like:

• Each pair should share the name of their pet and give some ideas about
how and what their pet will do.

• Any pair that would like to share something they got their pet to do
should.

• Any pair that would like to share something that isn't working to get
advice should.

Materials Needed
Board

266

Appendix B. Pre and Post Survey

267

 Digital Pets Project Appraisal Inventory

Name: Pre / Post

Date: Grade Level: 10 11 12

I am: Female Male

Read aloud to students:

This questionnaire is designed to help me get a better understanding of how

you think about solving problems, computer programming and design. Please rate

how much you agree with each statement by circling the number from 1 to 10. For this

questionnaire, 1 means you don’t agree at all, 5 means you more or less agree and 10

means you completely agree. Don’t worry if there are some things you don’t know

about on this questionnaire. You can leave questions blank that you don’t know about.

I am just trying to assess what everyone knows about already and what you haven’t

studied yet. You won’t be graded. Do you have any questions? (pause for questions).

Rate how much you agree with each statement by circling a number from 0 to

10 using the scale:

0 1 2 3 4 5 6 7 8 9 10
Don’t
agre
e at
all

More
or

less
agre

e

Com
plete

ly
agre

e

read: Let’s start with the first question. Answer the first question now.

 1. I know some computer programming

0 1 2 3 4 5 6 7 8 9 10

 read: If you don’t know any computer programming skip to question 8.

268
2. I know how to fix bugs/errors in computer code

0 1 2 3 4 5 6 7 8 9 10

3. I am confident I can fix a bug/error when my computer code isn’t working
 right

0 1 2 3 4 5 6 7 8 9 10

4. When my computer code isn’t working right, I’d rather just change my idea
than have to try to figure out how to fix a problem in the code

0 1 2 3 4 5 6 7 8 9 10

5. I sometimes delete computer code and start over instead of trying to figure
out how to fix it

0 1 2 3 4 5 6 7 8 9 10

6. I think debugging/fixing errors is a valuable skill

0 1 2 3 4 5 6 7 8 9 10

7. I do not like debugging/fixing my errors

0 1 2 3 4 5 6 7 8 9 10

read: Is everyone up to question 8? This next section is about making mistakes

 and learning. Answer the questions as honestly as you can.

8. Good computer programmers probably never need to do debugging (fix

 their errors)

0 1 2 3 4 5 6 7 8 9 10

9. I learn best when I have to figure out how to fix my mistakes

0 1 2 3 4 5 6 7 8 9 10

269

10. I like figuring out how to fix my mistakes

0 1 2 3 4 5 6 7 8 9 10

 11. Making mistakes is an important part of learning in math

0 1 2 3 4 5 6 7 8 9 10

12. Math class makes me feel like I am really good at solving problems

0 1 2 3 4 5 6 7 8 9 10

13. In math, it is ok to come up with your own way to solve problems even if it’s

 different than what the teacher told you.

0 1 2 3 4 5 6 7 8 9 10

14. In math, there is usually only one right way to solve a problem

0 1 2 3 4 5 6 7 8 9 10

15. I don’t really care if I am wrong in math

0 1 2 3 4 5 6 7 8 9 10

16. Being wrong in math means you are not smart

0 1 2 3 4 5 6 7 8 9 10

17. Math is frustrating

0 1 2 3 4 5 6 7 8 9 10

read: Is everyone up to question 18 ? You have an opportunity to take

part in a project where you will use new technologies to design and

read: Questions 11 through 17 are about math. Think about your math classes at
XXX High School and then answer the questions. Any questions about this
section? Ok. You can start

270
program your own tangible digital pets. When I say design, I mean create

using art supplies and your imagination and when I say program, I mean

computer programming. You do not need to know any computer

programming beforehand. You will not be picked based on how you answer

these questions, so you can be honest. For these next questions I want you to

imagine what it might be like to be part of that project. So for the questions,

you can predict what you think you it would be like to create your own digital

pet using new technology, computer programming and art.

18. Making mistakes is an important part of learning when you are doing your

 own computer design project.

0 1 2 3 4 5 6 7 8 9 10

19. In design, there is usually only on right way to solve a problem

0 1 2 3 4 5 6 7 8 9 10

20. Having to debug/fix my errors during my computer design project makes

 me feel like I am really good at solving problems

0 1 2 3 4 5 6 7 8 9 10

21. Solving problems your own way when you are doing your own computer

 design project is ok, even if it’s not the way the teacher does it.

0 1 2 3 4 5 6 7 8 9 10

22. Computer design projects are frustrating

0 1 2 3 4 5 6 7 8 9 10

23. Creating my own computer design project makes me want to fix my errors

0 1 2 3 4 5 6 7 8 9 10

271
read: For the next questions, just think about what you imagine the digital

 pets computer design project might be like compared to your math class in

 high school.

24. Math and computer design projects are really similar

0 1 2 3 4 5 6 7 8 9 10

25. The kinds of thinking you have to do in math and in computer

 programming design are really similar

0 1 2 3 4 5 6 7 8 9 10

~~ Tell me a little about yourself.

What kinds of things do you like to do for fun?

Why did you decide to participate in this project?

Do you have an after school job? How many hours do you usually work per

 week?

Do you plan to go to college?

272

Appendix C. Field Notes Sample

273
11.3
Lesson 3, Day 2

Compared to my expectations, today was an 8/10.

Having a lot of trouble staying on my lesson plans. The time is so short and having the

students do anything not related to programming (when the computers and circuit boards

are out in front of them when they walk in and still there when they walk out - because of

time I have to have them set up before hand and we don't have time to put things away

before the end of the period) just doesn't fit in that well.

Today was day 2 of the kids programming their own digital pets.

Jamal is working on a wildthing in the forest. He has been working diligently on getting

his wild thing to walk across the screen. He asked me to help figure out how to get him to

walk and then how to make it so he would turn around so he could walk back. He is

working on understanding the repeat clause and how wait works. Also how to import new

sprites and make them versions of your original sprite. I suggested that he might want to

paint his own tree and have the wild thing turn around when he touched it. "Like the car

in my program." He is currently doing that. He doesn't ask for help, but when I walk

around and ask how he is doing, he will ask questions. He said, "I tried to make him turn

around using the rotate 180 and instead it flipped upside down, how can I make him turn

around?" This shows me he is working on figuring things out for himself with the skills

he has learned already but isn't always getting the results he wants.

274
Anna is working on her dinosaur in the desert. She has programmed him to roar and

to party. I think the kids have noticed that she is working alongside them and trying to

figure things out, which is very cool.

Carlos and Dino and Maya are an interesting team. Dino does not like to sit down and

rarely adds input or touches the computer unless C is gone. He said he hates computers

today. He says they never do what you want them to. He asked several times when they

were going to get to make their creature. This is the part he is looking forward to. M also

does not touch the computer. She does a lot of texting. When asked, she said she didn't

know what was going on. I asked C to explain the problem to her and see if she could

help figure it out. I am not sure if she did that. They have an alien who rides a magic

carpet and jumps on a trampoline to get to another background. C is getting the

programming thing and is capable of doing much on his own, but he likes to be coached

and calls me over often with his annoying meowing button. He presses it incessantly until

I show up because it is so annoying.

Tegan worked alone today. She never called me over, but asked questions when I went to

her. She spent much of today working on finding a background she liked for her monkey.

After about half the period doing this, she started working on making him move

differently based on the slider. This is the first I have seen someone try to alter how the

tangible tool interacts in a significant way. She wants the monkey to have more range of

motion. I told her she could use the same idea as the car but make a ladder or something

275
so that when the monkey touches it he can climb up onto the bed. She said that

sounded so cool and asked how to do it. I said she should start by making a character that

was a ladder and then I would help her. At the end of the period she showed Anna the

idea and Anna said it was cool. Then Tegan said, "Don't steal it!". She has a sense of

ownership over the idea and doesn't want to share it. This is interesting.

Dwayne, Tabitha and Steph worked together. Anna asked them several times to put their

phones away and decide whether they were actually working on something. I am afraid I

have lost them. Steph hasn't been here in ages and has no idea what's going on. Dwayne

is a distraction and was asking the girls to text people for him. Tabitha seems still

somewhat invested. When Steph was out of the room, she asked me what she was

supposed to be doing. I said that she should make her own pet. To start she should decide

what she wanted her pet to look like and then either import or paint him. Then I said she

could start with a blank slate and make it do whatever she wanted. She seemed to think

this made sense, but I am not sure if she followed that advice. By the end, they had a lion

that they had figure out how to make roar. They seemed relatively pleased by that and a

little more invested than previously. They also recorded Anna when she came over to

reprimand them. Anna brushed it off, but it was the first instance of blatant

insubordination that I have seen.

For the last 5 minutes we shared what we were working on and what the character could

do. I should watch this tape because it seemed to inspire and motivate the kids to hear

276
what others were doing. Not until the last few minutes of class did anyone leave their

spot to check out what someone else was doing. C &D went to see Tegan's monkey and

gave her a hard time about it. I should watch that part as well.

Forgot to give out debug reports! Arg! Must remember next time.

I am not sure how much debugging experience they are getting or if they realize they are

doing any debugging. I wonder if the code reuse stuff is actually more interesting here. I

definitely have concrete code structure to point to to help guide them to trying new

things. I have mentioned the car several times as a way to make things happen on the

screen.

Similarly, I am not sure how much the tangible technology is influencing how they work

or what their eventual projects will entail. I don't see them using it a lot. I see them more

interested in the on screen stuff for the most part. It makes me wonder whether the

tangible part of the digital pet is important or whether having a general theme, of a pet, is

providing the motivation and the structure that is helping them stay on task and come up

with ideas. This is like the robots article that claimed having a theme helps guide ideas

(Resnick etc.).

I think Tegan is the most into her project right now. She spent a lot of time creating

different features for her monkey including freckles and a mouth. The pet idea seems to

277
resonate with her. And since she is female, I am excited that she is into it. I don't

know if another theme would have had the same motivation. I should ask this in the

interview.

278

Appendix D. Debug Journals

279

 Digital Pets Project Design Journal

Date: Name:

My/Our Project is going:

4 3 2 1

Really well Pretty Good Not so great Terribly

Today I/we (check all that apply ~~ you can check boxes multiple times if you wish):

We fixed it & now things are working
correctly

 We are still trying to fix it

 We couldn't fix it

We decided to work on other parts of
our project instead of fixing it

We decided to delete the code and start
over instead of fixing it

 Tried to fix a programming error (bug)

Because we couldn't figure out how to
fix it, we changed our original idea to
make the coding easier

Did not try to fix a programming error
(bug)

How much of today’s workshop did you spend Debugging? (circle one)

None A little (less than half) Some (half) Most (more than half) All

Did you seek help from other students in the project today? (circle one)

Yes No

280

Did you seek help from the teacher/facilitator today? (circle one)

Yes No

281
VITA

Maneksha Katrine DuMont

Education

2009 – present Candidate, Instructional Technology and Learning Science
 UTAH STATE UNIVERSITY Logan, UT

 Thesis: Engaging alternative high school students
 through the design and development of tangible digital
 pets

 Committee: Victor Lee (chair), Brett Shelton, Mimi Recker,
 Deborah Fields, Andrew Walker, David Smellie

2007 – 2009 MS, Learning Science

 NORTHWESTERN UNIVERSITY Evanston, IL

 Masters Project: Starting From Scratch: Creating Meaning
 through Creativity, Community and Computer Programming
 Project Committee: Edd Taylor (chair), Andrew Ortony

2002 – 2003 MSED, Secondary Mathematics Education

 NORTHWESTERN UNIVERSITY Evanston, IL

 Masters Thesis: Student-Centered Learning in Mathematics

1995 – 1999 BA, Mathematics (with distinction)
 Concentration: Operations Research
 CORNELL UNIVERSITY Ithaca, NY

Honors

Utah State University Conference Fellowship (2010)
Utah State University Vice President for Research Fellowship
Recipient (2009-2010)
Northwestern University Fellow (2007-2008)
BYU Literacy Institute Summer (2006)
Utah Principles' Conference Attendee (2006)
Praxis Recognition of Excellence Award in Mathematics (2006)
Suave Performance Plus Teaching Award Nomination (2004,
2005)

282

Professional Memberships

 International Society of the Learning Sciences
 American Educational Research Association

National Council of Teachers of Mathematics (2003 – 2004)
Metropolitan Math Club of Chicago (2003-2004)

Professional Experience

 Research Assistant 2011-2012
 Utah State University, Logan, UT
 Physical Activity Data Project, Funded by the National Science
 Foundation

Secondary Mathematics Teacher
Treasure Mountain International School
Park City, UT 2006 - 2007
XXXXX High School
XXXXXXX, UT 2005 - 2006
Walter Payton College Preparatory High School
Chicago, IL 2003 - 2005

Software Engineer
Styleclick Inc. (formerly MVP.com and BigEdge.com)
Chicago, IL 1999 - 2002

Refereed Publications

Journals

 Lee, V. R., & DuMont, M. (2010). An exploration into how
physical activity data-recording devices could be used in
computer-supported data investigations. International Journal
of Computers for Mathematical Learning. 15(3), 167-189.

Conference Proceedings/Conferences

 DuMont, M. & Fields, D. (2013). Hybrid Shmybrid: Using
Collaborative Structure to Understand the Relationship Between
Virtual and Tangible Elements of a Computational Craft.
CSCL13 Madison, Wisconsin: International Society of the
Learning Sciences.

 DuMont, M. (2012). Empowerment through design: engaging

alternative high school students through the design,

283
development and crafting of digitally-enhanced pets. In
Proceedings of the 11th International Conference on Interaction
Design and Children (IDC '12). ACM, New York, NY, USA, 343-
346.

 DuMont, M. & Lee, V. R. (2012). Material pets, virtual spaces,

isolated designers: how collaboration may be unintentionally
constrained in the design of tangible computational crafts.
In Proceedings of the 11th International Conference on
Interaction Design and Children (IDC '12). ACM, New York, NY,
USA, 244-247.

 DuMont, M. & Lee, V. R. (2012). A Technologically Enhanced

Construction Kit as a Support for Children’s Collaborative
Computational Thinking. Paper presented at the 2012 annual
meeting of the American Educational Research Association,
Vancouver, B.C.

 Lee, V. R., & DuMont, M. (2010). Students’ Investigations with

Physical Activity Data Devices. In K. Gomez, L. Lyons & J.
Radinsky (Eds.), Learning in the Disciplines: Proceedings of the
9th International Conference of the Learning Sciences (ICLS
2010) (Vol. 2, pp. 344-345). Chicago, IL: International Society
of the Learning Sciences.

Berland, M., Lee, V. R., & DuMont, M. (2010). Small Groups,
Big Mistakes: The Emergence of Faulty Rules During a
Collaborative Board Game. Proceedings of the Ninth
International Conference of the Learning Sciences (ICLS 2010).
Chicago, IL: International Society of the Learning Sciences.

Teaching Experience

 Teaching Assistant, Northwestern University Fall 2008
 Macrocognition: Intelligence in Context (LOC 301)

Teacher, Secondary Mathematics 2003 - 2007

Volunteer Positions

 Technology Assessment Committee & STE(Art)M Committee
 2011-present
 Park City Education Foundation, Park City, Utah

	Engaging Alternative High School Students Through the Design, Development, and Crafting of Computationally Enhanced Pets
	Recommended Citation

	dumont-thesis-final-revised_9_6

