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Use of carbon materials is no longer limited to diamond jewelry or graphite pencils and 
lubricants.  The last decade has witnessed an explosion of technological applications 
driven by the development of fabrication methods and the discovery of several new 
classes of pure carbon.  Structural diversity exhibited by the carbon atoms, from local 
chemical order to long-range crystalline order, is key to understanding their physical and 
chemical properties and in future materials development.  This article summarizes the 
use of Raman spectroscopy as a principal tool to investigate the vibrational dynamics of 
carbon materials and to provide indirect structural characterization of their short-, 
medium- and long-range order. 
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Carbon exhibits unique versatility of its bonding chemistry among the elements.  The 

existence of carbon two-fold (sp1), three-fold (sp2), and four-fold (sp3) hybridized bonding types is 

responsible for the huge variety of more than ten million organic compounds.  The multiplicity of 

carbon bonding configurations is also manifested in the remarkable diversity of stable phases of 

pure solid carbon (see Figure 1) (1-3).  We can classify these solid carbon phases as crystalline 

[diamond, graphite, and fullerites], disordered [glassy carbon, nanocrystalline carbon, graphitic 

amorphous carbon (g-C), diamond-like amorphous carbon (d-C), tetrahedral amorphous carbon 

(a-tC), andeither diamond-like or polymer-like hydrogenated amorphous carbon (a-C:H) 

depending on H content], or molecular [fullerenes, graphenes and related materials]. 

The two most common crystalline forms of carbon, graphite and diamond, exhibit dramatic 

differences as a result primarily of short-range order (local or chemical order).  The local bonding 

manifests itself in differences in electrical, optical, thermal, and mechanical properties of the two 

crystals.  Diamond, which is formed with very strong and nearly isotropic tetrahedral sp3 

bonding, is hard and transparent, is an unsurpassed thermal conductor, and is an insulator with a 

large energy gap (4).  Graphite, on the other hand, is a soft, black, layered semi-metal with 

extremely strong trigonal sp2 planar bonding and weak interlayer π-bonds (1). 

Amorphous carbon (a-C) also shows dramatic variations in macroscopic properties 

depending on the local structure and relative amounts of sp2 and sp3 bonding; this structure is 

dictated by the formation method, deposition substrate conditions, presence of hydrogen, and 

post-growth annealing (5-8). a-C ranges from soot-like g-C to optically transparent and extremely 

hard d-C films.  Bandgaps range from ï0.5 eV for g-C to >4 eV for some d-C and a-C:H films 

(4,5).  This diversity illustrates and emphasizes the importance of short-range and even 

medium-range order on the physical properties of carbon solids and the close ties between the 

bonding, structure, and other physical properties (9-10).   

Recently, entirely new classes of stable solid-carbon structures have been identified 

(11,12).  Fullerenes are pure carbon materials with trigonal bonding which form closed-form 

molecular structures composed of twelve pentagonal rings and additional hexagonal rings (13).  

These include the soccer ball-shaped C60, the rugby ball-shaped C70, and other sized molecules.  

Fullerites are crystalline solids with molecular fullerenes occupying each lattice site.  Many 
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complex related structures are referred to as graphenes; two examples are nested fullerenes and 

carbon nanotubules (14,15). 

The purpose of this review is to provide a basic template for identifying and understanding 

the Raman signatures of various carbon materials and for monitoring structural changes.  We first 

outline experimental probes of carbon structure and recent advances in Raman instrumentation. 

This is followed by a description of Raman spectroscopy applied to the most commonly observed 

forms of solid carbon, as summarized in Table 1. 

 

EXPERIMENTAL TECHNIQUES     

The principal experimental probes of the structure of crystalline forms of carbon have been 

x-ray, neutron and electron diffraction.  However, for disordered and molecular forms of carbon, 

diffraction is often insufficient to fully characterize the structure.  Vibrational dynamics are 

intimately related to structure and have been used extensively as an indirect probe of the atomic 

order of carbonaceous materials (16).  In particular, Raman spectroscopy has been proven to be 

extremely sensitive to short-, medium-, and long-range order in solid carbon and has become a 

standard technique in characterizing carbon materials.  Nuclear magnetic resonance (NMR) 

spectroscopy has also been used to provide information about bonding (including the fraction of 

sp2/sp3 bonding) and short-range order in carbon materials (17).  Infrared spectroscopy, inelastic 

neutron scattering, electron energy loss spectroscopy, EXAFS, and photoemission spectroscopy 

provide additional dynamical and indirect structural information (5,9). 

  Spontaneous Raman scattering is an inelastic light scattering process [refer to Figure 2(a)]. 

A simple picture of Raman scattering involves two processes: (A) incident light, usually from a 

laser, is absorbed by a polarizable sample, inducing a transition from the ground electronic state to 

an excited or Avirtual@ state, and (B) the energetic system then radiatively relaxes via a transition 

from the Avirtual@ state to a lower energy electronic state by spontaneous emission of a photon and 

either creating (Stokes process) or absorbing (anti-Stokes process) a vibrational quantum  of 

energy (a phonon in crystals). The emitted photon is shifted in energy from the incident excitation 

photon energy, hvL by the phonon energy.   Typically, only Stokes processes are studied, due to 

their higher intensities. Spectra of the intensity versus emission photon energy exhibit peaks at 
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energies hvS which correspond to the vibrational energies involved in the process.  Vibrational 

energies are usually expressed in inverse wavelength (1/λ=ΔE/hc, ΔE=hvL-hvS) with units of cm-1 

as is customary in infrared spectroscopy.  In crystals, Raman selection rules dictate that only 

zone-center (those which retain the full symmetry of the crystal) optic (those having non-zero 

energy at the zone center) vibrations are allowed to participate in first-order Raman scattering (18). 

Advances in Raman Instrumentation.  The primary components of a Raman system include a 

continuous laser source (typically Ar or Kr ion lasers) focused onto the sample, a spectrometer for 

collecting and separating the scattered light into its component wavelengths, a detector, and 

controlling electronics (19). Traditionally, Raman measurements have been made using systems 

such as the one shown in Figure 2(b).  Illumination is usually carried out with a 180E 

backscattering geometry which is suitable for thin films or when one has no a priori knowledge of 

the optical properties of the specimen (i.e., opaque or transparent samples).  Polarization rotators, 

analyzers and scramblers are useful when polarization selection rules are important to understand.  

This can be especially relevant when measuring mixed phases, e.g. microcrystalline diamond and 

disordered phases (20).  A collection objective guides the desired scattered light into the 

double-stage spectrometer which disperses the spectrum.  The relative intensities of the undesired 

stray light and desired Raman scattering demand superior stray-laser-light rejection capabilities. A 

cooled photomultiplier is used in a photon counting mode to detect the light.  Multichannel 

detection (21) significantly diminishes data collection times.  These are used with double 

monochromators (with limited spectral range) or triple monochromators which are specifically 

suited to multichannel detection.  Computer automation controls the spectrometer and stores the 

signal from the detector electronics for analysis. 

The advent of narrow rejection range, holographic edge and notch filters (22) has made the 

use of a single-stage grating monochromator for Raman scattering possible [Figure 2(c)]. The 

importance of this innovation is two-fold. First, single-stage monochromators are optically fast. 

When coupled with a multichannel array, this allows for studies with low excitation intensities 

from delicate samples, makes plausible the study of weakly scattering materials, and permits rapid 

turn-around for process diagnosis. Second, suitable, high-quality, single-grating monochromators 

cost considerably less than traditional double monochromators commonly used in Raman 
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spectroscopy, although a small sacrifice in spectral resolution may result. We have found this type 

of system to be more than adequate for carbon solids (see, e.g., Figure 3). 

 

RAMAN CHARACTERIZATION OF SOLID CARBON 

Diamond.  Diamond has long been renowned for its superlative properties. It is the hardest 

natural substance, has the highest thermal conductivity, and is best known for its spectacular 

optical properties (1,4).  The recent advent of methods, primarily through chemical vapor 

deposition (CVD), to readily produce synthetic bulk diamond and diamond films opens 

possibilities for many new applications (4,7,23).  These include application as large band-gap, 

high temperature semiconductors, cold cathode emitters, protective optical or wear-resistant 

coatings, abrasive and cutting agents, optical materials, electrodes, and thermal dissipators. 

The face-centered cubic (fcc) crystal structure of diamond, with complete tetrahedral 

bonding, is shown in Figure 1(a).  Theoretical models are available for the vibrational dispersion, 

density of states and Raman spectrum of diamond (24). 

The first order Raman spectrum of diamond [Figure 3(a)] has a single line at 1333"1 cm-1 

identified as the three-fold degenerate, zone-center O(Γ) mode (25).   This peak has an extremely 

narrow natural line width, on the order of 2 cm-1.  It broadens, but does not shift appreciably, for 

smaller crystallites found in natural diamonds, synthetic diamonds, and diamond films (20).  An 

increase in intensity of the O(Γ) peak with increasing excitation energy has been attributed to 

resonance effects (26).  Diamond films often exhibit weak, broad peaks near the main graphite 

1581 cm-1 peak, which are interpreted as an indication of the presence of limited sp2 bonding in the 

films (26). 

  Study of the effects of stress on the Raman spectrum of diamond offers valuable insight 

relavent to the mechanical and electronic applications of epitaxial diamond films as coatings and 

semiconductors.  The O(Γ) peak shifts to higher wavenumbers with increased isotropic pressure 

and is almost linear up to at least 40 GPa (27).  There is very little broadening with increased 

isotropic pressure, although uniaxial strain can reduce the cubic symmetry of diamond, thereby 

splitting the O(Γ) degeneracy and causing peak broadening (28,29).  Compressive uniaxial stress 

X increases the Raman shifts for stresses along the <100> or <111> axes according to  
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  X2<100> (dyn/cm2) = -1.08x1010 Δvs (cm-1) 

 

  X2<111> (dyn/cm2) = -2.63x1010 Δvs (cm-1) 

 

where  Δvs is the shift of the observed singlet state from 1333 cm-1 (30).  The strain (as a percent 

of the 3.567 Å unstrained bond length) can then be approximated using e (%) = 8.53@10-14 X 

(dyn/cm2) (29). 

Broadening is also observed due to substrate-induced uniaxial strain of epitaxial diamond 

films (30).  Micro-Raman studies of CVD diamond films have revealed that shifting due to local 

strain may be responsible for the broadening observed in CVD diamond films (20). [Recent 

development of near-field scanning optical microscopy (NSOM) has pushed the range  of 

micro-Raman below the Rayleigh resolution limit (30).  This permits spatial resolution in the 20 

to 50 nm range.  However, due to low intensity throughput of the optical fiber used in NSOM, 

spectroscopic resolution is sacrificed resulting in large linewidths.  Further work is necessary to 

boost signal/noise so that quantitative analysis can be achived.]  We note briefly that if the lattice 

mismatch or growth conditions are not conducive to epitaxial growth, then polycrystalline film 

morphology may dominate. Under these conditions, studies cross-correlated with transmission 

electron micrographs are useful to obtain a full picture of the thin-film morphology.  The 

frequency dependence of the O(Γ) peak due to isotopic content in diamond has Isotopic 

substitution has been successfully been measured and agrees with theory (32).  used to study the 

function of gas-phase precursors in CVD grown diamond films (33).  Johnson and Weimer 

examined the isotopic shifting of the disorder-related band (near 1500 cm-1 in their pure 12C 

sample) when the 13C content of acetylene and methane feed gases are varied.  Excellent 

correlation is found with the 13C content of the methane, but not with the acetylene, indicating that 

it is the methane which is responsible for disordered carbon in this case. 

Spectral features in second order Raman spectra range between 2600 to 2900 cm-1 (25).   

The two-phonon overtone spectrum is proportional to the one-phonon vibrational density of states 

(VDOS) and has been used to accurately establish phonon energies and symmetries for many 
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phonon branches at all high-symmetry points in the Brillouin zone (25). 

Graphite.  Graphite has widespread applications due to its unique combination of physical 

properties.  Weak interplanar bonding allow adjacent carbon planes to easily slide over one 

another, leading to use as a lubricant and for pencils.  In contrast, the strong intraplanar covalent 

bonds lead to a high melting point with applications as a refractory-like material.  The 

combination of high temperature stability, good electrical and thermal conductivity, and chemical 

inertness result in use as electrodes for spectrochemical analysis, electrochemistry, materials 

processing and electrical motors. 

The hexagonal crystal structure of graphite is shown in Figure 1(b).  Because the 

separation between planes is almost 22 times the in-plane nearest-neighbor distance, graphite is 

often treated as being composed of 2D hexagonal sheets. 

The theory and experimental measurements of the graphite vibration dispersion, density of 

states, and Raman spectrum are also well understood.(34,35)  The first order Raman spectrum of 

crystalline graphite [see Figs. 3(c) and 4(a)] exhibits a very strong, high frequency, in-plane 

stretching mode (E2g
2 or "G" peak) at 1581"1 cm-1 and a weaker low-frequency mode (E2g

1) at 

42"2 cm-1.(36)  The low-energy mode [see Figure 4(b)] corresponds to a phonon of the shear 

mode between adjacent planes.  Graphite peaks have been observed to shift due to applied 

pressure and strain (37).  Continuum scattering from 2200 cm-1 to 3250 cm-1 is observed in the 

second order Raman spectrum of graphite, with a strong feature near 2710 cm -1 and weaker 

features at 2450 cm-1 and 3250 cm-1 (38); these have been used to model the VDOS and finite size 

effects.(36,39)  Resonance Raman behavior is observed in graphite; the most pronounced 

behavior for the 1581 cm-1 peak is attributed to π-π* transitions. (39) 

A diverse class of carbonaceous materials exhibits graphite (hexagonal) order at 

medium-range.  Robertson (5) has identified a hierarchy of order range in graphitic carbon 

structure, beginning with single crystal graphite.  The degree of order is characterized by the 

in-plane coherence length La of hexagonal order and the range of planar stacking Lc.  

Polycrystalline graphite exhibits varying degrees of crystalline order from highly oriented 

pyrolytic graphite [HOPG; La.1 μm and Lc.4 μm (2)] to "glassy", turbostratic, or nanocrystalline 

graphite and graphite fibers (La>1.5 nm and Lc.1 nm).(3,5,40)  Graphite is the most stable 
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equilibrium phase of carbon at low temperatures and pressures; most forms of carbon (except bulk 

diamond) exhibit thermally assisted transformation to graphite at modest temperatures.  Pyrolysis 

of organic materials evolves volatile species (e.g., H, N, O) during carbonization, typically in a 

range of temperatures from 400 EC to 700 EC.  Formation of graphitic sheets of pyrolytic carbon 

(polymerization) typically occurs between 600 EC and 1200 EC.  Annealing of such pyrolytic 

carbon at 1200òTò3000 EC produces gradual layering or ordering of the sheets (graphitization), 

eventually reaching a 3D lattice of crystalline graphite.(2,5) 

Raman spectroscopy has been developed as a standard method for determining the planar 

coherence lengths (La) in graphitic carbon which possesses limited long-range order [Figure 

3(d)].(41-44)  For these materials, an additional broad band is found at .1360 cm-1 (historically 

denoted with the misnomer "D" which can be considered a mnemonic for ADisordered@), which is 

attributed to disorder induced Raman activity of zone-boundary A1g phonons.(44,45)  For finite 

sized regions with graphite-like structure, a breakdown occurs in the Raman selection rules 

applicable to infinite crystals.(42,46)  Tuinstra and Koenig used x-ray diffraction in parallel with 

Raman studies to show that the intensity ratio of the 1360 cm-1 peak to the E2
2g peak is inversely 

proportional to La over a range of 2.5 nm to 1000 nm.(41,43,44)  This has become an accepted 

technique for determining La in disordered graphitic materials.  The disorder activated AD@ band 

also exhibits a pronounced shift with laser  photon energy.  This shift is strong, ~50 cm-1/eV, and 

as yet is not fully explained.  The general aspects of this phenomenon have been summarized by 

McCreery and coauthors (47). 

Recent work has extended the capabilities of Raman spectroscopy to investigate both the 

intraplanar and interplanar structure of graphitic carbon materials.  Dallas et al. simultaneously 

determined the intraplanar coherence length La and the interplanar structure of nanocrystalline 

graphite,  using a quantitative model which relates the average layer thickness (Lc) to an E1
2g peak 

line shape analysis based on the dispersion of the phonons corresponding to interplanar shear 

motion [see Figure 4].(48)  The E1
2g mode is extremely sensitive to interplanar disorder, and 

should be absent if no planar structure exists.  They found that laser ablation altered, but did not 

entirely destroy the layered structure of HOPG.  The most disordered graphite studied had 

La.6.0 nm (equivalent to a coherent region of ~600 graphite hexagonal rings) and Lc.0.85 nm (an 
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average of ~22 graphite planar spacings). 

An additional weak feature at .1620 cm-1 is sometimes observed in disordered graphite 

[see Figure 2(d)], which has been attributed to splitting of the degenerate E2
2g peak (38) and to 

breakdown of the Raman selection rules allowing contribution from non-zone-center 

phonons.(35,36,44)  Peak broadening and new features in the second-order Raman spectrum of 

reduced size crystallites are observed and are also attributed to breakdown of the Raman selection 

rules.(41) 

Amorphous Carbons.   Amorphous carbon (a-C) materials exhibit a complete lack of the 

translational order associated with crystalline (even nanocrystalline) materials.  However, due to 

the diversity of local (2-, 3-, and 4-coordination) bonding and the medium-range (.5 Å to .20 Å) 

ordering of carbon, a-C's exhibit a wide variety in their structures and properties. 

Diamond-like carbon (d-C) films have wide technological applications which--like 

diamond--stem from their extreme properties including hardness, chemical inertness, smoothness 

and apparent impermeability.(4,7,23)  While these properties of diamond-like films are often not 

as extreme as those of diamond films, the relative ease of fabrication and the ability to produce 

smooth, thin, uniform films often makes diamond-like films more attractive.  Specific 

applications include use as anti-abrasion or anti-erosion coatings for computer disks and 

read-write heads, infrared windows and lenses, optical fibers and machine tools; low-friction 

coatings for prosthetics and bearing surfaces; cold cathode emitters; electrochemical electrodes; 

x-ray lithography; and thermal dissipation. 

Graphitic amorphous carbon (g-C) is of fundamental interest as an elemental, 2D 

continuous random network (CRN) with only one type of atom and one dominant trigonal sp2 

bond type [see Fig. 1(c)] and as the prototype of a large class of covalently bonded CRN 

amorphous materials in which the disordered arrangement of atoms or molecules arises from 

highly directional covalent bonding stemming from low coordination number.(9,49) 

Two-dimensional CRN's have been most successfully applied to covalent inorganic glasses with 

binary compositions. g-C also has technical applications as a lubricant and as an inert electrode 

material.  The structure of g-C is also of current technological interest because of its sibling 

relation to new forms of carbon solids (primarily, synthetic diamond and diamond-like films) 
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which are currently receiving intense development.  Understanding g-C is essential, because it is 

a ubiquitous end product in most formation and processing of solid phases of carbon. 

In general, evaporated and sputtered a-C prepared above 200 °C can be classified as g-C, 

whereas evaporated and sputtered a-C deposited at low temperatures and a-C prepared by CVD 

can be classified as sp3-rich d-C (a few % to ~65%).(5,6,50)  Hard amorphous carbon with higher 

concentrations of sp3 bonding (to 85%) have been prepared using monoenergetic carbon beams 

and with plasma deposition (which contains hydrogen).  This form of tetrahedral amorphous 

carbon is currently referred to as a-tC (51).  Hydrogenated a-C (a-C:H),with H content of 20-50 

atomic percent, is generally diamond-like with up to 70% sp3 bonding.  Hydrogen can be 

incorporated in substantial amounts during formation, usually from organic gas feed stock.  When 

hydrogen content exceeds 50 atomic percent, films are polymer-like and exhibit strong broadband 

photoluminescence which can render collection of Raman spectra difficult.  a-C evolves H at 

relatively low temperatures (150 EC to 400 EC) and exhibits transformation toward 

nanocrystalline graphite at modest annealing temperatures (500 EC to 750 EC).(42,52,53)  Most 

hard a-C also becomes more graphitic in nature upon annealing.(42)  Early annealing studies of 

d-C (42) and g-C (52,53) monitored changes in La using Raman spectroscopy. 

  Robertson provides a comprehensive review of the structure, characterization, and physical 

properties of a-C.(5,6,8,54)  Extensive experimental efforts have yet to achieve a unified 

interpretation of the various structures of a-C (in particular, the relative amounts of sp, sp2, and sp3 

bonding) and the theory is only in its infancy.(9) 

The simplest structural form of amorphous carbon is g-G which is generally agreed to have 

almost exclusively sp2 bonds.  Several models of a-C incorporate graphitic islands or rafts formed 

from warped layers of 3-coordinated atoms arranged in quasi-2D CRN's with planar dimensions of 

5 to 20 Å.(8,55-57)  Bond lengths do not deviate appreciably from the graphite interplanar bond 

length (1.42 Å), however bond-angle distributions with 10E to 25E widths allow for the formation 

of significant numbers of 5- and 7-membered rings, and perhaps even some 4-, 8- or 9-membered 

rings.  The presence of odd-membered rings and/or translational disorder suggests there should be 

small warping or bending within the rafts.(57)  The different models suggest that the quasi-planar 

rafts are cemented together with varying concentrations of sp3-bonded atoms (1% to 10% sp3 
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bonding for g-C and up to 85% for d-C) which allow for changes in orientations of the raft planes 

without the necessity of dangling bonds or voids that would result from unconnected, randomly 

oriented planes; this results in mesoscopic isotropicity in g-C.  The extent of layering within rafts 

or correlation of planes of adjacent rafts is not well known. 

A recent examination of the large database of Raman fingerprinting experiments on hard 

amorphous carbon films by Tamor and Vassell (50) is a significant attempt at bringing order to our 

incomplete understanding of the structure of these materials.  Their exhaustive treatment 

produces correlations between the Raman "G" and "D" bands and several important macroscopic 

quantities, notably the hardness and the bandgap.  Analysis of these correlations support 

categorization of hard carbons as those possessing significant concentrations of hydrogen (a-C:H) 

and those which are not hydrogenated (d-C).  They suggest these correlations allow Raman 

spectra to be used as a reliable predictor of hydrogenation, hardness, optical bandgap, and other 

properties. 

The major features of the Raman spectra of various forms of a-C [see Figures 3(e) and 3(f)] 

appear to be related to similar features in the spectrum of graphite.  They exhibit a broad, 

asymmetric peak centered near 1550 cm-1.  There are some differences in the Raman spectra of 

g-C, d-C and a-C:H including the breadth of the peak near 1550 cm-1 and the relative intensity of 

the low-frequency tail.  a-C:H spectra exhibit a very broad feature centered roughly at 600 cm-1. 

(50)  Amorphous materials generally exhibit broad peaks, due to structural distributions and the 

breakdown of k=0 Raman selection rule.(9,40)  The reduced Raman spectrum of amorphous 

materials often is a reasonable approximation of the single-phonon density of states.  The broad 

spectra of a-C can be decomposed into two spectra centered near 1350 cm-1 and 1580 cm-1 which 

are often loosely associated with the graphite "G" and "D" peaks.(50)  Such decompositions are 

not entirely justified and do not provide complete fits to the spectra.  Doyle and Dennison have 

suggested an alternative decomposition based on the Raman active modes of planar, symmetric 5-, 

6-, and 7-membered rings coupled to a surrounding network of carbon atoms; this work considers 

the structure of a-C in terms of ring statistics.(58) 

Unfortunately, standard Raman spectroscopy does not as yet provide a sensitive method to 

determine the relative amounts of sp2 and sp3 bonding in a-C.  The diamond sp3 Raman cross 
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section is typically 50 to 100 times smaller than that of graphite sp2  due to resonant Raman 

effects associated with the disparity in band gaps of the two materials (39); this precludes detection 

of small amounts of sp3 bonding.(55) However, resonance Raman effects, as yet not well 

understood, are sensitive to the relative concentrations of sp2- and sp3-bonded carbon.  Excitation 

in the infrared range results in high sensitivity to scattering from amorphous sp2-bonded carbon 

whereas ultraviolet excitation enhances the diamond 1332 cm-1 peak considerably. (26,59,60)  

This effect has been discussed in terms of differing resonance effects for sp2- and sp3-bonded 

carbon or in relation to the size of clusters of sp2-bonded carbon. 

Fullerenes, Fullerites, Graphenes and Related Materials.  The first order Raman spectrum of 

powdered C60 (61,62) [see Figure 3(g)] agrees well with group-theoretical analysis of the 

molecular spectrum (63-65).  There are ten narrow first-order peaks observed which are assigned 

to the two nondegenerate Ag and eight fivefold degenerate Hg Raman active modes.  Peak 

intensities are in good agreement with bond charge model calculations.(65)  Peaks in the second 

order Raman spectra have been observed; many have been assigned.(63,64) 

Fullerites are crystalline forms of carbon with fullerenes occupying each site in the unit 

cell.  The first-order Raman spectrum of solid C60 is remarkable in that it is almost identical to that 

of the free molecule, providing strong evidence of the weak interactions between molecules within 

the solid.  No significant changes are observed in the spectra by hydrostatic pressures up to 10 

GPa, although small  linear changes in peak positions with increasing pressure are observed (66).  

The first order phase transition at ~260 K, from a low temperature rotationally-ordered simple 

cubic (T6
h) phase to a high temperature fcc (T3

h) phase, where individual molecules are free to 

rotate, is marked by discontinuous changes in Raman peak positions and widths. (61,66)  In 

addition, more than 100 weak Raman lines and a great deal of detailed structure are observed and 

have been variously assigned to second- and higher-order combination and overtone scattering 

from intramolecular vibrational modes, to broken-symmetry modes which are isotopically 

activated, to crystal-field induced splitting of the first-order Raman modes, or from the presence of 

merohedral disorder (61,67,68). 

Raman spectroscopy has been used extensively in the characterization of other pure carbon 

structures.  Related fullerene molecules (e.g., C56, C70, C76, C119) and associated fullerite crystals 
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have spectra similar in nature to that of C60, but are typically more complex due to lack of the 

extensive symmetries found in C60. The same is true for the Raman spectra of nested fullerenes, 

molecules with two or more fullerenes inside one another.(14)  Carbon nanotubules are 

cylindrical tubes--often nested--formed of rolled hexagonal sheets, often capped with C60-like 

ends.  The various forms of carbon nanotubules have Raman spectra similar to nanocrystalline 

graphite (15,69); this is not surprising, since almost all of the carbon atoms in nanotubules are in 

rolled graphite-like sheets. 

 

SUMMARY 

 

The utility of Raman spectroscopy for examining bulk structural and electronic properties 

of carbon (and other) solids has made great advances, undergoing a transition from a purely 

research field to an analytical diagnostic (Afingerprinting@) tool.  Much of the power of Raman 

measurements lies in its ability to simultaneously examine multiple structural phases coexisting 

within a given sample.  Still, continued research is needed to better understand the exact nature of 

the various ubiquitous disordered forms of carbon solids which compete with, and often prevail 

over, crystalline phases.  Instrumentation developments are forthcoming which will make Raman 

diagnosis more compact and suited to in situ  applications in fabrication processes (70).  

Sub-Rayleigh resolution optical methods [e.g., NSOM (30)] show promise for optically examining 

extremely small sample volumes. 
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Figure 1.  Structures of solid carbon: (a) fcc 
diamond lattice, (b) hexagonal graphite lattice,  
(c) 2D continuous random network structure of 
graphitic amorphous carbon, (d) truncated 
icosahedron structure of C60 molecule. 
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Figure 2.  Raman spectroscopy: (a) Stokes and anti-Stokes energy level diagrams of the Raman 
process.  Schematic diagrams of Raman instrumentation with (b) double-stage monochromator 
and (c) single-stage grating monochromator. 
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Figure 3.  First order Raman spectra of solid carbon using the 2.41 eV Ar ion laser excitation: (a) 
diamond, (b) CVD microcrystalline diamond film, (c) single crystal graphite, (d) nanocrystalline 
graphite with in-plane coherence length of 20 nm, (e) arc evaporated graphitic amorphous carbon, 
(f) ion sputtered diamond-like amorphous carbon, (g) powdered C60. 
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Figure 4.  (a) Raman active vibrational E1

2g and E2
2g modes of graphite.  Raman spectra of the 

graphite E1
2g shear mode for (b) nanocrystalline graphite with in-plane coherence length La.6.0 

nm and out-of-plane coherence length Lc.0.85 nm and (c) graphite. Adapted from  Reference 48. 
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Table 1: Characteristic Raman Features of Carbon Materials 
 
 
Wavenumber (cm-1) 

 
Strength a 

 
Material and Mode 

 
   42 

 
vw 

 
Graphite E2g

1 shear mode 
 
  272 

 
w 

 
C60 Hg mode 

 
  496 

 
w 

 
C60 Ag mode 

 
 ~600 

 
w 

 
Broad a-C:H band 

 
~1200 to 1600 

 
s 

 
Broad a-C band 

 
 1333 

 
s 

 
Diamond O(Γ) mode 

 
~1360b 

 
vs 

 
Graphite disorder induced mode or  AD@ peak 

 
 1424 

 
w 

 
C60 Hg mode 

 
 1468 

 
vs 

 
C60 Ag mode 

 
 1574 

 
w 

 
C60 Hg mode 

 
 1581 

 
vs 

 
Graphite  E2g

2 mode or AG@ peak 
 
a vs-very strong, s-strong, w-weak, vw-very weak b Dependant on excitation wavelength 
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