
SSC14-VIII-6

Efficient and Scalable Computational Design of a Small Satellite

John T. Hwang
Department of Aerospace Engineering, University of Michigan

1320 Beal Ave, Ann Arbor, MI 48109; 734-764-3310
hwangjt@umich.edu

Faculty Advisor: Prof. Joaquim R. R. A. Martins
Department of Aerospace Engineering, University of Michigan

ABSTRACT

The design of a power-constrained CubeSat is a complex problem involving several disciplines that are coupled.
Algorithms and hardware for scientific computing have advanced to the point that recently, design and operations op-
timization of a CubeSat was successfully performed involving 7 disciplines, over 25,000 design variables, and roughly
2.2 million total variables modeled. This paper addresses the bottlenecks of this algorithm in computer memory costs
and execution time. This is done through a new parallel computational modeling framework that automates many
aspects of distributed-memory parallel computing, and an analytic approximation for the solar cell model that is sig-
nificantly more efficient than the previous model. Results show improved scaling of execution time with the number
of unknowns in the problem and nearly an order-of-magnitude improvement in gradient computation time.

I. Introduction

Small satellites offer a useful, cost-effective platform
for performing research and testing new technologies.
Their compact scale attracts both academia and industry
because of the significantly lower cost to build and launch
compared to larger satellites. The development time can
also be much shorter, enabling some teams to develop and
launch on the order of one satellite per year.

CADRE, from “CubeSat investigating atmospheric
density response to extreme driving”, is funded by the
National Science Foundation with the objective of study-
ing the Earth’s ionosphere and thermosphere [4]. Moti-
vated by the rapid growth of space-based infrastructure,
CADRE will collect space weather data in low-Earth orbit
which will be used to help understand how the upper at-
mosphere responds to energy inputs. CADRE is a power-
constrained design due to the persistent power demands
of the data-collection instruments and the need to trans-
mit large amounts of data to ground stations on Earth.

The design of CADRE (shown in Fig. 1) is a challeng-
ing problem because of the complexity and the number of
disciplines that must be considered. Its ability to generate
and store sufficient power requires effective management
of its temperature since extreme heat or cold can adversely
affect solar panel and battery performance. CADRE’s re-

action wheels can be used to alter its orientation to shade
areas of the satellite when it is overheated, but the power
usage of the actuators and the potential for reducing Sun
exposure must be simultaneously considered. Clearly, the
design of CADRE involves coupling that must be con-
sidered when choosing geometric variables to be able to
predict how it will operate.

Figure 1. Rendering of the CADRE CubeSat.

Given the short development cycle of small satel-
lites, computational tools can play an important role by
enabling rapid exploration of potential designs. Opti-
mization in particular can be very useful to automate
what might otherwise be a manual and repetitive pro-

Hwang 1 of 10 28th Annual AIAA/USU
Conference on Small Satellites

cess of performing analyses on potential designs, espe-
cially when large numbers of design variables are in-
volved. For this reason, there has been much work in the
literature in which computational modeling and optimiza-
tion have been used in the design of satellites. For in-
stance, researchers have explored the use of optimization
on the structure [3], thermal control system [7], battery
load scheduling [10], attitude control system [15], and
layout [17].

Other researchers have taken a holistic approach by
optimizing multiple disciplines simultaneously [2, 6, 14,
16, 5, 9]. In all of these cases, a gradient-free optimiza-
tion algorithm is used with the common approach of in-
telligently selecting a large number of designs to analyze,
but this approach does not scale efficiently since evaluat-
ing only 2 values for each design variable already results
in 2n evaluations with n being the number of design vari-
ables. The large number of required evaluations must be
balanced by limiting the scope and detail of the analyses
to ensure each evaluation is very fast or by limiting the
number of design variables.

For the design of CADRE, there are three aspects of
the problem that necessitate an approach without these
limitations. First, it is a power-driven design, but to ad-
equately capture the effects of the design variables that
affect CADRE’s power generation and storage, several
more disciplines are drawn into the problem, including
attitude control, communication efficiency, battery per-
formance, temperature, and solar power generation. Sec-
ond, modeling CADRE involves multiple time scales be-
cause its ground station passes only last O(s), its orbit
and power-related quantities are periodic on the scale of
O(min), and its orbit precession period is O(months).
It is challenging to maintain sufficient accuracy on the
smallest scale and to span the full extent of the largest
scale while maintaining efficiency. Finally, it would be
preferable to model or optimize the operational character-
istics of the satellite simultaneously with the design be-
cause they affect each other.

The cost and complexity of both implementation and
execution increase significantly when trying to solving
the true, large-scale problem without compromising on
these three points. To mitigate these challenges, very
recent work done by the author and collaborators used
a gradient-based approach with adjoint-based derivative
computation [8]. The combination of a quasi-Newton se-
quential quadratic programming (SQP) optimizer and the
adjoint method significantly reduces the rate of increase
of execution time versus the number of design variables,
enabling optimization with over 25,000 design variables
in this case. The second enabling factor was the use
of a computational modeling framework to simplify the
implementation of the problem involving 7 disciplines.
The framework takes a centralized approach to the im-

plementation whereby each block of code is written in-
dependently and the framework automates passing data
between codes, converging the global problem, and com-
puting coupled derivatives using a unified equation [13].

This algorithm was successful in solving the intended
problem, but there are many avenues for future work to
fully maximize the potential of the approach. Due to the
modular implementation, it is extensible to constellations
of satellites, multiple ground stations, additional geomet-
ric design variables, and more resolution for higher accu-
racy. However, the algorithm was memory-limited as it
approached the memory available on a desktop computer.
Furthermore, it required 100 hours to solve the optimiza-
tion problem, limiting its utility in an actual design setting
because of the long turnaround time.

This paper presents a significantly more scalable and
efficient method for solving the large-scale optimization
problem presented in Hwang et al. [8] It does this through
the development of a general framework that enables par-
allel computing and, further, automates distributed mem-
ory parallelism so that the memory limits are overcome
by splitting data across computing nodes. The new
framework also hierarchically decomposes the multidis-
ciplinary problem, allowing it to solve the same problem
in a more modular, extensible, and efficient way.

The paper will describe the theory underlying the
framework, highlight key algorithmic details, summarize
the models for the disciplines, and present results.

II. Theory

This section will review the theory underlying the par-
allel computational modeling framework. Much of the
theory overlaps with the earlier framework presented in
Hwang et al. [8]. The differences are for the most part in
the implementation and software architecture, which will
be presented in Sec. III.

A. Formulation

The fundamental idea behind the theory of the framework
is the formulation of the computational modeling problem
as a system of algebraic equations. Depending on the ap-
plication, computational models work with many types of
variables with many different names — e.g. input, output,
state, behavioral, design, parameter, coupling, objective,
constraint, and intermediate. Conceptually, this forces any
general treatment or unification of computational models
to be heterogeneous with specific cases for handling each
type of variable. This is the motivation for concatenating
all variables into a single vector without discriminating
their type or origin, and this forms the vector of unknowns
for the system of equations.

The next step is to define a function for each variable

Hwang 2 of 10 28th Annual AIAA/USU
Conference on Small Satellites

that constrains it to the right value. When these functions
are also combined to form a single vector-valued function,
the result is the nonlinear algebraic system given by

F (u) = 0 , F : D ⊆ Rn → Rn (1)

where boldface is used to denote vectors and vector-
valued functions. To be explicit, the unknown vector u
is partitioned into the constituent variables v(i):

u =

v
(1)

...
v(N)

 u ∈ Rn , v(i) ∈ Rni 1 ≤ i ≤ N (2)

The remaining question is how to define F (i) appro-
priately for a given variable. Any variable can be classi-
fied as one of three types: independent, where its value
is set outside of the algebraic system; explicit, where its
value is an explicit function of other variables; or im-
plicit, where its value is constrained by a residual func-
tion that must be driven to zero. If v(i) an indepen-
dent variable set to the value a, the choice would be
F (i)(v) = v(i) − a so that when v(i) = a, it follows
that F (i)(v) = 0, as desired. If it is an explicit variable
defined by v(i) = G(i)(v(j 6=i)), the natural choice would
be F (i)(v) = v(i) − G(i)(v(j 6=i)). In the implicit case,
the choice F (i) for a variable v(i) is clear; it should just
be equal to the residual function.

B. Significance

The result of formulating the general computational mod-
eling problem as an algebraic system is that the process
of running a simulation reduces to the task of solving this
algebraic system. Furthermore, it greatly simplifies the
implementation of any framework built on this theoretical
foundation because it can internally store and manage the
problem as a homogeneous algebraic system, and the dis-
tinction between whether a particular variable is an input,
output, parameter, state, etc. is only manifested in com-
puting F (i)(v) for a particular variable. The remaining
tasks of the framework, including passing data between
codes and solving the coupled system, can be ignorant of
the type of each variable.

C. Derivatives

A key implication of this formulation is the ability to com-
pute coupled derivatives in a simple manner. If ∂F /∂u is
invertible, there exists a local inverse F−1 defined on an
open neighborhood of the point in the codomain. More-
over, the Jacobian of the inverse is the inverse of the Ja-
cobian, leading to the equation presented in Martins and

Hwang [8]:

∂F

∂u

du

df
= I =

∂F

∂u

T du

df

T

(3)

The significance of this equation is that by specifying
only the Jacobians of partial derivatives ∂F (i)/∂u for
each variable v(i), it is possible to compute the total
derivative of any variable i with respect to variable j,
i.e. dv(i)/dv(j). Furthermore, a row or column of the
Jacobian of total derivatives is simultaneously computed
at the cost of solving a linear system in Eq. (3). Thus,
it is possible to efficiently compute the derivatives of the
objective or constraints of an optimization with respect to
an arbitrary number of design variables using the right-
hand equality of Eq. (3), which is equivalent to the adjoint
method. This is what enables efficient gradient-based op-
timization because a single solution of an n×n linear sys-
tem yields derivatives that would otherwise require n+ 1
solutions of an n× n nonlinear system using finite differ-
ences.

III. Software Architecture

This section describes the implementation of the par-
allel computational modeling framework, with particular
emphasis on the hierarchical and distributed computing
aspects.

A. Overview

At a high level, the parallel computational modeling
framework is a tool that facilitates the implementation and
execution of computational models. It enables the user
to write codes independently of other codes by taking a
modular overall approach and enforcing that each unit of
code conforms to a small application programming in-
terface (API). Fundamentally, its purpose is to run com-
putational models involving multiple codes and to com-
pute their derivatives, but in doing this it also provides
built-in solvers, automates data passing, and provides use-
ful utilities such as automatic validation of derivatives.
The framework is implemented in Python and uses many
solvers and parallel communication tools from the soft-
ware package PETSc[1] via petsc4py. It is designed to
have minimal overhead for both small- and large-scale
codes, and is useful for optimization and analysis.

B. Problem Decomposition

Using ideas from Sec. II, the framework represents the
computational model as a set of variables then defines and
solves systems of algebraic equations on those variables.
The framework uses a hierarchy of systems where sys-
tems contain other systems and each one is defined by the

Hwang 3 of 10 28th Annual AIAA/USU
Conference on Small Satellites

variables it owns. It is useful to think of a hierarchy tree
in which the leaves of the graph are the lowest-level sys-
tems which directly own the variables. All other nodes
have children through which their variables are implicitly
defined.

Figure 2 shows the hierarchy tree for a sample prob-
lem for illustration. The rectangles in green are called
elementary systems since they do not contain other sys-
tems, while those in blue are called compound systems.
Compound systems can be either serial or parallel, which
refers to how the processors in a parallel computation are
distributed. In the Message Passing Interface (MPI) stan-
dard, each system is given an MPI communicator, which
defines the group of processes on which the system’s op-
erations are performed, so a serial system passes all of
its processors to its children while a parallel system par-
titions its group of processors among the systems that are
its children.

S00

S02

S04

S05 S06 S07

S03

S10

S11 S12

S13 S13

Figure 2. Hierarchy tree for a notional problem. The circles are
variables and the rounded rectangles are systems with those in green
considered the leaves of the tree (if the circle nodes are ignored).

C. Execution

Each unit of code inherits from a base System class and
implements a small number of methods with which the
framework controls execution order and calls the right
methods in the right sequence to achieve convergence.
The inherited classes implement six methods:

• Initialize: declares variable size and other proper-
ties; declares arguments and indices thereof that are
needed

• Linearize: optionally assembles the Jacobian ma-
trix and pre-computes factorizations if applicable

• Apply F (i): compound systems simply delegate by
calling this method in each of its child systems

• Apply ∂F (i)

∂v : compound systems simply delegate
by calling this method in each of its child systems

• Solve F (i)(v) = 0 for v(i): the framework pro-
vides Newton, Gauss-Siedel, and Jacobi solvers or
the user could implement their own solver

• Solve ∂F (i)

∂v(i) x = b for x: the framework provides
Krylov subspace (PETSc), Gauss-Siedel, and Ja-
cobi solvers or the user could implement their own
solver, which could be a preconditioner

A key feature is that all Jacobians and matrices are
requested by the framework as a matrix-vector product
operation, and the full matrix is never provided. This
greatly simplifies the method because the framework does
not make any assumptions whether the user implements a
sparse, dense, factorized, or matrix-free Jacobian as all
that is required by the framework is the effect of multiply-
ing the matrix with a given vector.

Method System Elementary Compound
initialize User Recursion
linearize User Recursion
apply F User Recursion
apply dFdpu FD Optional Recursion
solve F Newton Optional GS/Jacobi
solve dFdu KSP Optional GS/Jacobi

Table 1. Implementation of the API for each type of system.

The framework can be described as taking a central-
ized approach because after initialization, a system is not
aware of any information outside of itself. It provides data
buffers for variables u, arguments p, and function val-
ues f , as well corresponding vectors for the linear prob-
lem. The framework fills the input buffers with appropri-
ate data, calls the right method from the system, and pro-
cesses the data in the output buffers, so the local system
has no knowledge regarding where the input data came
from and how the output was processed. In the case of
p, the framework automatically fetches the data, which
may be located on a different processor, by performing
the necessary parallel data communication. Figure 3 illus-
trates an isolated system and shows how the data buffers
form the interface between the system and the rest of the
framework.

The data storage and accessing model is an aspect of
the framework’s design that is critical to its efficiency.
Many global operations in the framework and its solvers
are significantly more efficient when performed on large,
contiguous vectors rather than smaller vectors that are
scattered by variable. These operations could slow down
significantly and unnecessarily when looping over all
variables, particularly when there is a large number of
variables. As shown in Fig. 8, the framework avoids this
potential issue by storing all data as large, contiguous vec-

Hwang 4 of 10 28th Annual AIAA/USU
Conference on Small Satellites

u

System instance

p

du

dp

f

df

apply_F

solve_F

apply_dFdpu

solve_F

solve_dFdu

Figure 3. Data buffers and the corresponding operations for an iso-
lated system. The double-headed arrows show that because there
are two modes: forward and reverse.

tors and keeping a dictionary of views onto subvectors
of the larger vector. The NumPy package provides ar-
ray objects that do not own unique data, but rather, con-
tain pointer, scope, and stride information, enabling fast
vector operations on the sub-vectors with the speed of a
compiled language. Furthermore, the user can access data
intuitively using strings as keys for a variable that is part
of a larger array, without knowing the global indices.

Processor i-1 i i+1

Dictionary

'Variable1'

'Variable2'

'Variable3'
.
.
.

Figure 4. Large, contiguous vectors are stored, but accessed as a
dictionary of views of subvectors.

D. CADRE Implementation

The parallel computational modeling framework has been
designed in a way such that it can be useful for a broad
range of fields, problems, and algorithms. The imple-

mentation of the CADRE problem, however, makes use
of a subset of the framework’s capabilities and has several
unique features.

The first unique characteristic is the scope and number
of variables in the CADRE design problem. As Fig. 5
shows, there are a large number of disciplines, each of
which further subdivide to yield 63 units of code in total
with a complex network of dependencies. The framework
facilitates management of these dependencies by enabling
implementation of each code in sequence and a tool for
automatically checking partial derivatives.

Another characteristic is multi-point analysis and op-
timization. The multi-scale nature of the design problem
is addressed by performing multiple 12 hour simulations
spread out over the year, and the framework automates the
process of making multiple instances of simulations and
gathering output data from them. Furthermore, the frame-
work automates parallel execution by enabling the points
to be distributed across available processors and all oper-
ations involving scattering and gathering data across pro-
cessors is inherently performed by the framework. This
allows parallel computing with distributed data without
writing a single line of parallel code from the user’s per-
spective.

IV. Discipline Models

This section lists and briefly summarizes the modeled
disciplines. The reader is referred to [8] for more detailed
information on the models with the exception of solar cell
voltage, for which a new model has been developed.

A. Orbit Dynamics

The orbit-dynamics discipline involves numerical integra-
tion of the equations of motion with the J perturbation
terms included to capture the precession of the satellite’s
orbit. A 4th-order Runge-Kutta scheme is used to in-
tegrate this and all other ordinary differential equations
(ODEs) modeled in this work.

B. Attitude Dynamics

The scientific requirements of the mission constrain
CADRE to have a forward-facing orientation at all times,
though the roll angle is permitted to vary. The roll an-
gle profile is controlled by the optimizer via a B-spline
parametrization. In this work, 4th order B-splines are used
to parametrize all profile design variables such as the roll
angle, with the number of B-spline control points equal to
roughly a quarter of the number of points in the discretiza-
tion as a rule of thumb. Using B-splines to parametrize
the profiles yields 2 benefits—it reduces the number of
design variables and only permits smooth profiles in the

Hwang 5 of 10 28th Annual AIAA/USU
Conference on Small Satellites

Optimizer Roll angle Comm power Panel current Comm power Comm power

Orbit Dynamics Position Position

Attitude Dynamics Attitude Actuator power Attitude

Cell Illumination Exp. area Exp. area

Temperature Temperature Temperature

Solar Power Solar power

Constraints Energy Storage

Data downloaded Communication

Figure 5. Extended Design Structure Matrix (XDSM) [12] diagram showing the coupling in the CADRE design problem [8].

design space. An analytical model has been developed to
smoothly approximate manufacturer-provided data for the
reaction wheels, whose inputs are computed based on the
optimizer-specified attitude profiles.

C. Cell Illumination

The cell illumination discipline is important because it
captures the projected normal area of sunlight to which
each solar cell is exposed. A table of data has been gener-
ated by running OpenGL simulations in a discrete fash-
ion to simplify capturing shading. Therefore, a multi-
dimensional tensor-product B-spline was required to in-
terpolate this table of data with a smooth function that also
provides analytic partial derivatives. This discipline also
models the line of sight between the satellite and the Sun.

D. Temperature

The satellite is assumed to have 5 regions of uniform
temperature—the 4 fins and the body. The temperature
ODE accounts for heat absorption from the Sun, constant
radiation of heat, and heating from the communication
subsystem.

E. Solar Power

The solar cell model is based on an implicit equation [11]
for voltage as a function of current, temperature, and ex-
posed cell area. In the previous work [8], the numerical
issues associated with solving an implicit equation were
avoided by pre-computing solutions of the implicit equa-
tion and fitting another instance of the multi-dimensional
B-spline interpolant. However, this was a bottleneck in
the execution of the overall computational model because
of the cost of evaluating this interpolant tens of thousands
of times. This bottleneck was removed by developing an
explicit approximation in this work.

This approximation uses the hyperbolic tangent func-
tion and attempts to fit the implicit model by matching
the short-circuit current, slope at that point, diode voltage,
and the open-circuit voltage.

The existing model is given byIsc − Isat

[
exp

{
V
VT

}
− 1
]
− V

Rsh
− I = 0, I <= Isc

V (I) = V0 tanh
[

−VTRsh

V0(IsatRsh+VT) (I − Isc)
]
, I > Isc

(4)

All constants and variables are defined in [8]. To estimate
the open-circuit voltage, the first observation was that in
Fig. 6, there is a localized region of high curvature around
roughly 0.7 V to 0.9 V in all cases. Implicit differenti-
ation yields an expression for dV/dI that is of the form
1/x, and setting x = 1 gives an approximation for the
point of highest curvature. Dropping a term close to unity
and adding a factor of 1.1 since the open-circuit voltage is
slightly beyond this point, the result is

Voc = 1.1VT ln
VT

IsatR1
(5)

where R1 = 1 if in SI units. Another condition is that the
slope dV/dI should be equal to that of the original model
at Isc, which is given by

dV

dI
= − VT

VT + IsatRsh
Rsh (6)

Incorporating the bounds of V0 and Voc, the explicit
equation for V is

V (I) =
Voc + V0

2
+

Voc − V0

2
(7)

tanh

[
b(I − Isc) + arctanh

(
V0 + Voc

V0 − Voc

)]
The coefficient b can be chosen using to satisfy Eq. (6), but
removing the factor of 2 that results turns out to produce

Hwang 6 of 10 28th Annual AIAA/USU
Conference on Small Satellites

curves that are more accurate:

b =
1

Voc − V0

dV

dI
(8)

Figure 6 shows how the implicit and explicit models com-
pare for three choices of temperature and cell illumination
area.

High illum.

High temp.

Baseline

−0.6 0 0.6 1.2
0

0.1

0.2

0.3

0.4

0.5

Voltage [V]

C
u
rr
en
t
[A

]

Explicit Implicit

Figure 6. Comparison between the previous (explicit) and new (im-
plicit) models for the solar cell I-V curve.

F. Energy storage

The energy-storage model integrates another ODE using
the aforementioned RK4 solver. The battery’s state of
charge (SOC) is modeled considering the effect of temper-
ature on battery performance. The terms that contribute to
battery power drain include the reaction wheels, commu-
nication module, and a background 2 W power consump-
tion by the scientific instruments and other subsystems.

G. Communication

For the communication discipline, a simple equation is
used to model the relationship between bit rate, trans-
mitter gain, signal-to-noise ratio (SNR), distance to the
ground station, and power. A minimal acceptable SNR of
5.0 dB is assumed, which enables the computation of bit
rate since all other quantities are computed in other mod-
els. The bit rate is integrated to compute the cumulative
data downloaded profile, of which the final value is used
to formulate the objective function.

V. Results

This section presents timings and derivative profiles
computed using the implementation of the full CADRE
simulation in the parallel framework.

The large-scale optimization of CADRE performed
in the previous work was successful in achieving an 80
% improvement in the total data downloaded as shown
in Fig. 7. However, the framework’s efficient derivative
computation capability also enables visualization of sen-
sitivities such as in Fig. 8. The three figures on the left
plot the derivatives of various quantities over time with
respect to the fin angle variable, while the three figures on
the right plot the derivatives of the minimum battery SOC
constraint (20%) with respect to quantities over time.

1 3 5 7 9 11
0

2

4

6

Month

D
at
a
d
ow

n
lo
ad

ed
[G

b
]

Avg.

Baseline optimization
Geometry optimization
Geometry and attitude optimization

Figure 7. Division of total data downloaded over six simulations
spread over the year for three optimization problems: a baseline
optimization, geometric design variables added, and both geometric
and operational variables added [8].

This plot shows the effectiveness of the direct and ad-
joint methods for computing derivatives. For the direct
method the derivatives of all variables modeled in the sys-
tem with respect to one variable are computed simultane-
ously at the cost of just a single solution of a linear system;
likewise, for the adjoint method the derivatives of one out-
put of interest with respect to all variables are computed
simultaneously by solving a different linear system—the
reader is referred to Martins and Hwang [13] for more de-
tails on the direct and adjoint methods. The efficiency of
the framework enables a fast turnaround time for comput-

Hwang 7 of 10 28th Annual AIAA/USU
Conference on Small Satellites

ing and plotting sensitivity information, which helps the
designer interpret and augment large-scale optimization
results and understand the design problem and tradeoffs
more deeply.

As an example, the upper left plot in Fig. 8 would
lead to the conclusion that increasing the fin angle at this
particular design point would be beneficial. The average
cell illumination would increase, leading to more solar
power generation, which is also evident in the solar power
plot, and the subsequent effect on the battery SOC is also
shown in the lower left plot. In practice, there is more in-
formation that must be considered such as the simulations
at other conditions—i.e. other points of the year—but an
efficient and comprehensive modeling tool can be useful
nonetheless.

Figure 9 presents timing results for the evaluating of
the model and the computation of derivatives. The fig-
ure shows significant improvement in the new framework
in evaluation time, but also noteworthy is how both scale
with the number of unknowns. Since this is a log-log plot,
the slope yields the order if there is a polynomial relation-
ship between the two quantities, and the new framework
shows a lower order, particularly for derivative computa-
tion. These results are promising as they imply that the
gap is expected to increase rapidly as the size of the prob-
lem increases.

105.5 106 106.5

100

101

Number of unknowns

E
x
ec
u
ti
on

ti
m
e
(s
)

Evaluation Derivatives

New framework Previous framework

Figure 9. Improvement in efficiency of the new computational mod-
eling framework, compared to the algorithm used in [8], both run
on a single processor for comparison.

VI. Conclusion

This paper presented the extension of an algorithm for
performing large-scale design and operations optimiza-
tion of a small satellite, with the objective of improv-
ing scalability and facilitating future work. There were 3
main contributions. First, a parallel computational model-
ing framework was developed, which supports distributed
memory parallel computing and improves upon the pre-
vious framework in efficiency and modularity. Second, a
more efficient model was developed for the solar power
discipline by deriving an explicit approximation for an
implicit equation. Finally, it was shown that with the
new framework, the algorithm can perform an evalua-
tion nearly an order of magnitude faster and the derivative
computation scales much better.

VII. Acknowledgments

The author would like to acknowledge Prof. Joaquim
R. R. A. Martins, Dae Young Lee, and Prof. James
W. Cutler, who contributed to the development of the
CADRE MDO algorithm. The author would also like
to thank Justin S. Gray, Kenneth T. Moore, Tristan A.
Hearn, and Bret A. Naylor for insightful discussions. This
work was partially supported by NASA through award
No. NNX11AI19A–Technical Monitor: Justin S. Gray.

References

[1] Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software
libraries. In E. Arge, A. M. Bruaset, and H. P. Lang-
tangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[2] David A Barnhart, Tatiana Kichkaylo, and Lucy
Hoag. Spidr: Integrated systems engineering design-
to-simulation software for satellite build. In Pro-
ceedings of the 7th Annual Conference on Systems
Engineering Research, Loughborough, UK, 2009.

[3] A. Boudjemai, M. H. Bouanane, L. Merad, and
A. M. Si Mohammed. Small satellite structural opti-
misation using genetic algorithm approach. In Pro-
ceedings of the 3rd International Conference on Re-
cent Advances in Space Technologies, pages 398–
406, Istanbul, Turkey, 2007.

[4] James W. Cutler, Aaron Ridley, and Andrew
Nicholas. Cubesat investigating atmospheric density
response to extreme driving (cadre). In Proceedings
of the 25th Small Satellite Conference, Logan, UT,
August 2011.

Hwang 8 of 10 28th Annual AIAA/USU
Conference on Small Satellites

0 1 2 3 4
·104

−2

0

2

4

·10−2

Time (s)

D
er
iv
at
iv
e
o
f
ce
ll
il
lu
m
in
a
ti
o
n
(m

2
)

0 1 2 3 4
·104

−2

−1

0

1

·10−2

Time (s)

D
er
iv
at
iv
e
w
.r
.t
.
ro
ll
an

gl
e
(r
ad

)

0 1 2 3 4
·104

−20

−10

0

10

20

Time (s)

D
er
iv
at
iv
e
o
f
so
la
r
p
ow

er
(W

)

0 1 2 3 4
·104

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

Time (s)

D
er
iv
a
ti
v
e
w
.r
.t
.
so
la
r
p
an

el
cu
rr
en
t
(A

)

0 1 2 3 4
·104

0

2

4

6

8

Time (s)

D
er
iv
at
iv
e
of

S
O
C

0 1 2 3 4
·104

−1.2

−1

−0.8

−0.6

Time (s)

D
er
iv
at
iv
e
w
.r
.t
.
S
O
C

Figure 8. Derivatives of various quantities with respect to the fin angle design variable (left column) and derivatives of the minimum battery
state of charge constraint with respect to various quantities (right column).

Hwang 9 of 10 28th Annual AIAA/USU
Conference on Small Satellites

[5] Masoud Ebrahimi, Mohammad Reza Farmani, and
Jafar Roshanian. Multidisciplinary design of a small
satellite launch vehicle using particle swarm opti-
mization. Structural and Multidisciplinary Opti-
mization, 44(6):773–784, 2011.

[6] A.S. Fukunaga, S. Chien, D. Mutz, R.L. Sherwood,
and A.D. Stechert. Automating the process of opti-
mization in spacecraft design. In Proceedings of the
1997 IEEE Aerospace Conference, volume 4, pages
411–427, Aspen, CO, 1997.

[7] Roberto L. Galski, Fabiano L. De Sousa, O M.
Ramos, and Issamu Muraoka. Spacecraft thermal
design with the generalized extremal optimization
algorithm. In Inverse Problems, Design and Opti-
mization Symposium, Rio de Janeiro, Brazil, 2004.

[8] John T Hwang, Dae Young Lee, James W Cutler,
and Joaquim R R A Martins. Large-Scale Multidis-
ciplinary Optimization of a Small Satellites Design
and Operation. Journal of Spacecraft and Rockets,
2014.

[9] A. Jafarsalehi, P. Mohammad Zadeh, and M. Mir-
shams. Collaborative optimization of remote sens-
ing small satellite mission using genetic algorithms.
Iranian Journal of Science and Technology – Trans-
actions of Mechanical Engineering, 36(2):117–128,
2012.

[10] Saurabh Jain and Dan Simon. Genetic algorithm
based charge optimization of lithium-ion batteries in
small satellites. In Proceedings of the 19th Annual
AIAA/USU Conference on Small Satellites, Logan,
UT, August 2005.

[11] Hajime Kawamura, Kazuhito Naka, Norihiro
Yonekura, Sanshiro Yamanaka, Hideaki Kawamura,
Hideyuki Ohno, and Katsuhiko Naito. Simulation
of i-v characteristics of a pv module with shaded
pv cells. Solar Energy Materials & Solar Cells,
75:613–621, 2003.

[12] Andrew B. Lambe and Joaquim R. R. A. Martins.
Extensions to the design structure matrix for the de-
scription of multidisciplinary design, analysis, and
optimization processes. Structural and Multidisci-
plinary Optimization, 46:273–284, August 2012.

[13] J. R. R. A. Martins and J. T. Hwang. Review and
Unification of Methods for Computing Derivatives
of Multidisciplinary Computational Models. AIAA
Journal, 51:2582–2599, November 2013.

[14] T. Mosher. Spacecraft design using a genetic algo-
rithm optimization approach. In Proceedings of the

1998 IEEE Aerospace Conference, volume 3, pages
123–134, Aspen, CO, 1998.

[15] D. J. Richie, V. J. Lappas, and P. L. Palmer. Siz-
ing/Optimization of a Small Satellite Energy Storage
and Attitude Control System. Journal of Spacecraft
and Rockets, 44(4):940–952, July 2007.

[16] G.M. Stump, M. Yukish, T.W. Simpson, and J.J.
O’Hara. Trade space exploration of satellite datasets
using a design by shopping paradigm. In Proceed-
ings of the 2004 IEEE Aerospace Conference, vol-
ume 6, pages 3885–3895, 2004.

[17] Bao Zhang, Hong-Fei Teng, and Yan-Jun Shi. Lay-
out optimization of satellite module using soft com-
puting techniques. Appl. Soft Comput., 8(1):507–
521, January 2008.

Hwang 10 of 10 28th Annual AIAA/USU
Conference on Small Satellites

	Introduction
	Theory
	Formulation
	Significance
	Derivatives

	Software Architecture
	Overview
	Problem Decomposition
	Execution
	CADRE Implementation

	Discipline Models
	Orbit Dynamics
	Attitude Dynamics
	Cell Illumination
	Temperature
	Solar Power
	Energy storage
	Communication

	Results
	Conclusion
	Acknowledgments

