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' ABSTRACT

AN EMBEDDED RING APPROACH TO THE VIBRATIONAL DYNAMICS

OF DISORDERED TWO-DIMENSIONAL MATERIALS
wy

Timothy Edwin Dnoyl,e,= ‘Master of Science
... -Utah sState University, 1992 -
Major. Pro‘fes‘:s‘or:‘:x‘ Dr John RobertDennlsop
Department: Physics '

A theoretical vepproechv was developed, to model the
vibrational dynamics of amorphous, two-dimensional materials.
The ma,terjiélas were v:medezlned ae | continuous random networks
(CRN’s) comprising an assemblage of planar rings of diverse
_size. Ih—plane/ Vibre’;ional modesb*for symmetric 4-, 5-, 6-,
7-, and 8-membered rings were examined. Vibrational states
. of qi}sq‘lavt‘ed ring‘s_‘;wer.e kmodified‘ by eo‘upqli‘ng‘,. the rings to a
continuous network to represent rings embedded in a CRN. An
effective force constant was used to couple the ring
_ vibrations to the ;hetworkl’ s ‘cdllyiljec:{tivemoti‘:or’lis. Potentials
were approximated with the use of a central force model
(bond-stretching force constant) and a valénce force model
(bond-stretching and bopdfaﬁgle-bending "fvore'e constants) .
Valence force model calculations employed group theory. Mode
frequencies were calculated using the method of small

oscillations and the normal coordinate treatment.
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Amorphous carbon was used as a test case for the
embedded ring approach. A physically consistent set of force
constants for the valence force model was determined by
compariné the 6-membered ring E,, mode to éhe E,, mode in
graphite. Frequencies for selected ring modes were
calculated, resulting in a discrete line spectrum.

Calculated frequencies were fitted with gaussian peaks
and convoluted into theoretical spectra for comparison with
the experimental Raman spectrum of amorphous carbon.
Integrated gaussian lineshape intensities were assumed to be
directly proportional to the CRN ring statistics. The peaké
were convoluted with the peak widths, ring statistics, and
number of modes as the adjustable parameters.

Parameters consistent with previous research on the
structure and dynamics? of amorphous carbon provided
satisfactory fits to the data. The best fit to the Raman
data includes the E,, and A,, modes of 6-membered rings
(present in Raman spectra of nanocrystalline graphite), and
the Raman active E,” modes of 5- and 7-membered rings. The
corresponding ring statistics agree with previous results,
supporting the presence of a sizable percentage of 5- and 7-
membered rings, but with no 4- or 8-membered rings. This
positive result provides verification for the embedded ring

approach, and supports a CRN model for amorphous carbon.

(156 pages)



-.CHAPTER I..

- INTRODUCTION

Modellng'the‘V1brat10nal dynamlcs of amorphous materlals
‘presents a more dlfflcult problem than that posed by

e

crystalllne materials.( Analys1s of the v1bratlonal dynamlcs
of crystalllne materials is well establlshed The presence
of long—range translatlonal order (perlod1c1ty) in crystals
allows analytlcal solutlon of the equatlons of motlon by
1ntroductlonylof theﬁ Born-von ‘Karman perlodlc boundary
Lcondltlonrhaﬁ “In contrast structurally dlsordered—-or
amorphous--materlals by‘deflnltlon lack long-range order, and
are not amenable to the analytlcal treatments used for
crystalllne materlals.‘ As a consequence, other theoretlcal
approaches have been developed. to model the v1bratlonal
dynamlcs of disordered materials. These approaches however,
are far from deflnltlve and yleld only approximate results.

A majorlty of the theoretlcal approaches used to study
the‘Vlbratlonal dynamlcs of amorphous materials are numerlcal
approaches. The analytic approaches developed to date can be
applled only to a fem speclfic materials,”and‘Yield only
qualitative results. Note that no qeneraliZed. analytic
approach has yet‘been found to model the dynamics of two-
dimensional (éD)T'and” three-dimensional (3D) amorphous
materialis.? Therefore, in contrast to the lattice dynamics

of ‘crystalline materials, the vibrational dynamics of
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amorphous materials offers a field of research still in its
vigorous youth, and remains an open and fertile frontier for
new ideas.

Limiting the scope of an analytic apprééch to only 2D
materials reduces the complexity introduced by 3D materials.
Structurally disordered 2D materials present a' simpler
problem theoretically by the mere fact that one dimension is
eliminated. Such an analytic approach would still provide
meaningful <results for real materials, however. In
comparison, theoretical techniques which confine themselves
to even simpler systems, such as one-dimensional disordered
chains, are severely restricted in applicability (for
example, to polymeric compounds or chalcogenidé glasses with
- one-dimensional networks). -

This thesis addresses the problem of the vibrationai
dynamics of 2D disordei';ad Iﬁaterials by developing a new
method--the embedded ring approach. The embedded ring
approach is a generalized, analytical method based upon a
common structural unit present in covalent 2D materials--the
planar ring. The approach examines localized vibrations in
disordered 2D networks with the use of planar ring modes of
oscillation. A disordered 2D network is simulated by
embedding various sized rings in the network. Vibrational
frequencies and modes of oscillation for the wvarious sized

rings are obtained for isolated rings and modified by

coupling the rings to the network. The results comprise a
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spectrum - of © frequencies which can be ' compatred t6 the
vibrational density of states (VDOS) of real materials, or
which can be used to generate theoretical wvibrational
' spectra.

The embedded ring approach is limited in application to
materials having planar rihgs. It is therefore particularly
'suited for modeling the dynamical behavior of 2D materials.
h“Examples of 2D'materials include-physisorbed and chemisorbed
monolayer films on surfaces, monolayer épitaxial films' (via
vapor deposition or molecular beam epitaxy), ahd layered
' materials. = These materials are currently thé sibjects of
active resea¥ch areas, proving to be rich rescurces f£or both
basic''scientific knowledge and technolsbgical applications.

Layered materials are formeéd by stacking 2D planes or
layers of atoms to form bulk 3D materials. In many layered
materials the atoms withi; an individual plane or layér are
strongly bonded by either covalent or ionic forces, whereas
' the layers themselves aré only: weakly bonded by forcés such
"~ as the van der Waals interaction. Such intralayer forces may

" be an order of magnitude or more greater in strength than the

'~ interlayer: forces. Layered - materials - with - these

‘characteristics display anisotropic properties arising from
" their nearly 2D nature, 'and can often be regarded essentially
as 2D materials. Examples of such materials ‘are the
‘compositionally simple crystals formed by graphite, boron

nitride, and several -of the metal halides and metal



4
dichalcogenides.®* Many of these materials also form the
basis (the intercalate) for intercalation compounds. Others
are of interest because they are semiconductors, superionic
conductors, or used as high technology ce:ramics- with a
variety of applications.

Other compounds with more complex compositioné form
materials with definite planes or layers, but with stronger
interlayer bonding, usually of ionic or covalent forces.
Such materials display less anisotro?y, and are more
intermediate in nature between 2D and 3D materials. Several
silicate minerals are representative of this class of layerea
materials, and include biotite (mica), serpentine (asbestos),
and montmorillonite (clay).’ In the past five years, a group -
of complex oxide materials has risen to prominence because of -
the superconducting properties endowed by their 1layered
stfucture. The copper oxide superconductors owe their high
temperature superconductivity to a layered perovskite crystal
structure, which consists of 2D copper oxide planes separated
by (depending upon composition and crystal structure)
alkaline earth cations, rare earth cations, thallium oxide
layers, bismuth oxide layers, or lead oxide layers. The
lattice dynamics of the copper oxide planes are of special
importance to theorists struggling to explain high
tenmperature superconductivity in terms of BCS theory.%’ |

Examples of amorphous 2D materials are fewer, and yet

still important as 2D analogues for amorphous 3D materials.
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Physisorbed and chemisorbed monolayer films can occur as
disordered phases, as can intercalants in intercalation
compounds, due to:a random -ordering of atoms. Chalcogenide
glasses go a step further,; forming d;i‘sordere'c\ia 2D networks.
(Networks differ from random packings of atoms in that the
atoms in a network exhibit greater covalency in bonding and
therefore a higher degree of coordination with adjacent
-atoms.) Amorphous As,Se; and As,S; are typical examples of
chalcogenide glasses where the covalently bonded. 2D network
can be considered as: oné very large molecular unit (aAs;Se; and
As,S, are said to form 2D-network molecular glasses).®

By far the most well known example of a 2D, layered
material is d¢raphite, a crystalline polymorph of carbon.
Some forms. of amorphous carbon also retain: a.2D character,
and can be modeled as 2D random networks. It is these forms
of amorphous carbon.which twill be used as a prototypical case
- for the embedded ring approach in this work.

The use of amorphous carbon:.as a test case has several
advantages. - The elemental composition of amorphous carbon,
consisting of only carbon atoms, simplifies calculation of
the ring mode oscillations.:: The cdalculations become; more
complicated with materials of binary or ternary composition
(comprised of two or more elements), such as with the
chalcogenide glasses. Additionally, carbon is a well-studied
-and exhaustively characterized element in science because of

‘its astrophysical and biological 'significance. Finally,
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vibrational spectra of various forms of amorphous carbon have
been extensively published and are widely available in the
literature. These spectra will permit direct comparisons of
the resﬁlts of the embedded ring approach éo experimental
data. Such comparisons will determine the wvalidity and

degree of usefulness of the embedded ring approach.



. CHAPTER. II:
DYNAMICS AND' MODELS OF AMORPHOUS MATERIALS

Vibrational Dynamics
of Amorphous Materials. Lo

To understand the. difficulty: involved ;in:modeling the
vibrational dynamics’deambrphOuswmaterials, one must start
with the lattice dynamics of crystalline materials. The
inapplicability of the 1lattice dynamical approach to
amorphous materials can then be examined, and provides a
stepping stone to dynamical approaches developed expressly
for amorphous materials.

Loss of periodicity in amorphous materials prevents
facile solution of their vibrational dynamics. In contrast,
periodicity in crystalline materials facilitates
determination of the dynamics. Solution of the dynamical
equations for crystals yields plane waves.! The Born-von
Karman periodic boundary condition allows simplification of
the equations of motion for crystalline materials by:

1. restricting the wave vectors in the plane wave
solutions to a linear combination of the
reciprocal lattice vectors;

2. decreasing the number of equations to be solved.

The use of the Born-von Karman periodic boundary condition,
however, is prohibited for amorphous materials due to a lack
of long-range order. As a consequence, a good set of wave

vectors to expand the wave functions for an amorphous
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material cannot be readily defined, and the number of
equations to Dbe solved remains unmanageably large.
Additionally, propagating vibrations will not be in the form
of plane waves, except approximately at very lcgw frequenéies.
On a large enough scale, an amorphous material appears
homogeneous and isotropic. At intermediate anci high
frequencies, vibrations in amorphous solids are localized and
do not propagate as far as in crystalline materials. In some
sense, the 1localized vibrational states in amorphous
materials resemble local phonon modes created by defects in
crystals.®

The inability to define a set of wave vectors for
amorphous materials precludes the use of phonon dispersionr
curves to characterize their vibrational properties. Indeed,
the term phonon is not even applidable to amorphous materials
since the vibrational modes cannot be separated by wave
vector. The vibrational density of states (VDOS), however,
remains a good measure to describe the vibrational dynamics
of both crystalline and amorphous materials by eschewing a
frequency-wave vector relationship for a frequency-number of
states per frequency interval relationship.

Figure 1(a) provides an example of a phonon dispersion
curve for graphite, a crystalline polymorph of carbon.?®
Figure 1(b) displays the corresponding vibrational density of
states for graphite. Note that Figure 1(b)--the VDOS--

provides a means to adequately describe the vibrational
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states of an amorphous material as well as a crystalline
material, whereas a description such as presented by Figure
1(a)--the phonon dispersion curve--would be inadequate (could
not even be presented!) for an amorphous matérial.

The vibrational dynamics of amorphous materials can be
approached either analytically or numerically. Anélytical
approaches examine the 1local dynamics of atoms in a
disordered network.? For bonds in such networks showing a
high degree of covalency, the bond-stretching force constants
typically exceed the bond-angle-bending force constants by a
factor of five.? The bonding can therefore be adequatel&
approximated with only a central force model (i.e., only the
bond-stretching forces are considered). Vibrational
frequencies are calculated for a local arrangement of atoms
in the network, such as a tetrahedrally coordinated or an
octahedrally coordinated cluster of atoms. The calculations
derive from simple expressions (solutions to either
Lagrange’s equations--the eigenvalue problem--or Newtonian
equations of motion), and relate frequency to the atomic
masses, bond-stretching force constants, and bond angles.
The expressions yield bands of frequencies, with band limits
determined by simple criteria and band peaks centered on non-
Zzero vibrational modes. A number of zero-frequency modes
appear due to exclusion of bond-angle-bending fordes. To
date, analytical approaches have been limited in usefulness,

providing models which are more informative and instructive
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than they are gquantitative.

- Numerical dpproaches attempt to predict the VDOS for

" amorphoiis matérials by considering fairly ‘large clusters of

atoms-(SO*SOO‘atOmsy. Again,. these approaéhes.solve the
-eigeéenvalue problem as formulated with.:the:use of gquantum
méchanics.? ‘Sevéral numerical methods are. available.? 1In
the cluster-Bethe-lattice method, a cluster is extracted from
a- disordered netiwork, and the ! infllience @ of ' the removed
network is accounted for by attaching a branching structure
- (the 'Bethe lattice) onto éach dangling bond at the edge of
the cluster. The Bethe lattice models the influence of the
missing embracive network by eliminating the edge or.surface
effects which arise from plucking:a finite cluster:out.of an
~infinite network.. Additionally, the Bethe lattice:produces
no anomalous‘'artifacts in the VDOS. Other nunerical methods
‘employed - include ..the  negative . eigenvalue meéethod, the
equation-of-motion method, .and the recursion method.

The embedded ring. approach is a generalized, analytical
method which extends both previous analytical methods and
previous numerical methods to predict vibrational modes for
- disordered 2D materials. The concept embodies both the use
-of local dynamics (analytical approaches) and the use of
mathematical. techniques to account for the influence of an
embracive d’isorder'ed network (as in the cluster-Bethe-lattice
method) .. The embedded ring approach can-.also be. considered

a close cousin to numerical approaches since the vibrational
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mode intensities in the VDOS are directly computed from the
ring statistics of a representative raft model (network
cluster).

Because it builds upon previous methodsﬁ a literature
search was conducted to assess the originality of the
embedded ring approach. No references were cited from either
INSPEC or Chemical Abstracts databases regarding an embedded
ring approach or any similar approach for determining the
vibrational properties of disordered 2D materials.
References were cited, however, for articles on the
vibrational dynamics of crystalline layered materials; one of
these papers details calculation of the dynamics of a 2D
lattice with the use of graphite as an example.! As with
other crystalline materials, the theory for the 1lattice
dynamics of crystalline layered materials is firmly rooted,
making extensive use of'periodicity in the form of point
group symmetries.®*

Several articles were found in the 1literature which
examine ring vibrational modes in SiO, and B,0;-based glasses
(see page 18 and Chapter IV).'? ! vibrational bands which
appear in the Raman spectra of these glasses are attributed
to ring modes of oscillation, and some analysis of the
mechanism of ring mode-network decoupling is presented.

The embedded ring approach builds upon these results in
an original manner. Instead of 1limiting itself to the

specific case of ring mode-network decoupling in some
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materials, the embedded ring approach considers the general
case of ring modes' coupled to a continuous:random. network
(CRN). Ring modes are calculated from basic principles using
techniques deveéloped: for study of molecular“dynamics. A
method is. then introduced to couple the rings to the CRN.
The modified vibrational modes are then used to construct a
material’s vibrational spectrum. It is'this approach which
gives rise to the originality of the embedded ring:approach.

Models of Two-Dimensional
Amorphous. Materials

Any succéssful dynamical model or approach is built upon
the foundations of an accurate structural model for the
material. For a crystalline material, knowledge of the
crystal structure is required for determining.. the:iphonon
dispersion qurve. Likewise, without a good structural model,
.any - VDOS or. vibrational modes derived .for A an . amerphous
material are meaningless. A prerequisite to the development
of the embedded ring approach, therefore, was to review and
-select structural models for 2D amorphous materials.

Amorphous . materials are classified into three types of
structure categories.® First, random close packing (RCP)
models structures where nondirectional forces--metallic,
ionic, or Van der Waals bonding--occur between the atoms in
the material. . Prototypical examples of amorphous materials
exhibiting RCP, structures are metallic glasses. Second,

organic polymer glasseS»are«mosgvsuccessfully represented by
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a random coil model (RCM), where interpenetrating random
coils constitute the amorphous structure. The third (but
definitely not the least interesting) structure category is
the continuous random network (CRN). Coﬂ%inuous random
networks arise from the disordered arrangement of atoms or
molecules with covalent bonding. Covalent bénds are highly
directional, resulting in low coordination number (less than
or eqﬁal to four) for atoms exhibiting this type of bonding.
Consequently, inorganic amorphous structures comprised of
covalently-bonded atoms differ markedly from RCP and RCM
structures.

Continuous random networks have been most successfully
applied to covalent 1inorganic Gglasses with ©binary
compositions. In addition to As,Se; and As,S;, which were
previously discussed in Chapter I, typical glass-forming
binary compounds include B,0,, SiO,, Gedz, P,0;, As,0s, énd
As,0;.*®  Construction of CRN models for these materials
requires adherence to three basic rules:

1. The coordination of each atom is fixed, limiting

the degree of connectivity in the network;

2. No dangling bonds are allowed within the network;

3. A specified procedure is followed in constructing

the network to ensure randomness of the structure.
Criteria (1) and (2) arise from the physical éonstraints

imposed by the constituents of the material. The third

criterion precludes subjective biasing of the structure:
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human consciousness displays an inherent preference for order
and regularity..

Atomic structures:are typically illustrated: with "ball
and stickﬂgmodelshiwhichyganwbe readily tranéferred;to the
printed page or computer screen. Three-dimensional CRN’s are
difficult to illustrate"with two-dimensional media, however.
Zachariasen schematics accomplish a 2D representation of
* CRN’s by simply limiting the structure of the network to two
. dimensions. . .. Because . .of . this limitation; . Zachariasen
schematics - are 'most amenable :to . compounds: .with an A,B;
stoichiometry. In fact, Zachariasen’s first = diagrams
illustrated a CRN for an A;B;~type compound.’®  Figure 2(a)

presents a Zachariasen schematic of a. CRN for an/ A;B;—type

compound.. The schematic is constructed. of AB; building
blocks: The A atoms (open circles) have :three-fold
coordination, while the B: atoms. (filled circles) ‘are only
bonded to two other A atoms.  Each AB; building block (or
cluster) displays overall three-fold coordination with other
AB;  building blocks. The . .Zachariasen schematic is
particularly useful for amorphous structures consisting of
the compounds As,Se;, As,S;, B;0;,. and As,0;.

‘Amorphous structures can also be modeled with the use of
"triangle rafts" based on Zachariasen schematics.?® As with
Zachariasen schematices, triangle rafts are graphical
representations of 2D structures. Figure 2(b) presents a

triangle raft niodel of the structure shown in Figure 2(a).



16

(a)

(b)

FIG. 2. Zachariasen schematic (a) and triangle raft
model (b) of a two-dimensional continuous

random network. After Shackelford.?®
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In Figure 2(b), triangular building blocks replace the AB,
clusters in the Zachariasen schematic. The triangular shape
of the building blocks reflects the overall three-fold
coordination of the AB, cluster. Note tha{t the use of
triangle rafts génefalizgss and extends the Zachariasen
schematic. The buiiding blocks can now represent not only
AB;~type clusters, but also single atoms with planar three-
fold coordination and, to -some ’extent, the facets of
tetrahedra for four-fbld)~tétrahédrally coordinated clusters
that occur in compounds such as Sio, or amorphous silicon.
Continuous random networks are constructed from‘trianglé
rafts by a specified procedure.?® The triangular building

blocks form rings of various sizes. A CRN is built by first

starting with an initial ring. Subsequent rings are then
added to the initial ring in a clockwise spiral fashion, with
the size of each ring selected randomly. The final structure
is a CRN comprising ah assemblage of rings of diverse size.
The distribution of n;membered }rings (n=3 to about 10)
provides a measure for the fandomness of the 2D network.
Therefore, triangle raft models provide a means to
theoretically determine the ring statistics for amorphous
materials.

Ring statistics for real glasses are difficult to
determihe. ekﬁeriméntaliy; ”’ﬁowever,b fiug statistics for
vitreouslsioz, Bgy; und various'siéfihbg glasses have been

determined with the use of infrared and Raman spectra.!? The
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determinations were accomplished by looking for B;Os boroxol
ring vibrational modes in the spectra, and with the use of
numerical methods to compute the VDOS. Raman spectra may
also be used to determine the ring statistiég for vitreous
silica and various silicate glasses.!®

Chapter IV discusses ring mode decoupling in silica-
based materials, and details the embedded ring approach, a
theoretical method which may bridge the gap between
experimentally determined and theoretically predicted ring
statistics for amorphous materials other than amorphous
silica, silicate, and borate glasses. Triangle rafts preseni
model CRN structures from which the ring statistics are
readily obtained. The embedded ring approach uses these ring
statistics to construct theoretical spectra for comparison
with real vibrational spectra of materials. Such comparisons
permit the correiation be;ween a material’s atomic structure
and the model structure.

Note that triangle raft models can be extended to
crystalline and Gquasicrystalline structures as well.
Amorphous structures display a distribution of three or more
different ring sizes. Crystalline structures, by contrast,
would display either a single, bimodal, or multimodal
distribution of 3-, 4-, 5-, 6-, or 8-membered rings. Such
rings have the necessary symmetries for a periodic stfucture.
Figure 3 shows a triangle raft model (a) and ring statistics

(b) for a 2D crystal structure comprised of 4- and 8-membered



(a)

Ring Size 4 56 7°8 o9

FIG. 3.

Triangle’ raft model (a) and ring statistics
(b) for a (4,8) crystalline two-dimensional

material.
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rings. Figure 4 displays the unit cell (a) and ring
statistics (b) for another crystal structure, this time
consisting of 5- and 8-membered rings. Surprisingly, the
crystal ‘structures in Figures 3 and 4 ﬁare. not Jjust
theoretical models, but represent actual crystal structures
for some silicate minerals.?' The triangular building blocks
in Figures 3 and 4 represent the faces of SiQO, tetrahedral
clusters for the silicate minerals apophyllite and okenite,
respectively. As mentioned in Chapter I, many silicate
compositions form quasi-2D materials.

Two-dimensional gquasicrystalline structures may be
characterized by a bimodal or multimodal distribution of
rings. Five or ten-membered rings provide five-fold synmetfy'
for aperiodicity, and at least one other structural unit
(ring size) is necessary to eliminate lattice frustration.
Such a quasicrystalline, structure is analogous to a 2D
Penrose tiling where at 1least two structural units are
required.®? Figure 5 shows a 2D network displaying local
five-fold symmetry. Note, however, that the network in
Figure 5 1is not truly dquasicrystalline since lattice
frustration is not fully alleviated. The structure in Figure
5 would more likely curl up into a sphere, much 1like the
carbon network does in Buckminsterfullerene due to the
presence of five-membered rings.2?¢%®
Triangle rafts model continuous random networks with a

variety of compositions ( elemental to ternary ), and also
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(a)

 Ring Size 4 5 6 7 89

FIG.

4.

Triangle raft model (a) and ring statistics
(b) for the unit cell of a (5,8) crystalline

" two-dimensional material.



(a)

Ring Size 4 5 6 7 8 9 10

(b)

FIG. 5. Two-dimensional network displaying local
five-fold symmetry (a) and corresponding

ring statistics (b).
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model other structures within the hierarchy of order-disorder
(crystalline-~quasicrystalline-—amorphous). Theseabilities,
along with their emphasis on ring size and ring statistics,
make the use of triangle rafts amenable to a theoretical
approach of the vibrational dynamics of amorphous materials
based upon ring modes of oscillation.

Geometry and Dimensionality
'of Networks

As previously discussed in this chapter, the structural
randomness of a 2D network is intimately tied to the
shape/size of the rings constituting the network (pentagonal -
S5-membered rings, hexagonal 6-membered rings, etc.), and

their relative population in the network (i.e., the ring

statistics). Also influenceg by ring geometry and statistics
is the dimensionality of the network. Certain ring
geometries and abundances can introduce curvature into a
normally flat, 2D network. The network is still two-
dimensional, but now curved or warped into a third dimension.
Such network Warpage or curvéture ¢can have material property
effects, and dis an important structural factor to
characterize.‘;Again,”the‘ring statistics for a network can
provide a measure for the amount of warpage/curvature in a
normally 2D amorphous material.

We can examine this relationship by considering a
periodic, hexagonal lattice comprised of only 6-membered

rings. A S5-membered ring is introduced into the lattice by
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modifying a 6-membered ring (for example, by creating a
vacancy defect). The atoms at the vertices of the S5-membered
ring still exhibit three-fold coordination, but the bond
angles have changed. Two of the bond angles“at the vertex
atoms are shared by 6-membered rings, and are therefore 120°
each. The third bond angle is an interior angle within the
pentagonal 5-membered ring, and is therefore only 108°. The
sum of the three bond angles is 348°. To maintain a flat 2D
geometry, all three bonds must lie in the same plane, and the
bond-angle sum should equal 360°., Therefore, a 12° angular
deficiency exists at each vertex atom of the introduced 5-
membered ring. Since there are five vertex atoms, the total
angular deficiency for the introduced 5-membered ring is 60°.

The effect of this 60° angular deficiency is to pucker
the lattice at the 5-membered ring site. The normally flat
2D lattice can no longer'maintain its flatness, but nust
curve to accommodate the 5-membered ring "defect." Adding
more 5-membered rings to the lattice increases the curvature.
Finally, with only twelve 5-membered rings equally spaced in
the 2D lattice, sufficient curvature is created to curl the
lattice into a sphere.

Note that the required number of 5-membered rings to
curl the lattice into a sphere remains twelve, independent of
the size of the lattice or the spacing between the 5-membered
rings. This phenomenon was discovered in the 18th century by

Leonhard Euler, and remains a topological intrigue and
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curiosity.? The total angular deficiency for twelve 5-
membered rings is’

12x60°=720°

the angular deficiency necessary to completely curve a two-

dimensional space in upon itself.

The effect of introducing a 7-membered ring into a

hexagonal lattice is equally interesting. The 7-membered

ring creates a total.angular excess of 60°. Again, the

lattice puckers at the 7-membered ring site. The curvature

is different, however, from that induced by a S5-membered.

ring. Whereas an angular deficiency creates spherical

curvature, an angular excess creates hyperbolic curvature.

We can now begin to see how a 2D=CRN can accommodate

both 5~ and 7-membered rings, and yet retain‘itsaflatness.
The apgglar deficiencies created by a number pf‘5—membéred
‘.ringshqan be canceled by the.angﬁlar excésses of an eéual
number%o§,7—m¢mb¢red rings. The»océurfe#ce of 4-membered
rings”also,creates_angular,deficiepciés?yléO? total for each
- ring, with éo;respondingvangular excesses occurﬁing f§£ 8-
membered rings. Note, for example,‘Figﬁre 3 where equal
numbers»of‘4— and 8-membered rings qfeateeé flat,‘ZD iattice.
The angular deficiencies of two 5-membered rings can also
’,cancel the angular excess ‘in an 8-membered ring, again

leading to a flat 2D lattice, as in Figure 4.
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The ring statistics for an amorphous material provide

the relative proportions of 4-, 5-, 6-, 7-, and 8-membered
rings in the CRN. From the ring statistics one can determine
the relative flatness of the 2D-CRN. A simple équation to do

this is the following:

~N,x180° —N,x120° -Nyx6 0° +N,x6 0°
+N;x120°+N,x180° =8

where N, = equals the number of n-membered rings (3- and 9-
membered rings were included for completeness), and § is the
curvature of the 2D-CRN. (Note that the above equation is
only valid for a 2D-CRN where the atoms or atomic clusters
exhibit three-fold coordination.) If § = 0, the 2D-CRN is
relatively flat. If § < 0 or § > 0, the 2D-CRN has spherical
curvéture or hyperbolic curvature associated with ié,
respectively. The curvature or flatness should be considered
a large.scaie parameter, taken over several atom—-atom bond
distances (10-100 A). Local puckering of the network may
occur due to local ring geometry or inhomogeneous ring
distributions.

The preceding discourse has many uses. For instance,
the inability to tile a flat 2D surface with only pentagons
or septagons is given further depth beyond that of symmetry
arguments.?® In the context of the embedded ring approach,
the ability to determine an amorphous material’s ring
statistics, and subsequently the structure of the CRN in

terms of randomness and curvature (dimensionality), 1lends
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further value to the approach. Finally, an understanding of
ring geometry and network dimensionality is éssential in
constructing accurate structural models: ' for amorphous
materials; )
Buckminsterfullerenes

The curling of a hekagonal~lattice into a sphere by the
addltlon of twelve S-membered rlngs is more than Jjust a
theoretlcal- cur1051ty 'Thé/“ recent " dlscoveryv“‘of
Buckmlnsterfullerenesugr(named after the 1nventor of the
geode51c dome, Buckmlnster Fuller) prov1des ‘an ‘actual,

phy51cal system where such an event occurs on the atomlc

scale.

Bucxmlnsterfullereneu ls a molecular*—fornr—oft—carbon'*
produced and dlscovered so far only in the laboratory.JPThe
ex1stence of thls exotlc molecule 1n naturally occurrlng
samples or’ as predlcted in 1nterstellar dust clouds has yet
to be conflrmed 30 The chemlcal formula for the prototyplcal
Buckmlnsterfullerene molecule is Cg, although a whole series
of Buckmlnsterfullerenes (also called fullerenes) has been
predlcted (Cz,,, ng, C32, Cast, Csor Cso, C;0, and so on) 24 C60 was
the flrst‘fullerenekdlscovered, w1th other members of the
series subsequently found | -

Cgo 1s clearly comprlsed of 60 carbon atoms whlch form
a molecular cage or spherical network. This cage or network

itself is comprised of twenty 6-membered rings and twelve 5-



28
membered rings. Figure 6 presents a triangle raft model (a)
and the ring statistics (b) for Cg. The carbon network can
be considered as a 2D hexagonal lattice, as in graphite,
within which twelve S-membered rings have beéh introduced.
The 5-membered rings completely curl the network into a self-
contained sphere. All of the molecules in the fullerene
series have exactly the same number of 5-membered rings--
twelve; only the number of 6-membered rings varies.

This new form of carbon has captured the interests of
the physics community. Its material properties are as exotic
as the molecular structure itself. Doped with potassium or
rubidium, solid Ceg is a respectable superconductor with
critical temperatures of 18 and 28 K, respectively.3%?®
Because of its completely enclosed, self-contained structu}e
and the strength of the covalent carbon-carbdn bonds, some
researchers suggest that éw might be harder than diamond.®
Most recently, the discovery that carbon latticés can roll
into tubular structures with closed, fullerene—like'ends
opens a new avenue for the development of novel carbon
fibers.?'3 Additionally, new forms of carbon with hyperbolic
curvature (comprised of 6- and 7-membered rings) have also
been proposed and theoretically examined.?®®

This thesis has a dual interest in fullerene molecules.
First, fullerene molecules are an example of a 2D hexagonal
lattice which is profoundly altered by the presence of 5-

membered rings. The effects of ring size and statistics on
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(b)

FIG. 6. Triangle raft model (a) and ring statistics

(b) for the fullérene molecule Cm.
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a material’s atomic structure are clearly demonstrated with
fullerene molecules. Second, fullerene molecules are a close
kin to a specific stfuctural model for amorphous carbon. ' The
network in this structural model contains nqtﬁonly 5- and 6-
membered rings, but 7-membered rings as ﬁell. The 7-membered
rings counteract the sphericity induced by the 5-membered
rings, but also introduce a random structure into the
network. The ring statistics for such a network should have
approximately equal numbers of 5- and 7-membered rings to
prevent the formation of large, spherical molecules. The

following chapter details this structural model for a-C.
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CHAPTER III

- CARBON AND CARBON MODELS

Crystalline and Amorphous
Carbon ' DL ‘ : ;

Naturally ‘Occurring éeléméntal carbon most commonly
exists as two allotropic forms in the~crystallinerstate--
graphite and diamond. Graphite is a layered material, with
strong intraplanar covalent forces bonding the atoms into 2D
layers.  Relatively weak interplanar ‘forces. hold the 2D
layers together to form a 3D solid. = The covalent bonds of
the carbon ateoms in graphite,; designated sp, bonds; exhibit
planar three-fold coordination and give rise to the familiar

graphite hexagonal structure. Figure 7 is a triangle raft

model of graphite, displaying the regular six-membered rings
which comprise the hexagonal structure. Note that because of
the planar three-fold cooréination, triangle raft models are
ideal representations for carbon structures bonded primarily
by sp, bonds. Each triangle in the raft model represents a
single carbon atom, with the apexes representing the three
bonds.

The second allotropic form of crystalline carbon,
diamond, is a 3D solid forming crystals with cubic symmetry.
In contrast to graphite, the carbon atoms in diamond have
covalent bonds which exhibit  tetrahedral, four-fold

coordination. The tetrahedrally coordinated forces,

designated sp, bonds, allow the carbon atoms to bond in a 3D
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FIG. 7.

(a)

Triangle raft model (a) and ring statistics
(b) for graphite displaying hexagonal

structure.
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framework, and give diamond crystals their cukic crystal
structure. . | | |

Crystalline cﬁfﬁon mayJoccuf~in othef forms as well,
usually asgﬁicrostructurql aiteraﬁiéns gfmpiiskine graphite
or diamond. The desigﬁation M"glassy carbon" is a common
misnomer, since it is not a true glass or amorphous materialj
rather it consists of strained‘ graphite layers stacked
randomly to form.carbon fibrils.37‘Carbonﬂfibrils are ribbon-
like microstructures of graphité and aréﬁtypically less than
120 A& in .width "énd..AAC A in thicknesvs’.‘., .Oriented carbon
fibrils gréafér than/iooo A in length comprise the structure
of carbon . fibers. In glassy carbon, howeVer, the carbon
fibrils are not oriented, and intertwine into an extensive
tangled, knotted structure,w Because of their structural
similarities to graphite at the atomic level, the bonds in

-

glassy carbon and carbon fibers are almost entirely of the
sp, type. ‘

Nanocrystalline graphj.te (also called turbostatic carbon
or carbon black) is also derivative of +the graphite
structure, with local ordering of carbon atoms giving rise to
a 2D hexagonal. structure. The spétiai extent of the
hexagonal ordering, or domain size, in nanocrystalline
graphite differentiates it from other forms of carbon. The
ordered domains can be 1likened to the grains in a
polycrystalline material; each grain is a single, ordered

crystal structure randomly oriented crystallographically with
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respect to neighboring grains. Domains in nanocrystalline
graphite range in size from 16 & to 38 A.3®® Although sp,
bonds characterize the graphitelike domains ' in
nanocrystélline graphite, sp; bonds are likeiy present at
domain boundaries.®¥ Again, as with glassy carbon,
nanocrystalline‘graphite is not truly amorphous, but rather
exhibits crystallinity on a very fine scale.

Microcrystalline diamond is analogous to nanocrystalline
graphite, and is typically observed in thin diamond films.%
In contrast to graphite and its crystalline derivatives
(glassy carbon, carbon fibers, and nanocrystalline graphite),—
sp; bonding predominates in microcrystalline diamond,
resulting in the diamondlike crystal structure on a very
fine, local scale. The domains in microcrystalline diamond,
however, are much larger jup to 1 pm) than those found in
nanocrystalline graphite.

The previous discussion highlights the difficulty in
ascertaining an amorphous state for carbon. Aside from the
many modifications in crystallinity carbon may assume,
amorphous carbon does exist. Two principal criteria define
an amorphous state for carbon:

1. A mixture of sp, and sp; bonds exists, with the

proportion of spz'to sp; bonds denoting a gradual

shift in the nature of the amorphous carbon from

graphitic to diamondlike;
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2. Short-range order is limited to less than 5 A&,

precluding the presence of nano¢rystalline domains.

These criteria ¢an be determined experimentally with the use

of Raman.spectrésCOpy;~électron*énd neutnbﬂ\diffraction,

- electron energy loss spectrometry, and (e,2e) spectroscopy.

Furthér .«comparison .with theoretical models -narrows . the

criteria down té6 a specific structural model for amorphous
carbon. -

- The «codexistence .of both: sp, and spy bonds profoundly
affects the!structure of amorphous ‘carbon.: ‘The 3D nature of
the sp, bonds warps and distorts the 2D atomic configurations
arising: from  sp, ‘bonds. Consequently, a low sp,/sp; bond
‘ratio implies an amorphous structure with a high degrée of 3D
conniectivity, and is ‘therefore diamondlike in quality.
Conversely, & high spz/sp{ bond ratio indicates a quasi-2D
amorphous structure with sp; bonds introducing distortions in
the 2D planes. Amorphous ¢arbon with &~ high- sp,/sp, bond
ratio therefore displays graphitic-qualities.

Structﬁral Models ofl
Amorphous Carbon

Beeman et al.‘’ constructed three structural models for

amorphous carbon '(a-C) with ‘various &p,;/sp, bond ratios.
Radial distribution functions (RDF’s), VDOS spectra, and
Raman spectra’ were then numerically computed ‘for each of
their models. (Beeman et al. calculated the VDOS and Raman

spectra with the use of the equation-of-motion method.)
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Comparisons of model RDF’s with RDF’s obtained for a-C with
the use of neutron diffraction were inconclusive in selecting
a preferred model for a-C. Comparisons with VDOS and Raman
spectra, however, revealed that the most prpbéble model for
a-C has a sp,/sp; ratio greater than 9 (less than 10% sp;
bonds). They doncluded that the structure of a-C was
therefore primarily 2D, with occasional sp; Dbonds
interspersed in the network.
Electronic band structures were determined for an a-C

film with the use of (e,2e) spectroscopy,‘’ and the results

support the conclusions of Beeman et al. The electronic band

structures for the a-C film were more consistent with a
graphitic type of carbon structure than with a diamondlike
carbon structure. Further studies with (e,2e) spectroscopy
revealed that both evaporated a-C and ilon-sputtered a-C
contained primarily sp, bonds, but that a dependence of
electronic structure on preparation method also existed.®
Electronic properties computed witﬁ the use of model
structures by Galli et al.*® are also supportive of a
distorted, 2D network model for a-C. Their results agree
reasonably well with experimental data, and indicate an
sp,/sp; ratio of 4 to 9 (10-20% sp, bonds) and clustering of
the sp; bond sites. The structural models used by Galli et
1. consisted of random, highly distorted 2D layers with 5-,

6-, and 7-membered rings.
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Li 'and Lannin “ measured radial distribution funetions
of a-C films with 'the use 'of neutron diffractién, and
concluded that althéugh the bonding was predominantly p,, no
third ﬁeérest  néighbor peak was dbservear5which"Would
corresporid €6 'a hexagonal = structure.  The absence of
hexagonal ordering in a-C provides further evidence for a 2D
continuous random network with 5- and 7-membered rings in
addition to 6-membered rings.

To summarize, substantial evidehce exists for a
structural model 0f a-C which consists of a locally 2D-CRN
with ‘mostly sp, bonding and with regions of 3D connedtivity—
‘at sp, bond sites. The 2D network will be comprised of rings
of various size (mostly 5-, 6=, and 7-membered rings, -but
possibly also including some 4- and 8-membered rings); ‘and
will be warped and/or wrinkled néar sp, Sites. Such a
structural moédel is agreeable to the type of analysis used by
the embedded ring approach, and this model is used as a test
case for the embedded ring approach in this work.

" Note ' that other forms of a-C exist for which this model
'is inapplicable. The types 6f a-C obtained in the laboratory
are highly dependent on how the a-C is prepared; choice of
deposition ~‘method and : conditions during: deposition
(temperature, pressure; starting materials, etc.) determine
the atomic¢ structure and therefore the material properties of
the resulting a-cC. Hydrogenated a-C exhibits a larger

proportion of sp; bonds due to hydrogen stabilization, and is
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therefore more diamondlike in properties and atomic
structure. Similarly, diamondlike a-C also has a large
proportion of sp; bonds and exhibits diamondlike
characteristics (e.g., hard and transparentg.ﬁ This thesis,
however, will not be <concerned with hydrogenated or
diamondlike a-C due to complications which may arise in the
vibrational dynamics due to hydrogen bonding and greater 3D
connectivity.

Figure 8(a) represents the structural model for a-C,
displaying a 2D-CRN, but with the distorted sp; regions
omitted. Each triangle in this triangle raft model
represents a three-fold coordinated (sp, bonded) carbon atom.
Also note the randomness of the structure and diverse size of
the rings which comprise the network.

Figure 8(b) presents the ring statistics for the CRN in
Figure 8(a). The ring statistics indicate that the majority
of rings are 5-, 6-, and 7-membered. Additional 4-, 8-, and
9-membered rings complete the structure. Note that such a
CRN for a-C provides a truly random structure, with short-
range order not exceeding second nearest neighbors (agreeing
with the results of Li and Lannin “) and with a relatively

low population of six-membered rings (showing substantial

deviation from the hexagonal structure of graphite).
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FIG. 8. Triangle raft model (a) and ring statistics
(b) for amorphous carbon with continuous

random network structure.
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Vibrational Spectra
of Amorphous Carbon

As mentioned previously, several characterization
methods exist (for example, diffraction techniques and (e,2e)
spectrosdopy) to ascertain the atomic iand electronic
structure of wvarious forms of crystalline and amorphous
carbon. Raman spectroscopy is particularly useful for
discerning the structure of carbon since Raman spectra are
sensitive to ©both 1long-range order (for crystalline
materials) and short-range order (for amorphous materials).
The Raman effect was discovered in 1925 by C. V. Raman, who,
coincidentally, obtained the first Raman spectrum from
diamond, a crystalline form of carbon.‘’ The Raman effect
relies upon the inelastic scattering of 1light quanta
(photons) from molecules and solids. The scattered photons
gain or lose energy from vibrational modes in the molecules
or solid. The change in frequency of the scattered photon
corresponds to the frequency of the vibrational mode. Since
the vibrational frequencies are structurally dependent, the
Raman effect provides an experimental technique spanning the
bridge between atomic structure and vibrational d&namics.

Structural symmetry in crystals gives rise to Raman
selection rules for the vibrational modes, and the Raman
spectra are ihdicative not only of molecular vibrations
(internal modes), but of crystal structure (external or

phonon modes) as well. Relaxation of the Raman selection
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rules for crystals may arise from twoiCdﬁdiﬁéénéi
1. ‘Transformation o:_@istgftion>of the crystal
- structure to a crysﬁal.structureiyifh lowér
é,ymmetny; . ”
2. A dgqreagg‘;n”;ong—range\opderqdue tQ crystalline
domaipwboupdaries iﬁ‘microqrystal}ine or
’ nanocrystalline‘materialsf‘ o
, Nomina;;y ;nactive Raman modes appear in the Raﬁaﬁ spegtrum
- when thg Raman_§glection,rules are reléxed,,and the inactive
qmodegﬂQ;g‘diaggpstiq(of microstructural alterationsminkthe
crystg;;ing'mate;ial. Breakdown Qf the Raman selectiqn.rples
occurs in truly amorphous materials due to‘é complépgylagk of

long-range order and structural symmetry. Raman selection

§

Yrule p;eakdowq qllows all vibrational‘mpdes to éppga; igﬁthe
Raman spectrum, and the  Ramén spectrum approgigaﬁééf the
VDOS‘."S"'VS | ' - o -

The Raman spectrum of_gréphite,‘FiQQre’9(a); exhibits a
single, sharp peak‘at,158chm*5§ﬁdré lqﬁffregqénéf peak at
50rqm? arising from the Raman active Ezg_mocilc‘as.“9 The E,,
~modes arthhe~only Raman active fundamentals for graphite,
which has the D%, space group (homcmorphic»to the Dg point
group) . The Raman spggtrum of diamohdldisplgys a single
Raman active mode at 1332 cm™.¥

- In addition to the 1580 cm™ E, mode, a strong peak at
1360 cm™! and a smaller peak at 1620jcm? appear in Raman

spectra of nanocrystalline graphite, Figure 9(b).‘"*® The
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intensity of the 1360 cm™® band is inversely proportional to
the crystallite size, and can be attributed to relaxation of
the Raman selection rules for graphite.!03851%% The loss of
long-range translational order in the hexagonal lattice due
to finite crystallite size allows the normally Raman-inactive
A;; mode to become Raman active. Note that although the 3,
mode is Raman inactive for an infinite hexagonal lattice, it
is Raman active (along with the E,, mode) for a single, 6-
membered carbon ring with Dy point group symmetry, and for
larger yet finite ' .assemblages of 6-membered rings as well
(i.e., polycyclic aromatic hydrocarbon molecules). |

The 1620 cm! line in the sﬁectra of nanocrystalline
graphite is too close to the 1580 cm™® line to be distinct.
Rather, it merges-wifh the 1580 cm™ line to form a shoulder
on the 1580 cm’ peak, and shifts the 1580 cm™ peak to a
slightly higher frequency: The origin of the 1620 cm™ line
is still unresolved, but most 1likely results from the
appearance of ya feature in the graphite VDOS, again due to
relaxation of the Raman selection rules.”

In contrast to the Raman spectra of graphite and
nanocrystalline graphite, the Raman spéctrum of amorphous
carbon, Figure 9(c), presents a broad, asymmetrical band
centered at 1550 cm™l.’® It is unclear whether the band in
amofphous carbanlrepresents‘a‘trﬁé vibrational density of
sfatéé, witﬁ contfibﬁtioﬁs from vibrational modes of larger

and smaller rings in a continuous random network (the CRN-
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VDOS interpretation), or whether the band results from
disorder-induced broadening and frequency-shifting of the E,,
graphite mode at 1580 cm’l.

Resohant Raman spectra of diamondlike a-C %ilms provided
evidence that the broad band in diamondlike a-C is comprised
of twb components at 1400 cm™t and 1530 cm™®.’®> The 1400 cm™
and 1530 cm™! components can be associated with aromatic, sp,-
bonded carbon rings of large and small sizes, respectively.
The structural models and numerical calculations of Raman
spectra by Beeman et al. also support a CRN-VDOS
interpretation for the Raman spectrum of amorphous carbon. *®

The embedded ring approach will attempt to determine if
the broad band in Raman spectra of a-C could arise from
contributions from the vibrational modes of diverse-sized
rings. The diverse-sized rings would constitute a CRN, with
each n-membered ring contributing a distinct set of
vibrational mode frequencies to the VDOS. Thus, the
application of the embedded ring approach to the vibrational
spectra of a-C provides an analytical approach to verify the
CRN-VDOS interpretation.

Polycvelic Aromatic
Hydrocarbons

An important step in developing the embedded ring
approcach is to determine the effect of the surrounding
network on the vibrational modes of the embedded ring. A

single, isolated ring will have a set of vibrational modes
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with one or two frequencieS"for each singly-degénerate or
doubly- degenerate vibrationdl ‘species.’ Embedding the ring
modifies these mode frequencies.' The extent: and nature of
the frequency modification canbe studiéd in a regular,
stepwise progreéssion by first examining the vibrational modes
‘of an isolated ring. = The surrounding network is then
constructed in stages by adding additional ringS;tQ"the
isolated ring. Frequency changes are noted. for each ring
added. Finally, the effect of a surrounding network on the
embedded ring can -be inferred by ‘examining. the relationship
between the fregquencdy of a specific mode and the number of
rings coupled together.

The above analysis. is made - easier by the existence of
polycyclic aromatic hydrocarbons . (PAH’s).  PAH molecules
consist . of carbon rings ooupled together in a :variety of
configurations and sizes (Figure 10). - The carbon ring bonds
are 8P, in nature, and the dangling bonds are typicailly taken
up by hydrogen. The hydrogen -atoms. vibrate at higher
frequencies than the carbon atom ring motions because their
mass is mﬁch less than that of the carbon atoms.
Additionally, the motions of the hydrogen atoms have only a
small effect on the carbon atom ring motlons and therefore,

to a first approximation,. can be ignored for the above

~“analysis. Although most PAH’s are comprised of 6-membered

rings, some contain 4-, 5=, and 7-membered rings. The

- vibrational dynamics of several PAH molecules are dispersed
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throughout the 1iterature.

Benzene is the simplest aromatic hydrocarbon, and is the
archetype for an isolated, 6-membered carbon ring. 'Adding 6-
membered rings in. a linear, chain-wise fashion to benzene
creates the PAH molecules of naphthalene (2 7rings),
anthracene (3k:ri'ngs’), tetracene (4 J;ings,.), and ,per}tacene (5
rings). Analysfé éf a specific mode frequency for these 6-
membered ring stfucytures wou"',ld provide clues to the nature of
ring mode—riéi!wérk coupiing in graphite and a-—C »N“;'L’I"h’e E,, mode
is selected begguge of its Raman activity in spectra of
graphite andq‘713"AI;I,};moiecules, and because it is an in-plane
vibrational mode. The E,, mode for benzene has '‘a measured
frequency of 606 cm™.%® an E,,~like mode For naphthalene,
where the atomic _motiqns in each ring approximate the motions
for the E, mode» 1n behéene, displays a frequency of)1162 cm”
L, E,,~1like modes for anthr‘acene, tetracene, and pentacene
have freqgiiencies .of. 1557 Cm'l, 1554 cm™?, and 1552 cm’t,
respectivély . |

A trend ris observed for ;the E,;-like mode frequencies for
the linear PAH mélecules when they are plotted as a: function
of the number of rings for each molecule (Figure 11). The E,
mode frequency for the isolated ring (benzene) increases with
the number of rings added until anthracene (3 rings). After
anthracene the frequency changes little, and will probably
not change significantly for molecules. largér than pentacene.

Note that the final frequency limit for the E,,-like modes--
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about 1550 cm!-~-is close to 1580 cm™!, the E,; mode frequency
of graphite.

The E,, mode frequency for graphite would be an
asymptotié limit for E,-like mode frequencies"of very large
PAH molecules. The E,,-like mode frequencies for linear PAH
molecules approach but fall a little short of this limit,
probably because of their linear, highly elongated structure.
Analysis of the E,-like modes for more symmetrical, less
elongated PAH molecules such as triphenylene (4 rihgs),
coronene (7 rings), and hexabenzocoronene (13 rings) would
most likely place an asymptotic limit (as the number of ringé
increases to infinity) at 1580 cm™. e

We can conclude from Figure 11 that the isolatea ring E,,
mode increases in frequency with added rings, and that a
limit is reached with only about three rings. ‘Therefore,
complete ring mode-network coupling is achieved rapidly with
relatively small ring assemblages. This result lends
credence to the embedded ring approach, whiéh attempts to
account for the ring mode-network coupling analytically and
without the use of numerical methods and large network
simulations. fﬁrthéf énalyées of this typé are possible with
the use of other vibrational modes‘(for example, the A,
mbdé), other 6—membe£éd carbon ring PAH molecules (for
example, coronene), and with the use of PAH molecules

containing 4-, 5-, and 7-mémbered rings.
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CHAPTER IV

THE EMBEDDED RING APPROACH

Background

The vibrational properties of materials are determined
to a large extent by the local arrangement of atoms.??!* This
is especially significant for amorphous materials, which lack
long-range order but display limited short-range order. As
an example, the lattice vibrations of crystalline silicon,
which exhibits a diamond-1like cubic structure, rely primarily
on the local four-fold coordinated tetrahedral structure of
the silicon atoms. Many aspects of the dynamics of
crystalline silicon can be derived from this local structure,
in particular the general characteristics of the VD0S.? The
local tetrahedral structure persists in amorphous silicon,
with disorder appeéring in. the form of distributions of bond
lengths and bond angles. By incorporating the effects of
bond-length and bond-angle disorder in the VDOS, the dynamics
of amorphous silicon have been extrapolated. The results
agree fairly well qualitatively with the experimentally-
determined VDOS of amorphous silicon.?

The use of short-range order (local atomic arrangement)
provides an analytical approach for determining the
vibrational dynamics of 3D amorphous solids. The technique
can be applied to 2D amorphous materials as well once a

basic, local structural unit is chosen. An immediate and
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obvious choice for a material such as amorphous carbon would
be the three-éoordinatéd, planaf arraﬁgément of four carbon
atoms, forming a triangular cluster. However, such a basic
unit‘couid be arranged in groups to form riggs of diverse
'sizes. The contribution of the ring modes of vibration to
the VDOS would be significant, and yet such contributions
would be:peglgcted_withkthe use Qf the_triangular clus@er as
the basic: unit... |

The work.of, Galeener '’ supports the use of rings as
basic structural units for the analysis of amorphous solid
dynamics, and indeed was the original inspiration for thé
- research thrust of this thesis. = Galeener examined Raman
- spectra of amorphbuswsilipq,‘aqdﬁdirecteq,h;sbgtygntggn to
sharp features in the spectra. The sharp pea&gwﬁgg,aggma;ies
since vibrational spectra of amorphous materials.generally
yield broad features which usually blend into a continuun.
1k¢he{broad¢n;ng Qﬁ\ﬁgatupes,i;»a,QQngquenqe of disopdeg and
: relaxation erbﬁeadeWP;Of Rgman gglggtipp rules.  $he gparp
peaks  therefore present =a contradiction; to this general
prescription. |

- Galeener’s analysis rgyealed that thg sharp_features
~arise from the vibrational moaes of Si0, rings of. various
sizes. The sharpness of the features can.be attribu?ed to
vibrational decoupling of the rings:f:om the‘su:rounding
. atoms, effectively isolating the ripg modes ﬁrbm the medium-

range and long-range disorder. Galeener showed that
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vibrational decoupling of the rings is achieved by a
cancellation of central forces with noncentral forces at the
silicon atoms. With the motions of the silicon atoms
canceled,’the oxygen breathing modes of the éio2 rings are
decoupled from the random network and result in the distinct
features in the Raman spectra. Other silicate glass
compositions display ring-mode decoupling as well, and
Galeener’s model remains as the best approach for these
materials.?®:18
Although nearly complete ring-mode decoupling will occur
only for materials of certain compositions, the use of ring
vibrational modes presents a fruitful approach for
analytically determining the vibrational characteristics of
amorphous materials. In particular, the use of various sized
rings as basic structural units for amorphous 2D materials&is
especially promiéing. As'ﬁentioned previously, a 2D-CRN can
be modeled as.a collection of variously-sized rings, with
ring statistics providing a method for characterizing the
random network. In contrast to amorphous silica, the ring
motions in an amorphous CRN material will, in general, be
coupled to the collective motions of the network. The
following sections will describe the analytical method I have

developed for determining the ring vibrational modes and for

incorporating ring-network coupling into the ring motions.
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Structural Model for
Embedded Ring Approach

A ring of atoms embedded in a 2D network can be regarded

as a separate molecular entity, and methods used for
determining molecular vibrations are directly amenable for
determining the ring motions. The coupling of the ring to
the network introduces the only modification required. For
example, a 6-membered carbon ring in amorphous carbon can be
described as a benzene ring embedded in a random network.
The hydrogen bonds of the benzene molecule are then modified
to represenf the ring-network coupling, which results in a
modification of the ring motions. The analogy has a good

physical basis, since benzene, graphite, and amorphous carbon

modeled as a 2D-CRN comprise the same type of carbon bonding.

(sp,) ahd carbon-carbon bond lengths (1.39 A for benzene,®
1.42 A for graphite,® and 1.46 A for amorphous carbon*).
For the dynamics of our amorphous carbon model, the
vibrational frequencies for 4-ﬂ 5-, 7-, and 8—-membered carbon
rings would be derived as well to account for the diverse
ring sizes in the network.

The structural model for the embedded ring approach is
constructed by cutting a circular hole into the random
network. The edge of the hole is assumed to be rigid. An n-
membered ring (n=4, 5, 6, 7, or 8) is then embedded in the

hole (Figure 12). The bonds joining the atoms in the ring

retain the normal force constants expected for carbon-carbon
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bonding in the material. The bonds joining the ring atoms to
the rigid wall, however, represent the coupling between the
ring and the network. By constraining the edge of the hole
to be rigid, the embedded ring approach atteﬁpts to account
for the effects of the network’s collective motions on the
ring by weighing an effective coupling.force constant. The
effective coupling force constant then is not the normal
atom-atom bond-stretching force constant, but a weighted
force constant modified to reflect the random network’s
influence on the ring. The motions of the rings are then
solved with the use of conventional techniques from classical
mechanics described in following sections. Frequencies for
the modes of oscillation for each n-membered ring are then
extracted.

Note that a different approach is possible to account
for the randonm network-rihg coupling effects. By replacing
the rigid wall of the hole with n peripheral atoms, the
collective motions of the network can then be condensed into
the n peripheral atoms by modifying their effective masses
(Figure 13). The ring atoms retain their normal masses, and
all of the force constants, including the coupling force
constant, are now just the normal carbon-carbon force
constants. The effective mass of the peripheral atoms would
account for the entire random network, and reflect the
network’s effect on the ring motions. Solving the motions

for an embedded 6-membered ring, for example, should be the
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same as solving the motions for a benzene molecule, with only
the hydrogen masses changed to effective masses and the
hydrogen-carbon bonds changed to carbon-carbon bonds.
Although'a promising avenue of investigatibn, the mass-
weighted, or effective mass coupling, embedded ring approach
is béyond.the scope of this thesis, which will confine itself
to the force-constant weighted approach.

The methods used to determine the ring modes of
vibration reflect the degree of approximation for the atomic
potentials. My research makes use of two potential models:
the central force model and the valence force model. For a
first-order approximation, a central force model is employed,
with only bond~-stretching force constants and appropriate
kinetic energy terms used in the calculations. The
calculations are simple and straight-forward, requiring only
the appliéation of the ,method. of small oscillations as
presented by Goldstein.”® The valence force model provides
a second-order approximation, incorporating not only bond-
stretching force constants, but also bond-angle-bending force
constants. Angular kinetic energy terms are also included,
and the number of internal coordinates required also
increases. The complexity of the valence force model
calculations necessitates the application of group theory.
The utiiity of group theory goes beyond that of managing the
calculations. It provides insights into thé most probable

modes of oscillation for the rings and shows the dependence
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of vibrational frequency on variations in bond length and
force constants.

The valence force model in this work employs only
nearest—ﬁeighbor interactions. Further refinements in the
method of molecular vibrations are possible with the use of
second and third nearest-neighbor interaction terms included
into the potential function. The embedded ring approach,
however, precludes the use of second and third nearest-
neighbor interaction terms by imposing a rigid "wall" between
the ring atoms and ﬁhe random network. The wall isolates the
ring atoms from many of their second and third nearest
neighbors in the network. Many of the other methods embloyed
by researchers studying vibrational dynamics of amorphous
materials do not approach this level of refinement; several
methods employ only a central force approximation.?
Thefefore, limiting the émbedded ring approach to a simple
valence force model with only nearest-neighbor interactions

presents a justifiable approximation for amorphous materials.

Central Force Model

Calculations for the central force model employed the
method of small oscillations as outlined by Goldstein.’®* The
potential energy function incorporated only two bond
stretching force constants, the atom-atom bond stretching
force constant and the atom-rigid wall coupling force

constant. Generalized coordinates for the atoms in the
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embedded ring assume the form

;505N
where d,; are the equilibrium atomic positions and =»; are
deviations of the generalized coordinates from equilibrium.
Expansion of the potential energy in a Taylor series about
the equilibrium positions (q,;) yields successive terms which
are functions of the deviations (»;). The small oscillation
approximation retains only the terms in the series which are
quadratic (»;»;), and the =,’s become new generalized
coordinates. The kinetic energy terms are already quadratic

functions of the velocities (%;%;).
The vibrational modes for the embedded ring are solved
by assuming the ring is a system of coupled, linear harmonic
oscillators. With our new generalized coordinates, the

g = Z t L — ‘/ .
( i jn J'T] j i jn 11‘] j)

Solution of Lagrange’s equation yields a set of linear,
homogeneous differential equations which are the equations of

motion:
Ti5f5+ V1M ;=0
The set of differential equations constitute an eigenvalue

equation with oscillatory solutions of the form
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n,=Ca;e ®*t
where C is a scaling factor and a; is the complex amplitude
of oscillation for each coordinate =»;. The frequencies (&)

for the vibrational modes can be solved by imposing the
condition that the determinant comprised of the elements
Vi~ 02T

must vanish. This determinant is the secular equation, and
solution of the determinant yields a polynomial equation, the
roots of which provide solutions for ® in terms of the
constant coefficients for the potential energy (V,;) and the
kinetic energy (Ty;).

Cartesian coordinates were selected for the central
force model approach, and are shown in Figure 14(a). Only
in-plane vibrational modes were sought. Therefore, each atom
was limited fo only two degrees of freedom and only the x and
Yy coordinates were necessary to describe the atom
displacements. Each atom was given a set of coordinates
(x,,y, for the first atom; x,,y, for the second atom; and so
on) since only the displacements from equilibrium needed to
be prescribed. .

Determinants from the eigenvalue condition were
constructed for 4-, 5-, 6-, 7-, and 8-membered embedded
rings. The constant coefficients for the kinetic energy

included only diagonal elements and were of the form
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Coordinate systems for central force model (a)

and valence force model (b).
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T,,=md
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where m is the mass of a carbon atom. The potential energy
coefficients included both k;, the bond stretching force
constant, and k,, the coupling force constant. The potential
energy coefficients include nondiagonal elements since bond
stretching between two atoms involves displacements of both

atoms.

Because of the two degrees of freedom for each atom, the

secular equation for an n-membered ring is a 2n x 2n

determinant. The x,;x; and y,y; elements in the secular
equations separated into two identical blocks. All x;Y;
elements were zero, indicating the absence of cross-products
between the x and y displacements. This separation of x and
y coordinates allows the secular eguation to be fac
two smaller n x n determinantal blocks.®° EFach n x n
determinant can then be solved separately. Since the x-
determinant and the y-determinant are identical, the secular
equation for an n-membered ring becomes an n x n determinant.

Reduction of the 2n x 2n determinant to an n x n
determinant introduces degeneracy into the eigenfrequency
solutions. The 2n independent motions for the system (the
embedded ring) arising from the two degrees of freedom for
each atom will be necessarily degenerate due to the
availability of only n eigenfrequencies. Further

degeneracies occur in the solution of the n x n determinants,
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reducing the number of eigenfrequencies for each n-membered
ring to less than n. The degeneracies exhibited by the
vibrational modes of the embedded ring can be attributed to
both the‘planar nature and the cyclical natﬁfe of the ring
configuration.

Table 1 displays the n x n determinants for the 4-, 5-,
6-, 7-, and 8-membered embedded rings. The elements for all
of the determinants are the same form(2k, + k, - &%*m, -k,, and
0), and each determihant assumes a similar tri-diagonal form.
Only the size (n) and placement of the elements varies
between .each determinant. The determinants were solved
analytically using Derive®, a mathematical analysis program
using symbolic algebra.®! Solutions were in the form of n*'-
order polynomials, with the polynomial roots providing
expressions for the frequencies & in terms of k;, k,, and nm.

The ring motions for each eigenfrequency define the mode
of oscillation, or vibrational species, associated with b.
Vibrational species were assigned to each eigenfrequency by
substituting ® back into the eigenvalue equation. The
amplitude coefficients were then determined for each atom in
the embedded ring. The amplitude coefficients supply the
relative displacement of each atom with respect to other
atoms in the ring. The ring motions are easily obtained from
the amplitudes of the relative displacements, and vibrational
species are assigned to each mode of oscillation by examining

the symmetry operations denoted by the displacements.
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Central force model matrices. The matrices

TABLE 1.

are the factored secular determinants from the

eigenvalue equation in cartesian coordinates.

4-membered ring

5-membered ring

b
b a b

a

0

6—membered ring

7-membered ring

b
b a b 0
0 b a b

a

0

0

8-membered ring

a =2k +k, - 0%

b = -k,
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Valence Force Model

Inclusion of bond-angle-bending forces into the embedded
ring approach introduces a higher level of approximation than
presented by the central force model, but atﬁthe expense of
quadrupling the complexity of the calculations. In addition
to the two translational coordinates which account for
translational displacements, two angular coordinates are now
also required for each atom in the embedded ring to account
for the bond angle bending. This increases the total number
of coordinates for the n-membered embedded ring system from
2n to 4n. Additionally, coordinate cross-product terms which
vanished in the central force model approach do not vanish in

the valence force model approach. Consequently, the secular

equation for an n-membered ring is now a 4n x 4n determinant,

and not the n x n determinant resulting from the ceéntral
force model. Finally, the kinetic energy matrix coefficients
will be different fer each n-membered ring since the bond
angles differ for 4-, 5-, 6-, 7-, and 8-membered rings.

The application of group theory and the normal
coordinate treatment to the embedded ring approach becomes
essential when a valence force model is adopted. By
approximating the configurations of the embedded rings with
regular polygonal shapes, full advantage can be taken of
symmetry elements and their corresponding symmetry
operations. The symmetry elements of a ring allows

classification of the ring to a molecular symmetry point



66
group. Use of the point group’s character table permits
determination of vibrational species, fundamental modes,
Raman active modes, and infrared active modes for "the
embedded fring.

The normal coordinate method utilizes the character
table further by transforming the 4n internal coordinates to
a set of symmetry, or normal, coordinates for each
vibrational species. The symmetry coordinates are then used
to establish a secular equation for each vibrational species.
Each secular equation is either a 2 x 2 or 4 X 4 determinant,
depending on the type of vibrational species (one, two, or
three-dimensional representations). Note that the normal

coordinate treatment factors the initial 4n x 4n secular

equation into smaller (2 x 2 or 4 x 4) secular edquations '

which are more readily solved.

The 4-, 5-, 6-, 7-, ;and 8-membered embedded rings were
configured by placing the atoins at the vertices of a square,
pentagon, hexagon, septagon, and octagon, respectively. The
respective point groups for the rings are Dy, Ds.;, Dens Dins
and Dg,, and were assigned by noting the number and type of
symmetry axes and symmetry planes for each ring. For
example, the 5-membered ring has one five-fold symmetry axis
(Cs), five two-fold symmetry axes (C,) perpendicular to Cs,
and a symmetry plane (o0,) also perpendicular to Cs. The C,
symmetry axes with the C; symmetry axis define an additional

set of five symmetry planes (o,) perpendicular to o¢,. The
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symmetry elements are completed with a rotation-reflection
axis (Ss), and constitute the Dg point group.

Each of the symmetry elements of a point group have
correspohding symmetry operations. Each poin'E group also has
a set of vibrational species (also called representations)
which ére possible for the given point group. A specific
atomic or molecular displacement occurs for a given
vibrational species under a given symmetry operation. The
character table of a point group tabulates these
displacements for each vibrational species and each symmetry
operation in the point group. By classifying the atomic
displacements for a given vibrational species with respect to
the symmetry operations, the character table facilitates
calculation of fundamental, Raman active, and infrared active
modes, and can be used to transform internal coordinates to
symmetry coordinates. '

Vibrational species for the embedded rings were obtained
from the character tables of their corresponding point
groups.®%:®® In-plane species were determined by noting the
character of the species under the o, symmetry operation. A
positive character denotes in-plane displacements while a
negative character denotes out-of-plane displacements.
Fundamental vibrations and Raman active fundamentals were
acquired with the use of selection rules applied to each
ring’s charactér table. Ferraro and Ziomek ** present the use

of selection rules with clarity, and is highly recommended to
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the reader with a desire to pursue group theory. Table 2
lists the in-plane vibrational species, fundamentals, and
Raman active fundamentals for the embedded rings.

Note that each atom has two degrees of fréedom, and each
embedded ring has 2n-3 in-plane vibrational degrees of
freedon. Two degrees of freedom are subtracted for
translation of the ring’s center of mass, and one degree of
freedom is subtracted for rigid rotation of the ring. This
leaves 2n-3 in-plane vibrational degrees of freedom, or 2n-3
in-plane fundamentals for each ring. Table 2 displays this
result, with five in-plane fundamentéls for the 4-membered
ring, seven in-plane fundamentals for the S5-membered ring,
nine in-plane fundamentals for the 6-membered ring, eleven
in- plane fundamentals for the 7-membered ring, and thirteen
in-plane fundamentals for the 8-membered ring.

The Raman active modes include the A,, or A, modes for
all of the rings. These are the symmetrical breathing modes,
and the displacements are similar for all five rings. The E,
and E,” Raman active modes also represent similar motions for
all five rings. The ring motions for these modes stretch or
elongate the ring along an in-plane symmetry axis (C,;), and
these modes will most 1likely be present in networks
experiencing longitudinal (compressional) oscillations with
planar wavefronts.

The E,, mode of the 6-membered ring was used as a basis

for determining a consistent set of force constants since it



TABLE 2. Embedded ring vibrational species:

In-plane, fundamental, and Raman active modes.
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4-Membered Ring

In-Plane Modes:
Fundamentals:
Raman Active Mo

5-Membered Ring

In-Plane Modes:

Fundamentals:

Algl Z"*Zgl Blgl BZgI Elu
Pin—plane = Alg + Blg + BZg + Elu

des: A,,, By, and B,

All 7 AZI ’ Ell 4 EZI

Pin—plane = All + El,i + 2E2'

Raman Active Modes: A, and E)’

6-Membered Ring

In-Plane Modes:

Fundamentals:

Algl AZgl Blul BZul Elul EZg
Fin-plane = Alg + Blu + BZu

+ Ejy + 2E5

-

Raman Active Modes: A;, and E,

7-Membered Ring

In-Plane Modes:

Fundamentals:

All 4 Az, 7 Ell 7 Ezl 7 ES,

Pin-plane = All + Ell + 2E21 + 2E31

Raman Active Modes: A, and E,’

8-Membered Ring

In-Plane Modes:

Fundamentals:

Algl A2gl Blgl BZgl Elul E3ul EZg

= Al + Blg + Bzg

r in-plane g

+ Ejy + 2E3, + 2Ey,

Raman Active Modes: A;, and E,;
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can be compared to the 1580 cm™® line in the Raman spectrum
of graphite. The coupling force constant is expected to be
mode-dependent, assuming different values for different types
of modes. A coupling force constant determined with the E,q
6-membered ring mode should only be applicable to E-type
modes. Therefore, only E-type modes for the 5— and 7-
membered rings were analyzed further. The A,,, B;,, and B,
modes for the 4-membered ring were also analyzed in addition
to the E,;, mode because of the similarity of the ring motions
to the E,, 6-membered ring mode. Similarly, the B,, and By
modes for the 8-membered ring were additionally examined
along with the E,,, E;, and E,, modes. Because of breakdownv
of the Raman selection rules in amorphous materials, ring
modes analyzed were not . limited to only Raman active modes.
Establishment of a coordinate system for the various
rings was the first step in calculating the frequencies for
the selected modes. The internal coordinates selected for
the valence force model were those used by Wilson et al.®%®
in their vibrational analysis of the benzene molecule, and
are displayed in Figure 14(b). The coordinates t and s are
the atom-atom bond distance displacement and the atom-rigid
wall bond distance displacement, respectively. The
coordinates « and B are not the standard bond angle
displacements A¢, and A¢,, but are rather the change in the
internal ring angle (a¢) and the angle between the internal

ring angle bisector and the atom-rigid wall bond (B).
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The potential energy matrix (f matrix) terms included
only three force constants: the bond-stretching force
constant (corresponding to the coordinate t), the coupling
force constant (corresponding to the coordinate s), and the
bond-angle-bending force constant (corresponding to the
coordinates a and 8). No interaction terms are included, and
the resulting f matrix is diagonal in form, even after the
transformation to symmetry coordinates.

Advanced methods of studying molecular vibrations
replace the kinetic energy matrix with the g matrix.S5°5°%
The g matrix is more amenable to solution of the secular
equation, and is related to the kinetic energy matrix by

2T=) G;D:P;
i35
where p; is the momentum conjugate to ¢;, the i*® internal
coordinate; p; is the momentum conjugate to gq;, the 3™
internal coordinate; the g;;’s are the g matrix elements; and
the summation is over both i and j. The g matrix elements
for the embedded rings were determined with the use of the
vector method described by Wilson et al.®® Atomic masses,
bond angles, and bond distances are used to construct the g
matrix elements. To use the vector method, each bond was
required to terminate at an atom with a given mass. A
hypothetical atom was therefore placed at the outer end of
the coupling bond since no atom existed there in the

structural model for the embedded ring. Since the coupling
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bond terminates at a rigid wall, the mass of the hypothetical
atom was taken to be infinite. (The infinite mass fixes the
end of the coupling bond to a stationary point.) This
presented no difficulty in the g matrix elements because only
the reciprocal of the masses appear. Some of the terms in
the g matrix elements consequently vanished.

Because of the nonstandard nature of the a« and 8
coordinates, the g matrix eiement tables given by Wilson et
al. could not be used to construct g matrix elements for the
embedded rings. Use of the tables yielded erroneous results.
The g matrix elements constructed for the 6-membered embedded
ring were compared with those calcul‘ated for benzene by
Wilson et al. to ensure proper implementation of the vector
method.

Symmetry coordinates for each vibrational species were
prepared by first transforining the internal coordinates under
the stmetry operations of each of the five point groups.
The characters in the character tables for each vibrational
species were then used to determine the correct combination
of transformed internal coordinates for each symmetry
coordinate. Finally, the symmetry «coordinates were
normalized.

The value of the symmetry coordinates lies in their
ability to transform the f and g matrices into factored
potential energy and kinetic energy matrices (the F and G

matrices). These factored matrices allow partitioning of the
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original 4n x 4n secular equation or determinant into smaller
2 ¥ 2 and 4 x 4 secular determinants, each corresponding to
a particular vibrational species.

The‘symmetry coordihates are related 66 the internal

coordinates by the transformation
Q; =; Usx

where Q; is the j* symmetry coordinate, g, is the k™ internal
coordinate, and the summation is over k. The U matrix can be
used to transform not only the internal coordinates, but also
the £ and g matrices as well. The F and G matrices are
obtained from the following transformations, given in matrix

notation:

F=UfU*

-

G=UgUt
U* is the transpose of U. Final solution for the vibrational
mode frequencies follows from solving the secular equation
|GF-T®2|=0 |

where I is the identity matrix.

The procedure outlined in the previous paragraphs was
performed for each of the selected vibrational species for
the five embedded rings. Transformation of the f matrix

yielded diagonal F matrices with the force constants as the

diagonal elements. Transformation of the g matrix yielded G
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matrices with elements comprised of linear combinations of g
matrix elements. Since the bond angles were already
calculated into the g matrix elements, only the atom mass m
and the bond lengths t and s remained as expficit variables
in the G matrix. Since amorphous carbon was used as the test
case for the embedded ring approach, m was given a value‘of
12 amu (1.992 x 102 g), the mass of the carbon atom. The
bond lengths s and t were just the nearest neighbor atom-atom
distance in amorphous carbon, which has been reported with
values of 1.46 A,* 1.48 A,% 1.49 A,*® and 1.43 A.4° A value
of 1.46 A was selected for s and t, and is intermediate in
the range of values reported.

The 2 x 2 and 4 x 4 secular determinants were solved
with the use of Derive®, a symbolic algebra program.®® The
roots of the resulting polynomials were also obtained using
Derive®, and provided frequencies for the vibrational modes
of the embedded rings. The polynomials had very large
coefficients which hampered solution even with a computer.
Since the units of measure for the coefficients were even
powers of Hz (Héz, Hz%, etc.), scaling the coefficients to
terahertz frequencies resolved this difficulty in solving for

the roots.
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CHAPTER V
RESULTS

Force Constant Models
for Carbon

Solution of both the central force model and valence
force model required selection of a set of force constants
which would approximate the sp, bonding forces in graphite
and a-C. Only the bond-stretching force constant was
necessary for the central force model. The valence force
model required an additional bond-angle-bending force
constant. Only nearest neighbor force constants weré
considered since interaction terms were neglected for both
models. Force constant fitting with the 1580 cm™ E,, mode in
graphite and analysis of network motions adjacent to the
embedded ring determined the coupling force constant for each
model.

The literature on the vibrational dynamics of a-C and

graphite present a wide range of values for the bond-

stretching and bond-angle-bending force constants. Table 3

lists the values reported by researchers in the field.
Values given by Beeman et al.*’, Al-Jishi and Dresselhaus,®®
Tuinstra and Koenig,®! Young and Koppel,® and Nicklow et al.’®
were determined by fitting dynamical models to spectral
features of graphite. Kesavasamy and Krishnamurthy?! cite an
empirical relationship between interatomic distances and

bonding forces for their value for the bond-stretching force
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TABLE 3. Force constant models for carbon. Values are
the nearest neighbor force constants in N/m
for graphite and sp,-bonded amorphous carbon.
Source Bond-Stretching Bond-Angle-Bending
Force Constant (f;) Force Constant (£f,)
Beeman et al.? 363 36
Nicklow et al.” 362 199
Al-Jishi and 313 267
Dresselhaus °°
Young and Koppel °° 436 36
Tuinstra and 432 25
Koenig 3¢
Kesavasamy and 459 *
Krishnamurthy
Average 394 113
Standard Deviation 51.6 101

*

No bond-angle-bending force constant given.
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constant: their method did not employ a bond-angle bending
force constant. Note that the values reported for the bond-
stretching force constant vary by more than 20% from the
average value of 394 N/m, and the values of Ehe bond-angle-
bending force constant span more than an order of magnitude.

A Dbond-stretching force cdnstant of 363 N/m was
initially selected for both the central force model and
valence force model. The success of Beeman et al. in
modeling spectral features of a-C was the primary reason for
the selection. Additionally, the value of 363 N/m lies close
to the value of 362 N/m given by Nicklow et al., and is also
intermediate in the range of high and low values reported
(313 N/m to 459 N/m).

With 363 N/m as the bond-stretching force constant,
calculation of the 1580 cm* E,, mode in graphite with the
central force model produéed a coupling force constant of 315
N/m. Use of these force constants with the central force
model constitutes central force model one (CFM1l), and mode
frequencies for all five rings were calculated with this

model.

The coupling force constant was assumed, on the basis of
physical intuition, to be positive and within an order of
magnitude of the bond-stretching force constant. Although
close in value to the bond-stretching force constant and
therefore an apparently realistic result, a coupling force

constant of 315 N/m may be too low to accurately represent
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the ring-network coupling for an E,, mode. In the 6-membered
ring E,, mode, the network atoms adjacent to the embedded ring
move in direct opposition to the ring atoms. Each network
atom movés with the same displacement butg in opposite
direction to the embedded ring atom it is coupled with. By
replacing the network atom with a rigid wall, the effect of
the opposing motions of the network atoms can be accommodated
by doubling the force constant of the coupling bond.

The above scenario is analogous to the problem of two
masses joined by a spring. The two mass—-spring systen,

Figure 15(a), oscillates with a frequency of

D=y 2K
m

and the two masses move in opposite directions. Replaceméht
of one of the masses with a rigid wall, Figure 15(b), results
in a system which oscillates at a frequency of

kl

O=a] —
m

where kX’ is the force constant of the spring in the new
system. To oscillate at the same frequency as the two mass-
spring system, the force constant k’ must be equal to 2k. In
the embedded ring system, Xk corresponds to k;, the bond-
stretching force constant, and k’ corresponds to k,, the
coupling force constant. Therefore, to accurately

accommodate the effect of the network motions on the embedded
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(a)

(b)

(c)

FIG. 15. Two mass-spring system (a), rigid wall-mass-
spring system (b), and embedded mass-spring
system (c) used to illustrate the coupling
force constant and loss of degeneracy in the

embedded ring system.
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ring, the coupling force constant must be approximately equal

to twice the bond-stretching force constant:
k,=2k,

By imposing the condition k, = 2k,, analysis of the 1580
cm?! E,, 6-membered ring mode determined the force constants
to be k; = 295 N/m and k, = 589 N/m. Use of these force
constants with the central force model constituted central
force model two (CFM2), and mode frequencies for all five
rings‘were calculated with this model. Note that a value of
295 N/m for the bond-stretching force constant is not
unreasonable, being only 6% off from the value of 313 N/m
reported by Al-Jishi and Dresselhaus.

Calculation of the 1580 cm™ E, mode‘in graphite with
the valence force model imposed an algebraic relationship
between the three forte constants. = This algebraic
relationship represented a boundary condition for the force
constants, and was used to determine a set of values for the
force constants consistent with a 1580 cm® E,, mode for an
embedded 6-membered ring. Use of any of the bond-angle-
bending force constants in Table 3 yielded unrealistic and
nonphysical values for either the bond-stretching force
constant or coupling force constant. A force constant value
was considered unrealistic if it exceeded 1000 N/m or was
negative. Establishing a bond-stretching force constant of

363 N/m narrowed the allowable range of the bond-angle-
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bending force constant to 80-110 N/m. By further setting the
coupling force constant at 726 N/m (that is, twice the bond-
stretching force constant), a bond-angle-bending force
constant.of 80 N/m was determined. ‘

Note that a value of 80 ﬁ/m for the bond-angle-bending
force constant lies intermediate in the range of wvalues
‘reported in Table 3. That the valence force model yielded a
reallstlc value for the bond—angle—bendlng force constant as
a flrst result was prom1s1ng.
| As a consequence of the 1580 cm’1 EZg mode analys1s, the
force constants for'\the Valence force model (VFM) were

determined to be

f, = 80 N/m

363 N/m

C
o
Il

Ly
[+]
Il

726 N/m

where f, is the bond-angle—bendlng force constant f, is the
bond—stretchlng force constant and f is the coupllng force

constant.

Central Force Model Resilts
Table 4 presents the résults of CFM1. All five sizes of
rings displayed a low frequency mode at 667 cm?,

corresponding to rigid ring translation (or translation of

the ring’s center of mass) within the hole. The rigid ring
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TABLE 4. Results of central force model one. Force
constants were k; = 363 N/m, Xk, = 315 N/m.
Frequencies are given in cm™® and modes
‘are in parentheses.

Ring Frequency

Size (n) A Modes B Modes E,; Modes E, Modes E; Modes

4 1213 1213 1580
(Alg) (Blgl (Elu)
BZg)
5 1074 1517
(All ) (EZI )
6 979 1408 1580
(Alg) (Blul (EZS)
BZu)
7 912 1303 1548
(&) (E,) (E;)
8 863 1482 1213 1580

(Alg)

(Blgl
BZg)

(Elu)

(Eau)
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translation frequency was omitted from Table 4 since it was
not a fundamental vibrational species.

The 'remaining’ results: of CFM1l, Table 4, represent
frequenciesdfor fundamental vibrational speciés/modes of the
five ring sizes. 'Degeneracy in frequency between different
modes occurs for the 4-membered ring (A;, By, and B,, modes),
6-membered ring (B,, and B,, modes), and 8-membered ring (B
and By, modes). The E,, mode of the 4-membered ring, E,, mode
of the 6-membered ring, and E;, mode of the Sfmembered ring
displgy'aqcideﬁtal degeneracy at 1580 cm™*. Modes that are
absent in the analysis are the E,’ mode for the S—memberea
ring, the EQ mode for the 6-membered ring, the E; mode for
the 7-membered ring, and the E,, mode for the 8-membered ring.
Their absence was not intentional since the secular
determinants were not factored by vibrational species, and
their absence can be attributed to either degeneracy with
other;Ejtype modes or to the coarseness of the potential
approximation uéed.

Table 5 presents the calculated frequencies for CFM2.
All five rings displayed a low frequency mode at 912 cm’?,
again corresponding to rigid ring translation (and therefore
not included in Table 5). The calculated frequencies for
CFM2 display the same degeneracies and absent modes as those
fbr CFM1. Note that the change in force constants results in
higher frequencies for the modes in CFM2 ( as compared to

CFM1) , except for the E,, mode of the 6-membered ring and the
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TABLE 5. Results of central force model two. Force
constants were k; = 295 N/m, k, = 589 N/m.
Frequencies are given in cm™' and modes
are in parentheses.

Ring Frequency
Size (n) | A Modes B Modes E, Modes E, Modes E,; Modes
4 1291 1291 1581
(Ayg) (Big, (Ey)
Bg)
5 1187 1530
(Ay") (E2")
6 1118 1443 - 1581
() (Byy, (Ezq)
Bau) |
7 1071 1361 1555
(a,") (E,") (E;")
8 1038 1502 1291 1581
(Agg) (Big, (E) (Esu)
Be)
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accidentally 'degenéfate modes for the 4- and 8-membered
rings. The differernce in frequency for each mode between the
two central force models is mére pronbunCéa"for low frequency
modes. Higher frequency modes display less variation with

the change in force constants.

Valence Force Madel Resulﬁs

In contrasﬁ to the central force model, the valence
force model prdduces neithef ‘accidental degeneracies nor
degenéracy between modes for a given ring. This loss of
degenéraéyf can ' be attributed to an improved potential
appro#imatidn fdr the VFM. TIn fact, implementation of the
VFM to the embedded ring system removes degeneracies that
woula.normally be presenf*fdrlppe(vibratignalAspecies. The
normaily singlyj degeneraﬁe épécies ‘53; 4Bu, and B, are
represented by 2 x 2 secularvdetermihants which yield a
- single, degenerate eigenfrequency. The doubly degenerate E-
type modes are represented by 4 x 4 secular determinants, and
normally yield tWOﬂdégenerate eigenfrequencies.

The A and B-type modes in the VFM resulted in secular
determinants with two_nondegéﬁeraté foots. The E;type modes
‘héd sgcular determinants with four nondegenerate roots. The
fask.;remained to eﬁplain énd acdommoaate this loss of
degeneracy. |

The loss of degeneracy for each of the vibrational modes

can be attributed to the embedding of an isolated ring into
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a network (or, alternatively, the effect of coupling an
isolated ring to the wall of a rigid hole). Again, we can
use the two mass-spring system as an analogy to explain this
loss of .degeneracy. An isolated two mass-;;pring system,
Figure 15(a), oscillates with a single frequency; its 2 x 2
secular‘ determinant is singly degenerate. The two mass-
spring system can be embedded by placing it between two rigid
walls, and by attaching each mass to a wall with a spring
having a force constant different from that of the spring
holding the two masses together. The resulting mass-spring-
wall system, Figure 15(c), gives rise to two modes of
oscillation, with each mode having a distinct frequency. 1In
analytical terms, the 2 x 2 secular determinant for the
system is no longer degenerate, and its solution presents m’:‘cwo
distinct roots from which the eigenfrequencies derive.
In exactly the same f~ashion, the vibrational modes of an
embedded ring lose their degeneracy due to the coupling of
the ring with the network. Since the loss of degeneracy can
be explained on a physical basis, the nondegenerate
eigenfrequencies may also have a physical basis. The
vibrational dynamics of polycyclic aromatic hydrocarbons
support this contention. The coupling of 6-membered carbon
rings to benzene increases the number of vibrational modes
and frequencies for the molecule. Such an effect can be
observed with triphenylene, which exhibits an inordinately

large number of E-type mode frequencies in comparison to
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benzene.”?

Although the increase in mode  frequencies. can be
attributed to an increase in " 'the number:. of atoms in the
molecule,vthe underlying symmetry of both’thé molecule and
the particular vibrational species limits the number of
possible vibrational species. In some cases, the loss of
degeneracy in a vibrational mode reflects the appearance of
‘new vibrational modes due to a lowering of symmetry or an
increase of the atomic basis for the molecule.

~If the embedded ring was part of a crystal lattice, such
as a 6-membered ring in graphite, it. can bé argued that
translational symmetry within the lattice would remove some
of the nondegenerate frequencies and restore degeneracy to
the vibrational modes.  An amorphous.material, however, lacks
the translational symmetry necessary to restore ‘degeneracy.
" We would then expect~the‘n;ndeéenErate‘modeJfrequencies to be
presént in the random network and to’ contribute to the
vibrational density of states. This provides a possible
explanation for the increase in the number of contributing
frequencies in the VDOS for amorphous materials. (From a
crystallographic viewpoint, an amorphous material can be said
to have a unit cell of infinite dimensions, and therefore the
“atomic basis for the unit cell would also be infinite. From
a molecular viewpoint, a covalently bonded amorphous material
- can be said to be a single molecule of “infinite size. From

either view, such a structure intuitively would give rise to
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a continuum of vibrational modes.) .
Table 6 tabulates the frequencies calculated with the
VFM for selected vibrational modes of the five embedded
rings. All of the secular determinants for fﬁe vibrational
modes were nondegenerate. However, not all of the
nondegenerate frequencies are given in Table 6 fof each mode.
The frequencies not presented were either very low (< 13 cm™)
or imaginary (negative root in the polynomial solution for
the secular determinant). All of the E-type modes had two
nondegenerate frequencies which were close to 0 cm?,
indicating that the secular determinants were nearly singl§
degenerate. The remaining two nondegenerate frequencies are
presented for each E-type mode.

Comparison of Force
Model Results

-

Results from CFM1l and CFM2 were cursorily compared in a
previous section of this chapter. As was noted, high
frequency modes were more insensitive to the change in force
constants than the low frequency modes. Except for the By,
B,, modes for the 8-membered ring and B,,, B,, modes for the 6-
membered ring, the high frequency modes are generally E-type
modes.

Table 7 compares selected mode frequencies for CFM1,
CFM2, and the VFM. Frequencies displayed for the VFM are the

highest nondegenerate frequency for each given mode. Two

observations can be extracted from Table 7. First, " in
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TABLE 6. Results of valence force model. Frequencies are
given in ecml. Force constants used were
f, = 80 N/m, f, = 363 N/m, and .f, = 726 N/m.
Modes are. in parentheses.
Ring . Frequency
Size (n) (Ay,) (B1g s Byg) (B, By) (EulE;) (ENIE;)
4 717 1390 702
1241 (Brg) 1550
(Bze)
5 7696 ' 1040
1475 1555
(E) (')
6 1241 950
(By) ‘ 1581
(EZg)
7 666 883 1250
1304 1529 1598
(Ey") (E;") (Es")
8 1546 648 835 1163
(B1g) 1243 1457 1601
1368 (Elu) ) (EZg) (EBu)
(BZg)
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TABLE 7. Comparison of selected modes for central force
nodel one (CFM1l), central force model two (CFM2),

and the valence force model (VFM). Frequencies

-

given in cm™.

Ring Size (n)

and Mode CFM1 CFM2 VFM
4-n Ay, 1213 1291 1241
4-n By, 1213 1291 1390
4-n B,, ‘ 1213 1291 1068.
4-n E, 1580 1581 1550
5-n E,’ 1517 1530 1555
6-n A, 979 1118 1241
7-n E,’ 1303 1361 1304
7-n E,’ 1548 1555 1529
8-n By, 1482 , 1502 1546
8-n By, 1482 1502 1368
8-n E, 1213 1291 1243

8-n Ea, 1580 1581 1601
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generdl, all of the frequencies show fair agreement between
the different force models for each mode, indicating that the
central force model approximation is fairly good when
compared. to the valence force model: HSecond, mode
frequencies for the E-type modes tend to be more consistent
between models than mode frequencies for A- and B-type modes.

The second result may be due to the generally higher
frequencies Qf the E-type modes. However, the frequencies of
the A- and B—ffpe modes for the 4- and 8-membered rings are
higher than the frequency of the 8-membered ring E,, mode,
contradicting this assessment; A more likely explanation is
that the E—tybe modes are mofe accurately represented With a
coupling force constant having a value between the bond-
stretching force constant and*fWice the bond-stretcﬁing force
constant (k,; < k, < 2k,, or f, < £, < 2£,).

A cursofy examinatioﬁ ef ring mode motions with feepect
to network atom motions concludes that A;, and B;,, modes are
more accurateif modeled Witﬁ‘the above value range for the
’coupling foree constant thaﬁ’the B,, mode. Comparison between
the different force models for the A,,, B,,, and B,, modes of

the 4-membered ring and the -Blg and B,, modes of the 8-

membered ring support this conclusion.
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CHAPTER IV

DISCUSSION

Application to Amorphous Carbon

The two-dimensional and covalent aspects of sp, bonding
in graphite and graphitic amorphous carbon have led
researchers to postulate and look for the existence of 2D
continuous random networks in a-C. The presence of a small
percentage of sp, bonds in a-C (0-10%) would result only in
warping and distorting the 2D layers. Establishing the
presence of 5- and 7-membered rings (and possibly 4- and 8=
membered rings as well) at significant levels (>10%) in the
structure of a-C would evidence an absence of local,
graphitelike hexagonal structure. Researchers have attempted
this with various modeling  approaches %48  and
expefiments,‘L“L“ and with particular emphasis on vibrational
spectra of a-C.

Amorphous carbon was chosen as an initial application to
test the accuracy of the embedded ring approach because of
amorphous carbon’s postulated CRN structure and local 2D
characteristics. Additionally, the problem of the atomic
structure of a-C has yet to be definitively resolved.
Success of the embedded ring approach would provide
additional évidence in support of a CRN model for a-C.

Success of any dynamical model for ‘a material is

measured by its ability to predict spectral features in the
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VDbS, Raman, or infrared spectra of the material. For a-C,
the Raman spectrum is’ more accessible than the VDOS or
infrared spectra because it is most easily acquired (as
compared'to, for example, inelastic neutron,scattering). The
Raman spectrum also provides distinguishing spectral features
not found in the 1nfrared spectrum. The results of the
embedded rlng approach were therefore compared to a Raman
spectrum of a-C. The comparlsons favor a CRN model for a-C
by 1ndlcat1ng the presence of 5- and 7—membered ring mode
frequen01es in the Raman spectrum,bw1th the 5- and 7—membered
rlngs compr1s1ng a 1arge portlon of the r1ng statistics in
comparison to 6-membered rings. The presence of a large
percentage of 4- and 8—membered rlngs in the CRN can be

1

excluded however, as a result of the comparlsons.

.Discrete ILine Spectra -

The mode frequencies calculated for a-C using the three
force models (CFM1, CFM2, and.VFM) fall Withithhe region
consistent with internal meode frequencies for crystalline and
amorphous solids (0-2000 cm'). Figure 16 displays discrete
line: spectra of the mode frequencies calculated with CFM1
(Figure 16[a]), CFM2 (Figure- 16[b]), and the VFM (Figure
16{c]) which are tabulated in Tables 4, 5, and 6. Note the
predominance of E-type mode‘frequencies in the 1000-1600 cm™
region, a region coincident with the dominant spectral

.feature in Raman spectra of a-C (see Figure:'9{[c]). Since the
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FIG. 16. Discrete line spectra of embedded ring
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frequencies for (a) central force model one

(CFM1),

{b) central force model two (CFM2),

and (c) the valence force model (VFM).
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VFM uses an improved approximation to the potential in
comparison to the central forde models, mode frequencies
calculated With the VFM were singled out for comparison
studies with actualAspectra. Only theIhighest,”nondegenerate
frequency for each mode was used because of their
correspondence té CFM-generated frequencies, and because the
highest frequencies resided in the 1000-1600 cm! region.
Because of the selection of the coupling force constant,
E-type mode frequencies were taken as having the most
accurate values, and were therefore used for comparison with
the Raman spéctrﬂm*of'a-c. As previously discussed in
Chapter V, the E-type mode ffequencies are more consistent
between the three force models used than the A- and B-type
mode frequencies. This consistency 1is attributed to
assigning values to the coupling force constant which most
accurately represent network motions congruent to E-type ring
mode motions. Note that the é-membered ring A; mode
frequency calculated with the VFM (1241 cm™?) deviates 10%
from the measuréd value (1360 cml). Calculations of the
A;, mode freQuency with CFM1 and CFM2 show even dgreater
deviation. Finally, analysis of network atom-ring atom
motions for the B, mode disagree with the selected value for
the coupling'force constanf;_getwork—ring mbtioné for a B,
“ mode for a 4- or 8—membered.ring‘wouid yield a coupling force
constant with a value significantlf less than that of the

bond-stretching force constant.



96

Theoretical Spectra with
Gaussian Peak Profiles

The Raman spectrum of amorphous carbon (Figure 9(c])
displays few maxima, and most closely resembles a single
broad, asymmetrical peak. However, the asymmetry of the a-C
peak is incongruous with the Lorentzian and gaussian profiles
typically exhibited by Raman lines. A method for analyzing
the Raman spectrum of a-C is suggested from Raman spectral
studies of water- and fluorine-bearing silica glasses.’?
Raman spectra of the silica glasses displayed broad,
asymmetrical spectral features. The spectral features were
deconvoluted into groups of overlapping Lorentzian or
gaussian peaks. The fit of deconvoluted spectra with
experimental spectra were compared with a chi-squared error
analysis and a plot of the residuals. The error analysis
determined that the experimental spectra were modeled best
with gaussian peak profiles.

Although suggestive of a continuum from 1000 to 1600 cm™*
with clustering of E-type modes near the maximum of the a-C
peak, the discrete line spectrum of VFM mode frequencies
cannot be used solely to explain the Raman spectrum of a-C.
Rather, in a vein similar to deconvolution of amorphous
silica spectra, the calculated VFM mode frequencies were
broadened with gaussian peaks and convoluted into theoretical
spectra. The theoretical spectra were then compared with the

experimental Raman spectrum of a-C.
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Theoretical spectra were obtained from the VFM mode
frequencies with the use of MathCAD®, a numerical analysis
program.’? Gaussian peak proflles were selected for
convolutlon based on the research with amorphous silica
spectra. Note that, as an analogy, gauss1an profiles
typlcally reflect 1nhomogeneous broadenlng in stlmulated
emlss:Lons from laser materlals (also thermal broadenlng in
- gas lasers), whereas Lorentz:.an proflles are a55001ated w1th
homogeneous broadenlng (such as 1ntr1ns:.c llfetlme broadenlng
?due to a metastable state) ) Structural dlsorder in a laser
materlal suchl as 1n a Nd-glass laser, results in a 1aser
Hemlssn.on mlth a gauss1an spectral shape. |

Integrated peak 1nten51t1es were assumed to be dlrectly

o7

proportlonal to the rlng statlstlcs. 'I‘hat 1s, the 1ntegrated

‘‘‘‘‘‘‘‘‘

-peak 1nten51ty for each n-membered ring mode frequency
corresponded to the percentage of n—membered rlngs in the
‘ :CRN Integrated peak 1ntens:.ty was chosen 1nstead of peak
helght to be proportlonal to the rlng statlstlcs 51nce a
single gauss1an peak represents a pseudo den51ty-of states
for a s1ngle Vlbratlonal mode. (The peak can be said to
comprise a dlstribution of frequencies about the mode’s
center freguency ) | S |

Model ring statlstlcs were taken from two a-C models by
‘Beeman et al.* The two Beeman models were graphltlc in

nature, having no sp, bonded atoms in one model and 9.1% sp;

bonded atoms in the other. Both random network models
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contained significant percentages of 5- and 7-membered rings,
but no 4- and 8-membered rings.

The gaussian peak positions were fixed in the numerical
analysis fo the VFM mode frequencies. The variables were the
number and type of modes used, the standard deviation (o) of
the gaussian peak widths (noting that the fﬁll width at half
maximum FWHM = 20[21n2]*), and the ring statistics. A chi-
squared statistical analysis provided quantitative comparison
between the different fits. To perform the chi-squared
analysis, Raman data from the experimental a-C spectrum
(Figure 9({c]) were tabulated and entered into the convolutioﬁ
program. A slightly sloping, linear background, most likely
arising from a weak fluorescence in the sample, was
subtracted from the Raman data. The theoretical spectrum was
scaled to the experimentql spectrum with the use of either
the total integrated peak intensities or the peak maxima.

In accord with the approach of Beeman et al.,
vibrational modes for 5-, 6-, and 7-membered rings were
emphasized in the spectral fits due to the expected
predominance of these rings in the structure of a-C. Also,
following a previous argument presented in this section, the
spectral fits were modeled with E-type modes because of their
presence in the 1000-1600 cm™® region. The Raman active E,’
and E,, modes were additionally included in every spectral fit

since the fits were modeling the Raman spectrum of a-C.
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Peak widths were selected and varied to provide the best
fit for the given ring statistics and mode frequencies for
each spectral fit. -The peak widths were initially expected
to exceéd those found - in. Raman . spectra <;f . water- and
fluorihe-bearing silica glasses (0=20~50. cm™), and were given
in most fits an init’sial width of 0=100 cm™*. Varying the ring
-statistics and type of vibrational modes present, both before
and after adjusting the peak widths, provided an iterative
approach to achieving the best spectral fits.

The: A,, mode for the 6+<membered ring was included in some
of the spectral fits on the basis of its occurrence in Ramax;
spectra of nanocrystalline graphite. The S5-membered ring E,’
mode and 7-membered ring E," and E; modes were also:used in
the spectral fits. Inclusion of these modes. ihto: the
theoretical spectra is . justified on the grounds that
structural diso¥der in amorphous carbon .results in a
breakdown of the Raman selection rules.!0:3%:.3173% The frequency
for the 6-membered ring A,, -mode was not taken from the
embedded ring calculations, however, for two reasons. First,
-the coupling force constant in the VFM was chosen to model E-
type ring mode motions, and the results of Table 7 support
this contention. Second, the actual frequency for the A,
mode (1360 cm™!) is readily obtained from the experimental
Raman spectrum of nanocrystalline graphite. To forego use of
this experimentally determined frequency would reflect a

disregard for a realistic model of the Raman spectrum of a-C.



100

Table 8 lists a representative sample of the spectral
fits performed. The spectral fits are listed in descending
order with respect to their chi-squared error, indicating an
ascendinq order for the quality of the fit ﬁ(a lower chi-
squared error corresponds to a better fit to the experimental
spectrum) . Four of the spectral fits incorpdrated Beeman’s
ring statistical models C1120 (spectral fits two and four)
and C340 (spectral fits one and three), and were modeled with
only E-type modes from 5-, 6-, and 7-membered rings. These
fits yielded large chi-squared values (x*>350).

Two of the spectral fits (seven and eight) deviate
substantially from a physically realistic model by
incorporating only 5- and 7-membered rings into the ring
statistics. They were included -in Table 8 to show that
spectral fits with %% values greater than 116 may not
represent physically meaningful results. Four spectral fits
in Table 8 (nine to twelve) produced chi-squared errors of
%?<100. Note that the best spectral fits (ten, eleven, and
twelve) incorporate the 6-membered ring A;, mode, and give
chi-squared errors of y%%<77.

Figures 17, 18, and 19 are theoretical spectra from
spectral fits nine, ten, and twelve, respectively. The
theoretical spectrum in Figure 17 (a) incorporates only E-type
modes for 5-, 6-, and 7-membered rings (5- and ‘7—membered
ring E, and E,’ modes and 6-membered ring E,, mode). Peak

widths which yielded the best fit (¥%=100) for this five-mode
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Representative spectral fits to the experimental

Raman spectrum of amorphous carbon, listed in

descending chi-squared error (x?) order.

Spectral Ring Statistics in  Modes and o Chi;Sqﬁared

Fit No.

% No. of n-size Rings Peak Widths Error

(0, 21, 59, 20, O) 5-n E,’

(4-n,5-n,6-n,7-n,8-n) in cm? (x?)

(0, 11, 65; 24, 0 5-n E,’; 0=100 1031
2

6-n E,; 0=100
7-n E,’ ; 0=100
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= 90
‘90
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TABLE 8. Continued.

Spectral Ring Statistics in Modes and o Chi-Squared
Fit No. % No. of n-size Rings Peak Widths Error
(4-n,5-n,6-n,7-n,8-n) in cm - (x®)

0=100 136
0=100
0=100
g=100
0=100

7 (0, 50, 0, 50, 0) 5-n E,’

\l\l\llUl
a ]
=
H\

e N me W e

=100 116
=100

=100

=100

=100 -

\1\)\.301
o
=
=
~
™y ™4 ™M Wmp Wy

9 (0, 33, 33, 33, 0) 5-n E,"; 0=130 106

5 ; 0=130
6-n E;;; 0= 65
7-n E;”; 0=130
7 H

-n E,’; 0=130
10 (0, 0, 100, 0, 0) 6-n A,,; 0=175 77
6-n E,; o= 75
11 (10, 20, 40, 20, 10) 4-n E,,; o= 90 36
5-n E,’ ; o= 90
6-n A,,; 0=170
6-n E;,; o= 95
7/

7-n E," ; o= 90
8-n E,,; 0= 90

12 (0, 25, 50, 25, 0) 5-n E,” ; o= 90 35
6-n A;,; 0=170

6-n E,,; o= 95

7
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FIG. 17. Theoretical spectrum (a) and deconvoluted peaks
(b) for E-type mode frequencies of 5-, 6-, and
7-membered rings. Theoretical spectrum (solid

line) overlays experimental spectrum (t). Model

was based on an equal distribution of ring sizes.
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FIG. 18. Theoretical spectrum (a) and deconvoluted peaks

(b) for 6-membered ring A,, and E,, mode
frequencies. Theoretical spectrum (solid line)

overlays experimental spectrum (t)..
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(b) for E,” modes. of 5- and 7-membered rings, and
Ay, and E,, modes of 6-membered ring. Ring
statistics were 0.25, 0.50, and 0.25 for 5-, 6-,

and 7-membered rings, respectively.
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spectrum were ¢=130 cm! for the 5- and 7-membered ring modes
and ¢=65 cm' for the 6-membered ring E,, mode. The ring
statistics for this five-mode model have equal numbers (33%%
each) of 5-, 6-, and 7-membered rings. Figure“17(b) displays
the deconvoluted peaks for the theoretical spectrum.

Figure 18 presents a theoretical spectrum (a) and its
deconvoluted constituent peaks (b) for a model with only one
ring size in its distribution--the 6-membered ring--and with
only two modes--the A,, mode and E,, mode. The peak widths
were ¢ = 175 cm® for the A;, mode (1360 cm’) and ¢ = 75 cm*
for the E,, mode (1581 cm!). The integrated peak intensit&
for the A;, mode was set at twice that of the E,, mode, and
can be justified by referring to spectra of nanocrystalline
graphite where the broader A,, peak is equal to or greater in
height than the E,, peak.'®%™® fThe above intensities and peak
widths resulted in a fit with an error of only x% = 77.

Visual inspection of the theoretical spectrum in Figure
18 reveals two major discrepancies with the experimental
spectrum of amorphous carbon:

1. A shoulder near 1360 cm™* in the theoretical
spectrum is absent in the experimental spectrum.
Consequently, the theoretical spectrum is more
intense than the experimental spectrum at
frequencies below 1360 cm™? and less intense at

frequencies above 1360 cm™.
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2. The maximum of the theoretical spectrum is 10-

20 cm? higher in frequency than the maximum for

the experimental spectrum. Consequently, the

theoretical spectrum is more intens; than the
experimental spectrum at frequencies above 1575 cm™

and less intense at frequencies below 1575 cm™.
Varying the integrated peak intensities and peak widths of
the A;; and E,, 6-membered ring modes cannot remove these
discrepancies. Only inclusion of mode frequencies between
1360 cm! and 1580 cm! can eliminate the low-frequency
shoulder and shift the maximum to lower frequencies. -
A natural place to look for these mid-frequency modes
(between 1360 cm™* and 1580 cm™?) would be other 6-membered
ring modes. Remember, however, that the embedded ring
approach assumes that a_ 6-membered ring embedded into a
graphite hexagonal 1lattice should yield the same mode
frequencies as found in graphite. No normal mode frequencies
between 1360 cm! and 1580 cm™' are observed in graphite,
including both in-plane and out-of-plane modes.® The mode
closest to the A,, and E,, mode frequencies--the infrared
active, in-plane E,, mode--has a frequency of 1587 cm?,
slightly higher than the Ezg. mode. We are therefore forced
to resort to smaller (4- and 5-membered) and/or larger (7-
and 8-membered) sized rings to obtain mid-frequency modes.
Figure 19(a) and 19(b) show the theoretical spectrum of

a model incorporating the Raman-active E,’ modes of the 5-
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and 7-membered embedded rings along with the A,;, and E,, modes
of the 6-membered ring. Frequencies for the E,’ modes were
calculated with the valence force model. The ring statistics
were 25%v5-membéred rings, 50% 6-membered rings, and 25% 7-
membered rings, and provided the best fit for the spectrum.
The 6-membered ring A;, mode was again taken to have twice the
- integrated peak intensity of the 6-mémbered ring E,, mode.
Peak widths which provided the best fit were o, = 90 cm! (E,’
nodes of 5- and 7-membered rings), o, = 170 cm™ (A, mode of
‘6-membered ring),; and d; = 95 dm'l“(ﬁ28 mode of 6£ﬁémbere§
ring). |

The theoretical spectrum in Figure 19, with an error of
only %% = 35, gives the best fit out of all of the models ran
on the convolution program. Compared with the theoretical
spectrum in Figure 18, the inclusion of the E,’ modes from 5-
and" 7-membered rings ‘along with the 6-membered ring A,, and
E,, Modes reduces the chi-squared error by a factor of 2.2,
and eliminates the discrépancies arising from the 1366 cm™?
shoulder and the frequency shift of the maximum. Note that
the peak widths for the 5- and 7-membered ring E,’ modes (90
cn?) are close to the peak width of the 6é-membered ring E,,
mode (95 cml), and that the peak widths forfalllthree modes
are less than twice the maximum peak widths (50 cm) reported

for silica glasses.’?
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The ring statistics for the theoretical spectrum in
Figure 19 are also physically reasonable. As a comparison,
Beeman’s C1120 model for a-C with no sp; bonding contained
21% 5—meﬁ1bered rings, 59% 6-membered rings, and 20% 7-
membered rings. Note that approximately equal proportions of
5- and 7-membered rings are required for a 2D-CRN to prevent
excessive warpage or curvature in the network, or to prevent
the structure from curling into a large spheroidal molecule.
Finally, the most probable 5- and 7-membered ring modes to
appear in the Raman spectrum of a-C would be the Raman active
E,”” modes. -
It can be concluded from the improvement in the fitting
of the theoretical spectrum to‘ the experimental spectrum
(Table 8, spectral fit twelve) that a-C contains a
substantial number of bo?h 5- and 7-membered rings. The
fitting results indicate that only about half of the rings in
a-C are 6-membered. Only a CRN could accommodate such a
large percentage of 5- and 7-membered rings. Since five-fold
and seven-fold symmetries are incompatible with 2D
periodicity (as demonstrated with 2D tilings of polygons) a
continuous network comprising a large proportion of 5- and 7-
membered rings is necessarily aperiodic and thus structurally
random. 2®
Figure 20 displays a triangle raft model (a) and ring
statistics (b) for a structural model of a-C corresponding to

Figure 19 (spectral fit twelve), and is the structural model
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(a)

Ring Size | 4 5 6 7 8 9

“FIG. 20. Triangle raft model (a) and ring statistics
(b) for the structure of amorphous carbon

predicted by the embedded ring approach.
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for graphitic a-C predicted by the embedded ring approach.
Note that the network’s structure 1is aperiodic, and
represents a 2D-CRN with only 5-, 6-, and 7-membered rings.

The 4-membered ring E,, mode and 8—member;d ring E,, mode
were incorporated into the theoretical spectrum of Figure 19
to assess the effect of these ring modes on the spectral fit.
The lack of improvement in the spectral fit (Table 38,
spectral fit eleven) can be taken to reflect an absence of 4-
and 8-membered ring modes in the Raman spectrum of a-C. It
can therefore be concluded that 4- and 8-membered rings do
not significantly contribute to the structure of a-C. This
is a physically realistic result since 4- and 8-membered
rings are not expectéd in large concentration in a-C due to
the increased bond-angle energy required to form these rings.
Additionally, Beeman et al.*’ did not include 4- and 8-
membered rings into their model ring statistics, again due to
the increased bond-angle energy for these rings.

Bond Angle Distribution
and Peak Widths

Because of the inability to tile a 2D lattice with
perfect pentagons, hexagons, and septagons (except by curling
the 2D lattice into a third dimension, as is found for 5- and
6-membered rings in the fullerenes 2*?%), many of the rings
will deviate from their ideal polygonal shape. These
deviations will create a distribution of bond angles (as

opposed to a single, ideal bond angle) for each class (size
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n) of rings. Bond-afiglé fliuctuations in amorphous silicon
and gérmanium induce broadenifg of bands in their Raman
spectra, and the bandwidths provide a means to ‘measure the
bondsangi‘e distribution.’® The -effect ©of t‘iiisﬁ“bond—angle
distribution on the vibrational modes could be analyzed with
the VFM.

The g-matrix elements are '‘a function of bond angle.
Replacing the idealized, single-valued bond angles in the g-
matrix elements with a distribution of bond angles would
result in a distribution of eigenfrequencies calculated from
the secular determinant. Each vibrational species would then
exhibit a distribution of mode frequencies instead' of an
ideal, single-valued, delta-function mode frequency. The
distribution would most 1likely bé gaussian due to the
inhomogeneous nature of the bond-angle disorder. The average
or mean for the bord-angle distribution would most likely lie
near the. values for the idealized bond angles. Therefore,
the gaussian frequency distribution Would be centered at or
near the idealized mode fregquency. |

From' the foregoing argument, the rather large peak
widths of the gaussian peaks used to produce the theoretical
spectrum in Figure 19 can now be explained by the extreme
distortion of 5-, 6-, and 7-membered rings in a 2D-CRN. The
narrower peak widths exhibited by silica can be attributed to
either ring~-network decoupling of the oxygen 'breathing modes,

or to a narrower distribution of bond angles due to the
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presence of medium-range order.*7s

A third explanation is that since silica glasses are 3D
networks, n-membered rings are accommodated into the network
with 1ess'bond-ang1e distortion than they wouia have in a 2D
network. The extra third dimension provides an added degree
of freedom for the configuration of silica tetrahedra and the
rings they form. The decrease 1in bond-angle distortion
results in a narrower distribution of bond angles, and
consequently narrower Raman peaks for the 3D silica networks
as compared to the 2D a-C networks.

Although a bond-length distribution also introduces band
broadening, only a narrow bond-length distribution is

observed in a-C for nearest neighbor atoms. (The variations

in bond length fit a gaussian distribution, and were measured - -

with the use of radial distribution functions obtained from
neutron diffraction.**)

The improved theoretical spectrum fit in Figure 19
provides evidence supporting both the wvalidity of the
embedded ring approach and a CRN structural model for a-cC.
The ring statistics favor the presence of 5- and 7-membered
rings at significant 1levels in a-C. Convolutions
incorporating 4- and 8-membered ring modes failed to produce
theoretical spectra with chi-squared errors less than those
reported. The large widths of the gaussian peaks for the 5-,
6~, and 7-membered rings most 1likely arise from an

inhomogeneous distribution of bond angles within the rings.
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The source of the peak broadening is directly traceable in
the eémbedded ring approach, suggesting a method both
quantitative and analytical for determining bond-angle
diSOrder'in\an amorphous ‘solid.with the use‘gf vibrational

spectra.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

Several analytical and numerical methods are used to
determine the vibrational dynamics of amorphous materials.
However, there exists no generalized analytical method which
can calculate the vibrational density of states for an
amorphous material. Although not a generalized method, the
embedded ring approach has been developed to address this

deficiency. The embedded ring approach models the

vibrational dynamics for amorphous 2D materials, making it-

applicable to a wide range of materials with scientific and
technological interest.

Inherent in the use of the embedded ring approach is the
selection of an appfopriate structural model for amorphous 2D
materials. Covalent amdrphous materials form disordered
structures known as continuous random networks (CRN’s). Two-
dimensional CRN’s are modeled with the use of Zachariasen
schematics and triangle rafts. Triangle raft models are
appealing for their ease of construction and the ability to
obtain the ring statistics from the modeled structure. The
emphasis on ring structures in triangle raft models make them
especially useful in the application of the embedded ring
approach. By assuming the vibrational mode intensities for
various sized rings in a CRN are proportional to the
distribution of ring sizes, the embedded ring approach can

produce theoretical spectra which can be used to determine
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the ring statistics for a given material.

Amorphous(carbon (a-C) was used as a test case for the
embedded r1ng approach. The planar, three-fold coordination
of sp, bonds in a-Cc is thought to be condu01ve to the
formation of 2D—CRN structures. Ev1dence exists to support
this model, but}the problems tﬁf graphitelike, hexagonal
ordering on a fine scale (~ 10 A) and thebeffect of four-
fold, tetrahedrally-coordinated sp; bonds on the structure is
stilliah open‘questloh. | | . |

A preface to the embedded rlng approach was the
examlnatlon of the vibrational dynamlcs of polycycllc
aromatic hydrocarbons (PAH’s). The vibrational modes of an
isolated molecularp ring structure; such as benzene, are
uodified bj the addition of other rings in PAH molecules.
The changes‘ih'the vibrat}onal modes for a specific ring can
be attributed to coupling of the ring motions to the motions
dof the surroundlng structure. The effects of coupllng were
examlned in a systematlc fashlon by analy21ng the shlft in a
spe01f1c mode frequency for successively larger PAH
‘molecules. A conclusion of this work was that the:coupling
between an individual'ring ahd the surrouhding molecular
structure changes llttle for:molecules comprlsed.of more than
three rings. Thus, complete rlng-network coupllng is
achleved with relatlvely small rlng assemblages

The‘ embedded ring approach is 51m11ar to other

analytlcal. methods because of its empha51s on the 1local
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structure in amorphous materials. The local structural units
for the embedded ring approach are planar 4-, 5-, 6-, 7-, and
8-membered rings. The rings are treated as molecules
embedded into a rigid hole in a 2D network. Méthods for the
study of molecular dynamics are then employed to determine
the vibrational modes. ©Each ring atom was coupled to the
wall of the hole with a bond (spring) having an effective
force constant differing from the normal bond-stretching
force constant. This effective coupling force constant
models the effect of the embracive network on the ring’s
vibrational modes. The vibrational modes for the ring were
then determined with the small oscillation approximation.
The potentials were approximated with either a central force
model (bond-stretching and coupling force constants only) or
the valence force model (bond-stretching, bond-angle-bending,
and coupling force constalzlts) .

Central force model calculations were performed with the
method of small oscillations. The valence force model,
however, also required the use of group theory to solve for
the vibrational mode frequencies. By configuring the
vequilibrium positions of the rings into the shapes of regular
(ideal) polygons, the in-plane vibrational modes for the
rings were solved with the use of their symmetry point groups
and the normal coordinate treatment.

Results for two central force models and the valence

force model were compared. In comparison to the wvalence
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force model, the <central force models were good
approximations, but produced too' many ' degenerate mode
frequencies. ' On the other hand, loss of degeneracy was a
problem fdr the valence force model. The los*is‘r of degeneracy
arises from the coupling of the isolated ring modes to the
network (i.e., the coupling of the embedded ring to the wall
of the rigid hole).

The Raman spectrum of a-C provided experimental data for
testing the validity of the embedded ring approach and the
CRN model for a-=C. Calculated mode frequencies were compared
'to the a-C spectrum by constructing theoretical spectra. The
vibrational modes were assumed to have gaussian profiles with
integrated peak intensities directly proportional to the ring
statistics. convolution of the modes 'produced* the
theoretical spectra. The number of modes, peak widths, and
ring statistics were varied to produce the best fit to the
data.

The theoretical spectrum providing the best fit to the
Raman spectrum of a-C included only the 5- and 7-méembered
ring E,/ mode frequencies and the 6-membered ring A,, and E,
mode frequencies. The E,, and Ay, mode frequencies were
obtained from published Raman spectra of graphite and
‘nanocrystalline graphite. Fréquencies for the 5=’ and 7-
membered ring E,’ modes were ana’IyticallY calculated with the
use of the embedded ring approach and the valence force

model. Although the Raman spectrum of a—C can be approximated
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with solely the é-membered ring E,, and A,, modes, the
incorporation of the 5- and 7-membered ring E,” modes into
the theoretical spectrum substantially improved the fitting.

Thevring statistics corresponding to th; best fit are
realistic, with 25% 5-membered rings, 50% 6-membered rings,
and 25% 7-membered rings. The results suggest that a-C has
a CRN structure, with 5- and 7-membéred rings comprising a
significant percentage of the total number of rings.

The embedded ring approach uses simple, first-principle,
classical theory to model the vibrational dynamics of 2D
amorphous materials. The initial success of the embeddeé
ring approach in its application to a-C demonstrates the
viability of the approach. Further work, however, is
required to develop and establish the embedded ring approachhg
as a powerful theoreticalymethod.

The application of the embedded ring approach to a-C can
be expanded to include modeled fits of theoretical spectra to
infrared spectra, which display different selection rules,
and to inelastic neutron spectra, which provide the VDOS due
to a complete absence of selection rules. The embedded ring
approach could also be applied to the vibrational dynamics of
the buckminsterfullerenes %77 or large PAH molecules, such as
hexabenzocoronene. More research should be conducted on the
asymptotic trend of vibrational mode frequencies to graphite

mode frequencies for increasingly larger PAH molecules.
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The embedded ring approach could also be extended to
covalent 3D amorphous materials by examining the vibrational
dynamic¢s of polyhedra-forming atomic clusters in the 3D
network.' The polyhedra would be 3D analog; of 2D planar
rings, and modified vibrational modes for isolated polyhedra
embedded into an embracive network would be determined by the
same’ methéds as outlined in this work. Such .an . "émbedded
polyhedron approach" would have wider application and utility
than the embedded ring approach, but more: in-=depth research
on the ~‘émbedded’ ring approach is required before the
technigue is-éxternided to 3D amorphous solids.

" Areas that need to be studied with greater detail in the
- embedded ring approach are:

1. the.loss of degeneracy in the VFM, and whether it
has any physical significance;

. 2. - the assumptions and criteria for selection of
coupling force constants;

3. the significance of the A;, mode in a-C and PAH
molecules;

4, and the effective mass approach, and whether it is
is equivalent to or has advantages over the
coupling force constant apprdach.

Finally, other materials need to be examined with the

embedded ring approach. A few suggested materials are:

1. planar rings in Si0,=:.and B,0;-based glasses, and

the phenomenon of ring-network decoupling for
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certain vibrational modes;
2. amorphous As,Se;, AsS,S;, and As,0;;
3. 2D, in-plane vibrational modes of the CuO, layers
in high temperature superconductors;”
4. and 3D amorphous materials, such as diamondlike
a-C, amorphous silicon, and amorphous germanium.
The approach taken in this thesis pioneers a new method
for determining the ring statistics of an amorphous material
from its vibrational spectrum. Additionally, the approach
may also provide a method for measuring bond angle
distributions in amorphous materials. The peak widths of the
vibrational modes in the theoretical spectrum should be
directly traceable to the boﬁd angles in the g-matrix
elements of the secular determinants. If so, a new method
for the analytical modeling and characterization of amorphous
materials may be developed with the embedded ring approach.
The embedded ring approach can be Jjudged a modest
success at modeling the Raman spectrum of amorphous carbon.
Further research with new materials and improved methods will
provide the final verdict as to whether the embedded ring
approach is an ephemeral idea or a lasting contribution to

science.
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APPENDIX A
TABLES AND MATRICES FOR VALENCE

FORCE MODEL CALCULATIONS

Presented are the symmetry coordinates, g-matrix
elements, and G matrices used for the valence force model
calculations. The 4-, 5-, 6-, 7-, and 8-membered rings are
represented by the D,,, Ds, Dg, Dy, and Dg symmetry groups,
respective}ly. Character tables for these symmetry groups can

be found in most treatises on elementary group theory and

molecular dynamics. As described in Chapter III, the

symmetry coordinates are instrumental in deriving the U
matrix for each vibrational species. The U matrix is then
used to transform the f and g matrices to F and G matrices
for each vibrational species. The ‘resulting F matrices
remain diagonal, but the G matrices retain off-diagonal
terms, with each G-matrix element comprising a linear
combination of g-}matrix elements. The F and G matrix of each
vibrational species are then multiplied together to form the
secular determinant (see Chapter III), and solution of the

determinant yields the frequencies of vibration.



TABLE Al. Symmetry coordinates for selected fundamental

modes of the five embedded rings.
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4-Membered Ring

A4, mode:
1
5 (Ey+ty+ty+E,)
L
Zz(sa+sz+s3+s4)
_ %(‘;1""“2’*“37"“4)‘
B, mode: i i
| % (s;=8,+8;-5,) -
EJCRURUREN
B, mode:
% (tljt_:2+t3_‘t4)
L (B,-P+Bs-B.)
:-2- 1 2 3 4
E,;, mode:

% (tl—tz“t3+t4)

J—%(Sl—sfi)
\J—%(al—"%) \Jg(ﬁz_ﬁlx)
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TABLE Al (Continued)

5-Membered Ring

E;,” mode:
-1 o o ' o
[2t, (L+cos72°) -t +4t,cos144° ~-E,+2t (1+c0os572°) ]
2cos144°JT0 200 £

«’ % [s,+5,00572° +5;c05144° +5,c05144° +5,c0872°]

«l % [e,+0,c0572° +a,co5144° +&,c05144° +a c0572°]

1

— [-2B.,cos144°+B,-B,+2P.cos5144°]
25in72°/2 2 T _5

E,’ mode:

1 o Q Q
[2t, (1+cos144°) —E, +4E,c0872° -, +2t. (1+cos144°)]
2c0s72°y10 S “amT

«l % [s,+5,005144° +5,c0872° +5,0872° +5,c05144°]

«| —g- [a,+x,co5144° +a,c0572° +0,c0572° +0;c0S144°]

1

[2B,c0s72°-B,+B,-2B.c0os72°]
25in144°J2 3Te T
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TABLE Al (Continued)

6—-Membered Ring

E,, mode:

&

1
\EE[gfzg+Q+g—2g+Q]

\ ?é§[253—55—55+25§-s%—s%]

J-fE[Zal—az—a3+2a4—a5—ad

1
2 [Bz"B3+ﬂs"B6]

g8-Membered Ring

B,, mode:

8

4|é%[si—sa+sg—s4+ss—sg+sg~s@]

1 — - -
4l?§[a1—a2+a3 O, + 0= 0+, 0]

B,, mode:

4|%[qu+gég+g—g+g—gl

\{%;[ﬁl_B2+ﬁ3_ﬁ4+ﬁs_ps+B7_BB]



TABLE Al (Continued)

7-Membered Ring

E-type

2
A ' = [s,+s,c0808,+5;c080,+5,c080;+5,c050,+s,cos0,+s,cosb,]

«l —,27— [e,+a,cos,+e,cos0,+e,cos0,+a cosf,+a cosb,+e,cos6,]

modes:

1
cos0,/14

1
sin6,/14

[ (& +t;) (1+cosB,) +{t,+E;) (cosB, +cosh,) +

(ty+tg) (cosB,+cosb,) +2t,cos6,]

[(B,-B,) (1-cos8,) +(B,-B¢) (cosb,-cosb,) +
(B,—Bs) (cosb,~cos6,) ]

-
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Angle 0, 9, 0,
Mode

E,’ 2m/7 am/7 6m/7
E,’ /7 em/7 217 /7
E;’ 6mw/7 27 /7 amw/7
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TABLE Al (Continued)

8-Membered Ring

E,; mode:
“Ii[t Ctym byt Eam b= by ]
8 1 2 3 4 5 6 7 8
% [8,~8;5+85~5,]
v %.[“1"“3*’“5'“7]
0
3 Po-By*Bs—Bsl
E,, mode:
\J m [(Ea=t,=ts+ty) (14/2) +E=ty= g+t ]

«I % [VZ2s,+8,-5,~/285~Ss+5,]

\% [V2a, +a,-0,~v2a -0 +a,]

% [B2+\/_2—B'3+64—‘35—\/§ﬁ7_ﬁ3]

o
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TABLE A2. Generalized g-matrix elements for embedded ring

ring approach with the use of internal

coordinates. In the expressions p is the

reciprocal mass of the ring atom, } is the

reciprocal atom-atom bond length, o is the

reciprocal atom-rigid wall distance, 6, is

the ring’s inner bond angle, and 6, is the

angle between the coupling bond and atom-atom

bond.

et
g§t=2u
' 1
gh=pcos,
1
gse=pcosh,
gi=—tpsind,

gtla( ;) =tpsing,

11\ 1-cos0,
5@41) 2rpcosez[—zﬁEﬁﬂfJ

gﬁ%é)=—tpsinﬁz

el

o3(2)- Lepsin®
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TABLE A2 (Continued)

' LT ST
ggﬁ(i)=p [c531n7l +—2-'TSln61]

1 .
géﬁ( ;)=‘—2—Tu‘81n61 .
Gaa=27%p [2-C088, ]
gfu(;)=—2'c2u [1~cos6,]

go}a( §)=“‘E2p.cosel

0 0
g€ﬂ=u [0'2"'20'1'008——23 +TZ (%4—(‘:082_31_) ]

0 0,. .

gip(;)=rrcos 2t [o+rcos —]
172v_1 2 6

gﬁﬂ( )“Z‘F pcos6,

go}ﬂ(z)a;—‘czucosel

6
935(§)=W [f+0c0371]




TABLE A3. G-matrices for 4-membered ring: A,,, By,
By, and E,, modes. Asterisks (*) indicate

redundant elements in the symmetric matrix.
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2 1
gss .gst

* g§t+2g§t

A,, mode

:4

.ggs g;«(i)—Zg;a(i>
* gga_nga( ;) +g:a< z)

B;; mode

gtgt:_zgr.%t’ 2 [gtlp(i)*'ggﬂ(;)]

*  gpe-298s( ;) *9me(3)

B,, mode
s V2ok (Y 205(})
* gie V219ta-gz(3)] VZIg(})-ge(3)]
* * gsa_gc}a<i> 29‘35(?_)
ok * ges-988(3) |

E,, mode
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TABLE A4. G-matrices for S5-membered ring: E; and E,’
modes. C; =2 cos 72°, C, = 2 cos 144°,
S, =2 sin 72°, and S, = 2 sin 144°.
[ 2 1 1
9ss ~C,9s: gsa( )+Clgsa( ) 1gsp(1)

*

*

[ 2
gSS

* gaa+clgma( )+ngaa( ) 2g¢xﬁ( )+Slg¢l5( )
x * 95s+C188( o)+ C2900( )
E;’ mode
Clg;t gsa( )+C2g5“( ) SZg;LB(;)

2 1
*  GeetCiGie

2 1
* GeetCoTie

- 2gta— 1gt:a( )

1gt:a +C2gta( )

-s,h(2)+,93(3)

-s,8(})-5:94(3)

* * gm+02gu( )+C1gaa( ) - 1gap( )+Szgaﬁ( )
* * * gﬁb‘“C‘zgpa(o)*C’lgpn(z)_
EZ’T mode
TABLE A5. G-Matrix for 6-membered ring E,, mode.

Asterisks (*) indicate redundant elements
in the symmetric matrix.
ges st Gsaf3)Feu(3) V3959(5)
* gte~Jer  9ia~20%(;) ~V3g:e(3)

*

%

*

*

go?a—go?a( 2)_9&«( z) ‘/§ [ga::LB( i)_ggﬁ( §>]

*

ggﬁ“géﬂ(é)“géﬁ(z)_
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TABLE A6. G-matrices for 7-membered ring: E,”, E,, and

E;’ modes. Asterisks are redundant elements.

g% -Cgh ool 1) *CiG54(3) 5:96(3)

* ggt"'clggt —ng?a-ngtla(;) - 3ggﬂ(i)+szggﬁ(:)

* * gja"'clgfa(z)"'czgala(;) 529'35(2)"’319'35(3

* * * aRe+Co8s( 3 )+ Ca8n(2)]
E,’ mode

EFAeeA ool )+ C2 4l 3) 5,928(3)

* g?r:"'czggt C’lgfa+C’3gtla(;) 'Slggﬁ(i)'*'ssgéﬁ(:)

* *  GaatCoTae(3)*CaGan(l)  —S39ap(3)*S29up(2)

* * * Ies+Cagp( ;) +Ca988(2),
E,’ mode

92 -Gk Goaf 3)¥CaTsa(3) S398(3)

* gitCGiTte  ~CaFta~CaTie( ) -5,9:8(}) ~S19¢8(3)

* * g2a+c3g3a(;)+clg(xla(§) - 1giﬁ(§)+53giﬁ(i)

* * * 9is+Ca 8 5) a2
E;’ mode

¢,=2cos (-272) sl=zsin<-%"£)

c2=2cos(_47—") sz=2sin(%)

C,=2cos (—%ZT—) S3=Zsin(i7’3)
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TABLE A7. G-matrices for 8-membered ring: B;, and B,
modes. Asterisks (*) indicate redundant matrix

elements in the symmetric matrix.

gszs g;a(i)"zg;u(;)

v gle20%(2)-20%(2)

Big mode

gie-2gze 2 [gip(3)*gm(;)]
*  gps-2958( ;) ~29%(3)

B,, mode




139

TABLE A8. G-matrices for 8-membered ring: E,,, E,,, and
E;, modes. Asterisks (*) indicate redundant

matrix elements in the symmetric matrix.

9% VEgke  gh(l) 29:(;)
* gl V2[9i-z(3)] VZlge(;)-92(;)]
I 2945(3)
-* * * pr‘zgﬁb(:)
E,, mode
9% VZEgk  gh(})*Igh(}) V2g(3)
* GeetV20zs V22982 ~V290(3) V2+V2aes(]) V2 ~v2an(3)
. - TauV2T0( 1) 29a( 5)*v29( )
- . X 93 *+V293( ;)
E;, mode
0% VEvEek  gh{l)~VEek(}) VZak(2)
v gh-V2at. V2202 HEgH(2) ~V2-Vagk(1) V2 +vagk(})
* x Gau~v2Gaa( ;) ~29ap(2)+V/2up(2)
| * * * 9psVZ5ps( ;)

E;, mode




TABLE A9.
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F-matrices .for A,,, B;,, B;, and E-type modes,
where f., is the coupling force constant, f, is

the bond-stretching force constant, and £, is

the bond-angle-bending force-constant.

f, 0
0 £,

Alg mode

£, 0
o £

B;, mode

£, O
0 f

B,, mode

g

o o o Jﬁ

0
fb
0
0

o Jﬁ o o

0
0, )
0

fa

E-type modes
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APPENDIX B

RING MOTIONS FOR SELECTED VIBRATIONAL SPECIES

Presénted are ring motions for selected vibrational
species of the 4-, 5-, 6-, 7-, and 8-membered rings. In most
cases, two or more different sets of ring motion are possible
for an E-type vibrational mode. This appendix is not
intended to be an exhaustive reference on ring motions, but
to provide illustrative examples of possible ring motions for
some vibrational species of each ring. Therefore, some of
the E-type ring motions have been excluded. The reader
should note the similarity between 'ring motions for
different-sized rings, particularly the A,, and A,’ breathing

modes, and the E,, and E,’ ring stretching modes.
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A, mode ' B,, mode

B,, mode E,, mode

FIG. Bl. Modes of oscillation for the 4-membered ring.
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A’ mode

E;’ mode

E,” mode

FIG. B2. Modes of oscillation for the 5-membered ring.



A, mode ) B,, mode

4

B,, mode E,, mode

u 4

E,, mode
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FIG. B3. Modes of oscillation for the 6-membered ring.
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E;’ mode

E,” mode

E;’ mode

FIG. B4. Modes of oscillation for the 7-membered ring.
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P

A, mode ' ‘ ' E,, mode
E,, mode

B,; mode

By, mode E;, mode

FIG. B5. Modes of oscillation for the 8-membered ring.
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