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A, theoreticc,ll approach was developed. .to model the 

vibrational dynamics of amorphous, two-dimensional materials. 

The materials were modeled as continuous random networks 
• "• ,., ' ? <-' ' • ·, " .., ,. ,, • , (; <) I, • 

(CRN's) comprising an aspemblage of planar rings of diverse 

size. In-plane vibra~ipnal modes·~or symmetrtc 4-, 5-, 6-, 

7-, and 8-membered rings were examined. Vibrational states 
, ' I ,, 

of isolated rings were modified by coupling. the rings to a 
J ' ••>. '. ' ' • • ·' 

continuous network. to represent rings embedded in a CRN. An 

effecfive force· constant was ·used to couple the ring 
. . 

vibrations to the network's collective motions. Potentials 
• i:- • 

were approximated with the use. of a central force model 

(bond-stretching force constant) and a valence force model 

(bond--:stretch.ing . a~d bond--:a,ng,le-bending force constants). 

Valence force model c.alculat.ions employed group theory. Mode 

frequencies were calculated using the method of small 

oscillations and the normal coordinate treatment. 
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Amorphous carbon was used as a test case for the 

embedded ring approach. A physically consistent set of force 

constants for the valence force model was determined by 

comparing the 6-membered ring E2 g mode to the E2 g mode in 

graphite. Frequencies for selected ring modes were 

calculated, resulting in a discrete line spectrum. 

Calculated frequencies were fitted with gaussian peaks 

and convoluted into theoretical spectra for comparison with 

the experimental Raman spectrum of amorphous carbon. 

Integrated gaussian lineshape intensities were assumed to be 

directly proportional to the CRN ring statistics. The peaks 

were convoluted with the peak widths, ring statistics, and 

number of modes as the adjustable parameters. 

Parameters consistent with previous research on the 

structure and dynamics of amorphous carbon provided 

satisfactory fits to the data. The best fit to the Raman 

data includes the E2g and A1g modes of 6-membered rings 

(present in Raman spectra of nanocrystalline graphite), and 

the Raman active Ez' modes of 5- and 7-membered rings. The 

corresponding ring statistics agree with previous results, 

supporting the presence of a sizable percentage of 5- and?­

membered rings, but with no 4- or a-membered rings. This 

positive result provides verification for the embedded ring 

approach, and supports a CRN model for amorphous carbon. 

(156 pages) 
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CHAPTER I. 

INTRODUCT;I;QN 

'' 

Modeling the vibrational dynamics of amorphous materials 
,'. J ~ ~ 

presents a more difficult problem than that posed by 

crystalline mat~~i~'is·. Analysi:~ of the vibration~l dynamics 

of crystallin~ material~ is ;~11 established. The presence 

of long-range translational order (periodicity) in crystals 

allows ·analytical solution ~f the equations of motion by 

introduction of the Born-von Karman' periodic boundary 

condition. 1 In contrast, structurally disordered--or 

amorphous--materials by definition lack long...:range order, and 

are not amenable to the • analytical treai:.~~:n:fs used for 
' : ~. 

crystalline materials. As a consequence, other theoretical 
'' 

approaches have been developed to model the vibrational 

dynamics of disordered materials. These approaches, however, 
- ' 

are far from definitive and yield only approximate results. 

A majority of the theoretical approaches used to study 

the vibrational dynamics of amorphous materials are numerical 

approaches. The analytic approaches develop~d to' date can be 

applied only to a few specific materials, and yield only 

qualitative "results. Note that no generalized analytic 

approach has yet been found to model the dynamics of two-

dimensional (2D) and three-dimensionai (3D) amorphous 

materials. 2 Therefore, in contrast to the lattice dynamics 

of crystalline materials, the vibrational dynamics of 



I 

', 
', .J 

2 

amorphous materials offers a field of research still in its 

vigorous youth, and remains an open and fertile frontier for 

new ideas. 

Limiting the scope of an analytic approach to only 2D 

materials reduces the complexity introduced by 3D materials. 

structurally disordered 2D materials present a simpler 

problem theoretically by the mere fact that one dimension is 

eliminated. Such an analytic approach would still provide 

meaningful results for real materials, however. In 

comparison, theoretical techniques which confine themselves 

to even simpler systems, such as one-dimensional disordered 

chains, are severely restricted in applicability (for 

example, to polymeric compounds or chalcogenide glasses with 

one-dimensional networks). 

This thesis addresses the problem of the vibrational 

dynamics of 2D disordered materials by developing a new 

method--the embedded ring approach. The embedded ring 

approach is a generalized, analytical method based upon a 

common structural unit present in covalent 2D materials--the 

planar ring. The approach examines localized vibrations in 

disordered 2D networks with the use of planar ring modes of 

oscillation. A disordered 2D network is simulated by 

embedding various sized rings in the network. Vibrational 

frequencies and modes of oscillation for the various sized 

rings are obtained for isolated rings and modified by 

coupling the rings to the network. The results comprise a 
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spectrum of • frequencies which can be compared to the 

vibrational density of states (VD0S} of real mat·erials, or 

which can be used to generate theoretical vibrational 

spectra. 

The embedded ring approach is limited in appl,idation to 

:materials having planar rings. It is therefore particularly 

suited for mode'ling the dynamical behavior of 2D materials. 

• Examples of 2D''inaterials include· -physisorbed and chemi·sorbed 

monolayer films on surfaces, monolayer epitaxial films (via 

vapor deposition or molecular' beam epitaxy); • and layered 
-

:materials. These ma'terials are currently the 1 subjects of 

active :research areas f ·previhg :to be r'ich resources for· both 

basic··scientific knowledge · and technological applications. 

Layered materials are formed by stacking 2D planes or 

layers of atoms to form bulk 3D materials. In many layered 

materials the atoms within an individual plane or layer are 

strongly borided by either covalent or ionic forces, whereas 

the layers themselves·· al?e only weakly bonded by forces such 

as the van der Waals interaction~ Such intralayer forces may 

be an order of magnitude or mdre greater in strength than the 

interlayer·· forces. Layered materials with these 

characteristics display anisotropic prdperties arising from 

their nearly 20 nature,· and can often be regarded essentially 

as 2D materials. Examples of such materials are the 

compositionally simple crystals formed by graphite, boron 

nitride, and several of ·the metal halides and metal 
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dichalcogenides. 3
•
4 Many of these materials also form the 

basis (the intercalate) for intercalation compounds. Others 

are of interest because they are semiconductors, superionic 

conductors, or used as high technology ceramics with a 

variety of applications. 

Other compounds with more complex compositions form 

materials with definite planes or layers, but with stronger 

interlayer bonding, usually of ionic or covalent forces. 

Such materials display less anisotropy, and are more 

intermediate in nature between 2D and 3D materials. Several 

silicate minerals are representative of this class of layered 

materials, and include biotite (mica), serpentine (asbestos), 

and montmorillonite (clay) . 5 In the past five years, a group 

of complex oxide materials has risen to prominence because of :.: 

the superconducting properties endowed by their layered 

structure. The copper oxide superconductors owe their high 

temperature superconductivity to a layered perovski te crystal 

structure, which consists of 2D copper oxide planes separated 

by (depending upon composition and crystal structure) 

alkaline earth cations, rare earth cations, thallium oxide 

layers, bismuth oxide layers, or lead oxide layers. The 

lattice dynamics of the copper oxide planes are of special 

importance to theorists struggling to explain high 

temperature superconductivity in terms of BCS theory. 6
• 
7 

Examples of amorphous 2D materials are fewer, and yet 

still important as 2D analogues for amorphous 3D materials. 
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Physisorbed and chemisorbed monolayer films can occur as 

disordered phases, as can intercalants in interc~lation 

compoands, due to.a random -or_dering of atolllS. Chalcogenide 
,, 

glasses .go a step further, forming disordered· 2P networks. 

(Networks differ from random paekings of atoms in that the 

atoms in a network exhibit greater covalency in bonding and 

therefore a higher degree of coordination with adja,cent 

atoms.) Amorphous As 2Se 3 and As 2 S3 are typical , exampJes of 

chalcogenide glasses. where the covalently bonde<;l., 2D ·network 

can be considered as one very. large. molecular :unit (As 2Se 3 and 

As 2 S3 a:te said to form 20..:network molecular glasses) . 8 

By far the most well known exampl'e of a 2D, layered 

material is graphite, a crystalline polymorph .. of carbon. 

some forms. of amorphous· carbon also retain·· a . 2D character, 

and can be modeled as 2D random networks. It is these forms 

of amorph0us carbon which will be used as a prototypical case 

for the embedded ring approach in this work. 

The use bf amorphous carbon: ,as a test case has several 

advantages. The elemental composition of amorphous carbon, 

consisting of only carbon atoms, simplifies calculation of 

the ring mode oscillations.• The calculations become more 

complicated with materials of binary or ternary composition 

(comprised of two or more elements), such as wi,th the 

chalcogenide glasses. Addi tiorially, carbon is a well .... studied 

and exhaustively characterized element in science ·because of 

its astrophysical and biological significance. Finally, 
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vibrational spectra of various forms of amorphous carbon have 

been extensively published and are widely available in the 

literature. These spectra will permit direct comparisons of 

the results of the embedded ring approach to experimental 

data. Such comparisons will determine the validity and 

degree of usefulness of the embedded ring approach. 
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CHAPTER II, 

DYNAMICS AND MODELS OF AMORPHOUS MATERIALS , • 

Vibrational Dynamics 
of Amorphous .Materials .. 

To understand the dif f iculrty involved .· in. modeling the 

vibrational dynamics of amorphous materials, one must start 

with the lattice dynamics of crystalline materials. The 

inapplicability of the lattice dynamical approach to 

amorphous materials can then be examined, and provides a 

stepping stone to dynamical approaches developed expressly 

for amorphous materials. 

Loss of periodicity in amorphous materials prevents 

facile solution of their vibrational dynamics. In contrast, 

periodicity in crystalline materials facilitates 

determination of the dynamics. Solution of the dynamical 

equations for crystals yields plane waves. 1 The Born-van 

Karman periodic boundary condition allows simplification of 

the equations of motion for crystalline materials by: 

1. restricting the wave vectors in the plane wave 

solutions to a linear combination of the 

reciprocal lattice vectors; 

2. decreasing the number of equations to be solved. 

The use of the Born-van Karman periodic boundary condition, 

however, is prohibited for amorphous materials due to a lack 

of long-range order. As a consequence, a good set of wave 

vectors to expand the wave functions for an amorphous 
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material cannot be readily defined, and the number of 

equations to be solved remains unmanageably large. 

Additionally, propagating vibrations will not be in the form 

of plane waves, except approximately at very low frequencies. 

On a large enough scale, an amorphous material appears 

homogeneous and isotropic. At intermediate and high 

frequencies, vibrations in amorphous solids are localized and 

do not propagate as far as in crystalline materials. In some 

sense, the localized vibrational states in amorphous 

materials resemble local phonon modes created by defects in 

crystals. 9 

The inability to define a set of wave vectors for 

amorphous materials precludes the use of phonon dispersion 

curves to characterize their vibrational properties. Indeed, 

the term phonon is not even applicable to amorphous materials 

since the vibrational modes cannot be separated by wave 

vector. The vibrational density of states (VDOS), however, 

remains a good measure to describe the vibrational dynamics 

of both crystalline and amorphous materials by eschewing a 

frequency-wave vector relationship for a frequency-number of 

states per frequency interval relationship. 

Figure l(a) provides an example of a phonon dispersion 

curve for graphite, a crystalline polymorph of carbon. 10 

Figure 1 (b) displays the corresponding vibrational density of 

states for graphite. Note that Figure 1 (b) --the VDOS--

provides a means to adequately describe the vibrational 
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states of an amorphous material as well as a crystalline 

material, whereas a description such as presented by Figure 

1 ( a) --the phonon dispersion curve--would be inadequate ( could 

not even be presented!) for an amorphous material. 

The vibrational dynamics of amorphous materials can be 

approached either analytically or numerically. Analytical 

approaches examine the local dynamics of atoms in a 

disordered network. 2 For bonds in such networks showing a 

high degree of covalency, the bond-stretching force constants 

typically exceed the bond-angle-bending force constants by a 

factor of five. 2 The bonding can therefore be adequately 

approximated with only a central force model (i.e., only the 

bond-stretching forces are considered). Vibrational 

frequencies are calculated for a local arrangement of atoms 

in the network, such as a tetrahedrally coordinated or an 

octahedrally coordinated cluster of atoms. The calculations 

derive from simple expressions (solutions to either 

Lagrange's equations--the eigenvalue problem--or Newtonian 

equations of motion) , and relate frequency to the atomic 

masses, bond-stretching force constants, and bond angles. 

The expressions yield bands of frequencies, with band limits 

determined by simple criteria and band peaks centered on non­

zero vibrational modes. A number of zero-frequency modes 

appear due to exclusion of bond-angle-bending forces. To 

date, analytical approaches have been limited in usefulness, 

providing models which are more informative and instructive 
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tha:n they are quantitative. 

NUmerid!a.l approaches attempt, to :predict the VDOS for 

amorphous materials by considering fairly ;large clusters of 

atoms (50-500 atoms). Again, these. approaches . solve the 

eigenvalue problem as formulated with,., the use of quantum 

mechanics. 1 •2 Several numerical methods are available. 2 In 

the cluster--Bethe-lattice method, a cluster is extracteo. from 

a disordered network; and the . in'f.1:uen.ce . of ; tlie removed 

network is accounted, .for by at.taphing .a branching structure 

(the, Bethe lattice) onto each dangling bond .. at the edge of 
-

the eluster. The Bethe lattice models the influence of the 

missing embracive network by eliminating the edge_ or,. sµrf ace 

effects which arise .from plucking.a finite; :cILus.ter: OU:'t,,0f an 

infinite network. Additionally, the Bethe latti,e.erproliuces 

no anomalous art if acts in the VDOS. Other numerical methods 

employed ,L:hclude _,the negative. eigenvalue method,. the 

equation-of-mo;tion method, and-the.recursion method. 

The embedded. rin:g.approach_is, a generalized, analytical 

method which extends • both previo1:1s analytical methods and 

previous numerical methods to predict vibrational modes for 

disordered·2D materials. The concept embodies both the use 

of local dynamics ( analytical approaches) and the use of 

mathematicaL,techniques to account for the influence of an 

embracive disordered network (.as in the cluster-Bethe-lattice 

method). The embedded ring approach can.also be considered 

a close cousin"to numerical approaches since the.vibrational 
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mode intensities in the VD0S are directly computed from the 

ring statistics of a representative raft model (network 

cluster). 

Because it builds upon previous methods, a literature 

search was conducted to assess the originality of the 

embedded ring approach. No references were cited from either 

INSPEC or Chemical Abstracts databases regarding an embedded 

ring approach or any similar approach for determining the 

vibrational properties of disordered 2D materials. 

References were cited, however, for articles on the 
-

vibrational dynamics of crystalline layered materials; one of 

these papers details calculation of the dynamics of a 2D 

lattice with the use of graphite as an example. 11 As with 

other crystalline materials, the theory for the lattJce 

dynamics of crystalline layered materials is firmly rooted, 

making extensive use of periodicity in the form of point 

group symmetries. 3
•
4 

Several articles were found in the literature which 

examine ring vibrational modes in Si0 2 and B2O3-based glasses 

( see page 18 and Chapter IV) . 12 - 18 Vibrational bands which 

appear in the Raman spectra of these glasses are attributed 

to ring modes of oscillation, and some analysis of the 

mechanism of ring mode-network decoupling is presented. 

The embedded ring approach builds upon these results in 

an original manner. Instead of limiting its elf to the 

specific case of ring mode-network decoupling in some 
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materials, the embedded ring approach considers the general 

case of ring modes' coupled to a cofitinuoi..ls random network 

(CRN) . Ring modes are calculated from basic principles using 
•' 

techniques devialoped for study of molecular dynamics. A 

method is then introduced to couple the rings to the CRN. 

The .modi,fied vibrational modes are then used to construct a 

material~s vibrational spectrum. It is this approach which 

gives rise to the originality of the embedd.ad:ring.apprc:;,ach. 

Models of Two-Dimensional 
Amorphous .. Materials 

Any successful dynamical model or approach .is b11ilt upon 

the foundations of an accurate structural model for the 

material. For a crystalline material, know:leo.ge of the 

crystal structure is required for determin:i,ng: , th'?.;~1phonon 

dispersion curve. Likewise, with.out a good struct11J;'.a:l,:t lllodel, 
' 

• any · VDOS or. vibrational . modes derived , ~9r _ an a,m_cprphous 

material are meaningless. A prerequisite to the deveJ.o,pment 

of the embedded.ring approach, ::there:f:ore, was to review and 

·select structural .models for 2D amorphous materials. 

Amorphous_materials are classified into three types of 

structure categories. 8 First, . random close packing (RCP) 

models structures where nondirectional f orces--metallic, 

ionic,. o;i:-Van der Waals bonding--occur between tne ato;ms in 

the matert.al. , Pr9totypica]; examples of amorphous materials 

e}{hipiting R_CP .. structures are metp.llic glasses. Second, 

organic polymer glasses aremosi:;: successfully represented by 



14 

a random coil model (RCM), where interpenetrating random 

coils constitute the amorphous structure. The third (but 

definitely not the least interesting) structure category is 

the continuous random network {CRN). Continuous random 

networks arise from the disordered arrangement of atoms or 

molecules with covalent bonding. Covalent bonds are highly 

directional, resulting in low coordination number (less than 

or equal to four) for atoms exhibiting this type of bonding. 

Consequently, inorganic amorphous structures comprised of 

covalently-bonded atoms differ markedly from RCP and RCM 

structures. 

Continuous random networks have been most successfully 

applied to covalent inorganic glasses with binary 

compositions. In addition to As 2 Se 3 and As 2 S3 , which were 

previously discussed in Chapter I, typical glass-forming 

binary compounds include B
2

0
3

, Si0
2

, Ge0
2

, P
2

0
3

, As
2

0
5

, and 

As203 •
19 Construction of CRN models for these materials 

requires adherence to three basic rules: 

l. The coordination of each atom is fixed, limiting 

the degree of connectivity in the network; 

2. No dangling bonds are allowed within the network; 

3. A specified procedure is followed in constructing 

the network to ensure randomness of the structure. 

Criteria (l) and (2) arise from the physical constraints 

imposed by the constituents of the material. The third 

criterion precludes subjective biasing of the structure: 
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human consciousness displays an inherent preference for _order 

and regularity. 

Atomic structur.es are.typically il:.lust~a;te<;,.with "ball 
,, 

and stick'! ... models, ... whtch· .·.can. pe readily trans~er+ed to the 

printed pa_ge or .cQmputer sc~.een. Thr.ee-dimension,al CRN' .s are 

dif£icult to illu:;trate.with two-dimen,sionc1-l,media, however. 

Zachariasen·· • schematirc$· accqmplish. a 2D, representa,t,Jon of 

CRN's by simply limiting the st.ructure of the netwqr~ to two 

dimensions. ··• Because .of ,1;:hi:; limitat~c::>Il; ·Zachariasen 

schematic.s .• are, • most am.e.n.able : t,q co;ropqunq.s -'w,tth an A2B3 

stoichiometry. In fact, Zachariasen's first diagrams 

illustrated a CRN for an A2B3-type cqmpound~ 19 :E,igure 2 (a) 

presents a Zacharias en schematic. of. a CRN • for .an i A2B)-type 

compound. 

blocks: 

The schematic is constructed.. of AB3 J:Ju±lding 

The A atoms ( open circles) have three-:-f old 

coordination, while :the B. atoms. (fille'd circles) are·· only 

·bonded to two other A atoms. Each AB3 building .block (or 

cluster) displays overall three..;fold coordination wit:t:i other 

AB3 building blocks. The Zachariasen schematic is 

particularly useful for amorphous structures consisting of 

, Amorphous structures can also be modeled with the use of 

"triangle rafts" based on Zacharias en schematics. 20 As with 

Zacha:tiasen schematics , triangle rafts are graphical 

representations of ·2D structures. •Figure 2 (b) presents a 

triangle·· :raft Iriodel of the structure shown in Figure 2 ( a) . 



(a) 

(b) 

FIG. 2. Zachariasen schematic (a) and triangle raft 

model (b) of a two-dimensional continuous 

random network. After Shackelford. 20 

16 



17 

In Figure 2(b), triangular building blocks replace the AB3 

clusters in the Zachariasen schematic. The triangular shape 

of the building blocks reflects the overall three-fold 

coordination of the AB3 cluster. Note that the use of 

triangle rafts generalizes and extends the Zachariasen 

schematic. The building blocks can now represent not only 

AB3-type clusters, but also single atoms with planar three­

fold coordination and, to ·· some extent, the facets of 

tetrahedra for four-fold, tetrahedrally coordinated clusters 

that occur in compounds such as Si0 2 or amorphous silicon. 
-

Continuous random networks are constructed from triangle 

rafts by a specified procedure. 20 The triangular building 

blocks form rings of various sizes. A CRN is built by first 

starting with an initial ring. Subsequent rings are then 

added to the initial ring in a clockwise spiral fashion, with 

the size of each ring selected randomly. The final structure 

is a CRN comprising an assemblage of rings of diverse size. 

The distribution of n.:..membered rings (n=3 to about 10) 

provides a measure for the randomness of the 2D network. 

Therefore, triangle raft models provide a means to 

theoretically determine the ring statistics for amorphous 

materials. 

Ring statistics for real glasses are difficult to 

determine experimentally. However, ring statistics for 

vitreous Si0 2 , B20 3 , and various' Si0 2-B 203 glasses have been 

determined with the use of infrared and Raman spectra. 12 The 
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determinations were accomplished by looking for B306 boroxol 

ring vibrational modes in the spectra, and with the use of 

numerical methods to compute the VDOS. Raman spectra· may 

also be used to determine the ring statistics for vitreous 

silica and various silicate glasses. 13 

Chapter IV discusses ring mode decoupling in silica­

based materials, and details the embedded ring approach, a 

theoretical method which may bridge the gap between 

experimentally determined and theoretically predicted ring 

statistics for amorphous materials other than amorphous 
-

silica, silicate, and borate glasses. Triangle rafts present 

model CRN structures from which the ring statistics are 

readily obtained. The embedded ring approach uses these ring 

statistics to construct theoretical spectra for comparison 

with real vibrational spectra of materials. Such comparisons 

permit the correlation between a material's atomic structure 

and the model structure. 

Note that triangle raft models can be extended to 

crystalline and quasicrystalline structures as well. 

Amorphous structures display a distribution of three or more 

different ring sizes. Crystalline structures, by contrast, 

would display either a single, bimodal, or multimodal 

distribution of 3-, 4-, 5-, 6-, or 8-membered rings. Such 

rings have the necessary symmetries for a periodic structure. 

Figure 3 shows a triangle raft model (a) and ring statistics 

(b) for a 20 crystal structure comprised of 4- and 8-membered 



Ring Size 

(a) 

r--"-

4 5 6 7 8 9 

(b) 

FIG. 3. Triangle raft model (a) and ring statistics 

(b) for a '(4, 8) crystalline two-'dimensional 

material. 
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rings. Figure 

statistics (b) 

4 displays the unit cell (a) 

for another crystal structure, 

and 

this 

20 

ring 

time 

consisting of 5- and 8-membered rings. 

crystal structures in Figures 3 and 

Surprisingly,· the 

4 are- not just 

theoretical models, but represent actual crystal structures 

for some silicate minerals. 21 The triangular building blocks 

in Figures 3 and 4 represent the faces of Si0 4 tetrahedral 

clusters for the silicate minerals apophyllite and okenite, 

respectively. As mentioned in Chapter I, many silicate 

compositions form quasi-2D materials. 

Two-dimensional quasicrystalline structures may be 

characterized by a bimodal or multimodal di"stribution of 

rings. Five or ten-membered rings provide five-fold symmetry 

for aperiodicity, and at least one other structural unit 

(ring size) is necessary to eliminate lattice frustration. 

Such a quasicrystalline structure is analogous to a 2D 

Penrose tiling where at least two structural uni ts are 

required. 22
•
23 Figure 5 shows a 2D network displaying local 

five-fold symmetry. Note, however, that the network in 

Figure 5 is not truly quasicrystalline since lattice 

frustration is not fully alleviated. The structure in Figure 

5 would more likely curl up into a sphere, much like the 

carbon network does in Buckminsterfullerene due to the 

presence of five-membered rings. 24
-

26 

Triangle rafts model continuous random networks with a 

variety of compositions ( elemental to ternary ) , and also 
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4 5 6 7 8 9 

(b) 

FIG. 4. Triangle raft model (a) ~nd ring statistics 

(b) £or the unit cell of a (5,8) crystalline 

two-dimensional material. 
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(a) 

Ring Size 4 5 6 7 8 9 10 

(b) 

FIG. 5. Two-dimensional network displaying local 

five-fold symmetry (a) and corresponding 

ring statistics (b). 

22 



23 

model other structures within the hierarchy of order-disorder 

(crystalline--quasicrystalline--amorphous). These abilities, 

along with their emphasis on ring size and ring statistics, 

make the use of triangle rafts amenable t9 a theoretical 

approach of the vibrational dynamics of amorphous materials 

based upon ring modes of oscillation. 

Geometry and Dimensionality 
of Networks 

As previously discussed in this chapter, the structural 

randomness of a 2D network is intimately tied to the 

shape/size of the rings constituting the network (pentagonal -

5-membered rings, hexagonal 6-membered rings, etc.) , and 

their relative population in the network (i.e., the ring 
----------- --

statistics). Also influenced by ring geometry and statistics 

is the dimensionality of the network . Certain ring 
. 

geometries and abundances can introduce curvature into a 

normally flat, 2D network. The network is still two-

dimensional, but now curved or warped into a third dimension. 

Such network warpage or curvature can have material property 

effects, and is an important structural factor to 

characterize. Again, tJ1e ring statistics for a network can 

provide a measure for the amount of warpage/curvature in a 

normally 2D amorphous material. 

We can examine this relationship by considering a 

periodic, hexagonal lattice comprised of only 6-membered 

rings. A 5-membered ring is introduced into the lattice by 
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modifying a 6-membered ring (for example, by creating a 

vacancy defect) . The atoms at the vertices of the 5-membered 

ring still exhibit three-fold coordination, but the bond 
,, 

angles have changed. Two of the bond angl~s at the vertex 

atoms are shared by 6-membered rings, and are therefore 120° 

each. The third bond angle is an interior angle within the 

pentagonal 5-membered ring, and is therefore only 108°. The 

sum of the three bond angles is 348°. To maintain a flat 2D 

geometry, all three bonds must lie in the same plane, and the 

bond-angle sum should equal 360°. Therefore, a 12° angular 

deficiency exists at each vertex atom of the introduced 5~ 

membered ring. Since there are five vertex atoms, the total 

angular deficiency for the introduced 5-membered ring is 60 °. 

The effect of this 60° angular deficiency is to puc~.er 

the lattice at the 5-membered ring site. The normally flat 

2D lattice can no longer maintain its flatness, but must 

curve to accommodate the 5-membered ring "defect." Adding 

more 5-membered rings to the lattice increases the curvature. 

Finally, with only twelve 5-membered rings equally spaced in 

the 2D lattice, sufficient curvature is created to curl the 

lattice into a sphere. 

Note that the required number of 5-membered rings to 

curl the lattice into a sphere remains twelve, independent of 

the size of the lattice or the spacing between the 5-membered 

rings. This phenomenon was discovered in the 18th century by 

Leonhard Euler, and remains a topological intrigue and 
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The total angular deficiency for tweJ!ve 5-

membered rings is 

12x6 0° =7 20° 

the angular defictency necessary to completely curve a two­

dimensional space in upon itself. 

The effect of introducing a 7-membered ring into a 

hexagonal lattice is equally interesting. The 7-membered 

ring creates a , total . angular excess o±.: 60 °. Again, the 

lattice. puckers at the 7-membered ring site. The curvature 

is difJerent;, however, from that induced by a 5-membered _ 

ring. Whereas an angular deficiency creates spherical 

curvature, an angular excess creates hyperbol,ic curvature. 

both 5- and 7-membered rings, and yet retain its .flatn.ess. 

The angular deficiencies created by a number of. 5-membered 

rings,can be canceled by the angular excesses of an equal 

number of. 7-membered rings. 
1 ' ' 

The occurrence of 4-membered 

;rings also creates angular deficiencies, 120° total for.each 

ring, with corresponding angular excesses occurr,ing for 8-

membered rings. Note, for example, Fi~ure 3 where equal 

numbers of 4- and 8-membered rings create a flat, 2D lattice. 

The angular deficiencies of two 5-memb~red rings can also 
' • 

. cancel the angular excess of an 8-membered ring, again 

leading to a flat 2D lattice, as in Figure 4. 
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The ring statistics for an amorphous material provide 

the relative proportions of 4-, 5-, 6-, 7-, and 8-membered 

rings in the CRN. From the ring statistics one can determine 

the relative flatness of the 2D-CRN. A simple equation to do 

this is the following: 

-N 3 x180°-N 4 x120° -N 5 x6 0° +N7 x6 0° 
+N8 x120° +N9 x180° =o 

where Nn = equals the number of n-mernbered rings (3- and 9-

membered rings were included for completeness), and o is the 

curvature of the 2D-CRN. (Note that the above equation is 

only valid for a 2D-CRN where the atoms or atomic clusters 

exhibit three-fold coordination.) If o ~ O, the 2D-CRN is 

relatively flat. If o < o or o > o, the 2D-CRN has spherical 

curvature or hyperbolic curvature associated with it, 

respectively. The curvature or flatness should be considered 

a large scale parameter, taken over several atom-atom bond 

distances ( 10-100 A) . Local puckering of the network may 

occur due to local ring geometry or inhomogeneous ring 

distributions. 

The preceding discourse has many uses. For instance, 

the inability to tile a flat 2D surface with only pentagons 

or septagons is given further depth beyond that of symmetry 

arguments. 28 In the context of the embedded ring approach, 

the ability to determine an amorphous material's ring 

statistics, and subsequently the structure of the CRN in 

terms of randomness and curvature (dimensionality), lends 
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further valueto the approach. Finally, an understanding of 

ring geom:~try and· network dimensionality is essential in 

constructing accurate structural models for amorphous 

materials. 

Buckminsterfullerenes 

The curling of a hexagonal lattice into a sphere by the 

addition of twelve 5-membered rings is more than just a 

theoretical curiosity. The recent discovery of 

Buckminsterfullerenes 29 (named after the inventor of the 

geodesic dome, Buckminster Fuller) provides an actual_ 

physical system where such an event occurs on the 'atomic 

scale. 

uckminsterful"lerene is a-nm-1-e-cu-J:ar-rorm-oi:-carbon 

produced and discovered so far only in the laboratory. The 

existence of this exotic • molecule in naturally occurring 

samples or, as predicted, in interstellar dust clouds has yet 

to be confirmed. 30 The chemical formula for the prototypical 

Buckminsterfullerene molecule is C60 , although a whole series 

of Buckminsterfullerenes (also called fullerenes) has been 

predicted ( C24 , C28 , C32 , C36 , C50 , C60 , C70 , and so on) . 24 C60 was 

the first fullerene discovered, with other members of the 

series subsequently found. 31 

C60 is clearly comprised of 60 carbon atoms which form 

a molecular cage or spherical network. This cage or network 

itself is comprised of twenty 6-membered rings and twelve 5-
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membered rings. Figure 6 presents a triangle raft model (a) 

and the ring statistics (b) for C60 • The carbon network can 

be considered as a 2D hexagonal lattice, as in graphite, 
,, 

within which twelve 5-membered rings have been introduced. 

The 5-membered rings completely curl the network into a self-

contained sphere. All of the molecules in the fullerene 

series have exactly the same number of 5-membered rings-­

twelve; only the number of 6-membered rings varies. 

This new form of carbon has captured the interests of 

the physics community. Its material properties are as exotic 

as the molecular structure itself. Doped with potassium or 

rubidium, solid C60 is a respectable superconductor with 

critical temperatures of 18 and 2 8 K, respectively. 32
•
33 

Because of its completely enclosed, self-contained structure 

and the strength of the covalent carbon-carbon bonds, some 

researchers suggest that C60 might be harder than diamond. 34 

Most recently, the discovery that carbon lattices can roll 

into tubular structures with closed, fullerene-like ends 

opens a new avenue for the development of novel carbon 

fibers. 27 
• 
35 Additionally, new forms of carbon with hyperbolic 

curvature (comprised of 6- and 7-membered rings) have also 

been proposed and theoretically examined. 36 

This thesis has a dual interest in fullerene molecules. 

First, fullerene molecules are an example of a 2D hexagonal 

lattice which is profoundly altered by the presence of 5-

membered rings. The effects of ring size and statistics on 
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FIG. 6. Tri~ngle raft model (a) and ring statistics 

(b) for the fullerene molecule C60 • 
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a material's atomic structure are clearly demonstrated with 

fullerene molecules. Second, fullerene molecules are a close 

kin to a specific structural model for amorphous carbon. • The 

" network in this structural model contains n9t only 5- and 6-

membered rings, but 7-membered rings as well. The 7-membered 

rings counteract the sphericity induced by the 5-membered 

rings, but also introduce a random structure into the 

network. The ring statistics for such a network should have 

approximately equal numbers of 5- and 7-membered rings to 

prevent the formation of large, spherical molecules. The 

following chapter details this structural model for a-c. 



CHAPTER III 

CARBON AND CARBON MODELS 

Crystalline and Amorphous 
Carbon 

31 

Naturally occurring elemental carbon most commonly 

exists as two allotropic forms in the crystalline state-­

graphite and diamond. Graphite is a layered material, with 

strong intrapla:r1ar covalent forces bonding the atoms into 2D 

layers. Relatively weak interplanar; forc::es hold the 2D 

layers together to f'orm a· JD solid~ The covalent bonds of 

the carbon atoms· in graphite, de 1signated sp 2 bonds] exhibit 

planar three-fold coordination and give rise to the familiar 

graphite hexagonal structure. Figure 7 is a triangle raft 

model of graphite, displaying the regular six-membered rings 

which comprise the hexagonal structure. Note that because of 

the planar three-fold coordination, triangle raft models are 

ideal representations for carbon structures bonded primarily 

by sp 2 bonds. Each triangle in the raft model represents a 

single carbon atom, with the apexes representing the three 

bonds. 

The second allotropic form of crystalline carbon, 

diamond, is a 3D solid forming crystals with cubic symmetry. 

In contrast to graphite, the carbon atoms in diamond have 

covalent bonds 

coordination. 

which exhibit tetrahedral, four-fold 

The tetrahedrally coordinated forces, 

designated sp 3 bonds, allow the carbon atoms to bond in a 3D 
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Ring Size 4 5 6 7 8 9 

(b) 

FIG. 7. Triangle raft model (a) and ring statistics 

(b) for graphite displaying hexagonal 

structure. 
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framework, and give di.amend crystals their cubic crystal 

structure .. 

crystalline catbon may occur in other forms as well, 

usually as microstructural alterations qf p:bistine graphite 
J' ' ' ' 

or diamond. The designation "glassy• carbon" is a common 

misnomer, since it is not a true glass or amorphous material; 

rather it consists of strained graphite layers stacked 

randomly to form carbon fibrils. 37 carbon fibrils are ribbon-

like microstructures of graphite and are typically less than 

120 A in , width and 40 A in thickness. . Oriented carbon 

fibrils greater than 1000 A in length comprise the structure 

of carbon fibers. In glassy carbon, however, the carbon 

fibrils are not oriented, and intertwine into an extensive 

tangled, knotted structure. , Because of their structural 

similarities to graphite at the atomic level, the bonds in 

glassy carbon and carbon fibers are almost entirely of the 

sp 2 type. 

Nanocrystalline graph.i te ( also called turbostatic carbon 

or carbon black) is also derivative of the graphite 

structure, with local ordering of carbon atoms giving rise to 

a 2D hexagonal structure. The spatial extent of the 

hexagonal ordering, or domain size, in nanocrystalline 

graphite differentiates it from other forms of carbon. The 

ordered domains can be likened to the grains in a 

polycrystalline material; each grain is a single, ordered 

crystal structure randomly oriente~ crystallographically with 



34 

respect to neighboring grains. Domains in nanocrystalline 

graphite range in size from 16 A to 38 A. 38 Al though sp 2 

bonds characterize the graphitelike domains in 
,, 

nanocrystalline graphite, sp 3 bonds are likely present at 

domain boundaries. 37 Again, as with glassy carbon, 

nanocrystalline graphite is not truly amorphous, but rather 

exhibits crystallinity on a very fine scale. 

Microcrystalline diamond is analogous to nanocrystalline 

graphite, and is typically observed in thin diamond films. 39 

In contrast to graphite and its crystalline derivatives 

(glassy carbon, carbon fibers, and nanocrystalline graphite), 

sp 3 bonding predominates in microcrystalline diamond, 

resulting in the diamond like crystal structure on a very 

fine, local scale. The domains in microcrystalline diamond, 

however, are much larger (up to 1 µm) than those found in 

nanocrystalline graphite. 

The previous discussion highlights the difficulty in 

ascertaining an amorphous state for carbon. Aside from the 

many modifications in crystallinity carbon may assume, 

amorphous carbon does exist. Two principal criteria define 

an amorphous state for carbon: 

1. A mixture of sp 2 and sp 3 bonds exists, with the 

proportion of sp 2 to sp 3 bonds denoting a gradual 

shift in the nature of the amorphous carbon from 

graphitic to diamondlike; 
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2. S:hort-range order is limited to less than 5· A, 

precluding the presence of nanocrystalline domains. 

These cri-teria. can- be determined ·experimentally :with the use 
,, 

of Raman spectroscopy, - Eilectron' :and neutr;on diffraction, 

electron energy loss spectrometry, and (e,2e) spectroscopy. 

Further comparison with theoretical models narrows ,:the 

criteria down to a specific structural model for amorphous 

carbon. 

The ,d::oexd.stence of both sp 2 and sp 3 bonds. profpundly 

affects the--strueture of ·amonphous 1carbon .. The 3D. nature of 

the sp 3 ·• bohds warps and :distorts the 2D atomi:c configurations 

arising•- from sp 2 bcihd§. Consequently, a low sp 2 /sp 3 bond 

• ratio implies ah amorphous structure with a high degree .of 3D 

coniiectivity, ahd is therefore diamondlike .in quality. 

Conversely,·· a high sp 2 /sp 3 bond ratio indicates a quasi~2D . 
amorphous structure with sp 3 bonds introd1,;tcing • distortions in 

the 2D planes/ Alriot-phous carbon with :a· high. sp 2 / sp 3 bond 

ratio therefore· displays g:taphitic-qualities. 

Structural Models of 
Amorphous Carbon 

Beeman et al. ~0 constructed three structural models for 

amorphous carbon (a-C) with· various sp 2 /sp 3 bond ratios. 

Ra.dial distribution· functions (RDFis-), VDOS spectra, and 

Raman spectra.· were then numerically· computed ,for each of 

their models. (Beeman et al. calculated the VDOS and Raman 

spectra with the use of the equation-of-motion method.) 
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Comparisons of model RDF's with RDF's obtained for a-C with 

the use of neutron diffraction were inconclusive in selecting 

a preferred model for a-c. Comparisons with VDOS and Raman 
•' 

spectra, however, revealed that the most pr9bable model for 

a-C has a sp 2 /sp 3 ratio greater than 9 (less than 10% sp 3 

bonds). 

therefore 

They concluded that the structure of a-C was 

primarily 2D, with occasional bonds 

interspersed in the network. 

Electronic band structures were determined for an a-c 

film with the use of (e,2e) spectroscopy, 41 and the results 

support the conclusions of Beeman et al. The electronic band 

structures for the a-c film were more consistent with a 

graphitic type of carbon structure than with a diamondlike 

carbon structure. Further studies with (e,2e) spectroscopy 

revealed that both evaporated a-c and ion-sputtered a-c 

contained primarily sp 2 bonds, but that a dependence of 

electronic structure on preparation method also existed. 42 

Electronic properties computed with the use of model 

structures by Galli et al. 43 are also supportive of a 

distorted, 2D network model for a-c. Their results agree 

reasonably well with experimental data, and indicate an 

sp 2 /sp 3 ratio of 4 to 9 (10-20% sp 3 bonds) and clustering of 

the sp 3 bond sites. The structural models used by Galli et 

al. consisted of random, highly distorted 2D layers with 5-, 

6-, and 7-membered rings. 
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Li ;and Lanhin 44' measured radial diSt£1r£but:fon • functions 

of a-c • 'f ii:rns wi'th 'the • use of neutron diffraction, and 

concluded that' aithou~h the ·bonding was predominantly SPz, no 

third nearest • neighbor peak was o·bserved 'which would 

correspond to a hexagonal' structure. The absence of 

hexagonal ordering in a-c provides further evidence for a 2D 

continuous • random network with 5- and 1:.:.:rnembered rings in 

addition to 6-membered rings. 

To sununarize, substantial evidence exists for a 

structural :rnodeibf a--c'which consists of a locally 2D-CRN 

with·rnostly' s1>2 bonding and with regions of JD conhedtiv:ity 

at sp 3 bond sites. The 2D hetwork will be comprised of r!:i!ngs 

of various size (mostly 5--, 6.;;.., and 7-membered rings·, but 

possibly ·also including some 4- and a-membered rings'), and 

will be warped and/or w:r:inkled near sp 3 sites. Such a 

structural moder 'is agreeable to the type of analysis Used by 

the embedded ring approach, and this model'·is used as a test 

case for the embedded ring approach in this·work. 

Note·that other forms of a-c exist for which this model 

is inapplicable. The types of a-C obtained iri the laboratory 

are highly dependent on how the a-c is prepared; choice of 

deposition ·m~thod and conditions during depo$ition 

(temperature:, pressure, starting materials, etc.) determine 

the atomic structure arid therefore the material properties of 

the resulting a-c. Hydrogenated a-C exhibits a larger 

proportion of sp 3 bonds due to hydrogen stabilization, and is 
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therefore more diamondlike in properties and atomic 

structure. 

proportion 

Similarly, diamondlike a-c also has a large 

of bonds and exhibits diamondlike 

characteristics (e.g., hard and transparentJ. This thesis, 

however, will not be concerned with hydrogenated or 

diamondlike a-c due to complications which may arise in the 

vibrational dynamics due to hydrogen bonding and greater 3D 

connectivity. 

Figure 8(a) represents the structural model for a-C, 

displaying a 2D-CRN, but with the distorted sp 3 regions 
-

omitted. Each triangle in this triangle raft model 

represents a three-fold coordinated (sp 2 bonded) carbon atom. 

Also note the randomness of the structure and diverse size of 

the rings which comprise the network. 

Figure 8(b) presents the ring statistics for the CRN in 

Figure 8(a). The ring statistics indicate that the majority 

of rings are 5-, 6-, and 7-membered. Additional 4-, 8-, and 

9-membered rings complete the structure. Note that such a 

CRN for a-C provides a truly random structure, with short­

range order not exceeding second nearest neighbors (agreeing 

with the results of Li and Lannin 44
) and with a relatively 

low population of six-membered rings (showing substantial 

deviation from the hexagonal structure of graphite). 
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FIG. 8. Triangle raft model (a) and ring statistics 

(b) for amorphous carbon with continuous 

random network structure. 
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Vibrational Spectra 
of Amorphous carbon 

40 

As mentioned previously, several characterization 

methods exist (for example, diffraction techniques and (e,2e) 

spectroscopy) to ascertain the atomic and electronic 

structure of various forms of crystalline and amorphous 

carbon. Raman spectroscopy is particularly useful for 

discerning the structure of carbon since Raman spectra are 

sensitive to both long-range order ( for crystalline 

materials) and short-range order (for amorphous materials). 

The Raman effect was discovered in 1925 by c. V. Raman, who,_ 

coincidentally, obtained the first Raman spectrum from 

diamond, a crystalline form of carbon. 45 The Raman effect 

relies upon the inelastic scattering of light quanta 

(photons) from molecules and solids. The scattered photons 

gain or lose energy from vibrational modes in the molecules 

or solid. The change in frequency of the scattered photon 

corresponds to the frequency of the vibrational mode. Since 

the vibrational frequencies are structurally dependent, the 

Raman effect provides an experimental technique spanning the 

bridge between atomic structure and vibrational dynamics. 

Structural symmetry in crystals gives rise to Raman 

selection rules for the vibrational modes, and the Raman 

spectra are indicative not only of molecular vibrations 

( internal modes) , but of crystal structure ( external or 

phonon modes) as well. Relaxation of the Raman selection 



rules for crystals may arise from two, cond'itions: 

1. T~ansformation or distortion of the crystal 

structure to a crystal structure with. lower 

symmetry; 
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2. A decreasE?,: t,n.long-range order due to crystalline 
,, '1 , ' 

domain boupdaries in microcrystalline or 

nanocrystalline materials. 
} 

Nominally inactive Raman modes appear in the Raman spectrum 
' ) ' 

wl:len the Raman ~election rules are re3:~xed,. and the inactive 
\ ); .. 

. modes ,?3,Fe dia,gn9stic . of microstructural alterations in the 

cryst~+lin~ material. Breakdown of the Raman selection rules 

occurs in truly amorphous materials due to.a complete la~k of 
- l.': ~ 

long-range order and structural symmetry. Raman se+ection 

rule breakdown allows all vibrational modes to appear in the 
) - ,,,, ,_ :, - ,\ 

.. !.', I , 

Raman spectrum, and the Raman spectrum approximates the 

VDOS. 46-48 

The Raman spectrum of graphite, Figure 9 (a), exhibits a 

single, sharp peak at 158 o~ cm-1 .and a low-freq1:1:ency peak at 

50 cm-1 arising from the Raman active E2 s modes. 49 The E2g 

modes are. the only Raman active fundamentals for graphite, 

which has the D\h space group (homomorphic to the D6h point 

group). The Raman spE=:~trum of diamond displays a single 

Raman active 111ode at 13.3 2 cm-1 • 37 

In addition to the 1580 cm-1 E2s mode, a strong peak at 

1360 cm-1 and a, smalle;i::: peak at 1620 . cm-1 appear in Raman 

spectra of nanocrystalline graphite, Figure 9 (b). 49
•
50 The 
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FIG. 9. Raman spectra of graphite (a), nanocrystalline 

graphite (b), and amorphous carbon (c). After 

References 49 and 50. 
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intensity of the 1360 cm-1 band is inversely proportional to 

the crystallite size, and can be attributed to relaxation of 

the Raman selection rules for graphite. 10
•
38

•
51

-
54 The loss of 

long-range translational order in the hexagonal lattice due 

to finite crystallite size allows the normally Raman-inactive 

A1g mode to become Raman active. Note that al though the A1g 

mode is Raman inactive for an infinite hexagonal lattice, it 

is Raman active (along with the E2g mode) for a single, 6-

membered carbon ring with D6h point group symmetry, and for 

larger yet finite· assemblages of 6-membered rings as well 

(i.e., polycyclic aromatic hydrocarbon molecules). 

The 1620 cm-1 line in the spectra of nanocrystalline 

graphite is too close to the 1580 cm-1 line to be distinct. 

Rather, it merges with the 1580 cm-1 line to form a shoulder 

on the 1580 cm-1 peak, a~d shifts the 1580 cm-1 peak to a 

slightly higher frequency'~ The origin of the 1620 cm-1 line 

is still unresolved, but most likely results from the 

appearance of,a feature in the graphite VDOS, again due to 

relaxation of the Raman selection rules. 53 
", 

In contrast to the Raman spectra of graphite and 

nanocrystalline graphite, the Raman spectrum of amorphous 

carbon, Figure 9 (c), presents a broad, asymmetrical band 

centered at 1550 cm-1 • 
50 It is unclear whether the band in 

amorphous carbon represents a true vibrational density of 

states, with contributions from vibrational modes of larger 

and smaller rings in a continuous random network (the CRN-
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VDOS interpretation), or whether the band results from 

disorder-induced broadening and frequency-shifting of the E2g 

graphite mode at 1580 cm-1 . 

Resonant Raman spectra of diamondlike a-c films provided 

evidence that the broad band in diamondlike a-c is comprised 

of two components at 1400 cm-1 and 1530 cm-1 • 55 The 1400 cm-1 

and 1530 cm-1 components can be associated with aromatic, sp 2-

bonded carbon rings of large and small sizes, respectively. 

The structural models and numerical calculations of Raman 

spectra by Beeman et al. also support a CRN-VDOS 

interpretation for the Raman spectrum of amorphous carbon. 40 

The embedded ring approach will attempt to determine if 

the broad band in Raman spectra of a-c could arise from 

contributions from the vibrational modes of di verse-siz,ed 

rings. The diverse-sized !ings would constitute a CRN, with 

each n-membered ring contributing a distinct set of 

vibrational mode frequencies to the VDOS. Thus, the 

application of the embedded ring approach to the vibrational 

spectra of a-c provides an analytical approach to verify the 

CRN-VDOS interpretation. 

Polycyclic Aromatic 
Hydrocarbons 

An important step in developing the embedded ring 

approach is to determine the effect of the surrounding 

network on the vibrational modes of the embedded ring. A 

single, isolated ring will have a set of vibrational modes 
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with one or two frequencies • for each singly..:.:degenerate or 

doubly- degene:r'a"te vib:i:-'atiortal species.: Embedding the ring 

modifies these mode frequencies. The extent and nature of 

the frequency modifiCa:tibn ca:ri :. be studied in a regular, 

stepwise. progression by first examining the vibrational modes 

of a:n isolated ring. The surrounding network is then 

constructed in stages by adding additional rings_ t.o the 

isolated ring. Frequency changes are notect for e;a,c_h ring 

added. Finally, the effect:of a surrounding network on the 

embedded ririg c.an,be inferrect by examining"the relationship 

between th 1e•.frequency of a .specific mode and the number of 

rings coupled together. 

The above analysis is made easier .by the existence of 

polycyclic aromatic hydrocarbons (PAH's). 

consist of carbon rings coupled together in a •variety of 

configurations and sizes (Figure 10) . The carp.on ring bonds 

are sp2 in nature, and the dangl.ing bonds, are typical,ly taken 

up by hydrogen. , The, hydrog.en · atoms vibrate at higher 

frequencies than the carbon atom ring mo.tions because their 

mass is much less than that of the carbon atoms. 

Additionally, the motions of the hydrogen atoms have only a 

small effect on the carbon atom ring motions. and therefore, 

to a first approximation, .. can be ignored for the above 

• a:nalysis. Although most PMI's are comprised of 6-membered 

rings, some contain 4-, 5--, and 7-membered rings. The 

vibrational dynamics of several PAR molecules are dispersed 
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FIG. 10. Molecular structures of selected 

polycyclic aromatic hydrocarbons. 
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throughout the literature. 

Benzene is the simplest aromatic hydrocarbon, and is the 

archetype for an isolated, 6--membered carbon ring. Adding 6-

membered rings ip a linear, chain-wise fa 9hfon to benzene 

creates the PAR molecules of naphthalene ( 2 rings), 

anthracene (3 rings), tetracene (4 rings), and pentacene (5 

rings). Analysis qf a specific mode frequency for these 6-

membered ring structures wou'id provide clues to the nature of 
·, 

ring mode-network coupling in graphite and a-c. The E2g mode 

is selected because of its Raman activity in spectra of 
'"-~' 

graphite and PAR molecules, and because it is an in-plane-
, - ,,,, 

vibrational :mode~ The E2g :mode for benzene has 'a, measured 

frequency of 606 cm- 1 • 56 An E2g-like mode for naphthalene, 

where the atomic motions in each ring approximate the motions 

for the E2g mode in benzene, .displays a frequency of 1162 cm-

1 E~-like modes for anthracene, tetracene, and pentacene 

have frequencie·s of 1557 cm-1 , 1554 cm-1 , and 1552 cm-1 , 

respectively. 57 

A trend is observed for the E2g-like mode frequencies for 

the linear PAR inolecules when they are plotted as a function 

of the number of rings for each molecule (Figure 11) . The E2g 

mode frequency for the isolated ring (benzene) increases with 

the number of rings added until anthracene (3 rings). After 

anthracene the.,frequency changes little, and will probably 

not change significantly for molecules larger than pentacene. 

Note that the final frequency limit for the E -like modes-­Zg 
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49 

about 1550 cm-1--is close to 1580 cm- 1 , the E2g mode frequency 

of graphite. 

The E2g mode frequency for graphite would be an 
,, 

asymptotic limit for E2g-like mode frequencies of very large 

PAH molecules. The E2g-like mode frequencies for linear PAH 

molecules approach but fall a little short of this limit, 

probably because of their linear, highly elongated structure. 

Analysis of the E2g-like modes for more synunetrioal, less 

elongated PAH molecules such as triphenylene ( 4 rings) , 

coronene (7 rings), and hexabenzocoronene (13 rings) would 

most likely place an asymptotic limit (as the number of rings 

increases to infinity) at 1580 cm-1 • 

We can conclude from Figure 11 that the isolated ring E2g 

mode increases in frequency with added rings, and that a 

limit is reached with only about three rings. Tl:;l.erefore, 

complete ring mode-network coupling is achieved rapidly with 

relatively small ring assemblages. This result lends 

credence to the embedded ring approach, which attempts to 

account for the ring mode-network coupling analytically and 

without the use of numerical methods 'and large network 

simulations. Further analyses of this type are possible with 

the use of other vibrational modes (for example, the A1g 

mode) , other 6-membered carbon ring PAH molecules (for 

example, coronene), and with the use of PAH molecules 

containing 4-, 5:.., and 7-me:ritbered rings. 
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CHAPTER IV 

THE EMBEDDED RING APPROACH 

Background 

The vibrational properties of material~ are determined 

to a large extent by the local arrangement of atoms. 2
•
14 This 

is especially significant for amorphous materials, which lack 

long-range order but display limited short-range order. As 

an example, the lattice vibrations of crystalline silicon, 

which exhibits a diamond-like cubic structure, rely primarily 

on the local four-fold coordinated tetrahedral structure of 

the silicon atoms. Many aspects of the dynamics of 

crystalline silicon can be derived from this local structure, 

in particular the general characteristics of the VDOS. 2 The 

local tetrahedral structure persists in amorphous silicon, 

with disorder appearing in.the form of distributions of bond 

lengths and bond angles. By incorporating the effects of 

bond-length and bond-angle disorder in the VDOS, the dynamics 

of amorphous silicon have been extrapolated. The results 

agree fairly well qualitatively with the experimentally­

determined VDOS of amorphous silicon. 2 

The use of short-range order (local atomic arrangement) 

provides an analytical approach for determining the 

vibrational dynamics of 3D amorphous solids. The technique 

can be applied to 2D amorphous materials as well once a 

basic, local structural unit is chosen. An immediate and 
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obvious choice for a material such as amorphous carbon would 

be the three-~oordinated, plana~ arratigement of four carbon 

atoms, forming a triangular cluster. However, such a basic 

unit could be arranged in groups to form rings of diverse 

sizes. The contribution of the ring mod.es qf vibration to 

the VDOS would be significant, and yet such contributions 

would be ne9"lected. with the use of the_ triangular clus~er as 

the basic µpit ... 
:,_.,,_c_ •" ,,! "',• 

Tl:;i.,e worlc . o.f, Gal.eener .. 15- 17. supports. the use of rings as . • • ) 

basiq, si:;n.1;ct11J:::9-l upits for the analysis of amorphol,:ls solid 

dynamics, and indeed was the original inspiration for the 
- , - ' ( ' . ' . 

research thrust of this thesis. Galeener ~3amined Raman 

spectra qf amorphous silica., and_ .directed, l:lis attenti9n to 

sharp features in the sp~ctra. The sl:larp peak;s are. a;nqmalies 
I ; ) }. j ' ! j \. : ) • s 

since. vibrational spectra of amorphous materials. generally . . 
yield broci.d featur~s which,usually blend into a continuum. 

·- ' ' . ,, ' 

The broaden,i,ng of features is a .consequence of disorder' and 
I < , • , , ~. ~ ' , ., _; . • 1 • 

relaxation or,.br,eakdown of Raman sele~tion rules. The sharp 
. •, 

peaks therefore present a contradiction to this general 

prescription. 

Galeener's analysis revealed that the sharp features 

arise_ from the vibrational modes of Si0 2 rings of vartous 

sizes. The sharpness of the features can be attributed to 

vibrational decoupling of tne rings . from the surrounding 

atoms, effectively isolating the ring mode;:, from the medium-

range and long-range disorder. Galeener showed that 
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vibrational decoupling of the rings is achieved by a 

cancellation of central forces with noncentral forces at the 

silicon atoms. With the motions of the silicon atoms 
,, 

canceled, the oxygen breathing modes of the Si0 2 rings are 

decoupled from the random network and result in the distinct 

features in the Raman spectra. Other silicate glass 

compositions display ring-mode decoupling as well, and 

Galeener 's model remains as the best approach for these 

materials . 13 • 18 

Although nearly complete ring-mode decoupling will occur 

only for materials of certain compositions, the use of ring 

vibrational modes presents a fruitful approach for 

analytically determining the vibrational characteristics of 

amorphous materials. In particular, the use of various sized 

rings as basic structural uni ts for amorphous 2D materials is 
.. 

especially promising. As mentioned previously, a 2D-CRN can 

be modeled as a collection of variously-sized rings, with 

ring statistics providing a method for characterizing the 

random network. In contrast to amorphous silica, the ring 

·motions in an amorphous CRN material will, in general, be 

coupled to the collective motions of the network. The 

following sections will describe the analytical method I have 

developed for determining the ring vibrational modes and for 

incorporating ring-network coupling into the ring motions. 
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A ring of atoms embedded in a 2D network can be regarded 

as a separate molecular entity, and methods used for 

determining molecular vibrations are directly amenable for 

determining the ring motions. The coupling of the ring to 

the network introduces the only modification requiredo For 

example, a 6-membered carbon ring in amorphous carbon can be 

described as a benzene ring embedded in a random network. 

The hydrogen bonds of the benzene molecule are then modified 

to represent the ring-network coupling, which results in a 

modification of the ring motions. The analogy has a good 

physical basis, since benzene, graphite, and amorphous carbon 

modeled as a 2D-CRN comprise the same type of carbon bonding. 

(sp 2 ) and carbon-carbon bond lengths (1. 39 A for benzene, 58 

1.42 A for graphite, 37 and 1.46 A for amorphous carbon 44 ). 

For the dynamics of our amorphous carbon model, the 

vibrational frequencies for 4-, 5-, 7-, and a-membered carbon 
' 

rings would be derived as well to account for the diverse 

ring sizes in the network. 

The structural model for the embedded ring approach is 

constructed by cutting a circular hole into the random 

network. The edge of the hole is assumed to be rigid. An n­

membered ring (n=4, 5, 6, 7, or 8) is then embedded in the 

hole (Figure 12). The bonds joining the atoms in the ring 

retain the normal force constants expected for carbon-carbon 



I 
I I , I 

j 

FIG. 12. Structural model for em.bedded ring approach 

with weighted coupling force constant. 
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bonding in the material. The bonds joining the ring atoms to 

the rigid wall, however, represent the coupling between the 

ring and the network. By constraining the edge of the hole 
,, 

to be rigid, the embedded ring approach attempts to account 

for the effects of the network's collective motions on the 

ring by weighing an effective coupling force constant. The 

effective coupling force constant then is not the normal 

atom-atom bond-stretching force constant, but a weighted 

force constant modified to reflect the random network's 

influence on the ring. The motions of the rings are then 

solved with the use of conventional techniques from classical 

mechanics described in following sections. Frequencies for 

the modes of oscillation for each n-membered ring are then 

extracted. 

Note that a different approach is possible to account 

for the random network-ring coupling effects. By replacing 

the rigid wall of the hole with n peripheral atoms, the 

collective motions of the network can then be condensed into 

then peripheral atoms by modifying their effective masses 

(Figure 13). The ring atoms retain their normal masses, and 

all of the force constants, including the coupling force 

constant, are now just the normal carbon-carbon force 

constants. The effective mass of the peripheral atoms would 

account for the entire random network, and reflect the 

network's effect on the ring motions. Solving the motions 

for an embedded 6-membered ring, for example, should be the 
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same as solving the motions for a benzene molecule, with only 

the hydrogen masses changed to effective masses and the 

hydrogen-carbon bonds changed to carbon-carbon bonds. 
•' 

Although a promising avenue of investigation, the mass-

weighted, or effective mass coupling, embedded ring approach 

is beyond the scope of this thesis, which will confine itself 

to the force-constant weighted approach. 

The methods used to determine the ring modes of 

vibration reflect the degree of approximation for the atomic 

potentials. My research makes use of two potential models: 
-

the central force model and the valence force model. For a 

first-order approximation, a central force model is employed, 

with only bond-stretching force constants and appropriate 

kinetic energy terms used in the calculations. The 

calculations are simple and straight-forward, requiring only 

the application of the method of small oscillations as 

presented by Goldstein. 59 The valence force model provides 

a second-order approximation, incorporating not only bond­

stretching force constants, but also bond-angle-bending force 

constants. Angular kinetic energy terms are also included, 

and the number of internal coordinates required also 

increases. The complexity of the valence force model 

calculations necessitates the application of group theory. 

The utility of group theory goes beyond that of managing the 

calculations. It provides insights into the most probable 

modes of oscillation for the rings and shows the dependence 
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of vibrational frequency on variations in bond length and 

force constants. 

The valence force model in this work employs only 
,, 

nearest-neighbor interactions. Further refinements in the 

method of molecular vibrations are possible with the use of 

second and third nearest-neighbor interaction terms included 

into the potential function. The embedded ring approach, 

however, precludes the use of second and third nearest­

neighbor interaction terms by imposing a rigid "wall" between 

the ring atoms and the random network. The wall isolates the 

ring atoms from many of their second and third nearest 

neighbors in the network. Many of the other methods employed 

by researchers studying vibrational dynamics of amorphous 

materials do not approach this level of refinement; several 

methods employ only a central force approximation. 2 

Therefore, limiting the embedded ring approach to a simple 

valence force model with only nearest-neighbor interactions 

presents a justifiable approximation for amorphous materials. 

Central Force Model 

Calculations for the central force model employed the 

method of small oscillations as outlined by Goldstein. 59 The 

potential energy function incorporated only two bond 

stretching force constants, the atom-atom bond stretching 

force constant and the atom-rigid wall coupling force 

constant. Generalized coordinates for the atoms in the 
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embedded ring assume the form 

where q 0 i. are the equilibrium atomic positions and ni are 

deviations of the generalized coordinates from equilibrium. 

Expansion of the potential energy in a Taylor series about 

the equilibrium positions (q 0 d yields successive terms which 

are functions of the deviations (ni). The small oscillation 

approximation retains only the terms in the series which are 

quadratic (ninj), and the ni's become new generalized 

coordinates. The kinetic energy terms are already quadratic 

functions of the velocities (ninj)• 

The vibrational modes for the embedded ring are solved 

by assuming the ring is a system of coupled, linear harmonic 

oscillators. With our new generalized coordinates, the 

Lagrangian of the system 1s 

Solution of Lagrange's equation yields a set of linear, 

homogeneous differential equations which are the equations of 

motion: 

The set of differential equations constitute an eigenvalue 

equation with oscillatory solutions of the form 
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-n .=ca .e-i7.lt 
• I .l .l 

where C is a scaling factor and ai is the complex amplitude 

of oscillation for each coordinate ni• The frequencies (w) 

for the vibrational modes can be solved by imposing the 

condition that the determinant comprised of the elements 

must vanish. This determinant is. the secular equation, and 

solution of the determinant yields a polynomial equation, the 

roots of which provide solutions for w in terms of the 
-

constant coefficients for the potential energy (ViJ) and the 

kinetic energy (Tij) . 

Cartesian coordinates were selected for the central 

force model approach, and are shown in Figure 14(a). Only 

in-plane vibrational modes were sought. Therefore, each atom 

was limited to only two degrees of freedom and only the x and 

y coordinates were necessary to describe the atom 

displacements. Each atom was given a set of coordinates 

(x 1 ,y 1 for the first atom; x2 ,y 2 for the second atom; and so 

on) since only the displacements from equilibrium needed to 

be prescribed. 

Determinants from the eigenvalue condition were 

constructed for 4-, • 5-, 6-, 7-, and 8-membered embedded 

rings. The constant coefficients for the kinetic energy 

included only diagonal elements and were of the form 
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(a) 

(b) 

FIG. 14. Coordinate systems for central force model (a) 

and valence force model (b). 
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Tij=moij 

where mis the mass of a carbon atom. The potential energy 

coefficients included both ki, the bond sti;-,etching force 

constant, and k 21 the coupling force constant. The potential 

energy coefficients include nondiagonal elements since bond 

stretching between two atoms involves displacements of both 

atoms. 

Because of the two degrees of freedom for each atom, the 

secular equation for an n-membered ring is a 2n x 2n 

determinant. The xixj and YiYj elements in the secular 

equations separated into two identical blocks. All xiyj 

elements were zero, indicating the absence of cross-products 

between the x and y displacements. This separation of x and 

y coordinates allows the secular equation to be 

two smaller n x n determinantal blocks. so 

determinant can then be solved separately. 

factored into 

Each n x n 

Since the x-

determinant and they-determinant are identical, the secular 

equation for an n-membered ring becomes an n x n determinant. 

Reduction of the 2n x 2n determinant to an n x n 

determinant introduces degeneracy into the eigenfrequency 

solutions. The 2n independent motions for the system (the 

embedded ring) arising from the two degrees of freedom for 

each atom will be necessarily degenerate due to the 

availability of only n eigenfrequencies. Further 

degeneracies occur in the solution of then x n determinants, 
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reducing the number of eigenfrequencies for each n-membered 

ring to less than n. The degeneracies exhibited by the 

vibrational modes of the embedded ring can be attributed to 
,, 

both the planar natur~ and the cyclical nature of the ring 

configuration. 

Table 1 displays then x n determinants for the 4-, 5-, 

6-, 7-, and a-membered embedded rings. The elements for all 

of the determinants are the same form(2k 1 + k 2 - t2m, -k 11 and 

0), and each determinant assumes a similar tri-diagonal form. 

Only the size (n) and placement of the elements varies 

between each determinant. The determinants were solved 

analytically using Derive@, a mathematical analysis program 

using symbolic algebra. 61 solutions were in the form of n th
-

order polynomials, with the polynomial roots providing 

expressions for the frequencies~ in terms of k 1 , k 2 , and m. 

The ring motions for each eigenfrequency define the mode 

of oscillation, or vibrational species, associated with t. 

Vibrational species were assigned to each eigenfrequency by 

substituting t back into the eigenvalue equation. The 

amplitude coefficients were then determined for each atom in 

the embedded ring. The amplitude coefficients supply the 

relative displacement of each atom with respect to other 

atoms in the ring. The ring motions are easily obtained from 

the amplitudes of the relative displacements, and vibrational 

species are assigned to each mode of oscillation by examining 

the symmetry operations denoted by the displacements. 
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r7 
TABLE 1. central force model matrices. The matrices 

I 
are the factored secular determinants from the 

eigenvalue equation in cartesian coordinates. 

r l 
a b 0 b a b 0 0 b 

b a b 0 b a b 0 0 

I 0 b a b 0 b a b 0 

b 0 b a 0 0 b a b 

: l 4-membered ring b 0 0 b a 

5-membered ring 

:-1 
a b 0 0 0 b a b 0 0 0 0 b 

b a b 0 0 0 b a b 0 0 0 0 

0 b a b 0 0 0 b a b 0 0 0 

0 0 b a b 0 0 0 b a b 0 0 

0 0 0 b a b 0 0 0 b a b 0 

b 0 0 0 b a 0 0 0 0 b a b 

6-membered ring b 0 0 0 0 b a 

7-membered ring 

a b 0 0 0 0 0 b 

b a 0 0 0 0 0 0 

0 b a b 0 0 0 0 

0 0 b a b 0 0 0 

0 0 0 b a b 0 0 

0 0 0 0 b a b 0 

j 0 0 0 0 0 b a b 

b 0 0 0 0 0 b a 

j 
8-membered ring 

:~J 
a = 2k 1 + k 2 - iim 

b = -kl 
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Valence Force Model 

Inclusion of bond-angle-bending forces into the embedded 

ring approach introduces a higher level of approximation than 
,, 

presented by the central force model, but at the expense of 

quadrupling the complexity of the calculations. In addition 

to the two translational coordinates which account for 

translational displacements, two angular coordinates are now 

also required for each atom in the embedded ring to account 

for the bond angle bending. This increases the total number 

of coordinates for then-membered embedded ring system from 

2n to 4n. Additionally, coordinate cross-product terms which 

vanished in the central force model approach do not vanish in 

the valence force model approach. Consequently, the secular 

equation for an n-membered ring is now a 4n x 4n determinant, 

and not the n x n determinant resulting from the central 

force model. Finally, the kinetic energy matrix coefficients 

will be different for each n-membered ring since the bond 

angles differ for 4-, 5-, 6-, 7-, and a-membered rings. 

The application of group theory and the normal 

coordinate treatment to the embedded ring approach becomes 

essential when a valence force model is adopted. By 

approximating the configurations of the embedded rings with 

regular polygonal shapes, full advantage can be taken of 

symmetry 

operations. 

elements and their corresponding symmetry 

The symmetry elements of a ring allows 

classification of the ring to a molecular symmetry point 
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Use of the point group's character table permits 

determination of vibrational species, fundamental modes, 

Raman active modes, and infrared active modes for • the 

embedded ring. 

The normal coordinate method utilizes the character 

table further by transforming the 4n internal coordinates to 

a set of symmetry, or normal, coordinates for each 

vibrational species. The symmetry coordinates are then used 

to establish a secular equation for each vibrational species. 

Each secular equation is either a 2 x 2 or 4 x 4 determinant, 

depending on the type of vibrational species (one, two, or 

three-dimensional representations). Note that the normal 

coordinate treatment factors the initial 4n x 4n .secular 

equation into smaller ( 2 x 2 or 4 x 4) secular equations 

which are more readily solved. 

The 4-, 5-, 6-, 7-, and a-membered embedded rings were 

configured by placing the atoms at the vertices of a square, 

pentagon, hexagon, septagon, and octagon, respectively. The 

respective point groups for the rings are D4h, Dsh, D6h, D7h, 

and Dah, and were assigned by noting the number and type of 

symmetry axes and symmetry planes for each ring. For 

example, the 5-membered ring has one five-fold symmetry axis 

(Cs), five two-fold symmetry axes (C2) perpendicular to Cs, 

and a symmetry plane (ah) also perpendicular to Cs• The C2 

symmetry axes with the Cs symmetry axis define an additional 

set of five symmetry planes (av) perpendicular to ah. The 



j 

' i 

67 

symmetry elements are completed with a rotation-reflection 

axis (S5 ), and constitute the D5h point group. 

Each of the symmetry elements of a point group have 
,, 

corresponding symmetry operations. Each point group also has 

a set of vibrational species (also called representations) 

which are possible for the given point group. A specific 

atomic or molecular displacement occurs for a given 

vibrational species under a given symmetry operation. The 

these character table of a point group tabulates 

displacements for each vibrational species and each symmetry 

operation in the point group. By classifying the atomic 

displacements for a given vibrational species with respect to 

the symmetry operations, the character table f acili tat es 

calculation of fundamental, Raman active, and infrared active 

modes, and can be used to transform internal coordinates to 

symmetry coordinates. 

Vibrational species for the embedded rings were obtained 

from the character tables of their corresponding point 

groups. 62
•
63 In-plane species were determined by noting the 

character of the species under the ah symmetry operation. A 

positive character denotes in-plane displacements while a 

negative character denotes out-of-plane displacements. 

Fundamental vibrations and Raman active fundamentals were 

acquired with the use of selection rules applied to each 

ring's character table. Ferraro and Ziomek 64 present the use 

of selection rules with clarity, and is highly recommended to 
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the reader with a desire to pursue group theory. 
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Table 2 

lists the in-plane vibrational species, fundamentals, and 

Raman active fundamentals for the embedded rings. 
, .. 

Note that each atom has two degrees of freedom, and each 

embedded ring has 2n-3 in-plane vibrational degrees of 

freedom. Two degrees of freedom are subtracted for 

translation of the ring's center of mass, and one degree of 

freedom is subtracted for rigid rotation of the ring. This 

leaves 2n-3 in-plane vibrational degrees of freedom, or 2n-3 

in-plane fundamentals for each ring. Table 2 displays this 

result, with five in-plane fundamentals for the 4-membered 

ring, seven in-plane fundamentals for the 5-membered ring, 

nine in-plane fundamentals for the 6-membered ring, eleven 

in- plane fundamentals for the 7-membered ring, and thirteen 

in-plane fundamentals for the a-membered ring . 
. 

The Raman active modes include the A1g or Ai' modes for 

all of the rings. These are the symmetrical breathing modes, 

and the displacements are similar for all five rings. The E2g 

and E2' Raman active modes also represent similar motions for 

all five rings. The ring motions for these modes stretch or 

elongate the ring along an in-plane symmetry axis (C2 ), and 

these modes will most likely be present in networks 

experiencing longitudinal (compressional) oscillations with 

planar wavefronts. 

The E2g mode of the 6-membered ring was used as a basis 

for determining a consistent set of force constants since it 
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TABLE 2. Embedded ring vibrational species: 

In-plane, fundamental, and Raman active modes. 

4-Membered Ring 

In-Plane Modes : A1g, A2g, B1g, B2g, E1u 

Fundamentals: r in-plane = A1g + B1g + Bzg + E1u 

Raman Active Modes: A1g, B1g, and B2s 

5-Membered Ring 

In-Plane Modes: Ai' , A2 ' , Ei' , E2 ' 

Fundamentals: rin-plane = A/ + E/ + 2Ez' 

Raman Active Modes: A1' and E2 ' 

6-Membered Ring 

In-Plane Modes : A1g, A2g, B1u, Bzu, E1u, E2g 

Fundamentals: I' in-plane = A1g + B1u + Bzu 

Raman Active Modes : A1g and E2g 

7-Membered Ring 

In-Plane Modes: A/ , Az' , E/ , Ez' , E3 ' 

Fundamentals: r = A1' + E1' in-plane 

Raman Active Modes: A1' and Ez' 

8-Membered Ring 

Fundamentals: r in-plane = A1g + B1g + Bzg 

Raman Active Modes: A1g and E2g 

69 
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can be compared to the 1580 cm-1 line in the Raman spectrum 

of graphite. The coupling force constant is expected to be 

mode-dependent, assuming different values for different types 

of modes. A coupling force constant determi~~d with the E2g 

6-membered ring mode should only be applicable to E-type 

modes. Therefore, only E-type modes for the 5- and 7-

membered rings were analyzed further. 

modes for the 4-membered ring were also analyzed in addition 

to the E1u mode because of the similarity of the ring motions 

to the E2g 6-membered ring mode. Similarly, the B1g and B2g 

-
modes for the 8-membered ring were additionally examined 

along with the E1u, E3u, and E2g modes. Because of breakdown 

of the Raman selection rules in amorphous materials, ring 

modes analyzed were not limited to only Raman active modes. 

Establishment of a coordinate system for the various 

rings was the first step in calculating the frequencies for 

the selected modes. The internal coordinates selected for 

the valence force model were those used by Wilson et al. 60 • 65 

in their vibrational analysis of the benzene molecule, and 

are displayed in Figure 14(b). The coordinates t ands are 

the atom-atom bond distance displacement and the atom-rigid 

wall bond distance displacement, respectively. The 

coordinates a and B are not the standard bond angle 

displacements t¢ 1 and t¢ 2 , but are rather the change in the 

internal ring angle·(a) and the angle between the internal 

ring angle bisector and the atom-rigid wall bond (B). 
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The potential energy matrix (f matrix) terms included 

only three force constants: the bond-stretching force 

constant (corresponding to the coordinate t), the coupling 

force constant (corresponding to the coordinates), and the 

bond-angle-bending force constant (corresponding to the 

coordinates a and 13). No interaction terms are included, and 

the resulting f matrix is diagonal in form, even after the 

transformation to symmetry coordinates. 

Advanced methods of studying molecular vibrations 

replace the kinetic energy matrix with the g matrix. 60
•
64

•
66 

The g matrix is more amenable to solution of the secular 

equation, and is related to the kinetic energy matrix by 

2T=L gijPiPj 
i,j 

where Pi is the momentum conjugate to qi, the i th internal 

coordinate; is the momentum conjugate to qj, the •th 
J 

internal coordinate; the gij's are the g matrix elements; and 

the summation is over both i and j. The g matrix elements 

for the embedded rings were determined with the use of the 

vector method described by Wilson et al. 60 Atomic masses, 

bond angles, and bond distances are used to construct the g 

matrix elements. To use the vector method, each bond was 

required to terminate at an atom with a given mass. A 

hypothetical atom was therefore placed at the outer end of 

the coupling bond since no atom existed there in the 

structural model for the embedded ring. Since the coupling 
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bond terminates at a rigid wall, the mass of the hypothetical 

atom was taken to be infinite. (The infinite mass fixes the 

end of the coupling bond to a stationary point. ) This 

presented no difficulty in the g matrix elements because only 

the reciprocal of the masses appear. Some of the terms in 

the g matrix elements consequently vanished. 

Because of the nonstandard nature of the a and B 

coordinates, the g matrix element tables given by Wilson et 

al. could not be used to construct g matrix elements for the 

embedded rings. Use of the tables yielded erroneous results. 

The g matrix elements constructed for the 6-membered embedded 

ring were compared with those calculated for benzene by 

Wilson et al. to ensure proper implementation of the vector 

method. 

Symmetry coordinates for each vibrational species were 
. 

prepared by first transforming the internal coordinates under 

the symmetry operations of each of the five point groups. 

The characters in the character tables for each vibrational 

species were then used to determine the correct combination 

of transformed internal coordinates for each symmetry 

coordinate. 

normalized. 

Finally, the symmetry coordinates were 

The value of the symmetry coordinates lies in their 

ability to transform the f and g matrices into factored 

potential energy and kinetic energy matrices (the .F and G 

matrices). These factored matrices allow partitioning of the 
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original 4n x 4n secular equation or determinant into smaller 

2 x 2 and 4 x 4 secular determinants, each corresponding to 

a particular vibrational species. 
,, 

The symmetry coordinates are related to the internal 

coordinates by the transformation 

where Qj is the j th symmetry coordinate, Ch is the k th internal 

coordinate, and the summation is over k. • The U matrix can be 

used to transform not only the internal coordinates, but also 

the f and g matrices as well. The F and G matrices ·are 

obtained from the following transformations, given in matrix 

notation: 

F=UfUt 

G=UgUt 

ut is the transpose of U. Final solution for the vibrational 

mode frequencies follows from solving the secular equation 

IGF-.m21=0 

where I is the identity matrix. 

The procedure outlined in the previous paragraphs was 

performed for each of the selected vibrational species for 

the five embedded rings. Transformation of the f matrix 

yielded diagonal F matrices with the force constants as the 

diagonal elements. Transformation of the g matrix yielded G 
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matrices with elements comprised of linear combinations of g 

matrix elements. Since the bond angles were already 

calculated into the g matrix elements, only the atom mass m 
,, 

and the bond lengths t ands remained as explicit variables 

in the G matrix. Since amorphous carbon was used as the test 

case for the embedded ring approach, m was given a value of 

12 amu (1. 992 x 10- 23 g), the mass of the carbon atom. The 

bond lengths s and t were just the nearest neighbor atom-atom 

distance in amorphous carbon, which has been reported with 

values of 1.46 A,44 1.48 A,67 1.49 A,43 and 1.43 A.40 A value 
-

of 1.46 A was selected for sand t, and is intermediate in 

the range of values reported. 

The 2 x 2 and 4 x 4 secular determinants were solved 

with the use of Derive@, a symbolic algebra program. 61 The 

roots of the resulting polynomials were also obtained using 

Derive@, and provided frequencies for the vibrational modes 

of the embedded rings. The polynomials had very large 

coefficients which hampered solution even with a computer. 

Since the units of measure for the coefficients were even 

powers of Hz (Hz2 , Hz4 , etc.), scaling the coefficients to 

terahertz frequencies resolved this difficulty in solving for 

the roots. 
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Solution of both the central force model and valence 

force model required selection of a set of force constants 

which would approximate the sp 2 bonding forces in graphite 

and a-c. Only the bond-stretching force constant was 

necessary for the central force model. The valence force 

model required an additional bond-angle-bending force 

constant. Only nearest neighbor force constants were 

considered since interaction terms were neglected for both 

models. Force constant fitting with the 1580 cm-1 E2s mode in 

graphite and analysis of network motions adjacent to the 

embedded ring determined the coupling force constant for each 

model. 

The literature on the vibrational dynamics of a-c and 

graphite present a wide range of values for the bond­

stretching and bond-angle-bending force constants. Table 3 

lists the values reported by researchers in the field. 

Values given by Beeman et al. 40 , Al-Jishi and Oresselhaus, 68 

Tuinstra and Koenig, 51 Young and Koppel, 69 and Nicklow et al. 70 

were determined by fitting dynamical models to spectral 

features of graphite. Kesavasamy and Krishnamurthy 11 cite an 

empirical relationship between interatomic distances and 

bonding forces for their value for the bond-stretching force 
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TABLE 3. Force constant models for carbon. Values are 

the nearest neighbor force constants in N/m 

for graphite and sp 2-bonded amorphous carbon. 

76 

Source Bond-Stretching 

Force Constant (fb) 

Bond-Angle-Bending 

Force Constant (fa) 

Beeman et al. 26 

Nicklow et al. 57 

Al-Jishi and 

Dresselhaus 55 

Young and Koppel 56 

Tuinstra and 

Koenig 34 

Kesavasamy and 

Krishnamurthy 11 

Average 

Standard Deviation 

363 

362 

313 

436 

432 

459 

394 

51. 6 

* No bond-angle-bending force constant given. 

36 

199 

267 

36 

25 

* 

113 

101 
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constant: their method did not employ a bond-angle bending 

force constant. Note that the values reported for the bond­

stretching force constant vary by more than 20% from the 

average value of 394 N/m, and the values of the bond-angle­

bending force constant span more than an order of magnitude. 

A bond-stretching force constant of 363 N/m was 

initially selected for both the central force model and 

valence force model. The success of Beeman et al. in 

modeling spectral features of a-c was the primary reason for 

the selection. Additionally, the value of 363 N/m lies close 

to the value of 362 N/m given by Nicklow et al., and is also 

intermediate in the range of high and low values reported 

(313 N/m to 459 N/m). 

With 363 N/m as the bond-stretching force constant, 

calculation of the 1580 cm-1 E2g mode in graphite with the 

central force model produced a coupling force constant of 315 

N/m. Use of these force constants with the central force 

model constitutes central force model one (CFMl), and mode 

frequencies for all five rings were calculated with this 

model. 

The coupling force constant was assumed, on the1lasis of 

physical intuition, to be positive and within an order of 

magnitude of the bond-stretching force constant. Although 

close in value to the bond-stretching force constant and 

therefore an apparently realistic result, a coupling force 

constant of 315 N/m may be too low to accurately represent 
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the ring-network coupling for an E2 g mode. In the 6-membered 

ring E2g mode, the network atoms adjacent to the embedded ring 

move in direct opposition to the ring atoms. Each network 

atom moves with the same displacement but in opposite 

direction to the embedded ring atom it is coupled with. By 

replacing the network atom with a rigid wall, the effect of 

the opposing motions of the network atoms can be accommodated 

by doubling the force constant of the coupling bond. 

The above scenario is analogous to the problem of two 

masses joined by a spring. The two mass-spring system, 

Figure 15(a), oscillates with a frequency of 

and the two masses move in opposite directions. Replacement 

of one of the masses with a rigid wall, Figure 15(b), results 

in a system which oscillates at a frequency of 

where k' is the force constant of the spring in the new 

system. To oscillate at the same frequency as the two mass­

spring system, the force constant k' must be equal to 2k. In 

the embedded ring system, k corresponds to k 1 , the bond-

stretching force 

coupling force 

constant, 

constant. 

and k' corresponds to k 2 , the 

Therefore, to accurately 

accommodate the effect of the network motions on the embedded 
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m m 

( a) 

(b) 

m m 

( C) 

FIG. 15. Two mass-spring system (a), rigid wall-mass­

spring system (b), and embedded mass-spring 

system (c) used to illustrate the coupling 

force constant and loss of degeneracy in the 

embedded ring system. 



_, 

80 

ring, the coupling force constant must be approximately equal 

to twice the bond-stretching force constant: 

k 2 =2k 1 

By imposing the condition k 2 = 2k 1 , analysis of the 1580 

cm-1 E2g 6-membered ring mode determined the force constants 

to be k 1 = 295 N/m and k2 = 589 N/m. Use of these force 

constants with the central force model constituted central 

force model two (CFM2), and mode frequencies for all five 

rings were calculated with this model. Note that a value of 

295 N/m for the bond-stretching force constant is not 

unreasonable, being only 6% off from the value of 313 N/m 

reported by Al-Jishi and Dresselhaus. 

Calculation of the 1580 cm-1 E2g mode in graphite with 

the valence force model imposed an algebraic relationship 

between the three forbe constants. This algebraic 

relationship represented a boundary condition for the force 

constants, and was used to determine a set of values for the 

force constants consistent with a 1580 cm-1 E2g mode for an 

embedded 6-membered ring. Use of any of the bond-angle­

bending force constants in Table 3 yielded unrealistic and 

nonphysical values for either the bond-stretching force 

constant or coupling force constant. A force constant value 

was considered unrealistic if it exceeded 1000 N/m or was 

negative. Establishing a bond-stretching force constant of 

3 63 N /m narrowed the allowable range of the bond-angle-
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bending force constant to so~110 N/m. By further setting the 

coupling force constant at 726 N/m (that is, twice the bond­

stretching force constant), a bond-angle-bending force 

constant of 80 N/m was determined. 

Note that a value of 80 N/m for the bond-angle-bending 

force constant lies intermediate in the range of values 

reported in Table 3. That the valence force model yielded a 

realistic value for the bond-angle-bending force constant as 

a first result was promising. 

As a consequence of the 1580 cm-1 E2g mode analysis, the 

force constants for the valence force model (VFM) were 

determined to be 

fa = 80 N/m 

fb = 363 N/m 

f 0 = 726 N/m 

where fa is the bond-angle-bending, force constant, fb is the 

bond-stretching force constant, and f 0 is the coupling force 

constant. 

Central Force Model Results 

Table 4 presents the- results of CFMl. All five sizes of 

rings displayed a low frequency mode at 667 cm-1 , 

corresponding to rigid ring translation (or translation of 

the ring's center of mass) within the hole. The rigid ring 



TABLE 4. Results of central force model one. Force 

constants were k 1 = 363 N/m, k 2 = 315 N/m. 

Frequencies are given in cm-1 and modes 

are in parentheses. 

Ring Frequency 

Size (n) A Modes B Modes E1 Modes E2 Modes E3 Modes 

4 1213 1213 1580 

(A1g) (B1g t (E1u) 
B2g) 

5 1074 1517 

(A1' ) (E2' ) 

6 979 1408 1580 

(A1g) (B1u, (E2g) 
B2u) 

7 912 1303 1548 

(A/) (E1' ) (E2' ) 

8 863 1482 1213 1580 

(A1g) (B1g, (E1u) (E3u) 
Bzg) 

82 
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translation frequency was omitted from Table 4 since it was 

not a fundamental vibrational species. 

The reinai:hing 'results • of CFM1, Table 4, represent 
,, 

frequencies for fundamental vibratio1;1c1.l ~pec;:ies/modes of the 

five ring sizes. 'Degeneracy in frequency between different 

modes occurs for the 4-membered ring (A1g, B1g, and B2g modes), 

6-membered ring (B 1u and Bzu modes), and 8-membered ring (B 1g 

and B2 g modes). The E1u mode of the 4-membered ring, E2g mode 

of the 6-membered ring, and E3u mode of the s~membered ring 

display ~ccidental degeneracy at 1580 cm-1 • ~odes that are 
' ' 

absent in. the analysis are the E1' mode for the 5-membered 

ring, the E1u mode for the 6-membered ring, the E/ mode for 

the 7-membered ring, and the E2g mode for the a-membered ring. 

Their absence was not intentional since the secular 

determinants were not fa~tored by vibrational species, and 

their absence can be attributed to either degeneracy with 

other E-type modes or to the coarseness of the potential 

approximation used. 

Table 5 presents the calculated frequencies for CFM2. 

All five rings displayed a low frequency mode at 912 cm-1 , 

again corresponding to rigid ring translation (and therefore 

not included in Table 5). The calculated frequencies for 

CFM2 display the same degeneracies and absent modes as those 

for CFM1. Note that the change in force constants results in 

higher frequencies for the modes in CFM2 ( as compared to 

CFMl), except for the E2 g mode of the 6-membered ring and the 



TABLE 5. Results of central force model two. Force 

constants were k 1 = 295 N/m, k 2 = 589 N/m. 

Frequencies are given in cm-1 and modes 

are in parentheses. 

Ring Frequency 

Size (n) A Modes B Modes E1 Modes E2 Modes E 3 Modes 

4 1291 1291 1581 

(A1g) (B1g, (E1u) 
B2g) 

5 1187 1530 

(Ai') (E2' ) 

6 1118 1443 1581 

(A1g) (B1u, (E2g) 
B2.u) 

7 1071 1361 1555 

(A/) (E/) (E2' ) 

8 1038 1502 1291 1581 

(A1g) (B1g, (E1u) (E3u) 
B2g) 

84 
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accidentally degenE!rate modes for the 4..;. and a-membered 

rings. The difference: in frequency for each mode between the 

two central force models is more pronounced 'for low frequency 
,, 

modes. Higher frequency modes display less variation w~ th 

the change in force constants. 

Valence Force Model Results 

In contrast to the central force model, the valence 

force model produces neither 'accidental degeneracies hor 

degeneracy between modes for a given ring. This loss of 

degene:ra'cy can , be attributed to an improved potentia~ 

approiimation for the VFM. In fact, imp-Iementation of the 

VFM to the embe.dded ring system re~oves degeneracies that 

would normally be present for_ t.J;ie vibrational species. The 

normally singly, degenerate species ~ 18 , B18 , and B28 !are 

represented by 2 x 2 secular determinants which yield a 

single, degenerate eigenfrequency. The doubly degenerate E­

type modes are represEinted by 4 x 4 semilar determinants, and 

normally yield two degenerate eigenfrequencies. 

The A and B-type modes in the VFM resulted in secular 

determinants with t~o nondegenerate roots. The E-type modes 

l:lad secular determinants with four nondegenerate roots. The 

task remained to explain and accommodate this loss of 

degeneracy. 

The loss of degeneracy for each of the vibrational modes 

can be attributed to the embedding of an isolated ring into 
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a network (or, alternatively, the effect of coupling an 

isolated ring to the wall of a rigid hole). Again, we can 

use the two mass-spring system as an analogy to explain this 

loss of degeneracy. An isolated two mass-spring system, 

Figure 15(a), oscillates with a single frequency; its 2 x 2 

secular determinant is singly degenerate. The two mass-

spring system can be embedded by placing it between two rigid 

walls, and by attaching each mass to a wall with a spring 

having a force constant different from that of the spring 

holding the two masses together. The resulting mass-spring-
-

wall system, Figure 15 (c), gives rise to two modes of 

oscillation, with each mode having a distinct frequency. In 

analytical terms, the 2 x 2 secular determinant for the 
,,_ 

system is no longer degenerate, and its solution presents two 

distinct roots from which the eigenfrequencies derive. 

In exactly the same fashion, the vibrational modes of an 

embedded ring lose their degeneracy due to the coupling of 

the ring with the network. Since the loss of degeneracy can 

be explained on a physical basis, the nondegenerate 

eigenfrequencies may also have a physical basis. The 

vibrational dynamics of polycyclic aromatic hydrocarbons 

support this contention. The coupling of 6-membered carbon 

rings to benzene increases the number of vibrational modes 

and frequencies for the molecule. such an effect can be 

observed with triphenylene, which exhibits an inordinately 

large number of E-type mode frequencies in comparison to 
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benzene. 71 

Although the i:ncrease in mode frequencies. can be 

attributed to an increase ih • the number of atoms in the 

molecule, the underlying: sytninetry o•f both the molecule and 

the particular vibrational Species limits the number of 

possible vibrational species. In some cases, the loss of 

degeneracy in a vibrational mode reflects the c:1ppearance of 

· new vibrational modes due to a lowering of symmet1:y or an 

increase of the atomic basis for the molecule. 

· If the embedded ring was part of a crystal .lattice, such 

as a 6-membered ring in graphite, it. can be argued that 

translational symmetry within the lattice would remove some 

of the ncindegenerate frequencies and restore degeneracy to 

the vibrational modes. An a:mcttph'Ous mat~rial, however, lacks 

the translational symmetry necessary to restore:degeneracy. 

We would then expect• :the non:degenerate mode Jfrequencies to be 

present in the random network and to' contribute to the 

vibrational density of· states. This provides a possible 

explanation for the increase in the number of contributing 

frequencies in the VDOS for amorphous materials. (From a 

crystallographic viewpoint, an amorphous material ean be said 

to have a unit cell of infinite dimensions, and therefore the 

• atomic basis for the unit cell would also be infinite. From 

a molecular viewpoint, a covalently bonded amorphous material 

can be said to be a single molecule of infinite size. From 

either view, such a structure intuitively would give rise to 
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a continuum of vibrational modes.) 

Table 6 tabulates the frequencies calculated with the 

VFM for selected vibrational modes of the five embedded 

rings. All of the secular determinants for the vibrational 

modes were nondegenerate. However, not all of the 

nondegenerate frequencies are given in Table 6 for each mode. 

The frequencies not presented were either very low ( < 13 cm-1
) 

or imaginary (negative root in the polynomial solution for 

the secular determinant). All of the E-type modes had two 

nondegenerate frequencies which were close to O cm-1
, 

-
indicating that the secular determinants were nearly singly 

degenerate. The remaining two nondegenerate frequencies are 

presented for each E-type mode. 

Comparison of Force 
Model Results 

Results from CFM1 and CFM2 were cursorily compared in a 

previous section of this chapter. As was noted, high 

frequency modes were more insensitive to the change in force 

constants than the low frequ~ncy modes. Except for the B1g, 

B2g modes for the 8-membered ring and B1u, B2u modes for the 6-

membered ring, the high frequency modes are generally E-type 

modes. 

Table 7 compares selected mode frequencies for CFMl, 

CFM2, and the VFM. Frequencies displayed for the VFM are the 

highest nondegenerate frequency for each given mode. Two 

observations can be extracted from Table 7. First, in 
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TABLE 6. Results of valence force model. Frequencies are 

given in cm- 1 • Force constants used were 

fa: = 80 N/m, fb = 3q3 N/m, • and f 0 = 726 N/m. 

Modes are in parentheses . . ,. 

Ring Frequency 

Size (n) {A1g) (B1g, B2g) (E1u, E/ ) (E 28, Ez') {E3u, E3' ) 

4 717 1390 702 

1241 (B18) 1550 

(A1g) 1068 (E1J 

(B2g) .. 

5 696 1040 

1475 1555 

(Ei') (Ez') 

' 6 1241 950 

(A1g) 
. 

1581 

(E2g) 

7 666 883 1250 

1304 1529 1598 

(E(') (Ez') (E3' ) 

'' 

8 1546 648 835 1163 

(B1g) 1243 1457 1601 

1368 (E1u) (E2g) (E3u) 

(B2p) 

-
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TABLE 7. Comparison of selected modes for central force 

model one (CFM1), central force model two (CFM2), 

and the valence force model (VFM). Frequencies 

given in cm-1 • 

Ring Size (n) 

and Mode 

4-n A1g 

4-n B1g 

4-n B2g 

4-n E1u 

8-n B1g 

8-n B2g 

8-n E1u 

8-n E3u 

CFMl 

1213 

1213 

1213 

1580 

1517 

1303 

1548 

1482 

1482 

1213 

1580 

CFM2 

1291 

1291 

1291 

1581 

1530 

1118 

1361 

1555 

1502 

1502 

1291 

1581 

VFM 

1241 

1390 

1068_ 

1550 

1555 

1241 

1304 

1529 

1546 

1368 

1243 

1601 
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general, all of the frequencies show fair agreement between 

the different force models for each mode; indicating that the 

central force model approximation is fairly good when 

compared to the valence force model. Second, mode 

frequencies for the E-type modes tend to be more consistent 

between models than mode frequencies for A- and B-type modes. 

The second result may be due to the generally higher 

frequencies of the E-type modes. However, the frequencies of 

the A- and B-type modes for the 4- and a-membered rings are 

higher than the frequency of the a-membered ring E1u mode, 

contradicting this assessment. A more likely explanation is 

that the E-type modes are more accurately represented with a 

coupling force constant having a value between the bond­

stretching force constant and twice the bond-stretching force 

constant (k 1 ~ k 2 ~ 2k 11 or fb ~ f 0 ~ 2fb) . 

A cursory examination of ring mode motions with respect 

to network atom motions concludes that A1g and B1g modes are 

more accurately modeled with the above value range for the 

coupling force constant than the B2g mode. Comparison between 

the different force models for the A1g, B1g, and B2g modes of 

the 4-membered ring and the B1g and B2g modes Of the 8-

membered ring support this conclusion. 



CHAPTER IV 

DISCUSSION 

Application to Amorphous Carbon 
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The two-dimensional and covalent aspects of sp 2 bonding 

in graphite and graphitic amorphous carbon have led 

researchers to postulate and look for the existence of 2D 

continuous random networks in a-c. The presence of a small 

percentage of sp 3 bonds in a-c (0-10%) would result only in 

warping and distorting the 2D layers. Establishing the 

presence of 5- and 7-membered rings (and possibly 4- and a~ 

membered rings as well) at significant levels (>10%) in the 

structure of a-c would evidence an absence of local, 

graphitelike hexagonal structure. Researchers have attempted 

this witll various modeling approaches 40
•
43

•
67 and 

experiments, 41 •42 •44 and with'particular emphasis on vibrational 

spectra of a-c. 

Amorphous carbon was chosen as an initial application to 

test the accuracy of the embedded ring approach because of 

amorphous carbon's postulated CRN structure and local 2D 

characteristics. Additionally, the problem of the atomic 

structure of a-c has yet to be definitively resolved. 

Success of the embedded ring approach would provide 

additional evidence in support of a CRN model for a-C. 

Success of any dynamical model for a material is 

measured by its ability to predict spectral features in the 
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VDOS, Raman, or infrared spectra of the material. For a-c, 

the Raman spectrum is more accessible than the VDOS or 

infrared spectra because it is most easily acquired (as 
,, 

compared to, for example, inelastic neutron scattering). The 

Raman spectrum also provides distinguishing spectral features 

not found in the infrared spectrum. The results of the 

embedded ring approach were therefore compared to a Raman 

spectrum of a-c. The comparisons favor a CRN model for a-c 

by indicating the presence of 5- and ?-membered ring mode 

frequencies in the Raman spectrum, with the 5- and 7-membered 

rings comprising a large portion of the ring statistics in 

comparison to 6-membered rings. The presence of a large 
',, 

percentage of 4- and a-membered rings in the CRN can be 

excluded, however, as a result of the comparisons. 

Discrete,Line Spectra 

The mode frequencies calculated for a~c using the three 

force models (CFMl, CFM_? ,,c and, .yFM) fall witµi.n Jthe region 

consistent with internal mode frequencies .for crystal,l~ne and 

amorphous solids (0-2000 cm-1). Figure 16 displays discrete 
, ',,.,. , , ,' .• f' • ' 

J.,ine sp~otrc1 of , the mo~e frequencies calculated with , CFMl 

(Figure 16[a]), CFM2 (Figure - 16 [b]), and the VFM (Figure 

16[c]) which are tabulated in Tables 4, 5, and 6. ~ote the 

predominance of E~type moq.e frequencies in_ the 1000-1600 cm-1 

region, a region coincident with , the dom.inant spectral 

,.feature in Raman spectra of a-c (see Figure 9 [c]). Since the 
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Discrete line spectra of embedded ring 

frequencies for (a) central force model one 

(CFMl), (b) central force model two (CFM2), 

and (c) the valence force model (VFM). 
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VFM uses an improved approximation to the potential in 

comparison to the central force models, mode frequencies 

calculated with the VFM were singled out for comparison 

studies with actual .spectra. Only the highest, nondegenerate 

frequency for each mode was used because of their 

correspondence to CFM~generated frequencies, and because the 

highest frequencies resided in the 1000-1600 cm-1 region. 

Because of the selection of the coupling force constant, 

E-type mode frequencies were taken as having the most 

accurate values, and were therefore used for comparison with 
-

the Raman spectrum· of a-c. As previously discussed in 

Chapter V, the E-type mode frequencies are more consistent 

between the three force models used than the A- and B-type 

mode frequencies. This consistency is attributed to 

assigning values to the coupling force constant which most 

accurately represent network motions congruent to E-type ring 

mode motions. Note that the 6-membered ring A1g mode 

frequency calculated with the VFM (1241 cm-1 ) deviates 10% 

from the measured value (1360 cm-1 ) • Calculations of the 

A1g mode frequency with CFMl and CFM2 show even greater 

deviation. Finally, analysis of network atom-ring atom 

motions for the B2g mode dis~gree with th~ selected value for 

the coupling force constant; network-ring motions for a B2g 

moqe for a 4- or a-membered ring would yield a coupling force 

constant with a value signif~cantly less than that of the 

bond-stretching force constant. 



Theoretical Spectra with 
Gaussian Peak Profiles 
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The Raman spectrum of amorphous carbon (Figure 9 [c]) 

displays . few maxima, and most closely resembles a single 

broad, asymmetrical peak. However, the asymmetry of the a-C 

peak is incongruous with the Lorentzian and gaussian profiles 

typically exhibited by Raman lines. A method for analyzing 

the Raman spectrum of a-C is suggested from Raman spectral 

studies of water- and fluorine-bearing silica glasses. 72 

Raman spectra of the silica glasses displayed broad, 

asymmetrical spectral features. The spectral features wer~ 

deconvoluted into groups of overlapping Lorentzian or 

gaussian peaks. The fit of deconvoluted spectra with 

experimental spectra were compared with a chi-squared error 

analysis and a plot of the residuals. The error analysis 

determined that the experimental spectra were modeled best 

with gaussian peak profiles. 

Although suggestive of a continuum from 1000 to 1600 cm-1 

with clustering of E-type modes near the maximum of the a-c 

peak, the discrete line spectrum of VFM mode frequencies 

cannot be used solely to explain the Raman spectrum of a-c. 

Rather, in a vein similar to deconvolution of amorphous 

silica spectra, the calculated VFM mode frequencies were 

broadened with gaussian peaks and convoluted into theoretical 

spectra. The theoretical spectra were then compared with the 

experimental Raman spectrum of a-C. 
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Theoretical spectra were obtained from the VFM mode 

frequencies with the use of MathCAD@, a numerical analysis 

program. 73 Gaussian peak profiles were selected for 

convolution based on the research with amorphous silica 

spectra. 72 Note that, as an analogy, gaussian profiles 

typically reflect inhomogeneous broadening in stimulated 

emissions from laser materials (also thermal broadening in 

gas lasers) , whereas Lorentzian profiles are associated with 
.,_ ~ . 

homogeneous broadening ( such ~s intrinsic lifetime broadening 
'.'·, ,.., r .,, ' • 

due to a metastable state). Structural disorder in a laser 
' 

material, such. as in a Nd-glass laser, results in a laser 
• I 

emission with a gaussian spectral shape. 
•' ' -

!ntegrated peak intensities were assumed to be directly 
,F'li'-: :·~ 

proportional to the ring statistics. That is, the integrated 

peak intensity for each n-membered ring mode frequency 

corresponded to the percentage of n-membered rings in the 

CRN. Integrated peak intensity was chosen instead of peak 

height to be proportional to the ring statistics since a 

single gaussian peak represents a pseudo density-of-states 

for a single vibrational mode. {The peak can be said to 

comprise a distribution of frequencies about the mode's 

center frequency.) 

Model ring statistics were taken from two a-c models by 

Beeman et al. 40 The two Beeman models were graphi tic in 

nature, having no sp 3 bonded atoms in one model and 9.1% sp 3 

bonded a toms in the other. Both random network models 
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contained significant percentages of 5- and 7-membered rings, 

but no 4- and a-membered rings. 

The gaussian peak positions were fixed in the numerical 

analysis to the VFM mode frequencies. The variables were the 

number and type of modes used, the standard deviation (a) of 

the gaussian peak widths (noting that the full width at half 

maximum FWHM = 2a[2ln2]~), and the ring statistics. A chi­

squared statistical analysis provided quantitative comparison 

between the different fits. To perform the chi-squared 

analysis, Raman data from the experimental a-c spectrum 

(Figure 9 (c]) were tabulated and entered into the convolution 

program. A slightly sloping, linear background, most likely 

arising from a weak fluores9ence in the sample, was 

subtracted from the Raman data. The theoretical spectrum was 

scaled to the experimental spectrum with the use of either 

the total integrated peak intensities or the peak maxima. 

In accord with the approach of Beeman et al., 

vibrational modes for 5-, 6-, 

emphasized in the spectral 

and 7-membered rings were 

fits due to the expected 

predominance of these rings in the structure of a-c. Also, 

following a previous argument presented in this section, the 

spectral fits were modeled with E-type modes because of their 

presence in the 1000-1600 cm-1 region. The Raman active E2 ' 

and E2g modes were additionally included in every spectral fit 

since the fits were modeling the Raman spectrum of a-c. 
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Peak widths were selected and varied :t:o provid•e the best 

fit for the given ring statistics and mode. frequencies for 

each spectral.fit. ·The p~ak widths wer;e initially expected 

to exceed those found in Raman spE?ctr9, of water- and 

fluorine""'bearing silica glasses (a=2Q.-50 c;:m-1 ), and were given 

in most fits an initial width of a=100. cm-1 • Varying the .ring 

statistics and type of vibrational modes· present, both before 

and after adjusting the peak widths, prpvided an iterative 

approach to achieving the best spectral fits. 

The, A1g mode for the fr.:;.membered ring was included in some 

of the spectral fits on the basis of .its occurrence i:h~aman 

spectra of nanocrystalline graphite. The 5-membered ring Ei' 

mode and 7-membered ring E1': and E3 ' modes were a.lso. used in 

the spectral fits. Inclusion of these m6des iht:o. the 

theoretical spectra is justified on the grounds that 

structural disorder in amorphous carbon .results in a 

breakdown of the Raman selection rules. 10 • 38 • s:v·54 The frequency 

for the 6-membered ring A18 • mode • was not taken from the 

embedded rihg calculations, however, for two reasons. First, 

· the coupling force constant in the VFM was chosen to model E­

type ring mode motions, and the results of Table 7 support 

this contention. Second, the actual frequency for the A1g 

inode (1360 cm-1 ) is readily obtained from the experimental 

Raman spectrum of nanocrystalline graphite. To for ego use of 

this experimentally determined frequency would reflect a 

disregard for a realistic model of the Raman spectrum of a-C. 
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Table 8 lists a representative sample of the spectral 

fits performed. The spectral fits are listed in descending 

order with respect to their chi-squared error, indicating an 

ascending order for the quality of the fit (a lower chi­

squared error corresponds to a better fit to the experimental 

spectrum). Four of the spectral fits incorporated Beeman's 

ring statistical models Cll20 (spectral fits two and four) 

and C340 (spectral fits one and three), and were modeled with 

only E-type modes from 5-, 6-, and 7-membered rings. These 

fits yielded large chi-squared values (x 2>350). 
-

Two of the spectral fits (seven and eight) deviate 

substantially from a physically realistic model by 

incorporating only 5- and 7-membered rings into the ring 

statistics. They were included . in Table 8 to show that 

spectral fits with x2 values greater than 116 may not 

represent physically meaningful results. Four spectral fits 

in Table 8 (nine to twelve) produced chi-squared errors of 

x2~100. Note that the best spectral fits (ten, eleven, and 

twelve) incorporate the 6-membered ring A1g mode, and give 

chi-squared errors of x2~77. 

Figures 17, 18, and 19 are theoretical spectra from 

spectral fits nine, ten, and twelve, respectively. The 

theoretical spectrum in Figure 17 (a) incorporates only E-type 

modes for 5-, 6-, and 7-membered rings (5- and 7-membered 

ring Ei' and Ez' modes and 6-membered ring E2g mode). Peak 

widths which yielded the best fit (x 2=100) for this five-mode 
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TABLE 8. Representative spectral f.its to the experimental 

Raman spectrum of amorphous carbon, listed in 

descending chi-squared error (X 2) O]fder. 

Spectral 
Fit No. 

1 

2 

3 

4 

5 

6 

Ring statistics in 
% N6. bf n-size Rings 
(4-n,5-n,6~n,7-n,8-n) 

(0, 11, 65, 24, 0} 

(0, • 21, 59, ,20, 0) 

(0, 11, 65, 24, 0) 

(0, 21, 59, 20, 0) 

(0, 25, 50, 25, 0) 

(O, 33, 33, 33, 0) 

Modes and a 
Peak Widths 
in cm-1 

5-n El; 
6-n E2g; 

7-n E2 ' ; 

5-n 
5-n 
6-n 
7-n 
7""'.h 
7-n 

5-n 
5-n 
6-n 
7-n 
7-n 
7-n 

5-n 
5-n 
6'-n 
7-n 
7-n 
7-n 

5-n 
5-n 
6-n 
7--n 
7-n 
7-n 

5-n 
5-n 
6-n 
7-n 
7-n 
7-n 

E/ i-
E I • 

2 I 

E2gi 
E I • 

1 I 
E· ,- • 

2 I 
E I • 3 , 

E I • 
1 I 

E I • 
2 I 

E2gi 

'Ei'; 
E I • 

2 I 
E• I • 

3 , 

E I • 
1 I 

E I • 
2. I 

E • 2g, 
E I • 

1. I 
E I• 

2 I 
E I • 3 , 

E I • 
1 ' E I • 

2 ' 
E2gi 
E I • 

1 I 
E I • 

2 ' 
E I • 

3 ' 

E/; 
Ez' i 
E2gi 
E I • 1 , 
E I • 

2 ' 
E I • 

3 ' 

a=l00 
a=l00 
a=l00 

a= 90 
a= 90 
a= ,90 
a= 90 
a= 90 
a= 90 

a=l00 
a=l00 
a=l00 
a=l00 
a=l00 
a=l00 

a=l00 
a=l00 
a=l00 
a=l00 
a=l00 
a=l00 

a=l00 
a=l00 
a=l00 
a=l00 
a=l00 
a=l00 

a=l00 
a=l00 
a=l00 
a=l00 
6=100 
a=l00 

Chi-Squared 
Error, 
(X2) 

1031 

433 

411 

391 

313 

222 
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TABLE 8. Continued. 

Spectral Ring Statistics in Modes and a Chi-Squared 
Fit No. ~ No. of n-size Rings Peak Widths Error 0 

(4-n,5-n,6-n,7-n,8-n) in cm- 1 <x2) 

7 (0, 50, o, 50, 0) 5-n E I • 1 I o-=100 136 
5-n E I • 2 I o-=100 
7-n E I • 1 I a=l00 
7-n E I • 2 I a=l00 
7-n E I • 

3 ' 
a=100 

8 ( 0 t 30 / o, 70, 0) 5-n E I • 1 I o-=100 116 
5-n E I • 

2 I o-=100 
7-n E I • 1 I o-=100 
7-n E I • 

2 I o-=100 
7-n E I • 

3 , o-=100 

9 (0, 33, 33, 33, 0) 5-n E I • 1 I o-=130 100 
5-n E I • 2 I o-=130 
6-n E2gi a= 65 
7-n E I • 1 I o-=130 
7-n E I • 2 I o-=130 

10 (0, o, 100, o, 0) 6-n A1gi o-=175 77 
6-n E2gi a= 75 

11 {10, 20 I 40, 20 f 10) 4-n E1ui a= 90 36 
5-n E I • 2 I a= 90 
6-n A1gi o-=170 
6-n E2gi a= 95 
7-n E I • 

2 I a= 90 
8-n E2gi a= 90 

12 (0, 25, 50, 25, 0) 5-n E I • 2 I a= 90 35 
6-n A1gi o-=170 
6-n E2gi a= 95 
7-n E I • 

2 I a= 90 
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- FIG. 17. Theoretical spectrum (a) and deconvoluted peaks 

(b) for E-type mode frequencies of 5-, 6-, and 

7-membered rings. Theoretical spectrum (solid 

line) overlays experimental spectrum (t). Model 

was based on an equal distribution of ring sizes. 
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(b) fo~ Ez' II\Odes. of 5- and 7-'membered rings, and 

A1g and E2g modes of 6-membered ring. Ring 

st~tistics were 0.25, 0.50, and 0.25 for 5-, 6-, 

and ?-membered rings, respectively. 
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spectrum were er=l30 cm-1 for the 5- and 7-membered ring modes 

and er=65 cm-1 for the 6-membered ring E2 g mode. The ring 

statistics for this five-mode model have equal numbers (33¼% 
" 

each) of 5-, 6-, and 7-membered rings. Figure 17 (b) displays 

the deconvoluted peaks for the theoretical spectrum. 

Figure 18 presents a theoretical spectrum (a) and its 

deconvoluted constituent peaks (b) for a model with only one 

ring size in its distribution--the 6-membered ring--and with 

only two modes--the A1g mode and E2g mode. The peak widths 

were er = 175 cm-1 for the A1g mode (1360 cm-1 ) and er = 75 cm-1 

-
for the E2g mode (1581 cm-1 ). The integrated peak intensity 

for the A1g mode was set at twice that of the E2 g mode, and 

can be justified by referring to spectra of nanocrystalline 

graphite where the broader A1g peak is equal to or greater in 

height than the E2g peak. 10
:
51

-
53 The above intensities and peak 

widths resulted in a fit with an error of only x2 = 77. 

Visual inspection of the theoretical spectrum in Figure 

18 reveals two major discrepancies with the experimental 

spectrum of amorphous carbon: 

l. A shoulder near 1360 cm- 1 in the theoretical 

spectrum is absent in the experimental spectrum. 

Consequently, the theoretical spectrum is more 

intense than the experimental spectrum at 

frequencies below 13 60 cm-1 and less intense at 

frequencies above 13 60 cm-1
• 
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2. The maximum of the theoretical spectrum is 10-

20 cm-1 higher in frequency than the maximum for 

the experimental spectrum. Consequently, the 

theoretical spectrum is more intense than the 

experimental spectrum at frequencies above 1575 cm-1 

and less intense at frequencies below 1575 cm-1
• 

Varying the integrated peak intensities and peak widths of 

the A1g and E2g 6-membered ring modes cannot remove these 

discrepancies. Only inclusion of mode frequencies between 

1360 cm-1 and 1580 cm-1 can eliminate the low-frequency 

shoulder and shift the maximum to lower frequencies. 

A natural place to look for these mid-frequency modes 

(between 1360 cm-1 and 1580 cm-1 ) would be other 6-membered 

ring modes. Remember, however, that the embedded ring 

approach assumes that a 6-membered ring embedded into a 

graphite hexagonal lattice should yield the same mode 

frequencies as found in graphite. No normal mode frequencies 

between 1360 cm-1 and 1580 cm-1 are observed in graphite, 

including both in-plane and out-of-plane modes. 3 The mode 

closest to the A1g and E2g mode frequencies--the infrared 

active, in-plane E1u mode--has a frequency of 1587 cm-1 , 

slightly higher than the E2g mode. We are therefore forced 

to resort to smaller (4- and 5-membered) and/or larger (7-

and 8-membered) sized rings to obtain mid-frequency modes. 

Figure 19(a) and 19(b) show the theoretical spectrum of 

a model incorporating the Raman-active Ez' modes of the 5-
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and 7 -membered embedded rings along with the A1g and E2g modes 

of the 6-:rnembered ring. Frequencies for the E2 ' modes were 

calculated with the valence force model. The ring statistics 

were 25% 5-membered rings, 50% 6-membered rings, and 25% ?­

membered rings·, and provided the best fit for the spectrum. 

The 6-membered ring A1g mode was again taken to have twice the 

integrated peak intensity of the 6-membered ring E2g mode. 

Peak widths which provided the best fit were a 1 = 90 cm-1 (Ez' 

modes of 5- and ?-membered 'rings) , a 2 = 170 cm-1 (A 1g 'mode of 

6-membered ring') , and a 3 = 95 cm-1 • (E 2g mode of 6;;;;::ittembered 

ring). 

The theoretical spectrum in Figure 19, with an error of 

only x 2 = 35, gives the best fit out of all' of the models ran 

on the convolution program. Compared with the theoretical 

spectrum in Figure 18, th~ inclusion· of the Ez' modes from 5-

arid 7-membered rings along with the fr-membered· ring A1g and 

E2g modes reduces the chi-squared error by • a factor of 2 . 2 , 

and eliminates the discrepancies arising from the 1360 cm-1 

shoulder and the frequency shift of the maximum. Note that 

the peak widths for the 5- and ?-membered ring Ez' modes (90 

cm-1) are close to the peak width of the 6-membered ring E2g 

mode (95 cm-1 ), and that the peak widths for all three modes 

are less than twice the maxim.um peak widths ( 50 cm-1 ) reported 

for silica glas~es.n 
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The ring statistics for the theoretical spectrum in 

Figure 19 are also physically reasonable. As a comparison, 

Beeman's c1120 model for a-c with no sp 3 bonding contained 

21% 5-membered rings, 59% 6-membered rings, and 20% 7-

membered rings. Note that approximately equal proportions of 

5- and 7-membered rings are required for a 2D-CRN to prevent 

excessive warpage or curvature in the network, or to prevent 

the structure from curling into a large spheroidal molecule. 

Finally, the most probable 5- and 7-membered ring modes to 

appear in the Raman spectrum of a-c would be the Raman active 

E2' modes. 

It can be concluded from the improvement in the fitting 

of the theoretical spectrum to the experimental spectrum 

(Table 8, spectral fit twelve) that a-c contains a 

substantial number of both 5- and 7-membered rings. The 

fitting results indicate that only about half of the rings in 

a-c are 6-membered. Only a CRN could accommodate such a 

large percentage of 5- and 7-membered rings. Since five-fold 

and seven-fold symmetries are incompatible with 2D 

periodicity (as demonstrated with 2D tilings of polygons) a 

continuous network comprising a large proportion of 5- and 7-

membered rings is necessarily aperiodic and thus structurally 

random. 28 

Figure 20 displays a triangle raft model (a) and ring 

statistics (b) for a structural model of a-C corresponding to 

Figure 19 (spectral fit twelve), and is the structural model 
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• FIG. 20. Triangle raft model (a} and ring statistics 

(b} for the structure of amorphous carbon 

predicted by the embedded ring approach. 
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for graphitic a-c predicted by the embedded ring approach. 

Note that the network's structure is aperiodic, and 

represents a 2D-CRN with only 5-, 6-, and ?-membered rings. 

The 4-membered ring E1u mode and a-membered ring E2g mode 

were incorporated into the theoretical spectrum of Figure 19 

to assess the effect of these ring modes on the spectral fit. 

The lack of improvement in the spectral fit (Table a, 

spectral fit eleven) can be taken to reflect an absence of 4-

and a-membered ring modes in the Raman spectrum of a-c. It 

can therefore be concluded that 4- and a-membered rings do 

not significantly contribute to the structure of a-Co This 

is a physically realistic result since 4- and a-membered 
'v 

rings are not expected in large concentration in a-c due to 

the increased bond-angle energy required to form these rings. 

Additionally, Beeman et al. 40 did not include 4- and a­

membered rings into their model ring statistics, again due to 

the increased bond-angle energy for these rings. 

Bond Angle Distribution 
and Peak Widths 

Because of the inability to tile a 2D lattice with 

perfect pentagons, hexagons, and septagons ( except by curling 

the 2D lattice into a third dimension, as is found for 5- and 

6-membered rings in the fullerenes 24
- 26 ), many of the rings 

will deviate from their ideal polygonal shape. These 

deviations will create a distribution of bond angles ( as 

opposed to a single, ideal bond angle) for each class (size 
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Bond-angle fluctuations in·amdrphous silicon 

and g~rmanium induce broadening of bands in the·ir Raman 

spectra, and the bandwidths provide a means to measure the 

bond.;...angle distribution. 74 • The effeet of this· bond-angle 

distribution on the vibrational modes could be analyzed with 

the VFM. 

The g-matrix elements are a function of bond angle. 

Replacing the idealized, single..;.valued bond angles in the g­

matrix elements with a distribution of bond angles would 

result in a distribution of eigenfrequencies calculated from 

the secular determinant. Each vibrational spec.:i.es would then 

exhibit a distribution of mode frequencies instead; of an 

ideal, single-valued, delta-function mode frequency. The 

distribution would most likely be gaussian dU:e · te the 

inhomogeneous nature of the bond-angle disorder. The average 

or mean for the borid-ang,le distribution would most likely lie 

near the values for the idealized, bond angles. Therefore, 

the gaussian frequency distribution would be centered at or 

near the idealized mode frequency. 

From the foregoing argUmerit, the rather large peak 

widths of' the gaussian peaks used to produce the .theoretical 

spectrum in Figure 19 can n0w be explained by the extreme 

distortion Of 5-, 6-, and 7-membered rings in a 2D-CRN. The 

narrower peak widths exhibited by silica can be attributed to 

either ring:...network decoupling of the oxygen.·breathing modes, 

or to a narrower distribution of bond angles due to the 
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presence of medium-range order . 14
•
75 

A third explanation is that since silica glasses are 3D 

networks, n-membered rings are accommodated into the network 

with less bond-angle distortion than they would have in a 2D 

network. The extra third dimension provides an added degree 

of freedom for the configuration of silica tetrahedra and the 

rings they form. The decrease in bond-angle distortion 

results in a narrower distribution of bond angles, and 

consequently narrower Ram~n peaks for the 3D silica networks 

as compared to the 2D a-c networks. 

Although a bond-length distribution also introduces band 

broadening, only a narrow bond-length distribution is 

observed in a-c for nearest neighbor atoms. (The variations 

in bond length fit a gaussian distribution, and were measured -

with the use of radial distribution functions obtained from 

neutron diffraction. 44
) 

The improved theoretical spectrum fit in Figure 19 

provides evidence supporting both the validity of the 

embedded ring approach and a CRN structural model for a-c. 

The ring statistics favor the presence of 5- and 7-membered 

rings at significant levels in a-c. Convolutions 

incorporating 4- and a-membered ring modes failed to produce 

theoretical spectra with chi-squared errors less than those 

reported. The large widths of the gaussian peaks for the 5-, 

6-, and 7-membered rings most likely arise from an 

inhomogeneous distribution of bond angles within the rings. 
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The source of the peak broadening is directly traceable in 

the embedded ring approach, suggest:ing a method both 

quantitative ahd analytical for determining bond-angle 

disorder in ,an amorphous s61id with the use of vibrational 

spectra. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 
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Several analytical and numerical methods are used to 

determine the vibrational dynamics of amorphous materials. 

However, there exists no generalized analytical method which 

can calculate the vibrational density of states for an 

amorphous material. Although not a generalized method, the 

embedded ring approach has been developed to address this 

deficiency. The embedded ring approach models the 

vibrational dynamics for amorphous 2D materials, making it­

applicable to a wide range of materials with scientific and 

technological interest. 

Inherent in the use of the embedded ring approach is the 

selection of an appropriate structural model for amorphous 2D 

materials. Covalent amorphous materials form disordered 

structures known as continuous random networks ( CRN' s) . Two­

dimensional CRN's are modeled with the use of Zachariasen 

schematics and triangle rafts. Triangle raft models are 

appealing for their ease of construction and the ability to 

obtain the ring statistics from the modeled structure. The 

emphasis on ring structures in triangle raft models make them 

especially useful in the application of the embedded ring 

approach. By assuming the vibrational mode intensities for 

various sized rings in a CRN are proportional to the 

distribution of ring sizes, the embedded ring approach can 

produce theoretical spectra which can be used to determine 
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the ring statistics for a given material. 

Amorphous.carbon (a-C} was used as a test case for the 

embedded ring approach. The planar, three-fold coordination ,, 
•' 

of sp 2 bonds in a-c is thought to be conducive to the 

formation of 2D-CRN structures. Evidence exists to support 

this model, but the problems of graphi telike, hexagonal 

ordering on a fine scale (- 10 A) and the effect of four­

fold, tetrahedrally-coordinated sp 3 bonds on the structure is 

still an open question. 

A preface to the embedded ring approach was the 

examination of the vibrational dynamics of polycyclic 

aromatic hydrocarbons (PAH's). The vibrational modes of an 

isolated molecular ring structure, such as benzene, are 

modified by the addition of other rings in PAH .. molecules. 

The changes in the vibrational modes for a specific ring can 

be attributed to coupling of the ring motions to the motions 

of the surrounding structure. The effects of coupling were 

examined in a systematic fashion by analyzing the shift in a 

specific mode frequency for successively larger PAH 

molecules. A conclusion of this work was that the coupling 

between an individual ring and the surrounding molecular 

structure changes little for molecules comprised of more than 

three rings. Thus, complete ring-network coupling is 

achieved with relatively small ring assemblages. 

The embedded ring approach is similar to other 

analytical methods because of its emphasis on the local 
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structure in amorphous materials. The local structural units 

for the embedded ring approach are planar 4-, 5-, 6-, 7-, and 

8-membered rings. The rings are treated as molecules 

embedded into a rigid hole in a 20 network. Methods for the 

study of molecular dynamics are then employed to determine 

the vibrational modes. Each ring atom was coupled to the 

wall of the hole with a bond (spring) having an effective 

force constant differing from the normal bond-stretching 

force constant. This effective coupling force constant 

models the effect of the embracive network on the ring's 

vibrational modes. The vibrational modes for the ring were 

then determined with the small oscillation approximation. 

The potentials were approximated with either a central force 

model (bond-stretching and coupling force constants only) or 

the valence force model (bond-stretching, bond-angle-bending, 

and coupling force constants). 

Central force model calculations were performed with the 

method of small oscillations. The valence force model, 

however, also required the use of group theory to solve for 

the vibrational mode frequencies. By configuring the 

equilibrium positions of the rings into the shapes of regular 

( ideal) polygons, the in-plane vibrational modes for the 

rings were solved with the use of their symmetry point groups 

and the normal coordinate treatment. 

Results for two central force models and the valence 

force model were compared. In comparison to the valence 



force model, the central force models were 
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good 

approximations, but produced too many degenerate mode 

frequencies. On the other hand, loss of degeneracy was a 

problem f 6r the valence· force model. The loss of degeneracy 

arises from the coupling of ·the isolated ring modes to the 

network (i.e., the coupling of the embedded rfng to the wall 

of the rigid hole). 

The Raman spectrum of a-c provided experimental data for 

testing the validity of the em.bedded ring approach and the 

CRN model for a-c·~. calculated mode frequencies ·were compared 

to the a-c spectrum by constructing theoretical spectra. The 

vibrational modes were assumed to have gaussian profiles'with 

integrated peak intensities directly proportional to the ring 

statistics. convoiution of the modes produced · the 

theoretical spectra. The number of modes, peak widths, and 

ring statistics were varied to produce the best fit to the 

data. 

The theoretical spectrum providing the best fit to the 

Raman spectrum of a-c included only the 5- and 7-membered 

ring E2 ' mode frequencies and the 6-:membered :ring A1g and E2g 

mode frequencies. The E2g and A1g mode frequencies were 

obtained from published Raman spectra of graphite and 

nanobrystalline graphite. Frequencies • for the 5'--' and 7-

membered ring Ez' modes were analytically' calculated with the 

use of the' embedded ring approach and the valence force 

model. Although the Raman spectrum of a-c can be approximated 
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with solely the 6-membered ring E2 g and A1g modes, the 

incorporation of the 5- and 7-membered ring E2 ' modes into 

the theoretical spectrum substantially improved the fitting. 

The ring statistics corresponding to the best fit are 

realistic, with 25% 5-membered rings, 50% 6-membered rings, 

and 25% 7-membered rings. The results suggest that a-c has 

a CRN structure, with 5- and 7-membered rings comprising a 

significant percentage of the total number of rings. 

The embedded ring approach uses simple, first-principle, 

classical theory to model the vibrational dynamics of 2D 

amorphous materials. The initial success of the embedded 

ring approach in its application to a-C demonstrates the 

viability of the approach. Further work, however, is 

required to develop and establish the embedded ring approach _: 

as a powerful theoretical method. 

The application of the embedded ring approach to a-C can 

be expanded to include modeled fits of theoretical spectra to 

infrared spectra, which display different selection rules, 

and to inelastic neutron spectra, which provide the VDOS due 

to a complete absence of selection rules. The embedded ring 

approach could also be applied to the vibrational dynamics of 

the buckminsterfullerenes 76 • 77 or large PAH molecules, such as 

hexabenzocoronene.. More research should be conducted on the 

asymptotic trend of vibrational mode frequencies to graphite 

mode frequencies for increasingly larger PAH molecules. 
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The embedded ring approach could also be extended to 

covalent JD amorphbUs materials by examining the vibrational 

dynamics of p0lyhedra-forming atomic clusters ih the JD 

network. 14 .•The polyhedra would be 3D analogs of 2D planar 

rings, and modified vibrational modes for isolated polyhedra 

embedded into an elilbraci ve network would be deterlilined by the 

same methods as outlined in this work. Such .• an : "embedded 

polyhedron approach" would have wider application and.utility 

than the embedded ring approach, but more ih--depth research 

on the ·embedded" .ring approach is required before the 

technique is,extended to JD amorphous solids. 

Areas that need to be studied with greater detail in the 

embedded ring approach are: 

1. the.loss of degeneracy in the VFM, and whether it 

has any physical significance; 

2. the.assumptions and criteria for selection of 

coupling force constants; 

3. the significance of the A1g mode in a-c and PAH 

inolecUles; 

4. and the effective mass approach, and whether it is 

is equivalent to or h,as advantages over the 

coupling force constant approach. 

Finally, other materials need to be examined with the 

embedded ring approach. A few suggested materials are: 

L planar rings in sio 2 ,....:. and B20 3-based glasses, and 

the phenomenon of ring-network decoupling for 
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certain vibrational modes; 

2 . amorphous As
2

Se
3

, As
2

S
3

, and As
2

0
3

; 

3. 2D, in-plane vibrational modes of the Cu0 2 layers 

in high temperature superconductors; 

4. and 3D amorphous materials, such as diamondlike 

a-c, amorphous silicon, and amorphous germanium. 

The approach taken in this thesis pioneers a new method 

for determining the ring statistics of an amorphous material 

from its vibrational spectrum. Additionally, the approach 

may also provide a method for measuring bond angle 

distributions in amorphous materials. The peak widths of the 

vibrational modes in the theoretical spectrum should be 

directly traceable to the bond angles in the g-matrix 

elements of the secular determinants. If so, a new method 

for the analytical modeling and characterization of amorphous 

materials may be developed with the embedded ring approach. 

The embedded ring approach can be judged a modest 

success at modeling the Raman spectrum of amorphous carbon. 

Further research with new materials and improved methods will 

provide the final verdict as to whether the embedded ring 

approach is an ephemeral idea or a lasting contribution to 

science. 
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APPENDIX A 

TABLES AND MATRICES FOR VALENCE 

FORCE MODEL CALCULATIONS 

Presented are the symmetry coordinates, 
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g-matrix 

elements, and G matrices used for the valence force model 

calculations. The 4-, 5-, 6-, 7-, and a-membered rings are 

represented by the D4h, D5h, D6h, D7h, and D8h symmetry groups, 

respectively. Character tables for these symmetry groups can 

be found in most treatises on elementary group theory and 

molecular dynamics. As described in Chapter III, the_ 

symmetry coordinates are instrumental in deriving the U 

matrix for each vibrational species. The U matrix is then 

used to transform the f and g matrices to F and G matrices 

for each vibrational species. The resulting F matrices 

remain diagonal, but the G matrices retain off-diagonal 

terms, with each G-matrix element comprising a linear 

combination of g-matrix elements. The F and G matrix of each 

vibrational species are then multiplied together to form the 

secular determinant (see Chapter III), and solution of the 

determinant yields the frequencies of vibration. 



TABLE Al. Symmetry coordinates for selected fundamental 

modes of the five embedded rings. 

4-Membered Ring 

A1g mode: 

:L (a -a· +a -a ) 2 1 2 3 4 

B2g mode: 

E1u mode: 
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TABLE Al (Continued) 

5-Membered Ring 

E/ mode: 

E2✓ mode: 

_J 



TABLE Al {Continued) 

6-Membered Ring 

E2g mode: 

8-Membered Ring 

B1g mode: 

B2g mode: 

130 



TABLE Al (Continued) 

7-Membered Ring 

E-type modes: 

1 [(t 1 +t;) (1+cos0 1 )+(t 2 +t 6 ) (cos0 1 +cos0 2 )+ 
cos0 3./f4 

( t
3

+t
5

) (cos0
2

+cos0
3

) +2 t
4

cos0
3

] 

Angle 01 82 83 
Mode 

E I 
1 21f/7 4n/7 61r/7 

E I 
2 4n/7 6n/7 21f/7 

E I 
3 61r/7 2n/7 41f/7 
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TABLE Al (Continued) 

8-Mernbered Ring 

E2g mode: 

E1u mode: 
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TABLE A2. Generalized g-matrix elements for embedded ring 

ring approach with the use of internal 

coordinates. In the expressionsµ is the 

reciprocal mass of the ring atom, Tis the 

reciprocal atom-atom bond length,~ is the 

reciprocal atom-rigid wall distance, 01 is 

the ring's inner bond angle, and 02 is the 

angle between the coupling bond and atom-atom· 

bond. 

2 • e gta =-1: µsin l 

1 ( 1) 1-cos0 1 gsa =-2-i:µcos0 2 [ . 0 ] 
1 sin 1 
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TABLE A2 {Continued) 



TABLE A3. G-matrices for 4-membered ring: A 1g, B1g, 

B2g, and E1u modes. Asterisks (*) indicate 

redundant elements in the syrunetric matrix. 

A1g mode 

B1g mode 

B2g mode 

2 
gss [2g;t g;«( ~) 2g;p(~) 

* 2 
gtt /2 [g£« -g;«( ! ) ] /2 [g;p( ! )-g;p( ~)J 

* * 
3 1 ( 2) g(t(t-g(t(t 2 2g;p(~) 

* * * 3 1 ( 2) g1313-g1313 2 

E1u mode 
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TABLE A4. G-matrices fo~ 5-membered ring: E/ and Ez' 

modes. Ci·= 2 cos 72°, C2 = 2 .cos 144°, 

S1 = 2 sin 72 °, and S2 = 2 sin 144 °. 

2 
gss 

1 
-Czgst g_;«( ~) +C1gi«( ~) S1g;13(~) 

* 
2 1 

gtt+C1gtt 2 1 ( 1) -Czgta -C1gta 2 -S2gt13( ~) +S1gt13( ~) 

* * 3 • 2(1) 1(2) gaa +Clg«a '0 +C2gaa 2 S2g;13( ! ) +S1g;13( ~) 

* * * 3 2(1) 1(2) g1313 +C1g1313 o +C2g1313 2 

E/ mode 

.,,_ '' 

2 
gss 

1 
C1gst gJ«( ~) +C2g;«( ! ) S 2 g;13( !) 

* 
2 1 

gtt+C2gtt: 2 1 ( 1) C1gta+C2gta 2 1(1) 1(1) -S1gt13 1 -S2gt13 2 

* * 3 2 (1) • 1 (2) gaa +Czgri.a O +C1gaa 2 -S1gJ13( ! ) +S2g;13( ~) 

* * * 3 2(1) 1(2) g1313 +Czg1313 o +C1g1313 2 

E2' mode 

TABLE AS. G-Matrix for 6-membered ring E2g mode. 

Asterisks(*) indicate redundant elements 

in the symmetric matrix. 

2 
gss 

·1 
gst g;«( ~ )-g;«( ! ) v'3g;13( !) 

* 
2 1 

gtt-gtt 2 ·1 (1) gta-2gta 2 -v3gt13(~) 

* * 3 2(1) 1(2) g««-gaa O -g«a 2 .f3 [g;13( ~)-g;13( ~)] 

* * * 3 2(1) 1(2) g1313-g1313 o -g1313 2 
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TABLE A6. G-matrices for 7-membered ring: E/ , Ez' , and 

2 
gSS· 

* 

* 

* 

2 
gss 

* 

* 

* 

2 
gss 

* 

* 

* 

E3' modes. Asterisks are redundant elements. 

1 
-C3gst: g_;«( ~)+Clg_;«( ! ) S1gJ~(!) 

2 1 
gtt+C1gt:t: 2 1 ( 1) -C3gta-C2gta 2 -S3g;I}( ~)+S2gtl}(~) 

* 3 2(1) 1(2) g""+Clg"" 0 +C2g«a. 2 s2g;p( !)+s1g;pG) 

* * 3 2 ( 1) 1 ( 2) gpp+C1gpp o +C2gpp 2 

E/ mode 

1 
C1gst: g;«( ~) + C2 g;a.( ! ) S 2g;~( !) • 

2 1 
gtt+C2gtt 2 1 ( 1) C1gta+C3gta 2 -S1gtp(~)+S3g;p( ~) 

* 3 2(1) 1(2) ga.a.+C2ga.a. o +C3ga.a. 2 -S3g;p(!)+S2g;p(~) 

* * 3 2(1) 1(2) gpp+C2gf}p o +C3gp~ 2 

E2' mode 

1 
-C2gst: g;a.( ~) + C3 g;«( ! ) S 3g_;~(!) 

2 1 
gtt+C3gtt 2 1 ( 1.) -C2gta-C1.gta 2 -S2gtp( ~)-S1g;p( ~) 

* 

* 

3 2(1) 1(2) ga.a.+C3gaa. 0 +C1ga« 2 -S1g;p( !)+S3g;p(~) 

* 

E/ 

21t c =2cos (-) 1. 7 

61t C3 =2cos (-) 
7 

3 2(1) 1(2) g~l}+C3gpl} o +C1.gP~ 2 

mode 

S =2sin ( 21r) 
1 7 

• ( 61t) S3 =2sin -
7 
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TABLE A7. G-matrices for 8-membered ring: B18 and B28 

modes. Asterisks (*) indicate redundant matrix 

elements in th~ symmetric matrix. 

B18 mode 

B28 mode 



TABLE A8. G-matrices for 8-membered ring: E2 g, E1u, and 

E3u modes. Asterisks ( *) indicate redundant 

matrix elements in the symmetric matrix. 

2 
gss 

* 

* 
* 

* * 

* * 

* * 

* * 

.fig;t g;a( ~) 2g;p( ~) 
2 

gtt /2 [gta-g{a(~ }J /2 [g{p( ~ )-g;p( ~ )J 

* 3 1 ( 2) gu-2gaa 2 

* * 

E2g mode 

g;a( ~) +/2 g;a( ! ) 
✓2 +,/2g;a +✓2 -/2gicz( ~) 

g;a +-f2.g;_a( ~) 

* 

E1u mode 

* 

E3u mode 

2g;p(~) 

3 1 ( 2) gpp-2gpp 2 

{2g;13( ! ) 
✓2 +y'2g{p( ~)-✓2-y12g;p( ~) 

2g;p( ~)+y12g;p(~) 

g/p+./2.gpr,(~) 

-2g;p( !) +y2g;p( ~) 

g/13-./2.g;r,( ~) 
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TABLE A9. F-matrices ,for A 1g, B 1g, B2g, and E-type mod.es, 

where fc is the coupling force i;::onstant, fb is 

the bond-stretching force constant, and fa is 

the bond-angle-bending force·constant. 

A1g mode 

B1g mode 

B2g mode 

f 
C 

0 0 0 

0 fb 0 0 

0 0 fa 0 

0 0 0 fa 

E-type modes 
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APPENDIX B 

RING MOTIONS FOR SELECTED VIBRATIONAL SPECIES 

Presented are ring motions for select~d vibrational 

species of the 4-, 5-, 6-, 7-, and a-membered rings. In most 

cases, two or more different sets of ring motion are possible 

for an E-type vibrational mode. This appendix is not 

intended to be an exhaustive reference on ring motions, but 

to provide illustrative examples of possible ring motions for 

some vibrational species of each ring. Therefore, some of 

the E-type ring motions have been excluded. The reader 

should note the similarity between ring motions for 

different-sized rings, particularly the A1g and Ai' breathing 

modes, and the E2g and E2
1 ring stretching modes. 
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B1g mode 

B2g mode E1u mode 

FIG. Bl. Modes of oscillation for the 4-membered ring. 
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A1 ' mode 

E1 ' mode 

E2 ' mode 

FIG. B2. Modes of oscillation for the 5-membered ring. 
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A1g mode B 10 mode 

B20 . mode E2g mode 

E10 mode 

FIG. B3. Modes of oscillation for the 6-:rnembered ring. 
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E1 ' mode 

FIG. B4. Modes of oscillation for the 7-membered ring. 
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A1g mode E2g mode 

E1u mode 
B1g mode 

B2g mode E3u mode 

FIG. B5. Modes of oscillation for the 8-membered ring. 
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