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and 7-membered embedded rings along with the A, and E,, modes
of the 6-membered ring. Frequenéies for the E,’ modes were
calculated with the valence force model. The ring statistics
were 25%v5-membéred rings, 50% 6-membered rings, and 25% 7-
membered rings, and provided the best fit for the spectrum.
The 6-membered ring A,;, mode was again taken to have twice the
integrated peak intensity of the 6-mémbered rihg E,, mode.
Peak widths which provided the best fit were o, = 90 cm™® (E,’
modes of 5- and 7-membered rings), o, = 170 cm™ (A,, mode of
‘6-membered ring), and g, = 95 dm'l“(‘éZg node of 6£ﬁémbere§
ring). |

The theoretical spectrum in Figure 19, with an error of
- only x* = 35, gives the best fit out of all of the models ran
on the convolution program. Compared with the theoretical
spectrum in Figure 18, the inclusion of the E,” modes from 5-
and’ 7-membered rings ‘along with ‘the 6-membered ring aA,, and
Egq modes-reduces’the'chi4squaréd‘efrdr by a factor of 2.2,
and eliminates the discrépancies arising from the 1366 cm™?
shoulder and the frequency shift of the maximum. Note that
the peak widths for the 5- and 7-membered ring E,’ modes (90
cm™') are close to the peak width of the 6-membered ring E,,
mode (95 cm!),  and that the peak widths for;alllthree modes
are less than twice the maximum peak widths (50 cm™!) reported

for silica glasses.’?
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The ring statistics for the theoretical spectrum in
Figure 19 are also physically reasonable. As a comparison,
Beeman’s C1120 model for a-C with no sp; bonding contained
21% 5—meﬁ1bered rings, 59% 6-membered rings, and 20% 7-
membered rings. Note that approximately equal proportions of
5~ and 7-membered rings are required for a 2D-CRN to prevent
excessive warpage or curvature in the network, or to prevent
the structure from curling into a large spheroidal molecule.
Finally, the most probable 5- and 7-membered ring modes to
appear in the Raman spectrum of a-C would be the Raman active
E,” modes. -
It can be concluded from the improvement in the fitting
of the theoretical spectrum to‘ the experimental spectrum
(Table 8, spectral fit twelve) that a-C contains a
substantial number of bo?h 5- and 7-membered rings. The
fitting results indic#te that only about half of the rings in
a-C are 6-membered. Only a CRN could accommodate such a
large percentage of 5- and 7-membered rings. Since five-fold
and seven-fold symmetries are incompatible with 2D
periodicity (as demonstrated with 2D tilings of polygons) a
continuous network comprising a large proportion of 5- and 7-
membered rings is necessarily aperiocdic and thus structurally
random. 2®
Figure 20 displays a triangle raft model (a) and ring
statistics (b) for a structural model of a-C corresponding to

Figure 19 (spectral fit twelve), and is the structural model
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(a)

Ring Size - 4 5 6 7 8 9

"FIG. 20. Triangle raft model (a) and ring statistics
(b) for the structuré of amorphous carbon

predicted by the embedded ring approach.
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for graphitic a-C predicted by the embedded ring approach.
Note that the network’s structure is aperiodic, and
represents a 2D-CRN with only 5-, 6-, and 7-membered rings.

The 4-membered ring E;, mode and 8—member:ad ring E,, mode
were incorporated into the theoretical spectrum of Figure 19
to assess the effect of these ring modes on the spectral fit.
The lack of improvement in the spectral fit (Table 8,
spectral fit eleven) can be taken to reflect an absence of 4-
and 8-membered ring modes in the Raman spectrum of a-C. It
can therefore be concluded that 4- and 8-membered rings do
not significantly contribute to the structure of a-C. This
is a physically realistic result since 4- and 8-membered
rings are not expectéd in large concentration in a-C due to
the increased bond-angle energy required to form these rings.
Additionally, Beeman et al.*® did not include 4- and 8-
membered rings into their model ring statistics, again due to
the increased bond-angle energy for these fings.

Bond Angle Distribution
and Peak Widths

Because of the inability to tile a 2D lattice with
perfect pentagons, hexagons, and septagons (except by curling
the 2D lattice into a third dimension, as is found for 5- and
6-membered rings in the fullerenes 2*2%), many of the rings
will deviate from their ideal polygonal shape. These
deviations will create a distribution of bond angles (as

opposed to a single, ideal bond angle) for each class (size
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n) of rings. Bond-afiglée fliuctuations in amorphous silicon
and gérmanium induce broadening of bands in their Raman
spectra, and the bandwidths provide a means to measure the
bondsangi‘e distribution.’® The effect of thls ‘bond-angle
distribution on the vibrational modes could be analyzed with
the VFM.

The g-matrix elements are '‘a function of bond angle.
Replacing the idealized, single-valued bond angles in the g-
matrix elements with a distribution of bond angles would
result in a distribution of eigenfrequencies calculated from
the secular determinant. Each vibrational species would the1:1
exhibit a distribution of mode frequencies instead' of an
ideal, single-valued, delta-function mode frequency. The
distribution would most 1likely bé gaussian due to the
inhomogeneous nature of the bond-angle disorder. The average
or mean for the borid-angle distribution would most likely lie
near the. values for the idealized bond angles. Therefore,
the gaussian frequency distribution would be centered at or
near the idealized mode frequency. “

From' the foregoing argument, the rather large peak
widths of the gaussian peaks used to produce the theoretical
spectrum in Figure 19 can now be explained by the extreme
distortion of 5-<, 6-, and 7-membered rings in a 2D-CRN. The
narrower peak widths exhibited by silica can be attributed to
either ring~network decoupling of the oxygen 'breathing modes,

or to a narrower distribution of bond angles due to the
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presence of medium-range order.!*7?

A third explanation is that since silica glasses are 3D
networks, n-membered rings are accommodated into the network
with 1ess'bond-ang1e distortion than they wouia have in a 2D
network. The extra third dimension provides an added degree
of freedom for the configuration of silica tetrahedra and the
rings they form. The decrease in bond-angle distortion
results in a narrower distribution of bond angles, and
consequently narrower Raman peaks for the 3D silica networks
as compared to the 2D a-C networks.

Although a bond-length distribution also introduces band

broadening, only a narrow bond-length distribution is

observed in a-C for nearest neighbor atoms. (The variations

in bond length fit a gaussian distribution, and were measured °

with the use of radial distribution functions obtained from
neutron diffraction.*)

The improved theoretical spectrum fit in Figure 19
provides evidence supporting both the validity of the
embedded ring approach and a CRN structural model for a-cC.
The ring statistics favor the presence of 5- and 7-membered
rings at significant 1levels in a-C. Convolutions
incorporating 4- and 8-membered ring modes failed to produce
theoretical spectra with chi-squared errors less than those
reported. The large widths of the gaussian peaks for the 5-,
6-, and 7-membered rings most likely arise from an

inhomogeneous distribution of bond angles within the rings.
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The source of the peak broadening ' is directly traceable in
the embedded ring approach, suggesting a method both
quantitative and analytical for determining bond-angle
diSOrder'in\an amorphous 'solid .with the use‘gf vibrational

spectra.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

Several analytical and numerical methods are used to
determine the vibrational dynamics of amorphous materials.
However, there exists no generalized analytical method which
can calculate the vibrational density of states for an
amorphous material. Although not a generalized method, the
embedded ring approach has been developed to address this

deficiency. The embedded ring approach models the

vibrational dynamics for amorphous 2D materials, making it-

applicable to a wide range of materials with scientific and
technological interest.

Inherent in the use of the embedded ring approach is the
selection of an appfopriate structural model for amorphous 2D
materials. Covalent amdrphous materials form disordered
structures known as continuous random networks (CRN’s). Two-
dimensional CRN’s are modeled with the use of Zachariasen
schematics and triangle rafts. Triangle raft models are
appealing for their ease of construction and the ability to
obtain the ring statistics from the modeled structure. The
emphasis on ring structures in triangle raft models make them
especially useful in the application of the embedded ring
approach. By assuming the vibrational mode intensities for
various sized rings in a CRN are proportional to the
distribution of ring sizes, the embedded ring approach can

produce theoretical spectra which can be used to determine
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the ring statistics for a given material.

Amorphous . carbon (a-C) was used as a test case for the
embeddedpring approach. The planar, three-fold coordination
of sp, bonds in a-Cc is thought to be cor';ducive to the
formation of 2D-CRN structures. Evldence exists to support
this model, but | the problems lof graphitelike, hexagonal
ordering on a fine scale (~ 10 A) and the.effect of four-
fold, tetrahedrally-coordinated sp; bonds on the structure is
stilliah open‘questloh. | . |

A preface to the embedded rlng approach was the
examlnatlon of the vibrational dynamlcs of polycycllc
aromatic hydrocarbons (PAH’s). The vibrational modes of an
isolated molecular ring structure; such as benzene, are
ﬁodified bj the addition of other rings in PAH molecules.
lThe changes‘ih'the vibrat}onal modes for a specific ring can
be attributed to coupling of the ring motions to the motions
v»of the surroundlng structure. The effects of coupllng were
examlned in a systematlc fash1on by analy21ng the Shlft in a
spe01f1c mode frequency for successively larger PAH
‘molecules. A concluslon of this work was that the:coopling
between an individual rind ahd the surrouhding‘molecular
structﬁre changes llttle for;molecules comprisedfofwmore than
three ‘rings. Thus, complete rlng-network coupllng is
achleved with relatlvely small rlng assemblages

The‘ embedded ring approach is s1mllar to other

analytlcal. methods because of its empha51s on the 1local



117
structure in amorphous materials. The local structural units
for the embedded ring approach are planar 4-, 5~, 6-, 7-, and
8-membered rings. The rings are treated as molecules
embedded into a rigid hole in a 2D network. ﬁéthods for the
study of molecular dynamics are then employed to determine
the vibrational modes. Each ring atom was coupled to the
wall of the hole with a bond (spring) having an effective
force constant differing from the normal bond-stretching
force constant. This effective coupling force constant
models the effect of the embracive network on the ring’s
vibrational modes. The vibrational modes for the ring were
then determined with the small oscillation approximation.
The potentials were approximated with either a central force
model (bond-stretching and coupling force constants only) or
the valence force model (bond-stretching, bond-angle-bending,
and coupling force constalzlts) .

Central force model calculations were performed with the
method of small oscillations. The valence force model,
however, also required the use of group theory to solve for
the vibrational mode frequencies. By configuring the
‘equilibrium positions of the rings into the shapes of regular
(ideal) polygons, the in-plane vibrational modes for the
rings were solved with the use of their symmetry point groups
and the normal coordinate treatment.

Results for two central force models and the valence

force model were compared. In comparison to the wvalence
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force model, the central force models were good
approximations, but produced too' many ‘' degenerate mode
frequencies. ' On the other hand, loss of degeneracy was a
problem fdr the valence force model. The l-o's‘?; of degeneracy
arises from the coupling of the isolated ring modes to the
network (i.e., the coupling of the embedded ring to the wall
of the rigid hole).

The Raman spectrum of a-C provided experimental data for
testing the validity of the embedded ring approach and the
CRN model for a=C. Calculated mode frequencies were compared
to the a-C spectrum by constructing theoretical spectra. The
vibrational modes were assumed to have gaussian profiles'with
integrated peak intensities directly proportional to the ring
statistics. convolution of the modes produced: the
theoretical spectra. The number of modes, peak widths, and
ring statistics were varied to produce the best fit to the
data.

The theoretical spectrum providing the best fit to the
‘Raman spectrum of a-C included only the 5- and 7-mémbered
ring E,’ mode frequencies and the 6-membered ring A,, and E,
mode frequencies. The E,, and Ay, mode frequencies were
obtained from published Raman spectra of graphite and
‘nanocrystalline graphite. Fréquencies for the 5-’ and 7-
membered ring E,” modes were ‘ana’Iytically calculated with the
use of the embedded ring approach” and the valence force

model. Although the Raman spectrum of a-C can be approximated
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with solely the 6-membered ring E,, and A,, modes, the
incorporation of the 5- and 7-membered ring E,” modes into
the theoretical spectrum substantially 1mproved the fitting.

The ring statistics corresponding to the best fit are
realistic, with 25% 5-membered rings, 50% 6-membered rings,
and 25% 7-membered rings. The results suggest that a-C has
a CRN structure, with 5- and 7-membered rings comprising a
significant percentage of the total number of rings.

The embedded ring approach uses simple, first-principle,
classical theory to model the vibrational dynamics of 2D
amorphous materials. The initial success of the embeddeé
ring approach in its application to a-C demonstrates the
viability of the approach. Further work, however, is
required to develop and establish the embedded ring approachhg
as a powerful theoreticalymethod.

The application of the embedded ring approach to a-C can
be expanded to include modeled fits of theoretical spectra to
infrared spectra, which display different selection rules,
and to inelastic neutron spectra, which provide the VDOS due
to a complete absence of selection rules. The embedded ring
approach could also be applied to the vibrational dynamics of
the buckminsterfullerenes %77 or large PAH molecules, such as
hexabenzocoronene. More research should be conducted on the
asymptotic trend of vibrational mode frequencies to graphite

mode frequencies for increasingly larger PAH molecules.
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The embedded ring approach could also be extended to
covalent 3D amorphous materials by examining the vibrational
dynamic¢s of polyhedra-forming atomic clusters . in the 3D
network.' The polyhedra would be 3D analog; of 2D planar
rings, and modified vibrational modes for isolated polyhedra
embedded into an embracive network would be determined by the
Same’ methéds as outlined in this work. Such .an "éembedded
polyhedron approach"™ would have wider application and utility
than the embedded ring approach, but more: in-=depth research
on the ‘embedded -ring approach is required before the
technique is extended to 3D amorphous solids.

" Areas that need to be studied with greater detail in the
embedded ring approach are:

1. the.loss of degeneracy in the VFM, and whether it
has any physical significance;

- 2. - the assumptions and criteria for selection of
coupling force constants;

3. the significance of the A;, mode in a-C and PAH
molecules;

4, and the effective mass approach, and whether it is
is equivalent to or has advantages over the
coupling force constant appréach.

Finally, other materials need to be examined with the

embedded ring approach. A few suggested materials are:

1. planar rings in SiO,-:and B,0;-based glasses, and

the phenomenon of ring-network decoupling for
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certain vibrational modes;
2. amorphous As,Se;, As,S;, and As,03;
3. 2D, in-plane vibrational modes of the CuO, layers
in high temperature superconductors;ﬁ
4. and 3D amorphous materials, such as diamondlike
a-C, amorphous silicon, and amorphous germanium.
The approach taken in this thesis pioneers a new method
for determining the ring statistics of an amorphous material
from its vibrational spectrum. Additionally, the approach
may also provide a method for measuring bond angle
distributions in amorphous materials. The peak widths of the
vibrational modes in the theoretical spectrum should be
directly traceable to the boﬁd angles in the g-matrix
elements of the secular determinants. If so, a new method
for the analytical modeling and characterization of amorphous
materials may be developed with the embedded ring approach.
The embedded ring approach can be Jjudged a modest
success at modeling the Raman spectrum of amorphous carbon.
Further research with new materials and improved methods will
provide the final verdict as to whether the embedded ring
approach is an ephemeral idea or a lasting contribution to

science.
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APPENDIX A
TABLES AND MATRICES FOR VALENCE

FORCE MODEL CALCULATIONS

Presented are the symmetry coordinates, g-matrix
elements, and G matrices used for the valence force model
calculations. The 4-, 5-, 6-, 7-, and 8-membered rings are
represented by the D,, Ds, Den, Dsn, and Dg, symmetry groups,
respectively. Character tables for these symmetry groups can
be found in most treatises on elementary group theory and
molecular dynamics. As described in Chapter III, the
symmetry coordinates are instrumental in deriving the U
matrix for each vibrational species. The U matrix is then
used to transform the f and g matrices to F and G matrices
for each vibrational species. The‘resﬁlting F matrices
remain diagonal, but the G matrices retain off-diagonal
terms, with each G-matrix element comprising a 1linear
combination of gfmatrix elements. The F and G matrix of each
vibrational species are then multiplied together to form the
secular determinant (see Chapter III), and solution of the

determinant yields the frequencies of vibration.



TABLE Al. Symmetry coordinates for selected fundamental

modes of the five embedded rings.
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4-Membered Ring

mode:

Aq,
1
“2‘(t1+t2+t3+t4)
L
?z(si+s2+s3+s4)
, % (“1""“2’*“37"“4)‘
Big mOdé: ‘ o S
55(53*53453'32)‘“
2 (ay-ayva,-a,)
B,, mode:
% (tljt_:2+t3_‘t4)
10 _a .8 - )
—-Z-(Bl ﬁz B3 ﬂ4
E;, mode:

% (tl_tz"t3+t4)
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TABLE Al (Continued)

5-Membered Ring

E,” mode:
-1 [2¢t, (1+C0S72°) —t,+4 £,c05144° £, +2 £, (1+C0572°) ]
2c05144°/10

«’ % [s,+5,00572° +5,c08144° +5,C05144° +5,c0572°]

«l % [a, +a,co0572° +ay,c05144° +0,c05144° +a;c0572°]

1 [+ o
—_— = [-2B,c0s144°+P,-P,+2B;c05144°]
25in72°JZ - 3 _5

E,” mode:
= [2¢t, (1+C0S144°) ~£,+4t,c0S72° ~t,+2 t; (1 +c05144°) ]
2c0s72°/10

«l % [s,+5,005144° +5,c0872° +5,0872° +55C05144°]

2
«| = [, +0,c05144° +a,c0S572° +a,c0572° +0.5c05144°]

1

[2B,co0s72°-B,+B,-2B.c0s572°]
2sini44°y2 - 3Te TS




130

TABLE Al (Continued)

6-Membered Ring

E,;, mode:

\ le' [t,-2t,+E,+E,~2 L+ L]

1
\ 12

1
4,?EE[Zal—az—a3+2a4—a5—a6]

5 (B,=B5+Bs=Be]

[28,-5,-5;+25,-5;~5,]

8-Membered Ring

By, mode:
1[ S8, ~5, + S~ G+ |
g 5175278378, 85786+ 5,75y
1[ — Ot =0, F O =0+ O, 0]
g LELT KT TR T KTy T g
B,, mode:

\l % {tl"t2+t3;t4+ts"ts+t7—'t8]

\J—%[ﬁl_B2+ﬁ3_ﬁ4+ﬁs_p6+B7_ﬁsl



TABLE Al (Continued)

7-Membered Ring

E-type

«' —3— [s,+s,c080, +s,c080,+s5,c080,+5,c080,+5,c080,+5,c080,]

«l —,27- [a,+a,cos0,+a,c080,+a,cos0,+acosb;+a,cosb,+a,cos0,]

modes:

1
cos0,/14

[(£,+t,) (1+cos8,) +(¢t,+t;) (cosb, +cosh,) +

(ty+ts) (cosB,+cosb,) +2t,cos6,]

131

_S__i-m—ll\/ﬂ [(B,-B,) (1-cos8,) +(B,~Bs) (cosB,-cosb,) +
. (B,—PBs) (cosb,~cosb,) ]
Angle 0, 0, 0,
Mode
E,’ 2m/7 am/7 6m/7
E,’ am)7 6m/7 2m/7
Ey’ 6m/7 2w/7 4T /7
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TABLE Al (Continued)

8-Membered Ring

E,; mode:
“Ii[t St byt b — b by Ey]
8 1 2 3 4 S 6 7 8
% [8,~8y%85~5,]
v %—.[“1"“3"'“5'“7]
= [B,~B,+Bs—B]
1 (p,-Bo+BoBs
E,, mode:
\J m [(Ea=tymtstty) (1+y2) +ty-ty= g+t ]

«I —:}'— [V2s,+5,-5,~/285-S5+S,]

\ % [V2a, +a,-a,~v20s=as+a,]

\ % [Bo+V2B3+B,~Bs—v2B; Bl
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TABLE A2. Generalized g-matrix elements for embedded ring

ring approach with the use of internal

coordinates. In the expressions u is the

reciprocal mass of the ring atom, 7 is the

reciprocal atom-atom bond length, ¢ is the

reciprocal atom-rigid wall distance, 6, is

the ring’s inner bond angle, and 8, is the

angle between the coupling bond and atom-atom

bond.

Fas=h
g2t=2|.l.
L
gre=pcos,

1 _
gsc=pcos,
gi=-Tpsind,

gtla( ;) =tpusing,

11y 1-cosB,
gg%l) 2Tpcosez[—?gﬁﬁi—]

gé4;)=—tpsin62

el

gslg<;)=%'cpsin 5
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TABLE A2 (Continued)

' T STy
ggﬂ(i):p, [c531n7l +—2-'TSJ.n61]

1 .
géﬁ( ;)=‘—2—Tu‘81n61 .
gae=27pt [2-C0S0,]
gfu(;)=—2'c2u [1~cosb,]

gia(§)=—t2pcosel

0 0
g€ﬂ=u [0'2"'20'1'008——23 +1,'2 (.%4—(:082_31_) ]

6 0. .

gip(;)=rrcos 2t [o+rcos ]
12y 1 > 6

gﬁﬂ( )“Z‘F pcos6,

gjﬂ(z)a;—‘czucosel

)
giﬁ(i)“u [T+ocos?‘]
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TABLE A3. G-matrices for 4-membered ring: A;,, By,
B,,, and E,, modes. Asterisks (%) indicate

redundant elements in the symmetric matrix.

2 1
gss Gst

* 93#292:;

A,, mode

:4

gsz's g;a:(i)—z.g;a(i>
* 92u=20aa(;)*Fae(3)

B;; mode

gi—2gce 2 [gtlﬁ(i)"'gtlﬂ(;)]

* 955‘29&@)*935(3)

B,, mode
9 V2ol 9a(}) 295(3)
*  gi V219%-gi(;)] VZlgw(})-gem(1)]
* * gja_gia<i> 29&3(2)
. * 98 ~98(5)

E,, mode
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TABLE A4. G-matrices for S5-membered ring: E, and E,’
modes. C; =2 cos 72°, C, = 2 cos 144°,
S, = 2 sin 72°, and S, = 2 sin 144°.
[ 2 1 1
9ss ~Co9s: gsa( )+Clgsa( ) 1gsp(1)

2 1
*  GeetCiGie

- 2gta— 1gt:a( )

-s,h(2)+,93(3)

* * gma+clgma( )+ngaa( ) 2gaB( )+Slg¢l5( )
* * * 95&*%%5( )+ngﬁﬂ( )]
E, mode
-gszs Cl.g;t: g;a( i)*cz'g;a( :) Szgslﬁ( ;)

* ggt"'czgtj:-t 1gga+czgéa(1) - 1gt::L]3(I)_ 295{5(1)
* * gaa+czgaa( )+Clgaa( ) - 19'“,3( )+S2g¢5( )
* * * 9'135*02%3(0)*%9'53(2)_
EZ’: mode
TABLE A5. G-Matrix for 6fmembered ring E,, mode.
Asterisks (*) indicate redundant elements
in the symmetric matrix.
% gh oh(M)-gh() V3gh(2)
*  gr.—Jie gfa—zgéa(l) —\/—ggﬁ(l)

*

%

*

*

Fea=Gaa ) ~Gaa(2) V3 [Tap(Z)~Tap(2)]

*

gﬁﬁ“gﬁﬂ(o)_gﬁﬁ(Z)-




TABLE A6. G-matrices for 7-membered ring: E,", E,, and
E;’ modes. Asterisks are redundant elements.
g2, -c,g Isal ) CrG54(5) 5,958( ;)
¥ gi+Cigie _Cnga-ngg-a(;) - 3gtzlﬁ(i)+szgéﬁ(:)
* * gja'}'clgfa(z)"'czgia(;) Szgjﬂ(z)-}slgiﬁ(i)
* * * 988+ CaG88( o)+ 29883 )
E,’ mode
| ’ -g.gs Clg;.t gsla<1)+czg:a(§) Szgslﬁ(;)‘
¥ geetCoTce Clg§¢+c3g§a(;) 'Slggﬂ(i)"*"%ggp(:)
* * g:a+czgf¢(z)+03ga1u(§) - 3g36(2)+52g35(i)
* * * 988+ C2988( 5) * C988(3),
E,’ mode
02 -Cak  gh(})*Cok(D) S3958(3)
* ghtCigr  ~CaFia—CiTzd(;) -5,e8(3) ~S19¢8(3)
| * * gza"'cagfa(;)"'clg:a(z) - 19’:5(2)'*‘539':{5(?_)
* * * 938+ Ca58( 5 )+ Ca88(3)
E;’ mode

i
—

¢ =2cos (2
7
C,=2cos (—4,‘7—11:)

C;=2cos (—%ZT—)

5,=2sin (2%)
7
Sz=25in(4—7n-)

S3=Zsin(i7’3)
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TABLE A7. G-matrices for 8-membered ring: B;, and B,
modes. Asterisks (*) indicate redundant matrix

elements in the symmetric matrix.

gszs g;a(i)"zg;u(;)

v Gl-20h()-204(2)

By, mode

gee-2gze 2 [gip(3)*gm(;)]
* gis-29%8(;)~2988(3)

B,, mode
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TABLE A8. G-matrices for 8-membered ring: E,,, Ei, and

E,, modes. Asterisks (*) indicate redundant

matrix elements in the symmetric matrix.

0% 2ok gl) 29:5(3)
+ gh V2lgk-9t(3)] VZlge(;)-gm(1)!
f % ghm29(2) 292(2)
i * * * ggp—zgéb(g)
E,; mode
9% VZrEgk Iool ) *V295(3) V29 ;)
+ ght2h V2295 2V205(;) V2+V2g:(3) V2 -V2Tu(;)
* * GaatV2G04( ;) 290p(2)+v29ap(2)
| * * 988 +V295( )
E;, mode
o2, V2 Vagk ool ;) V295(;) vV292(3)
* geeV29te V2~V295~V2+V295(}) ~V2-V2gz(})V2+V2gz(;)
. . TauV2G5{3) ~29up(3)*2 (3
| * * * 93 ~vV2958( 5 )

E,, mode




TABLE A9.
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F-matrices .for A,,, B;;, B, and E-type modes,
where f, is the coupling force constant, f, is

the bond-stretching force constant, and f, is

the bond-angle-bending force-constant.

f, 0
0 £,

Alg mode

£, 0

[o}

o £

B,, mode

£, O
0 f

B,, mode

g

o o o Jﬁ

0
fb
0
0

o M o o
[\
Jm o o o

E-type modes
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APPENDIX B

RING MOTIONS FOR SELECTED VIBRATIONAL SPECIES

Presénted are ring motions for selected vibraticnal
species of the 4-, 5-, 6-, 7-, and 8-membered rings. In most
cases, two or more different sets of ring motion are possible
for an E-type vibrational mode. This appendix is not
intended to be an exhaustive reference on ring motions, but
to provide illustrative examples of possible ring motions for
some vibrational species of each ring. Therefore, some of
the E-type ring motions have been excluded. The reader
should note the similarity between 'ring motions for
different-sized rings, particularly the A,, and A,’ breathing

modes, and the E,, and E,’ ring stretching modes.
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A, mode ' B,, mode

g

B,, mode E;, mode

FIG. Bl. Modes of oscillation for the 4-membered ring.
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A;’ mode

E,’ mode

E,’ mode

FIG. B2. Modes of oscillation for the 5-membered ring.



S

A, mode ) B,, mode
B,, mode E,, mode
E,, mode
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FIG. B3. Modes of oscillation for the 6-membéred ring.
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E;’ mode

E,” mode

E;” mode

FIG. B4. Modes of oscillation for the 7-membered ring.
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P

A, mode ‘ ' E,, mode
E,, mode

B,; mode

By, mode E;, mode

FIG. B5. Modes of oscillation for thé 8-membered ring.



