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ABSTRACT 

 

Detailed Analysis of the Domains of Mtr4 and  

How They Regulate Helicase Activity 

 

by 

 

Lacy L. Taylor, Master of Science 

Utah State University, 2014 

 

Major Professor:  Dr. Sean J. Johnson 

Department:  Chemistry and Biochemistry 

 

There are numerous RNAs transcribed in the cell that are not directly involved in 

protein translation.  Maintaining proper levels of RNA is crucial for cell viability, making 

RNA surveillance an essential process (equivalent to regulating protein levels).  Mtr4 is an 

essential RNA helicase that activates exosome-mediated 3’-5’ turnover in RNA processing 

mechanisms.  Mtr4 has several binding partners, with the most prominent one being the 

complex Trf4/5-Air1/2-Mtr4 polyadenylating (TRAMP) complex.  The polyadenylation and 

unwinding activity of TRAMP is modulated by a sensing mechanism in Mtr4 that detects 

both length and identity of 3’-end poly(A) tails.  While it has been known that Mtr4 has an 

unwinding preference for substrates with a 3’ poly(A) tail and a length of approximately 5 

nucleotides, the mechanistic detail is unclear.  It is also unclear what structural features of 

Mtr4 contribute to this sensing function.  By using x-ray crystal structures of Mtr4, a ratchet 

helix was identified to interact with RNA substrates.  Significant conservation of this ratchet 

helix along the RNA binding path was observed, similar to conservation patterns throughout 

Ski2-like and DEAH/RHA-box helicases.  
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Structural characterization revealed a novel arch domain shown to bind structured 

RNAs, which may aid in cooperative RNA recognition in conjunction with the ratchet helix.  

In this thesis we demonstrate that the conserved residues at the third (R1030) and fourth 

(E1033) turns of the Mtr4 ratchet helix uniquely influence RNA unwinding rates.  

Furthermore, when mutated, ratchet helix positions confer slow growth phenotypes to 

Saccharomyces cerevisiae and are synthetically lethal in an Mtr4-archless background.  The 

unwinding activity of these mutants when in the TRAMP complex alters the unwinding rates 

of Mtr4, and in some instances recovers substrate specificity.  Our findings demonstrate the 

importance of R1030 and E1033 for helicase activity, and additionally link the arch domain 

of Mtr4 in essential unwinding events. 

(79 pages) 
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PUBLIC ABSTRACT 

 

Detailed Analysis of the Domains of Mtr4 and  

How They Regulate Helicase Activity 

 

The central dogma states that DNA is transcribed into RNA, which is then translated 

into protein.  This concept conveys a minimal view of the role of RNA, portraying it simply 

as an intermediary between DNA and protein.  However, it is now known that the role of 

RNA in the cell is critical in regulating protein expression both directly and indirectly.  RNA 

in the cell typically goes through modifications to become active (on) and inactive (off) to 

eventually become targeted for degradation and start the cycle all over again.  The protein 

complex that regulates the proper maturation and degradation of RNA in the cell is the 3’-5’ 

RNA degrading exosome complex, composed of 9 subunits and several other associating 

proteins.  One such associating protein that helps activate the exosome is the RNA helicase 

Mtr4. 

Mtr4 unwinds structured RNA to then feed the single-stranded RNA through the 

exosome for proper trimming or degradation.  Mtr4 is an essential protein for cell viability, 

and if functioning improperly, can result in certain neurological and immune disorders.  

Understanding how Mtr4 works is important to regulating RNA surveillance and treating the 

diseases and disorders caused by the presence of improperly functioning protein.  In this 

thesis, a detailed analysis of Mtr4 unwinding and substrate recognition is explored.  

Additionally, our data show an interesting result in which we have discovered a potential role 

for the novel arch domain of Mtr4. 

Lacy L. Taylor 
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CHAPTER 1 

INTRODUCTION 

INTRODUCTORY BACKGROUND AND SIGNIFICANCE 

RNA is a multifunctional macromolecule that can store genetic information and 

catalyze chemical reactions.  Several different RNA transcripts are produced in the cell to 

regulate major pathways such as transcription and translation
1-3 

(outlined in Figure 1-1).  

Almost all RNAs, whether they are involved in storing genetic information or catalyzing 

reactions, must first undergo modifications to be fully functional.  RNA modifications 

encompass a wide scope of processes, such as splicing, 5’-capping, 3’-polyadenylation, 

covalent modifications (methylation, etc.), internal cleavage, and end trimming.
4,5

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1.  Diagram of the cycle of RNA modifications.  This diagram emphasizes the 

importance of regulating RNA levels in the cell. 

It is imperative that all RNAs are therefore matured and functioning properly for 

survival of the cell.  It is of equal importance for any improperly transcribed or aberrant 
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RNAs to be recognized and degraded.  The primary complex responsible for the degradation 

and maturation of various RNAs in eukaryotes (such as rRNA, tRNA, sn(o)RNA, pre-

mRNA, cryptic unstable transcripts (CUTs), etc.) is the exosome
6-9

.  Certain diseases have 

been linked to an improperly functioning exosome such as polymyositis/scleroderma-overlap 

syndrome (PM/Scl) where patients lose muscle
10

.  The exosome is crucial for maintaining 

proper functioning levels of RNA. 

 

The RNA Degradation Machinery 

 

The exosome, which is found in the nucleus and cytoplasm of eukaryotic and 

archaeal cells, is a multi-subunit complex responsible for 3’-5’ degradation of aberrant RNAs 

in the cell.  First discovered in yeast, it was later discovered to have a homologous version in 

humans.  The exosome is comprised of six core RNase PH exoribonucleases (Rrp41, Rrp42, 

Rrp46, Rrp43, Rrp45, and Mtr3) and three S1/KH proteins (Csl4, Rrp4, and Rrp40) called the 

capping proteins, that encompass a ring like structure with a gap in the center large enough to 

accomodate single stranded RNA.
11

  Surprisingly, this complex is catalytically inactive 

without certain cofactors/activators.
10

  The exosome functions in a cooperative manner in 

RNA surveillance with the associated nucleases Rrp6, a 3’-5’ exoribonuclease found 

primarily in the nucleus, and Rrp44 a 3’-5’ exo- and endoribonuclease found in the nucleus 

and cytoplasm.
12

   

Rrp44 can degrade structured RNA’s, however it has an active site that only allows 

single stranded RNA.  Rrp44 is also considered a 3’-5’ RNA helicase that translocates along 

nucleic acid through the energy release given off by hydrolysis of the RNA substrate.
13

  Rrp6 

is an exoribonuclease exclusively, that typically degrades non-structured RNA.  However, 

given a 5-10 nucleotide extension on the 3’ end, and approximately a 10 nucleotide extension 

on the 5’ end, Rrp6 can degrade through structured portions of RNA.
14

  Rrp6 is important for 

recruiting other activators of the exosome such as Rrp47 and the TRAMP complex, 
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composed of Trf4/5, Air1/2, and Mtr4.
15-18

  The exosome requires these associated nucleases 

and cofactors/activators to function in RNA surveillance, Figure 1-2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2.  Pathway to RNA degradation/maturation.  The major degradation machinery, 

the exosome, and required activators/cofactors. 

 

The RNA Helicase Mtr4 

 

Mtr4 is an essential ATP-dependent RNA helicase that catalyzes the unwinding of 

structured RNAs and is important for exosome activation.
19

  Mtr4 unwinds double-stranded 

RNA in a 3’-5’ direction, and binds single stranded RNA (ssRNA) with a preference for a 

short poly(A) tail.
20

  It is a member of the Ski2-like, DExH-box helicases from superfamily 2 

(SF2).  There are 6 classifications of superfamily helicases based on their helicase motif type.  

The term DExH-box helicase is similar to the DEAD-box helicase which is named for a 
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conserved sequence within motif II (ATPase region) of Asp-Glu-Ala-Asp, with DExH being 

a variation in this sequence.
21

  The DE residues in motif II of these helicases are involved in 

coordinating a magnesium ion and catalytic water for hydrolysis of ATP.   

Each helicase contains a common core structure comprised of two RecA-like 

domains, a winged helix domain, and a 7-8 helix bundle domain,
22

 outlined for Mtr4 in 

Figure 1-3.  RecA-like domains are involved in binding nucleic acids and hydrolyzing ATP 

and are so named due to their similarity in structure with the ATPase RecA protein involved 

in DNA recombination.
23

  RecA-like folds consist of a central β–sheet followed by α-helices, 

with a highly conserved sequence motif of A/GXXXXGKT/S between the end of the β1-

strand and the flanking α–helix.
23

  This sequence motif is involved in coordination of the γ–

phosphate of ATP during the hydrolysis reaction.
23

   

Following the two RecA-like domains is a winged helix, domain 3.  Winged helix 

domains were originally identified to be involved in nucleic acid binding, however in the case 

of the replication protein RPA32 it is required for protein-protein interactions.
24

  Analysis of 

the Hel308 structure, which is also a Ski2-like SF2 helicase, shows the winged helix appears 

to play a minimal role at best at interacting with nucleic acids.  It has been proposed that the 

winged helix in Hel308, and by comparison Mtr4, may be involved in both maintaining 

structural integrity and binding protein partners.
25

   

Lastly, domain 4 (consisting of an 8 helix bundle) function is currently unknown.  In Hel308 

it is hypothesized that the helical bundle is involved in a “ratcheting” motion for transport of 

nucleic acid across the RecA-like domains by a central helix called the ratchet helix.
26

  In 

Mtr4, the ratchet helix is positioned similarly to Hel308’s ratchet helix bound to DNA.  With 

all of the domains of Mtr4 interacting with nucleic acid, it is hard to pinpoint exactly how 

Mtr4 preferentially recognizes a short poly(A) sequence for its substrate. With the availability 

of the Mtr4 structures (apo-
27

 and RNA-bound
28

) and the Hel308 structure, we are now in 
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position to perform a more detailed analysis in identifying potential residues of Mtr4 

important for unwinding and sequence recognition (addressed further in Chapter 2).  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3.  Structure of the RNA helicase Mtr4.  The structure is colored and labeled by 

domain: RecA1 domain (slate blue), RecA2 domain (golden), Winged Helix domain (pale 

green), Arch domain (red), Ratchet domain (violet). 

 

Arch 

Fist 

Ratchet 

Winged 

Helix 

RecA1 

RecA2 

PDB ID: 3L9O 
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MTR4  

 

Structural Insight Into Mtr4 

In 2010, the first Mtr4 structure was published, providing new insight into the protein 

domains and their function.  The structure of Mtr4 was observed to contain five distinct 

domains with a central channel having a diameter of ~ 12 Å.
27

  As predicted domains 1 and 2 

were the RecA-like domains consisting of a central β–sheet surrounded by α–helices.
27

  These 

domains, however, consisted of exceptionally long β–sheets (10 strands).  The winged helix 

(domain 3) was very similar to Hel308 with a root-mean-square deviation (RMSD) of 1.97 

Å.
27

  The function of the winged helix is still unknown, but a proposed function will be 

discussed further in the latter half of the introduction.   

The most prominent feature of Mtr4 is the novel arch domain (or insertion domain 

3a) which is specific to Mtr4 and Ski2.
27

  The arch domain accounts for 25% of the entire 

protein, 265 residues inserted in the winged helix domain between the second and third 

helices.
27

  The arch feature is characterized by an “arm” and “forearm” in which two anti-

parallel helices
27

 are joined through a sharp loop bent at ~ 120º.  The “forearm” helix of the 

arch extends into the “fist” consisting of a central β–sheet surrounded by a globular α–β 

arrangement.  The “fist” is structurally similar to the ribosomal protein L14e, indicating the 

potential for nucleic acid binding.
27

  Domain 4 of Mtr4 consists of an eight-helix bundle and 

corresponds to a DSHCT domain found in DEAD box helicases.
27

  This domain is 

structurally similar with the Hel308 structure, allowing for potential comparison with this 

well studied DNA helicase.   

 

The Novel Arch Domain of Mtr4 

Although no function has been attributed to the arch, it has been shown to bind 

structured RNAs.  More specifically the fist portion of the arch domain alone is sufficient to 
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bind structured RNA such as tRNA
iMet

 and rRNA.
28

  When the arch is deleted there appears to 

be no effect on RNA unwinding in vitro.
27

  However, the arch domain seems to be essential 

for proper maturation of the 5.8S rRNA from the 5.8S + 30, as determined by northern blot 

analysis.
27

  An accumulation of the 5.8S + 30 rRNA is also seen when Rrp6 is knocked out.  

It was recently shown that when an mtr4-archless construct combined with an rrp6∆ construct 

was expressed, there was no increase in accumulation of the 5.8S + 30 rRNA suggesting that 

the arch domain of Mtr4 and Rrp6 share similar redundant functions.
29

  However, an in vivo 

growth of the rrp6∆ and mtr4-archless mutant was no more severe of a slow growth 

phenotype than either of the individual mutants suggesting that the arch domain of Mtr4 is 

only required for certain functions of Rrp6 and may be necessary for other pathways.
29

  Also, 

the arch domain is not necessary for TRAMP formation based on pull-down analysis.
19

  

However new evidence may provide a role for the arch in unwinding when associated with 

the ratchet helix, which will be discussed further in the results section in Chapter 2.   

 

The Ratchet Helix 

The Hel308 structure described the helical bundle domain (domain 4) to be a ratchet 

domain due to a central ratchet helix hypothesized to act as a directional transport of nucleic 

acids across the RecA-like domains.
26

  In vivo analysis shows that a truncation of the ratchet 

domain in Mtr4 results in synthetic lethality, making this domain essential for Mtr4 

viability.
19

  The ratchet domain of Mtr4, consisting of an eight helix bundle, was not apparent 

by sequence to be similar to the Hel308 ratchet domain (11% sequence identity with 26% 

sequence similarity).  However, when the Mtr4 structure was solved, the ratchet domain 

appeared to be structurally related to the Hel308 structure, with an RMSD of 2.7 Å.
27

  

Structural evidence of the ratchet helix interacting and presumably stabilizing base stacking 

interactions exists in the poly(A) RNA-bound Mtr4 structure.
28

  This interaction between the 

ratchet helix and its RNA substrate in Mtr4 differs slightly from the interactions observed in 
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the Hel308 DNA-bound structure.  It has been proposed that the variation in the ratchet helix 

between Hel308 and Mtr4 could be accounted for by their functional differences, such as 

substrate preferences.
22

  Further investigation into this hypothesis is outlined in the results 

section in Chapter 2.   

 

Substrate Specificity 

Typically SF1 and SF2 helicases do not have sequence specificity for an RNA 

substrate in vitro.
30

  However, Mtr4 has been shown to prefer a poly(A) substrate over a 

random sequence of nucleotides with a preferred substrate of 5 poly(A)’s on the 3’ tail, the 

typical polyadenylated product of an RNA substrate targeted by TRAMP for the exosome.
31

  

The binding density mode, or length of nucleotides required for binding, was determined for 

Mtr4 to be approximately 5 nucleotides by Toth in 2010, using a Macromolecular 

Competition Titration Method.  They discovered that this binding interface changed however 

when different nucleotides were bound.  The binding density mode expanded to around 7 

nucleotides long in the ADP-bound form and as large as 17 nucleotides long in the AMP-

PNP-bound form (ATP analog) on a random substrate 20 nucleotides long.  However, on a 

poly(A) substrate 20 nucleotides long, the binding density mode was relatively consistent at 5 

nucleotides with or without ADP or AMP-PNP bound.
31

  It was proposed that Mtr4 

experiences conformational changes upon binding ATP that are substrate specific, and that 

the differences in the binding mode with the Mtr4-poly(A) compared to the Mtr4-random 

complex likely plays a role in Mtr4 recognition of sequence.  Currently the mechanistic detail 

of sequence specificity is unknown for Mtr4, which is a topic that will be discussed further in 

the results/discussion section in Chapter 2. 
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TRAMP 

 

Trf(4/5)-Air(1/2)-Mtr4 Polyadenylation (TRAMP4/5) complex 

Other influences on Mtr4 substrate recognition could be attributed to binding partners 

of Mtr4.  Several RNA helicases require cofactors to function properly.
21

  Mtr4 interacts with 

various proteins in the cell, and some of these complexes appear to influence helicase 

function.  Mtr4 is a member of the TRAMP complex, which is responsible for targeting and 

delivering RNA substrates to the nuclear exosome for degradation and maturation.  TRAMP 

is composed of a poly(A) polymerase (Trf4/5), an RNA binding protein (Air1/2) and an RNA 

helicase (Mtr4).  Substrates for polyadenylation by TRAMP include pre-rRNA, snRNA, 

snoRNA, tRNA, CUTs, and mRNA.
32

  The degradation of such substrates relies on a 

polyadenylation event at the 3’ end of the RNA by the non-canonical poly(A) polymerase 

Trf4/5.  This 3’ polyadenylation is quite different than canonical poly(A) polymerases that 

add a long stabilizing poly(A) tail to mRNA.  Polyadenylation by TRAMP is a short poly(A) 

tail that destabilizes the RNA, targeting it to the exosome for processing or degradation.
33

  

Exactly how the Trf4/5 poly(A) addition is regulated to add a short extension of ~5 

nucleotides is unclear, however, the RNA helicase component of TRAMP (Mtr4) has been 

shown to modulate this event.
34

  Very few in vitro studies of the TRAMP complex have been 

done to characterize the function of these three components, each having their own distinct 

function.  The TRAMP complex is quite unstable, only withstanding up to 200 mM NaCl, at 

which point Mtr4 dissociates from Trf/Air proteins.
35

  The complex is incredibly delicate to 

purify in its active form, and therefore difficult to characterize biochemically as well as 

crystallize for structural determination.   
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TRAMP modulation 

Several in vivo studies have identified target substrates for TRAMP through 

accumulation of various RNAs when components of the TRAMP complex have been 

knocked down.  When TRAMP is functioning improperly, an accumulation of a poly(A) tail 

on an immature RNA substrate of TRAMP is observed, which is how most substrates of 

TRAMP have been identified (also by immunoprecipitation assays).  The first in vitro 

characterization of poly(A) modulation was published in 2011 by the Jankowsky lab.  They 

showed that the poly(A) tail addition would reach a maximum rate that correlated to a 4-5 

poly(A) extension, and gradually slow down for any additional adenylation.
36

  TRAMP was 

then tested on duplexed and single-stranded RNAs as well to determine if unwinding had an 

effect on adenylation.  However, the single stranded substrate was polyadenylated at roughly 

the same rate and trend as the duplexed RNA.
36

  Surprisingly, when polyadenylation was 

monitored with just Trf4-Air2 (no Mtr4), the rate of poly(A) addition gradually increased 

over time with no optimal tail length.
36

  Interestingly enough, an E947A mutation of Mtr4 

resulted in a loss of modulation of Trf4 polyadenylation.
36

  Thus, Mtr4 is important in 

modulating the length of poly(A) tail addition to around 4-5 nucleotides; however this 

modulation by Mtr4 is not dependent on its helicase function.   

Monitoring Mtr4’s function in the context of TRAMP (with inactive Trf4) revealed 

some exciting new discoveries about Mtr4's unwinding activity.  Mtr4 helicase activity was 

shown to enhance nine-fold in the context of TRAMP on a short duplex (16 bp) RNA with a 

25 nt overhang on the 3’ end.
37

  These same trends were also observed on a 36 bp RNA 

duplex with a 25 nt overhang.
37

  Since most DEAD-box family helicases unwind substrates 

with approximately one and a half turns (~16 bp), the fact that TRAMP and Mtr4 alone 

unwound a 36 bp duplexed region is quite fascinating.  DNA and RNA duplexes, as well as 

hybrids, were also tested on Mtr4 and TRAMP to see what type of substrates are required for 

unwinding based on previous characteristics of DEAD-box helicases.  Neither TRAMP nor 
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Mtr4 alone unwound a DNA duplex (16 bp) with a 25 DNA nt overhang on the 3’ end.
37

  The 

only hybrid variation that TRAMP and Mtr4 unwound (with the same enhancement in rate by 

TRAMP as seen previously) was a DNA top strand (16 nt) duplexed to an RNA bottom 

strand, with a 25 nt overhang on the 3’ end.
37

   

To find the preferred length of 3’ overhang, a RNA duplex (16 bp) with a one 

nucleotide overhang was attached to biotin tagged beads.  A simultaneous polyadenylation 

and unwinding reaction was then performed with wild-type TRAMP.
37

  When substrates were 

analyzed, the polyadenylated strand of RNA was released and found to contain at least four 

adenylates.
37

  This result suggested that a minimum of 5 nt are required on the 3’ end for 

Mtr4 to unwind.  Helicase assays confirmed this result showing that no unwinding occurs 

with a 4 nt overhang, and optimal unwinding occurs with a 6 nt overhang in TRAMP  

 

 

 

 

 

 

 

 

Figure 1-4.  Outline of the modulation events within the TRAMP complex. 

 

independent of the actual polyadenylation process.
37

  The mechanistic detail of unwinding by 

Mtr4 alone and in the context of TRAMP is still poorly understood (Figure 1-4), however 



12 
 

 
 

studies such as the one previously mentioned are providing insight into the capabilities of this 

complex. 

 

CONCLUSION 

 

All aspects of eukaryotic RNA metabolism involve RNA helicases.  Understanding 

the mechanism by which Mtr4 recognizes substrates and unwinds them is important to 

understanding and maintaining RNA processing pathways.  Keeping RNA levels regulated 

and functioning properly, with the aid of the exosome, is crucial in order to maintain healthy 

cells.  As mentioned earlier, if RNA surveillance is not monitored properly diseases such as 

polymyositis/scleroderma-overlap syndrome will occur.  Therefore, the need to understand 

how these proteins function at the mechanistic level is important to help maintain proper 

RNA surveillance.  Little is known as to how Mtr4 functions in recognizing substrates and 

unwinding them.  Two structures of Mtr4 exist, an apo- and a 5 nt poly(A) RNA-bound; 

however, insight into RNA sequence recognition by Mtr4 is still unclear.  The RNA bound 

structure of Mtr4 displayed two different binding interfaces with substrate within the same 

crystal.  Through the analysis of the structure of Mtr4, key residues along the ratchet helix 

were identified as mutagenesis targets for studying the binding interface with RNA 

substrates.  The significance of these residues to Mtr4 function has yet to be addressed, 

neither through the use of activity assays nor crystallographic studies.  Therefore, 

biochemical studies probing RNA substrates with varying mutations of Mtr4 will be useful in 

concurrence with a native RNA-bound structure of Mtr4 to elaborate on the mechanistic 

detail of substrate recognition.   
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CHAPTER 2 

THE MTR4 RATCHET HELIX FUNCTIONS IN CONCERT WITH  

THE ARCH DOMAIN TO REGULATE HELICASE ACTIVITY
1 

 

ABSTRACT 

Mtr4 is a conserved superfamily-2 RNA helicase that activates exosome mediated 3’-

5’ turnover in nuclear RNA surveillance and processing pathways.  As a member of the 

Trf(4/5)-Air(1/2)-Mtr4 polyadenylation (TRAMP4/5) complex, Mtr4 is understood to unwind 

polyadenylated RNA substrates and present them to the exosome for degradation.  Prominent 

features of the Mtr4 structure include a four domain ring like helicase core and a large arch 

domain that spans one side of the core.  Within the helicase core, a “ratchet helix” is 

positioned to interact with the bases of unwound RNA substrates.  However, the contribution 

of these interactions to Mtr4 activity is poorly understood.  Here we show that conservation 

along the ratchet helix is particularly extensive for Mtr4 as compared to related helicases.  

Mutation of residues along this helix alter RNA unwinding rates in both an Mtr4 and TRAMP 

context, and result in slow growth phenotypes in vivo.  We further observe that R1030 on the 

ratchet helix influences Mtr4 affinity for polyadenylated substrates.  Previous work indicated 

that deletion of the arch domain had minimal effect on Mtr4 unwinding activity.  

Surprisingly, we now show that the combination of archless and ratchet helix mutations 

completely abolishes helicase activity and produces a lethal in vivo phenotype.  These studies 

demonstrate that the ratchet helix modulates helicase activity, and suggests that the arch 

domain plays a previously unrecognized role in unwinding substrates. 

 

1.  Coauthored by Lacy Taylor, Ryan N Jackson, A. Alejandra Klauer, Megi Rexhepaj, 

Lindsey K Lott, Ambro van Hoof and Sean J Johnson; Manuscript in progress.
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INTRODUCTION 

To maintain correct gene expression in the cell, the integrity of RNA must be tightly 

regulated through RNA processing, turnover and surveillance pathways.
38-40

  Several disease 

states are linked to defects in RNA quality control mechanisms, including neurodegenerative 

diseases, congenital diseases and cancer.
41-45

  The eukaryotic exosome, which contains both 

endonuclease and 3’-5’ exonuclease activities, plays a critical role in a wide variety of RNA 

processing and degradation pathways.
9,46-48

  Regulation of this activity involves multiple 

protein cofactors including the nuclear Trf4-Air2-Mtr4 polyadenylation (TRAMP4) 

complex.
49-51

 TRAMP facilitates the 3’-end processing of rRNAs, snoRNAs, and snRNAs as 

well as the degradation of cryptic unstable transcripts (CUTs), aberrant RNAs, antisense 

RNAs, intronic RNAs, several mRNAs and incorrectly processed RNAs.
9,52-55

  TRAMP is 

also involved in transcriptional regulation, chromatin maintenance and DNA repair.
53,56-58

   

TRAMP is composed of a poly(A) polymerase (Trf4 or Trf5), a zinc knuckle RNA 

binding protein (Air2 or Air1) and a Ski2-like RNA helicase (Mtr4) that are conserved 

throughout eukaryotes.
49-51

 Reminiscent of RNA degradation pathways observed in 

prokaryotes and organelles,
59,60

 TRAMP promotes 3’-5’ exosomal degradation by adding a 

short 4-5 nt poly(A) tail to the 3’ end of RNA.
33,34

  Depletion or mutation of Mtr4 causes a 

buildup of polyadenylated TRAMP substrates, demonstrating that Mtr4 is the fundamental 

link between TRAMP and exosome degradation.
61-62

 The helicase activity of Mtr4 is 

proposed to resolve secondary structures and remove proteins associated with the RNA, thus 

facilitating delivery of single stranded RNA to the exosome.
52,54-59

 

Mtr4 binds poly(A) RNA with higher affinity and with a mechanism distinct from 

that employed to bind non(A) sequences.
20,31

  Mtr4-substrate interactions are dynamic and are 

dependent on substrate length and the presence of bound nucleotide.  The ability of Mtr4 to 

distinguish poly(A) from non(A) substrates in the absence of nucleotide is enhanced 10-fold 

as the length of the RNA substrate is reduced from 20 to 5 nucleotides, the minimal Mtr4 
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binding site.
31

  Notably, two in vitro studies by Jia et al demonstrate that not only does Mtr4 

show an unwinding preference for substrates with poly(A) tail overhangs one binding site 

long,
37

  the polyadenylation activity of TRAMP is restricted by Mtr4 to maintain this optimal 

tail length in targeted RNAs.
36

 Furthermore, a UV cross-linking study in yeast recently 

determined that Trf4 substrates contain an average poly(A) tail length of 5 nucleotides, 

supporting the conclusion that poly(A) tail length is regulated in vivo.
33

  Mtr4 contains a fine 

tuned mechanism that senses the number and identity of 3’ end poly(A) tracts, potentially 

through distinct interactions with the TRAMP complex that modulates both polymerase and 

unwinding activities.  However, it is unclear how Mtr4 senses the length and identity of the 

sequence, and how this sensing is coupled to unwinding. 

Recent crystal structures of Mtr4, including apo- and RNA-bound forms, and several 

related Ski2-like and DEAH/RHA-box helicase structures provide insight into the general 

features employed by these helicase families to bind and translocate along nucleic acid 

substrates.
27,28,63-69

  Although each helicase exhibits unique features and accessory domains, 

they all contain a common core structure composed of two RecA domains (Mtr4 domains 1 

and 2), a winged helix domain (domain 3), and a 7-8 helix bundle domain
22

 (domain 4).  In 

the case of the Ski2-like RNA helicase Brr2, two helicase cores are connected in tandem, 

with only the first core being active in vitro and in vivo.
70,71

  The RecA domains contain 

conserved sequence motifs that bind nucleic acid, and bind and hydrolyze ATP.
72

  The 

Hel308 DNA helicase structure bound to duplex DNA shows a β-hairpin within the second 

RecA domain facilitates strand splitting as the nucleic acid enters the helicase core.
63

  The 3’ 

single stranded nucleic acid then traverses the RecA domains and interacts with domain 4 

before exiting at the base of the helicase core.  Multiple interactions are observed with 

domain 4, particularly along the “ratchet helix” where nucleotides stack with W599 and R592 

in a manner that is thought to facilitate DNA translocation in Hel308.
63

  Not surprisingly, 

deletion of domain 4 abolishes helicase activity in Hel308,
63

 and the analogous mutation in 
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Mtr4 is unviable in vivo.
19

  In a related Ski2-like helicases Brr2, a point mutation in domain 4 

(R1107A, similar to W599 in Hel308) conferred a slow growth phenotype and loss of in vitro 

activity.
70,73

  Although domain 4 appears to play an important role in helicase activity, a 

mechanistic description of domain 4 function is lacking, particularly for Ski2-like RNA 

helicases.  

In an effort to better characterize the Mtr4 RNA binding path, we have investigated 

amino acid residues along the ratchet helix of domain 4.  Sequence and structural analysis 

reveals discrete conservation patterns in Mtr4, Ski2-like and DEAH/RHA-box helicases. 

Mutagenesis studies demonstrate that R1030 and E1033 play important, but distinct roles in 

sequence recognition and helicase activity.  In vivo analysis further underscores the 

importance of ratchet helix residues for cellular function.  Additionally, we identified arch 

involvement in unwinding activity when combined with either ratchet helix point mutant.  

These data suggest that residues along the ratchet helix provide a mechanism for regulating 

helicase activity and in concert with the arch domain are essential for unwinding activity and 

cell viability.  

 

MATERIALS AND METHODS 

 

Structural Analysis and Conservation Scoring of Ski2-like and DEAH/RHA Box 

Helicases 

 

The helix-bundle domain (domain 4) of archaeal Hel308 (pdb 2P6R)
33 

was used as 

bait in a DALI search
74

 to find structures containing a helix-bundle domain with an 

associated ratchet helix.  Conservation of eukaryotic helicases was determined by multiple 

sequence alignment of model organisms in CLUSTALW
75

 and conservation scoring with the 

ConSurf server.
76

  For the archaeal Ski2-like DNA helicase Hel308, 98 archaeal sequences 

including the sequences of existing Hel308 structures were retrieved and scored using the 

ConSurf server.  ConSurf scores of 10, 9, and 8 were considered conserved.  
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Mutagenesis, Protein Expression and Protein Purification  

Point mutants of Mtr4 were made using a modified version of the QuikChange 

(Agilent) site directed mutagenesis procedure. The expression and purification of Mtr4 and 

mutant Mtr4 proteins was carried out as performed previously.
27

  No differences in 

expression were observed between the mutants and wild-type protein.  However, the R1030A 

Mtr4 variant exhibited poor solubility, yielding low amounts of protein.  Protein 

concentration was determined using a NanoDrop spectrophotometer (Thermo Fisher) and 

calculated extinction coefficients.  Expression and purification of TRAMP complexes was 

performed essentially as by Jia et al.
37

 Specifically, Cell lysis was performed by lysozyme 

treatment and sonication of frozen cell pellets.  Cobalt affinity, FLAG affinity, and NAP-25 

gel filtration was used to purify TRAMP complexes at 4ºC.  Purification buffers consisted of 

50 mM sodium phosphate buffer (pH 7.0), 10% glycerol, 10 µM ZnCl2.  Salt concentration 

varied from 250 mM NaCl at lysis, to 200 mM NaCl final concentration.   

 

RNA Substrate Design and Purification  

The RNA substrates were designed to mimic unwinding substrates used in the recent 

study by Jia et al.
37

  These 22 nucleotide ssRNAs (each with a unique 3’ end) were incubated 

independently with a complementary 16 nucleotide ssRNA at 95°C for 10 minutes after 

which samples were slowly annealed to room temperature.   

The 16 nucleotide top strand was radiolabeled with γ-
32

P ATP and T4 polynucleotide 

kinase and quenched by heating to 95°C before annealing.  The RNA substrates were purified 

by native PAGE, gel extraction and ethanol precipitation.   All RNAs used in this study were 

purchased from Integrated DNA Technologies (IDT). The substrate sequences are as follows 

with duplex regions underlined:   

R16 (top strand of all three substrates) = 5’AGCACCGUAAAGACGC3’,  

R22A (poly(A) overhang) = 5’GCGUCUUUACGGUGCUUAAAAA3’,  

R22R (non(A) overhang) = 5’GCGUCUUUACGGUGCUUGCCUG3’. 
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Unwinding Assay  

Pre-steady state unwinding assays were performed essentially as described by Jia et 

al.
37

  A radiolabeled 16 nucleotide strand was displaced over time when incubated with Mtr4 

and saturating levels of ATP.  Reactions were carried out at 30°C in a controlled water bath.  

The buffer used was 40 mM MOPS pH 6.5, 100 mM NaCl, 0.5 mM MgCl2, 5% glycerol, 

0.01% NP-40 substitute, 2 mM DTT, and 1 U/µl of Ribolock (Thermo Fisher).  Reactions 

were allowed to incubate for 5 minutes with ~0.2 nM RNA (final concentration) and the 

indicated concentration of Mtr4 or Mtr4 mutant protein in Figure 2-4.  Reactions were 

initiated by the addition of equimolar ATP and MgCl2 at a final concentration of 1.6 mM.  At 

specified time points, aliquots of the reaction were removed and quenched at a 1:1 ratio with 

buffer containing 1% SDS, 5 mM EDTA, 20% glycerol, 0.1% bromophenol blue and 0.1% 

xylene cyanol.  Aliquots were run on a native 15% TBE polyacrylamide gel at 100 V for 115 

minutes.  Radioactivity was visualized as performed previously.
27

 Gels were wrapped in 

cellophane and exposed to x-ray film or phosphor screen.  Film was developed and then 

quantified using multi-gauge software; phosphor screen was developed by a Storm 

PhosphorImager (Amersham Biosciences) and quantified using ImageQuant software.  

Calculations of the observed rate constants (kunw), and amplitudes (A) were performed using 

integrated first-order rate law.  Curve fits were made to data collected in triplicate, as 

employed previously (Fraction unwound = A(1-exp(-kunw·t)).
27,37,77

  The kunw
max

 and K1/2 

values were calculated using best fit curves as done by Jia et al,
37

 with the equation, kunw= 

kunw
max

, E  [E]/[E] + K1/2, E, where [E] is enzyme concentration, K1/2 is functional affinity and 

kunw
max

, E is the unwinding rate constant at enzyme saturation. 
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Figure 2-1.  Unwinding assays of ratchet helix point mutants.  (A) The RNA substrate 

used in this study was the 16 bp duplex with a 3’ end poly(A) overhang.  (B) Native PAGE 

experiment demonstrating the unwinding of Mtr4 wild type with a 5’-
32

P radiolabeled 

poly(A) substrate.  (C)  Representative time course of fraction unwound values of wild type 

(WT), R1030A, E1033A, and R1030A/E1033A Mtr4 enzymes with poly(A) RNA . The 

integrated first-order rate law was utilized to generate a best fit curve to the data and the 

unwinding rate constant (kunw). (D) Unwinding rate constants of poly(A) RNA plotted against 

the concentration of Mtr4 enzymes. The curves represent the best fit to the equation kunw = 

kunw
max

, 
 

E [E]/([E] + K1/2, E); kunw
max 

is the maximum unwinding rate, [E] is the enzyme 

concentration, and K1/2 is the functional affinity. 

 

Yeast plasmids 

The plasmids for expression of Mtr4-wild-type or Mtr4-ratchet helix mutants 

contained the same upstream promoter and downstream sequence as used previously.
27

  The 

same wild type MTR4 expression plasmids pAv673 (a URA3 CEN plasmid
78

), and pAv675 

A. B. 

C. D. 
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(a LEU2 CEN plasmid
78

) were used as previously described.
27

  Plasmids expressing ratchet 

helix mutants are simply point mutants of pAv675. 

 

Yeast methods  

An MTR4 deletion strain of Saccharomyces cerevisiae complemented with a MTR4-

wild-type copy plasmid containing a URA3 selectable marker was transformed with MTR4-

wild-type or MTR4-ratchet helix mutant plasmids.  Resulting transformants were grown in 

Synthetic Complete-LEU (SC-LEU) liquid media overnight at 20°C, 30°C, and 37°C to test if 

the mutation caused growth defects.  Liquid cultures were serial diluted five-fold and spotted 

onto control plates (SC-LEU) or 5-fluoro-orotic acid (5-FOA; to counter against the MTR4-

wild-type plasmid containing URA3 selectable marker). 

 

RESULTS 

 

Structural Analysis of the Mtr4 RNA Binding Path Reveals Distinct Modes 

of Substrate Binding 

 

In the RNA-bound structure of Mtr4, two molecules are observed in the asymmetric 

unit.
28

  In both molecules, a 5 nt poly(A) RNA substrate interacts with the canonical helicase 

motifs of the RecA domains 1 and 2 through multiple phosphate backbone interactions, 

similar to that observed in Hel308
63

 (Figure 2-2).  Domain 4 is positioned on the opposite 

side of the RNA and interacts directly with the nucleotide bases. The primary base 

interactions in Mtr4 are with E947, located on a loop above the ratchet helix, R1026, R1030, 

and E1033, which occupy one face of the ratchet helix.  Notably, each of these base 

interactions appear to be mediated through hydrogen bonds, whereas interactions in Hel308 

generally involve base stacking, Figure 2-2.  The direct protein-nucleotide base interactions 

observed in the Mtr4 crystal structure suggest that the function of the ratchet helix may not be 



21 
 

 
 

restricted to RNA translocation (by analogy to Hel308), but may also involve RNA sequence 

recognition.  

 

 

 

 

 

 

 

 

Figure 2-2.  Cartoon schematic and structural depiction of the RNA-protein interface of 

Mtr4 with a 5 nt poly(A) substrate. (A) Diagram of molecule B of Mtr4 highlighting the 

RNA-protein interface, with key interactions shown in dashed lines.  (B) Stereo view of the 

structure of molecule B of Mtr4 showing the correct spatial arrangement of the interacting 

residues with the RNA substrate. 

 

Ratchet Helix Residues are Conserved in Ski2-like/DExH-box Helicases  

We next examined the conservation of the residues along the ratchet helix for the 

Ski2-like Mtr4, Ski2, Brr2, and Hel308 helicases and the DEAH/RHA-box Prp22 and Prp43 

helicases.
68,69-71

  CLUSTALW was used to align a diverse set of eukaryotic sequences for 

each helicase
75

 (archaeal sequences were used for Hel308).  Conservation scores were 

calculated using the ConSurf server.
76

  Extensive conservation is observed along the entire 

ratchet helix for the Ski2-like RNA helicases (Mtr4, Ski2 and Brr2) (Figure 2-3 C).  Less 

conservation is observed for Hel308 and the DEAH/RHA-box RNA helicases Prp22 and 

Prp43 (Figure 2-3 C and D).  In the case of Hel308, position W599 is the only strictly 

A. B. 
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conserved ratchet helix residue observed to interact with nucleic acid.  The conserved 

residues observed at the N-termini of each helix are involved in interactions with domain 2 

and generally do not interact directly with nucleic acid.  However, R1026 of molecule B of 

Mtr4 is modeled to interact with base 5 of the RNA strand. 

Although no residue along the ratchet helix is universally conserved throughout 

helicases, conservation patterns are clearly evident.  The most striking feature is that the 

fourth turn of the ratchet helix (counting from the N-terminus) is strictly conserved in a 

helicase-specific manner (Figure 2-3 D).  Mtr4 and Ski2 always have a glutamate at the same 

position on the fourth turn (E1033 in Mtr4; E1247 in Ski2), Brr2 has an arginine (R1107), 

Prp22 and Prp43 have a glutamine (Q1081 in Prp22; Q622 in Prp43), and Hel308 has a 

tryptophan (W599).  Among the Ski2-like RNA helicases, we note similar conservation 

 

Figure 2-3.  Conserved ratchet helix residues interact with nucleic acid. (A) The RNA-

bound Mtr4 structure (PDB 2XGJ) molecule A is colored by domains.  (Inset) Helix-bundle 

domain (domain 4) residues that interact with poly(A) RNA are shown as sticks, molecule B 

aligned residues and RNA bases are colored cyan and light blue respectively. Nucleotides are 

labeled 1-5.  (B) The DNA-bound Hel308 structure (PDB 2P6R) is colored by domains.  Inset 

image highlights the pi stacking interactions of ratchet helix residuesW599 and R592 shown 

as sticks with bases of ssDNA. Nucleotides downstream of the strand splitting β-hairpin are 

labeled +1 through +5. (C) Alignment and conservation scores (calculated using Consurf) of 

eukaryotic Mtr4 and archaeal Hel308 ratchet helix sequences. Conservation is colored strictly 

conserved as orange, to variable as white. Extensive conservation at helical turn 4 is 

highlighted with an arrow. Alignment of Mtr4 includes 10 model eukaryotic species (S.cer, 

Saccharomyces cerevisiae; S.pom, Schizosaccharomyces pombe; N.cra, Neurospora crassa; 

H.sap, Homo sapiens; M.mus, Mus musculus; D.rer, Danio rerio; D.mel, Drosophila 

melanogaster; C.ele, Caenorhabditis elegans; M.bre, Monosiga brevicollis; 

A.tha, Arabidopsis thaliana).  Alignment of Hel308 includes the sequences of crystal 

structure homologs and 7 other archeal sequences ( A.ful, Archaeoglobus fulgidus; S.sul, 

Sulfolobus solfataricus; P.fur, Pyrococcus furiosus; P.hor, Pyrococcushorikoshi; A.ven, 

Archaeoglobus fulgidus; F. pla, Ferroglobus placidus; M.the, Methanosaeta thermophila 

S.hel, Staphylothermus hellenicus; T.vol, Thermoplasma volcanium P.aci, Candidatus 

Parvarchaeum acidophilus; M.kan, Methanopyrus kandleri )  (D) Conservation of Ski2-like 

and DEAH/RHA-box helicases are mapped onto a ratchet helix cartoon depicting the 

observed sequences. The sequence placement of the S1 ratchet of Brr2 was performed using a 

previously determined alignment.
71,79

  Extensive conservation at helical turn 4 is highlighted 

with an arrow. 
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patterns at the second and third turns of the ratchet helix.  In the case of Mtr4, both positions 

are always arginines (R1026 and R1030). 

 

C. 

A. B. 

D. 
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R1030 and E1033 Play Distinct Roles in Unwinding  

The interaction of R1030 and E1033 with RNA observed in the Mtr4 structures 

combined with the strong conservation at each of these positions in Ski2-like RNA helicases 

suggested that these residues might be important for Mtr4 activity.  To assess the role of these 

residues in Mtr4 function, we mutated each position in S. cerevisiae Mtr4 to alanine 

(R1030A, E1033A).  E1033 was also mutated to tryptophan (E1033W) to mimic the 

sequence observed in Hel308. Pre-steady state unwinding assays and calculations were 

performed using a helicase assay developed previously to characterize the unwinding activity 

of Mtr4 and other helicases.
37,80

  The assay detects the displacement of a 
32

P labeled top 

strand from complementary bottom strand with a
 
3’ single-stranded extension of 6 nt (Figure 

2-1). 

Using a 3’ polyadenylated substrate (poly(A)), we observed a smaller unwinding 

constant (kunw) for the R1030A Mtr4 mutant at 800 nM protein than that observed for wild-

type enzyme (Figure 2-1 C).  In contrast, the E1033A protein demonstrated a higher kunw at 

800 nM than wild-type Mtr4 (Figure 2-1 C).  Interestingly, when mutated to a tryptophan, 

this construct showed significantly less unwinding activity than wild-type Mtr4 on a poly(A) 

substrate (Figure 2-1).  Unwinding rate constants (kunw) at several concentrations were 

determined for the ratchet helix mutants to obtain the strand-separation rate constants at 

enzyme saturation (kunw
max

) (Figure 2-4 and Table 2-1).  Compared to wild-type, the R1030A 

and E1033W mutants displayed a lower kunw
max

 and the E1033A mutant displayed higher 

kunw
max

, demonstrating that residue identity at specific ratchet helix positions directly 

influences the strand-separation rate constant. 
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Figure 2-4.  Unwinding assays of ratchet helix point mutants.  (A) The RNA substrates 

used in this study, poly(A) and non(A), have identical 16 bp duplex regions (see methods for 

full sequence details) with variable 3’end overhangs.  Radiolabel is indicated by an asterisk.  

(B) Plotted unwinding rate (kunw) constants at different concentrations of wild-type (WT) 

Mtr4 enzyme with poly(A) and non(A) RNA substrates. Shown are best fit curves to the data 

using the integrated first-order rate law kunw = kunw
max

,E [E]/([E] + K1/2, E).  (C) Plotted 

unwinding rate constants and curve fits for the R1030A mutant enzyme with poly(A) and 

non(A) RNA.  (D) Plotted unwinding rate constants and curve fits for the E1033A mutant 

enzyme with poly(A) and non(A) RNA.  (E) Plotted unwinding rate constants and curve fits 

for the R1030A/E1033A mutant enzyme with poly(A) and non(A) RNA. 

 

 

C. 

A. 

B. 

D. E. 



26 
 

 
 

R1030 is Involved In Sequence Recognition 

To study the effects of different RNA sequences on the unwinding activity of Mtr4 ratchet 

helix mutants, we determined unwinding rate constants for a non-polyadenylated substrate 

(non(A)) used recently to characterize Mtr4 sequence preference)
27

 (Figure 2-4, and Table 2-

1).  Wild-type and E1033A Mtr4 enzymes showed an unwinding preference for the poly(A) 

substrate over the non(A) substrate at all enzyme concentrations tested.  In contrast, Mtr4 

enzymes containing the R1030A mutation displayed roughly identical kunw values at each 

concentration.  To further characterize the impact of the E1033 and R1030 mutation, we 

tested the double alanine mutant R1030A/E1033A for unwinding activity.  The 

R1030A/E1033A mutant unwound the substrate faster than R1030A alone, however it did not 

regain the ability to differentiate between a poly(A) and a non(A) substrate.  Our data clearly 

demonstrate a preference for the poly(A) substrate in wild-type and E1033A enzymes that is 

no longer observed in enzymes containing the R1030A mutation.  This is the first 

identification of a residue of Mtr4 involved in recognition of substrates with a poly(A) tail.  

 

R1030 and E1033 Are Important for Mtr4 Function in Vivo  

 After determining that the R1030 and E1033 residues play a significant role in Mtr4 

helicase activity in vitro, we wanted to explore how mutations at ratchet helix positions affect 

Mtr4 function in vivo.  Mutants, mtr4-R1030A, E1033A, E1033W and the double mutant 

mtr4-R1030A/E1033A were constructed, serially diluted, and tested for viability at 20ºC, 

30ºC, and 37ºC.  Complementation with plasmid containing wild-type MTR4 was used as a 

positive control, whereas mtr4-archless and mtr4-D262A/E263A mutants were used to 

demonstrate a slow growth phenotype and an active site knockout respectively.  The ratchet 

helix mutations confer a slow growth phenotype at all temperatures tested, demonstrating that 

these residues are important for Mtr4 function in vivo (Figure 2-5 A).  At 30ºC, the growth 
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Table 2-1.  Kinetic constants of Mtr4 constructs with the poly(A) and non(A) 

overhang substrate.  For the poly(A) and non(A) substrates, K ½ and kunw
max

 values 

are given for wild-type Mtr4, R1030A, E1033A, the double mutant R1030A/E1033A, the 

double mutant R1030A-Archless, and the double mutant E1033A-Archless. 

  poly(A)   non(A)   

Enzyme K ½ (nM) 

kunw
max

 

(min
-1

) K ½ (nM) 

kunw
max

 

(min
-1

) 

WT 

251.86 + 

59.95 

0.59 + 

0.05 

254.65 + 

116.39 

0.34 + 

0.05 

R1030A 

51.29 + 

26.36 

0.18 + 

0.02 

128.9 + 

92.19 

0.16 + 

0.03 

E1033A 

504.09 + 

92.89 

1.08 + 

0.09 

1415.2 + 

467.6 

1.17 + 

0.24 

E1033W 

483.81 + 

359.66 

0.22 + 

0.07  Not tested Not tested 

R1030A/E1033A 

498.11 + 

215.81 

0.52 + 

0.10 

268.72 + 

80.87 

0.41 + 

0.04 

R1030A-

Archless 
 

 
 

 E1033A-

Archless 
 

 
 

        a
Methodologies and equations used to derive kinetic constants are found in the 

materials and methods section. 

 

defect appears to be most pronounced for the R1030A mutation.  Surprisingly, the 

greater growth defect of mtr4-R1030A is suppressed by the E1033A mutation as seen in the 

mtr4-R1030A/E1033A double mutant.  At 37ºC growth defects were even more pronounced 

and the pattern appeared to change with the E1033W mutant and the R1030A/E1033A 

double mutant mimicking the R1030A mutant.  Regardless of temperature, however, the 

double mutation did not compound the growth phenotype observed at single sites, suggesting 

that defects caused by each ratchet helix mutation reside in the same mechanistic pathway. 

Notably, while each of the ratchet helix mutants confered a slow-growth phenotype, 

none of the mutants were as detrimental as the arch deletion (archless) on cell viability.  The 

arch of Mtr4 is known to bind RNA in vitro, however unwinding activity in an arch knockout 

does not alter unwinding rates.
27

  To further probe the effect of these mutations, we paired the 

ratchet helix mutants with an archless mutant of Mtr4.  Mutants, mtr4-R1030A-archless and  

no activity detected 

no activity detected 
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Figure 2-5.  Growth complementation of an Mtr4 knockout strain by ratchet helix 

mutants.  (A) Shown are the observed slow growth phenotypes of Mtr4 ratchet helix 

mutants.  The R1030A displays the slowest growth out of the ratchet helix mutant residues.  

mtr4-archless is used as a slow growth control and D262A/E263A is the active site knockout.  

(B) Double mutants of the ratchet helix point mutations combined with an archless construct 

are displayed.  Archless combined with either ratchet helix mutant results in synthetic 

lethality.  

 

E1033A-archless were constructed, serially diluted, and tested for viability at 30ºC. 

Complementation with plasmid containing wild-type MTR4 was used as a positive control as 

well.  Ratchet helix point mutants combined with archless affected cell growth in different 

ways.  The mtr4-R1030A-archless mutant displayed synthetic lethality, while the mtr4-

A. 

 

 

 

 

 

B. 

. 
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E1033A-archless mutant displayed a slow growth phenotype (Figure 2-5).  This result 

suggests a cooperative function of the arch and ratchet helix point mutants in RNA 

surveillance. 

 

Mtr4 Arch Alone Does Not Affect Unwinding Activity or Sequence Specificity 

The arch domain was first identified with the crystal structure of Mtr4.  The only 

known activity of the arch is that it binds structured RNA and that it is required for proper 

5.8S rRNA processing.  It is known that the arch domain, when removed, does not affect the 

unwinding rates of wild-type Mtr4.
27

  Interestingly, we have shown that the arch is not 

important for identifying a poly(A) sequence over a non(A) sequence, since we observed the  

same differentiation in rates on these substrates with the archless protein as we see with wild-

type Mtr4 (Figure 2-6).  However, when we combine either the R1030 or the E1033 ratchet  

 

 

 

 

 

 

 

 

 

 

Figure 2-6.  Archless and wild-type Mtr4 unwinding rates on a poly(A) and non(A) 

RNA substrate.  Shown above are kunw curves on a poly(A) substrate for Mtr4 wild-type 

(green) and archless (black); on a non(A) substrate for Mtr4 wild-type (black dashed) and 

archless (blue).  Data show no significant differences in unwinding between wild-type and 

archless.   
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helix point mutant with archless, unwinding activity is abolished (Figure 2-7).  It is only 

when we have this combination of ratchet helix point mutant and arch deletion that we 

observe no unwinding activity.  Currently, the relationship between the arch and ratchet helix 

is unclear.  This result suggests some cooperative function by the arch and ratchet helix of 

Mtr4 during interactions with RNA substrates involved in unwinding activity.   

 

 

 

 

 

 

 

 

 

Figure 2-7.  Unwinding assay on a poly(A) substrate with Archless combined with either 

R1030A or E1033A.  A wild-type Mtr4 unwinding control shows strand displacement over 

time (far left).  The R1030A-Archless (middle) and E1033A-Archless (far right) unwinding 

assay shows no displacement for either Mtr4 variant. 

 

Effect of TRAMP Formation on Mtr4 Mutants 

Since the observed in vivo effects of the Mtr4 mutants may be expected to arise 

through interactions in the TRAMP complex rather than Mtr4 alone, we decided to examine 

the Mtr4 mutants in the context of TRAMP.  Trf4 and Air2 have been previously shown to 

stimulate the unwinding rate of wild-type Mtr4, increasing both the rate on a poly(A) and a 

non(A) substrate.
37

  Preliminary results display a similar Trf4-Air2 dependent stimulation of  
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Figure 2-8.  Poly(A) unwinding comparisons between Mtr4 mutants and TRAMP with 

Mtr4 mutants. 

 

unwinding activity with R1030A, E1033A, and archless Mtr4 (Figure 2-8).  We also observe 

the same relative effects on unwinding rate as observed with Mtr4 alone.  Specifically, 

R1030A-TRAMP is ~2.5-fold slower than WT, E1033A-TRAMP appears faster, and no 

altered effect is observed for archless-TRAMP.   

Surprisingly, R1030A-TRAMP regains the sequence specificity for a poly(A) 

substrate that was lost in Mtr4 alone (Figure 2-9).  Thus, Trf4 and Air2 appear to have an 

effect on the ability of Mtr4 to recognize a poly(A) substrate.  We are unable to determine 

activity of R1030A-archless-TRAMP due to poor solubility of the complex during 

purification.  E1033A-archless-TRAMP, however, is well-behaved in solution and shows no 

unwinding activity.  This loss of helicase activity is consistent with the in vivo data, 

suggesting that helicase activity is the essential function of Mtr4. 



32 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9.  Unwinding activity of R1030A-Mtr4 versus R1030A-TRAMP on a poly(A) 

and non(A) substrate. 

 

DISCUSSION/CONCLUSION 

Conservation in the ratchet helix is observed to be more extensive in Mtr4 than in 

Hel308, hinting at expanded functionality such as sequence recognition.  In Mtr4 the ratchet 

helix is highly conserved, even more so than other helicases in the Ski2-like family of 

helicases, suggesting an important role specific to Mtr4.  The residue position 1033 on the 

ratchet helix of Mtr4 is strictly conserved throughout helicase types, and may have a similarly 

equivalent role in unwinding that W599 has in Hel308.  When we mutate the glutamate at 

position 1033 to an alanine, unwinding activity increases.  When the same residue is mutated 

to a tryptophan at position 1033 (to mimic Hel308), we observe slower unwinding activity.  

We were successful in targeting residues along the ratchet helix for mutational analysis, 

which furthered our understanding of the mechanism of unwinding and substrate recognition. 
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 Residues along the ratchet helix of Mtr4 interacting with RNA bases is observed in 

the Mtr4-RNA bound structure.  In the Hel308 DNA-bound structure, base stacking between 

the ratchet helix and unwound single stranded DNA is observed with Arginine 592 and 

Tryptophan 599.  However, there are considerably more interactions in the Mtr4 RNA-bound 

structure with the RNA substrate than Hel308 with the DNA substrate.  This observation 

raises the possibility that the ratchet helix may be involved in recognition of polyadenylated 

substrates.  It is known that Mtr4 prefers a short 3’ poly(A) tail around 5 nucleotides that is a 

product of Trf4 in the TRAMP complex.  We have demonstrated that when Arginine 1030 is 

mutated to an alanine, Mtr4 loses the ability to distinguish between polyadenylated and non-

polyadenylated substrates.  Remarkably, poly(A) affinity is rescued when Mtr4 forms a 

complex with Trf4-Air2.  Perhaps Trf4 and Air2 play a minor role in preferentially recruiting 

substrates for Mtr4 to unwind.  Another possibility could be that the formation of the 

TRAMP complex (Trf4-Air2-Mtr4) causes a conformational change accommodating for the 

active site of Mtr4 to recognize sequence regardless of a single mutation that discriminates 

against poly(A) affinity.  The R1030A mutation likely affects reading of a single nucleotide, 

suggesting that we have not disrupted the entire sequence reading interface of a 5 nucleotide 

poly(A) sequence.  Trf4 has been shown to maintain an optimal adenylation range of 4-5 

poly(A)s in sequential order.
36

  Mtr4 plays a role in regulating this poly(A) addition by 

decreasing the rate of poly(A) after around 5 nucleotides.  Since Mtr4 is known to have a 

binding interface of approximately 5 nucleotides, it is thought that Mtr4 latches on to the 

substrate at 5 poly(A)s and interferes with the Trf4 polyadenylation activity at that point.
20

 

Mutation of ratchet helix residues R1030 and E1033 have different effects on 

unwinding activity.  An R1030A mutation decreases unwinding activity while an E1033A 

mutation increases unwinding activity, suggesting that these residues may play distinct roles 

in the unwinding mechanism.  Interestingly, an E1033W mutant (designed to mimic Hel308) 

decreases unwinding activity to R1030A levels, rather than increasing activity as seen in 
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E1033A. The glutamate at residue 1033 may act as a “gatekeeping” residue.  When E1033 is 

mutated to an alanine, the diameter of the “RNA exit tunnel” is equivalent in size to the apo 

structure allowing more room for RNA to translocate through.  When E1033 is mutated to a 

tryptophan, the tunnel is decreased by approximately 1.2 Å making a narrow exit for RNA to 

move through.  Thus, it appears that the size or bulkiness of the residue at position 1033 plays 

a role in modulating unwinding activity.  As with wild-type TRAMP, enhancement of 

unwinding activity was observed with all the Mtr4 mutants tested in the context of TRAMP.  

The Mtr4 mutants complexed with Trf4-Air2, though faster over all, still followed the same 

trends as the single mutations displayed on their own.  Significantly, all of these mutants 

result in a slow growth phenotype, regardless of whether they increase or decrease unwinding 

activity in vitro.  This data emphasizes the importance of the ratchet helix in acting as a finely 

tuned regulatory point critical for the proper function of Mtr4.                

 When analyzing the two structures of Mtr4, apo- versus RNA-bound, a noticeable 

shift in the ratchet helix is observed.  When comparing the nucleic acid exit path the RNA-

bound structure contains a significantly smaller tunnel than the apo structure.  A shift of ~ 4.1 

Å and an angle change of 3.76º occurs between the ratchet helix in the apo- and RNA-bound 

forms resulting in a narrower gap for the RNA exit tunnel.
22

  From E1033 on the ratchet helix 

to S244 on an adjacent helix (representing the “RNA exit tunnel” diameter) in the RNA-

bound form, a diameter distance is calculated at around 9.5 Å.  Nucleic acid requires around 

8-9 Å of movement from phosphate backbone to the outer atom of the base.  Examination of 

the Mtr4 structures reveals a significant shift in the position of the ratchet helix.  One 

interpretation of the structures is that they represent the difference between apo- and RNA-

bound states.  However, the position of the ratchet helix in the apo structure is identical to 

that in the apo- and DNA-bound structures of Hel308.  An alternate explanation is that the 

RNA-bound Mtr4 structure represents a conformation for reading the 3’ end only.  Note that 

movement of the ratchet helix is associated with a partial closure or tightening of the “RNA 
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exit tunnel,” which may impede passage of an RNA strand, but would still allow for reading 

of at least 5 nucleotides at the 3’ end.  In this model, the conformation observed in the apo 

structure may more closely resemble an active unwinding conformation.  Structures of Mtr4 

bound to longer substrates are needed to clarify this point that the ratchet helix may use 

multiple states from binding a substrate to unwinding.  

 Unexpectedly, we discovered arch domain involvement in Mtr4 unwinding.  We 

have shown previously that archless alone has no observable effect on unwinding rate with 

the duplexed substrates tested.
27

  However, when archless is combined with either ratchet 

helix mutant we lose the ability to unwind RNA substrates completely, regardless of whether 

the individual ratchet helix mutants cause an increase or decrease in unwinding activity.  We 

discovered a combination in which we lose unwinding activity in vitro as well as observe 

synthetic lethality in vivo.  This result suggests a role for the arch domain in unwinding 

activity which had previously been unrecognized.  The reason for this could be explained by 

decreased stability of the protein, or by loss of substrate binding.  Alternatively, the arch 

domain may play a more direct role in the Mtr4 unwinding mechanism. Although protein 

folding appears to be unaffected when the arch is removed, functional changes do occur.  An 

archless construct of Mtr4 showed a defect in 5.8S + 30 rRNA processing.
27

  We are also 

showing that an archless construct combined with a ratchet helix mutant causes cell death 

and loses unwinding activity.  One explanation is that we have eliminated enough RNA-

protein interactions to the point where Mtr4 can no longer bind a substrate, however further 

binding studies are needed to answer this question.  The data presented here provide an initial 

framework for understanding the molecular details of the role of ratchet helix residues and 

the arch domain in RNA substrate targeting and unwinding.   
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CHAPTER 3 

COMPREHENSIVE METHODS 

 

ABSTRACT 

Several techniques and methodologies were developed in order to characterize Mtr4 

and TRAMP.  Techniques include molecular cloning, mutagenesis, expression/growths, 

protein purification, in vitro transcription, radiolabeling and fluorescence labeling of nucleic 

acids, and RNA binding techniques using anisotropy and fluorescence correlation 

spectroscopy (FCS).  A pertinent assay to develop was the use of fluorescently labeled RNA 

in characterizing Mtr4 binding affinities.  In order to develop this method, RNA needed to be 

either transcribed in vitro or purchased.  An efficient and reliable labeling procedure of RNA 

was then crucial to be able to use anisotropy, a more quantitative method for determining 

Kd’s than electrophoretic mobility gel shift assays (EMSA), used previously.  This chapter 

will include a detailed description of all the methods and techniques developed to further 

characterize the functionality of Mtr4, Mtr4 mutants, and TRAMP.  Although some methods 

have been described in previous chapters, here will include a greater depth of information so 

future researchers will have all the tools necessary to successfully repeat all the experiments 

used for Mtr4 analysis. 

 

INTRODUCTION 

Mtr4 had already been recombinantly cloned, expressed, and purified in an E. coli 

expression system prior to my work on this project.  The structure had previously been solved 

in the Johnson lab in 2010 as well.  The Mtr4 structure provided us with the first RNA 

helicase in the Ski2-like family of helicases.  A novel arch domain was identified that seemed 

to be involved in RNA processing of some substrates, but not essential for cell viability and 
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unwinding activities.  When I took over this project, my objective was to characterize 

substrate recognition and unwinding by Mtr4 through mutational analysis testing the effects 

certain variants had on helicase activity and RNA binding.  Analysis of the Mtr4 RNA-bound 

structure helped identify residues along the ratchet helix to potentially play a role in sequence 

recognition.  Mtr4 mutant function was analyzed alone as well as in a TRAMP context.  In 

the CONSTRUCT DESIGN section, full details of the plasmids used, the mutagenesis 

methods, and the expression methods employed are discussed.   

TRAMP purification is a difficult task.  TRAMP consists of three proteins that will 

dissociate if salt concentrations exceed 200 mM.  This typically excludes any ion exchange 

chromatography techniques such as S (cation exchange), Q (anion exchange), and Heparin.  

Protocols for TRAMP purification have been tested previously, but the only way to purify 

active TRAMP was to use the Jankowsky lab protocol.
36

  However, this protocol still had 

some kinks to work out through trial and error.  In the PROTEIN PURIFICATION section, 

protocols for preparing active and pure Mtr4 mutants, and TRAMP are described in detail. 

Mtr4 and TRAMP are involved in RNA surveillance processes, therefore 

necessitating the need to make RNA to be able to biochemically characterize how these 

proteins interact with RNA.  It is expensive to buy large RNAs commercially, therefore a 

protocol to in vitro transcribe native RNA substrates of Mtr4 and TRAMP was essential.  

RNA substrates targeted for in vitro transcription included tRNA
iMet

, rRNA such as 5.8S and 

5.8S + 30, and snRNAs such as U4 and U6.  Under the section IN VITRO 

TRANSCRIPTION, the procedure for transcribing RNA is detailed.   

Methods of quantifying RNA typically require labeling reagents due to low 

concentrations of RNA and low sensitivity methods for detection of RNA alone.  Such labels 

include (but are not limited to) fluorophores, radioisotopes, and biotin.  For helicase assays, 

the standard method is through the use of 
32

P labeled RNA, although there have been helicase 

assays that utilize the capabilities of fluorescence resonance energy transfer (FRET).  
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However, for accurate analysis of binding affinities the preferred method is anisotropy or 

fluorescence correlation spectroscopy (FCS).  The utilization of efficient labeling techniques 

is crucial for our lab to perform the proper biochemical assays in characterizing RNA 

surveillance proteins.  In the section 5’ LABELING OF NUCLEIC ACIDS, detailed 

protocols for labeling the 5’ end of transcribed RNA with either 
32

P or a fluorophore are 

outlined. 

In order to confidently calculate a Kd for Mtr4 and Mtr4 mutants with various RNA 

substrates, anisotropy and FCS were attempted.  There was no standard pre-existing FCS 

protocol for monitoring protein-RNA interactions, however the want was there due to the 

real-time capabilities and numerous advantages for low level detection.  Anisotropy is 

another standard method for measuring binding affinities.  This method turned out to be more 

practical for use in Mtr4-RNA binding studies.  Both methods required lots of effort in 

developing a reliable protocol for determining Kd calculations.  In the sections 

ANISOTROPY and FLUORESCENCE CORRELATION SPECTROSCOPY the protocols 

for using these instruments and the tools for reproducing binding curves of Mtr4 binding to 

RNA substrates are described. 

Characterization of the helicase and ATPase function of Mtr4 has been developed 

previously and elaborated on by several labs.  The Jankowsky lab has taken the lead on 

developing TRAMP helicase assays and the Pyle lab has improved upon the ATPase assay of 

Mtr4 by malachite green.  However, every lab is set-up differently and therefore 

modifications tend to be made to these established protocols.  Mtr4, Mtr4 mutants, TRAMP, 

and TRAMP with Mtr4 mutants utilized these activity assay protocols with some slight 

modifications.  Details of these newly revised methods are outlined in the sections 

HELICASE ASSAY and ATPASE ASSAY.  
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CONSTRUCT DESIGN  

Using yeast genomic DNA (isolated from S. cerevisiae) as a template, various 

constructs of the desired proteins were created (mutants, truncations, etc.).  Protein sequences 

containing introns are less frequent in this strain, therefore making S. cerevisiae easier to 

clone out of.  Plasmids used for the desired constructs include pET 151-D-topo (Invitrogen), 

pRSFduet (novagen), Andy_pLC3, pET-15b (from the Jankowsky lab), and pETDuet for dual 

protein expression (novagen).   

 

Mutagenesis  

Point mutants of Mtr4 were made either using the QuikChange (Agilent) site directed 

mutagenesis procedure or a modified version of this QuickChange site directed mutagenesis 

procedure (known as the Megi Mutant Method).  Both methods were employed 

simultaneously, and were the QuikChange procedure did not work the Megi Mutant Method 

typically did.  The Megi Mutant Method uses primers that are designed to contain an 

overlapping region of 15-20 bp with a melting temperature between 40-60ºC.  The non-

overlapping region melting temperature should be 5-10ºC higher than the overlapping region. 

 

Expression of Protein 

All constructs used were recombinantly expressed in E. coli BL21-codon+-(DE3)-

RIL cell line (Strategene).  Wild-type Mtr4 was expressed using auto-induction in ZY media 

with proper antibiotics (ampicillin and chloramphenicol).  Growths were incubated at 37°C 

for 6 hours and then transferred to room temperature shakers for 48 hours before harvesting.  

The Mtr4 mutants: R1030A, E1033A, R1030A/E1033A, E1033A-archless, and archless were 

expressed the same way as wild-type.  The R1030A-archless double mutant was expressed 

using Super Broth (SB) media (a more enriched media than Luria Bertani).  An overnight 

growth (25 mls) was used to inoculate a 500 ml SB growth and incubated at 37°C until an 
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OD600 of 0.6-0.8 was reached.  Cells were then induced with 500 µls of 0.5 M Isopropyl β-D-

1-thiogalactopyranoside (IPTG), final IPTG concentration of 0.5 mM, and moved to room 

temperature for 6-12 hours.  Full length Trf4(D236A/D238A)/Air2 were expressed in a duet 

vector using Luria Bertani (LB) media.  Starter cultures of Trf4(D236A/D238A)/Air2 were 

made in 8 mls of LB media with proper antibiotics (ampicillin and chloramphenicol), 

inoculated from a glycerol stock and incubated approximately 12 hours at 37ºC.  These starter 

cultures were then transferred into 800 mls of LB with ampicillin and chloramphenicol, and 

incubated at 37ºC until they reached an OD600 of 0.6-0.8.  At this point cells were induced 

with 800 µls of 0.5 M IPTG (or 0.5 mM IPTG final concentration).  Cells were then 

incubated at 28ºC for 3-4 hours before harvesting.  All cells were harvested (pelleted) at 

8,000 rpm at 4ºC in a Sorvall SLC-4000 rotor and stored at -80ºC. 

 

PROTEIN PURIFICATION  

All protein constructs were lysed manually by chopping up the frozen pellet, 

followed by lysozyme treatment and a protease inhibitor cocktail of ~ 0.1 mg leupeptin, 0.1 

mg pepstatin, and 14 mg phenylmethanesulfonylfluoride (PMSF).  When necessary, arginine 

was added at 0.5 to 1.0 M to aid in solubility for the R1030A-archless mutant.  Sonication 

followed after approximately 20 minutes of incubation with lysozyme treatment.   

 

Mtr4  

His-Mtr4, wild-type and mutants, were lysed with a 2X lysis buffer dilution, 

sonicated, and spun-down at 20,000 rpm’s using a Sorvall SS-34 rotor.  Protein was then 

purified using Ni affinity chromatography, heparin affinity, and gel filtration chromatography 

using a 320 ml superdex column.  The final purification buffer off of gel filtration 

chromatography was 50 mM Hepes pH 7.5, 160 mM NaCl, 5% glycerol, and 2 mM β–ME.    
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TRAMP  

His-Mtr4, His-Air2, and Trf4(D236A/D238A)-FLAG were purified together to make 

a 1:1:1 active TRAMP complex.  His-Mtr4 was lysed with a 5x lysis buffer dilution and the 

co-expressed His-Air2 and Trf4(D236A/D238A)-FLAG were lysed with a 3 x lysis buffer 

dilution.  Lysis buffer consisted of 50 mM NaH2PO4 pH 7.0, 250 mM NaCl, 10% glycerol, 

and 10 µM ZnCl2.  Pellets were lysed separately by sonication, and spun-down at 10,000 rpm 

using the Sorvall SS-34 rotor.  Supernatants were combined on cobalt resin in the 4ºC room 

for 12-14 hours.  Purification of the TRAMP complex was carried out in the 4ºC room 

throughout, until storage at -80ºC (complex is unstable outside of 4ºC).  Complex was then 

washed with 100 mls lysis buffer with an additional 20 mM imidazole.  Elution buffer was 

then incubated on cobalt resin while shaking for 5-10 minutes before collecting fractions.  

The elution buffer consisted of 50 mM NaH2PO4 pH 7.0, 200 mM NaCl, 10% glycerol, and 

10 µM ZnCl2.  All fractions were typically used (verification through SDS-PAGE gel) and 

concentrated to ~ 4 mls for further incubation on FLAG resin.   

Complex was incubated on FLAG resin for 2 hours at 4ºC with 1 ml of sample per ~ 

250 µls resin.  The sample was thoroughly washed with 1 ml wash buffer 3x with 10 minute 

incubations on the FLAG resin.  FLAG and NAP-25 wash buffer contained 50 mM NaH2PO4 

pH 7.0, 200 mM NaCl, 10% glycerol, and 10 µM ZnCl2.  A swinging bucket centrifuge was 

used to pellet resin between washes, spinning at 1000 x g for 5 minutes in the 4ºC cold room.  

The TRAMP complex was then eluted off of FLAG (in a 1:1:1 ratio) with elution buffer 

consisting of wash buffer components, plus 100 µg/ml FLAG peptide.  First elution was 500 

µls for 20-30 minutes of incubation, second and third elutions were 250 µls for 20 minute 

incubations.  All elutions were spun down at 1000 x g for 5 minutes, and decanted off into a 

1.5 ml microcentrifuge tube.  Elutions containing TRAMP (typically all 3), were concentrated 

to 2.5 mls and used for further purification over a NAP-25 column.     

NAP-25 columns are pre-packed Sephadex G-25 sizing columns from General 



42 
 

 
 

Electric (GE) used for small scale purification.  Equilibration of 25 mls of wash buffer is 

sufficient for NAP-25 before use.  If using a used NAP-25 column, wash with ~5-6 column 

volumes of water to rinse out any residual ethanol.  Sample is fully loaded (by gravity flow) 

onto the NAP-25 column before adding 5-6 mls wash buffer to follow after sample.  Elutions 

were immediately collected in 0.5 ml fractions for up to 8 fractions by gravity flow.  TRAMP 

complex typically elutes in the first 6 fractions, and is then concentrated to ~ 200 µls and 

flash frozen with liquid nitrogen in 20 µl aliquots.  All tubes used to store TRAMP and 

TRAMP mutants have been previously autoclaved to avoid RNase contamination.  Gloves 

must be used at all times when dealing with this protein complex.   

Finally a BSA concentration gradient was used to calculate the concentration of 

TRAMP.  Since there are three protein components in the TRAMP complex, concentration 

determination for helicase activity purposes was solely based upon the amount of Mtr4 

present.  Therefore a TRAMP sample along with a BSA concentration gradient of 0.4, 0.2, 

0.1, and 0.05 mg/ml was run on a gel and intensities were calculated based on densitometry.  

Gels were quantified using multigauge software by Fuji Photo Film Company, and a standard  

 

 

 

 

 

 

 

 

Figure 3-1.  TRAMP prep SDS-PAGE gels.  To the left (A) is TRAMP post cobalt resin, 

and on the right (B) is TRAMP post FLAG resin and post NAP-25 column. 
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curve was graphed of the BSA concentrations.  Using the BSA standard curve equation, and 

the band intensity of Mtr4, TRAMP concentrations were calculated.  BSA samples were 

made from a 10 mg/ml stock purchased from New England Biolabs and diluted in the same 

phosphate buffer TRAMP was prepped in.  Gel figures throughout the TRAMP preps are 

displayed below in Figure 3-1. 

 

IN VITRO TRANSCRIPTION  

Master mixes of 5 mls (in a 15 ml conical; vortex) for tRNA-DNA PCR with aliquots 

of 160 µls will give a workable stock.  Outline of PCR components and concentrations are 

listed in Table 3-1 and cycle parameters in Table 3-2.  The PCR should be at a concentration 

of ~ 1000 ng/l when blanking with water.  

 

Table 3-1:  PCR reaction set-up (5 ml reaction) 

Component Concentration Volume Notes 

*DNA (from PCR rxn) 0.4 ng 21.3 µls Stock DNA at 93 ng/l 

(0.4 ng/ul final) 

forward primer 1 M 48 µls Stock at 1378.4 ng/l 

(MW=13,245.6) 

reverse primer 1 M 37.5 µls Stock at 1269.9 ng/l 

(MW=9,544.2) 

H2O  4193.2 µls  

dNTP 2 mM 100 µls 100 mM stock mixture 

of dNTP’s 

10X Pfu buffer 1X 500 µls  

Pfu (1:300) diluted Pfu 100 µls Johnson lab prepped 

stock 

 

After each PCR reaction, set aside one tube of PCR product (that you have confirmed has 

worked) and PCR clean-up to use as your template DNA for the next PCR reaction.  The 

original tRNA DNA template stock is archived as SJJ 041. 
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Table 3-2: Cycle parameters 

1X 95°C 2 min. 

 

30X 

95°C 30 sec. 

64°C 30 sec. 

72°C 1.5 min. 

1x 72°C 3 min. 

1x 4°C ∞ 
 

 

Transcription reactions are to be conducted in an autoclaved 1.5 ml microcentrifuge 

tube, containing a maximum volume of 1 ml per tube.  If preparing a 5 ml transcription 

reaction one would setup 5 - 1 ml reactions in 1.5 ml microcentrifuge tubes.  Transcription 

reagents are listed below in Table 3-3. 

 

Table 3-3.  1 ml Transcription reaction (add in the following order) 

 Volume Final 

Concentration 

Notes 

H2O 600 µls   

10X Buffer 100 µls 1X  

DNA Template 80 µls 8% volume PCR Product (no PCR clean-up 

necessary) 

NTP’s    

U 40 µls 4 mM Stock made at a conc. of 100mM 

A 40 µls 4 mM Stock made at a conc. of 100mM 

G 40 µls 4 mM Stock made at a conc. of 100mM 

C 40 µls 4 mM Stock made at a conc. of 100mM 

GMP 40 µls 16 mM Stock made at a conc. of 200mM 

T7 polymerase 20 µls To be optimized Use 1000X stock 

 

 

Once all of the transcription reaction reagents have been added, incubate at 42°C in a 

water bath for 3 hours.  Precipitation should be visible within an hour from the start of the 

transcription reaction.  This precipitate is magnesium pyrophosphate salt, and optimization of 

whether more MgCl2 should be added as well as T7 needs to be done for each new RNA 

substrate. 

After incubation of the transcription reaction, the precipitated pyrophosphates are 

spun down at 5,000 rpm for 30 seconds.  Supernatant is then loaded onto a sizing column and 
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fractions are run on a RNA denaturing gel.  Fractions containing desired RNA are then 

pooled and stored away at -80ºC for future use.  Concentration can be determined by using a 

NanoDrop spectrophotometer (Thermo Fisher), and calculated in µM by the following 

equation: 

 

 

 

10X Transcription reaction buffer consisted of 400 mM Tris pH 8.0, 240 mM MgCl2, 

10 mM spermidine, 50 mM dithiothreitol, and 0.1% triton X-100.  tRNA Sizing Buffer 

consisted of  50 mM Tris pH 7.5, 160 mM NaCl, 24 mM MgCl2, 2 mM β–ME, and 5% 

glycerol.  RNA 8% Denaturing Gels were made by adding 14 g urea (microwave in 5 mls 

water for 20 seconds), 3 mls 10X TBE, 6 mls 40% acrylamide, 99.6 µls 30% APS, and 12 µls 

TEMED in a total of 30 mls final volume to make 3 gels at a time.  10X TBE buffer was 

made with 890 mM Tris base, 890 mM boric acid, and 20 mM EDTA with a pH of 8.0.  10X 

Pfu buffer consisted of 200 mM Hepes pH 8.6, 10 mM (NH4)2SO4, 100 mM KCl, 0.1% triton 

X-100, and 20 mM MgSO4. 

 

5’ LABELING OF NUCLEIC ACIDS 

 

Radiolabeling in vitro Transcribed RNAs  

After transcription and purification of the desired RNA, a 5’- [
32

P] - phosphate is 

attached.  In order to radiolabel in vitro transcribed RNAs, the 5’ end must be 

dephosphorylated in a phosphatase reaction using 1 µl calf alkaline phosphatase (purchased) 

per 10 µl reaction.  The reaction was incubated at 37ºC in a 0.65 ml autoclaved 

microcentrifuge tube for 1.5 hours.  The phosphatase removal reagent was then added (10 

µls) and incubated at room temperature for three minutes with constant agitation to 

        
  

 
  

 

   
  

    

 
 

 

     
 
    

 
  

        
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precipitate the phosphatase enzyme.  The precipitated phosphatase was spun-down and the 

sample was transferred to a new, autoclaved 0.65 ml microcentrifuge tube before proceeding 

to be phosphorylated with the γ-
32

P-ATP.   

Using T4 polynucleotide kinase (~ 1-2 µls per 20 µl reaction), the RNA was 

incubated at 37ºC in the Hevel lab designated water bath for 
32

P with 1 µl of 6000 Ci/mmol, 

150 mCi/ml 
32

P for 3-4 hours.  A native PAGE gel was then run at 100 volts for 90 minutes to 

separate the desired radiolabeled RNA from free γ-
32

P-ATP.  The RNA gel was exposed to 

Kodak film for ~ 1 minute and then developed in developer solution (Kodak, dilute 103 mls 

in 370 mls of water).  A dye line is apparent in visible light and can be used as a marker 

outline to trace on the film.  The Kodak film was then used to place over the radioactive gel 

to trace where the desired radiolabeled RNA band to gel extract was.   

A razor blade was then used to cut out the band.  The gel band with the radiolabeled 

RNA was then incubated overnight in 400 µls of gel extraction solution containing 0.5 M 

ammonium acetate, 0.1 M EDTA, and 0.1% sodium dodecyl sulfate (SDS).  The sample was 

then taken out the following morning and ethanol precipitated with the addition of 1 µl of 20 

µg/µl glycogen (a carrier molecule), and 3 times the volume of chilled ethanol was then 

added.  This was stored at -80ºC for 20 minutes before spinning down at 4ºC for twenty-five 

minutes.  All liquid was decanted off and the precipitated pellet of RNA was left open to dry 

in the fume hood for at least 2-4 hours before bringing up in desired volume with water.  

 

Gel Electrophoretic Mobility Shift Assay (EMSA)  

In order to obtain rough binding affinities for Mtr4 with potential RNA substrates, an 

EMSA assay was utilized.  Using radiolabeled RNA substrates at a concentration well below 

Kd range, concentrations of protein were varied and incubated for 30 minutes at 30ºC (yeast 

proteins) in a suitable binding buffer (differs amongst proteins).  For Mtr4, a buffer consisting 

of 20 mM Tris pH 8.0, 5 mM MgCl2, 50 mM KCl, 2 mM DTT, and 100 µg/ml BSA was 
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used.  The different concentrations of protein with RNA were then ran on a native PAGE gel 

and exposed to X-ray film to qualitatively calculate a dissociation constant from gel shifts 

(phosphorimager is now available as well).  The larger the complex (bound or not), the higher 

up in the gel the band would appear.  Sometimes the native gel would have to be run at a 

higher voltage (~140 volts) to get some of the more positively charged proteins to enter.  The 

gels are then quantified using multigauge software, and fit to the Hill equation; fraction 

bound = 1/(1 + Kd
n
/[P]

n
).  Where fraction bound = 1 – ([RNA]free/[RNA]total).   

 

5’-Fluorescence Labeling of Nucleic Acids  

 Thiol chemistry was utilized to label RNA substrates with a 5’-fluorescent tag.   If 

the RNA had been in vitro transcribed, then a dephosphorylation step was necessary using 

alkaline phosphatase at 37ºC for one hour (same as described for 
32

P labeling).  If RNA was 

purchased commercially, the dephosphorylation step was not needed.  ATP-γ-S at a final 

concentration of 2.5 mM was then added with T4 polynucleotide kinase at 37ºC for one hour 

to replace the 5’-phosphate with a terminal phosphate containing a double-bonded sulfur 

(instead of a terminal oxygen).  The alkaline phosphatase is incapable of removing this γ-S 

phosphate, relinquishing an inactivation step before the kinase reaction.  A fluorescent 

maleimide was then added to react with the sulfur on the 5’-phosphate at 65ºC for one hour.  

Fluorescein maleimide and Alexa Fluor 633 C5-maleimide have been successfully used for 5’ 

RNA labeling with this method.  Purification of the labeled RNA from free fluorescent dye 

was achieved through the use of a 24 ml Superdex 200 column monitoring simultaneous peak 

readings at 254 nm for RNA and the absorbance wavelength for the fluorescent tag used.  

Ethanol precipitation (as previously described for 
32

P labeling) was performed on the 

fractions containing the correctly labeled RNA substrate, allowing for re-suspension of the 

RNA in smaller volumes (~ 10 µls). 
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Figure 3-2.  Fluorescence scan detecting different forms of the Alexa Fluor 633 dye.  
Zoomed in view of low concentrations of a duplex RNA strand 5’ labeled with the A.F. 633 

dye.  

 

Testing the Quality of Fluorescently Labeled RNA Substrates for F.C.S.  
 

Using the fluorimeter in the Chen lab, a scan was setup to read wavelengths from 630 

nm to 750 nm, with an excitation of 610 nm.   

- Excitation slit set to 10 (nm) 

- Emission slit set to 10 (nm) 

- Scan speed (nm/min) set to 100 

Examples of usable concentrations are shown in Figures 3-2 and 3-3 (note that the 2.1 µM 

sample was too concentrated for the FCS and was therefore diluted).   
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Figure 3-3.  Fluorescence scan detecting different forms of the Alexa Fluor 633 dye.  

Free dye signal of the A.F. 633 versus the lower concentrations of RNA labeled with A.F. 

633. 

 

ANISOTROPY  

Fluorescence polarization was used to assess binding for protein-protein and protein-

RNA complexes.  Samples using Alexa Fluor 633 C5-maleimide or Fluorescein maleimide 

dye to label RNA (as outlined in the 5’-fluorescence labeling of nucleic acids section) or 

smaller proteins containing free cysteines can be used for anisotropy.  The polarized light 

emitted from the fluorescent dye gives an anisotropic value, r(t).  This value is a measure of 

the average angular displacement of the fluorescent dye, with a lower value indicating 

isotropic diffusion and a higher value indicating a more restricted compound (typically 

suggests the occurrence of binding).  Therefore, data collection needs to be obtained with the 

excitation lens set to vertical polarization at all times, and the emission lens collected at both 

a vertical and horizontal polarization to calculate the anisotropy value for a given sample.   
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In much the same way as an EMSA, concentration of the fluorescently labeled 

substrate was held consistent at a concentration below the Kd.  Then concentration of protein 

was gradually increased from 0 to a high enough concentration to reach binding saturation 

(trial and error).  With the Mtr4 and Trf5 fluorescein labeled peptide, saturation was reached 

at a concentration between 1.5-8 µM of Mtr4.  With Mtr4 and RNA binding assays, 

concentrations varied depending on RNA substrate used and whether it was an Mtr4 mutant 

or wild-type.  The Synergy H4 Hybrid Multi-Mode Microplate Reader from BioTek (located 

in the Dickenson Lab) has the capabilities of measuring fluorescence polarization in a 96- or 

384-well plate, saving on time and reagents.  When setting up the experiment in the 

Dickenson lab, an optimal intensity is achieved in the range of 1000 - 5000 using a tungsten 

light source, with a gain value as low as reasonable.  The gain value is an additional 

amplification of voltage to increase signal when concentrations are low, however the error 

tends to increase with increased gain.  Sigmaplot software was used for curve analysis and Kd 

determination.   

 

FLUORESCENCE CORRELATION SPECTROSCOPY  

This is a useful technique to measure transient interactions and precise real-time 

binding constants amongst complex forming protein-ligands.  A water emersion microscope 

slide was created by adding a drop of water to the side that comes in direct contact with the 

lens, and 15 µls of sample to the top of the slide.  The laser was then positioned to directly hit 

the fluorescent sample by adjusting the microscope slide.  Once the sample was centered, the 

lights were turned off in the room to allow for the specified laser’s power source to be turned 

on.  The power supply was set at 5 volts and 0.5 amps for current.  The program used to run 

the experiment is called ALV correlator.  Initial readings of 400-500 Hz for the frequency 

should be observed using the ALV correlator.  In order to detect particles passing 
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(incorporating spikes that ruin the data) or photobleaching, at least 3 measurements are taken 

for the same sample.  Initial experiments using F.C.S. have been with Mtr4 (wild-type) and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4.  Fluorescence correlation curve of Mtr4 bound to 5’ A.F. 633 labeled duplex 

poly(A) RNA. 

 

 

 

 

 
 
 

 

 
 

 

 

 

 

 

Figure 3-5.  Input count rate of the variation in fluorescence of Mtr4 bound to 5’ A.F. 

633 labeled duplex poly(A) RNA. 
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the ratchet helix mutants, testing binding to the poly(A) versus non(A) RNA duplex with a 5’ 

Alexa Fluor 633 label.  Results have shown binding does take place, and calculated 

dissociation constants have been calculated.  The disadvantage to this technique has been the 

software and calculations used for Kd measurements.   

 

HELICASE ASSAY  

A radiolabeled 16 nucleotide top strand was displaced over time when incubated with 

Mtr4 or TRAMP and saturating levels of ATP.  Reactions were carried out at 30°C in a 

controlled water bath.  The buffer used was 40 mM MOPS pH 6.5, 100 mM NaCl, 0.5 mM 

MgCl2, 5% glycerol, 0.01% NP-40 substitute, 2 mM DTT, and 1 U/µl of Ribolock (Thermo 

Fisher).  Reactions were allowed to incubate for 5 minutes with ~ 0.2 nM RNA (final 

concentration) and the indicated concentration of Mtr4, Mtr4 mutant, TRAMP, or TRAMP 

with Mtr4 mutant protein.   

Reactions were initiated by the addition of equimolar ATP and MgCl2 at a final 

concentration of 2 mM.  At specified time points, aliquots of the reaction were removed and 

quenched at a 1:1 ratio with buffer containing 1% SDS, 5 mM EDTA, 20% glycerol, 0.1% 

bromophenol blue and 0.1% xylene cyanol.  For Mtr4 helicase assays, concentrations at 1200, 

800, 400, 200, 100, and 50 nM were tested.  Samples were taken at time points of 0, 1, 2, 5, 

10, and 20 minutes for the higher concentrations (1200, 800, and 400 nM), and 0, 1, 4, 10, 20, 

and 60 minutes for the lower concentrations (200, 100, and 50 nM).  For TRAMP helicase 

assays, concentrations at 400, 200, 150, 100, 75, and 25 nM were tested.  Samples were taken 

at time points of 0, 1, 2, 5, 10, and 20 minutes for the higher concentrations (400, 200, and 

150 nM), and 0, 1, 4, 10, 20, and 60 minutes for the lower concentrations (100, 75, and 25 

nM).  Aliquots were run on a native 15% TBE polyacrylamide gel at 100 V for 115 minutes.   

Radioactivity was visualized as performed using film or phosphor screen.  Gels were 

wrapped in cellophane prior to exposure.  Film was developed and then quantified using 
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multi-gauge software.  Calculations of the observed rate constants (kunw), and amplitudes (A) 

were performed using integrated first-order rate law.  Curve fits were made to data collected 

in triplicate, Figure 3 (Fraction unwound = A(1-exp(-kunw·t))(31,32,50).  The kunw
max

 and K1/2 

values were calculated using best fit curves as done in (31), with the equation, kunw= kunw
max

, E  

[E]/[E] + K1/2, E, where [E] is enzyme concentration, K1/2 is functional affinity and kunw
max

,E is 

the unwinding rate constant at enzyme saturation.   

 

RNA Substrates Used for Helicase Assay  

The RNA substrates were designed to mimic unwinding substrates used in the recent 

study by Jia et al.
36

 Two 22 nucleotide ssRNAs (bottom strand), and two 41 nucleotide 

ssRNAs (bottom strand) (each with a unique 3’ end) were incubated independently with a 

complementary 16 nucleotide ssRNA (top strand) at 95°C for 10 minutes after which samples 

were slowly annealed to room temperature.   

The 16 nucleotide top strand was labeled with γ-
32

P ATP and T4 polynucleotide 

kinase and quenched by heating to 95°C before annealing. The RNA substrates were purified 

by native PAGE, gel extraction and ethanol precipitation.   All RNAs used in this study were 

purchased from Integrated DNA Technologies (IDT). The substrate sequences are as follows 

with duplex regions underlined:  

R16 (top strand of all three substrates) = 5’AGCACCGUAAAGACGC3’,  

R22A (poly(A ) overhang) = 5’GCGUCUUUACGGUGCUUAAAAA3’,  

R22R (non(A) overhang) = 5’GCGUCUUUACGGUGCUUGCCUG3’,  

R41A (poly(A) overhang) = 

5’GCGUCUUUACGGUGCUUAAAACAAAACAAAACAAAACAAAA3’,  

R41R (non(A) overhang) = 

5’GCGUCUUUACGGUGCUUGCCUGUUCGUGUCCUGUUGCUGCU3’. 
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ATPASE ACTIVITY 

 

To test for the activity of Mtr4 hydrolysis of ATP, a malachite green assay modified 

from Bernstein et al. was used.  Using a plate reader, absorbance was monitored at 650 nm 

with a VERSA max tunable plate reader (Molecular Devices).  An increase in absorbance at 

650 nm correlates to free inorganic phosphate and therefore increased ATP hydrolysis.  A 

colorimetric malachite green assay, adapted from Bernstein et al,
20

 was modified based on the 

Pyle lab’s protocol.
82

  The malachite green solution was made in a 2 x concentration.  For 500 

mls, 0.15 g of malachite green oxalate, 1 g of sodium molybdate, and 0.25 mls Triton X-100 

were added to a mixture of 0.7 M HCl and left to stir for 1 hour at room temperature.  Once 

the solution was mixed fully, it was covered in foil to protect from light and stored at 4C for 

up to 6 months.  The reactions setup contained 25 mM Tris pH 7.5, 10 mM Mg Acetate, 2 

mM -mercaptoethanol, 0.5 M of protein, and 0.2 M of RNA (for Mtr4 ratchet helix 

mutants we used the same dsRNA used in the helicase assays with the short poly(A) tail).  

The reactions were initiated with the addition of 2 mM ATP and time points were taken at 0, 

5, 10, 15, 20, and 30 minutes.  A 5 x quenching solution (250 mM EDTA) was then mixed 

with each sample to reach a final concentration of 50 mM EDTA.  The 2 x malachite green 

solution was then diluted to 1 x and added in a 9:1 excess to the sample to let sit for 30 

minutes to complete the reaction before reading the absorbance at 650 nm.  The instantaneous 

reaction rate ([Pi] µM min -1) was calculated by fitting a linear trend line to the absorbance 

values of time points using KaleidaGraph software. To determine the enhancement of RNA 

on Mtr4 and Mtr4-archless activity, reactions without RNA were used to obtain background 

values.  

 

CONCLUSIONS 

Within this chapter are the techniques and methods used for biochemical 

characterization of Mtr4.  This should provide all future researchers with the proper tools to 
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be able to study Mtr4 extensively.  Detailed methods including the molecular cloning 

techniques, protein expression, and protein/complex purifications are outlined.  Several 

improvements in methods such as the helicase assay, the ATPase assay, and in vitro 

transcription of RNA are included.  Additional techniques (included in this chapter) for 

labeling nucleic acids with 
32

P and fluorophores allowed for studies using anisotropy and 

FCS for more accurate measurements of binding affinities.  This chapter provides an archive 

of the studies that have been achieved characterizing the RNA helicase Mtr4, and aims to act 

as a guideline for future research methods to be employed on RNA surveillance proteins. 
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 

REVIEW AND FUTURE DIRECTIONS 

RNA regulation is an important process, yet little is known as to how the proteins 

involved function at the mechanistic level.  The focus throughout this thesis has been on the 

RNA helicase Mtr4 involved in RNA surveillance.  The lack of understanding in mechanistic 

detail of unwinding functionality and substrate recognition has been the key focus.  Previous 

literature had hinted that the slight differences in ratchet helix between Mtr4 and the Ski2-like 

DNA helicase Hel308 could explain their functional differences, such as substrate 

preferences.  Mutational analysis along this ratchet helix revealed differing effects on 

unwinding activity depending on the residue position mutated (Chapter 2).  The R1030A 

mutation slowed unwinding rates and inhibited poly(A) preferential unwinding, while 

E1033A increased unwinding rates (Chapter 2).  When either one of the ratchet helix mutants 

were combined with an archless construct, unwinding activity was abolished in vitro and 

synthetic lethality was observed in vivo (Chapter 2).  This provided insight into the residues 

involved in substrate recognition and unwinding rates, as well as identified a new function for 

the arch domain of Mtr4.  Below is an outline for future directions of outstanding questions 

about Mtr4 and the binding partners it interacts with. 

 

TRF5-MTR4 STRUCTURAL AND MUTAGENESIS STUDIES  

With the aid of anisotropy we have identified a small 27 residue fragment of Trf5 that 

directly interacts with full-length Mtr4 and archless-Mtr4 in vitro.  Our collaborators in the 

van Hoof lab had previously identified residues 98-124 of Trf5 (by yeast two-hybrid 

experiments) to show an interaction with Mtr4 and archless.  In Figure 4-1, the initial results 

of the Trf5 fluorescein labeled peptide binding to Mtr4 at varying concentrations of protein 
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show a rough dissociation constant of about 10 µM, using Sigmaplot software.  This is the 

first result showing that Trf5 binds Mtr4 without the aid of the Air proteins.  From here we 

can try truncations of the Trf5 peptide from the N- and C-terminus and test binding further to 

identify an even smaller portion of Trf5 required for interaction with Mtr4.  With the 

affirmation of binding through anisotropy, we can try co-crystallization trials with the 

commercially purchased peptide of Trf5 and full-length or other smaller truncations of Mtr4 

(which has been crystallized before).  First attempts would require purification of the desired 

Mtr4 constructs mixed with an excess of Trf5 peptide (with >98% purity) prior to setting up 

robot trays.  If no crystals result from that, further trials will proceed with the potential for 

soaking the peptide into a pre-existing Mtr4 crystal.   

 

 

 

 

 

 

 

 

 

 

Figure 4-1.  Binding curve of Mtr4 full-length to a Trf5 peptide.  Change in anisotropy 

value is plotted versus change in concentration of Mtr4. 
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Winged Helix, Domains 1 & 2 

Further analysis may include anisotropy tests of different domains of Mtr4 to identify 

a minimal region of Mtr4 that binds to Trf5.  These results would lead to crystallization trials 

as well with such combinations as the core domains 1 & 2 of Mtr4, or just domain 3 (the 

winged helix) combined with the Trf5 peptide.  All of these constructs have been successfully 

cloned, and just need to be purified for use in anisotropy experiments.  If an apparent Kd is 

measured and it is within range of the Kd measured for full length and archless Mtr4, then 

crystallization trials will be attempted in the same manner as described in the previous 

section.  

 

Trf5 Peptide Fragments: Finding a Minimal Binding Region to Mtr4 

A small region of Trf5 (27 residues) has been shown to bind Mtr4.  However, it is 

unclear if all these residues are needed for this interaction.  Based on the secondary structure 

prediction of the Trf5 peptide sequence (Figure 4-2) there appears to be a β–strand and α–

helix contributing to the structure, based on psipred server predictions.  In the absence of a 

structure, truncation mutants would be beneficial in order to determine the absolute minimal 

binding region of Trf5 necessary to bind Mtr4.  A possible truncation would be to delete the 

first 8 residues and test if it is the predicted structured region that binds Mtr4 by anisotropy 

techniques.  Since it is thought that both Trf5 and Trf4 interact with Mtr4 in a similar manner 

(due to their sequence homology), a sequence alignment was produced revealing conserved 

residues potentially important for this binding interaction (Figure 4-2).  Using the information 

gained through truncation mutant binding affinities, as well as a potential structure, 

mutagenesis studies will be pursued to try and disrupt the binding interface between the Trf 

proteins and Mtr4.  If successful, then further in vivo work will be done with our 

collaborators in the Ambro van Hoof lab to analyze the effects on RNA surveillance when 

TRAMP complex formation is disrupted. 
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Figure 4-2.  Secondary structure prediction of the Trf5 peptide and homologous Trf4 

peptide.  Above shows a sequence alignment between Trf5 and Trf4, with a secondary 

structure prediction of Trf5 aligned to the sequences; 50% sequence identity and 71% 

sequence similarity.   

 

 

CRYSTALLIZATION TRIALS WITH COMPLEXES   

Certain criteria must be met before setting up crystal trays with complexes.  When 

dealing with protein-protein complexes, issues arise all throughout the purification process, 

from proper buffers and purification methods that keep complexes together, to obtaining 

greater than 95% purity for crystallization trials.  The target criteria used for crystallography 

grade complex purification is as follows: homogeneity, confirmation of binding (anisotropy, 

sizing, etc), greater than 95% purity, and greater than 5 mg/ml concentrated protein.  When 

dealing with RNA-protein complexes, RNA is purified separately before mixing with protein 

in a 2:1 excess of RNA to protein.  For Mtr4 crystallization with RNA, attempts have been 

tried with a non-hydrolyzable ATP analog (AMP-PNP).  However, even though the Conti lab 
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got a crystal structure of Mtr4 bound to RNA with an ATP analog, the Toth lab has shown 

that the presence of nucleotide decreases Mtr4’s RNA binding affinity.  Future attempts will 

not include the presence of an additional nucleotide when trying to crystallize Mtr4 bound to 

RNA.  After all the criteria have been met, crystallization screens can be set-up using our 

Gryphon robot for 96-well plate crystal trays.  Using a variety of commercial screens such as 

Hampton, Emerald, Jena Bioscience, Qiagen, and Microlytic, as well as the additional 

variables with three different temperature controlled rooms (4ºC, 13ºC, and room 

temperature) increases our probability of obtaining crystals. 

 

TRF4-AIR2-MTR4 MUTANTS AND POLY(A) ADDITION 

The Jankowsky lab showed E947, a residue that is in close proximity to the bases of 

the RNA substrate in the crystal structure, to be important for regulating the poly(A) tail 

addition by Trf4 on RNA substrates
37

.  The mutations we have characterized on the ratchet 

helix are in close proximity to E947, and have been shown to be important in RNA 

unwinding and substrate specificity.  Perhaps these mutations could also be involved in 

modulating Trf4 addition of a poly(A) tail to the 3’ end of substrates.  To test this we would 

need to use a large gel apparatus, which we already have, to be able to distinguish between a 

single nucleotide in size.  We have previously tested polyadenylation activity of Trf4-Air2 in 

the presence of Rrp6 and have shown poly(A) tail addition.  Assays would be set-up in much 

the same way as the Jankowsky lab has reported, using a 5’- 
32

P labeled RNA strand
36

.  The 

Mtr4 mutants would have to additionally include the D/E mutation (that eliminates 

unwinding activity) to allow for monitoring of polyadenylation exclusively. 

 

ARCH MOVEMENT STUDIES 

The arch domain of Mtr4 is poorly characterized.  The only known function of the 

arch is RNA binding and the potential for influencing unwinding.  The arch displays mobility 
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based observed conformational changes in the two crystal structures.
27,28

  Monitoring 

movement in the arch could give insight into the different interactions of Mtr4 and how they 

are initiated.  FRET would allow for measurements between the arch domain and a reference 

point, perhaps, on a close residue located in the core of Mtr4 (needs to be within a distance 10 

Å at any given point).  With FRET, there is the issue of labeling two cysteines on the same 

protein (one on the fist, one on domain 2 within 10 Å of the other) with different tags.  An 

existing method addresses this issue by expressing the protein in truncations separately, 

labeling both fragments separately, and then covalently attaching them by initiating a self-

cleaving peptide (intein) that is attached at the N-terminus and C-terminus of the fragmented 

protein.
83

  Another method capable of measuring arch movement is “Double electron-electron 

resonance” (DEER) spectroscopy.  DEER spectroscopy has the capability to measure 

between paramagnetic centers from 1.5-8 nm, using a tetrazolium compound (MTS) modified 

residue as the spin label.  This approach represents another avenue for future research into 

arch movement. 

 

SUMMARY 

Extensive characterization of the essential RNA helicase Mtr4, was carried out in this 

thesis work.  Residues along the ratchet helix of Mtr4 were characterized and shown to effect 

unwinding rates; E1033A increased unwinding rates, and R1030A decreased unwinding 

rates.  Furthermore, the R1030A ratchet helix mutant showed no unwinding preference 

between a poly(A) and non(A) substrate.  This is the first identification of a residue of Mtr4 

involved in substrate specificity.  However, TRAMP (with the R1030A mutation) unwinding 

rates regain substrate specificity for which we hypothesize that Trf4 and Air2 somehow 

increase Mtr4’s affinity for substrates and/or induce a spatial adaptation in Mtr4 allowing for 

substrate recognition.  Additionally, the arch domain proved to be involved in unwinding, 

despite previous results suggesting otherwise.  Archless-Mtr4 alone has no effect on 



62 
 

 
 

unwinding rates, however archless-Mtr4 combined with one of the ratchet helix point mutants 

(R1030A or E1033A) abolishes unwinding activity.  The arch appears to cooperate with the 

ratchet helix of Mtr4 in unwinding structured RNA.  The research presented in this thesis 

provides valuable insight into unwinding and substrate recognition by Mtr4.  Moreover, 

continuing Mtr4 mutational studies in a TRAMP context and understanding the effects Trf4/5 

and Air1/2 have on Mtr4 function would be extremely informative.  Further characterization 

is needed to elucidate the full mechanistic detail, through structural and mutational analysis.  

This work proves as a solid basis of research creating a foundation for future studies of Mtr4. 
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