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Landscape structure is important for shaping the abundance and distribution of amphibians, but prior
studies of landscape effects have been species or ecosystem-specific. Using a large-scale, citizen sci-
ence-generated database, we examined the effects of habitat composition, road disturbance, and habitat
split (i.e. the isolation of wetland from forest by intervening land use) on the distribution and richness of
frogs and toads in the eastern and central United States. Undergraduates from nine biology and environ-
mental science courses collated occupancy data and characterized landscape structure at 1617 sampling
locations from the North American Amphibian Monitoring Program. Our analysis revealed that anuran
species richness and individual species distributions were consistently constrained by both road density
and traffic volume. In contrast, developed land around wetlands had small, or even positive effects on
anuran species richness and distributions after controlling for road effects. Effects of upland habitat com-
position varied among species, and habitat split had only weak effects on species richness or individual
species distributions. Mechanisms underlying road effects on amphibians involve direct mortality, behav-
ioral barriers to movement, and reduction in the quality of roadside habitats. Our results suggest that the
negative effects of roads on amphibians occur across broad geographic regions, affecting even common
species, and they underscore the importance of developing effective strategies to mitigate the impacts
of roads on amphibian populations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Because landscape modification is one of the main drivers of
global amphibian declines (Stuart et al., 2004; Cushman, 2006;
Wake and Vredenburg, 2008), effective amphibian conservation
will likely require management at large spatial scales (Semlitsch,
2000). Species distributions are generally related to two aspects
of landscape structure: the types and amounts of habitat available
(habitat composition), and the spatial arrangement of habitat (hab-
itat configuration; Turner, 2005). In temperate forest biomes,
amphibian occupancy is often greatest in landscapes that have
(1) high forest cover (Gibbs, 1998a; Guerry and Hunter, 2002;
Porej et al., 2004; Herrmann et al., 2005), (2) low cover by urban
infrastructure (Knutson et al., 1999; Lehtinen et al., 1999; Rubbo
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and Kiesecker, 2005; Pillsbury and Miller, 2008; Hamer and Parris,
2011), (3) few discontinuities between breeding and non-breeding
habitats (Guerry and Hunter, 2002; Becker et al., 2007, 2010), and
(4) high population connectivity (Sjögren Gulve, 1994; Houlahan
and Findlay, 2003; Mazerolle et al., 2005; Werner et al., 2007;
Cosentino et al., 2011).

Roads may play a particularly significant role in limiting
amphibian distributions. Roads directly replace wetland and
upland habitat, and they can lower the quality of adjacent habitat
by creating edge effects (Marsh and Beckman, 2004) and causing
run-off of deicing salts (Karraker et al., 2008). Because amphibians
move slowly, individuals are also susceptible to direct mortality
when moving across roads (Fahrig et al., 1995; Mazerolle, 2004;
Beebee, 2013). For species with biphasic life cycles, roads can
increase mortality risk during breeding migrations, ultimately
increasing the probability of local extinction (Gibbs and Shriver,
2005). Fragmentation by roads at landscape scales can decrease
metapopulation viability by constraining dispersal among popula-
tions (Hels and Nachmann, 2002).

Although previous studies have been critical for identifying how
landscape structure and road disturbance affect amphibian distri-
butions, these studies have varied widely in spatial extent and
led to conclusions that are often site- and species-specific
(Cushman, 2006). We examined effects of landscape structure
and road disturbance on the distribution and richness of pond-
breeding frogs and toads across the central and eastern U.S.
through a multi-institutional, undergraduate research project.
Approximately 200 undergraduate students in biology and envi-
ronmental science courses from a network of universities compiled
data from the North American Amphibian Monitoring Program
(NAAMP), a database of amphibian occupancy collected by citizen
scientists. NAAMP uses a standard methodology to collect occu-
pancy data (Weir and Mossman, 2005), so we were able to investi-
gate whether effects of landscape structure and roads on
amphibian distributions and species richness are consistent across
species and regions.

We addressed three questions chosen at the outset of the pro-
ject: (1) What aspects of habitat composition and road disturbance
best explain anuran occupancy and species richness? (2) Are the
effects of road disturbance on anurans more associated with road
density or traffic volume? (3) Does the separation of wetlands from
upland forest by intervening land use (i.e. habitat split; Becker
et al., 2007) threaten amphibian persistence? Because auditory
chorus surveys were used to determine anuran presence, relation-
ships between traffic volume and anuran distributions or species
richness could be due to detection bias associated with noise dur-
ing surveys. We used multiple metrics of species richness, estima-
tion of detection probabilities, and structural equation models
(SEM; Grace et al., 2010) to determine whether effects of traffic
volume were due to interfering noise during surveys. We also used
SEMs to disentangle correlations among landscape features charac-
teristic of urban areas.
2. Materials and methods

2.1. Sampling sites and NAAMP data

NAAMP is a citizen-science monitoring initiative organized by
the U.S. Geological Survey (Weir and Mossman, 2005). Trained
observers are assigned randomly-selected driving routes within
their state (Weir and Mossman, 2005). Observers initially traverse
routes during the daytime and select 10 sampling locations (here-
after ‘‘stops’’) at least 0.5 km apart where bodies of water are visi-
ble within 200 m of the road. Observers conduct 3–4 surveys at
each stop per year during pre-determined time windows that span
the breeding season of most anurans in the region. At each stop,
observers get out of their cars and record any anuran species heard
over a 5-min survey period. During each survey, observers also
record the number of cars passing by on the road and whether or
not noise was present that might interfere with counting or iden-
tifying anuran calls.

Undergraduate students from nine biology and environmental
science courses compiled anuran data from 1617 NAAMP stops
along 406 routes in 13 states (Table A1; latitudinal extent
27.2691 to 48.5939; longitudinal extent �98.1681 to �70.8769).
Students characterized landscape structure within 1-km buffers
around each stop. To avoid spatial overlap in landscape indices
among stops, we compiled data only for stops 1, 4, 7, and 10 within
each route, ensuring stops were P2 km apart. For these stops, we
first condensed the raw anuran data into summary measures for all
surveys of a stop. For each stop, we calculated total number of sur-
veys, proportion of surveys in which interfering noise was
recorded, presence or absence of each species across all surveys,
total number of species present (species richness) across all sur-
veys, and mean number of cars passing by during anuran counts
(traffic volume). Surveys occurred from 1994 to 2012, and the
median number of surveys per stop was 12 (range = 1–45).

We modified the raw NAAMP data in two ways to increase their
quality. First, we interfaced county-level distribution maps from
the National Amphibian Atlas (USGS, 2012) with the NAAMP sur-
vey locations and excluded any data from outside a species’ known
range. Thus, occupancy for each species was considered only
within counties where the species was previously known to exist.
There were 40 species observed across all stops after excluding
data from outside a species’ known, native range (Table A2). Sec-
ond, we combined occupancy data for gray treefrog species (Hyla
chrysoscelis and Hyla versicolor) because their calls can be difficult
to distinguish.
2.2. Landscape variables

Landscape variables for each NAAMP stop were characterized
by students using qGIS or ArcGIS software to import spatial layers
from the National Land Cover Database (NLCD; Fry et al., 2011), the
National Wetlands Inventory (NWI), and Open Street Map (OSM).
Using these layers, students calculated the following within a buf-
fer with a 1-km radius around each NAAMP stop: proportion of
land forested, agricultural, and developed, total wetland area, total
linear road length (hereafter ‘‘road density’’), and total number of
habitat types represented (according to NLCD classifications). Hab-
itat split was characterized visually by whether wetlands within
200 m of the stop were separated by an intervening land type
(i.e. road, agricultural field, or developed land) from upland forest.
State-specific data were divided among participating classes
(Table A1).

Several layers of quality control were applied to the landscape
data to maximize their accuracy. First, two students independently
compiled data for each stop, and these students were required to
reach consensus before data were entered into the database. Sec-
ond, entered values for each variable were sorted by magnitude
and unusually high or low values were checked for accuracy by a
different set of students or by an instructor. Third, a randomly cho-
sen selection of stops was checked for accuracy for each landscape
variable. Where independent calculation differed from the entered
value more than 10% of the time, variables were excluded from the
analysis. The only variable to fail this criterion was the number of
different habitat types within the 1-km buffer (error rate = 23%);
error rates for the other variables were 67%. The number of differ-
ent habitats was quantified by having students record the number
of habitats observed visually within the 1-km buffer around stops,
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and color codes representing habitat types were sometimes diffi-
cult to differentiate.

2.3. Species richness

Raw species richness was highly variable at large geographic
scales, with some counties in northern Minnesota having only four
species and counties in the South Carolina coastal plain having up
to 31 species. Following previous studies that observed high corre-
lations between amphibian species richness and net primary pro-
ductivity (NPP) at broad geographic scales (e.g. Buckley and Jetz,
2007; Pyron and Wiens, 2013), we first performed Poisson regres-
sions of raw species richness on NPP data obtained from FAO Geo-
Network (http://www.fao.org/geonetwork). We excluded data
from all stops with <9 total surveys to minimize false negatives
and then included total number of surveys in Poisson regressions
with NPP to account for survey effort. Residuals from Poisson
regressions with number of surveys and NPP were then used in
subsequent analyses of the effects of landscape features on anuran
species richness. Exploratory analyses using raw species richness
in place of residuals yielded similar results for model comparisons,
albeit with poorer model fits. Similarly, models that included NPP
as a covariate (instead of using residuals from the Poisson regres-
sion) and total surveys as a covariate or offset variable produced
nearly identical rankings of models.

To ensure that results for species richness were robust to inclu-
sion criteria and detectability issues, we analyzed three additional
metrics of species richness. First, we analyzed richness including
only surveys in which noise was noted as absent. For this analysis,
we did not exclude stops with <9 surveys without noise because
occasional non-noisy surveys of stops that were usually noisy
could provide useful information about anuran occupancy at these
stops. Second, we analyzed species richness only for a subset of
nine species with cumulative detection probability P0.9 (see
below). For this analysis we included data from all stops with at
least 18 surveys, the minimum number needed to ensure cumula-
tive detection probability of the least detectable species was P0.9.
Third, we determined whether any species found at <20% of all
possible stops within its known range was present at each stop
(‘‘rare species presence’’). For this metric, we excluded all stops
with <9 surveys. For the datasets with non-noisy surveys and spe-
cies with high detection probability, the response variable was
residuals from a regression of species richness on NPP and the total
number of surveys. For rare species presence, the response variable
was whether or not any rare species was present at a stop, and all
models included NPP and total number of surveys as covariates.

2.4. Species occupancy

For analysis of individual species distributions, we focused on a
subset of species with broad distributions and high detection prob-
ability. We included species that occurred in P3 states and were
found at 20–80% of stops within their known range. Ten species
met the distribution criterion: American toad (Anaxyrus americ-
anus), gray treefrog (H. chrysoscelis and H. versicolor), green treefrog
(Hyla cinerea), barking treefrog (Hyla gratiosa), squirrel treefrog
(Hyla squirella), American bullfrog (Lithobates catesbeianus), green
frog (Lithobates clamitans), pickerel frog (Lithobates palustris),
southern leopard frog (Lithobates sphenocephalus), and wood frog
(Lithobates sylvaticus). Spring peeper (Pseudacris crucifer) was
excluded because it was found at 83% of the stops and therefore
unlikely to show obvious patterns related to land use. A variety
of rare or spatially restricted species were excluded because their
distributions were too narrow.

We included species that had cumulative detection probability
(i.e. probability of detecting a species at a stop at least once across
all surveys and years, given the species occurred at the stop)
P0.90. To estimate cumulative detection probability for each spe-
cies, we first used occupancy modeling and program PRESENCE to
estimate survey-specific detection probabilities at each stop
(MacKenzie et al., 2006; see Text A1 and Tables A3–A6). We then
estimated the number of surveys (n) required for a cumulative
detection probability (pc) of 0.9 by setting pc = 0.9 and solving for
n in the equation

n ¼ logð1� pcÞ
logð1� �pÞ ;

where �p is the average detection probability across all stops and
surveys. For the ten species that met the distribution criterion,
the required number of surveys to achieve pc P 0.9 ranged from
six (H. chrysoscelis/versicolor, H. cinerea, and L. clamitans) to 24 (H.
squirella; Table A6). We excluded stops that had fewer than the
minimum number of surveys to achieve pc P 0.9 for each species,
and we used the occupancy data from the remaining stops for our
analyses. We excluded squirrel treefrog from occupancy analysis
because detection rate was low and few stops had sufficient surveys
to achieve pc P 0.9. This left nine species for individual analysis.
2.5. Data analysis

We employed generalized linear mixed models (GLMMs) to
evaluate how habitat composition, road disturbance, and habitat
split affected species richness and occupancy of species with
pc P 0.9. Response variables included total richness, richness from
non-noisy surveys, richness for and occupancy of highly detectable
species (pc P 0.9), and rare species presence. We specified a Gauss-
ian error distribution and identity link for residuals of species rich-
ness metrics, and we specified a binomial error distribution and
logit link for rare species presence and occupancy of individual
species. Because NAAMP is structured with stops nested within
randomly-chosen routes, we included route as a random effect in
all models to account for spatial autocorrelation and inter-observer
variation. We considered using models that account for imperfect
detection (MacKenzie et al., 2006) directly for our analyses, but
current multi-season approaches do not allow for random effects
and are not conducive to analysis of species richness.

To determine which aspects of habitat composition and road
disturbance best explained species richness and occupancy of indi-
vidual species (Question 1), we compared the relative support of
12 a priori models including different combinations of explanatory
variables (Table 1). Variance inflation factors (VIF; Zuur et al.,
2009) were used to identify multi-collinearity among explanatory
variables. Proportion forest and agriculture were highly negatively
correlated (VIF = 4.8), so we included only proportion forest in
models. Traffic and noise level were also highly positively corre-
lated (VIF = 6.3), and we used SEMs to distinguish traffic effects
from noise effects (see below).

To determine whether negative effects of roads were more clo-
sely associated with traffic volume or road density (Question 2), we
compared the relative support of models that included (1) only
traffic volume, (2) only road density, and (3) traffic volume and
road density. These models were all part of the model set used to
address Question 1 (Table 1). To determine whether habitat split
affected species richness and occupancy of individual species
(Question 3), we compared models that included only habitat com-
position variables (wetland area, forest, development, road den-
sity), composition variables plus habitat split, and a null model.
Habitat split was diagnosable for only a subset of stops used for
analyses of habitat composition and road disturbance, so we used
separate model sets to examine habitat split.

http://www.fao.org/geonetwork


Table 1
Results of model comparisons for species richness (n = 937 stops). Net primary productivity and total surveys for each stop were regressed against species richness to obtain
richness residuals for use in model comparisons. Model selection statistics include the difference between AIC of each model and the most-supported model (DAIC), Akaike model
weight (x), log-likelihood (LL), and number of parameters (K). See Table A7 for model-averaged parameter estimates.

Model Terms DAIC x LL K

Full Road, traffic, development, forest, wetland 0.00 0.556 �1174.8 8
Total development Road, traffic, development, noise 1.17 0.309 �1176.4 7
Roads Road, traffic 3.42 0.100 �1179.5 5
Land cover Road, development, forest, wetland 7.11 0.016 �1179.4 7
Noise Noise 7.28 0.015 �1182.5 4
Road density Road 9.87 0.004 �1183.8 4
Traffic Traffic 14.75 0.000 �1186.2 4
Development Development 18.68 0.000 �1188.2 4
Wetland area Wetland 19.54 0.000 �1188.6 4
Natural land cover Forest, wetland 21.10 0.000 �1188.4 5
Null Intercept only 26.58 0.000 �1193.1 3
Forest Forest 26.85 0.000 �1192.2 4
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Akaike’s Information Criterion (AIC) was used to evaluate model
support. Models were considered to have competitive support
when the difference in AIC between a model and the most-sup-
ported model (DAIC) was 62 (Burnham and Anderson, 2002). We
removed all missing observations from datasets for each model
set to ensure AICs were comparable among models. Missing obser-
vations were either due to data not recorded during surveys (e.g.
traffic, noise) or landscape variables excluded during quality con-
trol checks. All GLMMs were fit in R (R Core Team 2013) in the
package lme4 (Bates et al., 2013). Model deviance suggested little
under or over-dispersion for all models. We used the package
AICcmodavg to obtain model-averaged predictions, beta coeffi-
cients, unconditional standard errors, and confidence intervals
(Mazerolle, 2013).

We used SEMs to examine (1) direct and indirect effects of
explanatory variables characteristic of urban areas on species rich-
ness, and (2) whether the relationship between traffic volume and
species richness was potentially due to detection bias associated
with noise during surveys. Species richness in the SEM was resid-
uals from the regression of species richness on NPP and total sur-
veys. The SEM included direct effects of traffic, noise, road
density, and development on species richness. It also included
effects of development on noise and traffic, an effect of traffic on
noise, and covariance terms between road density and develop-
ment and between road density and traffic. Because road density
could influence species richness directly but should not affect noise
level, this model allowed us to distinguish the indirect paths from
the explanatory variables to species richness (e.g. traffic to noise to
richness) from the direct effects (e.g. traffic to richness).

To fit the SEM, we first re-scaled the variables so that they
would be of similar magnitude. We then fit a model that used a
cluster adjustment technique for standard errors (Williams,
2000) to account for the clustering of NAAMP stops within routes.
As a subsequent analysis to confirm a direct effect of traffic on spe-
cies richness, we fit a second SEM that included no direct effect of
traffic on richness; only an indirect effect mediated by noise. We
compared AIC between models to evaluate the direct effect of traf-
fic on species richness while accounting for correlations among the
other explanatory variables. SEMs were fit with the R package lava
(Holst and Budtz-Joergensen, 2012).
3. Results

Of the 1617 stops, 937 had enough chorus surveys and defin-
able landscape features for analysis of species richness. Compari-
son among models of species richness showed that a full model
containing road density, traffic volume, development, forest cover,
and wetland area had the most support (Table 1). Species richness
was negatively related to road density, traffic, and forest cover and
positively related to wetland area and development (Fig. 1,
Table A7). The positive effect of development was evident only
after controlling for other variables because species richness was
negatively associated with development in a model with develop-
ment alone (beta = �0.91, SE = 0.29). A model with road density,
traffic, development, and proportion of surveys with noise had
competitive support. Species richness was negatively related to
noise (Fig. 1, Table A7). Based on model rankings and the relative
support of models with single variables, road density, traffic, and
noise during surveys were the most important predictors of species
richness (Table 1). When we quantified species richness using only
surveys recorded as having no interfering noise, road density and
traffic were the most important predictors (Tables A8 and A9).
However, noise was most important for predicting the number of
highly detectable species and the presence of rare species (Tables
A8 and A9).

For six of nine species, the most-supported model of occupancy
included road density, traffic, development, noise, or a combina-
tion of these variables (Tables 2 and A10). Occupancy was gener-
ally negatively related to road density, traffic, and noise, but the
effect of development varied among species (Table A11). Occu-
pancy for two species was most related to wetland area and forest
or wetland area alone, and the null model was most supported for
one species (Table 2). Wetland area generally had a positive effect
on occupancy, but the effect of forest varied among species
(Table A11).

For species richness, the model including both road density and
traffic was more supported than models with road density or traf-
fic alone (Table 1). This result was unchanged when we used data
only from surveys without noise or when examining presence of
rare species (Table A8). The traffic-only model had more support
than the other models when considering only the richness of
highly detectable species, but the model with road density and
traffic was competitive compared to the traffic-only model
(DAIC = 0.62; Table A8). For species occupancy, the model includ-
ing road density and traffic was either more supported than single-
variable models or had competitive support for all species
(Table A10).

For species richness, adding habitat split resulted in a marginal
improvement in model fit over the habitat composition model
(Table A12). Species richness was lower at stops that were split
from upland forest (mean residual = �0.10, SE = 0.09) than stops
that were not split (mean residual = 0.17, SE = 0.04; beta = �0.15,
SE = 0.08). For individual species distributions, adding habitat split
improved the fit of the composition model for L. sylvaticus and
marginally so for H. cinerea, but not for other species (Table A13).
Occupancy was lowest at stops that were split for L. sylvaticus
(beta = �1.53, SE = 0.53) and H. cinerea (beta = �1.73, SE = 0.93).
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Fig. 1. Relationship between species richness and traffic volume, road density (road length within 1-km buffer of each stop), wetland area, proportion of developed land,
proportion of forested land, and proportion of surveys with noise. Net primary productivity for each location and total surveys were regressed against species richness to
obtain richness residuals for the response variable. Best-fit lines (solid red line) are model-averaged predictions with all variables held at their mean except the variable of
interest. Predictions were averaged across all models in which the variable of interest was included. The 95% unconditional confidence intervals (dotted red lines) were
calculated as y ± t(SEy), where y is the predicted richness residual, SE is the unconditional standard error, and t is the quantile of Student’s t distribution for the residual
degrees of freedom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Most-supported models of occupancy of individual species. Akaike model weight (x) is indicated for each model. See Tables A10 and A11 for full model sets and model-averaged
parameter estimates.

Species Model Terms x

Anaxyrus americanus Total development Road, traffic, development, noise 0.579
Hyla chrysoscelis/versicolor Road density Road 0.382
Hyla cinerea Natural land cover Forest, wetland 0.571
Hyla gratiosa Null Intercept only 0.171
Lithobates catesbeianus Roads Road, traffic 0.428
Lithobates clamitans Noise Noise 0.857
Lithobates palustris Noise Noise 0.587
Lithobates sphenocephalus Noise Noise 0.201
Lithobates sylvaticus Wetland area Wetland 0.528
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Model fit for the SEM was good according to the root mean
square error of approximation (P = 0.28), although there was slight
lack-of-fit based on the model chi-square (v2 = 4.48, df = 1,
P = 0.034). The model indicated that anuran species richness
depended on road density, traffic, and development (Fig. 2; R2 for
species richness residuals = 8.7%). There were direct negative
effects of both road density and traffic on species richness, but
there was no direct effect of noise (Fig. 2). Development had a
small, positive effect on species richness after accounting for neg-
ative effects of road density and traffic (Fig. 2). An alternative SEM
with no direct effect of traffic (only an indirect effect mediated by
noise) had a poorer fit to the data (DAIC = 13.03), again suggesting
a direct effect of traffic on species richness.
4. Discussion

Our results showed that anuran species richness and occupancy
were related to road disturbance, wetland area, and upland habitat
composition across the eastern and central U.S. Associations
between habitat composition and occupancy were largely spe-
cies-specific, which supports previous findings at smaller spatial



Fig. 2. Schematic of structural equation model of species richness. Net primary
productivity for each location and total surveys were regressed against species
richness to obtain richness residuals for the response variable. Model includes
effects of road density, proportion of developed land within 1 km of stops, traffic
volume, and proportion of surveys with noise. Single-headed arrows indicate causal
relationships, and double-headed arrows indicate correlations. Coefficients are
given for each pathway significant at P < 0.05. Solid line indicates coefficients that
were significant at P < 0.05, and dashed line indicates coefficients that were not
significant.
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scales (Cushman, 2006). However, our analyses yielded two novel
insights into general effects of landscape structure on anuran com-
munities. First, we found that road disturbance was almost univer-
sally important in that it constrained total species richness and the
distribution of most species. Second, we found that once the nega-
tive road effects were accounted for, low to moderate levels of
development had a positive effect on anuran species richness.

4.1. Road disturbance

Species richness and the distribution of most anurans were
related negatively to measures of road disturbance within 1 km
of stops. This is consistent with previous site-specific studies
showing that road disturbance interrupts processes that are impor-
tant for amphibian persistence (Fahrig et al., 1995; Carr and Fahrig,
2001; Karraker et al., 2008). A model with both traffic volume and
road density was more supported than single-variable models for
species richness, and the SEM indicated that traffic volume and
road density both had independent effects on species richness. Fur-
thermore, the model with both road variables was competitive for
all species distributions. Thus, we conclude that both aspects of
road disturbance were important for explaining anuran richness
and distributions.

Several mechanisms could explain why traffic volume and road
density consistently limit anuran distributions across geographic
locations. First, roads can increase mortality due to collisions with
vehicles (Mazerolle, 2004). Every species in our analysis moves
over land during breeding migrations or dispersal and – all else
being equal – mortality rates generally increase as traffic volume
increases (Fahrig et al., 1995; Sutherland et al., 2010). Road-associ-
ated mortality may also shift the age structure of populations
resulting in smaller females with lower fecundity (Karraker and
Gibbs, 2011). Second, roads may create physical or behavioral bar-
riers to movement (Bouchard et al., 2009). These barrier effects can
make seasonal migrations between wetland and upland habitats
difficult (Gibbs, 1998b) or can disrupt dispersal and connectivity
within a metapopulation (Hels and Nachmann, 2002). Barrier
effects would be expected to scale with road density within the
dispersal range of a species. Third, deicing salt that runs off into
wetlands near roads has been shown to decrease survival of
amphibians during embryonic and larval life stages (Sanzo and
Hecnar, 2006; Karraker et al., 2008). An a posteriori analysis
showed that the negative effect of traffic on species richness was
somewhat stronger at northern sites with cold winters
(beta = �0.025, SE = 0.007) than at southern sites with mild win-
ters (beta = �0.010, SE = 0.009), which is consistent with the more
extensive use of deicing salts in northern states.

An alternative explanation for associations between road dis-
turbance and anuran distributions is that traffic volume and road
density were confounded with habitat composition. For example,
extensive road networks and high traffic volume can be character-
istic of urban areas that have limited wetland and upland habitat.
However, we did not find strong correlations between measures of
road disturbance and the amount of wetland or forest habitat, and
the SEM showed that road density and traffic had direct effects on
species richness that were independent of the proportion of devel-
oped land. This indicates that associations between road distur-
bance and anuran distributions are not completely due to lack of
habitat in urbanized landscapes.

It is possible that the negative relationship between species
richness and traffic volume was caused by detection bias due to
high noise during surveys. Noise was the most supported single-
variable model of species richness, and it was the most important
variable for explaining occupancy for three species and presence of
rare species. In addition, noise was the most important variable for
predicting the richness of species that had high estimated detec-
tion probabilities. Because detection probabilities were high, it is
unlikely that noise was a source of strong detection bias. Noise
may have reduced species richness directly by masking breeding
choruses and reducing breeding success (Bee and Swanson, 2007)
or by acting as a negative cue during habitat selection. Alterna-
tively, the relationship between noise and species richness may
have been due to covariance with traffic. Indeed, the SEM con-
firmed that traffic increased noise during surveys, but traffic still
had a direct negative effect on species richness. In contrast, there
was no evidence for a direct effect of noise on species richness,
and an alternative SEM without a direct effect of traffic was not
supported. Furthermore, in analyses that excluded surveys with
recorded noise, traffic volume and road density were the most
important predictors of species richness. These results indicated
that the relationship between traffic and species richness was unli-
kely to be solely a byproduct of detection bias.

There are important limitations to our analysis of road distur-
bance. First, we only examined the effects of road density and traf-
fic. Roads vary in surface type and width, and these factors could be
important for affecting mortality risk, movements, and the quality
of roadside wetlands due to variation in runoff. Second, because
NAAMP surveys are conducted along roads, there were no roadless
sites in our study. If anurans are more likely to occupy wetlands
away from roads than near roads, we could be underestimating
the effects of road disturbance. Nevertheless, NAAMP survey sites
are not unrepresentative of the eastern and central U.S., where typ-
ically 40–80% of all land is <400 m from a road (Riitters and
Wickham, 2003).

4.2. Habitat composition and habitat split

Our results are consistent with previous studies showing that
upland habitat composition limits anuran distributions and species
richness (e.g. Guerry and Hunter, 2002; Porej et al., 2004; Hamer
and Parris, 2011). Based on model rankings, species richness and
occupancy for most species were more closely related to upland
habitat composition (forest or developed land) than to wetland
area. This strongly supports the idea that conserving upland terres-
trial habitat is essential for semi-aquatic amphibians to complete
their life cycles (Semlitsch and Bodie, 2003; Rittenhouse and
Semlitsch, 2007).

Although upland habitat composition was broadly important,
specific associations between occupancy and upland habitat were
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not as consistent as the negative effects of road disturbance. Spe-
cies distributions were positively or negatively related to forest,
the latter likely reflecting preference for open habitats. Further-
more, both the GLMMs and the SEM indicated that species richness
had a small but positive relationship with development after we
accounted for the negative effects of traffic and road density. It is
possible that low to moderate levels of development may add
breeding sites to the landscape (e.g. farm and garden pools, reten-
tion ponds), thereby increasing occupancy of common species and
species richness. Our development metric included land classified
as ‘‘Developed, Open Space’’ (e.g., parks, lawns) in addition to
impervious surfaces. Furthermore, the vast majority of survey sites
had <20% development within 1 km. Graphically, it appears that
sites with high proportions of developed land (e.g. >60%) may have
lower species richness (Fig. 1), but the number of these sites was
too few for breakpoint analysis to pick up this effect.

The negative effect of habitat split on species richness is consis-
tent with previous findings for aquatic-breeding species in tropical
ecosystems (Becker et al., 2007), and it supports the notion that
wetland-upland linkages can be critical for facilitating breeding
migrations. However, the effect of habitat split on species richness
was not particularly strong, and habitat split constrained the distri-
bution of only two of nine species. The weak association between
habitat split and species richness may stem from defining forest
as upland habitat, which may not be applicable to species that
associate with more open habitats. Furthermore, our analysis of
habitat configuration was limited in that we did not consider dis-
tances between wetlands and upland habitat or connectivity to
other wetlands in the landscape. Further study is needed to exam-
ine the relative impacts of habitat composition and configuration
on amphibian distributions (Fahrig, 2003; Quesnelle et al., 2013).
4.3. Strength of landscape effects

Although the relationships we observed between anuran occu-
pancy and richness and road disturbance were largely consistent
across species, these relationships tended to have weak explana-
tory power. That these relationships were weak is not surprising
given that we were looking for general associations between anu-
rans and land use across species and regions. Much of the variation
in species richness was explained by route (R2 = 44% for fixed effect
of route on species richness), and landscape effects within specific
regions and for anurans with specific habitat preferences would
likely be stronger. In addition, several other factors likely added
noise to the observed relationships. These factors include the
potential for both false positives and false negatives using the
NAAMP volunteer protocol (Genet and Sargent, 2003), limited res-
olution and accuracy of NLCD landcover maps (Wickham et al.,
2013), land use change over the course of NAAMP data collection,
and errors in variable calculation by participating students. Given
all these sources of noise, our conclusion is not that amphibian dis-
tributions are largely explained by road disturbance, but rather
that road disturbance effects were surprisingly detectable across
species and regions of the U.S.
4.4. Conclusions

Recent evidence suggests that amphibian declines in the U.S.
are widespread, with occupancy rates declining 3.7% per year
(Adams et al., 2013). Effective landscape management will be crit-
ical for reversing this trend. Despite regional variation in species
assemblages and habitat preferences of individual species, our
results demonstrate that road disturbance has a broad influence
on the spatial distribution and local diversity of anurans in the
eastern and central U.S.
Successful amphibian conservation will likely require minimiz-
ing the impacts of future road projects and mitigating the impacts
of current roads. Mitigation for amphibians can take the form of
tunnels that allow for safe passage, fences that prevent animals
from entering roads, signage to alert drivers to road-crossing
zones, and reduced road salt application near wetlands
(Lesbarrères and Fahrig, 2012; Beebee, 2013). Mitigation can be
targeted by identifying hotspots of road mortality (Langen et al.,
2009), which usually correspond to areas where roads pass close
to wetlands, but are not necessarily the areas with the highest traf-
fic (Eberhardt et al., 2013). Further research on the mechanisms
underlying road effects on amphibians (e.g. roadkill mortality,
deicing salts, barrier effects) could help clarify which kinds of mit-
igation efforts are most likely to be successful in any given
situation.
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