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ABSTRACT 

Evaluation of Composing of Municipal Solid Waste 

by 

J. Ryan Stebbins, Master of Science 

Utah State University, 2014 

Major Professor: Dr. R. Ryan Dupont 
Department: Civil and Environmental Engineering 

A field-scale commercial compost study was conducted to evaluate the impact of 

the Bio-Environmental Resource Recovery International (BERRI) Microbial Assisted 

Regeneration System (MARS) process, specifically its proprietary microbial inocula, on 

compost production of various agricultural waste and municipal solid waste (MSW) 

mixtures. Treated and control windrows were constructed to compare the MARS 

inoculum by quantity and quality of compost produced, organic stabilization time, and 

individual component sorting (i.e., green waste, wood, agriculture waste, food waste, 

MSW, C&D debris, and tires). Specific VOC and SVOC compounds, as well as a 

common pesticide, carbaryl, were added specifically for this study and the compounds 

were analyzed for degradation rates. The quality of the compost product was assessed 

using a method developed for classifying municipal solid waste compost. The quantity of 

compost produced was determined by screening the entire volumes of each pile to 

determine a gross production of compost for each pile. Compost samples were analyzed 

by headspace gas chromatography mass spectrometry for VOCs, methylene chloride 
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extraction and gas chromatography mass spectrometry for SVOCs, and methanol 

extraction and high-performance liquid chromatography mass spectrometry for carbaryl. 

The quality of compost was found to have a very low nutrient capacity making the 

compost only useable as a soil conditioner. Treated piles showed a significantly larger 

amount of compost production and a decreased time for organic stabilization. No 

significant degradation of plastics or woods components was observed in any of the 

treatments used in the study. 

(127 pages) 
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PUBLIC ABSTRACT 

Evaluation of Composing of Municipal Solid Waste 

Millions of tons of organic waste are lost each year by being deposited in landfills 

instead of being composted. Composting would increase the life of landfills and reduce 

the loss of renewable resources. Current composting techniques take approximately 6 

months to break down the organic components, such as yard trimmings and food waste. 

In addition, a large amount of area is required for the windrows piles. Recycling 

techniques help to separate organics, such as yard trimmings and food waste, from the 

municipal solid waste (MSW) stream for composting. However, these techniques are 

time consuming, costly, and not extensively practiced. Since separation of the organic 

faction of MSW is not practical, it is important to seek ways to accelerate the breakdown 

of organics while composting the entire MSW stream. 

The Utah Water Research Laboratory was approached by Bio-Environmental 

Resource Recovery International (BERRI) to determine the impact of the Microbial 

Assisted Regeneration System (MARS) process. Various agricultural waste, MSW, 

construction and demolition waste, and organic contaminant mixtures were assessed to 

determine the quantity and quality of compost produced using the MARS process.  

A field-scale commercial compost study was conducted. Treated and control 

windrows were constructed to compare the MARS inoculum by quantity and quality of 

compost produced, organic stabilization time, and individual component sorting (i.e., 

green waste, wood, agriculture waste, food waste, MSW, C&D debris, and tires). Specific 

volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), as 
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well as a common pesticide, carbaryl, were added specifically for this study and the 

compounds were analyzed for degradation rates. The quality of the compost product was 

assessed using a method developed for classifying municipal solid waste compost. The 

quantity of compost produced was determined by screening the entire volumes of each 

pile to determine a gross production of compost for each pile. Compost samples were 

analyzed for VOCs, SVOCs, and carbaryl.  

The quality of compost was found to have a very low nutrient capacity making the 

compost only useable as a soil conditioner. Treated piles showed a significantly larger 

amount of compost production and a decreased time for organic stabilization. No 

significant degradation of plastics or woods components was observed in any of the 

treatments used in the study. 

J. Ryan Stebbins 
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INTRODUCTION 

Overview 

Composting is an aerobic, solid phase process used to biodegrade organic material 

to a stable end product for use as a fertilizer or as a soil amendment. Government 

organizations, homeowners, and private companies use composting to reuse presorted 

yard trimmings and food waste from municipal solid waste (MSW) to decrease the 

volume of waste in landfills, and to generate a useful end product that can substitute for 

more costly chemical fertilizers. Compost material is used in personal gardens or sold as 

fertilizer. Construction and demolition waste (C&D) is not included as a part of MSW, 

but is commonly discarded at landfills with MSW and is considered to be inert and not 

degradable. Due to C&D waste being classified as inert it is not composted commercially.  

Environmental conditions such as moisture content, oxygen status, and carbon to 

nitrogen ratio are controlled in composting operations to reduce processing time and to 

maintain a healthy microbial community (Liang et al. 2003; Ekinci et al. 2004). 

Composting typically relies on indigenous microbial communities, but some composting 

operations have evaluated microbial amendments to accelerate the rate and efficiency of 

composting (Olguin et al. 1993; Takaku et al. 2006; McMahon et al. 2009).  

In the absence of an aggressive hazardous waste program in a community, MSW 

is known to contain volatile organic compounds (VOC) and semi-volatile organic 

compounds (SVOC) in common household hazardous waste, which can be released to the 

environment during composting (Smet et al. 1999). C&D debris includes many treated 

wood components that contain insecticides and preservatives. Nutrients and contaminants 
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contained in organic material are released into the soil by degradation, increasing the 

nutrient availability and toxicity of the compost (Tognetti et al. 2008).  

Full Circle Alliance, a Garden City, UT company, contracted the Utah Water 

Research Laboratory to evaluate a composting management technique developed by Bio-

Environmental Resource Recovery International (BERRI) called the Microbial Assisted 

Regeneration System (MARS). BERRI claims the MARS process has the potential to 

rapidly degrade all organic components including organic hazardous contaminants in 

mixed MSW. This project was initiated to evaluate the effectiveness of the MARS 

process through a series of field compost experiments conducted over a 9-week period 

using various mixtures of agricultural waste and mixed MSW. The study involved the 

side-by-side comparison of compost piles operated with and without the microbial 

inocula component of the MARS process. Process effectiveness was defined by 

quantifying the rate and extent of waste component transformation in the piles based on 

hand sorting of random grab samples collected from the piles over time, organic chemical 

analysis, and by documenting the production of compost end product versus reject based 

on mechanical screening and hand sorting of all pile material that remained at the end of 

the study. 

Objectives 

The main objective of this study was to evaluate the impact of the BERRI MARS 

process, specifically its proprietary microbial inocula, on compost production of various 

agricultural waste and MSW mixtures. The MARS process involves the control of 

watering frequency, pile turning frequency, mineral nutrient addition, and the use of a 



	   3 
bacterial inoculum. The biggest limitation in the evaluation was the lack of information 

provided on the bacterial inoculum by BERRI. DNA sequencing of the amendment was 

also forbidden by the owners of the technology. The effect of the inocula on compost 

performance was evaluated based on side-by-side comparison studies. The rate and extent 

of pile component transformation to compost end product over time was compared in 

companion piles with and without the BERRI inocula added at the beginning of the study. 

Based on the objective stated above, the following research questions were 

developed: 

1. Does the MARS process significantly affect the rate and extent of decomposition of 

MSW components, C&D components, and selected organic contaminants found in 

household hazardous waste compared to conventional composting techniques reported 

in current literature and practiced at landfills in Utah? 

2. Does the MARS process with the inocula significantly affect the rate and extent of 

decomposition of MSW components, C&D components, and organic contaminants 

found in household hazardous waste compared to an identical pile without the inocula 

amendment? 

3. Does the microbial inoculum significantly affect the quantity of final compost product, 

and the quality of the final product (nutrient value and hazard level) based on the 

method developed by Saha et al. (2010)? 

 The design of this study included a total of 14 composting windrows. Nine of the 

windrows were treated with the MARS inoculum and five were not. The windrows 

contained various mixtures of waste components (i.e., green waste, wood, agriculture 

waste, food waste, MSW, C&D debris, and tires). To evaluate the impact of the MARS 
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inoculum, all composting windrows were subject to the same composting practices such 

as turning frequency, watering, and mineral nutrient addition. 

The temperature and moisture content throughout each windrow were monitored 

at random locations each week during the course of the study. Routine measurements of 

the piles included water extractable pH, electrical conductivity (EC), and total organic 

carbon (TOC). Samples for analysis of specific compound concentrations (34 volatile 

organic compounds (VOCs), 19 semi-volatile organic compounds (SVOCs), and a 

commonly used pesticide, carbaryl) were collected at approximately 0, 4, and 9 weeks 

following initial pile construction.  Final fertility analysis was performed by Utah State 

University Analytical Laboratory to determine the compost’s value for commercial use 

based on nutrient availability and metal toxicity. Bulk characterizations were performed 

each week by determining the physical observation of pile composition, bulk density of 

pile material, and the moisture content of pile material. Physical observation of pile 

composition was performed by sorting samples by component type (i.e., plastic, paper, 

wood, organic, inorganic, metal and glass, tires, bones, and soil).  
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LITERATURE REVIEW 

Introduction 

The rapid increase in MSW generation during the 1980s and 1990s has motivated 

government agencies to focus on waste reduction and recycling. The Year 2010 was the 

first recorded instance where there was a reduction in total MSW generation since to the 

1960s in the US. With an ever-increasing population, a reduction in total MSW 

generation would be difficult to maintain as residential waste accounts for 55 to 65 

percent of total MSW generation (EPA 2012b). Reducing the amount of landfilled waste 

will increase the life of landfills and reduce the loss of renewable resources. Composting 

of mixed organics, grass, and food scraps decreases the amount of greenhouse gasses 

released into the global environment when compared to waste disposal in landfills 

contribute to, however it increases the amount of greenhouse gasses released for leaves 

and branches (EPA 2012a). Composting of MSW is being investigated by numerous 

private companies and researchers for more efficient procedures, accelerants, and 

amendments to ensure the quality and viability of MSW compost (Takaku et al. 2006; 

McMahon et al. 2009; Mingyan et al. 2011; Delgado-Rodriguez et al. 2011).  

Most current large-scale composting practices generally involve only green waste 

and a small portion of food waste from the MSW stream. For example, the Salt Lake 

Valley, UT, landfill composting system involves mostly green waste, wood chips, and 

some food waste; the piles are rarely turned or aerated; and it requires approximately 6 

months to produce a stabilized compost product. Testing is generally performed on 

finished product for organic carbon, phosphorus, nitrogen, and for metal toxicity (Lasley 
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2012). The Trans-Jordan, UT, landfill has a completely different system in which they 

turn the piles twice a week for the first 2 weeks and then weekly after that for 

approximately 4 months. Nutrient testing is generally performed on piles only twice a 

year (Jolley 2012). 

Many research projects have focused on the identification of bacteria and 

microbial communities that degrade contaminants allowing for improved remediation 

(Larkin and Day 1986; Chaudhry and Ali 1988; Kastner et al. 1994; Mueller et al. 1997; 

Ho et al. 2000; Bastiaens et al. 2000; Swetha and Phale 2005; Mingyan et al. 2011). 

VOCs are commonly present in MSW and MSW waste treatment facility emission rates 

are currently being studied (He et al. 2012; Delgado-Rodriguez et al. 2012; Gallego et al. 

2012). Pesticides, such as carbaryl, and SVOCs, such as fluorine and pyrene, have been 

found to persist in the environment, with research focusing on composting as a 

remediation tool for these recalcitrant chemicals (Brown et al. 1997; Sayara et al. 2010; 

Naqvi et al. 2011).  

The grade and quality of finished compost can be determined using a fertility 

analysis by determining the nutrient availability of the compost, in unison with metal 

concentrations for toxicity, to generate an index for grading compost (Saha et al. 2010). 

Fertility analysis is used to determine whether the compost is viable as a fertilizer or can 

only be used as a basic soil conditioner to improve soil structure. 
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Generation of Landfill Waste 

MSW 

After recycling, approximately 74 percent, or 185 million tons, of the total U.S. 

MSW generated could be composted, with approximately 70 percent of that 185 million 

tons being organics that are considered to biodegrade (EPA 2012b). With the use of 

microbial amendments to assist in making slowly degrading materials break down at a 

more rapid pace, the recovery of the organic fraction of MSW may be greatly increased 

through composting. Household hazardous waste is also considered a part of the MSW 

stream and is legally disposed of at non-hazardous landfills by individual citizens.  

The primary source of landfill waste is from residential sources, such as 

households and apartment complexes, which the EPA estimates is about 55 to 65 percent 

of the total MSW generation. Industrial and commercial waste accounts for the balance of 

the waste generated. Organic material is the primary component of MSW and is 

composed of paper, food scraps, yard trimmings, wood, plastic, rubber, leather, and 

textiles. The inorganic components of MSW include metal, glass, and a small amount of 

other miscellaneous wastes. After recovery of materials by recycling, component 

percentages of MSW that is discarded in landfills or recovered through combustion is 

shown in Table 1.  

 

Table 1. Component percentage of typical MSW (EPA 2012) 
Paper and 

Paperboard 
Plastic Wood  Misc. 

Organic 
Metal and Glass Misc. Inorganics 

14.5% 15.4% 7.3% 46.5% 12.4% 2.1% 
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C&D 

C&D debris, 170 million tons generated in the US in 2003, is another waste 

component that is causing difficulties for governments (EPA 2012b). Typical materials 

found in C&D are concrete/rock/brick, asphalt products, lumber, gypsum board, soil/fines, 

and other C&D materials with composition percentage by wet mass being 11.3, 14.0, 

39.7, 9.7, 11.5, and 13.9, respectively (Staley and Barlaz 2009). Residential C&D debris 

is approximately 49.4 percent organic material comprised of wood and gypsum board, 

which theoretically could be composted, but is considered inert. The costs for disposing 

of C&D debris at landfills are continually increasing.  

McMahon et al. (2008) determined that various types of timber products such as 

chipboard, medium density fiber, hardboard, and melamine can be degraded while adding 

poultry manure and green waste for nutrient supplements. The wood component of C&D 

waste was successfully composted in an EcoPOD composting system manufactured by 

QBF Ltd (Bakewell, Derbyshire, UK). McMahon et al. (2009) composted different wood 

mixtures of untreated timber, creosote treated timber and chromated copper arsenate 

treated timber. It was determined that there was a need for a microbial inoculum to 

support composting of this material as the treated wood by itself did not contain an 

adequate microbial community to effectively support aerobic decomposition of the wood 

mixture. 
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Chemicals in MSW 

VOCs 

Volatile organic compounds (VOCs) readily volatilize due to their high vapor 

pressure at room temperature. This general class of chemicals is commonly found in 

gasoline, paints, solvents, particleboard, cosmetics, and house cleaning chemicals. These 

products are also commonly found in MSW and C&D debris, and are commonly 

disposed of at local landfills with other mixed MSW. Some typical VOCs that have been 

monitored in MSW composting by air sampling are benzene, styrene, xylene, toluene, 

and ethyl benzene (Gallego et al. 2012; He et al. 2012).  VOCs such as benzene and 

xylene are known to be carcinogenic and can cause headaches, dizziness, and chronic 

respiratory problems (Ireland 2011). 

Brown et al. (1997) determined in a laboratory scale study that the majority of the 

most volatile VOCs present in the composting of MSW, including benzene and xylene, 

are lost from the compost in the initial 48 hours due to volatilization. Benzene and xylene 

showed 100% removal at approximately 0.25 and 0.75 days.  After 1 week, spiked VOC 

concentrations were below detection limits in both the compost and leachate. Genovese et 

al. (2008) determined that biopiles are efficient at bioremediation of benzene, toluene, 

ethylbenzene, and xylene by allowing a 90% removal of total hydrocarbons after 15 days 

without the effects of volatilization.  

SVOCs 

SVOCs include a class of organic pollutants called polycyclic aromatic 

hydrocarbons (PAHs), which are generated by the incomplete combustion of organic 
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matter. Sources such as forest fires, fuel combustion, and home heating create a vast 

quantity of low-level PAHs that are distributed worldwide. With a generally low aqueous 

water solubility and high soil-water distribution coefficient, their availability for 

microbial degradation is low compared to the accumulation on solid phases (Johnsen et al. 

2005). However, PAHs with low molecular weight, such as naphthalene, phenanthrene, 

and anthracene are considered to be easily degradable (Cerniglia 1992). PAHs are known 

to cause cataracts, kidney and liver damage, jaundice, and an increased risk of skin, lung, 

bladder, and gastrointestinal cancers (Xu and Zhang 2011). 

Composting has been found to be particularly effective for remediating soils 

polluted with petroleum hydrocarbons, especially the PAH fraction (Anitzar-Ladislao et 

al. 2004). Sayara et al. (2010) studied the biodegradation of pyrene in compost from the 

organic fraction of MSW with different levels of stability, ranging from fully-stable to 

unstable compost, determined by the Dynamic Respirometric Index (DRI) (Adani et al. 

2004). The DRI is based on the oxygen consumption rate of the compost. A higher 

oxygen consumption rate indicates a less stable compost. It was determined that the 

highest pyrene degradation rate was seen with the more stable compost, demonstrating 

that slowly degrading compounds like pyrene will persist until the rapidly degrading 

organic material is consumed, then organisms begin to degrade pyrene as well. Pyrene 

degradation of 86% was seen after 10 days and 100% after 30 days with highly stable 

compost (Sayara et al. 2010).  

Contamination of soil and wastes by fuels and oils may be determined by 

analyzing for molecular weight ranges of hydrocarbons. The range for the hydrocarbons 

is based on a gas chromatograph retention time range to represent a petroleum 
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hydrocarbon source. Adekunle (2011) determined that compost from the organic fraction 

of MSW could be used on soils contaminated with petroleum products for bioremediation. 

A reduction of total petroleum hydrocarbons from 40-76% was seen in 21 days 

(Adekunle 2011).  

Carbaryl 

Carbaryl, or 1-naphthyl methylcarbamate, is an odorless, non-corrosive, white to 

grayish crystalline solid that is used as a pesticide in over 300 products all over the world 

(Purdue Research Foundation 2001; Tomlin 2011). The structure of carbaryl is shown in 

Figure 1. Carbaryl acts as a nervous system disruptor by adding a carbamyl moiety to the 

acetylcholinesterase enzyme active site, preventing it from breaking down acetylcholine 

(Klaasen et al. 1996). Over time, a surplus of acetylcholine in the synapse is produced, 

causing overstimulation of the nervous system (WHO 1986). Carbaryl is considered to be 

a likely human carcinogen (EPA 2004).  

The physical-chemical properties of carbaryl are: a molecular weight of 201.2 

g/mol, a log KOW of 2.36 (Hansch and Leo 1985), a solubility of 104 mg/L (Bowman and 

 
Figure 1: Chemical Structure of Carbaryl (CAS#:65-25-2). 
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Sans 1983), a vapor pressure of 1.36 x 10-6 mm Hg (Ferreira and Seiber 1981), a Henry’s 

law constant of 3.46 x 10-9 atm*m3/mol (Syracuse Research Corporation 1988), and a 

KOC value of 102 (Lord et al. 1980). Carbaryl has been found to degrade abiotically 

through hydrolysis under alkaline conditions in about 45 hours at a pH of 8.0 (Chapman 

and Cole 1982). 

Carybaryl has been found to abiotically break down, primarily by hydrolysis, and 

to microbially degrade to 1-naphthol and carbon dioxide. Rao and Davidson (1982) 

determined that carbaryl is moderatly persistent in aerobic soil systems with a half live of 

22 days. Under flooded conditions in alluvial soil 59% carbaryl removal was observed 

after 15 days compared to 27% removal in nonflooded conditions, or at 50% of a soils 

water holding capacity (Venkateswarlu et al. 1980a). Carbaryl degradation rates double if 

soil is flooded due to compounding effects of hydrolysis and microbial degradation, 

presumably due to anaerobic metabolism (Venkateswarlu et al. 1980b). 

Amendments 

A composting amendment is the addition of nutrients to support the growth of 

microbial communities already present or the addition of new microbial communities to 

accelerate the decomposition and degradation of materials or contaminants. Research has 

been increasing on determining specific bacterial strains and microbial communities that 

assist in the degradation and assimilation of organic contaminants for remediation 

(Genovese et al. 2008; Sayara et al. 2010; Llado et al. 2013). PAHs degradation is limited 

to very specific bacterial strains such as Sphingomonas, Burkholderia, Pseudomonas, and 

Mycobacterium (Kastner et al. 1994; Mueller et al. 1997; Ho et al. 2000; Bastiaens et al. 
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2000). Numerous bacteria have been isolated from soil, which are known to degrade 

carbamate pesticides (Chaudhry and Ali 1988; Larkin and Day 1986).  

Most compost research involves the addition of manure, preferably from poultry, 

to increase the number of organisms and diversity of the microbial community to assist in 

the degradation of organic matter (McMahon et al. 2008; McMahon et al. 2009; Naqvi et 

al. 2011). In certain cases, the addition of nitrogen or phosphorus also takes place to 

provide requisite nutrients to maintain microbial communities (Naqvi et al. 2011).  

Fertility 

The quality of compost produced from MSW depends on many sources of 

variation including composting facility design, control parameters, length of maturation, 

and the source of the waste (Hargreaves et al. 2008). Inorganic fertilizers are required by 

law to declare the nitrogen, phosphorus, and potassium content, however there is no 

required declaration for the content of compost, which contains various nutrients and 

organic matter, in respect to its quality or potential toxicity (Brinton 2000).  

Saha et al. (2010) developed a method for assigning quality indices to grade 

compost quality based on: (1) a fertilizing value, and (2) the environmental threats due to 

its metal content.  Metal contaminated compost has been shown to significantly increase 

metal concentrations in compost-amended soils and results in a general increase in plant 

uptake of metals with primary accumulation in the root tissue (Ayari et al. 2010). 
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MATERIALS AND METHODS 

Windrow Compost Site 

The compost site was located at the Garden City, UT sewer treatment lagoons. 

Figure 2 shows a general layout for the compost windrows. A liner of approximately 3 to 

6 inches of compacted clay was constructed across the site before windrows were built to 

minimize groundwater contamination potential and control water runoff for the entire site. 

Piles 1 to 9 were amended with the MARS process microbial inocula and separated by a 

3-foot tall clay barrier to reduce contamination of the control piles 1a, 2a, 3a, 4a, and 6a. 

Separate access to the control piles was provided to maintain separation of the 

microbially amended and control piles in case of heavy rainfall and pile runoff. 

 
Figure 2: Windrow Compost Site Layout in Garden City, UT. Piles 1-9 are treated piles 

while piles 1a, 2a, 3a, 4a, and 6a are controls. Red dots show example of sampling points. 
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Compost Materials 

The MSW for this study was obtained and shredded at the Rich County Landfill, 

which services a total population of approximately 2,300 people (United States Census 

Bureau 2012). The landfill accepts municipal, commercial, industrial, and C&D wastes. 

C&D debris was taken from residential demolition projects in the Rich County area with 

only large metal objects removed. This C&D waste contained a large percentage of wood, 

roughly 60%, with some plastics, drywall, and various inorganic materials. Food waste 

(FW) was collected from local restaurants and green waste (GW) primarily contained 

grass clippings obtained from city departments in Garden City, UT. Agriculture waste 

(AgW) was a mixture of bedding and animal manure collected from local farmers. Wood 

waste was obtained by grinding railroad ties, treated wood, and locally removed trees to 

an approximate size of 2-4 inches. A horse and cow carcass were obtained locally and 

placed in windrow Piles 3 and 3a without grinding or processing along with various 

amounts of carp, chicken waste, and commercial food waste. MSW and C&D debris were 

processed through an industrial grinder (Rexworks, Milwaukee, WI) to an approximate 

size of 2-4 inches. 

Pile Construction 

A list and weight percent of composition of materials in each pile are provided in 

Table 2. Starting pile components were selected based on availability and to have a range 

of different starting components. Once C&D waste and MSW were available they were 

included in pile construction. Piles were constructed by creating a single bulk pile of 

materials to be composted that was then mixed by a CAT 966G front-end loader. To 
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create similar treated and control windrow piles the raw material was taken from the bulk 

mixture and placed in two different treatment areas, one for microbial amended piles 

(Piles 1 through 9, Figure 2) and one for unamended piles (Piles 1a, 2a, 3a, 4a, and 6a, 

Figure 2). Material weights were measured using a scale attached to the bucket of a 

frontend loader while the bulk pile of materials was prepared. Individual pile weights 

were obtained from frontend loader scale measurements as the windrows were being built. 

To evaluate the fate of a range of organic chemicals common to MSW in select 

compost piles in this study, 3 gallons each of diesel fuel, kerosene, and form oil were 

applied to the bulk pile of materials used to construct Piles 2, 2a, 6, and 6a using a form 

oil applicator.  The bulk material was then mixed and moved to the composting locations 

of the designated piles. This application rate yielded a target initial concentration in Piles 

Table 2: Composting pile material components† on a weight % basis 
Pile Total Wt. (T) GW Wood AgW MSW C&D FW Tires 

1 188.7 7.8 2.9 89.4     
1a 96.3 7.2 2.9 89.9     
2 78.8 43.4    55.1  1.5 
2a 30.8 43.8    55.6  0.6 
3 74.4 53.9 4.0 22.3  12.8 7.0  
3a 32.5 56.9 2.8 23.3  13.4 3.6  
4 40.1  14.4  57.5 28.1   
4a 17.5  8.0  61.7 30.2   
5 73.0 16.3   56.1 27.6   
6 78.1 14.0 23.3  41.8 20.6   
6a 44.8 14.0 14.3  47.9 23.6   
7 97.5 12.7   58.5 28.8   
8* 99    33 67   
9  Unable to estimate composition 

*Pile weights estimated due to scale malfunction 
† GW= green waste; Wood = railroad ties, treated wood, trees; AgW = Agricultural 

Waste consisting of bedding and animal manure; FW = food waste 
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2 and 2a of approximately 140 mg/kg dry material, and for Piles 6 and 6a of 

approximately 100 mg/kg dry material. One gallon of Sevin, a pesticide containing 

carbaryl, was also added to Piles 6 and 6a to produce an initial concentration of 

approximately 0.05 mg of carbaryl/kg dry material in those piles. A horse carcass was 

added to Pile 3, while a cow carcass was added to the center of Piles 3a. The addition of 

the carcasses was performed during the construction, and they were fully covered with 

composting material at the start of the study. Compost piles were completely turned every 

2 weeks using a Scarab (Scarab, White Dear, TX) windrow turner. 

Pile Sampling 

Sampling for pile bulk characterization was performed during each pile turning 

event. Sampling for VOC, SVOC, carbaryl, and general chemical characterization was 

performed at approximately 0, 4, and 9 weeks. Sampling sites were determined by 

dividing the length of each windrow into thirds and using a random number generator to 

determine three sampling locations within each windrow. Samples were obtained by 

digging with a posthole digger at a 45° angle approximately 1 to 2 feet into the pile at 

vertical positions 1 to 2 feet below the peak of the windrow at the randomly selected 

locations. Samples were transferred directly to sampling containers via the posthole 

digger or by gloved hands.   

General chemical characterization samples were transported to the laboratory for 

analysis in 110 mL glass containers (Figure 3 A), while SVOC samples were transported 

in 225 mL glass containers (Figure 3 B). Triplicate grab VOC samples were transported 

in a container made by installing a bulkhead fitting with a septum into the lid of a 1 
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gallon Teflon lined metal paint can (Figure 3 C). A matrix modifier solution was made by 

dissolving 4 kg of sodium chloride in 12 L of de-ionized water. The empty cans were 

weighed, then 2 L of matrix modifier were added to each can and weighed again. Finally, 

the cans were weighed again after the addition of approximately 1.5 kg of compost prior 

to being sealed and stored for analysis. This mixture of compost and matrix modifier 

solution left approximately 5 to 7 cm of headspace in the paint can for headspace analysis. 

All samples were brought to the lab and stored in a 4°C refrigerator prior to analysis. 

Composite bulk characterization samples were obtained by compositing 

approximately equal volumes of sample from each of the three randomly selected 

sampling locations for each of the windrows. These samples were transported in 38 L 

storage tubs (Figure 3 D). Each tub was transported to the lab and stored at 4°C prior to 

sorting. Triplicate samples for analysis of dry weights were taken from bulk 

characterization tubs before sorting of the compost components.  

Initial piles sizes were estimated by measuring the height, width, and length of 

each of the windrows, as piles were initially pyramidal in shape. After initial turning of 

the windrows the piles trapezoidal, requiring an additional measurement of the width at 

the top of the pile. At the end of the study, the entire volumes of Piles 1, 1a, 2, 2a, 3, 3a, 4, 

4a, 6, 6a, 7, and 9 were screened and separated into “compost” – that fraction of each pile 

passing a ¾” screen, and “reject” – that fraction retained on the ¾” screen, to determine 

the gross production of compost for each waste mixture and compost treatment. 

Composite fertility analysis samples were obtained from the “compost” fraction, were 

stored in gallon size Ziploc bags, and were taken directly to USU Analytical Labs for 

analysis. 
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Figure 3. Containers used for sample collection and analysis 

Analytical Methods 

VOC Analysis 

A total of 34 different VOCs were analyzed in this study over time and are 

summarized in Table A-1 in Appendix A, along with their various relevant chemical 

properties. These compounds were selected to be representative of a range of common 

organic contaminants in fuels, oils, paints, etc., that are of concern due to their toxicity 

and environmental contamination potential. Concentrations were found and analyzed to 

determine degradation rates and residual concentrations in the final compost.  

The 2 L of the saturated sodium chloride matrix modifier solution was added to 

the compost material in the VOC sample containers. The high salinity was used to 

increase the Henry’s law constant and drive more VOCs into the headspace. No spikes 



	   20 
were analyzed. The sample containers were allowed to reach room temperature upon 

removal from the 4°C refrigerator before headspace samples were collected by injecting a 

10 mL volume of the headspace atmosphere from each paint can onto separate Supleco 

carbopack sampling with a syringe. The sample tubes were analyzed by thermal 

desorption gas chromatography/mass spectrometry. Desorption was performed on a 

Perkin Elmer ATD 150 thermal desorption unit with the primary desorb temperature 

being 310°C and primary desorb time of 20 minutes. The secondary trap loading 

temperature was -30°C with the secondary trap desorb temperature being 320°C and the 

secondary trap desorb time of 1 minute, while using a splitless injection method.  

The desorbed analytes were loaded onto a 60-m RTX-5 capillary GC column, 

0.25 mm ID, 1.0 µm stationary phase. An Agilent 6890 GC oven performed the 

chromatographic separation. The Agilent 5973 mass selective detector was operated in 

scan mode, scanning 35-350 amu at 2.5 amu/s. An external calibration curve was used for 

quantification of all target analytes. An external standard curve was prepared by adding 

known concentrations of a standard gas mixture containing the analytes of interest onto a 

carbopack sample tube, then analyzing the standard by the same method as the samples. 

Data processing consisted of confirming the presence of at least two diagnostic ions for 

each compound, at the retention time determined by standard analysis. Quantification 

was achieved by comparison of the peak area from the compound specific extracted ion 

chromatogram to the standard curve.  

Initial VOC concentrations in parts per billion by volume (ppbv) from the GC/MS 

were reduced to µg contaminant/kg compost concentrations. This was done by first 

multiplying the ppbv by the volume of the headspace of the sample container and the 
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molecular weight, then dividing by the number of moles of gas per liter, and finally 

converting units to µg contaminant/kg compost as shown in Equation 1.  

SVOC Analysis 

A total of 19 different SVOCs and three boiling point range organic mixtures 

were analyzed over time in this study and are summarized in Table A-2 in Appendix A 

along with their various relevant chemical properties. These compounds were selected to 

be representative of a range of hydrocarbon contaminants and other chemicals that can be 

found in typical MSW, and that can volatize during the composting process due to high 

internal pile temperatures.  

Aliquots of the solid waste were extracted under elevated temperature and 

pressure using a Dionex Accelerated solvent extractor. Aliquots ranging from 5 to 10 g 

were taken from each homogenized solid sample, mixed with 5 to 10 g of diatomaceous 

earth (DE), and loaded into 66 mL stainless steel extraction vessels. The surrogate 1-

chlorooctane was spiked (50 µg) into each sample cell to monitor extraction efficiency. 

QC samples (blank DE spikes) were prepared by spiking methanol solutions of 

appropriate analyte mixes into the DE support before the cells were sealed. The samples 

were extracted with a 100% methylene chloride, an extraction temperature of 150°C, an 

average static pressure of 1500 psi, a static time of 10 minutes, and two static cycles.  

 (1)
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This first extraction step produced approximately 75 mL of methylene chloride 

extract.  This solution was dried by passing it through 2 g of 30 mesh anhydrous sodium 

sulfate in a 3 mm diameter glass column. The dried extract was concentrated under a 

nitrogen stream to 1 mL in a Turbovap evaporative concentrator. After final 

concentration, the samples were spiked with 50 µg Naphthalene-d8 internal standard and 

stored at 4°C until GC/MS analysis. 

A 1-µL aliquot of each sample solution were injected onto an Agilent 6890/5973 

GC/MS system. The injection mode was splitless for 30 seconds, and then 20:1 split after 

that. It was run on a 30 m x 0.25 mm diameter Restek RTX-5MS with 0.5 µm film with 

helium at 30 cm/s velocity as the carrier gas. The oven parameters were 40°C for 2 

minutes, 10ºC/min to 310°C, and then hold for 10 minutes. The MS scanned from 30-300 

amu at 3 scans/s.  

The analytes of concern for this project include a list of 13 individual PAHs and 

three refined petroleum fractions: Kerosene, Diesel, and Motor Oil. Quantitative data for 

each analyte or mixture were obtained using a response factor determined by the analysis 

of a known standard.  For specific PAHs the most prevalent ion in the mass spectrum was 

used to generate an Extracted Ion Chromatogram (EIC).  The peak representing the 

analyte at the proper retention time was integrated and the integrated area was used to 

calculate the concentration of the analyte in the extract. The petroleum mixtures were 

quantitated similarly, with the exception that the response was determined by summing 

the integrated values of all peaks within a certain boiling point range over specified 

retention time windows, rather than a single discrete peak at an exact retention time.  
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Initial SVOC concentrations in µg/sample from the Agilent Technologies 6220 

Accerate-Mass TOF LC/MS were reduced to g compound/g sample concentrations. The 

concentrations for motor oil, diesel, and kerosene range organics were adjusted by 

subtraction of the background response. The background response was determined by 

averaging the concentrations of all control and lab samples not spiked with motor, diesel, 

or kerosene range organics, including continuing calibration verification (CCV) samples, 

quality control spikes, blanks, and standard curve samples.  

Carbaryl Analysis 

The pesticide carbaryl was examined in this study in four different compost piles. 

This compound is a commonly used pesticide found in products such as Sevin and 

Carylderm shampoo. Carbaryl has also been shown to have high toxicity towards fish and 

aquatic invertebrates (Erickson and Turner 2003).   

A weighed aliquot of the sample was shaken for 30 minutes with 10 mL methanol. 

Aliquots from 5 to 10 g in size were added to 40 mL centrifuge tubes, then 10 mL of 

Fisher Optima grade methanol were added to the tubes, which was capped and placed in a 

shaker for 30 minutes.  After shaking, the tubes were centrifuged at 10,000 rpm for 20 

minutes.  A 1.0 mL aliquot of the clear supernatant was transferred to a clear 2 mL LC 

sample vial for analysis. 

A 10 µL aliquot of each sample solution was injected onto an Agilent 1200 series 

HPLC/6220 TOF/MS.  The injection volume was 10 µL with a column of 5 cm x 1.8 um 

sphere C18. The mobile phase "A" was 0.1% Formic acid and 0.1% methanol in DI water, 

with the mobile phase "B" being 90/10 acetonitrile/DI water. 



	   24 
An extracted ion chromatogram of the exact mass of [Carbaryl + H+] = 202.0863 

+/- 20 ppm was created for each standard and sample.  All peaks were integrated. Initial 

testing shows the carbaryl peak elutes at 5.56 minutes.  An external response (peak area) 

versus concentration curve for the peak at 5.56 was used to quantitate the samples. 

General Chemical Characterization 

General chemical characterization was performed by using SW-846 Method 9045 

for water extractable pH and EC. The pH was measured in suspension using a Corning 

313 pH/Temperature meter and the EC was measured in suspension using an Accumet 

Model 30 conductivity meter. To determine the DOC, DI water and compost samples 

were mixed and the water was extracted with a 1 mL pipette and centrifuged at 10,000 g 

for 10 minutes. The resulting supernatant was run on a Teledyne Tekmar Apollo 9000 

combustion TOC analyzer following the SW-846 Method 9060A. 

Fertility Analysis 

Composite compost samples were taken to USU Analytical Laboratories to 

perform the fertility analysis on screened final compost samples. The USU laboratory’s 

Manure Analysis was performed to determine the total elemental composition, which 

consisted of N, P, K, Ca, Mg, Na, S, B, Zn, Cu, Fe, and Mn, along with moisture content, 

pH, and EC. The Pb, Cd, Ni, and Cr were analyzed at the Utah Water Research 

Laboratory (UWRL) using EPA method 3050B for use with the Environmental Express 

HotBlock Digestion System. Digested samples were then run on an Agilent Technologies 

7500 Series ICP-MS. All standard quality assurance and quality control checks were 
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passes before sample results were considered acceptable. Compost classifications for 

each final product were then determined using the method of Saha et al. (2010). 

The “fertilizing index” (Saha et al. 2010) for compost was based on a ‘weighing 

factor’ for organic carbon, nitrogen, phosphorus, potassium, the C:N ratio, and the 

respiration activity, and a ‘score value’ based on the % dry matter as shown in Table 3. 

The weighing factor and score value are then used to calculate a fertility index shown in 

Equation 2. 

The “clean index” (Saha et al. 2010) for compost is based on a ‘weighing factor’ 

for zinc, copper, cadmium, lead, nickel, and chromium and a ‘score value’ based on the 

mg/kg dry matter as shown in Table 4. The weighing factor and score value are then used 

to calculate a clean index shown in Equation 3. After the fertilizing index and the clean 

index have been calculated the classification of the compost can be determined by 

following Table 5. The quality control compliance column in Table 5 refers to the 

regulatory limits for metal content in the compost for the country in which the compost is 

being sold. The remark section shows the quality of the compost. Class A to C are 

marketable composts ranging from Best Quality to Medium Quality due to fertilizer 

quality and compliance with metal standards. Class RU-1 complies for metal content, but 

has low fertilizing capacity. RU-2 and RU-3 both do not comply with regulatory limits 

for metals in the country where the compost is being sold.  
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Table 3: Criteria for assigning weighing factor and score value for fertility index. Saha et 

al. (2010) 
 Score value (Si) Weighing 

Factor 

(Wi) 

Recommended Values 

 

 5 4 3 2 1   

Total organic C  

(% dm) 

>20.0 15.1-

20.0 

12.1-

15.0 

9.1-

12.0 

<9.1 5 20-35 

Total N  

(% dm) 

>1.25 1.01-

1.25 

0.81-

1.00 

0.51-

0.80 

<0.51 3 1.0-2.0 

Total P  

(% dm) 

>0.60 0.41-

0.60 

0.21-

0.40 

0.11-

0.20 

<0.11 3 800-2500 mg/L 

Total K  

(% dm) 

>1.00 0.76-

1.00 

0.51-

0.75 

0.26-

0.50 

<0.26 1 500-2000 mg/L 

C:N <10.1 10.1-

15 

15.1-

20 

20.1-

25 

>25 3 <17:1 

*Respiration 

Activity (mg CO2-

C/g /d) 

<2.1 2.1-

6.0 

6.1-

10.0 

10.1-

15 

>15 4  

* Not analyzed in this study 

 

 (2) 

Bulk Characterization and Dry Weight 

Composted material for triplicate dry weight analysis was taken from the bulk 

characterization composite samples prior to sorting. Samples were held in a 100 mL 

beaker and dried in an oven at 100°C. Weights were checked every 24 hours until no 

change was measured. The primary sorting for bulk characterization was done on a single 

large sample of approximately 20 L of compost material. At the end of the study at least  

€ 

F =
SiWi
n

i=1
∑

Wi
n

i=1
∑
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Table 4: Criteria for assigning weighing factor and score value for clean index. Saha et al. 

(2010) 
Metal Score value (Sj) Weighing 

Factor (Wj) 

*Biosolids 

Standards, US 

EPA (mg/kg) 

†Agronomic 

Limits for 

Toxicity 

 5 4 3 2 1 0    

Zn 

(mg/kg) 

<151 151-

300 

301-

500 

501-

700 

701-

900 

>900 1 7500 400 

Cu 

(mg/kg) 

<51 51-

100 

101-

200 

201-

400 

401-

600 

>600 2 4300 200 

Cd 

(mg/kg) 

<0.3 0.3-

0.6 

0.7-

1.0 

1.1-

2.0 

2.0-

4.0 

>4.0 5 85 1.5 

Pb 

(mg/kg) 

<51 51-

100 

101-

150 

151-

250 

251-

400 

>400 3 840 200 

Ni 

(mg/kg) 

<21 21-

40 

41-

80 

81-

120 

121-

160 

>160 1 420 50 

Cr 

(mg/kg) 

<51 51-

100 

101-

150 

151-

250 

251-

350 

>350 3 3000 100 

* Ceiling concentrations for land application (EPA 1993); † Upper limit for toxic 
elements (WRAP 2011) 

 (3) 

one larger composite sample, approximately 30 L, was separated and sorted in triplicate 

to determine a 95% confidence interval for the average of triplicate samples.  

Preparation for single sample sorting was performed by recording the initial 

weight of a bucket, volume of the waste sample, the bucket number, and by taking initial 

photos of the solid waste. For triplicate sample sorting, the solid waste was first separated 

into smaller buckets and then weighed and photographed. Sorting was performed by  
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Table 5: Classification of composts for their marketability and use. Saha et al. (2010) 

Class Fertilizing 
index (F) 

Clean 
index © 

Quality control 
compliance 

Remark 

A >3.5 >4.0 Complying for all 
metal parameters 

Best Quality 

B 3.1-3.5 >4.0 Complying for all 
metal parameters 

Very good quality  

C >3.5 3.1-4.0 Complying for all 
metal parameters 

Good quality 

D 3.1-3.5 3.1-4.0 Complying for all 
metal parameters 

Medium quality 

RU-1 <3.1 - Complying for all 
metal parameters 

Should not be allowed to market. Can 
be used as soil conditioner  

RU-2 >3.5 >4.0 Not complying for 
all metal parameters 

Should not be allowed to market. 
Restricted use 

RU-3 >3.5 - Not complying for 
all metal parameters 

Should not be allowed to market. 
Restricted use 

 

using a ¼” sieve to remove the compost and then sorting the remaining solid waste into 

their respected components which included paper, plastic, wood, organic (green waste), 

compost, metal & glass, tires, inorganic (brick and rock), and bones. After recording the 

weight of each sorted material, all the waste material was transferred back to the original 

bucket for disposal.  

Data Reduction Methods 

Decomposition rates were determined for all target components and organic 

contaminants. Checking for outliers for organic contaminants was done using a Grubbs’ 

T-test for small data sets in triplicate measurements. Values that were below the method 

detection limit were estimated using an imputation method (Gillion and Helsel 1986; 

Helsel and Gilliom 1986; Bethouex and Brown 2002; Helsel 2005). The determination of 

reaction rate kinetics was performed by comparing the zero order reaction regression 
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analysis to the first order reaction regression analysis, testing for the significance of the 

slope, residual sum of squares (RSS), and by visual inspection of the regression line. The 

95% confidence interval of the slope for degradation rates of organic contaminants were 

then compared against degradation rates between treated and control piles. R Statistical 

Software (R Development Core Team, 2008) was used to determine the 95% confidence 

interval of the slope, the p-value for the regression analysis, RSS value, and graphing for 

visual inspection.  

The extent of the reaction for components and organic contaminants was defined 

by using both the percent removed and percent residual after compost stabilization. Time 

for stabilization was determined based on the degradation rate of organic material being 

at least one order of magnitude lower that the initial rate. To check for statistical 

differences, analysis of variance was performed on stabilization time for treated and 

control piles. A 95% confidence interval was calculated for Piles 5, 6, and 7 and 

compared to Pile 6.  

The values for the quantity of compost produced, for treated and control piles, 

were compared to determine possible differences for the microbial amendment. Analysis 

of variance was performed on the “clean index” and “fertilizing index” score values for 

treated and control piles to check for significantly different values. The “fertilizing index” 

and “clean index” was then used to determine the overall class and use for the compost 

produced for the treated and control piles.   
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RESULTS AND DISCUSSION 

Compost Component Stabilization 

Organics 

All organic material, such as green waste and food waste, was considered the 

organic fraction except for paper and cardboard products. The slope of the percent 

organic fraction between sampling points was graphed to determine the time of compost 

stabilization as demonstrated in Figure 4 for Piles 1 and 1a (approximately 90% AgW 

and 10% GW). Stabilization time was determined once a change in the slope of the 

percent organic fraction stabilized at least one order of magnitude lower than the initial 

percent organic fraction of the pile. Figure 4 shows that Pile 1 had an initial slope of -

0.60, which then dropped to -2.0. At day 34, Pile 1 stabilizes between 0.003 and -0.22. 

Figure 4 shows that Pile 1a displays a large initial slope of -3.5 and then stabilizes 

between 0.005 and -0.63 for the remainder of the study. The estimated time of 

stabilization is 34 days for Piles 1 and 1a. Organic stabilization plots are shown in 

Appendix B for all piles. 

Table 6 shows the determined stabilization time for each pile.  The organic 

stabilization time for Piles 1 and 1a and 2 and 2a (approximately 55% C&D and 44% 

GW) show no difference, while Pile 3 (approximately 55% GW, 23% AgW, and 13% 

C&D) has a shorter stabilization time than 3a by seven days. Pile 4 and 4a 

(approximately 60% MSW, 30% C&D, and 10% Wood) were built with little organics 

added and Pile 4 showed no time for stabilization due to high variability in the slope 

values of percent organics. No error estimation was made due to lack of similar piles for 
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Piles 1, 1a, 2, 2a, 3, 3a, 4, 4a, 8, and 9. The results for Piles 1, 1a, 2, 2a, 3, 3a, 4, and 4a 

show no practical differences between the inoculated and non-inoculated piles, however 

all piles show a reduction in stabilization time compared to current composting 

stabilization time in Utah, which is approximately 4-6 months (Lasley 2012; Jolley 2012). 

Piles 8 and 9 also show a reduced organic stabilization time compared to current 

composting practices in Utah. 

Piles 5, 6, and 7 (approximately 50% MSW, 20% C&D, and 15% GW) have 

similar compositions and showed an average stabilization time of 29 days and a 95% 

confidence interval of 2 days. Pile 6a is the only comparable control pile to Piles 5, 6, 

and7 and shows a significantly longer stabilization time of 55 days based on the 95% 

confidence interval for Piles 5, 6, and7. This displays a highly beneficial effect due to the 

microbial inoculum of decreasing the amount of time for organic stabilization in the 

presence of MSW and C&D waste by approximately 26 days. The longer organic 

 
Figure 4: Organic stabilization for Piles 1 and 1a 

-4 
-3.5 

-3 
-2.5 

-2 
-1.5 

-1 
-0.5 

0 
0.5 

0 10 20 30 40 50 60 

Sl
op

e 
of

 %
 O

rg
an

ic
s 

Time (days) 

Pile 1 

PIle 1a 



	   32 
stabilization time for Pile 6a must be due to the lack of essential microbial communities 

to break down the organics, but is provided by the addition of the inoculum in Pile 5, 6, 

and 7.  

The weight % of Organics in the piles was graphed over time to determine the 

degradation rate in the piles. It was determined by visual inspection and regression 

analysis that all piles had a first order degradation rate. Only piles 4, 7, and 8 showed a 

non-significant slope for the degradation of organics. Table 7 shows the results for the 

natural log transformation regression analysis for the weight % Organics over time for all 

piles. 

Paper 

The weight % of Paper was graphed over time for all piles except for Piles 1 and 

1a. Piles 1 and 1a had no paper containing components added and no weight % of paper 

was found during the course of the experiment. The weight % of Paper for Piles 4 and 4a 

(approximately 60% MSW, 30% C&D, and 10% Wood) is shown in Figure 5. There is a 

Table 6: Organic stabilization in piles 
Pile Major Starting Components Stabilization (days) Pile Stabilization (days) 

1 90% AgW and 10% GW 34 1a 34 
2 55% C&D and 44% GW 43 2a 43 

3 
55% GW, 23% AgW, and 13% 

C&D 56 3a 63 

4 
60% MSW, 30% C&D, and 10% 

Wood NA 4a 47 

5 
56% MSW, 28% C&D, and 16% 

GW 31 
6a 55 

6 
44% MSW, 22% C&D, and 20% 

Wood 28 
7 58% MSW, 30% CD, 13% GW 28 
8 67% CD, 33% MSW 34   
9 Undefined 41   
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general decreasing trend for both piles. Pile 4 appears to stabilize around day 34, while 

Pile 4a stabilized around day 47. The degradation rate was determined to be linear for 

Piles 4 and 4a with a slope of -0.163 (pvalue = 0.002) and -0.119 (pvalue = 0.004), 

respectively. There is no significant difference for the slopes of Piles 4 and 4a based on a 

95% confidence interval of the slopes. 

The weight % of Paper over time for Piles 6 and 6a are shown in Figure 6. Both 

piles appear to stabilize on approximately day 35. The degradation rate was determined to 

be zero order and values after stabilization (day 35) were removed for regression analysis.  

The slope for Piles 6 and 6a were -0.141 (pvalue = .007) and -0.112 (pvalue = .002), 

respectively. There is no significant difference for the slopes of Piles 6 and 6a based on a 

95% confidence interval of the slopes. Table 8 shows the linear regression analysis for 

the weight % Paper over time for all piles except for Piles 1 and 1a.  

 

Table 7: Natural log transformation regression analysis for the weight % Organics over 
time for all piles 

Pile Slope R2 95% CI P value df 
1 -0.111 0.798 0.050 0.001 7 
1a -0.107 0.930 0.029 1.10E-04 6 
2 -0.055 0.450 0.050 0.034 8 
2a -0.069 0.674 0.039 0.004 8 
3 -0.085 0.876 0.032 0.001 6 
3a -0.086 0.915 0.021 1.50E-05 8 
4 0.040 0.207 0.077 0.258 6 
4a -0.042 0.534 0.039 0.039 6 
6 -0.058 0.555 0.042 0.013 8 
6a -0.034 0.566 0.024 0.012 8 
5 -0.069 0.738 0.037 0.003 7 
7 -0.038 0.246 0.054 0.145 8 
8 -0.057 0.357 0.076 0.118 6 
9 -0.049 0.702 0.032 0.009 6 
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Figure 5: Weight % Paper over time for Piles 4 and 4a 

 

 
Figure 6: Weight % Paper over time for Piles 6 and 6a 
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Table 8: Linear regression analysis for the weight % Paper over time for all piles except 

for Piles 1 and 1a 
Pile slope R2 95% CI P value df 

2 -0.042 0.630 0.026 0.006 8 
2a -0.023 0.321 0.028 0.088 8 
3 -0.009 0.828 0.003 3E-04 8 
3a -0.009 0.493 0.007 0.024 8 
4 -0.163 0.820 0.076 0.002 6 
4a -0.119 0.779 0.063 0.004 6 
6 -0.141 0.868 0.076 0.007 4 
6a -0.112 0.935 0.041 0.002 4 
5 -0.113 0.700 0.06 0.003 8 
7 -0.017 0.461 0.015 0.031 8 
8 -0.020 0.695 0.012 0.005 7 
9 -0.021 0.621 4E-16 5E-97 7 

 

Plastics 

The weight % Plastic in Piles 2 and 2a (approximately 55% C&D and 44% GW) 

over time is shown in Figure 7. Figure 7 shows continual fluctuations and no stabilization 

for plastics at any time in Piles 2 and 2a. Plastics weight % Plastic over time plots for all 

piles are presented in Appendix B.  Inspection of Piles 3, 3a, 4, 4a, 5, 6, 6a, 7, 8, and 9 for 

plastic component stabilization shows similar characteristics of Piles 2 and 2a, thus it was 

determined that no degradation of the plastic component was seen in any pile. 

Wood 

The weight % of wood over time in Piles 6 and 6a (approximately 44% MSW, 

22% C&D, and 20% Wood) is demonstrated in Figure 8. Figure 8 shows continual 

fluctuations and general increasing trend for both Piles 6 and 6a. Weight % wood plots 
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Figure 7: Plastic stabilization for Piles 2 and 2a 

for all piles are presented in Appendix B.  Inspection of Piles 3, 3a, 4, 4a, 5, 6, 6a, 7, 8, 

and 9 for wood component stabilization shows similar characteristics of Piles 6 and 6a, 

thus it was determined that no degradation of the wood component was seen in any pile. 

High variation due to sampling quality was seen as pieces of wood 10” long would 

periodically be found.  

General Chemical Measurement Results 

Temperature  

Temperature measurements were made after turning and periodically in-between 

turning events. The temperature probe was four feet long and had four reading points. 
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Figure 8: Wood Stabilization for Piles 6 and 6a 
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Figure 9: Average temperatures for Piles 1 and 1a (error base show 95% confidence 

interval) 
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Figure 10: Average temperatures for Piles 2 and 2a (error base show 95% confidence 

interval) 

Piles 2 and 2a. Pile 2 shows a maximum average temperature of 134ºF, with the average 

deep temperature being above 120ºF, and consistently above 120ºF after day 3. Pile 2a 

had a maximum average temperature of 134ºF with no other average readings for the 
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Figure 12 shows the percent dry weight of Piles 2 and 2a over time and shows that 

there are significant differences in percent dry weight at day 43 and 56. There is no 

significant difference at the final analysis. Charts for the percent dry weight over time for 

Piles 3, 3a, 4, 4a, 5, 6, 6a, and 7 and displayed in Appendix B. The raw data is presented 

in Appendix C. 

pH, EC, and % Carbon  

The results for the USU analytical lab fertility analysis for general chemical 

measurements are shown in Table 9. There were no replicate measurements so there are 

no estimates of error. Analysis of variance was performed to check for significant 

difference between treated and control piles for final pH and percent carbon. It was 

determined that there was no significant difference between for pH (p = 0.835) and 

percent carbon (p = 0.227). 

The results for the general chemical measurements monitored over time for Piles 

2, 2a, 6, and 6a are displayed in Table 10. All pile averages for pH and corresponding 

95% confidence intervals fall above the desired pH range of 6 to 7 (Fröhlich 1993; 

Wiemer and Kern 1993). Comparing Piles 2 and 2a shows no significant difference for 

the pH of the piles (p = 0.6532) or for the EC (p = 0.2193) in using a student t test in R 

statistical software. Similarly, for Piles 6 and 6a there is no significant difference for pH 

(p = 0.6821) or EC (p = 0.1013) between inoculated and non-inoculated treatments. This 

shows that the microbial inoculum has no effect on the pH or EC of the composting 

windrows. The analysis for the DOC was found to be out of the linear range for the 

standard curve and unusable. 
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Figure 11: Percent dry weight of Piles 1 and 1a over time (error bars represent the 95% 

confidence interval of triplicate measurement) 

  
Figure 12: Percent dry weight of Piles 2 and 2a over time (error bars represent the 95% 

confidence interval of triplicate measurement) 
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Table 9: USU analytical lab fertility results 

Pile pH %Carbon 
1 8.07 7.65 
1a 7.88 7.49 
2 7.59 5.29 
2a 7.21 6.83 
3 7.40 7.59 
3a 7.40 7.84 
4 7.78 6.06 
4a 7.59 5.77 
6 7.50 7.01 
6a 7.50 4.94 
7 7.40 7.55 
9 7.12 5.79 

Chemical Analysis Results 

Carbaryl 

The averages of triplicate sample results for carbaryl in Piles 6 and 6a 

(approximately 44% MSW, 22% C&D, and 20% Wood) are displayed in Table 11 and 

the raw data is presented in Table C-2 (Appendix C). Due to high variability, no sampling 

events showed a value significantly different from zero except for Day 74 for Pile 6a.  

Upon graphing, neither of the piles showed a slope significantly different than zero for 

the linear or natural log transform regression analysis due to very large error as seen in 

Table 11.  

Due to a Henrys law constant of 3.46 x 10-9 atm*m3/mol (Syracuse Research 

Corporation 1988), the carbaryl would be expected not to volatize from the piles during 

the experiment. Only Pile 6a had an average concentration significantly different from 

zero of 1.88 µg/kg on Day 74, while Pile 6 measurements on Day 74 were all non-detect 

showing a significantly lower residual of carbaryl in the inoculum treated pile. 
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Table 10: General chemical measurements for Piles 2, 2a, 6, and 6a. 

Pile Date Average pH 95% CI Average EC (µS/cm) 95% CI 
 

2 
 

7/14 7.60 0.06 3.12 0.28 
8/11 7.62 0.20 2.93 0.68 
8/31 7.64 0.16 3.93 0.21 

 
2a  
 

7/14 7.42 0.36 4.05 1.36 
8/11 7.61 0.19 3.41 0.39 
8/31 7.70 0.06 4.29 0.67 

 
6 
 

7/14 7.53 0.27 3.85 2.12 
8/11 7.62 0.17 4.21 2.26 
9/26 7.52 0.06 3.50 0.42 

 
6a  
 

7/14 7.26 0.38 2.99 0.96 
8/11 7.74 0.16 3.55 0.65 
9/26 7.47 0.11 3.33 0.36 

VOC 

Upon inspection of VOC data, the imputation method for estimating values below 

the method detection limit could not be used. The imputation method needs at least three 

values above the method detection limit for estimation and VOC analysis was done in 

triplicate thus leaving only two values above the method detection limit when the method 

is to be applied. Consequently one-half the detection limit was used to estimate values 

below the detection limit. VOC concentrations were checked for outliers using Grubb’s 

T-test. Regression analysis was performed on VOC concentrations by using the natural 

log transformation of the concentration divided by each of the initial concentration. The 

natural log transform resulted in a better fit, i.e., higher R2 value, for the regressions, and 

the residuals appeared more random than the zero order regression. R statistical software 

(R Development Core Team 2008) was used to determine the slope, R2 value, 95% 

confidence interval (CI) for the slope, and the p-value for the slope. The regression 

analysis for VOC with at least one sampling event showing an average concentration 

significantly different from zero for Piles 2 and 2a (approximately 55% C&D and 44%  
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Table 11: Average and 95% confidence intervals for carbaryl concentrations in Piles 6 

and 6a 
Day Pile 6 (µg/kg) Pile 6a (µg/kg) 

0 5.54 ± 9.44 33.32 ± 47.33 
28 2.07 ± 4.06 4.01 ± 5.95 
74 0.00 ± 0.00 1.88 ± 0.87 

 

GW) are displayed in Table 12. A complete table for VOC is presented in Table A-3 

(Appendix A). 

Pile 2 had nine compounds that showed no detection, seven compounds whose 

concentrations were not significantly different from zero due to high variability based on 

the 95% confidence interval of triplicate measurements, and nine compounds that showed 

at least one sampling period with concentrations that were significantly different from 

zero based on the 95% confidence interval of triplicate measurements. Pile 2a had eight 

compounds that showed no detection, six compounds that due to high variability it was 

determined that the concentration was not significantly different from zero based on the 

95% confidence interval of triplicate measurements, and 12 compounds that showed at 

least one sampling period with concentrations that were significantly difference from 

zero based on the 95% confidence interval of triplicate measurements. 

Only heptane and octane showed a significant slope based on a 95% confidence 

interval for both the treated and control piles, however neither of the VOC show a 

significant difference between the piles. In addition to heptane and octane, Pile 2, 

displayed significant slopes for toluene, m,p-xylene, and styrene.  
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Table 12: VOC regression analysis for Piles 2 and 2a 

Pile 2 2a 
Compound slope R2 95% CI P value df slope R2 95% CI P value df 

Benzene -0.023 0.210 0.018 0.016 25 
     n-Heptane 

     
-0.032 0.641 0.010 0.000 25 

Toluene -0.024 0.341 0.014 0.001 25 -0.020 0.302 0.013 0.003 25 
n-Octane -0.067 0.431 0.032 0.000 25 -0.045 0.615 0.015 0.000 25 
Nonane -0.042 0.281 0.028 0.004 25 -0.030 0.309 0.019 0.003 25 

n-decane -0.041 0.229 0.031 0.012 25 -0.018 0.233 0.014 0.011 25 
Benzene, 1,2,4-trimethyl- -0.054 0.452 0.025 0.000 25 -0.049 0.498 0.020 0.000 25 
1,2,3-Trimethylbenzene -0.035 0.200 0.029 0.019 25 

     n-Undecane -0.046 0.293 0.029 0.004 25 -0.029 0.357 0.016 0.001 25 
n-dodecane 

     
-0.046 0.300 0.029 0.003 25 

* One sampling event with average concentration significantly different from zero based 
on 95% confidence interval of triplicate measurements 

 

The regression analysis for compounds that show a significant slope based on a 

95% confidence interval for Piles 6 and 6a (approximately 44% MSW, 22% C&D, and 

20% Wood) are shown in Table 13. The complete table for all VOC in Piles 6 and 6a are 

displayed in Table A-4 (Appendix A). All VOCs in this analysis were detected in Piles 6 

and 6a in at least one sampling during the study. Pile 6 had nine compounds that showed 

at least one sampling period with concentrations that were significantly different from 

zero based on the 95% confidence interval of triplicate measurements. Pile 6a had nine 

compounds that showed at least one sampling period with concentrations that were 

significantly different from zero based on the 95% confidence interval of triplicate 

measurements. 

Comparing Piles 2 and 2a for VOC reductions shows that Pile 2 has higher 

percent removal for heptane and octane than Pile 2a, however their degradation rates are 

not significantly different showing a possible greater extent of the reaction for the treated 

piles. Pile 6 had 11 compounds with significant slopes, however Pile 6a showed high 
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variability to the extent of showing no significant slopes or final VOC concentrations that 

were significantly different from zero. Residual concentrations were found for many 

VOCs at 63 days for Piles 2 and 2a and 74 days for Piles 6 and 6a, which shows a large 

difference compared to the study by Brown et al. (1997) in which all VOCs were non-

detect after one week. 

 

Table 13: VOC regression analysis for Piles 6 and 6a 
Pile 6 6a 
Compound slope R2 95% CI P value df slope R2 95% CI P value df 
Hexane, 2-methyl-      -0.053 0.291 0.034 0.004 25 
Benzene -0.054 0.618 0.018 0.000 25 -0.028 0.236 0.021 0.010 25 
Cyclohexane -0.078 0.587 0.027 0.000 25      
Hexane, 3-methyl-      -0.035 0.241 0.025 0.009 25 
Pentane, 2,2,4-trimethyl- -0.036 0.193 0.031 0.022 25      
n-Heptane -0.078 0.748 0.019 0.000 25 -0.055 0.481 0.023 0.000 25 
Cyclohexane, methyl- -0.096 0.624 0.031 0.000 25 -0.075 0.381 0.039 0.001 25 
Heptane, 2-methyl- -0.073 0.563 0.027 0.000 25      
Heptane, 3-methyl- -0.068 0.609 0.022 0.000 25      
Toluene -0.034 0.885 0.005 0.000 25 -0.029 0.307 0.018 0.003 25 
n-Octane -0.070 0.617 0.023 0.000 25 -0.067 0.525 0.026 0.000 25 
Ethylbenzene -0.039 0.809 0.008 0.000 25      
m,p-xylene -0.047 0.777 0.010 0.000 25 -0.027 0.150 0.027 0.046 25 
Nonane -0.057 0.608 0.019 0.000 25 -0.051 0.324 0.030 0.002 25 
styrene -0.038 0.651 0.012 0.000 25      
o-xylene -0.049 0.629 0.015 0.000 25      
Benzene, 1,3,5-trimethyl- -0.035 0.336 0.020 0.002 25      
n-decane -0.056 0.585 0.019 0.000 25 -0.036 0.185 0.031 0.025 25 
o-ethyl toluene -0.026 0.266 0.018 0.006 25      
n-Undecane -0.061 0.749 0.014 0.000 25 -0.041 0.180 0.036 0.027 25 
n-dodecane      -0.039 0.317 0.024 0.002 25 
* One sampling event with average concentration significantly different from zero based 

on 95% confidence interval of triplicate measurements 
† Average concentration of sampling events showed no significant difference from zero 

based on 95% confidence interval of triplicate measurements 
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SVOC  

Upon inspection of SVOC data, the imputation method for estimating values 

below the method detection limit could not be used. The imputation method needs at least 

three values above the method detection limit for estimation and SVOC analysis was only 

done in triplicate. Consequently one-half the detection limit was used to estimate values 

below the detection limit. SVOC concentrations were checked for outliers using Grubb’s 

T-test. Regression analysis was performed on SVOC concentrations by using the natural 

log transformation of the concentration divided by the initial concentration. The natural 

log transform resulted in a better fit, i.e., higher R2 value, for the regressions, and the 

residuals appeared more random than the zero order regression. R statistical software (R 

Development Core Team 2008) was used to determine the R2 value, slope, 95% 

confidence interval (CI) for the slope, and the p-value for the slope. The regression 

analysis for SVOC with at least one sampling event showing an average concentration 

significantly different from zero for Piles 2 and 2a (approximately 55% C&D and 44% 

GW) are displayed in Table 14. The complete table for all SVOC in Piles 2 and 2a are 

displayed in Table A-5 (Appendix A) and Piles 6 and 6a are displayed in Table A-6 

(Appendix A). 

Due to high variability in SVOC concentrations throughout Piles 2 and 2a 

following their application and mixing, no SVOC were detected at concentrations 

significantly different from zero and therefore only MORO and acenaphthene in Pile 2a 
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Table 14: SVOC regression analysis for Piles 2 and 2a 

Pile 2 2a 
Compound slope R2 95% CI P value df slope R2 95% CI P value df 

MORO * 
    

-0.012 0.160 0.011 0.038 25 
Acenaphthene * 

    
-0.048 0.306 0.030 0.003 25 

* One sampling event with average concentration significantly different from zero based 
on 95% confidence interval of triplicate measurements 

 

had a reportable degradation slope based on a 95% confidence interval. SVOC 

comparisons proved difficult due to the high variability found in the triplicate 

measurements for Piles. Sample locations could be from 10 to 30 feet apart on the same 

pile allowing for large changes in concentrations if the pile mixtures were not 

homogenous. 

The regression analysis results for Piles 6 and 6a are shown in Table 15. Pile 6 

showed no SVOC with a significant slope based on a 95% confidence interval, while Pile 

6a had five compounds with a significant slope. Significant SVOC reductions are only 

seen on Pile 6a indicating that the microbial inoculum has a negative significant effect of 

restricting SVOC degradation during composting.  

Table 15: SVOC regression analysis for Piles 6 and 6a 
Pile 6 6a 
Compound slope R2 95% CI P value df slope R2 95% CI P value df 
DRO -0.017 0.288 0.011 0.004 25 -0.026 0.376 0.014 0.001 25 
MORO -0.011 0.232 0.008 0.011 25 -0.020 0.268 0.013 0.006 25 
Acenaphthylene †     -0.036 0.309 0.022 0.003 25 
Acenaphthene †     -0.052 0.327 0.031 0.002 25 
Fluorene †     -0.048 0.336 0.028 0.002 25 
Phenanthrene †     -0.049 0.343 0.028 0.001 25 
Anthracene †     -0.046 0.234 0.034 0.011 25 
Fluoranthene †     -0.037 0.179 0.033 0.028 25 
Pyrene †     -0.033 0.146 0.033 0.049 25 
Benzo[a]pyrene †     -0.041 0.260 0.028 0.007 25 
† Average concentration of sampling events showed no significant difference from zero 

based on 95% confidence interval of triplicate measurements 
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Fertility Analysis Results 

The results from the fertility analysis performed by USU analytical lab and USU 

Water Research Laboratory on machine screened compost samples are shown in Table 16. 

After comparing the results with Table 3, for the fertility index, and Table 4, for the clean 

index, the compost fertility score, toxicity score, and class are displayed in Table 17. All 

piles display a fertility score of 2.5 or lower with only piles that had agriculture waste 

being over 2. This is due to the final low carbon, nitrogen, and phosphorus percentage in 

each pile (see Table 14). Due to a low fertility score, all piles are unacceptable to be put 

on the market as a fertilizer according to Saha et al. (2010). This can possibly be 

corrected by the addition of compostable materials that are rich in carbon, nitrogen, and 

phosphorus making the finished compost a marketable fertilizer.  

The calculated toxicity score for the best quality of compost is >4 of which all 

piles are, except for Piles 6 and 7 which are 3.4 and 3.8, respectively. All pile metal 

concentrations are within metal parameters for land application. The criteria for the class 

of the compost produced are taken from Table 5. Every pile was assessed as a RU-1 class 

meaning the compost complies for all metal parameters, but it does not meet the fertility 

score required for marketable fertilizer, however it can be used as a soil condition. 

Pile Screening Results 

At the end of the study, the entire volume of each pile was screened and separated 

into “compost” – that fraction of each pile passing a ¾” screen, and “reject” – that 

fraction retained on the ¾” screen, to determine a gross production of compost for each 

pile. In addition to this coarse separation of finished product, triplicate samples of each  
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Table 16: Nutrient and metal data from USU analytical lab and Water Research 

Laboratory for finished compost samples 
Pil
e 

C, 
% 

N, 
% 

P, 
% 

K, 
% 

Zn, 
mg/kg 

Cu, 
mg/kg 

Cd, 
mg/kg 

Pb, 
mg/kg 

Ni, 
mg/kg 

Cr, 
mg/kg 

1 7.65 0.71 0.19 0.93 201.1 40.8 0.572 24.0 18.1 24.3 

1a 7.49 0.67 0.24 1.19 187.4 34.0 0.513 21.8 18.9 23.1 

2 5.29 0.31 0.12 0.32 186.7 24.9 0.554 19.5 16.1 22.4 

2a 6.83 0.42 0.09 0.34 239.2 25.9 0.5883 18.7 19.7 22.7 

3 7.59 0.57 0.15 0.48 216.8 33.6 0.4662 16.9 13.4 20.6 

3a 7.84 0.60 0.13 0.49 175.9 27.2 0.5886 48.9 14.3 18.3 

4 6.06 0.31 0.1 0.36 317.9 29.6 0.5364 59.0 18.7 25.4 

4a 5.77 0.32 0.08 0.32 273.6 27.7 0.6617 83.1 18.9 24.6 

6 7.01 0.37 0.08 0.25 395.2 50.1 0.7114 270.0 16.6 25.4 

6a 4.94 0.25 0.08 0.27 302.9 35.9 0.6917 66.0 18.9 21.8 

7 7.55 0.2 0.08 0.21 378.1 71.0 0.7722 96.1 25.6 24.1 

9 5.79 0.4 0.11 0.4 276.7 39.0 0.6709 51.6 17.8 21.5 

 

Table 17: Pile fertility analysis results based on index of Saha et al. (2010) 
Pile Fertility Score Toxicity Score Class 

1 2.2 4.6 RU-1 
1a 2.5 4.6 RU-1 
2 1.7 4.6 RU-1 
2a 1.5 4.6 RU-1 
3 2.1 4.6 RU-1 
3a 2.1 4.6 RU-1 
4 1.5 4.3 RU-1 
4a 1.5 4.4 RU-1 
6 1.4 3.4 RU-1 
6a 1.5 4.3 RU-1 
7 1 3.8 RU-1 
9 1.9 4.4 RU-1 
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fraction were hand sorted into various waste components to yield an overall, detailed 

quantification of the conversion of waste mixture into compost over the duration of the 

study. This extra hand sorting helps quantify the efficiency of mechanical screening of 

the compost piles and the residual reject material still found in the compost after 

mechanical screening. Only Piles 1, 1a, 2, 2a, 3, 3a, 4, and 4a were screened and weight 

data obtained for calculations due to the onset of winter and the piles were semi frozen 

making screening impossible. Table 18 presents the results of this analysis.  

A significantly higher compost production rate (almost double) based on gross 

finished pile screening resulted for Pile 1 as compared to Pile 1a (approximately 90% 

AgW and 10% GW). When compost and reject streams for the finished piles were hand 

sorted, however, a significant quantity of Soil and Organics fractions were observed in 

the reject screenings for both Pile 1 and 1a. Including the compost found in the reject 

screening portion by hand sorting, the total compost production number raised the  

Table 18: Compost production in Piles 1, 1a, 2, 2a, 3, 3a, 4, and 4a based on hand sorting 
of bulk screening samples 

Pile 

Compost Production 
Based on Single Pass 

Screening (%) 

Compost Production 
Including Hand 

Sorting of Reject (%) 
1 69.4 92.2 
1a 35.4 89.4 
2 75.5 74.8 
2a 62.9 60.4 
3 80.7 79.4 
3a 71.9 65.2 
4 62.3 68.6 
4a 62.2 61.8 
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estimate of overall compost production for Pile 1 to >92% and for Pile 1a to >89%. The 

compost material generated from Pile 1 was easier to segregate using gross screening 

than that from Pile 1a, but by the end of the compost study both displayed a high compost 

production efficiency based on hand sorting of these piles initially composting of these 

piles originally composed of approximately 90 wt% agriculture waste and 10 wt% green 

waste/wood. 

A higher compost production rate based on gross finished pile screening resulted 

for Pile 2 as compared to Pile 2a (approximately 55% C&D and 44% GW). With 

mechanical screening and further hand sorting, the estimate of overall compost 

production for Pile 2 of ≈ 75% was greater than the value of ≈ 60% for Pile 2a. The 

compost material generated from the gross screening of Pile 2 was also of higher quality 

than Pile 2a (Table C-2), with Pile 2 “compost” having a “reject” content of only 7 wt%, 

while Pile 2a had a “reject” content of 14% at the end of the composting of these piles 

originally composed of approximately 55 wt% C&D and 45 wt% green waste. 

A higher compost production rate based on gross finished pile screening resulted 

for Pile 3 as compared to Pile 3a (approximately 55% GW, 23% AgW, and 13% C&D). 

With mechanical screening and further hand sorting, the estimate of overall compost 

production for Pile 3 of >79% was greater than for Pile 3a of ≈ 65%. The compost 

material generated from the gross screening of Pile 3 was also of higher quality than Pile 

3a (Table C-2), with Pile 3 “compost” having a “reject” content of only 7 wt%, while Pile 

3a had a “reject” content of 20% at the end of the 12-week compost study composting of 

these piles originally composed of approximately 58 wt% green waste/grass/wood, 13 

wt% C&D, 23 wt% agriculture waste, and 6 wt% food waste. 
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A higher compost production rate based on gross finished pile screening resulted 

for Pile 4 as compared to Pile 4a (approximately 60% MSW, 30% C&D, and 10% Wood). 

With mechanical screening and further hand sorting, the estimate of overall compost 

production for Pile 4 of >68% was greater than for Pile 4a of ≈ 62%. The compost 

material generated from the gross screening of Pile 4 was of higher quality than Pile 4a 

(Table C-2), with Pile 4 “compost” having a “reject” content of only 8 wt%, while Pile 4a 

had a “reject” content of 16% at the end of 8-week composting of these piles originally 

composed of approximately 12 wt% wood, 29 wt% C&D, and 59 wt% mixed MSW. 
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SUMMARY AND CONCLUSIONS 

The MARS process was applied to 14 composting windrows, with five of the 

piles used as controls without the addition of microbial inoculum, to evaluate the effects 

the microbial inoculum has on the rate and extent of compost production using a wide 

range of starting materials including green waste, agricultural waste, C&D waste, and 

mixed MSW. General process measurements (pH, EC, temperature, moisture content, 

organic carbon), individual waste/pile component sorting (Organic, Paper, Plastic, Metal, 

Glass, Misc. Inorganics, Bone), and specific compound analyses (carbaryl, SVOCs, 

VOCs) were conducted over the course of the compost study.  

1. Stabilization time for organics in MSW and C&D waste was significantly reduced 

from 55 days (Piles 5, 6, and 7) to 29 days (Pile 6a) with the addition of the 

inoculum. 

2. C&D waste (Plastic and Wood) was not found to degrade, however the organic 

portion of mixed MSW was found to degrade and could be used to produce 

compost via the MARS process. 

3. Fertility analysis was performed to assess the quality of compost produced. All 

piles were determined to have the same classification of RU-1 (Saha et al. 2010), 

which qualifies it as a non-toxic soil conditioner.  

4. Mechanical screening of the entire mass of all finished piles indicated that with 

the addition of the microbial inoculum, the total amount of compost produced was 

significantly increased for Piles 2-4 compared to their individual control piles.  
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5. General chemical measurements show that the microbial inoculum has no impact 

on the pH, EC, percent Carbon, or the moisture content of the final product.  

6. Residual concentrations were found for carbaryl in the control pile, while carbaryl 

concentrations in the treated pile were non-detect. 
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ENGINEERING SIGNIFICANCE 

The ability to consistently and timely compost a mixture of MSW and C&D 

debris to a stable end product can reduce the amount of waste disposed of in landfills. 

Maintaining the quality of this compost is essential in making it available for reuse and 

consumer purchase. Analysis of residuals for VOCs, SVOCs, nutrient availability, and 

metals determined the fertility grade and ultimately its possible uses for consumers as a 

soil conditioner. More importantly this study showed that focusing on control measures 

(turning, moisture management, nutrient addition) would decrease organic stabilization 

time, while cocompsting with agriculture waste, and significantly reduce specific VOC 

and SVOC.  

The addition of the microbial inoculum significantly increased pile temperature 

greater than 3 feet deep. Without agriculture waste, addition of a microbial amendment 

showed a significant reduction in organic stabilization time by 26 days, while also 

composting high component percentages of MSW and C&D waste. The addition of the 

microbial amendment showed a significantly lower residual concentration of carbaryl and 

significant reductions of specific VOC (Table 11).  

It is recommended that the use of the MARS process with microbial inoculum be 

used only when remediating for specific VOC (Table 11) or carbaryl and when 

agriculture waste is not being used in the starting components. When agriculture waste is 

being cocomposted the MARS process without the microbial inoculum sufficient to 

significantly reduce organic stabilization time and specific SVOC (Table 12). 
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Table A-1. VOC Chemical Properties 

Chemical Cas # MW KOW S 
(mg/L) 

PV 
(mm Hg) 

H 
(atm*m3/mole) 

KOC 
(L/kg) 

benzene 71-43-2 78.06 2.131 17902 95.03 5.55E-34 495 

cyclohexane 110-82-7 84.162 3.441 559 96.8610 0.1958 4828 

methylcyclopentane 96-37-7 84.18 3.3148 429 137.57 0.3638 5598 

hexane 110-54-3 86.18 3.9020 12.406 151.37 1.8022 131.521 

toluene 108-88-3 92.141 2.731 52611 28.43 6.64E-34 9512 

methylcyclohexane 108-87-2 98.19 3.6120 1428 46.03 0.43034 233.921 

2,4-dimethylpentane 108-08-7 100.21 3.6323 5.528 79.43 1.9035 169.621 
2-methylhexane 591-76-4 100.21 3.7123 2.5428 663 3.4335 201.621 

2,3-dimethylpentane 565-59-3 100.21 3.6323 5.2528 68.93 1.7335 181.121 
3-methylhexane 589-34-4 100.21 3.7123 4.9528 61.53 1.6435 21121 

n-heptane 142-82-5 100.21 4.6624 3.428 46.03 2.0035 239.721 
styrene 100-42-5 104.15 2.951 31015 6.123 2.83E-38 92016 

ethylbenzene 100-41-4 106.17 3.151 16911 9.603 7.88E-311 25013 

m-xylene 108-38-3 106.17 3.201 16111 8.4543 7.34E-38 19012 
p-xylene 106-42-3 106.17 3.151 162.411 8.903 7.66E-68 26014 
o-xylene 95-47-6 106.17 3.121 17811 6.613 5.19E-311 1295 

2,2,4-trimethylpentane 540-84-1 114.23 4.0923 2.4428 49.33 3.0435 240.321 
2,3,4-trimethylpentane 565-75-3 114.23 4.0523 2.328 27.103 1.7735 283.321 

2-methylheptane 592-27-8 114.23 4.2023 7.96529 20.703 3.0136 367.421 
3-methylheptane 589-81-1 114.23 4.2023 0.79228 19.603 3.7235 384.521 

n-octane 111-65-9 114.23 5.1824 0.6628 14.833 3.2135 436.821 
n-propylbenzene 103-65-1 120.20 3.5701 52.2018 3.423 1.050E-211 74114 

m-ethyltoluene 620-14-4 120.20 3.9825 39.9929 3.0403 8.71E-336 715.821 
p-ethyltoluene 622-96-8 120.20 3.6326 74.518 3.0003 5.01E-335 715.821 
o-ethyltoluene 611-14-3 120.20 3.5320 74.628 2.6103 5.53E-335 730.421 

1,3,5-trimethylbenzene 108-67-8 120.20 3.4220 48.228 24.83 8.77E-335 66119 

1,2,4-trimethylbenzene 95-63-6 120.20 3.781 579 2.1010 6.16E-311 27128 

1,2,3-trimethylbenzene 526-73-8 120.20 3.6620 75.228 1.1733 4.36E-311 63119 

nonane 111-84-2 128.26 4.7623 0.2230 4.4503 3.4035 79621 
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n-undecane 1120-21-
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Isopropylbenzene 25640-
78-2 196.31 5.217 0.617 5.0E-417 2.15E-48 1.6E4 

 
1. Hansch,C.; Leo,A.J.; Medchem Project.;  Claremont, Ca: Pomona College. Issue#  
 26.;1985 
 
2. May,W.E.; Wasik,D.P.; Miller,M.M.; Tewari,Y.B.; Brown-Thima,J.M.;  
 Goldberg,R.N.; Solution Thermodynamics Of Some Slightly Soluble  
 Hydrocarbons     In Water.; J. Chem. Ref. Data.; 28:197-200.; 1983 
 
3. Daubert,T.E.; Danner, R.P.; Physical And Thermodynamic Properties Of Pure  
 Chemicals: Data Compilation.; Design Institute For Physical Property Data,  
 American Institute Of Chemical Engineers. Hemisphere Pub. Corp., New York,  
 Ny., 4 Vol.; 1989  
 
4. Mackay,D.; Shiu,W.Y.; Sutherland,R.P.; Determination Of Air-Water Henry's Law  



	   66 
 Constants For Hydrophobic Pollutants.; Environ. Sci. Technol.; 13:333-6.;1979 
 
5. Abdul,A.S.; Gibson,T.L.; Rai,D.N.; Statistical Correlations For Predicting The  
 Partition Coefficient For Nonpolar Organic Contaminants Between Aquifer  
 Organic Carbon And Water.; Haz. Waste Haz. Mat.; 4:211-22; 1987 
 
6. Polak,J.; Lu,B.C.Y.; Mutual Solubilities Of Hydrocarbons And Water At 0 And 25c.; 
 Can. J. Chem.; 51:4018-33.; 1973 
 
7. Boublik,T.; Fried,V.; Hala,E.; The Vapor Pressures Of Pure Substances: Selected 
 Values Of The Temperature Dependence Of The Vapour Pressures Of Some 
 Pure Substances In The Normal And Low Pressure Region. Vol. 17.;  
 Amsterdam, Netherlands: Elsevier Sci. Publ.; 1984 
 
8. Src.; Syracuse Research Corporation Calculated Values;1988 
 
9. Mcauliffe,C.; Solubility In Water Of Paraffin, Cycloparaffin, Olefin, Acetylene,  
 Cycloolefin And Aromatic Hydrocarbon.; J. Phys. Chem.; 70:1267-75. 1966 
 
10. Chao,J.; Lin,C.T.; Chung,T.H.; Vapor Pressure Of Coal Chemicals.; J. Phys. Chem.  
 Ref. Data.; 12:1033-63.; 1983 
 
11. Sanemasa,I.; Araki,M.; Deguchi,T.; Nagai,H; Solubility Measurements Of Benzene  
 And The Alkylbenzenes In Water By Making Use Of Solute Vapor.; Bull.  
 Chem. Soc. Jpn.; 55:1054-62; 1982 
 
12. Seip,H.M.; Alstad,J.; Carlberg,G.E.; Martinsen,K.; Skaane,R.; Measurement Of  
 Mobility Of Organic Compounds In Soils.; Sci. Total Environ.; 50:87-101;  
 1986 
 
13. Hodson,J.; Williams,N.A.; The Estimation Of The Adsorption Coefficient (Koc) For  
 Soils By High Performance Liquid Chromatography; Chemosphere; 17:67-77;  
 1988 
 
14. Vowles,P.D.; Mantoura,R.F.C.; Sediment-Water Partition Coefficients And Hplc  
 Retention Factors Of Aromatic Hydrocarbons.; Chemosphere; 16:109-16; 1987 
 
15. Yalkowsky,S.H.; Valvani,S.C.; Kuu,W.; Dannenfelser,R.; A Database: Arizona  
 Database Of Aqueous Solubility. An Extensive Compilation Of Aqueous  
 Solubility Data For Organic Compounds; 1987 
 
16. Bedient,P.B.; Springer,N.K.; Baca,E.; Bouvette,T.C.; Hutchins,S.R.;  Tomson,M.B.;  
 Ground-Water Transport From Wastewater Infiltration.; J. Environ. Eng.  
 (N.Y.); 109:485-501; 1983 
 



	   67 
17. Addison,R.F.; Paterson,S.; Mackay,D.; The Predicted Environmental Distributions Of  
 Some Pcb Replacements.; Chemosphere.; 12:827-34.; 1983 
 
18. Tewari,Y.B.; Miller,M.M.; Wasik,S.P.; Martine,D.E.; Aqueous Solubility And  
 Octanol/Water Partition Coefficient Of Organic Compounds At 25.0 C.; J.  
 Chem. Eng. Data.; 27:451-4.; 1982a 
 
19. Schwarzenbach,R.P.; Westall,J.; Transport Of Nonpolar Organic Compounds From  
 Surface Water To Groundwater. Laboratory Sorption Studies.; Env. Sci. Tech.;  
 15:1360-7.; 1981 
 
20. Hansch,C.; Leo,A.; Hoekman,D.; Exploring Qsar. Hydrophobic, Electronic, And  
 Steric Constants. Acs Professional Reference Book. Washington D.C.:  
 American Chemical Society; 1995 
 
21. Episuite; Kocv2.00, Mci Method; 2012 
 
22. Episuite; Henrywin V3.20, Experimental Database; 2012 
 
23. Episuite; Kowwin V1.68, ; 2012 
 
24. Miller,M.M.; Wasik,S.P.; Huang,G.; Shiu,W.; Mackay,D.; Relationships Between  
 Octanol-Water Partition Coefficients And Aqueous Solubility.; Environ. Sci.  
 Technol.; 19:522-9.; 1985 
 
25. Sherblom,P.M.; Eganhouse,R.P.; Correlations Between Octanol-Water Partition  
 Coefficients And Reversed-Phase High-Performance Liquid Chromatography  
 Capacity Factors; J. Chromatogr., 454, 37-50; 1988 
 
26. Sangster,J; Logkow Databank. A Databank Of Evaluated Octanol-Water Partition  
 Coefficients (Logp) On Microcomputer Diskette; Montreal, Quebec, Canada:  
 Sangster Research Laboratories; 1993 
 
27. Coats,M.; Connell,D.W.; Barron,D.M.; Aqueous Solubility And Octan-1-Ol To  
 Water Partition Coefficients Of Aliphatic Hydrocarbons; Environ. Sci. Technol 
 
28. Yalkowsky,S.H.; Dannenfelser,R.M.; Aquasol Database Of Aqueous Solubility.  
 Version 5.; College Of Pharmacy, University Of Arizona - Tucson,Az. Pc  
 Version.; 1992 
 
29. Episuite; Wskowwin V1.42; 2012 
 
30. Riddick,J.A.; Bunger,W.B.; Sakano,T.K.; Organic Solvents: Physical Properties And  
 Methods Of Purification.;  Techniques Of Chemistry. 4th Ed. New York,Ny:  
 Wiley-Interscience. 2:Pp.1325; 1986 



	   68 
 
31. Chem Inspect Test Inst. 1992. Biodegradation And Bioaccumulation Data Of Existing  
 Chemicals Based On The Cscl Japan. Published By Japan Chemical Industry  
 Ecology-Toxicology & Information Center. Isbn 4-89074-101-1 
 
32. Kertes,A.S.; Hydrocarbons With Water And Seawater Part Ii. Hydrocarbons C8 To  
 C31; In: Solubility Data Series Vol 38; Shaw,Pc Eds; Pergamon Press,  
 Uk:553pp; 1989 
 
33.Episuite; Mpbpwin V1.43, Mean Of Antoine & Grain Methods; 2012 
 
34. Hine, J.; Mookerjee, P.K. 1975. The Intrinsic Hydrophilic Character Of Organic  
 Compounds. Correlations In Terms Of Structural Contributions. J. Org. Chem.  
 40: 292-298. 
 
35. Episuite; Henrywin V3.20, Experimental Vp/Wsol; 2012 
 
36. Episuite; Henrywin V3.20, Bond Method; 2012 
  



	   69 
Table A-2.  SVOC Chemical Properties and MS Data Extraction Values 

Analyte CAS 
# 

MW Retention time, 
min, or range. 

KOW S 
(mg/L) 

PV  

(mm 
Hg) 

H 
(atm*m3/mol) 

KOC 
(L/kg) 

acenaphthylene 208-
96-8 

152.196 11.87 4.071
 16.12 9.12E-

43 
1.13E-34 56205 

fluorene 86-
73-7 

166.223 12.98 4.186 1.98 
ppm7 

6.33E-
48 

6.36E-59 2.83E310 

phenanthrene 85-
01-8 

178.234 14.51 4.466 1.15 
ppm11 

1.12E-
412 

2.33E-59 1.88E413 

anthracene 120-
12-7 

178.234 14.59 4.456 4.34E-
214 

2.67E-
612 

1.93E-54 1.58E415 

pyrene 129-
00-0 

202.256 16.80 4.886 1.3516 2.45E-
617 

1.10E-57 6.27E418 

benz(a)anthracene 56-
55-3 

228.294 18.73 5.6641 9.40E-
314 

1.05E-
719 

3.35E-61 2E520 

chrysene 218-
01-9 

228.294 18.80 5.6641 6.30E-
321 

6.23E-
922 

9.46E-51 1.33E51 

benzo(b)fluoranthene 205-
99-2 

252.32 20.39 6.1241 1.5E-
323 

5E-724 1.11E-41 1.56E51 

benzo(k)fluoranthene 207-
08-9 

252.32 20.42 6.1241 8.0E-
423 

2.0E-
919 

8.29E-71 2.2E41 

benzo(a)pyrene 50-
32-8 

252.32 20.89 5.976 1.62E-
314 

5.49E-
919 

1.13E-61 5.07E625 

benzo(ghi)perylene 191-
24-2 

276.34 22.98 6.581 2.60E-
47 

1.01E-
1019 

1.41E-71 4.06E51 

dibenz(a,h)anthracene 53-
70-3 

278.36 23.03 6.506 2.49E-
326 

1.0E-
1027 

1.47E-81 2.029E626 

indeno(1,2,3)perylene   23.55      

Kerosene Range Organics 
(KRO) 

  2.95 - 6.95      

Diesel Range Organics 
(DRO) 

  7.00 - 21.00      

Motor Oil Range Organics 
(MORO) 

  21.00 - 36.00      
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	   72 
Table A-3: VOC results for Piles 2 and 2a 

Pile 2 2a 
Compound Slope R2 95% CI P Value df Slope R2 95% CI P Value df 

Hexane       †         ND   
Pentane, 2,4-dimethyl-       †         ND   
Cyclopentane, methyl-       ND         ND   

Hexane, 2-methyl-       ND         ND   
Benzene       0.062         0.606   

Cyclohexane       *         †   
2,3 dimethylpentane       *         *   
Hexane, 3-methyl-       †         ND   

Pentane, 2,2,4-trimethyl-       *         ND   
n-Heptane -0.061 0.5977 0.05 0.024 6 -0.032 0.7028 0.019 0.005 7 

Cyclohexane, methyl-       *         *   
Pentane, 2,3,4-trimethyl-       †         ND   

Heptane, 2-methyl-       †         *   
Heptane, 3-methyl-       †         *   

Toluene -0.024 0.4624 0.023 0.044 7       0.085   
n-Octane -0.068 0.5205 0.058 0.028 7 -0.045 0.7556 0.023 0.002 7 

Ethylbenzene       *         *   
m,p-Xylene -0.037 0.6289 0.028 0.019 6       *   

Nonane       0.331         *   
Styrene -0.04 0.8014 0.023 0.006 5       0.432   
o-xylene       ND         †   

Benzene,  isopropyl       ND         †   
Benzene, n-propyl-       †         *   

m-ethyl toluene       ND         †   
p-ethyl toluene       ND         †   

Benzene, 1,3,5-trimethyl-       ND         ND   
n-Decane       *         0.183   

o-Ethyltoluene       †         †   
Benzene, 1,2,4-trimethyl-       0.062         •   
1,2,3-Trimethylbenzene       †         •   

Benzene, m-diethyl-       ND         •   
Benzene, p-diethyl-       ND         •   

n-Undecane       0.137         0.093   
n-Dodecane       *         0.361   
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Table A-4: VOC results for Piles 6 and 6a 

Pile 6 6a 
Compound Slope R2 95% CI P Value df Slope R2 95% CI P Value df 

Hexane       *         †   
Pentane, 2,4-dimethyl-       †         †   

Cyclopentane, methyl-       †         †   

Hexane, 2-methyl-       †         †   

Benzene -0.042 0.7849 0.022 0.003 6       0.069   
Cyclohexane       †         0.329   

2,3 dimethylpentane       †         *   
Hexane, 3-methyl- -0.052 0.9687 0.028 0.016 2       0.303   

Pentane, 2,2,4-trimethyl-       †         †   

n-Heptane       *         0.067   

Cyclohexane, methyl-       †         0.102   

Pentane, 2,3,4-trimethyl-       †         *   

Heptane, 2-methyl-       †         *   

Heptane, 3-methyl-       †         *   

Toluene -0.034 0.8856 0.011 0.000 7       0.28   

n-Octane -0.067 0.5948 0.055 0.025 6       0.074   

Ethylbenzene -0.036 0.7947 0.018 0.003 6       *   

m,p-Xylene -0.039 0.771 0.021 0.004 6       *   

Nonane       0.066         0.393   

Styrene -0.03 0.6375 0.023 0.018 6       0.852   

o-xylene       *         *   
Benzene,  isopropyl       *         †   

Benzene, n-propyl-       †         †   
m-ethyl toluene       *         *   

p-ethyl toluene       *         †   

Benzene, 1,3,5-trimethyl- ≥-006 0.916 0.0058 0.043 2       †   

n-Decane       0.114         *   

o-Ethyltoluene       0.855         †   

Benzene, 1,2,4-trimethyl- -0.078 0.914 0.072 0.044 2       †   

1,2,3-Trimethylbenzene       *         †   

Benzene, m-diethyl-       *         †   

Benzene, p-diethyl-       *         †   

n-Undecane -0.052 0.5235 0.051 0.046 6       *   
n-Dodecane -0.073 0.7592 0.057 0.024 4    0.553  
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Table A-5: SVOC results for Piles 2 and 2a 

Pile 2 2a 

Compound slop
e 

R
2 

95% 
CI 

P 
value 

d
f 

slop
e 

R
2 

95% 
CI 

P 
value 

d
f 

KRO       0.521         0.167   
DRO       0.721         0.386   

MORO       0.722         0.623   
Naphthalene       0.490         0.283   

Acenaphthylene           ND         
Acenaphthene ND         ND         

Fluorene ND         ND         
Phenanthrene       0.620         0.103   
Anthracene       0.963   ND         

Fluoranthene       0.763         0.232   
Pyrene       0.847         0.185   

Benz[a]anthracene ND               0.480   
Chrysene †               0.055   

Benz[b]fluoranthene ND         ND         
Benz[k]fluoranthene ND         ND         

Benzo[a]pyrene ND         ND         
Indeno(123-
cd)perylene ND         ND         

Dibenz[a,h]anthracene ND         ND         
Benzo[ghi]perylene ND         ND         
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Table A-6: SVOC results for Piles 6 and 6a 

Pile 6 6a 
Compound Slope R4 95% CI P value df Slope R5 95% CI P value df 

KRO       0.760         0.777   
DRO       0.061         0.085   

MORO       0.117         0.251   
Naphthalene       0.178         0.785   

Acenaphthylene       0.471   -0.036 0.450 0.035 0.048 7 
Acenaphthene       0.224   -0.052 0.535 0.044 0.025 7 

Fluorene       0.277   -0.048 0.536 0.040 0.025 7 
Phenanthrene       0.472   -0.049 0.558 0.039 0.021 7 
Anthracene       0.672         0.055   

Fluoranthene       0.682         0.101   
Pyrene       0.633         0.138   

Benz[a]anthracene       0.683         0.200   
Chrysene       0.741         0.227   

Benz[b]fluoranthene       0.793         0.250   
Benz[k]fluoranthene       0.324         0.260   

Benzo[a]pyrene       0.928   -0.041 0.495 0.037 0.034 7 
Indeno(123-cd)perylene ND               0.840   
Dibenz[a,h]anthracene ND         ND         

Benzo[ghi]perylene ND         ND         
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Figure B-1: Organic stabilization for Piles 2 and 2a 

 

 
Figure B-2: Organic stabilization for Piles 3 and 3a 
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Figure B-3: Organic stabilization for Piles 4 and 4a 

 

 
Figure B-4: Organic stabilization for Piles 6 and 6a 
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Figure B-5: Organic stabilization for Piles 5, 7, 8, and 9 

 

 
Figure B-6: Plastic stabilization for Piles 3 and 3a 
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Figure B-7: Plastic stabilization for Piles 4 and 4a 

 

 
Figure B-8: Plastic stabilization for Piles 6 and 6a 
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Figure B-9: Plastic stabilization for Piles 5, 7, 8 and 9 

 

 
Figure B-10: Weight % wood for Piles 1 and 1a 
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Figure B-11: Weight % wood for Piles 2 and 2a 

 

 
Figure B-12: Weight % wood for Piles 3 and 3a 
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Figure B-13: Weight % wood for Piles 4 and 4a 

 

 
Figure B-14: Weight % wood for Piles 5, 7, 8, and 9 
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Figure B-15: Average temperatures for Piles 3 and 3a (error base show 95% confidence 
interval) 

 

 
Figure B-16: Percent dry weight of Piles 3 and 3a over time (error bars represent the 95% 

confidence interval of triplicate measurement) 
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Figure B-17: Percent dry weight of Piles 4 and 4a over time (error bars represent the 95% 

confidence interval of triplicate measurement) 
 

 
Figure B-18: Percent dry weight of Piles 6 and 6a over time (error bars represent the 95% 

confidence interval of triplicate measurement) 
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Figure B-19: Percent dry weight of Piles 5, 7, 8 and 9 over time (error bars represent the 

95% confidence interval of triplicate measurement) 
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Table C-1: Carbaryl Raw Data 

Pile Sample Date Concentration (µg/kg) 

6 

7/14 
1.49 
0.00 
15.14 

8/11 
0.00 
0.00 
6.21 

9/26 
0.00 
0.00 
0.00 

6a 

7/14 
10.67 
81.59 
7.70 

8/11 
0.00 
2.08 
9.96 

9/26 
1.19 
1.74 
2.71 

 
Table C-2: Screening results for Piles 1, 1a, 2, 2a, 3, 3a, 4, and 4a 

Pile Compost (t) Reject (t) Total (t) 
1 73.99 32.59 107.06 
1a 22.61 41.24 67.95 
2 53.3 17.26 71.83 
2a 18.48 10.92 28.73 
3 64.57 15.43 82.67 
3a 27.19 10.65 38.48 
4 36.19 21.88 56.59 
4a 16.91 10.26 27.09 
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Table C-3: Pile 2 raw VOC data (µg/kg) 

Day 0 0 0 28 28 28 48 48 48 
Hexane 0.0000 0.0000 0.0000 0.0047 0.0000 0.0000 0.0140 0.0000 0.0394 

Pentane, 2,4-dimethyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0056 0.0000 0.0000 
Cyclopentane, methyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Hexane, 2-methyl- 0.0000 0.2192 0.3311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene 0.0402 0.1806 0.1664 0.1642 0.0548 0.0735 0.0422 0.0292 0.0309 

Cyclohexane 0.0000 0.3741 0.4077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2,3 dimethylpentane 0.0000 0.1493 0.1537 0.0000 0.0000 0.0000 0.0435 0.0408 0.0330 
Hexane, 3-methyl- 0.0000 0.1707 0.1749 0.0000 0.0000 0.0000 0.0127 0.0000 0.0000 

Pentane, 2,2,4-trimethyl- 0.0000 0.0000 0.0000 0.0098 0.0047 0.0147 0.0000 0.0071 0.0000 
n-Heptane 0.0000 0.5403 0.6777 0.0904 0.0065 0.0460 0.0355 0.0328 0.0270 

Cyclohexane, methyl- 0.0401 0.6513 0.9499 0.0269 0.0000 0.0000 0.0000 0.0000 0.0000 
Pentane, 2,3,4-trimethyl- 0.0000 0.3058 0.0000 0.0000 0.0000 0.0000 0.0033 0.0000 0.0000 

Heptane, 2-methyl- 0.0000 0.3010 0.4985 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Heptane, 3-methyl- 0.0000 0.3162 0.5042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Toluene 0.1024 0.2743 0.1434 0.2867 0.0809 0.1285 0.0348 0.0459 0.0685 
n-Octane 0.0786 0.4816 0.7220 0.0330 0.0020 0.0055 0.0115 0.0115 0.0228 

Ethylbenzene 0.0000 0.0481 0.0338 0.0212 0.0033 0.0000 0.0141 0.0190 0.0000 
m,p-xylene 0.0000 0.0486 0.0390 0.0205 0.0039 0.0075 0.0094 0.0062 0.0068 

Nonane 0.1017 0.3154 0.3906 0.0469 0.0019 0.0137 0.0159 0.0418 0.0812 
styrene 0.0000 0.3117 0.2805 0.2492 0.0736 0.1084 0.0425 0.0000 0.0407 

o-xylene 0.0000 0.0311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene,  isopropyl 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene, n-propyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0407 0.0240 

m-ethyl toluene 0.0401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
p-ethyl toluene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Benzene, 1,3,5-trimethyl- 0.0000 0.0352 0.0413 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n-decane 0.2673 0.3173 0.2617 0.0902 0.0000 0.0161 0.0000 0.1481 0.1438 

o-ethyl toluene 0.0000 0.0538 0.0323 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene, 1,2,4-trimethyl- 0.0606 0.1485 0.1047 0.0314 0.0000 0.0000 0.0046 0.0000 0.0418 
1,2,3-Trimethylbenzene 0.0771 0.1210 0.0000 0.0098 0.0000 0.0000 0.0000 0.0000 0.0210 

Benzene, m-diethyl- 0.0000 0.1622 0.0000 0.0101 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene, p-diethyl- 0.0000 0.0543 0.0000 0.0102 0.0000 0.0000 0.0000 0.0000 0.0000 

n-Undecane 0.3782 0.2712 0.2997 0.0593 0.0056 0.0126 0.0000 0.0658 0.2910 
n-dodecane 0.0000 0.5612 0.2957 0.0152 0.0179 0.0145 0.0000 0.0000 0.3491 
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Table C-4: Pile 2a raw VOC data (µg/kg) 

Days 0 0 0 28 28 28 48 48 48 
Hexane 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pentane, 2,4-dimethyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Cyclopentane, methyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Hexane, 2-methyl- 0.0259 0.0000 0.0560 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene 0.0442 0.0332 0.0746 0.2955 0.0952 0.1317 0.0252 0.0253 0.0326 

Cyclohexane 0.0587 0.0000 0.1011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2,3 dimethylpentane 0.0392 0.0000 0.0610 0.0000 0.0000 0.0000 0.0272 0.0292 0.0370 
Hexane, 3-methyl- 0.0000 0.0000 0.0329 0.0056 0.0000 0.0000 0.0000 0.0000 0.0000 

Pentane, 2,2,4-trimethyl- 0.0000 0.0483 0.0000 0.0234 0.0079 0.0000 0.0000 0.0000 0.0000 
n-Heptane 0.0804 0.1277 0.1372 0.1069 0.0399 0.0694 0.0160 0.0414 0.0175 

Cyclohexane, methyl- 0.1590 0.0301 0.2492 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Pentane, 2,3,4-trimethyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Heptane, 2-methyl- 0.0713 0.0998 0.1331 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Heptane, 3-methyl- 0.0857 0.0571 0.1476 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Toluene 0.0868 0.1381 0.1815 0.2240 0.1283 0.2204 0.0351 0.0432 0.0548 
n-Octane 0.1372 0.0710 0.2271 0.0464 0.0108 0.0317 0.0184 0.0120 0.0179 

Ethylbenzene 0.0000 0.0000 0.0000 0.0230 0.0095 0.0196 0.0047 0.0000 0.0058 
m,p-xylene 0.0000 0.0000 0.0282 0.0102 0.0094 0.0236 0.0048 0.0036 0.0064 

Nonane 0.1340 0.1237 0.2113 0.1409 0.0079 0.0289 0.0258 0.0436 0.0535 
styrene 0.1401 0.2102 0.1351 0.3539 0.1306 0.1996 0.0000 0.0000 0.0000 

o-xylene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0611 0.0222 0.0000 0.0000 
Benzene,  isopropyl 0.0000 0.0000 0.0000 0.0000 0.0000 0.0099 0.0000 0.0000 0.0000 
Benzene, n-propyl- 0.0000 0.0000 0.0000 0.0814 0.0000 0.0000 0.0212 0.0000 0.0284 

m-ethyl toluene 0.0000 0.0434 0.0000 0.0000 0.0000 0.0139 0.0000 0.0000 0.0000 
p-ethyl toluene 0.0000 0.0438 0.0000 0.0000 0.0000 0.0325 0.0000 0.0000 0.0000 

Benzene, 1,3,5-trimethyl- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n-decane 0.1127 0.1770 0.1502 0.0384 0.0198 0.0428 0.0581 0.0329 0.1530 

o-ethyl toluene 0.0000 0.0363 0.0000 0.0595 0.0000 0.0000 0.0000 0.0000 0.0000 
Benzene, 1,2,4-trimethyl- 0.0478 0.0478 0.0796 0.0140 0.0000 0.0147 0.0000 0.0000 0.0347 
1,2,3-Trimethylbenzene 0.0000 0.0371 0.0743 0.0268 0.0098 0.0245 0.0000 0.0000 0.0318 

Benzene, m-diethyl- 0.0000 0.0000 0.0000 0.0135 0.0102 0.0276 0.0000 0.0000 0.0283 
Benzene, p-diethyl- 0.0000 0.0000 0.0000 0.0135 0.0102 0.0453 0.0000 0.0000 0.0249 

n-Undecane 0.2406 0.1650 0.3162 0.0601 0.0333 0.0903 0.0491 0.0189 0.2400 
n-dodecane 0.2264 0.1023 0.9203 0.0404 0.0233 0.1965 0.0000 0.0000 0.1767 
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Table C-5: Pile 6 raw VOC data (µg/kg) 

Days 0 0 0 28 28 28 74 74 74 
Hexane 0.0000 0.0000 0.0000 0.0431 0.0065 0.0000 0.0000 0.0182 0.0000 

Pentane, 2,4-dimethyl- 0.8130 0.2879 0.0780 0.0000 0.0999 0.0000 0.0000 0.0000 0.0000 
Cyclopentane, methyl- 0.2171 0.0873 0.0000 0.0000 0.0128 0.0000 0.0000 0.0000 0.0000 

Hexane, 2-methyl- 3.2644 1.3562 0.2907 0.0000 0.0435 0.0000 0.0000 0.0000 0.0000 
Benzene 2.1255 0.9655 0.2390 0.1374 0.2072 0.1151 0.0300 0.0416 0.0000 

Cyclohexane 6.5891 3.1137 0.4436 0.0000 0.1081 0.0000 0.0000 0.0112 0.0000 
2,3 dimethylpentane 1.5638 0.0000 0.2107 0.0552 0.0000 0.0000 0.0000 0.0000 0.0000 
Hexane, 3-methyl- 0.3081 0.2421 0.2283 0.0000 0.0608 0.0000 0.0000 0.0000 0.0000 

Pentane, 2,2,4-trimethyl- 0.1382 0.0000 0.0192 0.0339 0.8935 0.0207 0.0000 0.0035 0.0000 
n-Heptane 4.6838 1.6832 0.3979 0.0514 0.0155 0.0423 0.0000 0.0077 0.0000 

Cyclohexane, methyl- 11.2772 4.6029 0.8249 0.0000 0.1401 0.0031 0.0000 0.0089 0.0000 
Pentane, 2,3,4-trimethyl- 0.2610 0.1006 0.0000 0.0054 0.4133 0.0000 0.0000 0.0000 0.0000 

Heptane, 2-methyl- 4.0608 0.5868 0.3961 0.0015 0.0304 0.0000 0.0000 0.0117 0.0000 
Heptane, 3-methyl- 4.9746 1.8056 0.3854 0.0000 0.0275 0.0000 0.0000 0.0086 0.0000 

Toluene 0.1879 0.1751 0.1784 0.0902 0.0804 0.1682 0.0128 0.0291 0.0102 
n-Octane 4.7135 1.8818 0.6194 0.0196 0.0076 0.0158 0.0064 0.0205 0.0000 

Ethylbenzene 0.1054 0.0901 0.0591 0.0197 0.0074 0.0125 0.0060 0.0053 0.0000 
m,p-xylene 0.1613 0.1553 0.0931 0.0215 0.0095 0.0129 0.0074 0.0066 0.0000 

Nonane 1.8269 1.9044 0.9487 0.0331 0.0253 0.0123 0.0102 0.0823 0.0000 
styrene 0.1406 0.1292 0.0635 0.1969 0.1235 0.1583 0.0098 0.0142 0.0000 

o-xylene 0.1555 0.2490 0.1224 0.0475 0.0000 0.0000 0.0053 0.0047 0.0000 
Benzene,  isopropyl 0.0426 0.0616 0.0000 0.0204 0.0063 0.0021 0.0000 0.0000 0.0000 
Benzene, n-propyl- 0.0337 0.0653 0.0000 0.0287 0.0000 0.0000 0.0000 0.0000 0.0000 

m-ethyl toluene 0.1544 0.2218 0.0000 0.0134 0.0000 0.0046 0.0000 0.0000 0.0549 
p-ethyl toluene 0.0000 0.1237 0.0000 0.0155 0.0000 0.0050 0.0000 0.0000 0.0659 

Benzene, 1,3,5-trimethyl- 0.1817 0.1420 0.2072 0.0074 0.0000 0.0000 0.0000 0.0000 0.1108 
n-decane 0.8042 1.0777 0.6129 0.0526 0.0000 0.0430 0.0000 0.0884 0.0000 

o-ethyl toluene 0.0932 0.1842 0.0618 0.0137 0.0000 0.0000 0.0000 0.0000 0.1035 
Benzene, 1,2,4-trimethyl- 0.1781 0.3681 0.3536 0.0325 0.0000 0.0000 0.0000 0.0000 0.0000 
1,2,3-Trimethylbenzene 0.2071 0.3810 0.0000 0.0352 0.0096 0.0114 0.0000 0.0000 0.0000 

Benzene, m-diethyl- 0.0000 0.0000 0.0000 0.0335 0.0088 0.0056 0.0000 0.0000 0.0000 
Benzene, p-diethyl- 0.0272 0.1452 0.0000 0.0468 0.0088 0.0170 0.0000 0.0000 0.0000 

n-Undecane 0.5796 0.9483 0.8072 0.0865 0.0410 0.0386 0.0000 0.0713 0.0000 
n-dodecane 0.1996 0.3830 0.7011 0.1163 0.0262 0.0372 0.0000 0.0000 0.0000 
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Table C-6: Pile 6a raw VOC data (µg/kg) 

Days 0 0 0 28 28 28 74 74 74 
Hexane 0.0000 0.0000 0.1278 0.0000 0.0000 0.0000 0.0173 0.0000 0.1739 

Pentane, 2,4-dimethyl- 0.0267 0.2586 1.0813 0.0000 0.0000 0.0000 0.0000 0.0000 0.0277 
Cyclopentane, methyl- 0.0000 0.3121 0.2381 0.0000 0.0000 0.0000 0.0156 0.0000 0.1364 

Hexane, 2-methyl- 0.1724 1.4038 3.4091 0.0079 0.0000 0.0000 0.0092 0.0000 0.0916 
Benzene 0.1647 1.6266 1.9780 0.0575 0.1153 0.1248 0.0615 0.0293 0.2973 

Cyclohexane 0.3871 3.9405 6.6516 0.0000 0.0000 0.0000 0.0124 0.0000 2.1409 
2,3 dimethylpentane 0.1599 1.3825 2.1890 0.0000 0.0000 0.0000 0.0096 0.0000 0.1492 
Hexane, 3-methyl- 0.1208 0.6945 0.3192 0.0033 0.0000 0.0000 0.0138 0.0000 0.0923 

Pentane, 2,2,4-trimethyl- 0.0000 0.0000 0.1385 0.0126 0.0000 0.0000 0.0086 0.0017 0.1663 
n-Heptane 0.4402 2.3711 4.0714 0.0339 0.0373 0.0504 0.0175 0.0000 0.1591 

Cyclohexane, methyl- 1.0520 8.1918 8.2954 0.0026 0.0000 0.0000 0.0083 0.0000 0.0562 
Pentane, 2,3,4-trimethyl- 0.0367 0.2688 0.2037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0406 

Heptane, 2-methyl- 0.5472 3.2209 3.6194 0.0000 0.0000 0.0000 0.0061 0.0000 0.0343 
Heptane, 3-methyl- 0.6375 3.4011 3.5643 0.0000 0.0000 0.0000 0.0000 0.0000 0.0182 

Toluene 0.0998 0.4702 0.2179 0.0983 0.1820 0.1885 0.3603 0.0122 -0.0041 
n-Octane 1.1817 4.8659 3.6094 0.0114 0.0073 0.0165 0.0118 0.0000 0.0724 

Ethylbenzene 0.0760 0.3952 0.1155 0.0073 0.0018 0.0118 0.0137 0.0000 0.2346 
m,p-xylene 0.1341 0.6477 0.1729 0.0092 0.0069 0.0130 0.0299 0.0000 0.4129 

Nonane 1.1569 7.5894 2.8882 0.0084 0.0156 0.0153 0.0356 0.0000 0.4145 
styrene 0.0898 0.1348 0.2323 0.0871 0.1412 0.1114 0.0324 0.0000 0.8608 

o-xylene 0.1666 0.7761 0.2112 0.0000 0.0000 0.0000 0.0248 0.0000 0.2579 
Benzene,  isopropyl 0.0445 0.0000 0.0786 0.0000 0.0000 0.0000 0.0000 0.0000 0.0133 
Benzene, n-propyl- 0.0000 0.2688 0.0475 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

m-ethyl toluene 0.1181 0.7482 0.4364 0.0000 0.0000 0.0000 0.0000 0.0000 0.1841 
p-ethyl toluene 0.0492 0.3933 0.0964 0.0000 0.0000 0.0000 0.0000 0.0000 0.1210 

Benzene, 1,3,5-trimethyl- 0.1159 0.5700 0.1454 0.0000 0.0052 0.0000 0.0000 0.0000 0.0000 
n-decane 0.9152 4.9963 1.5203 0.0195 0.0190 0.0087 0.1079 0.0000 1.2786 

o-ethyl toluene 0.0593 0.4660 0.1745 0.0000 0.0000 0.0000 0.0000 0.0000 0.1006 
Benzene, 1,2,4-trimethyl- 0.2555 1.2776 0.5352 0.0000 0.0000 0.0000 0.0000 0.0000 0.6576 
1,2,3-Trimethylbenzene 0.0000 0.0000 0.4248 0.0096 0.0000 0.0000 0.0199 0.0000 0.0592 

Benzene, m-diethyl- 0.0000 0.0000 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.2774 
Benzene, p-diethyl- 0.0663 0.0000 0.1998 0.0106 0.0000 0.0000 0.0000 0.0000 0.2333 

n-Undecane 0.6228 11.2556 1.1556 0.0290 0.0000 0.0315 0.0748 0.0000 1.0042 
n-dodecane 0.2504 2.0924 0.9763 0.0473 0.0069 0.0747 0.0000 0.0000 0.4342 
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Table C-7: Pile 2 raw SVOC data (µg/g) 

Days 0 0 0 28 28 28 48 48 48 

KRO 64.02 180.79 34.47 52.56 29.96 1946.14 404.56 59.37 152.00 

DRO 791.90 3392.18 296.05 217.06 77.90 9362.93 3441.52 728.06 1854.66 

MORO 13680.76 6564.78 1507.56 676.52 236.48 21390.08 5546.24 2319.37 3750.80 

Naphthalene 0.1385 0.3077 0.0849 0.0239 0.0096 0.1759 0.1633 0.0446 0.0991 

Acenaphthylene 0.0402 0.1346 0.0000 0.0000 0.0055 0.0000 0.0000 0.0000 0.0000 

Acenaphthene 0.0447 0.2115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Fluorene 0.0447 0.3269 0.0000 0.0000 0.0000 0.0000 0.0000 0.0260 0.0000 

Phenanthrene 0.1742 1.4616 0.0788 0.0334 0.0000 0.0000 0.2993 0.0966 0.1754 

Anthracene 0.0402 0.3269 0.0126 0.0099 0.0000 0.0000 0.1089 0.0000 0.0381 

Fluoranthene 0.1519 0.8654 0.0485 0.0429 0.0128 0.6451 0.3538 0.0520 0.1449 

Pyrene 0.1251 0.7116 0.0424 0.0525 0.0128 1.0322 0.3129 0.0631 0.1067 

Benz[a]anthracene 0.0313 0.1346 0.0162 0.0000 0.0000 0.0000 0.1769 0.0099 0.0534 

Chrysene 0.0402 0.1923 0.0000 0.0123 0.0000 0.0000 0.2585 0.0334 0.0534 

Benz[b]fluoranthene 0.0268 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Benz[k]fluoranthene 0.0126 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Benzo[a]pyrene 0.0223 0.0000 0.0000 0.0000 0.0000 0.0000 0.0680 0.0000 0.0000 
Indeno(123-
cd)perylene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Dibenz[a,h]anthracene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Benzo[ghi]perylene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1276 0.0000 0.0000 

 
Table C-8: Pile 2a raw SVOC data (µg/g) 

Days 0 0 0 28 28 28 48 48 48 

KRO 40.81 60.44 49.06 53.14 435.01 68.86 115.21 151.76 78.16 

DRO 565.07 323.82 959.49 193.07 340.85 315.96 927.91 1709.70 777.10 

MORO 1887.04 1424.41 3767.84 806.94 891.88 1309.99 2382.13 2168.43 1304.82 

Naphthalene 0.0727 0.1390 0.3365 0.0314 0.0669 0.0342 0.0921 0.1373 0.0436 

Acenaphthylene 0.0000 0.0080 0.0732 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Acenaphthene 0.0229 0.0510 0.3121 0.0000 0.0000 0.0615 0.0102 0.0000 0.0000 

Fluorene 0.0000 0.0463 0.7023 0.0000 0.0000 0.0000 0.0000 0.0392 0.0000 

Phenanthrene 0.1606 0.2641 14.6890 0.0524 0.0573 0.0683 0.0665 0.2060 0.0582 

Anthracene 0.0229 0.0417 3.9990 0.0000 0.0000 0.0000 0.0000 0.0392 0.0000 

Fluoranthene 0.0382 0.1158 22.2481 0.0576 0.0478 0.0683 0.0409 0.1717 0.0388 

Pyrene 0.0612 0.0973 15.1084 0.0524 0.0382 0.1093 0.0486 0.1324 0.0339 

Benz[a]anthracene 0.0102 0.0124 7.8224 0.0140 0.0128 0.0183 0.0000 0.0294 0.0000 

Chrysene 0.0000 0.0000 7.9395 0.0135 0.0287 0.0478 0.0614 0.0589 0.0125 

Benz[b]fluoranthene 0.0000 0.0000 3.7113 0.0000 0.0000 0.0000 0.0000 0.0134 0.0000 

Benz[k]fluoranthene 0.0000 0.0000 3.9063 0.0000 0.0000 0.0000 0.0000 0.0139 0.0000 

Benzo[a]pyrene 0.0000 0.0000 4.5842 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Indeno(123-
cd)perylene 0.0000 0.0000 2.8773 0.0000 0.0000 0.0000 0.0274 0.0000 0.0000 

Dibenz[a,h]anthracene 0.0000 0.0000 0.7071 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Benzo[ghi]perylene 0.0000 0.0000 2.4530 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table C-9: Pile 6 raw SVOC data (µg/g) 

Days 0 0 0 28 28 28 74 74 74 

KRO 132.45 53.56 32.68 23.62 50.69 25.93 116.08 52.51 44.56 

DRO 1223.53 955.90 1762.29 377.00 121.44 326.51 294.85 303.09 324.32 

MORO 4201.49 2270.95 3555.67 805.92 911.17 1346.28 1359.72 1001.02 1744.45 

Naphthalene 1.2550 0.9763 37.6420 0.2136 0.1689 0.3129 0.1983 0.3098 0.9918 

Acenaphthylene 0.3800 0.2586 4.3105 0.0246 0.0188 0.1669 0.0256 0.0362 3.0884 

Acenaphthene 0.2916 0.2541 25.0252 0.0616 0.0235 0.2434 0.0320 0.0857 0.4520 

Fluorene 0.5185 0.4101 26.3494 0.0945 0.0375 0.2468 0.0640 0.1153 1.1299 

Phenanthrene 1.6585 1.3106 105.6431 0.3821 0.1126 1.6791 0.1599 0.4350 18.4988 

Anthracene 0.3800 0.2675 38.9431 0.0863 0.0328 0.8378 0.1599 0.1022 7.1371 

Fluoranthene 0.6334 0.4681 46.5178 0.2794 0.0892 4.6272 0.1152 0.1911 27.3433 

Pyrene 0.6628 0.4146 32.6370 0.2506 0.1314 3.8763 0.1216 0.1582 18.5553 

Benz[a]anthracene 0.1237 0.0981 6.8709 0.0698 0.0235 1.4149 0.0171 0.0297 8.1101 

Chrysene 0.1650 0.1248 7.8016 0.1109 0.0399 1.6096 0.0384 0.0428 9.5475 

Benz[b]fluoranthene 0.0442 0.0357 1.8011 0.0493 0.0164 0.6362 0.0174 0.0000 3.4524 

Benz[k]fluoranthene 0.0471 0.0401 2.4446 0.0534 0.0211 0.8065 0.0000 0.0000 3.8856 

Benzo[a]pyrene 0.0678 0.0669 2.2039 0.0575 0.0305 0.7613 0.0000 0.0165 3.9421 
Indeno(123-
cd)perylene 0.0412 0.0401 0.8843 0.0000 0.0000 0.3059 0.0000 0.0000 2.2158 

Dibenz[a,h]anthracene 0.0000 0.0000 0.2454 0.0000 0.0000 0.0521 0.0000 0.0000 0.5084 

Benzo[ghi]perylene 0.0619 0.0000 0.8149 0.0000 0.0000 0.2225 0.0000 0.0000 1.8769 

 
Table C-10: Pile 6a raw SVOC data (µg/g) 

Days 0 0 0 28 28 28 74 74 74 

KRO 86.93 52.54 40.91 61.75 27.00 27.35 33.86 47.63 137.85 

DRO 1149.14 3597.44 1916.64 199.24 280.54 176.54 138.68 252.26 843.06 

MORO 4813.43 5650.48 5633.56 440.70 1221.03 577.93 498.74 1142.87 4933.44 

Naphthalene 1.2972 4.1354 0.0090 0.4353 0.8364 0.9987 0.1091 0.1987 0.8876 

Acenaphthylene 0.3387 0.6709 4.5584 0.0967 0.0786 0.3305 0.0156 0.0310 0.4772 

Acenaphthene 0.4936 2.0171 32.5723 0.1397 0.1433 0.7002 0.0134 0.0279 0.4677 

Fluorene 0.7134 2.5108 29.8253 0.1397 0.2495 0.6077 0.0245 0.0466 0.6013 

Phenanthrene 2.3674 9.5663 105.1152 0.8976 1.1275 1.9228 0.0846 0.1615 2.3289 

Anthracene 0.5513 2.4981 61.4223 0.1935 0.2865 1.0165 0.0289 0.0528 1.2026 

Fluoranthene 0.8288 3.5320 67.6859 0.8707 0.6793 4.9189 0.0801 0.1211 4.6100 

Pyrene 0.6450 2.7007 51.5159 0.7901 0.5268 4.8264 0.0913 0.1304 4.5432 

Benz[a]anthracene 0.1297 0.6414 10.4637 0.3386 0.1386 1.8197 0.0245 0.0342 1.7180 

Chrysene 0.1694 0.8018 13.3434 0.4515 0.1941 2.3279 0.0356 0.0652 2.2907 

Benz[b]fluoranthene 0.0504 0.1772 2.6076 0.1666 0.0601 0.8068 0.0061 0.0217 0.7349 

Benz[k]fluoranthene 0.0577 0.2321 3.3972 0.2257 0.0739 1.0236 0.0134 0.0217 0.8685 

Benzo[a]pyrene 0.0613 0.2405 3.4901 0.1720 0.0739 1.0662 0.0111 0.0155 0.0477 
Indeno(123-
cd)perylene 0.0386 0.1604 1.2076 0.0576 0.0495 0.3412 0.0000 0.0000 0.3531 

Dibenz[a,h]anthracene 0.0000 0.0633 0.0995 0.0000 0.0000 0.1102 0.0000 0.0000 0.1432 

Benzo[ghi]perylene 0.0338 0.1308 1.2939 0.0504 0.0000 0.3341 0.0000 0.0000 0.3913 
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Table C-11: Piles 1 and 1a component wt% based on hand sorting of bulk samples 

Pile 1 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.0 0.0 0.2 18.1 81.6 0.0 0.0 0.0 
6 0.0 0.0 0.5 14.5 85.0 0.0 0.0 0.0 

13 0.0 0.0 1.2 0.5 98.3 0.0 0.0 0.0 
20 0.0 0.0 1.3 2.0 94.1 0.0 0.0 2.6 
28 0.0 0.0 1.1 1.5 96.5 0.0 0.0 0.9 
34 0.0 0.0 1.3 1.1 96.0 0.0 0.0 1.6 
41 0.0 0.0 4.2 0.0 92.9 0.0 0.0 2.9 
47 0.0 0.0 3.9 0.1 89.8 0.0 0.0 6.2 
54 0.0 0.0 4.0 0.1 89.2 0.0 0.0 6.7 

Pile 1a Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.0 0.0 1.4 38.8 59.8 0.0 0.0 0.0 
6 0.0 0.0 0.8 16.2 81.5 0.0 0.0 1.5 

20 0.0 0.0 2.6 7.3 89.1 0.0 0.0 0.9 
28 0.0 0.1 1.4 2.5 94.8 0.0 0.0 1.3 
34 0.0 0.0 2.2 1.8 94.4 0.2 0.0 1.4 
41 0.0 0.0 8.1 0.2 89.8 0.0 0.0 2.0 
47 0.0 0.0 6.5 0.2 87.9 0.0 0.0 5.4 
54 0.0 0.0 2.2 0.2 95.8 0.0 0.0 1.8 
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Table C-12: Piles 2 and 2a component wt% based on hand sorting of bulk samples 

Pile 2 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.4 1.4 6.8 13.5 78.0 0.0 0.0 0.0 
9 1.8 3.1 10.2 2.0 82.8 0.0 0.0 0.0 

15 0.5 5.6 14.6 15.8 62.1 1.3 0.0 0.0 
22 0.8 1.5 20.3 4.4 72.1 0.8 0.0 0.0 
29 0.5 2.1 18.6 0.2 69.7 0.3 0.0 8.7 
36 0.1 4.2 22.0 6.2 64.1 0.0 0.0 3.3 
43 0.2 4.3 17.4 3.6 70.9 0.1 0.0 3.5 
50 0.2 2.8 29.1 0.3 60.4 0.0 0.0 7.3 
56 0.0 1.9 16.8 0.2 71.0 0.4 0.0 9.6 
63 0.1 1.8 19.9 0.5 71.7 0.2 0.0 5.8 

Pile 2a Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.5 0.5 20.7 33.9 44.5 0.0 0.0 0.0 
9 1.8 4.2 14.3 1.5 77.9 0.2 0.0 0.0 

15 0.5 1.9 11.6 22.6 63.1 0.3 0.0 0.0 
22 1.3 2.9 26.3 9.8 43.3 1.4 0.0 15.0 
29 0.7 0.9 23.3 13.6 48.1 0.2 0.0 13.2 
36 0.8 2.1 25.2 3.4 56.8 0.0 0.0 11.7 
43 0.5 1.3 12.2 3.2 76.8 0.3 0.6 5.1 
50 0.3 1.9 31.5 0.7 50.8 0.2 0.8 13.9 
56 0.1 4.0 22.7 0.3 63.5 0.0 0.0 9.4 
63 0.5 3.9 27.7 0.2 60.5 0.3 0.0 6.9 
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Table C-13: Piles 3 and 3a component wt% based on hand sorting of bulk samples 

Pile 3 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.4 0.6 79.2 14.8 4.9 0.0 0.0 0.0 
9 0.5 0.9 4.8 12.6 81.1 0.0 0.0 0.0 

15 0.3 0.4 5.3 11.0 83.0 0.1 0.0 0.0 
22 0.4 1.2 7.2 6.8 81.6 0.2 0.0 2.5 
29 0.2 0.7 10.0 2.5 84.3 0.0 0.0 2.4 
36 0.2 0.7 7.9 0.9 87.3 0.0 0.0 3.0 
43 0.1 0.8 10.6 1.5 83.6 0.1 0.0 3.3 
50 0.0 1.1 16.3 0.2 77.2 0.2 0.0 5.0 
56 0.0 2.0 15.1 0.0 75.1 0.1 0.0 7.8 
63 0.0 1.2 13.6 0.0 77.1 0.1 0.0 8.0 

Pile 3a Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.8 0.2 76.1 18.4 4.6 0.0 0.0 0.0 
9 0.0 0.3 1.1 14.0 84.6 0.0 0.0 0.0 

15 0.3 0.4 5.3 10.5 83.5 0.0 0.0 0.0 
22 0.5 1.9 7.5 5.0 84.8 0.2 0.0 0.0 
29 0.3 1.0 15.2 2.3 77.2 0.5 0.0 3.6 
36 0.0 1.4 10.4 3.1 80.6 0.4 0.0 4.1 
43 0.0 0.5 7.3 1.0 87.3 0.0 0.0 3.9 
50 0.0 0.8 9.2 1.0 84.4 0.0 0.0 4.6 
56 0.0 0.9 17.3 0.1 69.6 0.3 0.0 11.7 
63 0.0 0.4 13.0 0.1 79.0 0.0 0.0 7.5 
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Table C-14: Piles 4 and 4a component wt% based on hand sorting of bulk samples 

Pile 4 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 9.5 9.0 16.2 1.7 59.8 3.8 0.0 0.0 
13 4.4 5.3 10.3 1.5 77.7 0.9 0.0 0.0 
20 5.5 11.3 12.3 0.0 60.5 3.6 0.0 6.6 
27 6.2 14.5 12.0 1.8 56.4 3.4 0.0 5.7 
34 1.5 13.4 16.3 1.1 64.3 1.0 0.0 2.4 
41 0.8 10.0 15.3 4.7 60.5 1.0 0.0 7.7 
47 1.3 13.3 29.4 3.7 45.7 2.5 0.0 4.1 
54 0.3 6.3 12.5 5.6 65.9 1.4 0.0 8.1 

Pile 4a Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 6.2 10.6 16.4 3.6 59.5 3.7 0.0 0.0 
13 7.0 6.1 21.8 14.1 47.8 1.1 0.03 2.3 
20 3.9 4.2 12.2 3.5 53.7 1.1 0.0 21.4 
27 4.1 8.4 14.8 3.6 57.5 7.5 0.0 4.0 
34 5.3 7.5 11.9 4.7 61.0 1.1 0.0 8.4 
41 1.9 5.4 17.8 1.4 64.5 5.2 0.0 3.8 
47 0.7 11.4 11.9 0.5 65.5 1.4 0.0 8.6 
54 0.6 6.0 17.1 1.1 51.2 2.4 0.0 21.5 

 
Table C-15: Pile 5 component wt% based on hand sorting of bulk samples 

Pile 5 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 8.9 9.3 8.7 5.5 61.9 5.7 0.0 0.0 
10 4.5 13.5 9.3 1.2 69.9 1.7 0.0 0.0 
17 7.0 7.5 11.7 4.6 49.7 1.2 0.0 18.3 
24 2.5 9.0 13.1 1.5 68.7 1.1 0.0 4.2 
31 1.0 12.0 13.8 1.8 67.3 0.6 0.0 3.5 
38 0.4 20.7 19.0 0.2 47.3 6.8 0.0 5.6 
44 0.5 14.3 27.1 0.3 42.3 2.4 0.0 13.2 
51 0.7 9.4 11.8 0.1 73.7 0.9 0.0 3.4 
58 0.1 14.7 21.0 0.2 50.0 1.1 0.0 12.9 
77 0.0 12.5 19.1 0.0 60.7 1.9 0.0 5.7 
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Table C-16: Piles 6 and 6a component wt% based on hand sorting of bulk samples 

Pile 6 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 4.7 4.5 18.3 10.4 38.9 3.8 0.0 19.4 
7 4.4 6.9 10.4 3.9 61.4 1.8 0.0 11.2 

14 1.4 2.9 10.4 21.7 51.8 0.3 0.0 11.5 
21 1.6 6.3 22.9 4.1 59.5 0.6 0.0 4.9 
28 0.3 3.9 20.6 7.6 59.1 1.1 0.6 6.7 
35 0.2 9.1 22.6 0.3 46.6 8.1 0.0 20.2 
41 0.2 7.2 22.8 0.3 68.2 0.4 0.0 7.1 
48 0.0 6.0 16.1 4.5 71.6 1.4 0.0 6.4 
55 0.3 4.9 26.3 0.2 61.3 0.9 0.9 5.2 
74 0.1 4.1 21.6 0.2 60.0 1.3 0.0 12.5 

Pile 6a Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 4.3 5.2 8.5 3.8 77.0 1.2 0.0 0.0 
7 2.3 6.5 19.6 1.5 68.8 1.3 0.0 0.0 

14 2.3 9.7 14.3 2.1 51.4 1.9 0.2 17.2 
21 1.3 8.6 20.5 3.8 58.2 1.3 0.0 6.4 
28 0.5 9.1 18.4 1.4 61.1 1.4 0.1 7.7 
35 0.1 8.9 31.5 0.3 47.3 1.2 0.0 10.8 
41 0.2 8.3 16.3 1.9 65.5 1.2 0.0 6.6 
48 0.3 8.1 21.9 0.6 59.4 2.9 0.0 6.8 
55 0.2 11.5 21.2 0.9 53.5 2.9 0.0 9.8 
74 0.1 8.3 20.5 0.2 57.7 2.7 0.0 10.6 
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Table C-17: Piles 7, 8 and 9 component wt% based on hand sorting of bulk samples 

Pile 7 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 0.3 0.2 0.8 0.2 2.9 0.1 0.0 1.0 
7 1.7 5.5 14.8 12.2 57.6 1.5 0.1 6.6 

14 1.2 5.2 15.1 12.0 57.7 1.8 0.1 6.9 
21 1.0 6.4 19.8 2.0 54.4 1.5 0.0 14.9 
28 0.3 5.8 19.6 2.3 54.3 1.5 0.0 16.1 
35 0.2 7.3 20.2 3.1 55.2 0.9 0.1 13.1 
41 0.1 7.6 17.9 3.0 63.7 2.0 0.1 5.8 
48 0.0 8.7 18.7 1.9 61.9 2.1 0.1 6.6 
55 0.0 8.8 17.1 0.3 61.7 2.4 0.0 9.6 
74 0.0 9.9 17.8 0.1 58.9 1.1 0.0 17.7 

Pile 8 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 1.5 4.1 19.4 4.2 52.1 0.5 0.0 18.2 
8 1.3 2.1 14.6 2.1 71.0 0.9 0.0 8.1 

14 1.1 3.4 18.9 11.9 54.8 1.2 0.1 8.5 
21 0.3 4.0 32.2 16.1 40.9 0.6 0.0 5.8 
27 0.4 3.1 23.3 0.3 47.5 2.6 0.0 22.7 
34 1.0 5.9 21.7 1.6 47.5 0.5 0.0 21.8 
41 0.1 3.1 18.9 0.0 60.7 0.1 0.0 17.0 
60 0.1 4.1 14.5 0.0 68.8 2.9 0.0 9.6 
69 0.1 3.5 18.5 0.4 68.6 0.7 0.0 8.3 

Pile 9 Component Wt% 
∑Time (d) Paper Plastic Wood Organic Soil Metal & Glass Tires Inorganic 

0 1.9 2.3 12.6 18.8 49.3 0.7 0.0 14.3 
8 1.4 1.1 10.4 30.9 46.8 0.7 0.0 8.8 

14 0.7 3.6 4.5 42.5 39.7 0.9 0.0 8.2 
21 0.3 2.1 10.3 40.9 37.0 1.1 0.0 8.4 
27 0.5 3.6 10.7 16.3 60.6 1.0 0.0 7.3 
34 0.3 2.0 11.9 4.4 59.7 0.8 0.0 21.0 
41 0.3 2.3 9.1 4.6 71.9 0.4 0.0 11.4 
60 0.2 1.6 14.1 2.3 68.6 0.5 0.0 12.7 
69 0.1 1.3 9.7 0.0 74.2 0.4 0.0 14.3 
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Table C-18: Hand sorting of screened compost for all piles 

 Component Wt % 
Pile Paper Plastic Wood Organic Soil Metal & Glass Inorganic 

1 0 0.01 0.377 0.028 4.294 0 0.461 
1 0 0.014 0.551 0.028 4.401 0 0.511 
1 0 0.003 0.412 0.022 3.77 0 0.475 

1* 0 0.003 0.108 0.005 4.5 0 0.152 
1* 0 0.004 0.088 0.007 3.469 0.001 0.107 
1* 0 0.003 0.096 0.006 3.333 0.001 0.116 
1a 0 0.003 0.182 0.011 3.697 0.001 0.306 
1a 0 0.002 0.167 0.006 3.439 0 0.385 
1a 0 0.002 0.246 0.008 0.1441 0 0.309 

1a* 0 0.003 0.107 0.002 3.763 0 0.197 
1a* 0 0.003 0.15 0.005 3.85 0 0.28 
1a* 0 0.004 0.144 0.004 4.005 0 0.34 
2 0.002 0.144 1.359 0 0.405 0.01 0.643 
2 0.001 0.061 1.53 0 0.464 0 0.405 
2 0.003 0.138 1.582 0 0.712 0.027 1.314 

2* 0.006 0.025 0.202 0.046 3.62 0.002 0.239 
2* 0.008 0.034 0.3 0.067 4.088 0.001 0.29 
2* 0.002 0.02 0.248 0.044 3.535 0 0.241 
2a 0 0.205 0.885 0 0.166 0.017 0.478 
2a 0.007 0.148 0.968 0 0.428 0.017 0.91 
2a 0.005 0.15 1.176 0 0.601 0.01 0.715 

2a* 0.002 0.029 0.294 0.006 4.093 0.002 0.658 
2a* 0.002 0.032 0.363 0.003 4.215 0.001 0.71 
2a* 0.003 0.024 0.394 0.004 4.005 0.001 0.654 
3 0.003 0.155 1.883 0.027 0.822 0.004 1.334 
3 0.002 0.17 1.936 0.003 0.868 0.001 1.36 
3 0.005 0.146 1.845 0.013 0.758 0.001 1.271 

3* 0 0.019 0.31 0.045 4.865 0 0.321 
3* 0.002 0.014 0.276 0.037 5.415 0 0.384 
3a 0.007 0.092 1.362 0.027 0.762 0 0.598 
3a 0.012 0.084 1.48 0.026 0.84 0.123 0.866 
3a 0.003 0.072 1.197 0.014 0.866 0.001 0.606 

3a* 0.001 0.014 0.355 0.005 2.824 0.001 0.664 
3a* 0.002 0.01 0.319 0.004 3.003 0.002 1.059 
3a* 0.001 0.012 0.351 0.004 3.254 0.001 0.81 
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Table C-18: Hand sorting of screened compost for all piles continued 

 Component Wt % 
Pile Paper Plastic Wood Organic Soil Metal & Glass Inorganic 

4 0.003 0.372 0.844 0 0.592 0.008 1.513 
4 0.025 0.419 0.641 0 1.134 0.042 0.813 
4 0 0.321 0.933 0 1.058 0.101 0.563 

4* 0.002 0.03 0.233 0.036 3.167 0.006 0.222 
4* 0.002 0.047 0.364 0.041 3.764 0.009 0.284 
4* 0.004 0.064 0.428 0.074 3.892 0.013 0.402 
4a 0.007 0.247 0.677 0.008 0.695 0.124 1.186 
4a 0.005 0.179 0.408 0.023 0.635 0.231 0.945 
4a 0.022 0.187 0.532 0.015 0.488 0.142 0.802 

4a* 0.005 0.054 0.293 0.002 4.033 0.018 0.587 
4a* 0.005 0.043 0.247 0.001 3.34 0.02 0.646 
4a* 0.005 0.038 0.251 0.002 3.612 0.016 0.747 
6 0.002 0.467 1.458 0.011 1.626 0.081 0.854 
6 0.002 0.473 1.634 0.004 2.031 0.042 0.941 
6 0.003 0.488 1.772 0.004 1.971 0.033 1.206 

6* 0 0.037 0.325 0.002 3.46 0.009 0.372 
6* 0 0.049 0.294 0.002 3.416 0.005 0.396 
6* 0.002 0.055 0.35 0.003 3.276 0.01 0.64 
6a 0.002 0.243 1.727 0.017 1.121 0.214 0.537 
6a 0.001 0.35 1.42 0.016 1.26 0.128 0.777 
6a 0.002 0.283 1.389 0.004 0.685 0.177 0.674 

6a* 0.001 0.051 0.187 0.01 2.829 0.011 0.623 
6a* 0.002 0.083 0.216 0.026 3.432 0.018 0.624 
6a* 0.002 0.081 0.116 0.012 2.856 0.006 0.634 
7 0.005 0.433 1.405 0.017 1.885 0.1987 0.672 
7 0.007 0.469 1.143 0.007 2.245 0.1 0.811 

7* 0.001 0.049 0.134 0.065 3.215 0.015 0.379 
7* 0.001 0.047 0.17 0.055 3.32 0.01 0.353 
7* 0.001 0.052 0.271 0.046 3.115 0.012 0.385 
9 0.003 0.101 0.861 0 0.424 0.002 0.636 
9 0.004 0.127 0.923 0 0.399 0.029 0.552 
9 0 0.128 0.747 0 0.265 0.032 0.528 

9* 0.002 0.011 0.521 0 2.806 0.005 0.1 
9* 0.004 0.013 0.592 0 2.257 0 0.064 
9* 0 0.01 0.18 0 2.917 0.003 0.292 

* Represents the reject portion results from the screening of compost piles 
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Table C-19: Dry weight raw data for all piles 

Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 
21-Jul 1 98.4 201.2 153.8 0.539 
21-Jul 1 109.4 226.4 174.2 0.554 
21-Jul 1 102.3 239.3 183.5 0.593 
28-Jul 1 109.7 261.1 197.8 0.582 
28-Jul 1 101.3 225.6 170.9 0.560 
28-Jul 1 100.6 216.7 161.3 0.523 
4-Aug 1 102.9 219.5 168.2 0.560 
4-Aug 1 102.0 226.9 172.2 0.562 
4-Aug 1 106.6 236.8 184.7 0.600 

11-Aug 1 102.8 256.1 196.1 0.609 
11-Aug 1 99.8 214.6 162.3 0.544 
11-Aug 1 111.0 240.2 181.6 0.546 
18-Aug 1 101.0 226.3 168.5 0.539 
18-Aug 1 96.6 272.9 190.0 0.530 
18-Aug 1 102.9 265.2 186.7 0.516 
24-Aug 1 110.3 231.5 182.4 0.595 
24-Aug 1 103.8 212.7 163.9 0.552 
24-Aug 1 103.8 243.5 187.7 0.601 
31-Aug 1 111.5 274.3 207.7 0.591 
31-Aug 1 101.9 233.2 186.2 0.642 
31-Aug 1 98.7 214.8 169.0 0.606 
21-Jul 2 106.3 183.7 161.6 0.714 
21-Jul 2 102.6 203.1 172.9 0.700 
21-Jul 2 102.9 207.3 173.4 0.675 
28-Jul 2 101.3 216.7 178.7 0.671 
28-Jul 2 112.2 214.1 189.0 0.754 
28-Jul 2 103.3 225.6 194.9 0.749 
4-Aug 2 202.4 298.9 266.2 0.661 
4-Aug 2 205.8 317.7 291.7 0.768 
4-Aug 2 206.9 306.2 270.1 0.636 

11-Aug 2 207.5 333.8 286.6 0.626 
11-Aug 2 204.8 340.6 289.5 0.624 
11-Aug 2 205.3 335.3 288.4 0.639 
18-Aug 2 102.4 198.0 161.4 0.617 
18-Aug 2 102.7 277.1 211.1 0.622 
18-Aug 2 104.5 234.9 186.5 0.629 
24-Aug 2 102.9 229.1 183.6 0.639 
24-Aug 2 100.3 260.7 204.0 0.647 
24-Aug 2 101.1 249.5 195.3 0.635 
31-Aug 2 104.2 236.4 189.1 0.642 
31-Aug 2 96.6 231.9 180.2 0.618 
31-Aug 2 102.3 247.7 198.6 0.662 
21-Jul 3 105.5 205.8 166.9 0.612 
21-Jul 3 102.6 200.8 165.8 0.644 
21-Jul 3 102.3 214.1 171.1 0.615 
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Table C-19: Dry weight raw data for all piles continued 
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

28-Jul 3 106.9 220.0 176.8 0.618 
28-Jul 3 98.7 212.8 162.3 0.557 
28-Jul 3 98.4 215.5 167.0 0.586 
4-Aug 3 109.4 240.6 183.2 0.563 
4-Aug 3 103.8 231.8 177.0 0.572 
4-Aug 3 111.1 274.4 194.8 0.513 

11-Aug 3 110.5 210.2 173.0 0.627 
11-Aug 3 100.8 215.5 168.9 0.594 
11-Aug 3 103.8 202.1 169.1 0.664 
18-Aug 3 98.5 219.6 182.1 0.690 
18-Aug 3 98.8 213.9 170.7 0.625 
18-Aug 3 105.0 223.4 178.5 0.621 
24-Aug 3 105.8 203.4 163.4 0.590 
24-Aug 3 100.2 195.2 152.7 0.553 
24-Aug 3 102.8 250.5 195.2 0.626 
31-Aug 3 102.7 221.6 176.8 0.623 
31-Aug 3 100.6 221.9 164.0 0.523 
31-Aug 3 100.2 228.6 173.0 0.567 
21-Jul 4 98.7 232.4 177.7 0.591 
21-Jul 4 110.9 251.3 209.3 0.701 
21-Jul 4 100.3 254.2 212.2 0.727 
28-Jul 4 112.8 203.9 171.2 0.641 
28-Jul 4 110.5 213.9 183.0 0.701 
28-Jul 4 106.3 223.9 188.4 0.698 
4-Aug 4 102.3 224.8 183.9 0.666 
4-Aug 4 106.3 257.0 206.1 0.662 
4-Aug 4 112.1 214.5 175.7 0.621 

11-Aug 4 103.8 224.8 174.8 0.587 
11-Aug 4 106.5 234.9 180.7 0.578 
11-Aug 4 102.1 182.9 158.2 0.694 
18-Aug 4 109.7 231.1 184.9 0.619 
18-Aug 4 98.0 270.5 217.3 0.692 
18-Aug 4 101.1 251.4 187.4 0.574 
24-Aug 4 103.8 242.9 203.4 0.716 
24-Aug 4 101.4 197.6 163.1 0.641 
24-Aug 4 110.3 215.1 173.7 0.605 
31-Aug 4 102.0 206.5 166.5 0.617 
31-Aug 4 109.7 243.0 206.1 0.723 
31-Aug 4 100.7 223.0 181.9 0.664 
21-Jul 5 112.1 180.4 159.6 0.695 
21-Jul 5 101.3 232.7 168.4 0.511 
21-Jul 5 101.9 202.5 163.3 0.610 
28-Jul 5 105.5 174.5 158.7 0.771 
28-Jul 5 101.0 181.2 163.5 0.779 
28-Jul 5 109.7 190.3 171.1 0.762 
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Table C-19: Dry weight raw data for all piles continued 
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

4-Aug 5 101.4 220.1 193.9 0.779 
4-Aug 5 109.6 172.5 158.6 0.779 
4-Aug 5 110.4 241.3 196.6 0.659 

18-Aug 5 102.8 229.3 193.7 0.719 
18-Aug 5 100.2 175.2 160.9 0.809 
18-Aug 5 101.3 183.2 156.9 0.679 
24-Aug 5 103.9 213.7 180.2 0.695 
24-Aug 5 100.3 192.1 164.5 0.699 
24-Aug 5 102.0 199.1 164.7 0.646 
31-Aug 5 104.8 214.5 186.7 0.747 
31-Aug 5 101.0 198.0 173.0 0.742 
31-Aug 5 102.3 201.7 175.5 0.736 
7-Sep 5 101.2 190.2 164.8 0.715 
7-Sep 5 102.9 199.2 166.0 0.655 
7-Sep 5 102.4 195.2 166.5 0.691 

26-Sep 5 102.5 255.1 202.7 0.657 
26-Sep 5 103.1 262.8 206.1 0.645 
26-Sep 5 99.0 241.1 195.1 0.676 
4-Aug 6 104.2 219.1 179.9 0.659 
4-Aug 6 98.0 195.3 165.8 0.697 
4-Aug 6 109.4 265.7 224.3 0.735 

11-Aug 6 203.0 312.5 283.1 0.732 
11-Aug 6 205.3 339.4 310.6 0.785 
11-Aug 6 206.1 354.9 317.0 0.745 
18-Aug 6 112.8 169.0 155.6 0.762 
18-Aug 6 102.9 201.4 169.5 0.676 
18-Aug 6 100.2 192.2 168.7 0.745 
24-Aug 6 103.8 215.4 182.9 0.709 
24-Aug 6 104.5 229.9 189.8 0.680 
24-Aug 6 100.5 214.1 174.9 0.655 
31-Aug 6 103.0 243.8 196.9 0.667 
31-Aug 6 100.2 242.2 187.5 0.615 
31-Aug 6 100.7 222.8 192.5 0.752 
7-Sep 6 102.3 251.8 199.4 0.649 
7-Sep 6 104.9 286.0 225.2 0.664 
7-Sep 6 100.8 188.6 164.0 0.720 

26-Sep 6 110.4 189.4 163.2 0.668 
26-Sep 6 112.9 196.4 170.6 0.691 
26-Sep 6 98.9 211.5 175.3 0.679 
19-Oct 6 98.7 217.6 188.6 0.756 
19-Oct 6 103.8 212.6 181.5 0.714 
19-Oct 6 112.8 220.4 190.9 0.726 
21-Jul 7 98.0 217.9 182.7 0.706 
21-Jul 7 107.2 196.6 159.0 0.579 
21-Jul 7 100.4 205.1 153.3 0.505 
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Table C-19: Dry weight raw data for all piles continued  
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

28-Jul 7 100.8 189.4 131.3 0.344 
28-Jul 7 102.1 235.9 176.5 0.556 
28-Jul 7 100.1 232.6 191.5 0.690 
4-Aug 7 103.7 192.1 168.7 0.735 
4-Aug 7 102.9 213.3 188.3 0.774 
4-Aug 7 101.3 221.2 191.2 0.750 

11-Aug 7 98.5 183.5 155.7 0.673 
11-Aug 7 100.2 184.9 157.2 0.673 
11-Aug 7 101.9 218.4 170.9 0.592 
18-Aug 7 102.2 215.7 188.8 0.763 
18-Aug 7 96.6 179.7 159.5 0.757 
18-Aug 7 98.8 175.6 157.9 0.770 
24-Aug 7 101.9 178.7 157.6 0.725 
24-Aug 7 112.8 187.8 167.8 0.733 
24-Aug 7 104.8 167.9 146.7 0.664 
7-Sep 7 102.7 231.5 189.6 0.675 
7-Sep 7 102.2 208.5 170.8 0.645 
7-Sep 7 111.0 224.0 187.0 0.673 

26-Sep 7 110.0 232.3 193.3 0.681 
26-Sep 7 106.9 209.7 179.9 0.710 
26-Sep 7 111.7 252.1 212.4 0.717 
19-Oct 7 103.8 248.8 202.0 0.677 
19-Oct 7 104.8 254.9 210.0 0.701 
19-Oct 7 100.2 213.7 170.0 0.615 
4-Aug 6 104.2 219.1 179.9 0.659 
4-Aug 6 98.0 195.3 165.8 0.697 
4-Aug 6 109.4 265.7 224.3 0.735 

11-Aug 6 203.0 312.5 283.1 0.732 
11-Aug 6 205.3 339.4 310.6 0.785 
11-Aug 6 206.1 354.9 317.0 0.745 
18-Aug 6 112.8 169.0 155.6 0.762 
18-Aug 6 102.9 201.4 169.5 0.676 
18-Aug 6 100.2 192.2 168.7 0.745 
24-Aug 6 103.8 215.4 182.9 0.709 
24-Aug 6 104.5 229.9 189.8 0.680 
24-Aug 6 100.5 214.1 174.9 0.655 
31-Aug 6 103.0 243.8 196.9 0.667 
31-Aug 6 100.2 242.2 187.5 0.615 
31-Aug 6 100.7 222.8 192.5 0.752 
7-Sep 6 102.3 251.8 199.4 0.649 
7-Sep 6 104.9 286.0 225.2 0.664 
7-Sep 6 100.8 188.6 164.0 0.720 

26-Sep 6 110.4 189.4 163.2 0.668 
26-Sep 6 112.9 196.4 170.6 0.691 
26-Sep 6 98.9 211.5 175.3 0.679 
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Table C-19: Dry weight raw data for all piles continued  
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

19-Oct 6 98.7 217.6 188.6 0.756 
19-Oct 6 103.8 212.6 181.5 0.714 
19-Oct 6 112.8 220.4 190.9 0.726 
21-Jul 7 98.0 217.9 182.7 0.706 
21-Jul 7 107.2 196.6 159.0 0.579 
21-Jul 7 100.4 205.1 153.3 0.505 
28-Jul 7 100.8 189.4 131.3 0.344 
28-Jul 7 102.1 235.9 176.5 0.556 
28-Jul 7 100.1 232.6 191.5 0.690 
4-Aug 7 103.7 192.1 168.7 0.735 
4-Aug 7 102.9 213.3 188.3 0.774 
4-Aug 7 101.3 221.2 191.2 0.750 

11-Aug 7 98.5 183.5 155.7 0.673 
11-Aug 7 100.2 184.9 157.2 0.673 
11-Aug 7 101.9 218.4 170.9 0.592 
18-Aug 7 102.2 215.7 188.8 0.763 
18-Aug 7 96.6 179.7 159.5 0.757 
18-Aug 7 98.8 175.6 157.9 0.770 
24-Aug 7 101.9 178.7 157.6 0.725 
24-Aug 7 112.8 187.8 167.8 0.733 
24-Aug 7 104.8 167.9 146.7 0.664 
7-Sep 7 102.7 231.5 189.6 0.675 
7-Sep 7 102.2 208.5 170.8 0.645 
7-Sep 7 111.0 224.0 187.0 0.673 

26-Sep 7 110.0 232.3 193.3 0.681 
26-Sep 7 106.9 209.7 179.9 0.710 
26-Sep 7 111.7 252.1 212.4 0.717 
19-Oct 7 103.8 248.8 202.0 0.677 
19-Oct 7 104.8 254.9 210.0 0.701 
19-Oct 7 100.2 213.7 170.0 0.615 
4-Aug 8 100.8 206.2 174.7 0.701 
4-Aug 8 98.7 260.6 223.7 0.772 
4-Aug 8 102.6 235.1 198.3 0.722 

11-Aug 8 109.8 221.5 201.8 0.824 
11-Aug 8 111.8 199.4 184.2 0.826 
11-Aug 8 106.5 190.9 169.5 0.746 
18-Aug 8 104.1 217.7 181.9 0.685 
18-Aug 8 106.3 206.4 172.0 0.656 
18-Aug 8 1000.4 175.4 138.9 1.044 
24-Aug 8 102.6 209.7 185.6 0.775 
24-Aug 8 109.4 217.3 191.0 0.756 
24-Aug 8 106.3 225.8 198.1 0.768 
31-Aug 8 105.2 209.3 184.3 0.760 
31-Aug 8 102.7 203.7 176.5 0.731 
31-Aug 8 109.7 214.3 189.4 0.762 
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Table C-19: Dry weight raw data for all piles continued 
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 
7-Sep 8 106.8 232.3 198.5 0.731 
7-Sep 8 100.8 188.3 165.5 0.739 
7-Sep 8 106.3 270.6 230.9 0.758 

26-Sep 8 102.6 232.2 199.3 0.746 
26-Sep 8 103.8 223.3 189.5 0.717 
26-Sep 8 100.2 209.7 185.5 0.779 
5-Oct 8 102.6 229.1 198.4 0.757 
5-Oct 8 96.6 200.8 171.2 0.716 
5-Oct 8 103.9 207.7 178.4 0.718 
28-Jul 9 101.3 205.4 195.6 0.906 
28-Jul 9 101.0 218.9 210.3 0.927 
28-Jul 9 100.5 161.4 154.0 0.878 
28-Jul 9 106.5 215.1 206.1 0.917 
28-Jul 9 102.8 164.7 154.5 0.835 
28-Jul 9 100.2 238.1 231.6 0.953 
4-Aug 9 100.3 216.8 196.3 0.824 
4-Aug 9 106.5 227.3 189.3 0.685 
4-Aug 9 101.2 207 171.3 0.663 

11-Aug 9 102.6 187.9 174.1 0.838 
11-Aug 9 102.4 189.7 174.3 0.824 
11-Aug 9 103.2 184.9 166.6 0.776 
18-Aug 9 112.2 178.0 159.9 0.725 
18-Aug 9 103.7 185.9 161.2 0.700 
18-Aug 9 100.5 216.6 186.1 0.737 
24-Aug 9 111.7 171.8 156.5 0.745 
24-Aug 9 111.5 213.8 192.7 0.794 
24-Aug 9 106.5 173.1 157.4 0.764 
31-Aug 9 112.9 202.9 181.1 0.758 
31-Aug 9 110.5 201.3 182.7 0.795 
31-Aug 9 106.4 186.9 170.6 0.798 
7-Sep 9 109.8 208.8 187.0 0.780 
7-Sep 9 103.8 193.7 174.6 0.788 
7-Sep 9 106.5 173.4 159.9 0.798 

26-Sep 9 110.3 200.0 186.8 0.853 
26-Sep 9 103.1 195.1 181.9 0.857 
26-Sep 9 104.0 191.4 179.3 0.862 
5-Oct 9 109.5 249.1 232.2 0.879 
5-Oct 9 103.9 215.5 200.6 0.866 
5-Oct 9 96.7 246.6 227.8 0.875 

19-Oct 9 100.4 190.6 175.5 0.833 
19-Oct 9 101.4 181.9 167.1 0.816 
19-Oct 9 103.0 150.4 141.6 0.814 
21-Jul 1a 111.8 212.6 166.5 0.543 
21-Jul 1a 109.4 202.8 158.8 0.529 
21-Jul 1a 100.8 206.8 154.0 0.502 
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Table C-19: Dry weight raw data for all piles continued  
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

28-Jul 1a 102.3 220.5 174.4 0.610 
28-Jul 1a 102.6 207.9 158.7 0.533 
28-Jul 1a 100.1 240.4 170.7 0.503 
4-Aug 1a 109.8 212.1 159.0 0.481 
4-Aug 1a 110.9 220.1 164.6 0.492 
4-Aug 1a 102.6 2135 156.3 0.026 

11-Aug 1a 105.5 238.4 173.2 0.509 
11-Aug 1a 104.3 226.4 165.2 0.499 
11-Aug 1a 101.5 231.8 164.6 0.484 
18-Aug 1a 104.0 223.8 168.3 0.537 
18-Aug 1a 102.7 241.6 179.8 0.555 
18-Aug 1a 96.6 231.9 167.4 0.523 
24-Aug 1a 96.7 248.9 181.8 0.559 
24-Aug 1a 99.4 224.7 169.0 0.555 
24-Aug 1a 101.1 222.9 171.5 0.578 
31-Aug 1a 100.4 223.5 162.7 0.506 
31-Aug 1a 110.9 253.1 187.5 0.539 
31-Aug 1a 105.6 243.9 177.4 0.519 
21-Jul 2a 102.2 201.8 164.7 0.628 
21-Jul 2a 110.9 229.9 194.3 0.701 
21-Jul 2a 104.8 193.6 164.7 0.675 
28-Jul 2a 98.0 198.7 164.9 0.664 
28-Jul 2a 101.3 198.2 163.0 0.637 
28-Jul 2a 102.8 203.9 171.1 0.676 
4-Aug 2a 205.7 278.4 255.3 0.682 
4-Aug 2a 208.2 288.8 259.5 0.636 
4-Aug 2a 205.2 286.8 254.4 0.603 

11-Aug 2a 202.2 323.7 284.9 0.681 
11-Aug 2a 198.0 317.8 278.2 0.669 
11-Aug 2a 205.1 308.8 276.0 0.684 
18-Aug 2a 104.8 208.7 172.9 0.655 
18-Aug 2a 102.3 224.2 181.2 0.647 
18-Aug 2a 102.6 231.3 194.0 0.710 
24-Aug 2a 105.2 237.3 195.6 0.684 
24-Aug 2a 104.1 216.7 180.2 0.676 
24-Aug 2a 101.3 236.9 195.0 0.691 
31-Aug 2a 104.4 230.7 188.8 0.668 
31-Aug 2a 110.3 252.5 210.5 0.705 
31-Aug 2a 100.6 217.7 177.2 0.654 
21-Jul 3a 98.0 213.0 164.1 0.575 
21-Jul 3a 102.2 218.9 171.2 0.591 
21-Jul 3a 102.3 228.2 187.8 0.679 
28-Jul 3a 103.0 181.8 144.3 0.524 
28-Jul 3a 100.5 222.1 166.7 0.544 
28-Jul 3a 103.7 240.1 163.1 0.435 
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Table C-19: Dry weight raw data for all piles continued  
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

4-Aug 3a 205.4 317.3 268.9 0.567 
4-Aug 3a 202.2 317.9 263.5 0.530 
4-Aug 3a 202.5 297.5 252.9 0.531 

11-Aug 3a 102.6 243.5 194.6 0.653 
11-Aug 3a 96.5 232.9 190.4 0.688 
11-Aug 3a 98.7 220.2 171.6 0.600 
18-Aug 3a 102.9 226.8 165.8 0.508 
18-Aug 3a 100.2 229.2 179.8 0.617 
18-Aug 3a 109.8 226.8 170.2 0.516 
24-Aug 3a 109.7 232.4 176.4 0.544 
24-Aug 3a 104.8 250.0 200.7 0.660 
24-Aug 3a 112.8 238.9 192.6 0.633 
31-Aug 3a 110.9 241.6 188.1 0.591 
31-Aug 3a 98.0 212.6 163.1 0.568 
31-Aug 3a 101.0 232.6 183.4 0.626 
21-Jul 4a 103.8 171.2 134.1 0.450 
21-Jul 4a 103.3 179.5 144.8 0.545 
21-Jul 4a 112.2 202.9 163.1 0.561 
28-Jul 4a 101.9 170.6 155.0 0.773 
28-Jul 4a 106.3 176.3 163.6 0.819 
28-Jul 4a 102.3 196.1 181.0 0.839 
4-Aug 4a 101.3 211.0 168.8 0.615 
4-Aug 4a 105.5 199.9 172.5 0.710 
4-Aug 4a 100.5 191.4 162.7 0.684 

11-Aug 4a 101.3 202.4 175.9 0.738 
11-Aug 4a 110.8 191.6 167.0 0.696 
11-Aug 4a 102.6 219.4 191.0 0.757 
18-Aug 4a 101.1 167.3 145.1 0.665 
18-Aug 4a 100.2 190.3 164.1 0.709 
18-Aug 4a 102.8 169.5 150.2 0.711 
24-Aug 4a 103.8 229.3 194.7 0.724 
24-Aug 4a 100.4 237.8 202.1 0.740 
24-Aug 4a 103.8 214.5 188.3 0.763 
31-Aug 4a 100.5 169.0 154.7 0.791 
31-Aug 4a 104.5 227.7 193.5 0.722 
31-Aug 4a 101.4 223.4 185.2 0.687 
4-Aug 6a 202.4 298.3 269.8 0.703 
4-Aug 6a 203.4 310.7 282.6 0.738 
4-Aug 6a 206.0 302.9 275.8 0.720 

11-Aug 6a 202.5 314.4 283.5 0.724 
11-Aug 6a 206.7 313.8 281.5 0.698 
11-Aug 6a 196.8 304.1 270.8 0.690 
11-Aug 6a 102.1 200.7 161.3 0.600 
11-Aug 6a 106.8 204.2 170.7 0.656 
11-Aug 6a 102.2 214.3 176.3 0.661 
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Table C-19: Dry weight raw data for all piles continued  
Date Pile Beaker (g) Initial (g) Final (g) Dry Weight % 

18-Aug 6a 104.1 207.5 175.8 0.693 
18-Aug 6a 102.0 220.6 178.3 0.643 
18-Aug 6a 104.9 205.9 177.0 0.714 
31-Aug 6a 98.7 244.6 203.7 0.720 
31-Aug 6a 102.6 241.9 199.0 0.692 
31-Aug 6a 105.5 213.1 172.7 0.625 
31-Aug 6a 102.9 217.3 185.5 0.722 
31-Aug 6a 102.4 224.3 184.3 0.672 
31-Aug 6a 98.8 248.4 203.8 0.702 
7-Sep 6a 104.1 192.2 163.3 0.672 
7-Sep 6a 109.7 224.8 185.0 0.654 
7-Sep 6a 102.8 196.3 170.9 0.728 

26-Sep 6a 96.5 212.6 181.7 0.734 
26-Sep 6a 104.8 209.2 182.6 0.745 
26-Sep 6a 101.5 200.4 173.4 0.727 
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Table C-20: Raw temperature data for Piles 1, 1a, 2, and 2a in ºF 

Pile 1 1 1 1a 1a 1a 2 2 2 2a 2a 2a 
6/28/11 89.4 90 90.2 113.4 78.3 89.8 NA NA NA NA NA NA 
6/28/11 102.1 87.7 91.4 108.3 85.3 91.8 NA NA NA NA NA NA 
6/28/11 91.2 85.3 85.1 79.6 80.1 77 NA NA NA NA NA NA 
6/29/11 120.4 85 93.6 129.5 89.5 105.4 NA NA NA NA NA NA 
6/29/11 102.8 87.1 92.6 88.1 83.2 83 NA NA NA NA NA NA 
6/29/11 98.3 87 88.3 80.9 74.7 77 NA NA NA NA NA NA 
6/30/11 117 85 108.5 100.1 79.3 86 109.3 106.1 106.7 103.1 115.7 113.9 
6/30/11 101.2 87.1 93.9 118.6 88.5 103.1 107.2 100.2 102.8 95.8 106.2 102.4 
6/30/11 104.7 87 93.7 113.8 93.8 104.2 107.2 106.7 105.2 113.1 113.1 109.2 
7/1/11 128.7 95.8 106.9 102.1 87.1 96.7 121.3 101.2 105.8 127.3 131.6 136.2 
7/1/11 113.9 109.1 108.5 100 89.7 96.4 125.9 104.9 115 126.2 123.9 129.8 
7/1/11 124.4 96 106.6 108.5 95.5 101.5 127.5 107.5 117.9 126.7 146.2 135.8 
7/3/11 94 129.4 138.2 84.8 100 97.8 110.5 121.1 129.1 125.5 118.7 96.7 
7/3/11 90.3 114.3 139 94.5 116.1 98.7 96.5 128.4 138.6 139 126.6 98.5 
7/3/11 94.1 114 129.4 97.3 116.7 93.7 107.5 124.5 133.8 130.4 126.9 101.5 
7/5/11 93.5 114.5 129.2 95 109 90.2 110.9 118.6 122.8 112.2 113.2 82.2 
7/5/11 98.3 112.4 127.4 96.5 108.6 83.3 109.1 122 129.6 112.8 111 80.2 
7/5/11 103.2 114.5 128.6 105.9 108.2 85 108 134.4 134 118.7 125.5 90.8 
7/6/11 100 118.2 135 91.7 112.7 94 100 130.6 135.7 118.2 101.6 92.7 
7/6/11 102.2 116.2 130.5 106.1 122.4 94.3 106.3 130.2 130.7 130.6 110.2 85.3 
7/6/11 102.7 129.5  94.5 114.6 100.8 100.6 130.9 134.1 124.8 109 81.1 
7/7/11 101.8 111 124.2 103.8 110 90.5 110.5 126.9 118 113.6 103.3 82.4 
7/7/11 99.9 114.1 120.6 97.8 106.2 92.5 101.6 127.2 130.5 1125.1 110.6 84.9 
7/7/11 104.2 124.3 130.6 115.8 130.4 86 106.4 128.1 131.8 120.9 106.4 84.3 

7/10/11 94.4 109.9 119 101.3 112.7 86.1 110.3 131.9 132.6 95.2 88.4 91.1 
7/10/11 97.9 115.1 125.9 104.4 118.7 89.1 111.2 125.9 128.4 124.6 91.9 84.2 
7/10/11 94.6 109.2 119 112.6 111.8 92.2 112 128.4 131.5 121.2 94.4 82.6 
7/11/11 96.7 119.2 131.1 98.4 111.8 97.3 109.5 131.9 131.4 95.5 83.1 82.5 
7/11/11 97.5 119.4 127.4 106.3 113.2 105.2 105.8 127.5 129.7 122.9 90.3 81.5 
7/11/11 98.7 118.9 126 112 112.6 99.3 110.7 128.8 132.3 123.4 99.7 88.1 
7/12/11 112 123.6 132.9 107.8 112.9 95.7 114.2 131.7 130.7 105.5 103.3 87.4 
7/12/11 110.7 125.4 131.8 116.3 110.1 93.7 108.7 130.9 130.5 130.8 93.1 94.6 
7/12/11 108.1 127.2 132.3 115.1 113.3 103.4 111.5 131.6 131.8 124.6 100.1 84.6 
7/15/11 NA NA NA 112.6 140.8 115.1 NA NA NA 115.6 106.1 102.1 
7/15/11 NA NA NA 111.1 138.2 107.6 NA NA NA 134.3 121.3 96 
7/15/11 NA NA NA 113.6 125 107.7 NA NA NA 134.6 118.7 94.9 
7/17/11 104.5 128.5 149.5 NA NA NA 93.8 117.2 127.4 NA NA NA 
7/17/11 101.8 119.7 138.6 NA NA NA 93.1 117.6 127.2 NA NA NA 
7/17/11 103.6 117.5 136.6 NA NA NA 93.4 118.8 130.7 NA NA NA 
7/18/11 NA NA NA 113.9 127.8 98.1 NA NA NA 116 107.7 90 
7/18/11 NA NA NA 121.1 130.3 98 NA NA NA 125.7 106.9 93.1 
7/18/11 NA NA NA 126.1 130.1 105.8 NA NA NA 124.3 103.5 89.4 
7/20/11 95.7 115.8 131 NA NA NA 103.1 121.4 127.5 NA NA NA 
7/20/11 93.5 117.6 131.8 NA NA NA 104.5 126.4 114.9 NA NA NA 
7/20/11 94.2 128.9 142.3 NA NA NA 105.4 128.8 131.7 NA NA NA 
7/21/11 NA NA NA 120.3 109.4 95.3 NA NA NA 117.4 105.3 89.4 
7/21/11 NA NA NA 117.8 119.1 102.2 NA NA NA 125.7 103.5 84.3 
7/21/11 NA NA NA 118.5 116.2 96.8 NA NA NA 128.8 129.9 81 
7/24/11 98.6 138.1 153 120.7 132 95.6 109.2 126.8 127 126.3 108.9 93.6 
7/24/11 95.4 134.3 149.1 126.2 134.5 100.8 118.7 131.7 137 122.8 102.5 86.6 
7/24/11 98 135.2 151.5 124.8 132.5 98.7 114.5 130.4 132.9 126.1 108.5 90.3 
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Table C-21: Raw temperature data for Piles 3, 3a, 4, and 4a in ºF 

Pile 3 3 3 3a 3a 3a 4 4 4 4a 4a 4a 
6/30/11 112.9 96.2 95.3 100.1 98.4 105.8 NA NA NA NA NA NA 
6/30/11 113.2 95.3 96.6 107 97.4 105.1 NA NA NA NA NA NA 
6/30/11 110.9 94.7 105.2 85.1 90.8 88.2 NA NA NA NA NA NA 
7/1/11 121.4 113.2 120.1 121.4 113.2 120.1 NA NA NA NA NA NA 
7/1/11 120.2 100.2 108.6 120.2 100.2 108.6 NA NA NA NA NA NA 
7/1/11 121.9 111 111.6 121.9 111 111.6 NA NA NA NA NA NA 
7/3/11 108.3 116.2 128.4 112.4 121.4 93.9 NA NA NA NA NA NA 
7/3/11 106.5 114.4 138.9 112.3 120 95 NA NA NA NA NA NA 
7/3/11 110.4 118.6 139 116.8 129.3 96 NA NA NA NA NA NA 
7/5/11 97.8 113.3 123.8 130.1 119.5 84.4 NA NA NA NA NA NA 
7/5/11 93 114.7 125.5 128 118 92.9 NA NA NA NA NA NA 
7/5/11 92.7 121.1 140.2 129.8 119.9 88.4 NA NA NA NA NA NA 
7/6/11 95 116.7 127.5 110.2 110.1 87.6 NA NA NA NA NA NA 
7/6/11 98.8 122.1 141.2 114.6 122.7 93 NA NA NA NA NA NA 
7/6/11 95.7 116.3 126.8 116.1 121.2 93.2 NA NA NA NA NA NA 
7/7/11 95.8 119.3 124.9 110 113.2 88.5 NA NA NA NA NA NA 
7/7/11 106.3 130.5 127.3 115.6 128.1 91 NA NA NA NA NA NA 
7/7/11 94.3 124.7 138.4 116.2 117.1 90.1 NA NA NA NA NA NA 

7/10/11 100.5 127.9 134 121.5 118.5 90.7 148.2 146.1 127.1 140 126.1 101.7 
7/10/11 95.4 120.4 129.9 112.6 119.3 91.4 159.7 158.4 153.2 135.3 121.5 93.4 
7/10/11 121.5 131.4 139.3 106.9 110 92.1 156.1 155 152.4 139.1 140.6 101.5 
7/11/11 111.3 130.2 139 119 113.3 84.2 146.1 159.3 154 141.3 123 103.4 
7/11/11 106.3 125.5 131.1 116 107.1 90.6 159.9 161.3 157.7 134.6 127.7 103.8 
7/11/11 109.9 128.3 134.2 120.2 117.8 93.8 160.1 160.8 146.8 141.9 128.1 102.8 
7/12/11 107.9 127.4 131.2 121.9 116.5 90.1 158.5 159.8 144.7 133.7 135 116.6 
7/12/11 118.1 110.8 135.1 120.1 120 94.2 160.3 160.5 157.4 124.7 115.9 90.5 
7/12/11 116.1 108.2 132 110.9 110.1 93.3 159.4 160.2 159 124.2 118.3 90.2 
7/15/11 NA NA NA 125.1 120.9 94.3 NA NA NA 94.7 79.4 90 
7/15/11 NA NA NA 118.4 114.4 95.5 NA NA NA 132.2 114.4 100.6 
7/15/11 NA NA NA 113.1 96.2 93.7 NA NA NA 114.5 107.9 95.3 
7/17/11 107.9 131 122.8 NA NA NA 150.5 137.8 129.7 NA NA NA 
7/17/11 105.6 117 123.9 NA NA NA 135.9 139 125.2 NA NA NA 
7/17/11 109 131.4 128.9 NA NA NA 142.7 138.4 127.5 NA NA NA 
7/18/11 NA NA NA 122.6 113.4 87.1 NA NA NA 104.2 82.6 80.2 
7/18/11 NA NA NA 126.2 118.4 84.7 NA NA NA 105.7 85.3 80.9 
7/18/11 NA NA NA 127.9 110.7 83.3 NA NA NA 88.5 80.2 78.4 
7/20/11 124.1 129.3 129.1 NA NA NA 134.9 142.2 129.9 NA NA NA 
7/20/11 97.5 115 128.6 NA NA NA 131.1 132.6 126.8 NA NA NA 
7/20/11 103.5 122 132.7 NA NA NA 132.7 137.4 130.5 NA NA NA 
7/21/11 NA NA 112.6 120.5 113.8 90.2 NA NA NA 111.9 86.9 79.7 
7/21/11 NA NA 106.2 120.5 114.6 86.4 NA NA NA 106.8 84.3 75.5 
7/21/11 NA NA 105.3 115.2 105.8 83.7 NA NA NA 113.5 85.3 75.5 
7/24/11 122.4 134 139.9 128.7 122.7 100 155.2 145.7 126 95.1 98.5 97.6 
7/24/11 119.1 128.6 137.5 130.4 132.6 94.5 145.6 141.6 128.3 104.8 90.2 96.2 
7/24/11 122.2 130.8 138.9 130.7 136.1 100.7 150.4 143.5 126.9 110.5 102.3 94.2 
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