
Utah State University
DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2014

Ecomorphological and Genetic Investigations into
the Utah Lake, UT Sucker Complex with
Comparisons to the Jackson Lake, WY Sucker
Complex
David Cole

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons

This Dissertation is brought to you for free and open access by the
Graduate Studies at DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an authorized
administrator of DigitalCommons@USU. For more information, please
contact rebecca.nelson@usu.edu.

Recommended Citation
Cole, David, "Ecomorphological and Genetic Investigations into the Utah Lake, UT Sucker Complex with Comparisons to the
Jackson Lake, WY Sucker Complex" (2014). All Graduate Theses and Dissertations. 2122.
https://digitalcommons.usu.edu/etd/2122

https://digitalcommons.usu.edu?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradstudies?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/2122?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rebecca.nelson@usu.edu
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.usu.edu/?utm_source=digitalcommons.usu.edu%2Fetd%2F2122&utm_medium=PDF&utm_campaign=PDFCoverPages


i 
 

ECOMORPHOLOGICAL AND GENETIC INVESTIGATIONS INTO THE 

UTAH LAKE, UT SUCKER COMPLEX WITH COMPARISONS  

TO THE JACKSON LAKE, WY SUCKER COMPLEX 

by 

David D. Cole 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

 
of 
 

DOCTOR OF PHILOSOPHY 
 

in  
 

Ecology 
 
Approved: 
 
 
____________________   ____________________ 
Todd Crowl     Karen Mock 
Major Professor    Committee Member 
 
 
____________________   ____________________ 
Phaedra Budy    Chris Luecke 
Committee Member    Committee Member 
 
 
____________________   ____________________  
Mike Pfrender    Mark R. McLellan 
Committee Member          Vice President for Research and 
      Dean of the School of Graduate Studies 
 
 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2014 

 

  



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © David D. Cole 2014 
  

All Rights Reserved  
 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Ecomorphological and Genetic Investigations into the Utah Lake, UT Sucker 

Complex with Comparisons to the Jackson Lake, WY Sucker Complex 

by 

David D. Cole, Doctor of Philosophy 
 

Utah State University, 2014 
 
 

Major Professor: Dr. Todd A. Crowl  
Department: Watershed Sciences 
 
 

Ecomorphological specialization within Catostomidae in several large 

western North American lakes has produced populations including typical benthic 

suckers (Catostomus) and lakesuckers (Chasmistes), mid-water planktivores, 

with a continuum of morphologies existing between them. All extant lakesuckers 

are endangered, and population declines have been attributed in part to 

hybridization with sympatric Catostomus spp.  

Chapter 2 describes assessment for concordance of morphological and 

genetic variation in suckers in Utah Lake, Utah (June sucker, Chasmistes liorus; 

Utah sucker, Catostomus ardens; and suckers of intermediate morphology) by 

comparing a morphological analysis with amplified fragment length polymorphism 

and microsatellite analyses. Suckers were differentiated using characters 

associated with presumed feeding strategies: zooplanktivory (June sucker) and 

benthivory (Utah sucker). No molecular evidence was found for deep genetic 
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divergence between morphs or for hybridization among ancient lineages. Slight 

population structuring accompanied substantial morphological variation.  

Chapter 3 describes the investigation of distribution and movement, 

spawning behavior, and diet of suckers in Utah Lake and their growth at different 

densities in a laboratory experiment. Acoustic / radio telemetry revealed little 

difference in movement and distribution of June sucker and Utah sucker or in 

timing of spawning runs. Stable isotopes analysis revealed that Utah sucker were 

enriched in 13C relative to June sucker as presumed diets would predict. 

Intermediate morphs were intermediate for δ13C and δ15N. Neither species nor 

density was a significant predictor of growth rate of June sucker or Utah sucker 

reared at different conspecific densities. 

Chapter 4 examines morphology, genetics, and diet of the sucker 

population in Jackson Lake, Wyoming, once home of the extinct Snake River 

sucker, Chasmistes muriei, a lakesucker known from a single specimen. 

Currently, suckers in Jackson Lake are identified as Utah sucker; however, 

recently sampled individuals resemble lakesucker. No molecular evidence was 

found for deep genetic divergence between lakesucker and benthic morphs or for 

hybridization among ancient lineages. The benthic morph was significantly 

enriched in 13C relative to the lakesucker morph, consistent with presumed diets. 

Morphologically, the lone Snake River sucker holotype specimen grouped 

strongly with extant lakesucker morphs, suggesting that the status of the Snake 

River sucker be updated accordingly. 

(262 pages)
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PUBLIC ABSTRACT 
 
 

Ecomorphological and Genetic Investigations into the Utah Lake, UT Sucker 

Complex with Comparisons to the Jackson Lake, WY Sucker Complex 

David D. Cole 

Natural selection within the sucker family of fishes has produced 

populations including typical benthic (bottom-feeding) suckers (Catostomus) and 

lakesuckers (Chasmistes), mid-water plankton eaters, in several large western 

North American lakes. Suckers of intermediate morphology (shape) exist in a 

continuum of head, mouth, and body characteristics between these two 

extremes. All current lakesuckers are listed Endangered, and population declines 

have been attributed in part to hybridization with their Catostomus neighbors. 

Chapter 2 describes the investigation of the relationship between 

morphology and genetics of June sucker, a lakesucker, and Utah sucker, a 

benthic sucker, in Utah Lake, Utah. Despite the substantial morphological 

differences, June sucker and Utah sucker were indistinguishable genetically. 

Although many suckers were of intermediate morphology, there was no evidence 

of hybridization between ancient June sucker and Utah sucker lineages, 

suggesting perhaps the Utah Lake population is diverging into two populations 

rather than converging into one. 

Chapter 3 describes the ecology of Utah Lake suckers. Telemetry studies 

using surgically implanted transmitters revealed little difference in movement and 
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distribution of June sucker and Utah sucker or in the timing of their spawning 

runs. An investigation into diet confirmed that June sucker were predominantly 

planktivorous (plankton eaters) whereas Utah sucker were benthivorous (bottom 

feeders), with intermediates in between.  

Chapter 4 examines morphology, genetics, and diet of the sucker 

population in Jackson Lake, Wyoming, once home of the extinct Snake River 

sucker, Chasmistes muriei, a lakesucker known from a single specimen. 

Currently, suckers in Jackson Lake are identified as Utah sucker, however, 

recently sampled individuals resemble lakesuckers (Snake River sucker?). 

Similar to the Utah Lake suckers, no genetic evidence was found for deep 

divergence between lakesucker and Utah (benthic) sucker in Jackson Lake or for 

hybridization among two ancient lineages. Also as in Utah Lake suckers, an 

investigation into diet showed that lakesuckers were predominantly planktivorous 

(plankton eaters) whereas Utah sucker were benthivorous (bottom feeders), with 

intermediates exploiting both food sources. Morphologically, the lone Snake 

River sucker specimen was extremely similar to current lakesuckers in Jackson 

Lake, suggesting that the Snake River sucker is not extinct and in need of a 

status update. 
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CHAPTER 1 

INTRODUCTION 

Schluter (1996) defined ecological speciation as the evolution of 

reproductive isolation, directly or indirectly, via divergent selection on traits 

between populations (or subpopulations) in contrasting environments or 

exploiting different resources; i.e., the process by which barriers to gene flow 

between populations evolve because of divergent ecological adaptation. The 

divergence of benthic and limnetic morphs exploiting different trophic resources 

has occurred multiple times in fish populations in freshwater lakes (Lu & 

Bernatchez 1999; Schluter 1996, 2001; Lu et al. 2001; Barluenga & Meyer 2004). 

Several large western North American lakes support recent populations of 

lakesucker (Chasmistes spp.) in addition to benthic feeding sucker (Catostomus 

spp.) populations (Miller & Smith 1981; Scoppettone and Vinyard 1991). 

Lakesuckers are long-lived, mid-water, adfluvial planktivores that inhabit large 

lakes or sluggish rivers and typically spawn in tributary streams in spring and 

early summer. Extant Chasmistes spp. are sympatric over all or part of their 

range with one or more species of benthic-feeding sucker (Catostomus spp.), 

and suckers of intermediate morphologies, presumably the result of hybridization, 

are common. Four recent species of Chasmistes are recognized: Ch. brevirostris, 

the shortnose sucker; Ch. cujus, the cui-ui sucker; Ch. liorus, the June sucker; 

and the presumably extinct Snake River sucker, Ch. muriei. All extant 

Chasmistes spp. are federally listed as Endangered, with their declines attributed 
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to anthropogenic changes in aquatic habitat, historic overexploitation, 

competition with and predation by nonnative fish species, and hybridization with 

the sympatric Catostomus spp. (Carter 1969; Fuhriman et al. 1981; Scoppettone 

and Vinyard 1991). The subsequent three chapters describe the morphological 

variation, genetic variation, and ecology of two sucker populations: Utah Lake, 

habitat of June sucker and Utah sucker (Ca. ardens); and Jackson Lake, habitat 

of the presumably extinct Snake River sucker and Utah sucker. 

Chapter 2 quantitatively describes and assesses the concordance of the 

morphological and genetic variation in the Utah Lake sucker complex, with June 

sucker at one extreme of the morphological continuum and the sympatric 

benthivore, Utah sucker, at the other. This was achieved by comparing a 

morphological analysis with amplified fragment length polymorphism and 

microsatellite analyses. 

Chapter 3 describes the investigation of distribution and movement, 

spawning behavior, and diet of adult suckers in Utah Lake and their growth at 

different densities in a laboratory experiment. The first objective of this chapter 

was to compare the spatial distribution and movement patterns, including 

spawning migrations and seasonal movements, of adult June sucker and Utah 

sucker in Utah Lake via radio and acoustic telemetry. The second objective was 

to investigate diet for concordance with morphology via comparison of stable 

isotopic signatures for carbon (δ13C) and nitrogen (δ15N) of adult June sucker, 

Utah sucker, and suckers of intermediate morphology. The third objective was to 
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explore if the component Allee effect reported in larval June sucker (Gonzalez 

2004) also occurred in juvenile June sucker and / or juvenile Utah sucker, 

through a laboratory experiment assessing growth rate, as a measure of fitness, 

at different rearing densities.   

Chapter 4 examines the morphology, genetics, and diet of the sucker 

population in Jackson Lake, Wyoming, once home of the extinct Snake River 

sucker, Chasmistes muriei. Currently, suckers in Jackson Lake are identified as 

Utah sucker, however, recently sampled individuals resemble lakesuckers. The 

objective if this Chapter was to assess concordance of morphological variation 

with molecular variation (microsatellites) and with variation in diet as measured 

by stable isotope analysis. 
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CHAPTER 2 

MORPHOLOGICAL AND GENETIC STRUCTURING IN THE UTAH  

LAKE SUCKER COMPLEX 

ABSTRACT 

Population decline in the federally endangered June sucker (Chasmistes 

liorus), a lakesucker unique to Utah Lake, Utah, has been attributed in part to 

hybridization with the more widespread Utah sucker (Catostomus ardens). As a 

group, suckers in Utah Lake exhibit considerable external morphological 

variation. Meristic and morphological ambiguities, presumably the result of 

hybridization, create a continuum of intermediate forms between Chasmistes and 

Catostomus extremes and prevent definitive identification to species. Here we 

describe and evaluate the morphological and genetic variation in suckers in Utah 

Lake by comparing a morphological analysis with amplified fragment length 

polymorphism (AFLP) and microsatellite analyses. Suckers were morphologically 

differentiated using mouth characters associated with different feeding strategies: 

planktivory (June sucker) and benthivory (Utah sucker). Although we found no 

genetic evidence for a deep divergence between June and Utah morphs, slight, 

but significant population structuring accompanied the substantial morphological 

variation. Bayesian model-based genetic clustering analyses detected two sucker 

populations in Utah Lake, however, these clusters were not strongly concordant 

with morphological groupings or between marker systems. The suckers in Utah 

Lake present an interesting dilemma regarding conservation:  should one 

Coauthored by D. D. Cole, K. E. Mock, B. L. Cardall, and T. A. Crowl 
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conserve (breed and stock) a subset of the morphotypic variation in the Utah 

Lake sucker complex, focusing on the endangered June sucker morphotype, or 

should one conserve both June sucker and Utah sucker morphotypes in this 

complex, possibly maximizing evolutionary potential?  We explore this question 

in the context of current genetic and morphological variation in the Utah Lake 

sucker complex as well as historical information on this complex and other 

lakesuckers. 

  
INTRODUCTION 

A recurring motif in many fish populations in freshwater lakes is the 

divergence of benthic and limnetic morphs exploiting different trophic resources, 

benthic/littoral macroinvertebrates and zooplankton, respectively (Schluter 1996, 

2001; Pigeon et al. 1997; Lu & Bernatchez 1999; Taylor 1999; Lu et al. 2001; 

Barluenga & Meyer 2004); whether the morphs are recognized as distinct 

species varies. This divergence sometimes occurs via sympatric ecological 

speciation following a single invasion of a recently formed crater, fault, or 

postglacial lake (tilapia, Tilapia deckerti, Schliewen et al. 2001; cisco, Coregonus 

spp., Turgeon & Bernatchez 2003; pumpkinseed sunfish, Lepomis gibbosus, 

Jastrebski & Robinson 2004; Midas cichlid, Amphilophus citrinellus and A. 

zaliosus, Barluenga et al. 2006; Arctic charr, Salvelinus alpinus, Knudsen et al. 

2006; European whitefish, Coregonus lavaretus, Østbye et al. 2006; barb, 

Barbus tanapelagious and B. humilis, De Graaf et al. 2007; sailfin silverside, 

Telmatherina spp., Roy et al. 2007). Ecologically driven speciation into benthic 
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and limnetic morphs has occurred multiple times within several fish lineages, and 

populations from different lakes exhibit varying degrees of gene flow between the 

morphs (threespine stickleback, Taylor & McPhail 1999; lake whitefish, Lu & 

Bernatchez 1999; cisco, Turgeon et al.1999). In other cases, allopatric speciation 

followed by secondary invasion, the double invasion hypothesis, has led to 

sympatric limnetic and benthic morphs (threespine stickleback, Gasterosteus 

aculeatus, McPhail 1992, Schluter & McPhail 1992, Kassen et al. 1996; lake 

cisco, Coregonus artedi, Turgeon & Bernatchez 2001). Some species (lake 

whitefish, Coregonus clupeaformis, Pigeon et al. 1997, Lu et al. 2001; Derome et 

al. 2006; Landry et al. 2007) appear to have evolved benthic and limnetic morphs 

via single invasion in some lakes and by double invasion in other lakes. 

Several large western North American lakes support populations of 

planktivorous lakesucker (Chasmistes spp.) in addition to benthic feeding sucker 

(Catostomus spp.) populations (Miller & Smith 1981; Scoppettone & Vinyard 

1991). Chasmistes spp. and Catostomus spp. fossils are known from late 

Miocene to Pleistocene deposits in six western states and are nearly always 

found together, occasionally with intermediate forms (Cope 1872; Miller & Smith 

1981; Smith 1981; Smith et al. 2002). Lakesuckers have terminal oblique 

mouths, thin lips with reduced papillation and wide gaps between the lower lip 

lobes, and highly branched or dendritic gill rakers (Miller & Smith 1981; Sigler & 

Sigler 1987; Smith 1992). They are long-lived, mid-water planktivores that inhabit 

large lakes or sluggish rivers and typically spawn in spring and early summer in 
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tributary streams. Four recent species of lakesuckers are recognized in four 

different hydrologic basins: June sucker (Chasmistes liorus mictus) in the 

Bonneville basin; cui-ui sucker (Chasmistes cujus) in the Truckee River drainage; 

shortnose sucker (Chasmistes brevirostris) in the Klamath River watershed; and 

the presumably extinct Snake River sucker (Chasmistes muriei) in the upper 

Snake River basin (Miller & Smith 1981). Extant Chasmistes spp. are sympatric 

over all or part of their range with at least one species of benthic-feeding sucker 

(Catostomus spp.). Catostomus spp. have subterminal to ventral mouths; large, 

heavily papillated lips with a narrow gap between the lower lobes; and non-

branching, filamentous gill rakers (Eddy & Underhill 1978; Sigler & Sigler 1987). 

Members of Catostomus inhabit a wider geographical and ecological range than 

any other North American fish genus (Uyeno & Smith 1972).  

The June sucker, a lakesucker unique to Utah Lake, Utah, has an 

evolutionary and taxonomic history that is complicated by its putative 

hybridization with the Utah sucker (Catostomus ardens) (Jordan 1891; Tanner 

1936; Miller & Smith 1981; Evans 1997; Cook 2001). The Utah sucker is native to 

a wide variety of habitats ranging from large, deep, cold lakes to relatively warm 

streams and shallow lakes within the ancient Lake Bonneville drainage and the 

Snake River drainage above Shoshone Falls (Sigler & Sigler 1987). Historically, 

Utah sucker in Utah Lake spawned earlier in the spring than June sucker, named 

for the month of their peak spawning period (Miller & Smith 1981), perhaps 

associated with the ascending and descending hydrographs, respectively. June 
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sucker were once believed extinct in Utah Lake following a severe drought in the 

1930s (Tanner 1936). Those currently persisting are thought to be 

morphologically distinct from specimens collected in the 1880s due to 

hybridization with the sympatric Utah sucker during those drought years; hence, 

post-drought specimens are designated Ch. liorus mictus whereas pre-drought 

specimens are Ch. liorus liorus (Miller & Smith 1981; Smith 1983). The impact of 

the 1930s drought years is, however, ambiguous. Jordan (1878) concluded a 

century earlier that suckers with intermediate morphologies in Utah Lake arose 

from hybridization between June sucker and Utah sucker, but Li (1999) was 

unable to find a genetic distinction between preserved pre-1930 specimens of 

Ch. liorus liorus and current specimens of Ch. liorus mictus. 

Lakesucker populations have been subjected to varying degrees of 

commercial, recreational, and subsistence exploitation by humans (Carter 1969; 

Sigler & Sigler 1987; Cooke et al. 2005), and all extant Chasmistes spp. are 

federally listed as endangered (USFWS 1967, 1986, 1988). Their declines have 

been attributed to historic over-exploitation, changes in aquatic habitat (degraded 

water quality, flow alterations, channelization, and loss of littoral zones), 

competition with and predation by nonnative fish species, and hybridization with 

Catostomus spp. (Carter 1969; Fuhriman et al. 1981; Scoppettone & Vinyard 

1991). In 1986, the June sucker was listed because of its localized distribution, 

the population’s failure to recruit new adult fish, and continued threats to its 

survival. By the late 1990s, the estimate for the wild adult spawning population 
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was about 300 individuals (Keleher et al. 1998). Hybridization among 

catostomids has been documented as common, confounding taxonomy and 

conservation issues (Hubbs & Hubbs 1947; Hubbs & Miller 1953; Hubbs 1955; 

Miller et al. 1989; Markle et al. 2005; Tranah & May 2006). Where sympatry of 

Chasmistes spp. and Catostomus spp. occurs, suckers of intermediate 

morphology exist, and this has been attributed to hybridization (Miller & Smith 

1981; Scoppettone & Vinyard 1991; Tranah & May 2006). Extant Chasmistes 

spp. appear to be phylogenetically closer to sympatric Catostomus spp. than to 

allopatric Chasmistes spp. (Li 1999; Mock et al. 2006; Tranah & May 2006), and 

no phylogenetic analysis that utilizes genetic data has recovered either genus as 

monophyletic (Li 1999; Harris & Mayden 2001; Mock et al. 2006; Tranah & May 

2006; Sun et al. 2007). Although suckers in Utah Lake exhibit considerable 

external morphological variation, a recent genetic analysis found no molecular 

evidence for a history of hybridization between deeply divergent lineages in Utah 

Lake, and suggested that Utah Lake suckers may be a single interbreeding 

group; of 43 sampled individuals that included both June sucker and Utah sucker 

morphotypes, 37 shared a single haplotype that was unique to Utah Lake, 1 

contained a closely related mitotype, and 5 contained mitotypes indicative of the 

northern clade of Utah Suckers (Mock et al. 2006). The conclusions of this study 

were limited, however, because morphological data were not included and 

genetic differentiation between morphs was not directly tested. Building on Mock 

et al. (2006), we hypothesize that within Utah Lake, genetic structuring will be 
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found that correlates with morphological variation in a concordant, though not 

necessarily explanatory way, allowing for the discrimination and description of 

two (or three) morphologically and genetically distinct groups. The morphological 

variation exhibited by Utah Lake suckers and uncertainty about their taxonomic 

status and evolutionary history present a difficult situation for the effective 

conservation and management of Utah Lake suckers. Recovery efforts targeting 

the federally endangered June sucker currently rely on highly subjective 

interpretation of external characters (Table 2-1) to distinguish June sucker from 

other morphs in the collection of eggs and sperm for the conservation breeding 

and stocking program. Unfortunately, gill rakers, the best character for 

differentiation, cannot be examined on live fish. Externally observable characters 

- mouth structure and lip papillation and size - have an ecological basis related to 

feeding strategies, benthivory (Catostomus) and planktivory (Chasmistes) (Cole 

2008), and are presumably shaped by natural selection. The objective of this 

study was to quantitatively describe the morphological and genetic variation in 

the Utah Lake sucker complex, with June sucker, an endangered planktivore, at 

one extreme of the morphological continuum and the sympatric benthivore, Utah 

sucker, at the other, and assess their congruence. 

 
MATERIALS AND METHODS 

Study Site          

 Utah Lake is a large (38 km x 21 km; approximately 392 km2), shallow, 
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highly eutrophic lake located in Utah County, Utah, approximately 65 km south of 

the Great Salt Lake (Fig. 2-1). It is one of the largest freshwater lakes west of the 

Mississippi River in the contiguous United States and has existed for 8000-

10,000 years. For over 30,000 years prior to that, Lake Bonneville covered most 

of the intermontane basins of the Wasatch Front, undergoing dramatic 

fluctuations in depth and salinity. Utah Lake, the largest freshwater remnant of 

Lake Bonneville, has an average depth of 2.8 m and a maximum depth of 4.2 m 

(Fuhriman et al. 1981). Major tributaries include the Provo, Spanish Fork, and 

American Fork Rivers; the outlet, the Jordan River flows north to the Great Salt 

Lake. Frequently, conductivity is above 2000 μS, temperatures at shallow depths 

in summer exceed 30ºC, and turbidity is greater than 120 Ntus (Cole 2008). The 

anthropogenic impacts of urbanization, agriculture, flow regulation, and exotic 

introductions on Utah Lake and its tributaries are manifest as declines in both 

water quality and quantity, especially during drought years. June sucker and 

Utah sucker are effectively the only native fish persisting in Utah Lake; 12 other 

native species have become extinct or have been essentially extirpated from the 

lake, whereas many non-native species thrive, including predators and 

competitors of native suckers (SWCA 2002). What was once a lake with clear 

water and extensive beds of littoral macrophytes (Heckmann et al. 1981) is now 

carp infested, populated with numerous introduced predatory fish species, turbid, 

and practically void of aquatic vegetation (Miller & Crowl 2006). Utah Lake’s 

water level fluctuates dramatically, seasonally and annually, limiting the re-
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establishment of submerged macrophytes and fringes of emergent vegetation 

may or may not be inundated for years at a time. Even moderate winds can 

prevent stratification of the lake because of the large fetch, shallow depth, and 

lack of vegetation. 

Morphological Analysis 

During the 2001 and 2002 spawning runs, 75 live, wild sucker were 

captured by Utah Department of Wildlife Resources personnel, who also 

provided measurements of total length, from the Provo River (n = 72, captured by 

dip netting spotlighted fish) and the Spanish Fork River (n = 3, captured by 

electrofishing) and photographed individually in a shaded Plexi-glas® live well 

(l×w×h: 60cm × 15cm × 45cm). Other investigators have pinned out 

anaesthetized fish into precise poses in the collection of images for analysis 

(Douglas et al. 1989, 1998, 2001; Douglas 1993; McElroy & Douglas 1995; 

McElroy et al. 1997). Instead, we used a shaded live well and minimized handling 

to reduce stress on suckers sampled during the already traumatic spawning 

period. June sucker were subjectively identified by external characters using a 

Ch. liorus mictus model (Miller & Smith 1981) (Table 2-1). Utah sucker were 

similarly identified using a less stringent definition than that of Sigler and Sigler 

(1987), allowing for slight reductions in lip size and papillation (e.g., a C. ardens 

“mictus” model for Utah sucker) (Table 2-1). Intermediates were those not 

identified as June sucker or Utah sucker. The external characters used for this 

initial identification are also the ones generally used by managers in the field 
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during spawning and monitoring activities (Keleher pers. comm.). Sex was 

initially determined by presence or absence of breeding tubercles and anal fin 

shape, but corroborated during propagation activities: June sucker - 13 females, 

14 males; intermediates - 13 females, 15 males; and Utah sucker - 9 females, 11 

males. Despite length being a poor predictor of age in long-lived suckers, all fish 

were roughly aged from their total length (TL) via a standard curve derived from 

the only published length/age data (Belk 1998) for suckers from Utah Lake to 

roughly estimate when the last successful natural spawn occurred. The mean 

standard deviation of length at age for the standard curve used in age estimation 

was 54.3 mm. Digital photographic images from two perspectives, full body 

profile and ventral head shot, were obtained using a Nikon 990 digital camera, 

and fin clips from the same fish were collected for genetic analysis. Images were 

digitized via the program tpsDIG (©Rohlf, 2001), meristic counts and angle 

measurements were performed, and morphometric landmarks were identified 

and the distances (in mm) between them calculated. Descriptions of the 

morphometric (17) and meristic (2) characters used in this study appear in Table 

2-2 and Fig. 2-2.  

The relationship of total length to sucker morph and sex was examined via 

two factor analysis of variance (ANOVA). Linear regression was used to explore 

the relationship between TL and the individual morphological variables and to 

generate residuals for use in subsequent size-adjusted ANOVA. We used 

principal component analysis (PCA) based on the correlation matrix among 
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variables to illustrate morphological variation in Utah Lake suckers and to 

generate phenotypic variables (principal components, PCs) for comparison with 

genetic data. Congruence between morphological variation, defined both 

subjectively (identification) and objectively (phenotypic PCs), and genetic 

variation was subsequently assessed. All morphological analyses were 

performed using the program SAS (2002). 

Genetic Analysis         

 Fin (pelvic) clips were collected from 78 suckers during photography and 

preserved in 95% ethanol. Samples represent the 75 individuals included in the 

morphometric dataset plus three individuals not included in the morphometric 

analysis because of spinal deformations or incomplete photographic data, neither 

of which prevented subjective assignment of these suckers to morphological 

group. DNA was extracted using a salt/chloroform protocol (Mullenbach et al. 

1989). DNA quantity and quality was assessed on 0.7% agarose gels stained 

with ethidium bromide. 

Amplified fragment length polymorphism (AFLP) and microsatellite 

analyses were used to characterize nuclear divergence and diversity among the 

78 individuals subjectively identified morphologically. Our AFLP data were 

derived by identical methods and represent a subset of the individuals 

characterized genetically by Mock et al. (2006) using 113 polymorphic AFLP loci 

from nine primer combinations, selected on the basis of overall amplification 

quality and bimodality (distinct presence/absence). Additionally, five 
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microsatellite loci were amplified in these individuals following protocols and 

using equipment described by Cardall et al. (2007). 

For AFLP profiles within morphologically defined groups, the percentage 

of polymorphic loci (95% criterion) and Nei’s (1978) average unbiased 

heterozygosity were estimated using the program Tools for Population Genetic 

Analysis (TFPGA; Miller 1997) assuming Hardy–Weinberg equilibrium (HWE), as 

AFLP analysis yields dominant markers; allele frequencies of the recessive 

genotype were estimated via the Taylor expansion method (Lynch & Milligan 

1994). We also used the program TFPGA to estimate unbiased heterozygosity 

based on microsatellite genotypes. Allelic richness was calculated for 

microsatellite data using the program FSTAT2.9.3.2 (Goudet 2001). The program 

Arlequin 3.1 (Excoffier et al. 2005) was used to evaluate deviations from Hardy-

Weinberg equilibrium (Bonferroni-adjusted α = 0.01) in microsatellite profiles via 

an analog of Fisher’s exact test (Guo & Thompson 1992) and to assess linkage 

disequilibrium among microsatellite loci (Bonferroni-adjusted α = 0.005). The 

program GenePop was used to evaluate instances of HW disequilibrium 

(Raymond & Rousset 1995). We evaluated the microsatellite profile for null 

alleles via the program Micro-Checker (van Oosterhout et al. 2004). We used the 

program GenAlEx (Peakall & Smouse 2006) to calculate the numbers and 

frequencies of private alleles by group, adjusted for group size, for the 

microsatellite data. The program TFPGA was used to calculate FST via the 

estimator θST (Weir & Cockerham 1984) for AFLP and microsatellite data and to 
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calculate FIS for microsatellite data among the subjectively identified morphs; 

95% confidence intervals for θST and FIS were estimated by bootstrapping 1000 

times over loci. Using the AFLP data, a pairwise matrix of Jaccard distances 

between individuals was constructed without a priori population assignment and 

summarized via principal coordinate analysis (PCoA) using the program R.2.2.1 

(R Development Core Team 2005) to illustrate genetic variation within and 

among morphs.  

For the microsatellite data we used the program Arlequin to perform a 

genotype (population) assignment test that requires a priori knowledge of 

population identity. Mantel tests (Mantel 1967) were conducted to examine the 

congruence of subjective morphological grouping with the AFLP and 

microsatellite datasets and the congruence between the genetic marker systems 

via the program GenAlEx. Congruence between genetic and phenotypic variation 

was further examined using the program ALLELES IN SPACE (Miller 2005), 

inputting pairs of PC scores from the morphometric PCA for each individual 

sucker rather than geographic coordinates to generate morphological, rather than 

geographic, distance matrices for subsequent comparison with AFLP and 

microsatellite dissimilarity matrices via Mantel tests.       

Finally, we used a Bayesian clustering program, STRUCTURE 2.2 

(Pritchard et al. 2000), that requires no a priori assignment of individuals to 

morphs to search the AFLP and microsatellite data for population structure. We 

ran the model with correlated allele frequencies (Falush et al. 2003) and with 
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(microsatellite profile) and without (AFLP profile) admixture (Pritchard et al. 

2000). Five runs of the model were made at each presumed number (1-4) of 

genetic clusters (K). For each Markov chain Monte Carlo run, estimates of the 

probability of K were taken after 1 000 000 iterations that were preceded by a 

burn-in of 30 000 iterations. Variation in assignment probabilities across 

replicates was examined using the program CLUMPP 1.1.1 (Jakobsson & 

Rosenberg 2007). Contingency tests were conducted to examine the association 

of genetic and morphological groupings.  

 
RESULTS 

Morphological Analysis 

Two-factor ANOVA (Type III sums of squares) revealed that while female 

suckers (TL = 548.0 ± 18.3 mm; mean ± 95%CI) were significantly longer than 

males (mean TL = 516.3 ± 12.5 mm) regardless of morph, F1,69  =  7.92 and P = 

0.0064, there were no significant differences in mean TL among morphs, F2,69  =  

1.20 and P = 0.3060, and no significant effect due to the interaction of sex and 

morph, F2,69  =  1.43 and P = 0.2468. Calculation of age from TL revealed that the 

sampled suckers had an average estimated age of approximately 24.8 years (y) 

with a range of 8 y to 54 y; the mean estimated age of males was 21.1 y (range: 

8 y to 32 y) and that of females was 29.0 (range: 10 y to 54 y). The upper age 

values are likely underestimates given the extremely slow growth larger suckers 

exhibit, particularly males (Scoppettone, personal communication; Belk 1998). 
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Total length was significantly correlated, at Bonferroni-adjusted α = 0.0026, with 

all morphological variables except EN, GP, JW, UP, and LP (see Table 2-2); P 

values for these five variables were 0.0032, 0.2960, 0.4655, 0.0893, and 0.4360, 

respectively, whereas all other variables’ TL regressions had P values of less 

than 0.0001. After adjusting (via linear regression) the morphological variables 

significantly correlated with TL, ANOVA revealed that only the residual for LO 

differed significantly among morphs (F2,72  =  26.09, P < 0.0001). All of the 

variables not significantly correlated with TL except EN differed significantly 

among morphs; for GP, UP, and LP, P < 0.0001 whereas for JW, P = 0.0003. 

June sucker morphs had narrower lower lip lobes, wider lower lip gaps, steeper 

jaw angles, and fewer rows of upper and lower papillae than Utah sucker morphs 

and intermediates (Table 2-3).  

The first four PCs generated by PCA explained 87.3% of the variation in 

the 19 morphological characters; overall body size was correlated with PC1, as 

were all variables except GP, JW, UP, and LP (the variables not correlated with 

TL) were highly correlated with PC1 (Table 2-4). Several mouth character 

variables (LO, GP, JW, UP, and LP) were highly correlated with PC2, and PP 

was less highly correlated with PC2. A mix of head and body characters were 

correlated with PC3 and PC4 (Table 2-4). Linear regression revealed that TL was 

highly significantly correlated (at Bonferroni adjusted α = 0.0167) with PC1 (r2 = 

0.717, P < 0.0001) and uncorrelated with PC2 (r2 = 0.0157, P = 0.2837) and PC3 

(r2 = 0.0636, P = 0.0291). Morphs were differentiated along the oral character 
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correlated PC2 (Fig. 2-3), and the signs (+/−) of their correlations relative to one 

another are in accordance with June morphs having narrower lower lip lobes, 

wider lower lip gaps, steeper jaw angles, and fewer rows of upper and lower 

papillae than Utah morphs and intermediates. PC1, PC3, and PC4 did not 

distinguish among morphs, and for PC 3 and PC4, signs of the correlations did 

not follow the observed morphological differences (e.g., JW, UP and LP are all 

positively correlated with PC4; compare their correlations with PC2). Perhaps 

other morphometric analyses more sensitive to shape (e.g., geometric 

morphometrics, thin plate spline analysis, relative warp analysis) would have 

detected differences in head and body shape among the sucker groups, 

however, we chose our methods to emphasize ecologically important mouth 

characters.  

Genetic Analysis 

Population-specific measures of AFLP diversity were very similar among 

morphs (Table 2-5). All microsatellite loci were polymorphic, with US4, US6, 

Dlu45, Dlu409, and Dlu4283 exhibiting 18, 27, 19, 19, and 28 alleles, 

respectively. Using microsatellites, June sucker morphs exhibited slightly higher 

levels of unbiased heterozygosity and higher levels of total allelic richness over 

all loci than Utah sucker morphs or intermediates (Table 2-5). The number of 

private alleles, adjusted for group size, was 6.0 for June sucker morphs, 1.0 for 

intermediates, and 0.8 for Utah sucker morphs, although all private alleles had 

frequencies less than 0.103.   
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When all morphs were combined, only two (US4 and US6) of five 

microsatellite loci were in HWE (Table 2-6); all instances of HW disequilibrium 

were due to heterozygote deficiencies. We detected two locus pairs (US4 and 

Dlu45, P = 0.00219; US4 and Dlu4283, P = 0.00019) showing linkage 

disequilibrium at the Bonferroni-adjusted α = 0.005 when all suckers were 

considered as a single group. These pairs involved two of the three loci not in 

HWE and US4, which exhibited near significance in the HWE test at the 

Bonferroni-adjusted α = 0.01 (Table 2-6). When morphological groups were 

assessed separately, both HW and linkage disequilibria were reduced. Within the 

June sucker morph, all loci were in HWE, whereas three and four loci were in 

HWE in the Utah morph and intermediates, respectively (Table 2-6). No linkage 

disequilibrium was detected in June sucker or intermediate microsatellite profiles, 

whereas two locus pairs exhibited linkage disequilibrium within the Utah sucker 

profile: US4 and US6, P = 0.00150 and US4 and Dlu4283, P < 0.00001. Micro-

Checker detected the likely presence of null alleles at three (US4, Dlu45, and 

Dlu4283) of the five microsatellite loci when morphological groups were 

combined (Table 2-6). Testing within the groups reduced the number of loci with 

the likely presence of null alleles: within the June sucker morph, null alleles were 

likely present at two loci (Dlu 45 and Dlu4283); null alleles were likely present at 

two loci (US4 and Dlu4283) in the Utah sucker morph; and within intermediates, 

null alleles were likely present at one locus (Dlu45).        

 As measured by θST, both AFLP and microsatellite datasets displayed 
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significant, but weak population structure among subjectively defined 

morphological groups (Table 2-7); structure was more pronounced with the AFLP 

data than microsatellite data. Mean FIS over all loci was 0.1102 (95% confidence 

intervals: 0.0496 – 0.1710). PCO ordination of the AFLP data showed this slight 

structuring and reflected the morphological PCA ordinations ( Fig. 2-4). Together, 

the first three eigenvectors (principal coordinates - PCos) explained 19.4% of the 

total variation in the AFLP data.  

Over all morphs, the genotype assignment test, which utilizes a priori 

morphological classification, of the microsatellite data revealed a mis-assignment 

rate of 5.1%. June morphs and intermediates were mis-assigned at a rate of 3.4 

%. A single June sucker was classified as an intermediate, and one intermediate 

was identified as a Utah sucker. Utah morphs were mis-assigned at a rate of 

10.0%; two Utah suckers were assigned as intermediates. A three dimensional 

log-log likelihood plot of genotypes demonstrates the difficulty differentiating Utah 

morphs from intermediates ( Fig. 2-5).    

Although Pearson’s correlation coefficients between distance matrices 

generated from morphological grouping and genetic data were low, Mantel tests 

for group structure were significant in both AFLP and microsatellite datasets 

(Table 2-7). Distance matrices generated from the AFLP and microsatellite data 

were significantly correlated with one another (r = 0.103, P = 0.005). Mantel tests 

of congruence between phenotype and genotype, conducted by creating 

morphological rather than geographical distance matrices in the program 
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ALLELES IN SPACE, revealed that PC2 (correlated with mouth characters), 

which morphologically differentiated the groups, also differentiated the morphs 

genetically (Table 2-7, see Fig. 2-3). Morphological distance matrices derived 

from individual scores for PC2, which was not significantly correlated with TL and 

thus not correlated with age, and PC3, which was correlated with head and body 

characters and also not significantly correlated with TL, were most highly 

correlated with both microsatellite and AFLP profiles (r = 0.1925 and r = 0.1212, 

respectively). Distance matrices produced from individual scores for PC1, which 

was highly significantly correlated with TL and thus age, and PC2 resulted in 

lower correlations of morphology with the microsatellite and AFLP data (r = 

0.0828 and r = 0.0773, respectively). Distance matrices generated from individual 

scores for PC1 and PC3 showed little correlation with the genetic distances 

(Table 2-7).      

For both AFLP and microsatellite data, Bayesian clustering via the 

program STRUCTURE determined that the most likely number of sucker 

populations of in Utah Lake was two (Table 2-8,  Fig. 2-6), and the program 

CLUMPP detected minimal variation in assignment probabilities across replicate 

runs for K = 2. Other values of K, the proposed number of genetically defined 

populations, resulted in lower likelihoods, and larger values of K resulted in 

individuals being equally likely to be assigned to one cluster or another. Although 

the genetically defined clusters were somewhat incongruent with morphological 

groupings and between genetic marker systems, contingency tests revealed 
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highly significant association of genetic and morphological groupings for both 

microsatellite (P < 0.001) and AFLP (P < 0.001) datasets.  For the microsatellite 

data, one cluster (n = 44) included 28 morphologically identified June sucker, 10 

intermediates, and 6 Utah sucker, whereas the other cluster (n = 34) was 

comprised of 14 morphologically identified Utah sucker, 19 intermediates, and 1 

June sucker. For the AFLP data, one cluster (n = 29) was composed of 19 

morphologically identified June sucker, 3 intermediates, and 7 Utah sucker, while 

the other cluster (n = 49) included 13 morphologically identified Utah sucker, 26 

intermediates, and 10 June sucker. The STRUCTURE cluster assignments were 

concordant for 45 individuals (58%) between the AFLP and microsatellite 

datasets. 

DISCUSSION 

Morphological and Genetic Congruence 

June suckers and Utah suckers in Utah Lake are currently classified as 

members of distinct genera (Chasmistes and Catostomus, respectively) based 

on morphological features. This taxonomy, however, belies the complex 

evolutionary history of suckers in Utah Lake and perhaps elsewhere in western 

North America. The taxonomy of Utah Lake suckers and other sympatric 

Chasmistes/Catostomus pairs has long been problematic (Jordan 1891; Tanner 

1936; Miller & Smith 1981; Cook 2001; Markle et al. 2005; Tranah & May 2006), 

and hybridization has typically been invoked to explain the presence of 

morphologically intermediate forms and genetic ambiguity (Miller & Smith 1981; 
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Evans 1997; Li 1999; Markle et al. 2005; Tranah & May 2006). This view has led 

managers to view current hybridization as a threat to the persistence of an 

ancient endangered lineage. However, we suggest that another possibility exists, 

at least in the Utah Lake suckers: this complex may have a long, reticulated 

history of genetically shallow but morphologically pronounced divergence and 

convergence, following fluctuating environmental conditions. Under this scenario, 

gene flow between morphologically dissimilar subpopulations may be an asset to 

the long term persistence of the complex (Arnold 1997; Dowling & Secor 1997), 

ironically including both ends of the morphological spectrum. This situation 

presents an interesting management dilemma: should management of the 

federally endangered June sucker include maintenance of the entire sucker 

complex in Utah Lake?  

Mock et al. (2006) found that Utah Lake suckers as a group contained no 

highly divergent mitotypes and were not unusually diverse or divergent with 

respect to mitochondrial or nuclear diversity compared to other populations of 

Utah sucker within the southwestern clade. This southwestern clade of Utah 

suckers, however, including Utah Lake and its tributaries as well as the Sevier 

River basin was highly divergent (4.5% mitochondrial sequence divergence) from 

the northeastern clade of Utah suckers. Utah Lake suckers are nearly fixed for a 

unique mitotype relative to Utah suckers in the Sevier River basin where no 

lakesucker morph exists, but this mitotype is different by only 0.75% to 1.75% 

sequence divergence. Unless there has been a history of severe bottlenecks and 
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asymmetric hybridization in Utah Lake, these findings suggest that Utah Lake 

suckers may not be the product of recent collapse of two ancient and highly 

divergent lineages, as is commonly supposed. The inferences of Mock et al. 

(2006), however, were limited with respect to Utah Lake suckers because Utah 

and June suckers were not morphologically defined and directly compared. In 

this study, we were able to objectively quantify specific morphological features 

and multivariate principal components separating June and Utah suckers in Utah 

Lake (as currently recognized and managed)  for comparison with the genetic 

variation of Utah Lake suckers. Additionally, we subjectively classified individuals 

into morphological groups and assessed the genetic differentiation among these 

groups. The pronounced, ecologically relevant differences in morphology 

between June sucker and Utah sucker were reflected by a significant, but small 

degree of genetic structuring between these groups, as assessed using multiple 

molecular markers and statistical approaches. The lack of a stronger signal 

between neutral molecular markers and quantitative traits is not unexpected 

(Lynch et al. 1999; Pfrender et al. 2000) and suggests some degree of historical 

assortative mating and selection that may be acting to maintain trait variation, 

perhaps via variance in a low number of loci, despite gene flow between the 

morphs.  

A history of shallow, reticulating divergence in the Utah Lake sucker 

complex would be consistent with the hydrologic history of Utah Lake. Lake 

Bonneville (existing from about 34 000 to 10 000 years before present - BP) was 
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the last in a series of ancient, intermittent freshwater lakes that have formed in 

the endorheic Bonneville basin since volcanism diverted the flow of the Bear 

River into the basin from the Snake River watershed approximately 160 000 BP 

(Currey & Oviatt 1985; Link et al. 1999; Oviatt et al. 1992, 1999). Utah Lake has 

continued to fluctuate dramatically in depth and area, seasonally and annually, 

since its formation when Lake Bonneville receded approximately 10 000 BP. 

Lake bed core samples from Utah Lake provide evidence of drastically reduced 

lake levels and perhaps complete drying during three prolonged droughts 

occurring 6000, 4000, and 600 BP, with the drought of 6000 BP persisting for 

700 years (Antevs 1948; Montillo 1968); many minor droughts (e.g., 1930s) have 

also occurred since its formation. Thus, during their evolutionary history, the 

suckers in Utah Lake have survived the decline of Lake Bonneville (surface area 

of 50 000 km2 and hundreds of meters deep) to Utah Lake (392 km2 surface area 

and maximum depth of 4.2 m) and the subsequent droughts that have at times 

severely desiccated Utah Lake.  These dynamics may be similar to those in the 

three African Great Lakes, where lake level fluctuations have played a major role 

in gene flow among populations and cichlid diversification (Danley et al. 2000; 

Sturmbauer et al. 2001). It is possible that this reduction in depth has enhanced 

the persistence of intermediates by decreasing the distance between the limnetic 

and benthic habitats, enabling them to more efficiently exploit both niches and 

thus reduce selection against them. Gene flow among suckers (Chasmistes and 

Catostomus) in Utah Lake is not a recent phenomenon (Jordan 1878), and the 
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paleontological record includes specimens that fall between the two 

morphological extremes with some sites yielding Chasmistes fossils exhibiting 

considerable variation (Miller & Smith 1981; Smith 1981). These transitional 

specimens are described as more primitive Chasmistes, but perhaps they 

represent intermediates in diverging or converging populations.  

Divergence in response to ecological selection for benthic vs. limnetic 

forms, a common dichotomy in lake-dwelling fish species, would be reinforced by 

the evolution of distinct spawning times for different morphs, and opposed by 

ecological conditions that promote common spawning times. Although both 

morphs spawn in the same tributary locations, Utah morphs historically spawned 

earlier than June morphs (U.S. FWS 1999). It is possible that this temporal 

difference in spawning period evolved because of temporal differences in the 

types of prey available for consumption by larval and juvenile suckers in Utah 

Lake; perhaps zooplankton become available later than benthic 

macroinvertebrates. In the Klamath River basin, larval Klamath largescale sucker 

remain in spawning tributaries whereas larval shortnose sucker migrate 

downstream to nearshore and wetland habitats in Upper Klamath Lake (Markle & 

Clauson 2006; Burdick et al. 2008; Crandall et al. 2008). Anthropogenic flow 

alterations of the Provo River, which began shortly after Europeans settled Utah 

Valley, have likely interfered with natural spawning cues in an already extremely 

stochastic environment and increasingly compressed suitable spawning periods, 

potentially increasing gene flow among morphs. Our rough age estimates 
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indicate the last successful natural spawn of wild suckers occurred around the 

early 1990’s, and the smallest (youngest) suckers we sampled include all 

morphs. Recent telemetry studies failed to detect the historically described timing 

of June sucker spawning runs (Buelow 2006) or the temporal separation of 

spawning periods of June sucker and Utah sucker (Cole 2008).  

The nature of the morphological variation in Utah Lake suckers is 

consistent with the concept of benthic (benthivorous) vs. limnetic (planktivorous) 

fitness peaks.  The limnetic niche would be expected to favor the June sucker 

morph’s terminal mouth position and reduction in lower lip size, whereas the 

benthic niche would be expected to favor the large, heavily papillated lips and 

ventral mouth orientation of the Utah sucker morph. In a pilot study, lip size and 

lower lip gap size were shown to be heritable (Mark Belk, unpublished data). 

Recently, Utah Lake suckers of intermediate morphology (as defined in the 

present study) have been shown to have stable isotopic signatures for 13C and 

15N that are intermediate to those of June and Utah morphs (Cole 2008), further 

indicating that these morphologies have an ecological basis.  

Three of the five microsatellite loci used in our study exhibited HW and 

linkage disequilibria. These disequilibria, resulting from heterozygote 

deficiencies, could be explained by population substructure, inbreeding, linkage 

to genes under selection, null alleles, Wahlund effects, or any combination of 

these factors. The strong likelihood of null alleles at three of the five loci warrants 

caution in interpreting results of the microsatellite analyses as the presence of 
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null alleles can lead to over-estimation of population structure (Chapuis and 

Estoup 2007) and also because the program STRUCTURE operates by 

examining data for deviations from HWE and linkage equilibrium. That said, 

however, the results of the microsatellite analyses do mirror those of the AFLP 

analyses, and except for θST, microsatellite analyses detected more structuring 

than AFLP analyses, as expected given the rapid rate of mutation in 

microsatellites. Additionally, when morphologically defined groups were 

assessed separately, HW and linkage disequilibria and the number of loci with 

the likely of the presence of null alleles were reduced. The higher degrees of HW 

and linkage disequilibrium in Utah morphs relative to June morphs (Table 2-6) 

are interesting findings that warrant further investigation. The presence of family 

grouping within the Utah morph is one potential explanation; this might lead to 

overestimation of population structure and could explain differences in diversity 

indices among morphs. Clearly, however, there is not a signal of deep genetic 

divergence between the June sucker and Utah sucker morphs in Utah Lake.  

Our results continue to raise questions about the evolution of Chasmistes 

and Catostomus, especially in light of the several studies, some including a 

broader range of species in these genera,  presenting evidence that Chasmistes 

and Catostomus may not be monophyletic groups (Harris & Mayden 2001; Mock 

et al. 2006; Tranah & May 2006; Sun et al. 2007). In the Klamath drainage in the 

northwestern US, researchers detail a pattern similar to the one described here 

for Utah Lake suckers: sympatric populations of morphologically defined 
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shortnose sucker and Klamath largescale sucker (Catostomus snyderi) were 

found to exhibit minimal genetic structuring despite pronounced morphological 

variation (Tranah & May 2006).  We recommend a broader study of 

Catostomus/Chasmistes species pairs in western US lakes to characterize their 

evolutionary history.  

Conservation Implications    

Identifying distinct population segments (DPSs; e.g., evolutionarily 

significant units, stocks, management units) is a complex and much debated 

subject (Avise 1989; Moritz 1994, 2002; Bowen 1999; Dimmick et al. 1999; 

Paetkau 1999; Crandall et al. 2000; Fraser and Bernatchez 2001; Green 2005; 

Palsbøll et al. 2006), and much of the discourse involves the relative weight 

given to adaptive variation (e.g., morphology, ecology, life history - Waples 1991; 

Bowen 1999; Crandall et al. 2000; Waples et al. 2001) and variation of neutral 

genetic markers (Avise 1989; Moritz 1994, 2002; Dimmick et al. 1999; Palsbøll et 

al. 2006) . Currently, among Pacific northwest salmonids, to be considered an 

ESU, a population (or group of populations) must be substantially reproductively 

isolated from other conspecific populations and represent a significant 

component in the species’ evolutionary legacy, and in populations with multiple 

life histories (e.g., resident and anadromous forms), management policies extend 

to all forms  (National Marine Fisheries Service 1991). Both the National Marine 

Fisheries Service and the U.S. Fish and Wildlife Service accept this policy as 

consistent with ESA policy in designating DPSs. The legal defining criteria are: 
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discreteness of the population segment in relation to the remainder of the 

species to which it belongs; significance of the population segment to the species 

to which it belongs; and the population segment’s conservation status in relation 

to the Act’s standards for listing (U.S. FWS 1996).    

Despite the suckers in Utah Lake exhibiting extreme morphological 

variability without excessive genetic variation, two populations of suckers can be 

differentiated genetically in Utah Lake, although incongruence between 

morphological and genetic identities exists. In the Klamath drainage, four species 

catostomids occur sympatrically: Klamath smallscale sucker (Catostomus 

rimiculus), Klamath largescale sucker, the endangered shortnose sucker, and the 

endangered Lost River sucker (Deltistes luxatus). The authors of a recent genetic 

investigation of Klamath basin suckers recommend management focusing on the 

preservation of the genetic diversity of all four species, and they emphasize the 

linked evolutionary legacies of shortnose sucker and Klamath largescale sucker 

(Tranah & May 2006). Regardless of whether the sucker population in Utah Lake 

is a product of incipient speciation, hybridization, perhaps in a syngameon-like 

evolutionary trajectory, or a reticulating process of divergence and convergence, 

maintenance of the unique morpho- and genotypes in the future may well depend 

on the maintenance of overall genetic diversity, with divergent forms emerging as 

environmental conditions fluctuate  (Crandall et al. 2000; Allendorf et al. 2001, 

2004, 2005; Moritz 2002; Tranah & May 2006).  
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The suckers in Utah Lake present a vexing dilemma for managers. The 

federally endangered June sucker is a unique morph found only in Utah Lake, 

and is ecologically distinct in terms of feeding ecology from the Utah sucker 

morph found there and elsewhere. Federal protection requires a recovery 

program to implement management actions promoting the persistence of the 

June sucker, and both recovery and program success are defined by the near 

term abundance of this morph. Thus, the current hatchery program focuses 

exclusively on breeding and stocking the June sucker morph, despite the 

potential loss of genetic diversity and the possibility of hatchery-induced 

morphological variation (Belk et al. 2008) and reduced genetic fitness (Lynch & 

O’Hely 2001). Our findings, along with those of Li (1999) and Mock et al. (2006), 

indicate that the June sucker morph, although genetically differentiable from the 

Utah sucker morph, is a portion of the larger, yet still genetically unique, 

interbreeding complex of suckers in Utah Lake. The June sucker morph is 

distinctive and worthy of special protection, but given the evolutionary and 

ecological history of this complex, long term persistence of this morph may well 

depend on the persistence of the entire genetic complex. Selecting one end of 

the morphological continuum for protection without monitoring the status of the 

remainder of the complex may ultimately lead to reduced overall genetic 

diversity, limiting future behavioral and ecological adaptation essential in such a 

dynamic lake system. Because we cannot know the future direction of change in 

physical habitat, food resources, or other potential bottlenecks or forcing 
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functions, we also cannot know what the required genetic variation will be to 

preserve the unique morphs or the overall unique genome that currently resides 

in Utah Lake. Thus, it would seem prudent to prevent loss of genetic diversity in 

the complex as a whole, with particular attention to the unique June morph, to 

ensure the survival of the distinctiveness of the Utah Lake sucker fauna.  

Management actions with these goals in mind would represent a novel 

and progressive approach to endangered species management. However, 

effective management of the sucker complex will require a clearer understanding 

of several aspects of Utah Lake sucker biology, including the genetic architecture 

and fitness consequences of trait variation and the natural and anthropogenic 

drivers of morphological diversification. These are not trivial tasks. The situation 

described here is not unique, especially for aquatic species with migratory 

spawning patterns. In the case of the endangered June sucker, we suggest that 

conservation of the broader gene pool would be a conservative alternative to 

focusing only on one end of the morphological spectrum. Such an approach 

would be consistent with our understanding of the evolutionary history of this 

complex, and until additional information becomes available, it could minimize 

loss of evolutionary potential in this complex. 
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Table 2-1  Characteristics used to differentiate June Sucker and Utah sucker   

__________________________________________________________________________________________________________   

CHARACTERISTIC 
 

June sucker (Chasmistes liorus) 
 

Utah sucker (Catostomus ardens) 
 

Mouth lobes of lower lip separated by a wide median notch lower lip with deep medial cleft but lobes usually adjacent 

 
thin, protrusive upper lip may be concealed by overhanging 
snout thick, wide, pendant upper lip  

 narrow lips almost nonpapillose; lower lip with broken plicae both lips papillose 

 large, somewhat oblique, subterminal to terminal mouth;  small, inferior mouth 

 large mandibles small mandibles 
   
Head head flat or depressed (concave) head convex and subconical or cuneate 

 interorbital span broad and nearly flat interorbital span convex 

 eye positioned at mid-head eye positioned at anterior margin at mid-head 

 eye diameter/isthmus width ratio large eye diameter/isthmus width ratio small 
   
Color profusely stippled/mottled olive to brown to blackish dorsum darker dorsum crimson to dark green, or bronze to gray 

 flat white venter whitish venter 

 spawning males have a red lateral stripe spawning males have a rosy lateral band 
   
Scales lateral line scales 55-65 lateral line scales 60-72 
   
Gills nodules of gill rakers strongly branched or knobbed nodules of gill rakers slightly to unbranched 
   
Fins caudal fin deeply forked; lower lobe is longer caudal fin short and broad; lobes even 

 dorsal fin anterior ray = 2x height of posterior ray dorsal fin anterior ray = 1.5 x height of posterior ray 

 dorsal fin's dorsal edge nearly straight dorsal fin's dorsal edge curved 

 small ventral fins short, broad pectorals; squat pelvics; deep, long anals 
   
Body Shape predorsal length/standard length < 1/2 predorsal length/standard length > 1/2 

 broad back and shoulders narrow back and shoulders 
__________________________________________________________________________________________________________ 

(from Eddy and Underhill 1978; Miller and Smith 1981; Sigler and Sigler 1987; Evans 1997; Cook 2001)

  

4
6
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Table 2-2  Morphometric and meristic (italics) variables measured or counted 
from digital photographs (abbreviations in parentheses). Total length (TL) was 
provided by the Utah Division of Wildlife Resources. 
_____________________________________________________________________________  
                                                                                                 
snout to nostril distance (NS)                            snout to anal fin distance (AN) 
snout to eye distance (EY)   dorsal fin to pelvic fin distance (DP) 
head length (HD)    pectoral fin to pelvic fin distance (PP) 
eye to nostril distance (EN)   mouth width (MO) 
eye diameter (DI)    lower lip lobe length (LO) 
head depth at position of eye (HE)    lower lip gap width (GP)  
head depth at posterior of occiput (HO)  jaw angle (JW)    
snout to dorsal fin distance (DO)   number of rows of upper lip papillae (UP)  
snout to pectoral fin distance (PT)         number of rows of lower lip papillae (LP)  
snout to pelvic fin distance (PL) 
_____________________________________________________________________________ 
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Table 2-3  Means and standard deviations (s) for morphological variables exhibiting significant 
differences  (Bonferroni-adjusted α = 0.0026) among morphs (* because LO was significantly 
correlated with length, TL residuals were compared among morphs; here, lobe lengths are 
reported) 
          

                    

Morphological     June morph (n = 27)        Intermediates (n = 28)    Utah morph (n = 20) 

variable   Mean ± s   Mean ± s   Mean ± s 

          

 LO*  8.09 ± 1.39 mm  10.69 ± 1.41 mm  11.42 ± 2.78 mm 

GP  3.70 ± 1.36 mm  1.94 ± 0.78 mm  1.23 ± 0.38 mm 

JW  52.33 ± 5.69 °  48.29 ± 4.65 °  46.50 ± 4.07 °  

UP  0.52 ± 0.80 mm  2.64 ± 1.03 mm  3.75 ± 0.91 mm 

LP  1.19 ± 1.47 mm  4.21 ± 1.34 mm  6.00 ± 0.92 mm 
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Table 2-4  Variation (%) explained by and important loadings of variables on the 
first four principal components (PCs) from PCA of morphological characters of 
suckers (n = 75) from Utah Lake. 
(*  |loading| < 0.15) 
_____________________________________________________________________________ 

          PC1           PC2                PC3         PC4 

_____________________________________________________________________________ 
 
Variation 
explained (%)          58.6        18.1    7.1         3.5         
_____________________________________________________________________________ 
 
Variable                                                          Loadings 
_______                 _____________________________________________________________ 
 
NS 0.276901 * -0.18263 * 

EY 0.264101 * -0.29546 * 

HD 0.278634 * * * 

EN 0.178446 * -0.54724 * 

DI 0.255863 * * * 

HE 0.281681 * * 0.186177 

HO 0.276971 * * 0.185244 

DO 0.285199 * * * 

PT 0.278773 * * * 

PL 0.288770 * 0.158282 * 

AN 0.270537 * 0.215875 * 

DP 0.239894 * 0.202830 * 

PP 0.213952 0.156065 0.440357 -0.17428 

MO 0.252618 * * -0.27474 

LO 0.186659 0.333250 * -0.20651 

GP * -0.44077 0.202415 -0.20549 

JW * -0.32966 0.394030 0.691899 

UP * 0.485329 * 0.272604 

LP * 0.490636 * 0.352835 
_____________________________________________________________________________ 

4
8
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Table 2-5  Diversity indices for AFLP and microsatellite profiles of Utah Lake 
suckers: unbiased heterozygosity (H), percent polymorphic loci - 95% 
criterion (%P), and allelic richness (AR – sums for all five loci). * Total sample 
sizes reported for AFLP diversity indices; mean sample sizes reported for 
microsatellite heterozygosity (due to missing data for one locus); and 
minimum sample size upon which richness is based reported for allelic 
richness.  
           

Genetic Diversity   June morphs   Intermediates   Utah morphs 

marker index   n* Index   n* Index   n* Index 

           

AFLP H  29 0.324  29 0.329  20 0.313 

 %P  29 86.73  29 83.19  20 84.07 

           

Microsatellite H  29 0.920  28.8 0.885  20 0.902 

 AR  20 79.86  20 62.81  20 61.00 

                      

5
0
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Table 2-6  P values from tests for HWE on microsatellite profile for Utah Lake suckers (n = 78); one 
individual was missing data regarding Dlu4283 (bold italics: significant at Bonferroni-adjusted α = 
0.01) and estimated null allele frequencies over all fish (bold: null allele{s} likely present)    
             

  June morph        Intermediate    Utah morph   All fish combined Null Allele 

Locus n P value   n P value   n P value   n P value frequency 

             

US4 29 0.17538  29 0.16381  20 0.00247  76 0.01212 0.0600 

US6 29 0.38153  29 0.40303  20 0.34568  76 0.24582 0.0296 

Dlu45 29 0.01181  29 0.00545  20 0.27115  76 0.00092 0.0968 

Dlu409 29 0.64358  29 0.37296  20 0.04284  76 0.00996 0.0098 

Dlu4283 29 0.01323  28 0.01238  20 0.00023  75 0.00021 0.0967 

                          

  
5

1
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Table 2-7  F-statistic estimator, θST (with 95% confidence intervals), for Utah Lake 
suckers (J, I, and U morphs) determined from AFLP and microsatellite profiles; 
and microsatellite and AFLP Mantel test correlation coefficients and probabilities 
for group structure and for congruence of morphological and genetic profiles. 
Group structure analysis performed via the program GenAlEx. Mantel tests for 
concordance of phenotype and genotype were conducted using the program 
Alleles In Space; pairwise scores of PCs 1 - 3 from the PCA of morphological 
variables were entered for each sucker instead of geographic coordinates to 
generate morphological (phenotypic) dissimilarity matrices for comparison with 
microsatellite and AFLP dissimilarity matrices. (Bold: significant at α = 0.05; Bold 
italic: significant at Bonferroni-adjusted α = 0.0167) 
           

                  

    Microsatellite  AFLP   

         

θST (95% CI)    0.0199 ( 0.0123 - 0.0279)  0.0448 (0.0315 -0.0595) 

         n = 78           

             

    Correlation   Correlation  

Mantel tests    coefficient Probability  coefficient Probability 

    r P  r P 

         

Group structure  (3 morphs)  0.1127 0.0001  0.0998 0.0001 

n = 78         

         

Congruence of  PCs       

phenotype and  1 and 2  0.0828 0.0060  0.0773 0.0370 

genotype  1 and 3  0.0128 0.3237  0.0085 0.4376 

n = 75  2 and 3  0.1925 0.0010  0.1212 0.0020 

                  

5
2
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Table 2-8  Means and ranges of likelihoods [P(D)] from five runs of 
STRUCTURE fitting different assumed numbers of subpopulations (K) for 
microsatellite and AFLP profiles of Utah Lake suckers (n = 78) (bold: 
highest posterior probability) 
 

     Microsatellite         AFLP   

K    Mean lnP(D) Range ln P(D)       Mean lnP(D)   Range ln P(D) 

      

1 –2149 –2150 to –2149  –4331 –4332 to –4331 

2 –2127 –2129 to –2126  –4305 –4309 to –4303 

3 –2434 –2496 to –2395  –4415 –4450 to –4367 

4 –2366 –2486 to –2246  –4507 –4550 to –4439 
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Fig. 2-1  Geographical setting of Utah Lake, Utah, USA, home of the endangered 
June sucker. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Great Salt Lake 

 

UTAH 

Utah Lake 

 
~ 8 km 

Provo 
River 

 



55 
 

 
 

 

 

 Fig. 2-2  Variables used in morphological analysis (See Table 2 for descriptions):  
A)  NS, EY, HD, EN, DI, HE, HO, DO, PC, PL, AN, DP, PP, and JW overlaid on 
Utah sucker profile; B)  MO, LO, and GP overlaid on June sucker ventral image; 
and C)  MO, LO, GP, UP, and LP overlaid on Utah sucker ventral image. Total 
length (not shown) provided by Utah Division of Wildlife Resources.  
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 Fig. 2-3  PCA ordination of individuals’ scores for the first two PCs for sucker (n 
= 75) identified subjectively using a Ch. liorus mictus model for June sucker and 
a more lenient definition of Utah sucker than Sigler and Sigler (1987) that allowed 
classification of Utah morphs having slightly reduced lip size and papillation (e.g., 
a C. ardens “mictus” model for Utah sucker). PC1 is correlated with overall size 
(size increases as PC1 increases) and explains 58.6% of the morphological 
variation, and PC2 is correlated with mouth character variables and explains 
18.1% of the variation. (Circles - June sucker; triangles - Utah sucker; and 
squares - intermediates) 
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 Fig. 2-4  Three dimensional ordinations of (A) the first three PCs of the 
morphological PCA and (B) the first three principal coordinates of the genetic 
(AFLP) PCoA of suckers (n = 75) from Utah Lake (circles - June sucker; squares 
- intermediates; and triangles - Utah sucker).     
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 Fig. 2-5. Log-log likelihood plot of genotypes from population assignment test 
(that requires a priori identification) of suckers (n = 78) from Utah Lake (circles - 
June sucker; squares - intermediates; and triangles - Utah sucker).  
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 Fig. 2-6. STRUCTURE output displaying probable ancestry (mean of posterior probabilities of five Bayesian clustering 
runs without a priori classification) of individual Utah Lake suckers (n = 78) by morphological grouping determined from: A) 
Microsatellite profiles; B) AFLP profiles. (each column represents an individual; white - probability of Cluster 1 ancestry, 
grey - probability of Cluster 2 ancestry).
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CHAPTER 3 
  

DISTRIBUTION AND MOVEMENT, SPAWNING RUN BEHAVIOR, AND  
 

STABLE ISOTOPIC SIGNATURES (δ13 C AND δ15 N) IN THE  
 

UTAH LAKE SUCKER COMPLEX 

ABSTRACT 

 Ecomorphological specialization within the Catostomidae in several large 

western North American lakes has produced populations including both typical 

benthic suckers (Catostomus) and lakesuckers (Chasmistes), mid-water 

planktivores. The June sucker, a lakesucker endemic to Utah Lake, is sympatric 

over its entire range with the more widely distributed Utah sucker, Catostomus 

ardens. A continuum of morphologies exists in Utah Lake from benthic to limnetic 

extreme with a large proportion of suckers intermediate in morphology. There is 

no molecular evidence for a deep divergence between June sucker and Utah 

sucker, and only very slight population structuring accompanies the substantial 

morphological variation.   

 The morphological differences in Utah Lake suckers are presumably the 

result of ecological selection, although little is known of the ecology of adult 

suckers. Here, the distribution and movement, spawning behavior, and diet of 

Utah Lake suckers in Utah Lake and their growth at different conspecific 

densities in a laboratory experiment are reported. Combination acoustic and 

radio transmitter telemetry revealed essentially no differences in the movement 

and distribution behavior of June sucker and Utah sucker.  No differences were 
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detected in the timing of spawning runs between the species, although spring 

runoff differed by an order of magnitude between study years (drought year to 

wet year), perhaps influencing behavior. Random forests analysis revealed that 

water temperature played a major role in sucker distribution and movement 

around the lake. Suckers of both species were detected more often along the 

eastern versus western shoreline and in limnetic versus littoral zones. Stable 

isotopes analysis revealed that Utah sucker were significantly enriched in 13C 

relative to June sucker as would be predicted given their presumed diets based 

on morphology. June sucker, Utah sucker, and intermediates were all tertiary 

consumers (trophic level = ~ 4.0), and fish eggs or larvae were likely an 

important component in their diets. Intermediate morphs were intermediate to the 

extremes for both δ13C and δ15N. Neither species nor density was a significant 

predictor of growth rate of June sucker and Utah sucker reared at different 

conspecific densities, although the effect of density approached statistical 

significance, perhaps indicative of a small Allee effect. 

 
INTRODUCTION 

 The idea of ecological speciation dates to the time of the development of 

the biological species concept (Dobzhansky 1937; Mayr 1942). Schluter (1996) 

defined ecological speciation as the evolution of reproductive isolation, directly or 

indirectly, via divergent selection on traits between populations (or 

subpopulations) in contrasting environments or exploiting different resources; i.e., 

the process by which barriers to gene flow between populations evolve because 
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of divergent ecological adaptation. Ecological competition drives divergence, and 

a species is defined as “a number of related populations the members of which 

compete more with their own kind than with members of other species" 

(Colinvaux 1986). The greater the similarity between two organisms, the greater 

the probability their needs overlap and they will compete, hence the greater the 

probability they are the same species.  

 Ecological speciation has been described in a variety of fauna, with 

natural selection typically shaping mouth and head characters related to food 

acquisition / ingestion (Grant and Grant 1996; Rice et al. 2009; Monteiro and 

Nogueira 2011) or limb and body characters associated with foraging strategies 

or inhabiting a particular environment (Losos 1990; Dhuyvetter et al. 2007; De 

Busschere et al. 2010). Among fishes, ecological speciation has played a key 

role in major adaptive radiations in a variety of taxa (Meyer 1993; Schluter 1996; 

Hunt et al. 1997; Turgeon and Bernatchez 2003; Barluenga et al. 2006; Feulner 

et al. 2007; Adams et al. 2008; Bernatchez et al. 2010). 

 In freshwater lakes, the evolution of limnetic and benthic morphs has been 

a recurring event in many fish lineages with populations exhibiting differences in 

phenotypic plasticity among lakes and within lakes between morphs (Skúlason et 

al. 1999) and varying levels of gene flow between morphs within lakes (Taylor 

and McPhail 1999; Turgeon et al. 1999, Skúlason et al. 1999). Common garden 

experiments have demonstrated that the relative contributions of genetic 

variation and epigenetic variation (i.e., plasticity) to phenotype vary among 
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species and within species among populations: threespine stickleback, 

Gasterosteus sp. (Day et al. 1994; McCairns and Bernatchez 2012); 

pumpkinseed sunfish, Lepomis gibbosus (Robinson and Wilson 1996; Mittelbach 

et al. 1999); Arctic charr, Salvelinus alpinus, (Skúlason et al. 1999, Alexander 

and Adams 2004); brook charr, Salvelinus fontinalis,  (Proulx and Magnan 2004); 

cichlids, Cichlidae (Stauffer and van Snik Gray 2004); and Eurasian perch, Perca 

fluviatilis (Svanbäck and Eklöv 2006). Recent models of speciation suggest that 

inherited differences in phenotype are not crucial precursors of evolutionary 

divergence within a single population, and they reveal how environmentally 

induced phenotypic plasticity at the level of the individual can result in divergence 

prior to any genetic differentiation.  

 In the first stage of a four-stage species divergence model (Skúlason et al. 

1999) based on phenotypic plasticity, individuals within a single gene pool 

express alternative adaptive traits. Initially, epigenetic evolutionary mechanisms 

are most likely to act on variation in behavior (West-Eberhard 1989), and 

foraging-related behavioral phenotypes are likely candidates for subsequent 

divergence because of the possibility of alternative strategies for foraging 

success and its potential effects on fitness (Wimberger 1994; Smith & Skúlason 

1996; Skúlason et al.1999). In the second stage, phenotypic plasticity in 

anatomical traits may manifest as morphological modifications driven by 

behavioral specialization, and these environmentally regulated, discrete, stable 

morphological traits precede but then promote genetic divergence (Wimberger 
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1994; Skúlason et al. 1993, 1999). Once this phase of evolution has occurred, 

differential habitat use or sexual selection among different phenotypic variants 

(morphs) may then result in reproductive isolation in the third stage of divergence 

(Seehausen et al. 1997; Wood and Foote 1996). In stage four, different morphs 

are exposed to varying selective pressures, and genetic fixing of morphological 

characters can occur (West-Eberhard 1989; McPhail 1994; Skúlason et al. 1999). 

 Ecologically driven trophic polymorphism within the Catostomidae (sucker 

family) has produced populations of typical benthivorous suckers (Catostomus 

spp. – Ca.) and lakesuckers (Chasmistes spp. – Ch.), mid-water planktivores, in 

several large western North American lakes. Ch.spp. have many closely spaced 

branched or dendritic gill rakers, terminal, oblique mouths, and thin, sparsely 

papillated lips with wide gaps between the lower lobes (Miller and Smith 1981; 

Sigler and Sigler 1987). Ca.spp. have fewer and more widely spaced non-

branching, filamentous gill rakers, subterminal to ventral mouths, and large, 

heavily papillated lips with narrow gaps between the lower lobes (Sigler and 

Sigler 1987). Four recent species of Chasmistes are recognized: Ch. brevirostris, 

the shortnose sucker; Ch. cujus, the cui-ui sucker; the presumably extinct Snake 

River sucker, Ch. muriei (see Chapter 4); and Ch. liorus, the June sucker. All 

extant Ch. spp. are federally listed as endangered (USFWS 1967, 1986, 1988), 

and their declines have been attributed to anthropogenic changes in aquatic 

habitat (flow alterations, degraded water quality, channelization, and loss of 

littoral zones), historic overexploitation, competition with and predation by 
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nonnative fish species, and hybridization with the sympatric Ca. spp. (Carter 

1969; Fuhriman et al. 1981; Scoppettone and Vinyard 1991). 

 The June sucker, a lakesucker endemic to Utah Lake, Utah, is sympatric 

over its entire range with the more widely distributed Utah sucker, Ca. ardens. 

The Utah sucker is native to a wide variety of habitats ranging from relatively 

warm streams and shallow lakes to large, deep, cold lakes within the ancient 

Lake Bonneville basin and the Snake River drainage above Shoshone Falls 

(Sigler and Sigler 1987, although see Mock et al. 2006). A continuum of 

morphologies exists in Utah Lake from benthivore to planktivore (Figure 3-1), and 

suckers intermediate in morphology outnumber those at either end of the 

morphological spectrum. Putative hybridization between June sucker and Utah 

sucker may have obscured their evolutionary and taxonomic history (Jordan 

1878, 1891; Miller and Smith 1981; Smith 1983; Cook 2001).  Miller and Smith 

(1981) established the new subspecies Ch. liorus mictus to replace Ch. liorus 

liorus, which they presumed became extinct (via introgression from Catostomus 

ardens) following a severe drought in the 1930s. However, decades prior to the 

drought of the 1930s, Jordan (1891) observed and described Utah Lake suckers 

of intermediate morphology. Moreover, a genetic investigation by Li (1999) failed 

to find a genetic distinction between preserved pre-1930 specimens of Ch. liorus 

liorus and current specimens of Ch. liorus mictus.  

 In light of recent phylogenetic studies of lakesuckers and other western 

North American catostomids it appears the already convoluted history of the 
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taxonomy and nomenclature of the June sucker will soon add another chapter. 

Chen and Mayden (2012) synonymized Chasmistes (and Deltistes and 

Xyrauchen) into Catostomus, and Smith et al. (2013) classified Pantosteus into 

Catostomus and recommended that all western North American catostomids be 

included in the single genus, Catostomus. 

 In 1986, the June sucker was declared endangered because of its 

localized distribution, the population’s failure to recruit new adult fish, and 

continued threats to its survival; the lower 7.8 km of the main channel of the 

Provo River, the only known spawning location at the time of wild June sucker, 

was designated as critical habitat (USFWS 1986). By the late 1990s, the 

estimate for the wild adult spawning population was less than 300 individuals 

(Keleher et al. 1998). The June sucker population decline has resulted from 

changes in aquatic habitat (flow alteration, degraded water quality), competition 

with and predation by nonnative fish species, commercial fishing, and the killing 

of adults during spawning runs (Carter 1969; Fuhriman et al.1981; USFWS 

1986). The Utah sucker population in Utah Lake has suffered similar declines (K. 

Wilson, UDWR, personal communication). In recent years, nearly all June sucker 

captured in Utah Lake and its tributaries have been stocked fish. The size 

distribution of Utah sucker and wild June sucker collected for a genetic and 

morphological analysis (Cole et al. 2008) and monitoring data (K. Wilson, UDWR, 

personal communication) suggests the last successful natural recruitment 

occurred in the early 1990s for both morphs. Failure to recruit, likely the result of 
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predation by nonnative fishes coupled with altered habitats and discharge 

regimes (USFWS 1999), has resulted in a sucker population in Utah Lake 

dominated by adults.       

 June sucker, like other lakesuckers, are slow growing and long lived; 

specimens have been aged to over 40 years (Scoppettone 1988; Belk 1998). 

They are late maturing (age five to ten years) with males maturing earlier than 

females (Belk 1998) and highly fecund with females producing tens to hundreds 

of thousands of eggs depending on age and size (Scoppettone and Vinyard 

1991). The combination of longevity and high fecundity are adaptations for their 

highly stochastic desert lake environment where prolonged droughts or extensive 

flooding may preclude annual spawning. Lakesuckers spawn predominantly in 

tributaries although some within lake spawning in areas near groundwater input 

has been documented in cui-ui sucker (Scoppettone et al. 2000) and shortnose 

sucker (National Research Council 2004). Billman (2005) described successful 

spawning by a refuge population of June sucker in a lake environment (Red 

Butte Reservoir) at rocky shoreline sites. It is unknown if June sucker use 

spawning sites within Utah Lake, which contains a number of springs and several 

locations with rocky shores. Historically, June sucker are described as spawning 

in all tributaries of Utah Lake (USFWS 1999) with peak activity occurring in June 

(hence the common name) following pre-spawning staging at tributary mouths in 

April and May (Shirley 1983;  Radant and Hickman 1984; Modde and Muirhead 

1994). Utah sucker in Utah Lake are described as historically spawning in 



68 
 

tributaries in March and April (Sigler and Miller 1963; USFWS 1999); whether 

any historical spatial isolation (e.g., use of different tributaries or different reaches 

within a tributary) of June sucker and Utah sucker occurred during spawning is 

unknown. Recently, the available spawning habitat for both morphs of Utah Lake 

suckers has been anthropogenically reduced from many kilometers of several 

tributaries to less than eight kilometers of a single, highly regulated, structurally 

altered tributary that exhibits unnatural spring runoff discharge and temperature 

characteristics. 

 Outside of the spawning season, very little is known of the distribution and 

movement of adult suckers in Utah Lake. Captures of June sucker in offshore 

mid-water gill nets were common in the 1950s, however, most captures since the 

1960s have occurred in Provo Bay and Utah Lake shoreline areas (USFWS 

1999). A post-spawning aggregation of June sucker in the mouth of Provo Bay in 

July and August was described by Radant and Shirley (1987); the sucker were 

presumably exploiting the high zooplankton productivity in the bay (USFWS 

1999). In the 1990s, June sucker capture rates in Utah Lake during monitoring 

and sampling efforts were so low (in some years no sucker were captured) that 

meaningful interpretation of distribution or habitat use was impossible (USFWS 

1999). The first of two earlier telemetric studies of June sucker had limited 

success and ended prematurely, likely because of reduced signal strength (due 

to Utah Lake’s shallowness and high specific conductance and turbidity) and a 

general lack of information regarding June sucker behavior; this led to an 
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underestimation of the effort that would be required to actively search a very 

large lake. A more recent telemetric study of June sucker was conducted, but 

made no comparisons with Utah sucker (Buelow 2006). 

 June sucker and Utah sucker are differentiated using externally 

observable oral characters including mouth position, lip size and degree of 

papillation, lower lip gap width, and jaw angle that are presumably shaped by 

ecological selection; suckers with intermediate morphologies confound 

identification. Like many other catostomids, Utah Lake suckers are opportunistic 

feeders, but morphology suggests that June sucker are primarily zooplanktivores 

whereas Utah sucker are primarily benthivores.  A gut content analysis of June 

sucker in the Red Butte Reservoir refuge population suggested adults fed almost 

exclusively on cladocerans and copepods in this oligotrophic habitat whereas a 

stable isotope analysis that included some of the same fish suggested a more 

varied diet (Billman 2005). Furthermore, Billman (2008) observed schools of 

refugial June sucker presumably feeding on zooplankton in Red Butte Reservoir, 

UT; such grouping behavior may reduce predation risk (or the stress associated 

with it) and likely enhances fitness. Gonzalez (2004) has described a component 

Alee effect (Allee et al. 1949) in June sucker, with growth and survival of larvae 

increasing with density. At low population densities, an increase in individual 

fitness can result from increasing density via cooperative defense, cooperative 

feeding, environmental conditioning, and overcoming mate limitation (Kramer et 

al. 2009).  
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The purpose of this study was to examine the ecology of the Utah Lake 

sucker complex, and specifically, to determine if there are any ecological 

characteristics that distinguish or characterize the morphologies. This group 

exhibits a continuum of morphological variation between benthivorous Utah 

sucker and planktivorous June sucker accompanied by slight genetic population 

structuring that is not concordant with the morphological variation (Cole et al. 

2008). The first objective of this investigation was to compare the spatial 

distribution and movement patterns, including spawning migrations and seasonal 

movements, of adult June sucker and Utah sucker in Utah Lake using radio and 

acoustic telemetry. A second objective was to examine diet for concordance with 

morphology via comparison of stable isotopic signatures for carbon (δ13C) and 

nitrogen (δ15N) of adult June sucker, Utah sucker, and suckers of intermediate 

morphology. The third objective was to explore if the component Allee effect 

reported in larval June sucker also occurred in juvenile June sucker, with 

comparison to juvenile Utah sucker, through a laboratory experiment assessing 

growth rate, as a measure of fitness, at different rearing densities.                                                                                           

 

MATERIALS AND METHODS 

Study Site   

Geological and climatic changes during the Cenozoic Era that shaped the 

North American landscape profoundly influenced the evolution of many taxa  

(Riddle 1995; Klicka and Zink 1997; Soltis et al. 1997; Hershler and Sada 2002; 
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Liu and Hershler 2007; Kohn and Fremd 2008). In western North American 

fishes, long periods of population isolation have been interrupted by sporadic 

events such as stream captures or floods, at times coincident with major climatic 

episodes, enabling dispersion among hydrological basins (Smith 1981; Minckley 

et al. 1986; Smith et al. 2002; Spencer et al. 2008). Phylogenetic evidence 

indicates that since the Miocene epoch, the Bonneville Basin has shared 

connections at various times with the upper Snake River drainage, the Lower 

Colorado River via the Virgin River drainage, the Upper Colorado River, and the 

Lahontan Basin (Johnson 2002; Smith et al. 2002; Johnson et al. 2004; Mock et 

al. 2006; Spencer et al. 2008; Houston et al. 2010).  

 During the Pleistocene epoch in western basins, large pluvial lakes formed 

and receded with glacial advances and retreats, respectively, with sub-basins 

experiencing repeating periods of isolation and connectivity, and Lake 

Bonneville, in existence from about 40,000 – 14,500 years before present, was 

the most recent to fill the Bonneville Basin. The boundary between the Bonneville 

Basin and the Snake River Basin’s southeastern edge is seismically active 

(Smith and Sbar 1974; Smith 1978), and throughout the Pleistocene (and 

possibly earlier), the Bear River’s course has been altered between the two 

drainages multiple times by volcanism and tectonic activity (McCoy 1987; Currey 

1990; Oviatt et al. 1992; Bouchard et al. 1998). The most recent connection 

between the Snake River drainage and the Bonneville Basin occurred about 

14,500 YBP when Lake Bonneville overflowed the drainage divide at Redrock 
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Pass, cut a huge gap, and flooded catastrophically into the Snake River drainage 

(Currey et al. 1984; Bright and Ore 1987; Jarrett and Malde 1987; Currey 1990). 

As the climate warmed and dried and glaciers retreated, water levels in the once 

again endorheic Bonneville Basin receded, isolating Great Salt Lake, Utah Lake, 

and Sevier Lake in sub-basins. 

 Utah Lake (Figure 3-2) is one of the largest (38 km x 21 km; approximately 

392 km2) freshwater lakes west in western North America and has existed for 

8,000 – 10,000 years. For over 30,000 years prior to that, Lake Bonneville 

covered most of the intermontane basins of the Wasatch Front, undergoing 

dramatic fluctuations in depth and surface area. Utah Lake, the largest 

freshwater remnant of Lake Bonneville, is located in Utah County, UT about 65 

km south of Great Salt Lake, the largest remnant of the historic lake. Utah Lake 

is highly eutrophic and shallow, with an average depth of 2.8 m and a maximum 

depth of 4.2 m at compromise elevation (Fuhriman et al. 1981). Major tributaries 

include the Provo, Spanish Fork, and American Fork Rivers and Hobble Creek. 

The outlet, the Jordan River flows north to the Great Salt Lake. Frequently, Utah 

Lake’s temperature at shallow depths in summer exceeds 30ºC, conductivity 

surpasses 2000 μS, and turbidity is greater than 120 Ntus (T. Crowl, Utah State 

University, unpublished data). Anthropogenic impacts (e.g., urbanization, 

agriculture, flow regulation, exotic introductions) on Utah Lake and its tributaries 

include declines in both water quality and quantity, especially during drought 

years. June sucker and Utah sucker are the only native fishes persevering in 
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Utah Lake as 12 other native species have become extinct or have been 

essentially extirpated from the lake, whereas many non-native species thrive 

including predators and competitors of native suckers (Peterson 1996; Thomas 

1998; SWCA 2002; Miller and Crowl 2006). Though it once had clear water and 

extensive beds of littoral macrophytes of several species (Heckmann et al. 1981), 

today, it has an enormous common carp (Cyprinus carpio) population (SWCA 

2002) and is turbid and void of submergent vegetation except for widely 

scattered beds of Potamogeton pectinatus (Miller and Crowl 2006). The most 

abundant summer phytoplankter is Aphanizomenon flos-aquae, dense blooms of 

which occur annually in late summer and early fall (Rushforth et al. 1981). Utah 

Lake’s surface elevation fluctuates dramatically (seasonally and annually) limiting 

the re-establishment of submergent macrophytes, and fringes of emergent 

vegetation (Typha latifolia, Scirpus validus, Phragmites australis) may or may not 

be inundated for years at a time. Even moderate winds can prevent stratification 

of the lake because of the large fetch, shallow depth, and lack of vegetation. 

Radio / Acoustic Telemetry 

Telemetry Tagging Procedures.—During the spring spawning seasons of 

2003 and 2004, adult June sucker (14 males, 14 females) and Utah sucker (16 

males, 8 females) were captured in the Provo River or near its mouth and 

surgically implanted with digitally encoded combination radio and acoustic 

transmitters (CARTs) manufactured by Lotek Wireless (Appendix: Table 3-A-1). 

Suckers were subjectively identified to morph as defined by Cole et al. (2008), 
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and suckers of intermediate morphology were excluded from tagging. The goal of 

tagging equal numbers of June sucker and Utah sucker as well as males and 

females failed as insufficient numbers of female Utah sucker were captured. 

Digitally encoded transmitters permitted multiple fish to transmit on a single 

frequency while still allowing individual identification. Between 22 May and 5 

June 2003, all fish were captured at night by the UDWR via spotlighting and dip-

netting spawning suckers in the Provo River. Between 23 April and 2 June 2004, 

suckers were captured by trammel net in Utah Lake near the mouth of the Provo 

River and by the UDWR using the 2003 protocol. All Utah sucker implanted with 

transmitters were wild fish whereas 11 implanted June sucker were wild and 17 

were naturalized fish stocked into Utah Lake from the UDWR Fisheries 

Experimental Station hatchery (n = 4) in Logan, UT and from two refuge 

populations, Red Butte Reservoir, UT (n = 12) and Camp Creek Reservoir, UT (n 

= 1) (Appendix: Table 3-A-1); naturalized June sucker were identified from 

individual Passive Integrated Transponder (PIT) tags implanted prior to stocking. 

The battery life of the CART tags was 2 years, and their dimensions were 

approximately 16 mm x 60 mm with a weight of 25.3 g. Attempts were made to 

limit transmitter weight to less than 2% of fish weight (Winter 1996), but this limit 

was slightly exceeded (2.1%) in two cases when fish of sufficient size were 

unavailable. Transmitters implanted in 2003 were programmed to turn off from 

late October 2003 through February 2004) to conserve battery life. The contrasts 

between Utah Lake and its tributaries led to the use of CART tags: acoustic 
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transmission was effective in shallow Utah Lake with its high specific 

conductance and turbidity, and radio transmission was effective in manual and 

stationary tracking of tributaries with their limited access points, low specific 

conductance, and turbulent flows.  

 After capture and prior to surgical implantation, suckers were held in net-

pens for approximately 12 h to assess their condition (Winter 1996). Suckers 

were anesthetized in a 100 – 120 mg/L solution of tricaine methanesulfonate 

(MS-222) before surgery, and fish gills were continually irrigated with the 

anesthetic solution throughout the surgical procedure. Transmitters were 

implanted via the modification of Ross and Kleiner’s (1982) shielded needle 

technique described in Isaak and Bjornn (1996). A dose of oxytetracycline (50 

mg/kg body weight) accompanied transmitter insertion into the peritoneal cavity 

to minimize infection risk (Summerfelt and Smith 1990). Incisions were closed 

with two – three sutures and covered with a cyanoacrylate tissue adhesive. The 

surgical procedures were performed during early daylight hours in shade to 

minimize heat stress, and required from 4 – 8 min to complete. Following 

recovery from anesthesia in a freshwater holding tank, suckers were transferred 

to a net-pen and held for 1 – 3 h to monitor their condition. Fish were released 

near their site of capture, and all actively swam away. Several mortalities and / or 

tag expulsions occurred, and in three instances, recovered tags from 

implantations performed in 2003 were placed into different fish in 2004 

(Appendix: Table 3-A-1). One Utah sucker that expelled a tag in 2003 was 
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recaptured during the 2004 spawning run in apparent excellent condition with a 

fully healed scar; it was implanted with a new transmitter. 

Random Tracking Telemetry Procedures and Data Analysis— To 

investigate the distribution and movement of suckers in Utah Lake, the lake was 

divided into eight sectors: four strata north to south, each with an east and west 

side (Figure 3-2). Provo Bay was not included in the random tracking study. 

Sampling was conducted during six “seasonal” time periods (Appendix: Table 3-

A-2): summer (2004); late summer (2004 and 2005); autumn (2004 and 2005); 

and winter (2005). During each approximately four week seasonal period, two 

wireless hydrophones were placed in both the eastern and western sectors of a 

randomly selected stratum (range 6 to 10 days; weather and lake conditions 

prevented adhering to a strictly 7-day schedule) after which time they were 

relocated to the next stratum until all four strata were monitored for that season 

(Figure 3-2). Within a sector (e.g., 2W), a six-element Yagi antenna and the 

receiver / data-logger (programmed to scan all frequencies in use; gain = 75) 

were placed on shore, and one hydrophone was randomly located (mounted on 

an iron fence post) in the littoral zone in water approximately 1 m in depth. The 

second hydrophone was placed (suspended from an anchored buoy) in the 

limnetic zone in water greater than 1.5 m (when possible) within approximately 2 

km of shore to ensure sufficient signal strength at the receiver and in parallel with 

the littoral hydrophone and the antenna (see Buelow 2006 for a more detailed 

description of random hydrophone placement). Each hydrophone had a 
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temperature data logger (HOBO H8) attached to it collecting water temperature 

data hourly. The substrate (mud, sand, or rock) at the location of each 

hydrophone was also determined during all 2004 sampling and most 2005 

sampling. After the equipment in a sector was in place, a test CART tag was 

used to determine the maximum detection range for the hydrophones: littoral – 

350 m (mean; range 250 – 450 m) and limnetic – 373 m (mean; range 250 – 450 

m).             

Designing and conducting a lake wide telemetric investigation of 

distribution and movement of fish in a large, shallow, turbid, slightly saline lake 

with a long fetch can present many technical obstacles. Not only is radio 

transmission reduced by water quality, but weather (wind, lightening) on large, 

shallow Utah Lake can create sampling hazards and/or situations that can 

damage, displace, or remove equipment preventing data collection. Where data 

gaps occurred, the most complete dataset available that included all variables in 

question was analyzed (Appendix: Table 3-A-2). At the onset of the random 

tracking survey (6 July 2004), there were 24 tagged June sucker (11 females – 3 

wild, 8 stocked; 13 males – 8 wild, 5 stocked) and 22 tagged Utah sucker 

(8females; 14 males) surviving. No mortalities were known to occur during the 

study (through 27 October 2005), however, seven June sucker and six Utah  

sucker were undetected during the last sampling period, Autumn 2005. For 

analysis, a single “detection” (or presence) was defined as one or more “hits” at a 
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hydrophone by an individual sucker during a 12 hr period (high light period: 0600 

hours to 1800 hours; low light period: 1800 hours to 0600 hours).  

  Initially, the data was explored by analyzing hits and detections without 

considering the effort (e.g., hydrophone set hours) required obtaining them. Two 

factor analysis of variation (ANOVA) was used to analyze the effects of morph 

and sex on individual Utah Lake suckers’ numbers of hits and detections 

(dependent variables) and to analyze the effects of sex and origin (wild versus 

stocked) on individual June sucker’s numbers of hits or detections (dependent 

variables). Pearson’s correlation coefficient (r) for hits with interference signals by 

year, season, stratum, and shore was calculated. Three factor ANOVA was used 

to analyze the effects of the predictor variables, season, morph, and sex, on the 

dependent variable, proportion of sectors visited seasonally by individual Utah 

Lake suckers during random telemetric tracking in Utah Lake, and to analyze the 

effects of the predictor variables, season, sex, and origin, on the proportion of 

sectors (dependent variable) visited seasonally by individual June suckers. 

Proportions were arcsine-square root transformed prior to analysis.     

 Detections per unit effort (DPUE) were calculated for each hydrophone 

deployed during each approximately one week sampling episode, factoring the 

number of male and female June sucker and Utah sucker tagged and the time 

period each hydrophone was set. I modeled the relationship between DPUE, the 

dependent variable, and predictor variables with randomforests (RF) analysis 
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(Breiman 2001) via the randomForest package (Liaw and Wiener 2002) in the 

program R (R Development Core Team 2013). Predictor variables included: 

  morph   June sucker, Utah sucker  

 gender   female, male  

 season   summer, late summer, autumn, winter  

 stratum   north, north-central, south-central, south  

 shore    east, west  

 zone    limnetic, littoral  

 light    day, night (high light, low light)  

 substrate   mud, rock, sand  

 temperature   mean in °C during sampling period  

 oDPUE   detections per unit effort of the other morph at the  

    same location (hydrophone / receiver) during the  

    same sampling period; thus when DPUE for June  

    sucker was the dependent variable, the predictor,  

    oDPUE, was detections per unit effort for Utah   

    sucker, and vice versa.  

Among the advantages RF analysis has over other analytical methods are its 

ability to handle nonlinear relationships, its resistance to overfitting, and its 

capacity to cope with interactions among independent variables (Breiman and 

Cutler 2005; Cutler et al. 2007). Random forests analysis constructs many 

classification and regression trees (the “forest” – 5000 trees per model in this 
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study) by randomly extracting subsets of independent variables (out-of-bag 

observations) that are used to calculate a running unbiased estimate of the 

classification error as trees are added to the forest and to estimate variable 

importance. Each predictor variable’s importance is determined from the average 

percent increase in mean square error (MSE) in prediction across all trees when 

that variable’s value is randomized; the greater the increase in MSE, the more 

important the variable. Pearson’s correlation coefficient for DPUE with oDPUE 

was determined. Relationships between DPUE and predictors were further 

examined via partial dependency plots, which provide a graphical depiction of the 

marginal effect of a predictor variable on the class probability (classification) or 

response (regression); e.g., they illustrate a given variable’s effect after 

accounting for the joint effect of the remaining predictor variables. Conservative 

estimates of the minimum distances traveled by individual suckers during the 

random tracking study were calculated by summing the Euclidean distances 

between chronologically ordered hydrophone detections and then analyzed via 

ANOVA.  

Targeted Telemetry Procedures and Data Analysis— To investigate pre-

spawning and spawning behavior of June sucker and Utah sucker, the Provo 

River (2004 and 2005) and the Spanish Fork River (2005) were each monitored 

via two wireless hydrophones with attached temperature data loggers (HOBO 

H8s; collecting data hourly) and a receiver / data-logger located near their 

confluences with Utah Lake (Appendix: Figure 3-A-1).  One post-mounted 
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hydrophone (mouth) was placed near the mouth of the tributary whereas the 

second hydrophone (lake) was suspended from an anchored buoy and placed 

offshore in deeper water approximately 500 m from the first.  The receiver / data 

logger (river) at the Provo River was placed on a foot bridge upstream of the 

mouth and was capable of detecting tagged fish in the lower 300 m of the river; 

water temperature was recorded via a temperature data logger hourly.  The 

receiver / data logger at the Spanish Fork River was located adjacent to the 

mouth and was incapable of detecting tagged suckers in the lower river. The 

Provo River was telemetrically monitored from 1 April 2004 through 22 June 

2004 for sucker detections. A 92 h gap in data collection caused by technical 

problems occurred from 5 – 9 May 2004. From 12 April 2004 through 15 June 

2004, two wireless hydrophones and a receiver / data logger were used to 

monitor the mouth of Provo Bay (approximately 6.5 km from Provo River mouth) 

where post-spawn aggregations of June sucker have been reported (Radant and 

Shirley 1987).  Technical difficulties resulted in two brief gaps in data collection: 

15 – 16 May 2004 for 20 h and 23 – 26 May 2004 for 68 h. 

 The following year, the Provo River was monitored (telemetrically) from 16 

February 2005 through 20 July 2005; littoral (at river mouth) and river 

temperature monitoring began on 25 February 2005 and 4 April 2005, 

respectively, and continued throughout the spawning run sampling period. The 

Spanish Fork River was monitored (telemetrically) from 25 February through 20 

July, as was temperature (lake, littoral, and river). Active manual tracking surveys 
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(via foot or truck) began on 15 April and continued approximately semiweekly 

until 9 June using a radio receiver (Lotek SRX 400) and a four element Yagi 

antenna on the lower 5 km of the Provo River during the 2004 spawning season, 

and UTM coordinates of sucker positions were recorded. Similar surveys were 

performed approximately weekly in 2005 on the lower 7.8 km of the Provo River 

(the entire critical habitat reach; USFWS 1986) from 4 March to 12 July and on 

the lower 3.2 km of the Spanish Fork River from 3 March to 28 June. Also in 

2005, Battle Creek was surveyed three times and the American Fork River was 

surveyed twice in similar fashion during the spawning season. Only June sucker 

(N = 9) and Utah sucker (N = 4) CART-tagged in 2003 were included in 2004 

spawning season data and analyses. Discharge data for the Provo and Spanish 

Fork Rivers were obtained from the USGS Instantaneous Data Archive 

(http://ida.water.usgs.gov/ida/). The relationships between discharge, 

temperature, and the daily proportions of tagged June sucker and Utah sucker 

detected at a given hydrophone or receiver during the 2005 Provo and Spanish 

Fork Rivers’ spawning runs were examined via linear regression; proportions 

were arcsine-square root transformed prior to analysis. The effects of morph and 

sex, and for June sucker morphs only, origin (wild versus stocked) on median 

date of first detection were investigated via exact tests. These same variables’ 

effects on minimum distance (sum of the Euclidean distances between 

chronologically ordered hydrophone detections) traveled by individual suckers 

during the 2005 spawning season sampling period were examined via ANOVA.  

http://ida.water.usgs.gov/ida/
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Stable Isotopes Analysis        

 Fin (left pelvic) clip samples were collected during the spring and summer 

in 2001, 2002, and from 2004 through 2006 for stable isotope analysis (δ13C and 

δ15N) from wild adult suckers spanning the morphological continuum present in 

Utah Lake (11 June sucker, 26 Utah sucker, and 12 intermediate morphs). 

Suckers were captured by a variety of methods: dip-netting spawning fish by 

spot-light at night in the Provo River, and trammel, trap, and trawl netting in Utah 

Lake. On 30 August and 13 September 2006, samples of potential sucker diet 

items, including zooplankton, benthic/littoral macroinvertebrates, and 

phytoplankton (seston), were collected from several locations and habitats for 

stable isotope analysis. All isotope samples were stored in 90 % ethanol prior to 

processing and analysis. Samples were oven dried at 60 °C for ~24 h to constant 

mass and then homogenized with a mortar and pestle. Samples were analyzed 

at the University of California – Davis Stable Isotope Lab via a PDZ Europa 20–

20 isotope ratio mass spectrometer for dual carbon and nitrogen using Pee Dee 

belemnite limestone and atmospheric nitrogen as the carbon and nitrogen 

standards, respectively. All δ13C values for fishes included in analyses were lipid-

normalized (Kiljunen et al. 2006). Isotopic signatures were compared among 

sucker morphs via ANOVA. Niche width (NW) was estimated for each sucker 

morph by calculating the convex hull area encompassed by the smallest polygon 

containing all individuals of a given morph within the two dimensional δ13C – δ15N 

bi-plot space (isotopic niche space), and niche overlap among morphs was 
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estimated as the overlapping area of polygons (Layman et al. 2007). Area 

estimates were generated using the program ArcGIS 10 (ESRI 2010). The total 

ranges (Layman et al. 2007) of δ13C and δ15N and trophic position (Vander 

Zanden and Rasmussen 1999; Vander Zanden et al. 2003) were calculated for 

each morph: 

 
range δ13C = max(δ13C) – min(δ13C)  range δ15N = max(δ15N) – min(δ15N) 

 

Trophic Positionconsumer=((δ15Nconsumer - δ
15Nbaseline)/3.4) + 2 

 
To determine trophic position, baseline δ15N was estimated via a δ13C –  δ15N 

relationship:  

 
 δ15Nbaseline = -0.0096 (δ13Cconsumer)

2 - 1.1605 (δ13Cconsumer) - 11.185  

 
calculated using a primary consumer δ13C – δ15N bi-plot (Vander Zanden and 

Rasmussen 1999; Vander Zanden et al. 2003). Amphipoda spp., Ceriodaphnia 

spp., Daphnia spp., and Diaphanosoma spp. were the primary consumers. 

Additional isoptope data from analysis of frozen samples were used in bi-plot 

construction following corrections for preservation differences:  isotopic 

signatures for Amphipoda spp. and Daphnia spp.samples (frozen) from a Utah 

Lake food web study (Landom 2010), and data for Amphipoda spp. samples 

collected concurrently with the current study’s ethanol-preserved samples. For 

macroinvertebrates, the corrections (frozen to ethanol) were -0.04 ‰ for δ13C 
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and 0.21 ‰ for δ15N (Sarakinos et al. 2002), and for zooplankton, 0.8 ‰ for δ13C 

and 0.2 ‰ for δ15N (Feuchtmayr and Grey 2003).     

 Mixing polygons (Phillips and Gregg 2003) were generated within the δ13C 

– δ15N bi-plot space, plotting the mean coordinates for each morph; mean 

coordinates for potential diet items were plotted assuming trophic fractionation of 

0.4 ‰ for δ13C and 3.4 ‰ for δ15N (Post 2002). Isotopic signatures from analysis 

(Landom 2010) of frozen samples of common carp (Cyprinus carpio), fathead 

minnow (Pimephales promelas), and white bass (Morone chrysops) were 

corrected for the different isotopic sample preservation method (90 % ethanol) 

used in this study prior to the addition of the assumed trophic level increases. For 

freshwater fish samples preserved in ethanol, Sarakinos et al. (2002) observed 

0.21 ‰ δ13C and 0.37 ‰ δ15N enrichment for Sacromento sucker (Catostomus 

occidentalis) relative to frozen controls whereas Kelly et al. (2006) described 0.78 

‰ δ13C and 0.35 ‰ δ15N enrichment for Arctic charr (Salvelinus alpinus) relative 

to controls that were frozen, then dried. The means of their reported values 

(0.495 ‰ for δ13C and 0.36 ‰ for δ15N) were used as preservation correction 

factors for isotope signatures calculated from these frozen samples of fishes. In 

the mixing polygons, these mean values for adults were also used to represent 

larval fish (i.e., potential prey for suckers). 

     
Density / Growth Lab Experiment 

To investigate the reported Allee effect in June sucker (Gonzalez 2004) 

with comparisons to Utah sucker, I maintained juvenile (age 2 and 3) June 
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sucker and Utah sucker at densities (conspecific) of 1, 5, and 10 fish in 75 l 

aquaria filled to a volume of approximately 60 l from 31 January to 2 April 2007 at 

Utah State University’s Millville Endangered Species and Aquatic Research 

Facility. Fish in different aquaria could not see one another. The re-circulated 

water of the flow through system was maintained at approximately 20°C. Fish 

were fed a surplus of ground Razorback 400 fish feed (Silver Cup Fish Feed) 

starting at the rate of 2 % of the initial total fish weight per aquarium and 

increased proportionally assuming a daily increase in total weight per aquarium 

of 2 % to ensure that food availability did not limit growth. Suckers were weighed 

to the nearest 0.1 g at the start and finish of the 61 d experiment and at days 20 

and 40 to adjust the dietary allotments. There were three replicate blocks (i.e., 

three rows) of six aquaria with June sucker and Utah sucker randomly assigned 

at conspecific densities of 1, 5, and 10 fish per aquarium (total of 3 blocks, 18 

aquaria, and 96 suckers). Suckers of both morphs were obtained in 2004 and 

2005 as larvae from Utah Division of Wildlife’s Fisheries Experiment Station 

located in Logan, Utah and maintained at the Millville facility prior to use in this 

experiment. Growth rate (g/g/d) was used as a measure of fitness, and the 

effects of morph, density, and block on it were analyzed via ANOVA (mixed 

model with block as random factor). All ANOVA, linear regression analyses, 

correlation analyses and exact tests reported here were conducted via the 

program, SAS (SAS Institute Inc. 2002). 

   
 



87 
 

RESULTS 

Radio / Acoustic Telemetry 

Random Tracking Telemetry — During the random monitoring 

investigation, 14,033 sucker hits, which converted to 1015 individual detections, 

were recorded from Utah Lake in 2004 and 2005 (Appendix: Table 3-A-3). Over 

60 % of the hits (8754) and 11% of the detections (112) occurred at the south-

central, eastern sector in the vicinity of Long Bar (see Figure 3-2) during the 

Summer 2004 sampling period. Two-factor ANOVA revealed no statistically 

significant differences (P > 0.05) when using individual June suckers’ and Utah 

suckers’ numbers of hits or detections as the dependent variable and species, 

gender, and their interaction as predictor variables, nor were there differences in 

individual June suckers’ numbers of hits or detections gender, origin (wild versus 

stocked), and their interaction as predictor variables for (Appendix: Table 3-A-4). 

More than 28,000 interference signals were recorded during the random 

monitoring study (Appendix: Table 3-A-3), and their occurrences were 

significantly correlated (r = 0.4165; P = 0.0049) with hit detections by year, 

season, stratum, and shore (i.e., correlated with hits at a single receiver / 

datalogger). 

 Substantial variation existed among individual suckers in the proportion of 

sectors visited seasonally during random telemetric monitoring of Utah Lake 

(Appendix: Figure 3-A-2). Using the predictors season, morph, gender, and their 

interactions, three factor ANOVA revealed the proportion (arcsine square root 
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transformed data) of sectors visited by individual adult Utah Lake suckers 

declined significantly(F3,260 = 2.66; P = 0.0486) from Summer to Winter (Figure 3-

3; Appendix: Table 3-A-5;). Regarding June sucker specifically, three factor 

ANOVA revealed no statistically significant differences (P > 0.05) in the 

proportion of sectors visited dependent on season, gender, origin, and their 

interactions, although the effect of season approached significance (Appendix: 

Table 3-A-5).  

 Regardless of the dataset modeled with RF analysis or the accompanying 

predictor variables, morph (species) was an extremely poor predictor of DPUE, 

consistently performing worst or near to it among variables, and its inclusion in 

models as a predictor variable increased the model’s MSE (Figure 3-4; Appendix: 

Table 3-A-6). Light (i.e., day versus night) and gender performed nearly as poorly 

as species as predictor variables (Figure 3-4; Appendix: Table 3-A-6).  No 

models identified any of the three as important independent variables, and in all 

RF models not containing temperature or oDPUE as predictors, inclusion of 

species, gender, and light led to decreases in variation explained (Appendix: 

Table 3-A-6). Including the only predictor variables that were biological 

characteristics of Utah Lake suckers, morph and gender, in RF models reduced 

explanatory power. Substrate was also a poor predictor variable for DPUE by RF 

analysis, and although several models identified it as marginally important, its 

inclusion among important variables decreased the percentage of variation 

explained (Appendix: Table 3-A-6).  
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  All RF analyses identified zone, shore, season, and stratum in some order 

as among the important predictor variables regardless of the dataset analyzed; 

when models excluded temperature and oDPUE, these four predictors explained 

about half the variance in DPUE (Appendix: Tables 3-A-6, 3-A-7 and Figure 3-A-

3). Partial dependency plots (Figure 3-5), which illustrate the marginal effects of 

predictor variables, revealed: DPUE for limnetic zone hydrophones was more 

than twice that for littoral zone hydrophones; eastern shore hydrophone DPUE 

was approximately 25 % greater than for western shore hydrophones; 

hydrophones deployed in summer and late summer had greater DPUE than 

those deployed in fall and winter; and southern stratum hydrophone DPUE was 

much less than those for the more northern strata.  

 Temperature, which ranged from 2.8° - 26.0°C during the study, was an 

important predictor of DPUE for Utah Lake suckers, and its inclusion in RF 

models not including oDPUE among predictors increased the variance explained 

to about 70 % (Figure 3-4; Appendix: Tables 3-A-6, 3-A-7 and Figure 3-A-3). The 

partial dependency plot for temperature (Model 8i) demonstrated that the 

greatest DPUE occurred between temperatures of 13° - 19°C (peak at 16°C), 

and below this range, DPUE was fairly constant (DPUE = ~ 0.0009) down to 

2.8°C, whereas above this range, DPUE was again constant to 26.0°C, but at a 

reduced level (DPUE = ~ 0.0006) (Figure 3-6). 

 Interpretation of RF modeling of datasets including temperature as a 

predictor was hindered by gaps in those datasets (Appendix: Table 3-A-2), and 
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more specifically, ecological interpretation of the partial dependency plot for 

temperature (Figure 3-6) was confounded by the lack of information regarding 

other predictor variables. Evidence, however, of the importance of temperature 

includes the high correlation (r = 0.98) between the mean seasonal proportion of 

sectors visited by individual Utah Lake suckers and mean seasonal temperature 

(Figure 3-3). Additional evidence of the importance of temperature in sucker 

distribution and movement can be found by plotting daily detections of individual 

suckers and daily mean temperature by shore and zone for the for late summer 

(August – September) and autumnal (October – November) telemetric sampling 

periods in 2004 for the three northernmost strata of Utah Lake (Figure 3-7). 

During the late summer period, similar numbers of detections were recorded in 

eastern littoral and limnetic and western limnetic sites when temperatures of the 

two shores were similar. Very few detections in the western, littoral zones of 

these strata were recorded during the entire late summer and autumnal sampling 

periods in 2004. As water temperatures declined during the autumnal sampling 

period, the temperature at the western limnetic hydrophone warmed relative to 

the other three hydrophones, and many more suckers were detected there 

(Figure 3-7). In winter, the suckers returned to the eastern shore (3.44 ± 0.07 

°C), where winter mean water temperatures were greater than along the western 

shore (3.19 ± 0.10 °C) (see Figure 3-8; 2005 Winter). 

 Whenever oDPUE (DPUE for the other morph) was used as a predictor 

variable in a RF model, regardless of the other independent variables included, it 
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was the most important of the predictors (Figure 3-4; Appendix: Table 3-A-6 and 

Figure 3-A-4). The partial dependency plot for oDPUE depicted its close 

relationship with DPUE (Figure 3-6), and correlation analysis confirmed this (r = 

0.90); the graph’s plateau resulted from DPUE being calculated separately for 

the sexes whereas oDPUE calculation included both sexes. When oDPUE was 

used as a predictor in RF models also including temperature as a predictor, its 

removal resulted in greater loss in variation explained than removal of 

temperature from the model (Appendix: Table 3-A-6). Random forests analysis of 

June sucker and Utah sucker separately further demonstrates the importance of 

DPUE of the other species as a predictor (Appendix: Figure 3-A-4). However, 

good models can be developed without oDPUE if temperature data is included; 

given the similarity in the variable importance plots and partial dependency plots 

for temperature of the two species, it is not surprising oDPUE was a good 

predictor  (Appendix: Figure 3-A-5).   

 There was considerable variation in the minimum distances traveled by 

individual Utah Lake suckers during random telemetric monitoring in 2004 and 

2005 (Appendix: Table 3-A-8). Two factor (morph and sex) ANOVA of the 

distances traveled during random monitoring by individual Utah Lake suckers 

revealed no statistically significant differences based on sex, morph or their 

interaction (Appendix: Table 3-A-9, Random distance). Two-factor (sex and 

origin) ANOVA of the distances traveled during random monitoring by individual 
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June sucker revealed no statistically significant differences based on sex, origin, 

or their interaction (Appendix: Table 3-A-9, Random distance). 

Targeted Telemetry (passive and active)— During the 2004 spawning run, 

all of the Utah Lake suckers (nine June sucker; four Utah sucker) that were 

tagged in 2003 were detected at least once at one or more of the four Provo 

River monitoring locations (Appendix: Table 3-A-10 and Figure 3-A-6). Six June 

sucker and three Utah sucker were detected at least once at the mouth of Provo 

Bay (approximately 6.5 km from river confluence) with one June sucker and one 

Utah sucker making 18 trips between Provo Bay and the Provo River during the 

monitoring period. Single factor (morph) ANOVA (model df = 3, 42) revealed no 

significant difference in the mean number of trips by individuals between the two 

locations (June sucker mean = 3.44; Utah sucker mean = 6.50; F value = 0.625; 

P = 0.446).   

 During early April 2004, all Utah sucker and all but two of the June sucker 

were detected at least once at the Provo River lake hydrophone, but only a single 

Utah sucker was detected after this period in the lake in mid June (Figure 3-9; 

Appendix: Figure 3-A-6). Suckers of both species were detected at the mouth of 

the Provo River throughout most of the monitoring period with a peak in 

detections in late May (Figure 3-9; Appendix: Figure 3-A-6). The radio receiver at 

the lower river location detected four June sucker at the beginning of April 2004, 

but only one after that, and two Utah sucker in May (Figure 3-9; Appendix: Figure 

3-A-6). Active tracking of the upper Provo River, which began on 15 April 2004 
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and continued approximately semiweekly until 9 June 2004, detected three of the 

four tagged Utah sucker and three of the nine tagged June sucker (Figure 3-9; 

Appendix: Tables 3-A-10, 3-A-11 and Figure 3-A-6).  

 The first June sucker was detected on 12 May 2004 when mean daily 

water temperature was 10.8 °C and mean daily discharge was 1.90 m3/s, and the 

first Utah sucker were first detected in the upper Provo River on 15 April 2004 

(the first active tracking survey) when mean daily water temperature was 9.9 °C 

and mean daily discharge was 1.58 m3/s (Figure 3-9; Appendix: Tables 3-A-10, 

2-A-11 and Figure 3-A-6). Peak mean daily discharge in the Provo River of 4.18 

m3/s occurred on 4 May 2004 (Figure 3-9). Two Utah sucker (codes 2 and 178) 

and one June sucker (code 203) were detected in the upper river prior to or 

without detection in the lower river though all three suckers were previously 

detected at either the mouth or lake hydrophone (Appendix: Table 3-A-10 and 

Figure 3-A-6). In 2004, all suckers detected in the upper river were in low velocity 

habitats (pools, runs, or eddies). Median exact tests (when conducted) revealed 

no significant differences (P > 0.05) in median date of first detection between the 

morphs at any of the Provo River monitoring locations in the 2004 spawning run 

(Appendix: Table 3-A-10).  

 During the 2005 spawning run, 13 June sucker (of the 24 tagged; 

Appendix: Table 3-A-10 and Figure 3-A-7) and 15 Utah sucker (of the 22 tagged; 

Appendix: Table 3-A-10 and Figure 3-A-8) were detected at least once at one or 

more of the four Provo River monitoring locations, and 22 June sucker and 21 
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Utah sucker (Appendix: Table 3-A-10 and Figure 3-A-9) were detected at least 

once at one or more of the three Spanish Fork River monitoring locations. There 

was considerable variation in the number of trips (and distances traveled) by 

individual suckers between the Spanish Fork and Provo Rivers during 2005 

spawning season monitoring (Appendix: Table 3-A-8). Between June sucker and 

Utah sucker that were detected at least once at either river, two-factor (species 

and gender) ANOVA revealed no statistically significant differences (P > 0.05) in 

distances traveled during the spawning season (Appendix: Table 3-A-9, 

Spawning distance). Two factor (species and gender) ANOVA also revealed no 

significant differences in total distances (sum of random and spawning distances) 

traveled, although the effect of gender approached significance (P =0.0585; 

Appendix: Table 3-A-9, Total distance). Among the June sucker that were 

detected at least once at either river, two factor (gender and origin) ANOVA 

revealed no statistically significant differences (P > 0.05) in distances traveled 

during the spawning season (Appendix: Table 3-A-9, Spawning distance). Two-

factor (gender and origin) ANOVA also revealed no significant differences (P > 

0.05) in total distances traveled (Appendix: Table 3-A-9, Total distance). 

 Five June sucker were detected at the Provo River lake hydrophone 

between 28 February and 28 May 2005 with no further June sucker detections 

occurring there during the spawning run sampling period (Figure 3-10; Appendix: 

Table 3-A-10 and Figure 3-A-7). Nine Utah sucker were detected at the lake 

hydrophone between 28 May and 20 July 2005 with the majority of detections 
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occurring in April and a minor peak in detections occurring in late June – July, a 

period when no June sucker were detected (Figure 3-10; Appendix: Figure 3-A-

8). Five June sucker and seven Utah sucker were detected at the Provo River 

mouth hydrophone in February prior to any of either species being detected at 

the lake hydrophone (Figure 3-10; Appendix: Figures 3-A-7 and 3-A-8). 

Detections of both species greatly decreased in March before increasing in April 

– early May at the mouth of the Provo River, with four June sucker and 11 Utah 

sucker detected (Figure 3-10; Appendix: Figures 3-A-7 and 3-A-8). During June 

and July, eight June sucker were infrequently detected whereas nine Utah sucker 

were detected during this period, with a secondary peak in Utah sucker occurring 

in July at the mouth hydrophone (Appendix: Figures 3-A-7 and 3-A-8). Just four 

June sucker were detected infrequently in the lower Provo River during the 2005 

spawning run monitoring, a period when nine Utah sucker were detected, several 

frequently, with the majority of detections occurring in April (Appendix: Figures 3-

A-7 and 3-A-8). 

  A lone June sucker (code 144; a wild female) was detected in the upper 

Provo River in 2005 via active tracking; she was first detected on 18 May 2005 

(and during seven of eight subsequent surveys through 23 June) in the upper 

Provo River when mean daily discharge was 33.1 m3/s and mean daily 

temperatures for the littoral and river sites were 13.8 °C and 9.0 °C, respectively 

(Figure 3-10; Appendix: Table 3-A-11 and Figure 3-A-7). The lower river receiver 

detected this sucker prior to its upper river detections on 14 May 2005 and then 
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next on 25 June 2005 after its last upper river detection (Appendix: Figure 3-A-7). 

The first of seven Utah sucker detected in the upper Provo River via active 

tracking was encountered during the first active survey on 4 March 2005, when 

mean daily discharge was 2.5 m3/s and mean daily temperature for the littoral 

site was 7.8 °C (river temperature unavailable) (Figure 3-10; Appendix: Table 3-

A-11 and Figure 3-A-8). Peak mean daily discharge of 45.59 m3/s occurred on 24 

May 2005 when the Provo River temperature was 11.4 °C (Figure 3-10). 

 Linear regression modeling of proportions (arcsine square root 

transformed) of June sucker or Utah sucker detected at Provo River 

hydrophones / receivers during the ascending and descending hydrographs 

revealed ten significant models with 20 significant predictor variables or 

interactions (Table 3-2). In the significant models, the proportion of suckers 

detected was always positively related to temperature (lake, mouth, or river) and 

/ or discharge, regardless of species or hydrograph status, and negatively related 

to the interaction of temperature and discharge (Table 3-2). Median exact tests 

(when conducted) revealed no differences (P > 0.05)  in median date of first 

detection between June sucker and Utah sucker at any of the Provo River 

monitoring locations in the 2005 spawning run (Appendix: Table 3-A-10). Utah 

sucker were detected in greater numbers than June sucker throughout the 

spawning season at all four monitoring sites in 2005; this was especially evident 

at both river sites and at the lake and mouth sites in July (Figure 3-10; Appendix: 

Figures 3-A-7 and 3-A-8). One Utah sucker (code 101; a male) was detected in 
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the upper Provo River during all but three active tracking surveys (Appendix: 

Figure 3-A-8). The mouth hydrophone detected this sucker on two days during 

this period (in June) indicating at least two trips out of and back into the river, 

however, the lower river receiver did not detect it at all during the 2005 spawning 

run (Appendix: Figure 3-A-8).    

 Seventeen June sucker were detected at the Spanish Fork lake 

hydrophone prior to April during spawning run telemetry in 2005, and by the end 

of the monitoring period, 22 of the 24 tagged June sucker had been detected 

(Appendix: Table 3-A-10 and Figures 3-A-9 and 3-A-10). Utah sucker showed a 

similar detection pattern with 17 individuals detected in March 2005 at the lake 

hydrophone, followed by few detections in the first weeks of April and by many 

detections from late April to early July; by the monitoring period’s end, 21 of the 

22 tagged Utah sucker had been detected (Appendix: Table 3-A-10 and Figures 

3-A-9 and 3-A-10). The Spanish Fork mouth hydrophone detected 10 June 

sucker and 12 Utah sucker during the 2005 spawning run monitoring with June 

sucker detections peaking in late June, and Utah sucker detections peaking in 

early April and again in late June (Appendix: Table 3-A-10 and Figures 3-A-9 and 

3-A-10). Only a single significant model and variable were generated by linear 

regression modeling of proportions (arcsine square root transformed) of June 

sucker or Utah sucker detected at Spanish Fork River hydrophones during the 

ascending and descending hydrographs (Table 3-2). The proportion 

(transformed) of June sucker detected at the mouth hydrophone during the 
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ascending hydrograph was positively related to river temperature. Median exact 

tests revealed no significant differences (P > 0.05) in median date of first 

detection between the species at either the lake or mouth hydrophone in the 

2005 Spanish Fork River spawning run (Appendix: Table 3-A-10).  

 A single June sucker (code 154; a stocked female originally from Red 

Butte Reservoir) was detected via active tracking in the Spanish Fork River 

approximately 2 km upstream from the mouth on 20 April 2005 when mean daily 

river temperature was 7.7 °C, mean daily lake temperature was 8.9 °C, and 

mean daily discharge was 9.2 m3/s (Appendix: Table 3-A-11). One Utah sucker 

(20 April 2005) and one June sucker (19 May 2005) were detected by active 

tracking at the mouth of the Spanish Fork River (Appendix: Table 3-A-11); both 

were also detected by the mouth hydrophone. Active tracking detected no Utah 

sucker in the upper Spanish Fork River in 2005.  

 Active tracking in Battle Creek on three dates in late April and early May 

2005 detected no suckers of either species (Appendix: Table 3-A-11). No 

suckers were detected via active tracking in the American Fork River on two 

dates in May and June 2005 (Appendix: Table 3-A-11).  

 
Stable Isotopes Analysis 

Single-factor (morph) ANOVA revealed that mean δ15N for June sucker 

(mean ± 95 % confidence interval; 17.73 ‰ ± 0.55 ‰) was significantly greater 

(F2,48 = 12.10, P = 5.55 x 10-5) than that of Utah sucker (16.33 ‰ ± 0.27 ‰) 

whereas the Utah sucker mean δ13C (– 22.62 ‰ ± 0.26 ‰) was significantly 
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enriched (F2,48 = 15.44, P = 6.64 x 10-6) relative to that for June sucker (– 24.57 

‰ ± 0.66 ‰) (Figure 3-11). Mean δ15N (16.81‰ ± 0.48 ‰) and mean δ13C  

(–23.51 ‰ ± 0.76 ‰) for intermediate suckers followed morphology and both 

were intermediate to, but not significantly different from, the respective isotopic 

signatures of June sucker and Utah sucker (Figure 3-11).  

 Niche width for June sucker (5.09) was narrower than for Utah sucker 

(6.78) and intermediates (6.67), thus polygon overlap area with other morphs 

comprised a greater proportion of niche width for June sucker than of the other 

morphs (Table 3-3; Figure 3-11). The 36 % niche overlap between June sucker 

and intermediates comprised 61 % of the niche width of June sucker and 46 % of 

that of intermediates; niche widths of June sucker and Utah sucker displayed 11 

% overlap, which represented 23 % and 17 % of their respective niche widths. 

Only a small proportion of the niche width of intermediates did not overlap with 

those of June sucker or Utah sucker (Figure 3-11). June sucker and Utah sucker 

displayed substantially smaller δ13C ranges, 3.59 ‰ and 2.76 ‰, respectively, 

than intermediates, 4.52 ‰, whereas their respective δ15N ranges, 2.99 ‰ and 

3.19 ‰, were slightly greater than that for intermediates, 2.81 ‰. 

 Despite their morphological and isotopic signature differences, June 

sucker, Utah sucker, and intermediates were at essentially the same trophic level 

(~ 4.0), tertiary consumer (Table 3-4). The mixing polygon (Figure 3-12) 

generated for June sucker revealed that fish eggs (or larvae) likely contributed to 

their diet, and this was supported by the June sucker trophic level of 3.99. When 
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fish eggs (or larvae) were excluded from potential prey items, June sucker 

isotopic bi-plot coordinates fell outside the convex polygon bounded by 

planktonic food sources whereas inclusion of fish eggs (or larvae) with planktonic 

prey items generated a polygon which bounded June sucker coordinates (Figure 

3-12, June sucker – dashed line excludes fish sources). Similarly, the diet of 

intermediates likely included fish eggs (or larvae) as their exclusion as potential 

diet sources created a mixing polygon (benthic and planktonic sources) that 

excluded intermediate sucker δ13C and δ15N coordinates (Figure 3-12, 

Intermediate – dashed line excludes fish sources); here too, the trophic level of 

3.93 supported this. The mixing polygon created using benthic / littoral diet 

sources bounded Utah sucker δ13C  and δ15N coordinates, suggesting 

contributions from fish eggs (or larvae) to Utah sucker diet were unnecessary 

(Figure 3-12, Utah sucker), however, the trophic level of 3.97 indicates otherwise. 

 Plotting the mean isotopic signatures of the three morphs of Utah Lake 

suckers on Landom’s (2010) Utah Lake biota δ13C – δ15N bi-plot (i.e., Utah Lake 

food web), corrected for different preservation methods, revealed that June 

sucker diet exploited the pelagic sub-web predominantly and Utah sucker diet 

exploited primarily the benthic / littoral sub-web. The diet of suckers of 

intermediate morphology exploited both pelagic and benthic / littoral sub-webs 

(Figure 3-13).  
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Density / Growth Lab Experiment  

Mixed model (block as random factor) ANOVA of the growth rates of June 

sucker and Utah sucker reared at different conspecific densities revealed no 

differences due to sucker morph (F1,84 = 1.24, P = 0.268), fish density (F2,84 = 

2.79, P = 0.067), or their interaction (F2,84 = 0.71, P = 0.496) (Table 3-5; Figure 3-

14). The effect of density approached statistical significance, perhaps indicating 

biological significance in the slight trend for increased growth rate with increasing 

density.   

 
DISCUSSION 

 Keleher et al. (1998) estimated fewer than 300 wild adult June sucker 

remained in Utah Lake by the mid to late 1990s, with a similar estimate for Utah 

sucker (K. Wilson, UDWR, personal communication).  With essentially no 

recruitment of suckers of any morph since the early 1990s (K. Wilson, UDWR, 

personal communication), the number of surviving wild Utah Lake suckers likely 

declined further because of mortalities in the years prior to this study. Thus, 

despite the small sample sizes, the 11 wild June sucker used in the telemetry 

study, the 11 different wild June sucker used in the stable isotopes analysis, the 

22 Utah sucker used in the telemetry study, the 29 Utah sucker (which included 

some of the CART tagged fish) used in the stable isotopes study, and the 12 

sucker of intermediate morphology used in the stable isotopes analysis 

represented substantial proportions of the surviving wild sucker morphs in Utah 

Lake.   
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Radio / Acoustic Telemetry  

Interference signals during acoustic / radio telemetry undoubtedly reduced 

sucker hits and detections, although June sucker and Utah sucker acoustic and 

radio transmissions were assumed equally affected. The decision prior to RF 

analysis to equate a single hit to a detection was influenced by the number of 

interference signals (twice the number of hits) recorded, and because 

interference signals and single hits were frequently associated. Interference 

signals were typically observed to occur concurrently with the detection of at 

least one CART tagged sucker and one or more of the following events (Cole, 

personal observation): motorized watercraft in the vicinity of a hydrophone or 

receiver antenna; sonar depth detector operating in vicinity of a hydrophone; or 

an aircraft flying near receiver antenna or hydrophone. Such events were 

common, as Utah Lake is a popular destination for anglers and users of 

motorized watercraft and a busy municipal airport, with its main flight path directly 

over the Provo River radio receiver / data-logger and antenna, is located on the 

southeastern shore between the Provo River confluence and Provo Bay. 

Additionally, radio transmissions associated with mining, gravel, and 

transportation industries on the western shore of Utah Lake likely contributed to 

interference signals.   

 Another factor confounding telemetric analysis and interpretation was the 

difference between the 2004 and 2005 water years. During 2004, the last year of 

a five year drought, the maximum water level in Utah Lake was about 1.3 m 
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below the compromise elevation of 1368.261 m, and by the end of summer, the 

minimum lake level was 2 m below compromise elevation. Provo Bay was greatly 

reduced by the drought. The southernmost region of Goshen Bay was 

inaccessible to telemetric monitoring and perhaps to suckers. This may have 

contributed to the relatively low DPUE associated with the southern stratum. 

Along much of Utah Lake’s shoreline, the water level failed to inundate vast beds 

of emergent vegetation in 2004, perhaps contributing to the greater detection 

rates at limnetic compared to littoral hydrophones. In 2005, the maximum lake 

level was 0.3 m below compromise elevation (1.0 m greater than the maximum in 

2004) and the minimum level was about 0.7 m below compromise elevation (1.3 

m greater than the minimum in 2004). Large stands of littoral emergents (e.g., 

Typha latifolia, Scirpus validus, Phragmites australis) were re-inundated, and 

Utah Lake was fringed with vegetation; the surface area of Utah Lake in late 

summer of 2004 was approximately 83 % of that in spring of 2005 (interpolated 

from Fuhriman et al. 1981). The Provo River’s peak mean daily discharge during 

spring runoff was an order of magnitude greater and occurred three weeks later 

at cooler water temperature in 2005 (45.6 m3/s; 24 May; 11.4 °C) than in 2004 

(4.18 m3/s; 4 May; 12.0 °C), and thus spawning cues for Utah Lake suckers 

varied considerably between the two years. 

 June sucker and Utah sucker used all sectors of Utah Lake monitored in 

this study, and although there was considerable variation among individuals in 

distance traveled, individuals of both morphs traveled great distances 
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(approaching 1000 km) during the course of monitoring. Random forests analysis 

revealed that variation in the distribution and movement of June sucker and Utah 

sucker in Utah Lake was better explained by environmental  factors (oDPUE, 

temperature, zone) rather than biological characters (morph or sex) of individual 

suckers.  By far the best predictor of detection of June sucker at a hydrophone / 

receiver during a sampling period was the detection of Utah sucker during the 

same sampling period and vice versa. Perhaps in Utah Lake, suckers of all 

morphologies school together similar to feeding June sucker (Billman 2008)  in 

the Red Butte Reservoir refugium The Red Butte Reservoir population also 

displayed a morphological continuum from benthivorous to planktivorous 

although the morphological differences were not as pronounced as in the Utah 

Lake population (Cole, personal observation; unpublished data). For most of 

2004, Utah Lake had essentially no littoral zone (or at least no emergent and 

very few submergent macrophytes) and its maximum depth was about 2 m. A 

school of Utah Lake suckers of diverse morphologies could move together, 

exploiting planktonic and / or benthic resources separated by only 2 m.  

 Temperature was also an important predictor, and its inclusion in models 

excluding oDPUE increased the proportion of variation in DPUE explained even 

when temperature was not the most important predictor. Evidence suggests that 

Utah Lake suckers selected habitats based on temperature differences among 

locations rather than simply being more active at higher or more optimal 
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temperatures. Such temperature related changes in activity likely did influence 

seasonal differences in DPUE. 

  A much more extensive telemetric investigation of shortnose sucker and 

Lost River sucker in Upper Klamath Lake, OR documented use of a refugium 

containing groundwater springs when water quality in other regions of the lake 

was degraded (high temperature, supersaturated or very low dissolved oxygen 

levels, high pH) by extensive blooms followed by decomposition of the 

cyanobacter, Aphanizomenon flos-aquae (Banish et al. 2009). Although A. flos-

aquae is the most common phytoplankter in Utah Lake with blooms occurring 

annually in late summer and autumn (Rushforth et al. 1981) and nutrient levels 

classify Utah Lake as hypereutrophic (Fuhriman et al. 1981), monthly 

limnological monitoring (Crowl, unpublished data) detected no anoxic periods in 

Utah Lake during this study. Given the water temperatures at the hydrophone 

locations in the autumn of 2004, the shift in sucker detections from the eastern to 

the western shore of Utah Lake is likely temperature related rather than an 

oxygen issue. Groundwater springs (Fuhriman et al. 1981) likely contributed to 

the temperature differences between the western limnetic sites and the littoral 

and eastern sites. Utah Lake suckers exhibited a similar seasonal shift from 

eastern to western shore in 2005, however temperature data for the western 

shore was absent. In the late summer and autumn of 2004, common carp and 

walleye (Sander vitreus) also showed a similar shift from eastern to western 

shore (Landom et al. 2006).  
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 Suckers’ nearly twofold detection rate at limnetic compared to littoral 

hydrophones may be indicative of the importance of the open water habitat in 

Utah Lake although other factorsmay have contributed to the DPUE difference 

between zones. The mean detection range of limnetic hydrophones (373 m) was 

slightly greater than that for littoral hydrophones (350 m), thus limnetic 

hydrophones monitored about 14 % more area than littoral hydrophones. Littoral 

hydrophones were occasionally placed within their detection distance of 

shoreline when the bottom dropped off more steeply, decreasing the area of 

potential habitat surveyed. In 2004, the effects of drought may have led to fewer 

sucker visits to near shore habitats as littoral emergents were absent because of 

low lake level failing to inundate these stands thus eliminating a shallow, 

productive habitat that provided potential cover from aquatic and avian predators. 

In average and wet years, these marsh habitats provide cover for suckers, other 

fishes, and invertebrates and dampen wind and wave action. In late summer and 

autumn of 2004, some littoral hydrophones were placed several hundred meters 

offshore at water depths of about one meter where a mud / silt bottom with no 

vegetation very gradually sloped up to the shoreline, which was still several 

hundred meters away across a mud flat from where emergents thrived in wetter 

years. Suckers occupying this habitat would have been especially susceptible to 

avian predators, and although no sucker mortalities could be documented over 

the course of random telemetric monitoring, some fish eventually ‘disappeared’ 
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from detection.  It is possible that some tagged suckers fell prey to pelicans or 

other avian predators (see Scoppettone et al. 1986). 

 The greater detection rate of eastern shore relative to western shore 

hydrophones may be related to all major tributaries entering on the eastern side 

of Utah Lake. Productive Provo Bay is also on the eastern side. This study 

documented suckers of both morphs visiting Provo Bay just prior to and during 

the spawning season, and post-spawning aggregations of June sucker have 

been described there in July and August (Radant and Shirley 1987). Suckers 

likely visited Provo Bay during the course of random telemetric monitoring, and 

such fish would have been more susceptible to detection by eastern as opposed 

to western hydrophones. Finally, Long Bar, located on the eastern side of Utah 

Lake between the mouth of Provo Bay and the confluence of the Provo River and 

essentially the only structure in the main lake besides Bird Island, appears to be 

important habitat for Utah Lake suckers of both species. More hits occurred at 

the two hydrophones there during a single sampling period than at all other 

hydrophones for the duration of the study combined. In addition toJune sucker 

and Utah sucker, other fish species (e.g., common carp, walleye, white bass) 

also congregate near Long Bar (Landom et al. 2006; B. Loy, fourth generation 

Utah Lake commercial fisherman, personal communication). Because of its 

structure and location near the mouth of Provo Bay, Long Bar may concentrate 

food sources (especially planktonic) as wind driven currents push water into or 

out of productive Provo Bay.         
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 Although no differences between June sucker and Utah sucker were 

revealed in timing of pre-spawning staging near the mouths of the Provo and 

Spanish Fork Rivers or of the spawning run, the magnitude order difference in 

Provo River peak discharge between 2004 and 2005 and the small sample sizes 

(especially of suckers detected in the upper rivers) confounded interpretation of 

the results. Spawning cues available to Utah Lake suckers varied considerably 

between the two years, considering the differences in spring runoff magnitude 

and duration. Linear regression analysis of 2005 Provo and Spanish Fork Rivers 

spawning run data revealed significant relationships of  the proportion of suckers 

of either morph detected with water temperature, discharge, and their interaction. 

Hines (2011), in a subsequent study examining June sucker spawning cues at 

several Utah Lake tributaries, found total dissolved solids at the lake side of the 

lake / river interface to be the best predictor of June sucker pre-spawn staging, 

stream discharge to be the best predictor of June sucker spawning (i.e., upriver 

migration), and water temperature to be relative unimportant in predicting either 

staging or spawning. This discrepancy regarding the importance of water 

temperature might be related to the many additional predictor variables Hines 

(2011) examined; also, all of the June sucker monitored in that study were 

stocked fish (most from the smaller, cooler Red Butte Reservoir refugium), 

whereas of the June sucker used in the current investigation, 11 were wild and 

13 were stocked. Comparison of wild versus stocked June sucker behavior 

warrants further investigation, but must be undertaken quickly before wild June 
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sucker disappear. Continued monitoring of Utah Lake tributaries will provide 

important information regarding spawning behavior and larval sucker emergence 

and drift as the JSRIP improves stream habitat and breeds and stocks increasing 

numbers of June sucker. It is unknown if June sucker (or Utah sucker) have a 

natal homing instinct, and such knowledge would surely be valuable in the quest 

for sucker recruitment.  

 One shortcoming of the telemetric investigation was the lack of CART 

tagged intermediate suckers, which comprised a larger proportion of the Utah 

Lake sucker population than June sucker of Utah sucker. That said, two (codes 

130 and 169) of the CART tagged Utah sucker (identified as such by a 

technician) were included in the stable isotope analysis as intermediates 

(identified morphologically as established in Cole 2008); their isotopic signatures 

grouped with the Utah sucker rather than the June sucker. Given the lack of 

differences in distribution, movement, and spawning behavior between June 

sucker and Utah sucker, there is little reason to expect otherwise regarding 

intermediate morphs.  

 
Stable Isotopes Analysis  

Because of exposure to less water turbulence, periphyton in lakes are 

enriched in 13C relative to phytoplankton; thus benthic / littoral food webs are 13C 

enriched relative to planktonic (pelagic) food webs, and this uncoupling of carbon 

flows between benthic and planktonic food webs may be a global feature of lakes 

(France 1995). For Utah Lake suckers, δ13C was a function of morphology: Utah 
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sucker, as predicted, with their large, papillose lips and ventral mouth were 

enriched in13C relative to June sucker with their small, smooth lips and terminal 

oblique mouth, and suckers of intermediate morphology had intermediate values 

of δ 13C. A stable isotope-derived food web developed for Utah Lake described 

slight decoupling in energy flow between planktonic and benthic-littoral subwebs 

(Landom 2010). The degree of decoupling is related to the number of transzonal 

migrants that integrate both 13C bases. Plotting of Utah Lake suckers’ mean δ13C 

and δ15N coordinates (after conversion for different preservation method) on the 

δ13C – δ15N bi-plot space of Landom (2010) depicting the Utah Lake food web 

reveals suckers’ morphologies predicted their positions in the food web: June 

sucker were indeed components of the planktonic subweb, Utah sucker were 

components of the benthic / littoral subweb, and intermediate suckers fell almost 

directly on the line dividing the two subwebs and exploited both 13C bases 

(Figure 3-13).  

 Several lines of evidence indicate that the diets of Utah Lake suckers 

included fish eggs, or perhaps larvae, and foremost were the trophic positions of 

all three morphs as tertiary consumers (TP = ~ 4.0). Although predatory 

copepods can be enriched in 15N relative to herbivorous zooplankton (Ventura 

and Catalan 2008) and might account for some 15N enrichment in June sucker 

and intermediates, they are unlikely to be a major component of Utah sucker diet. 

Presumed zooplanktivores, rainbow smelt (Osmerus mordax), have been 

documented (Crowder 1980; Hrabik et al. 1998) to prey on pelagic larval fishes, 
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which may display elevated δ15N (Vander Zanden et al. 1998; Murchie and 

Power 2004). Similar predation might explain some 15N enrichment in June 

sucker or intermediates, but again, not in benthivorous Utah sucker; also, larvae 

of the most common fishes in Utah Lake are not pelagic. When mean δ13C and 

δ15N coordinates for June sucker, Utah sucker, and intermediates are plotted on 

Landom’s (2010) Utah Lake food web δ13C – δ15N bi-plot, the suckers group with 

fishes with large piscivorous components in their diets: walleye, white bass, 

channel catfish (Ictalurus punctatus), and black bullhead (Ameiurus melas). Also, 

only the mean δ13C and δ15N coordinates for Utah sucker fell within the mixing 

polygon created by presumed diet sources (benthic / littoral macroinvertebrates); 

coordinates fell outside of the polygon of presumed prey items for June sucker 

(seston and zooplankton) and for intermediates (seston, zooplankton, and 

benthic / littoral macroinvertebrates). Given the large populations of common 

carp, fathead minnows, white bass, and other nonnative fishes in hypereutrophic 

Utah Lake, fish eggs represent the most probable source of this 15N enrichment 

in suckers. In eggs, δ15N is typically similar to or greater than δ15N of adult fish 

(Bilby et al. 1996; Murchie and Power 2004). Inclusion of the isotopic signatures 

of three common Utah Lake fish species (as surrogates for fish eggs) as potential 

prey items in mixing polygons resulted in coordinates for June sucker and 

intermediates falling within their respective mixing polygons. Gut content 

analyses (K. Landom, USU, personal observation) of Utah Lake fishes have 
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revealed that fish eggs are consumed by many species, including walleye and 

channel catfish, which exhibit isotopic signatures similar to Utah Lake suckers.       

 June sucker had the narrowest niche width and δ13C range of Utah Lake 

suckers. Suckers of intermediate morphology had a wider δ13C range (by over 1 

‰) than either of the extreme morphs, indicative of their exploitation of both food 

sub-webs whereas the narrower δ13C ranges of the extreme morphs are 

indicative of more restrictive diets within a single sub-web predominantly (June 

sucker – planktonic sub-web; Utah sucker – benthic sub-web). Despite the 

considerable niche width overlap intermediates share with the two extreme 

morphs, intermediates appeared in good condition (Cole, personal observation), 

a testament to Utah Lake’s productivity.      

 
Density / Growth Experiment  

Although neither morph, rearing density, nor their interaction had 

significant effects on juvenile sucker growth rate, the effect of density 

approached significance: as sucker density increased, there was a trend among 

both morphs for growth rate to increase (Figure 3-18). This supports the 

described Allee effect among June sucker (age 0) raised in cages on natural prey 

in Provo Bay (Gonzalez 2004), although it does raise questions regarding the 

mechanism involved. Likely, the increased growth rate at higher densities has a 

physiological basis related to predation risk and safety in numbers. Sucker, when 

in larger aggregations, (i.e., schools) may simply secrete less stress hormones 
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(e.g., cortisol, epinephrine, and / or norepinephrine) known to inhibit growth, 

because they perceive less threat from potential predators.  

 
Conclusions and Management Implications 

Despite the morphological and correlated dietary (as determined via δ13C 

and δ15N) differences among Utah Lake suckers, morphology (and gender) 

explained little variation regarding distribution and movement, pre-spawning 

staging, or spawning timing. However, the extreme contrast between 2004 and 

2005 in spring runoff and lake levels may have introduced variation masking 

effects of morphology or gender. Utah Lake suckers reach large size (> 600 mm) 

and are long-lived (> 40 years), late-maturing, and highly fecund, life-history 

adaptations to a stochastic desert lake ecosystem where highly variable 

environmental conditions are not conducive for successful spawning and 

recruitment annually, or even regularly. In 2004, the last year of a 5-year drought, 

peak discharge of the Provo River during spring snowmelt was an order of 

magnitude less than in spring 2005, when an extensive snowpack produced an 

extended runoff with very high discharge raising the lake level nearly 2 m from 

the previous autumn. The telemetric sampling included two spawning seasons 

with environmental conditions at opposite ends of the precipitation / runoff 

spectrum (e.g., drought year versus wet year), both of which are conditions that 

historically may have reduced suckers’ spawning numbers. The tributaries in 

which Utah Lake suckers spawn have been drastically anthropogenically 

modified since the mid-1800s. Habitat degradation, channelization, and flow 
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alteration have confounded cues that perhaps in the past resulted in temporal 

segregation of morphs during spawning, although suckers of intermediate 

morphology have been reported since the earliest ichthyological explorations of 

Utah Lake (Jordan 1878). Management of spring runoff in tributaries to more 

closely mimic historic discharges and temperatures would likely enhance the 

detection of spawning cues by Utah Lake suckers and perhaps promote temporal 

segregation of June sucker and Utah sucker spawning.  

 As the JSRIP continues improving multiple tributaries’ spawning and 

rearing habitats and maintains the breeding and stocking program using hatchery 

bred and hatchery and refugium reared June sucker, continued monitoring (via 

PIT tag telemetry) of the increasing number of stocked sucker will provide 

information (e.g., temporal or spatial patterns in spawning)  that can be used to 

further enhance recovery and make decisions in light of predicted changes in 

precipitation patterns in a warming environment. Hatchery and refugium June 

sucker stocks, which are genetically differentiated from wild June sucker (Mock 

et al. 2004), should be supplemented when possible with sperm and / or eggs 

from wild suckers of any morphology spawning in the Provo River (or other 

tributaries). This is especially important given how few wild suckers persist. Also, 

as the JSRIP’s common carp removal program progresses, continued stable 

isotopic monitoring of suckers and other components of the Utah Lake food web 

could be used to track changes in energy flow that accompany the removal of 

millions of kilograms of common carp from Utah Lake. Determining whether June 
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sucker (and Utah sucker) benefit from fewer common carp and the predicted 

accompanying changes, an increase in submerged aquatic macrophytes and 

lower turbidity, or if the energy freed up by common carp (adult) removal benefits 

juvenile common carp or some other nonnative competitor(s) with or predator(s) 

on June sucker (and Utah sucker) is important.  
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Table 3-1. Seasonal periods during which Utah Lake was surveyed in the  
random tracking telemetric investigation of sucker distribution and  
movement.   
 

Seasonal period   Duration 

   Summer 2004 
 

6 July 2004 - 10 August 2004   
Late summer 2004 11 August 2004 - 22 September 2004 
Autumn 2004 

 
10 October 2004 - 4 November 2004 

Winter 2005 
 

20 January 2005 - 15 February 2005 
Late summer 2005 2 August 2005 - 2 September 2005 
Autumn 2005 

 
30 September 2005 - 27 October 2005 
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Table 3-2. Significant predictor variables from significant linear regression models (P < 0.05) examining the relationship 
between the dependent variables, proportions (arcsine square root transformed) of June sucker or Utah sucker detected 
at Provo and Spanish Fork River hydrophones / receivers, and the independent variables, temperature (lake, mouth, or 
river), discharge, and their interaction during the 2005 spawning season split by ascending and descending hydrograph. 
 

Hydrophone Model statistics Predictor statistics

River Hydrograph / Receiver Model F  (df ) P adj R
2

Significant variable Relationship t value P

Provo Ascending Lake 1  June sucker ~ lake temperature * discharge 11.7 (3, 94) 1.40E-06 0.249 Lake temperature Positive 5.610 2.0E-07

Interaction Negative -2.043 0.04390

2  Utah sucker ~ lake temperature * discharge 10.42 (3, 94) 5.56E-06 0.226 Lake temperature Positive 5.207 1.1E-06

Mouth 3  June sucker ~ mouth temperature * discharge 15.0 (3, 85) 6.41E-08 0.323 Mouth temperature Positive 6.655 2.6E-09

Interaction Negative -2.985 0.00370

4  Utah sucker ~ mouth temperature * discharge 15.04 (3,85) 6.15E-08 0.324 Mouth temperature Positive 6.585 3.6E-09

Discharge Positive 2.370 0.02006

Interaction Negative -3.493 0.00076

Descending Mouth 5  June sucker ~ mouth temperature * discharge 23.53 (3, 53) 8.13E-10 0.547 Mouth temperature Positive 5.243 2.8E-06

Discharge Positive 4.961 7.6E-06

Interaction Negative -5.384 1.7E-06

6  June sucker ~ river temperature * discharge 19.32 (3, 53) 1.36E-08 0.495 River temperature Positive 4.966 7.5E-06

7 Utah sucker ~ mouth temperature * discharge 22.18 (3, 53) 1.94E-09 0.532 Mouth temperature Positive 3.463 0.00107

Discharge Positive 3.129 0.00285

Interaction Negative -3.905 0.00027

8  Utah sucker ~ river temperature * discharge 18.35 (3, 53) 2.72E-08 0.482 River temperature Positive 3.155 0.00264

Downstream 9  Utah sucker ~ mouth temperature * discharge 5.6 (3, 53) 0.00207 0.198 Mouth temperature Positive 3.899 0.00027

Discharge Positive 3.026 0.00382

Interaction Negative -2.575 0.01284

10  Utah sucker ~ river temperature * discharge 4.064 (3, 53) 0.01133 0.141 River temperature Positive 2.835 0.00648

Spanish

Fork Ascending Mouth 11  June sucker ~ river temperature * discharge 10.35 (3, 83) 7.38E-06 0.246 River temperature Positive 2.015 0.04710

  

1
2

9
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Table 3-3. Niche width and percent niche overlap {and percent overlap width / 
morph niche width} between pairs of Utah Lake sucker morphs. Percent niche 
overlap equaled overlap area / total area x 100 for a pair of morphs; percent  
overlap / morph niche width was the percentage of a morph’s niche width the 
overlap area with another morph comprised  (JS – June sucker, IS – 
Intermediate, US – Utah sucker).    
 

  
Niche 

width 

Niche overlap (%) {overlap / morph niche width [%]} 

Morph JS IS US 

     June sucker 5.10 
 

35 {60} 11 {23} 

Intermediate 6.67 35 {46} 
 

47 {65} 
Utah sucker 6.40 11 {18} 47 {62}   
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Table 3-4. Isotopic signature for 15N (δ15N), δ15Nbaseline, and trophic  
level determined for June sucker, Utah sucker, and suckers of  
intermediate morphology. 
 

Morph δ15N (‰) δ15Nbaseline (‰) Trophic level 

June sucker 17.73 10.97 3.99 

Intermediate 16.81 10.25 3.93 
Utah sucker 16.36 9.67 3.97 
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Table 3-5. Mean growth rate and standard deviation (g/g/d)  
for juvenile June sucker and Utah sucker reared at three  
different densities (conspecific) with excess food availability. 
 

  Density Mean growth Standard 

Morph (fish/tank) rate (g/g/d) deviation (g/g/d) 

    June sucker 1 0.0113 0.0016 

 
5 0.0121 0.0026 

 
10 0.0130 0.0022 

    Utah sucker 1 0.0087 0.0031 

 
5 0.0125 0.0039 

  10 0.0124 0.0027 
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Planktivorous morph 

                 

                Benthivorous morph              

Figure 3-1. Digital images (among those analyzed in Cole et al. 2008) 
demonstrating the continuum of variation in mouth morphology (ventral view) 
exhibited by suckers in Utah Lake, UT. Planktivorous morphologies appear 
towards upper left (June sucker: minimal lip papillation; wide lower lip gap; and 
reduced lower lip lobes) whereas benthivorous morphologies appear towards 
lower right (Utah sucker: extensive lip papillation; narrow lower lip gap; and 
pronounced lower lip lobes). Variation in maxillary angle and head shape also 
contributes to intermediate morphologies.  
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Provo Bay 

Goshen Bay 
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SC 
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(Image from Google Earth) 

 

Hydrophone 
Locations 

 

Figure 3-2. Maps showing 
geographical setting of Utah 
Lake, UT and locations of 
hydrophones with set dates 
during lake wide random 
survey via radio / acoustic 
telemetry. The Provo and 
Spanish Fork Rivers are 
Utah Lake’s largest 
tributaries, and the Jordan 
River is its outlet. Long Bar, 
a large sandbar between 
the mouths of the Provo 
River and Provo Bay, is one 
of the few prominent 
bathymetric structures in 
Utah Lake.  
 
N – north;  
NC – north central;  
SC – south central;  
S – south;  
E – east;  
W – west 
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Figure 3-3. Means (±95 % confidence intervals) of the proportion of sectors in 
which individual Utah Lake suckers were detected during random telemetric 
monitoring in Utah Lake plotted by season with mean (±95 % confidence interval) 
seasonal temperature (°C). 
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Figure 3-4. Variable importance plots (with percentage variance explained) from 
RF analysis of DPUE regressed with a variety of predictor variables. Models NA, 
1, and 2 examined the most temporally and spatially complete telemetric dataset; 
Model 4 examined the most complete dataset including substrate data; Model 8 
examined the most complete dataset including temperature data; and Model 12 
examined the most complete dataset including substrate and temperature data. 
(See Appendix: Table 3-A-6) 
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Figure 3-5. Partial dependency plots for zone, shore, season, and stratum 
generated by RF analysis of important variables of the most temporally and 
spatially complete telemetric dataset using DPUE as the dependent variable and 
not including oDPUE among predictors (See Appendix: Table 3-A-6, Model 1i). 
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Figure 3-6. Partial dependency plots for temperature and oDPUE for Models 8i 
and 2i, respectively (see See Appendix: Table 3-A-6 for model descriptions).  
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Figure 3-7. Plots show the summed daily detections of individual suckers and 
daily mean temperature for the late summer (August – September) and autumn 
(October – November) telemetric sampling periods in 2004 for the eastern and 
western shores of the three northernmost strata of Utah Lake. 
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Figure 3-8. Hydrophone UTM coordinates of Utah Lake sucker detections displayed using bubble plots (diameters 
proportional to DPUE; scales differ between plots) to depict the influence of species, season (by year), stratum, and shore 
on June sucker and Utah sucker distribution and movement in 2004 – 2005 random survey. Each point represents the 
presence of at least one sucker; absences (DPUE = 0) were not plotted. Regarding species, out of 90 hydrophone sets, 
there were: 52 sets (58 %) with detection of both morphs (open circles; often overlap with several obscured); 11 sets (12 
%) with only June sucker detected (solid blue circles); 9 sets (10 %) with only Utah sucker detected (solid red circles); and 
18 sets (20 % of sets) with no suckers detected (not plotted).  
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Figure 3-9. Plots depicting proportions (by species) of tagged Utah Lake suckers detected daily in 2004 via continuous 
telemetric monitoring of the lake, river mouth, and lower river sites (stationary hydrophones and receiver) and via 
intermittent monitoring (mobile tracking by foot or vehicle) of the upper river during the Provo River spawning run plotted 
with Provo River temperature and discharge.  
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Figure 3-10. Proportions (by species) of tagged Utah Lake suckers detected daily in 2005 via continuous telemetric 
monitoring of the lake, river mouth, and lower river sites (stationary hydrophones and receiver) and via intermittent 
monitoring (mobile tracking by foot or vehicle) of the upper river during the Provo River spawning run plotted with Provo 
River temperature and discharge, littoral (river mouth) temperature, and lake temperature.  
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Figure 3-11. Isotopic signatures (δ13C and δ15N; means ± 95 % confidence 
intervals) and niche widths for Utah Lake suckers plotted by morph within the two 
dimensional δ13C – δ15N bi-plot space.
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Figure 3-12. Mixing polygons 
generated within the δ13C–
δ15N bi-plot space plotting the 
mean coordinates for each 
morph and for potential diet 
items assuming per trophic 
level increases of 0.4 ‰ for 
δ13C and 3.4 ‰ for δ15N 
(Post 2002). Triangular 
symbols = zooplankton / 
seston; square symbols = 
benthic / littoral 
macroinvertebrates; and 
circular symbols = fish. June 
sucker mixing polygon 
included zooplankton / seston 
and fish; intermediate sucker 
mixing polygon included all 
potential prey groups; and 
Utah sucker mixing polygon 
included benthic / littoral 
organisms. (Dashed lines on 
June sucker and intermediate 
plots exclude common carp, 
white bass, and fathead 
minnow as diet sources.) 
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Figure 3-13. Utah Lake food web (Utah Lake biota δ13C – δ15N bi-plot) modified 
from Landom (2010) and including the mean isotopic signatures of June sucker, 
Utah sucker, and intermediates. Arrow indicates the slight de-coupling in energy 
flow between the pelagic and benthic / littoral sub-webs. (Symbols: stars – 
suckers; circles – other fishes; squares – macroinvertebrates; triangles – 
zooplankton) 
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Figure 3-14. Mean growth rate (g/g/d) and 95 % confidence intervals for juvenile 
June sucker and Utah sucker reared at three different densities with excess food 
availability.  
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Table 3-A-1. Transmitter code identifier, sucker origin, implantation date, sex, 
standard length, and weight of June and Utah suckers surgically implanted with 
CART tags in Provo River and Utah Lake in 2003 and 2004. 

 

Morph Code Origin Tag date Sex Length (mm) Weight (g)

June sucker 1 Red Butte 06/05/03 f 380 1400

18 Red Butte 05/22/03 m 385 1100

29 Wild 05/22/03 m 413 1840

34 Red Butte 05/28/03 f 419 1450

44
a

Red Butte 06/05/03 f 420 1700

100 Hatchery 06/05/03 f 500 2900

109
a→b

Hatchery 05/22/03 f 418 1200

121
a

Hatchery 05/22/03 m 404 1420

129 Red Butte 05/28/03 m 375 1150

143 Red Butte 05/22/03 m 380 1204

183 Wild 05/22/03 m 405 1250

203 Red Butte 05/22/03 f 413 1400

3 Wild 05/14/04 m 442 1900

5
a

Red Butte 05/27/04 f 394 1300

8 Hatchery 05/11/04 m 399 1500

10 Red Butte 05/28/04 f 438 1200

12 Wild 04/30/04 f 411 1380

14 Wild 05/28/04 m 448 2000

115 Red Butte 04/25/04 f 392 1300

116 Camp Creek 04/25/04 m 362 1200

133 Wild 04/25/04 m 395 1200

144 Wild 06/02/04 f 493 2720

154 Red Butte 05/27/04 f 405 1450

159 Wild 05/12/04 m 415 1800

170 Wild 05/27/04 m 414 1600

177 Wild 06/02/04 m 415 1480

204 Red Butte 04/30/04 f 395 1500

205 Wild 05/14/04 f 412 1840

Utah sucker 2 Wild 05/22/03 f 505 3780

138
c

Wild 05/22/03 m 425 2070

152 Wild 05/22/03 m 424 1050

156 Wild 05/22/03 m 442 1240

169
a→d

Wild 05/22/03 m 484 1920

178 Wild 05/22/03 m 483 1850

193
a→e

Wild 05/22/03 m 520 2700

4 Wild 05/14/04 f 394 1420

6 Wild 05/12/04 f 521 3200

7
c

Wild 05/12/04 m 438 2140

9 Wild 05/11/04 f 505 3140

11 Wild 05/28/04 m 421 1300

13 Wild 05/06/04 f 433 1800

15 Wild 04/29/04 m 445 2040

16 Wild 05/11/04 f 478 2780

22 Wild 04/29/04 m 454 1980

30 Wild 04/23/04 f 421 2200

40 Wild 04/24/04 f 420 1650

45 Wild 04/29/04 m 482 2340

101 Wild 04/29/04 m 477 2620

109
b

Wild 05/11/04 m 454 2280

130 Wild 04/29/04 m 485 2340

157 Wild 05/27/04 m 413 1800

169
d

Wild 04/29/04 m 475 2140

193
e

Wild 04/23/04 m 404 1300

               a  Mortality
               b  Transmitter recovered from 2003 mortality (a) and implanted into another sucker (b) in 2004
               c  Sucker expelled 2003 transmitter (138) and was implanted with another (7) in 2004 
               d  Transmitter recovered from 2003 mortality (a) and implanted into another sucker (d) in 2004
               e  Transmitter recovered from 2003 mortality (a) and implanted into another sucker (e) in 2004
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Table 3-A-2. Data collection periods for telemetry, substrate, and temperature data during the random tracking study.   

 

Sector

1W 1E 2W 2E 3W 3E 4W 4E

Time period Data littoral limnetic littoral limnetic littoral limnetic littoral limnetic littoral limnetic littoral limnetic littoral limnetic littoral limnetic

Summer 2004 Telemetry X X X X X X Xa Xa Xa Xa X X

Substrate X X X X X X X X X X X X

Temperature X X X X X X X

Late summer 2004 Telemetry X X X X X X X X X X X X X X

Substrate X X X X X X X X X X X X X X

Temperature X X X X X X X X X X X X X X

Autumn 2004 Telemetry X X X X X X X X Xb Xb X X X X

Substrate X X X X X X X X Xb Xb X X X X

Temperature X X X X X X X X Xb Xb X X X X

Winter 2005 Telemetry X X X X X X X X X X X X X X X X

Substrate X X X X X X X X X X X X X X X X

Temperature X X X X X X X X X X X X

Late summer 2005 Telemetry X X X X X X X X X X X X X X X X

Substrate X X X X X X X X X X X X

Temperature X X X X X X X X

Autumn 2005 Telemetry X X X X X X X X X X X X X X X X

Substrate

Temperature X X X X X X X X

a  Consecutive rather than concurrent telemetric sampling periods for east and west sectors of stratum.   
b  Telemetrically sampled for two consecutive approximately 1 wk periods; concurrent sampling of the east sector occurred during the latter period.

  

1
4

9
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Table 3-A-3. Hits, detections, and interference signals recorded during random 
telemetric monitoring of Utah Lake in 2004 and 2005 by year, season, stratum, 
and shore. 

Year Season Stratum Shore Hits 
  

Detections Interference 

       2004 Summer SC e 8754 112 1677 

  
SC w 28 18 795 

  
NC e 39 22 487 

  
N e 16 15 607 

  
N w 41 22 675 

  
S e 343 36 1268 

       
Late Summer SC e 100 22 1466 

  
SC w 28 19 686 

  
S w 125 26 872 

  
NC e 85 41 1656 

  
NC w 82 38 708 

  
N e 408 106 1511 

  
N w 299 61 841 

 
 Autumn S e 36 23 1046 

  
SC e 604 16 615 

  
SC w 145 44 796 

  
SC w 18 14 619 

  
NC e 68 3 784 

  
NC w 762 40 790 

  
N e 36 1 86 

  
N w 227 37 1098 

 
2005 Winter SC e 599         22 1102 

  
SC       w 0 0 13 

  
S e 279 45 782 

  
S w 0 0 81 

  
NC e 141 49 879 

  
NC w 0 0 205 

  
N e 38 16 746 

  
N w 13 2 Na 

       Late Summer S e 3 3 240 

  
S w 14 14 512 

  
NC e 9 9 381 

  
NC w 14 11 563 
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SC e 24 14 777 

  
SC w 15 12 493 

  
N e 7 7 152 

  
N w 27 15 517 

 
 Autumn NC e 20 4 93 

  
NC w 109 38 603 

  
SC e 425 7 495 

  
SC w 44 23 369 

  
N e 0 0 61 

  
N w 4 4 111 

  
S e 3 3 79 

  
S w 1 1 34 

       

   

Total 14033 1015 28371 
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Table 3-A-4. Two factor ANOVA F values and probabilities (P): from analysis of individual Utah Lake suckers’ (model df = 
3,42) numbers of hits or detections during random telemetric monitoring in Utah Lake (2004 – 2005) as dependent 
variable and morph, gender, and their interaction as predictor variables; and from individual June suckers’ (model df = 
3,20) numbers of hits or detections as dependent variables and gender, origin, and their interaction as predictor variables. 
 

                 Hits                 Detections 

Sucker group Predictor df F value P   F value P 

        Utah Lake suckers Morph 1 0.65 0.424 
 

0.67 0.418 

 
Gender                  1 3.10 0.085 

 
2.92 0.095 

 
Morph and gender    1 0.09 0.764 

 
0.76 0.388 

        June sucker Gender 1 1.61 0.219 
 

0.01 0.925 

 
Origin 1 0.35 0.558 

 
1.54 0.229 

  Gender and origin 1 0.89 0.356   0.04 0.834 

  

1
5

2
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Table 3-A-5. Three factor ANOVA F values and probabilities (P) from analyzing 
the proportion of sectors visited by individual Utah Lake suckers (model df = 15, 
260) during random telemetric monitoring in Utah Lake (2004 – 2005) as the 
dependent variable and season, morph, gender, and their interactions as 
predictor variables; and the proportion of sectors visited by individual June 
sucker (model df = 15, 128) as the dependent variable and season, gender, 
origin, and their interactions as predictor variables (Bold – significant at α = 
0.05). (arcsine square root transformed data) 
 

Sucker group Predictor variables DF F value P 

     Utah Lake suckers Season 3 2.66 0.049 

 
Morph 1 1.15 0.285 

 
Season, morph 3 0.20 0.900 

 
Gender 1 0.01 0.914 

 
Season, gender 3 0.18 0.908 

 
Morph, gender 1 0.83 0.363 

 
Season, morph, gender 3 0.02 0.995 

     June sucker Season 3 4.01 0.053 

 
Gender 1 0.22 0.724 

 
Season, gender 3 0.19 0.803 

 
Origin 1 5.58 0.219 

 
Season, origin 3 0.78 0.746 

 
Gender, origin 1 0.05 0.839 

  Season, gender, origin 3 0.18 0.915 
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Table 3-A-6. Datasets and models examined in RF analysis of random telemetric monitoring of adult suckers in Utah Lake 
and percentages of variance explained. (Bold text, bold italic text – same predictor variables applied to different 
datasets; i – important predictor variables; ii – substrate included among important predictor variables)       
 

 
     

Dataset Model Predictor variables (→in decreasing order of importance→)  
Variance 

(%)  

    Telemetry 1 Shore Season Zone Stratum Gender Light Species 29.9 

 
1i Zone Shore Season Stratum 43.4 

 
2 oDPUE Season Shore Stratum Zone Gender Species Light  76.7 

 
2i oDPUE Season Shore Stratum Zone 74.9 

    Telemetry 3 Shore Season Zone Stratum Gender Light Species 35.6 

Substrate 3i Shore Season Zone Stratum 54.3 

 
4 Season Zone Shore Stratum Substrate Gender Light Species 38.0 

 
4i Season Zone Shore Stratum Substrate 53.3 

 
5 oDPUE Season Shore Stratum Zone Gender Species Light 76.1 

 
5i oDPUE Shore Season Stratum Zone 74.3 

 
6 oDPUE Season Shore Stratum Zone Substrate Gender Species Light   75.8 

 
6i oDPUE Season Shore Stratum Zone Substrate 73.6 

    Telemetry 7 Zone Shore Season Stratum Gender Light Species 36.2 

Temperature 7i Zone Shore Season Stratum 47.5 

 
8 Zone Temperature Shore Season Stratum Light Gender Species 70.7 

 
8i Zone Shore Temperature Season Stratum 70.0 

 
9 oDPUE Season Zone Shore Stratum Species Gender Light 75.0 1

5
4
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9i oDPUE Season Stratum Zone Shore 74.2 

 
10 oDPUE Zone Temperature Shore Stratum Season Gender Light Species 76.1 

 
10i oDPUE Zone Stratum Shore Temperature Season 74.7 

    Telemetry 11 Zone Shore Season Stratum Gender Light Species 44.5 

Substrate 11i Zone Shore Season Stratum 53.3 

Temperature 12 Zone Temperature Shore Season  Stratum Substrate Light Gender Species 69.2 

 
12i Zone Temperature Shore Season Stratum 69.8 

 
12ii Zone Temperature Shore Season Stratum Substrate 67.5 

 
13 Zone Shore Season Stratum Substrate Gender Light Species 44.1 

 
14 Zone Temperature Shore Season Stratum Light Gender Species 70.3 

 
15 oDPUE Zone Season Shore Stratum Species Gender Light 74.4 

 
15i oDPUE Zone Season Stratum Shore 73.7 

 
16 oDPUE Zone Shore Temperature Stratum Season Substrate Light Gender Species 75.2 

 
16i oDPUE Zone Shore Temperature Stratum Season 74.3 

 
16ii oDPUE Zone Temperature Shore Stratum Season Substrate 74.1 

 
17 oDPUE Zone Season Stratum Shore Substrate Species Gender Light 73.9 

 
18 oDPUE Zone Temperature Shore Stratum Season Gender Light Species 75.4 
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Table 3-A-7. Datasets and models examined in RF analysis of random telemetric monitoring of adult June sucker and 
Utah sucker in Utah Lake and percentages of variance explained. (i – important predictor variables).  
 

Dataset Species Model Predictor variables Variance 

    number [→in decreasing order of importance→]          (%) 

     Telemetry JS J1 Season  Shore  Zone  Stratum Light Gender 23.7 

 

JS J1i Season  Shore  Stratum  Zone 45.0 

 

US U1 Shore  Zone  Season  Stratum  Gender  Light 21.8 

 

US U1i Shore  Season  Zone  Stratum 39.9 

     Telemetry JS J2 Shore  Zone  Season  Stratum  Light  Gender   28.1 

 + Temperature JS J2i Shore  Zone  Season  Stratum 48.5 

 

JS J3 Temperature  Zone  Shore  Season  Stratum  Light  Gender 73.7 

 

JS J3i Temperature  Zone  Shore  Season  Stratum 76.0 

 

US U2 Zone  Shore  Season  Stratum  Gender  Light 29.8 

 

US U2i Shore  Zone  Season  Stratum 41.1 

 

US U3 Zone  Temperature  Shore  Season  Stratum  Gender  Light 62.0 

  US U3i Temperature  Zone  Shore  Season  Stratum 61.5 
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Table 3-A-8. Minimum distances traveled by Utah Lake suckers during random 
(2004-2005) and spawning season (2005) telemetric monitoring, and the number 
of trips between the Provo and Spanish Fork Rivers (Trips) that individual 
suckers undertook during the 2005 spawning season. 
   

        

 

  Distance (km)   

Code Species Gender Origin Trips Spawn Random Total 

        1 JS f stocked 15 110.7 971.2 1081.9 

3 JS m wild 4 29.3 351.4 380.7 

8 JS m stocked 2 15.3 212.0 227.3 

10 JS f stocked 0 0.0 259.8 259.8 

12 JS f wild 0 0.0 169.4 169.4 

14 JS m wild 0 0.0 286.8 286.8 

18 JS m stocked 1 7.4 525.2 532.6 

29 JS m wild 4 29.9 348.4 378.3 

34 JS f stocked 4 30.1 318.5 348.6 

100 JS f stocked 0 0.0 154.3 154.3 

115 JS f stocked 1 7.4 172.4 179.8 

116 JS m stocked 28 211.6 665.4 877.0 

129 JS m stocked 0 0.0 77.3 77.3 

133 JS m wild 0 0.0 80.1 80.1 

143 JS m stocked 0 0.0 41.0 41.0 

144 JS f wild 5 37.6 281.8 319.4 

154 JS f stocked 12 88.9 375.8 464.7 

159 JS m wild 2 14.8 134.8 149.6 

170 JS m wild 0 0.0 34.0 34.0 

177 JS m wild 0 0.0 312.5 312.5 

183 JS m wild 0 0.0 38.2 38.2 

203 JS f stocked 0 0.0 35.7 35.7 

204 JS f stocked 1 7.4 347.3 354.7 

205 JS f wild 0 0.0 61.3 61.3 

2 US f wild 36 268.9 927.9 1196.8 

4 US f wild 13 99.4 274.1 373.5 

6 US f wild 30 226.0 620.1 846.1 

7 US m wild 2 15.2 365.4 380.6 

9 US f wild 2 15.4 62.3 77.7 

11 US m wild 0 0.0 200.6 200.6 
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13 US f wild 0 0.0 282.2 282.2 

15 US m wild 15 111.9 516.4 628.3 

16 US f wild 0 0.0 521.4 521.4 

22 US m wild 3 22.3 244.0 266.3 

30 US f wild 9 66.8 630.6 697.4 

40 US f wild 0 0.0 190.7 190.7 

45 US m wild 3 22.2 148.8 171.0 

101 US m wild 3 22.2 198.0 220.2 

109 US m wild 1 7.5 77.9 85.4 

130 US m wild 0 0.0 216.3 216.3 

152 US m wild 0 0.0 82.7 82.7 

156 US m wild 8 61.0 413.6 474.6 

157 US m wild 3 22.2 148.7 170.9 

169 US m wild 0 0.0 49.3 49.3 

178 US m wild 6 46.4 236.3 282.7 
193 US m wild 2 15.2 458.9 474.1 
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Table 3-A-9. Results (F values and probabilities, P) of two factor ANOVA of minimum mean distances traveled during 
random and targeted (2005 spawning season) telemetric monitoring by individual suckers for all Utah Lake suckers 
(factors: species and gender; model df = 3, 42) and for June sucker (factors: gender and origin; model df = 3, 20). 
   

          Mean Standard       
All suckers Class variables N distance (km) deviation (km) Factor(s) F value P 

         Spawn distance JS 
 

24 24.6 48.9 
   

  
US 

 
22 46.5 72.8 Species 2.79 0.1020 

  
female 

 
19 50.5 78.9 

   

  
male 

 
27 24.2 44.7 Gender 2.97 0.0922 

  
JS female 11 25.6 39.2 

   

  
JS male 13 23.7 57.5 

   

  
US female 8 84.6 107.4 

   

  
US male 14 24.7 30.8 Species*gender 2.61 0.1137 

Random 
distance JS 

 
24 260.6 222.0 

   
  

US 
 

22 312.1 223.6 Species 1.38 0.2473 

  
female 

 
19 350.4 270.7 

   

  
male 

 
27 239.4 170.8 Gender 3.54 0.0667 

  
JS female 11 286.1 253.0 

   

  
JS male 13 239.0 200.1 

   

  
US female 8 438.7 285.5 

   

  
US male 14 239.8 146.3 Species*gender 1.35 0.2521 

          Total distance JS 
 

24 285.2 259.8 
  

 

  
US 

 
22 358.6 283.7 Species 1.82 0.1850 
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female 

 
19 400.8 334.1 

  
 

  
male 

 
27 263.7 204.3 Gender 3.78 0.0585 

  
JS female 11 311.8 287.0 

   

  
JS male 13 262.7 243.9 

   

  
US female 8 523.2 373.8 

   

  
US male 14 264.5 169.1 Species*gender 1.76 0.1923 

June sucker 
        Spawn distance female 

 
11 25.6 39.2 

   
  

male 
 

13 23.7 57.5 Gender 0.09 0.7718 

  
stocked 

 
13 36.8 63.6 

   

  
wild 

 
11 10.1 15.0 origin 1.58 0.2232 

  
female stocked 8 30.6 44.2 

   

  
female wild 3 12.5 21.7 

   

  
male stocked 5 46.9 92.3 

   

  
male wild 8 9.3 13.6 Gender*origin 0.20 0.6629 

Random 
distance female 

 
11 286.1 253.0 

   
  

male 
 

13 239.0 200.1 Gender 0.00 0.9910 

  
stocked 

 
13 319.7 269.5 

   

  
wild 

 
11 190.8 127.8 Origin 1.73 0.2031 

  
female stocked 8 329.4 283.1 

   

  
female wild 3 170.8 110.2 

   

  
male stocked 5 304.2 277.7 

   

  
male wild 8 198.3 140.1 Gender*origin 0.07 0.7960 

          Total distance female 
 

11 311.8 287.0 
   

  
male 

 
13 262.7 243.9 Gender 0.00 0.9487 

  
stocked 

 
13 356.5 318.6 
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wild 

 
11 200.9 137.7 Origin 1.86 0.1878 

  
female stocked 8 359.9 321.2 

   

  
female wild 3 183.3 129.6 

   

  
male stocked 5 351.0 352.1 

   

  

male wild 8 207.5 148.7 Gender*origin 0.02 0.8894 
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Table 3-A-10. Date of first detection of individual Utah Lake suckers and probabilities (P) resulting from median exact 
tests (if conducted) comparing median first day of detection between species at Provo River locations during the 2004 and 
2005 spawning seasons and at Spanish Fork River locations during the 2005 spawning season. (JS – June sucker; US – 
Utah sucker) 
 

 

    2004 Provo River       2005 Provo River        2005 Spanish Fork River   

  

    Lower Upper 

 

    Lower Upper 

 

    Upper 
Code   Lake Mouth River River   Lake Mouth River River   Lake Mouth River 

JS 
              1 
 

04/02 04/02/04 04/03/04 
  

03/06/05 02/17/05 
   

02/26/05 03/29/05 
 3 

      
05/25/05 02/19/05 

   
03/04/05 05/07/05 

 8 
        

04/10/05 
  

03/25/05 
  10 

           
03/13/05 

  12 
           

03/12/05 04/02/05 
 14 

           
04/28/05 

  18 
 

04/02/04 04/30/04 04/07/04 05/23/04 
  

02/20/05 
   

03/04/05 05/31/05 
 29 

 
04/08/04 05/14/04 04/07/04 05/12/04 

  
02/19/05 

   
03/04/05 05/14/05 

 34 
 

04/03/04 04/02/04 
    

06/04/05 03/23/05 
  

03/10/05 06/18/05 
 100 

 
04/09/04 05/23/04 

    
06/04/05 

      115 
       

07/19/05
#
 

   
03/13/05 03/29/05 

 116 
      

04/03/05 04/11/05 04/07/05 
  

03/02/05 04/06/05 
 129 

 
04/03/04 04/10/04 

        
03/13/05 

  133 
              143 
 

04/03/04 05/21/04 04/03/04 
       

03/04/05 
  144 

      
04/07/05 04/07/05 05/03/05 05/18/05 

 
04/22/05 04/22/05 

 154 
      

02/28/05 04/12/05 
   

03/09/05 02/26/05 04/20/05 
159 

       
06/09/05 

   
03/23/05 

  170 
           

03/17/05 
  177 

           
05/16/05 

  183 
  

04/06/04 
        

06/25/05 
 

 

203 
  

04/07/04 
 

05/23/04 
      

03/25/05 
  204 

       
02/20/05 

   
06/25/05 
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205 
           

03/16/05 
 

 US 
              2 
 

04/01/04 04/04/04 
 

05/23/04 
 

03/05/05 02/16/05 05/06/05 
  

02/26/05 03/07/05 
 4 

      
04/19/05 04/19/05 02/24/05 03/11/05 

 
03/04/05 

  6 
      

04/07/05 02/17/05 04/07/05 04/20/05 
 

03/04/05 04/02/05 
 7 

       
04/08/05 

   
03/22/05 04/02/05 

 9 
        

04/07/05 
  

04/20/05 03/29/05 
 11 

           
03/12/05 

  13 
           

03/13/05 
  15 

      
06/26/05 02/20/05 04/09/05 

  
03/08/05 05/05/05 

 16 
           

03/17/05 
  22 

       
03/05/05 

   
03/05/05 04/27/05 

 30 
      

02/28/05 04/19/05 
   

03/03/05 03/03/05 
 40 

           
03/17/05 05/05/05 

 45 
       

02/20/05 
   

03/14/05 07/16/05
# 

 101 
       

06/09/05 
 

03/04/05 
 

03/23/05 
  109 

       
02/16/05 

   
04/20/05 04/02/05 

 130 
           

03/25/05 
  152 

 
04/03/04 06/21/04 

        
03/13/05 

  156 
 

04/01/04 04/01/04 05/04/04 05/06/04 
 

03/17/05 02/19/05 04/18/05 04/27/05 
 

03/16/05 03/16/05 
 157 

      
04/10/05 04/10/05 04/18/05 04/27/05 

 
03/10/05 04/08/05 

 
169 

 

 
 

            178 
 

04/06/04 04/27/04 04/27/04 04/15/04 
 

04/14/05 04/14/05 04/15/05 04/20/05 
 

04/08/05 04/08/05 
 193 

      
03/09/05 02/20/05 04/13/05 04/13/05 

 
06/04/05 

  
  

                          
P 

 
0.7242 1.0000 * *   1.0000 0.6951 0.5594 *   0.7635 0.6699 * 

(median exact test) 
           

       

#
date after 1 July – not included in median exact test 

  
       

*no median exact test conducted 
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Table 3-A-11. Numbers of Utah Lake suckers, by Species, detected during active telemetric tracking of Utah Lake 

tributaries during the 2004 (Provo River) and 2005 (Provo, Spanish Fork, and American Fork Rivers and Battle Creek) 

spawning seasons.     

 

 Site   June Utah    Site   June Utah    Site   June Utah 
Year Date sucker sucker   Year Date sucker sucker   Year Date sucker sucker 

  
             Provo 04/15/04 0 1 

 
Provo 03/04/05 0 1 

 
Spanish 03/03/05 0 0 

River 04/22/04 0 1 
 

River 03/11/05 0 2 
 

Fork River 03/10/05 0 0 

2004 04/26/04 0 1 
 

2005 03/17/05 0 1 
 

2005 03/17/05 0 0 

 
04/30/04 0 1 

  
03/21/05 0 2 

  
03/21/05 0 0 

 
05/04/04 0 1 

  
04/07/05 0 2 

  
03/31/05 0 0 

 
05/06/04 0 2 

  
04/13/05 0 3 

  
04/13/05 0 0 

 
05/12/04 1 1 

  
04/20/05 0 4 

  
04/20/05 1 1* 

 
05/14/04 0 1 

  
04/27/05 0 4 

  
04/26/05 0 0 

 
05/18/04 0 1 

  
05/06/05 0 2 

  
05/05/05 0 0 

 
05/23/04 2 1 

  
05/12/05 0 3 

  
05/11/05 0 0 

 
05/26/04 0 1 

  
05/18/05 1 2 

  
05/19/05 1* 0 

 
05/28/04 0 1 

  
05/19/05 1 4 

  
05/25/05 0 0 

 
06/01/04 0 0 

  
05/26/05 1 3 

  
06/01/05 0 0 

 
06/09/04 0 0 

  
06/02/05 0 1 

  
06/23/05 0 0 

      
06/07/05 1 2 

  
06/28/05 0 0 

      
06/10/05 1 1 

     Battle 04/20/05 0 0 
  

06/14/05 1 1 
     Creek 04/26/05 0 0 

  
06/16/05 1 2 

 
American 05/11/05 0 0 

2005 05/11/05 0 0 
  

06/23/05 1 0 
 

Fork River 06/28/05 0 0 
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06/29/05 0 1 

 
2005 

 
 

 

      
07/07/05 0 1 

                 07/12/05 0 1           

* indicates sucker was detected at the tributary / lake confluence 
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Figure 3-A-1. Locations of hydrophones (A – lake; B – river mouth) and radio receiver / data-loggers (C) at the mouths of 
the Provo River in 2004 and 2005 and the Spanish Fork River in 2005 during the spring spawning seasons. The receiver 
at the Provo River was located on a footbridge and able to detect radio transmissions from tagged suckers in the lower 
river whereas that at the Spanish Fork River was located approximately 30 m from the river channel and unable to detect 
tagged suckers in the lower river.                                 
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Figure 3-A-2. Proportion of sectors visited by individual suckers (identified 
by code) during the six seasonal sampling periods of the 2004-2005 
random telemetric monitoring of Utah Lake. 
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Figure 3-A-3. Variable importance plots for important predictors produced from RF analysis of the most temporally 
and spatially complete telemetric dataset (DPUE = dependent variable; excluded oDPUE as a predictor). (Percent 
variance explained in parentheses.) (See Appendix: Table 3-A-6 for models; Figure 5)  
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Figure 3-A-4. Variable importance plots: important predictors resulting from RF 
analysis ( Appendix: Table 3-A-6, Model 2i) of the most temporally and spatially 
complete dataset with DPUE as the response variable and oDPUE among 
predictors; and all predictors, by species, from analysis included substrate and 
temperature data. (JSDPUE – June sucker DPUE; USDPUE – Utah sucker DPUE).                      
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Figure 3-A-5. Variable importance plot showing important predictors by species 
(with percent variance explained by model) from RF analysis of the most 
temporally and spatially complete telemetric dataset that included temperature 
data; and partial dependency plots for temperature by species. The dependent 
variable was DPUE, and the predictor variables excluded oDPUE. (Appendix: 
Table 3-A-7, Models J3i and U3i) 
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Figure 3-A-6. Numbers of individual tagged June sucker and Utah sucker detected daily via continuous monitoring during 
the Provo River spawning run in 2004 of the lake, river mouth, and lower river sites (stationary hydrophones and receiver) 
and via intermittent monitoring (mobile tracking by foot or vehicle) of the upper river. (Legend: codes for individual June 
sucker and Utah sucker)  
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Figure 3-A-7. Numbers of individual tagged June sucker detected daily via continuous monitoring during the Provo River 
spawning run in 2005 of the lake, river mouth, and lower river sites (stationary hydrophones and receiver) and via 
intermittent monitoring (mobile tracking by foot or vehicle) of the upper river. (Legend: June sucker codes)  
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Figure 3-A-8. Numbers of individual tagged Utah suckers detected daily via continuous monitoring during the Provo River 
spawning run in 2005 of the lake, river mouth, and lower river sites (stationary hydrophones and receiver) and via 
intermittent monitoring (mobile tracking by foot or vehicle) of the upper river. (Legend: Utah sucker codes) 
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Figure 3-A-9. Numbers of individual tagged June sucker and Utah sucker detected daily via continuous monitoring during 
the Spanish Fork River spawning run in 2005 of the lake and river mouth (stationary hydrophones and receiver). 
(Legends: codes for individual Utah sucker and June sucker; fill colors begin repeating at JS 159 and US130) 
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Figure 3-A-10. Proportions (by species) of tagged June sucker and Utah sucker detected daily via continuous telemetric 
monitoring during the Spanish Fork River spawning run in 2005 of the lake and river mouth sites (stationary hydrophones 
and receiver) plotted with Spanish Fork River temperature (lake, mouth, and river) and discharge. 
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CHAPTER 4 

  

EVALUATING CONGRUENCE OF 

  

MORPHOLOGY WITH GENETIC STRUCTURE AND STABLE ISOTOPIC 
 

SIGNATURES (δ13C AND δ15N) IN THE JACKSON LAKE SUCKER COMPLEX 

ABSTRACT 

 The Snake River sucker (SRS), Chasmistes muriei, a lakesucker believed 

to inhabit lakes in Jackson Hole, Wyoming prior to its extinction in the early 20th 

century, is known from a single specimen collected from the Snake River below 

Jackson Dam in 1927. Currently, suckers in Jackson Lake, its tributaries and 

outflow, and nearby lakes are identified as Utah sucker, Catostomus ardens. 

Recently sampled individuals from Jackson Lake and the Snake River, however, 

morphologically resemble limnetic lakesuckers (Chasmistes) rather than the 

benthic Utah sucker. This investigation of the morphologically diverse suckers in 

Jackson Lake and the upper Snake River assessed concordance of 

morphological variation with molecular variation and with variation in diet as 

measured by stable isotope analysis. Suckers were subjectively identified to 

morph (limnetic, benthic, or intermediate) using mouth characters putatively 

associated with planktivorous versus benthivorous feeding strategies. 

Morphologically the lone SRS holotype specimen grouped strongly with the 

extant limnetic morphs. No molecular evidence was found for deep genetic 

divergence between morphs or for hybridization among ancient lineages. Stable 

isotopic analysis revealed that the benthic morph was significantly enriched in 
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13C relative to the limnetic morph, consistent with their respective presumed diets 

of benthic/littoral macroinvertebrates and zooplankton. By contrast, δ 15N, a 

metric of trophic level, did not differ significantly among morphs. Here we confirm 

the persistence of suckers in Jackson Lake and the upper Snake River that are 

morphologically extremely similar to the lone SRS specimen, and suggest that 

the status of the SRS be updated accordingly. The presence of lakesuckers in 

Jackson Lake, along with similar findings in other Chasmistes/Catostomus 

species pairs, also raises questions about the validity of the Chasmistes genus.  

 
INTRODUCTION 

 The IUCN Red List (IUCN 2011), a widely accepted standard for 

quantitatively assessing species’ global risks of extinction, classifies almost 20% 

of extant vertebrate species as Threatened (includes: Critically Endangered, 

Endangered, and Vulnerable). Recent evidence indicates that aquatic species, 

especially those inhabiting freshwater, are under greater risk of extinction than 

terrestrial species (Jenkins 2003). Over 12,000 fish species (approximately one 

quarter of global vertebrate diversity; Dudgeon et al. 2006) occupy freshwater 

habitats, although these habitats represent only 0.009% of the Earth’s water 

(Nelson 2006; Helfman 2007; Lévêque et al. 2008). Freshwater fishes (and other 

fauna) dwell in ecosystems that are among the Earth's most threatened 

environments, and direct and indirect competition with humans for freshwater has 

contributed to their rank among the planet’s most endangered animals (Leidy and 

Moyle 1998; Duncan and Lockwood 2001; Dudgeon et al. 2006). The major 
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threats to freshwater biodiversity, all of which interact and have anthropogenic 

components, include fragmentation, flow alterations, invasion by exotic species, 

over-exploitation, and pollution (Hilborn et al. 2003; Dudgeon et al. 2006; 

Helfman 2007). Superimposed upon these threats are global-scale 

environmental changes including nitrogen deposition, warming, and temporal and 

spatial shifts in precipitation and runoff patterns (Poff et al. 2002; Galloway et al. 

2004). 

 The Catostomidae (catostomids; sucker family) rank among the most 

threatened families in North America: 46 catostomid taxa are currently classified 

as imperiled, representing 6.0% of the total number of imperiled freshwater and 

diadromous fish taxa in North America, and of the 73 described species of North 

American catostomids, 36 (49%) are designated as imperiled (Jelks et al. 2008). 

Catostomids have been historically undervalued, both economically and 

ecologically, and have been mistakenly assumed to be “weedy” species which 

are common and tolerant of degraded habitats (Cooke et al. 2005). As a result, 

catostomids have been understudied relative to more valued families such as 

salmonids, but increasing concern about the conservation status of many 

catostomids has led to more interest in their biology and evolutionary history.  

 Among the most imperiled Catostomidae are the lakesuckers, genus 

Chasmistes (Ch.), inhabiting several large western North American lakes and low 

velocity rivers. Lakesuckers are mid-water zooplanktivores having terminal, 

oblique mouths, thin lips with reduced papillation, wide gaps between the lower 
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lip lobes, and gill rakers with fimbriate distal ends (Miller and Smith 1981; Sigler 

and Sigler 1987; Scoppettone and Vinyard 1991). Four recent species of 

lakesuckers from four different hydrologic basins are recognized: June sucker 

(Ch. liorus mictus; Bonneville Basin), cui-ui sucker (Ch. cujus; Truckee River 

drainage), shortnose sucker (Ch. brevirostris; Klamath River watershed), and the 

purportedly extinct Snake River sucker (SRS; Ch. muriei; upper Snake River 

basin) (Miller and Smith 1981). Some also consider the Lost River sucker 

(Deltistes luxatus; Klamath River drainage) to be a lakesucker, although it has gill 

rakers with filamentous or cone shaped rather than fimbriate distal ends. All 

extant Ch. spp. (and D. luxatus) are federally listed as endangered (U.S. Fish 

and Wildlife Service 1967, 1986, 1988). Lakesucker declines have been 

attributed to historical overexploitation (commercial, recreational, and 

subsistence), changes in aquatic habitat (degraded water quality; flow 

alterations; stream channelization; and loss of lake littoral zones, especially at 

tributary confluences), competition with and predation by nonnative fish species, 

and hybridization with Catostomus (C.) spp. (Carter 1969; Fuhriman et al. 1981; 

Scoppettone and Vinyard 1991). Jackson Lake and the upper Snake River basin, 

native range of the SRS, represent some of the least anthropogenically-impacted 

lakesucker habitats. 

 All extant species of Chasmistes are sympatric with at least one species of 

Catostomus (benthivorous suckers) over all or part of their range. Catostomus 

spp. have subterminal to ventral mouths with large papillose lips; a narrow cleft 
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between the lower lip lobes; and gill rakers with non-branching, filamentous distal 

ends (Miller and Smith 1981; Sigler and Sigler 1987). Suckers of intermediate 

morphology exist where sympatry of Ch. spp. and C. spp. occurs, and this has 

been attributed to hybridization, which has been described as common among 

catostomids, confounding taxonomy and conservation issues (Miller and Smith 

1981; Scoppettone and Vinyard 1991; Markle et al. 2005; Tranah and May 2006; 

Cole et al. 2008; Chen and Mayden 2012; Smith et al. 2013). Molecular studies 

of lakesuckers, however, have consistently failed to detect evidence of 

hybridization among ancient lineages, suggesting that lakesuckers are locally 

evolved ecophenotypes of Catostomus rather than a clade (Mock et al. 2006; 

Tranah and May 2006; Cole et al. 2008). Recently, Chen and Mayden (2012) 

synonymized Chasmistes (and Deltistes and Xyrauchen) into Catostomus, and 

Smith et al. (2013) classified Pantosteus into Catostomus and recommended that  

all western North American catostomids be included in the single genus, 

Catostomus. 

 Much of the confusion regarding taxonomy and management of 

lakesuckers (and many other species) arises as attempts are made to overlay 

presumably neutrally-evolving molecular characters onto existing 

morphologically-based classification systems (Hendry et al. 2000). Many 

morphological characters vary continuously and are likely due to the 

contributions of many loci, environmental, and/or developmental influences. 

Convergent evolution (Taylor 1999; Rûber and Adams 2001; Barluenga and 
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Meyer 2010), hybridization (Dowling and DeMarais 1993; Turgeon and 

Bernatchez 2001; Redenbach and Taylor 2002; Rûber et al. 2002; Sullivan et al. 

2004), and epigenetic regulation of plastic morphological characters (Mittelbach 

et al. 1999; Skúlason et al. 1999; Adams et al. 2003; Proulx and Magnan 2004) 

can all result in strongly supported but contradictory patterns of morpholocial 

divergence and genetic group assignment.  

 Incongruence between morphological and molecular data can manifest as 

pronounced molecular divergence occurring within a morphologically similar 

group (e.g., cryptic species: Johnson and Jordan 2000; Colborn et al. 2001; 

Johnson 2002; Johnson et al. 2004; Santos et al. 2006) or as marked 

morphological differentiation occurring within a genetically similar group (e.g. 

McCartney et al. 2003; Tranah and May 2006; Cole et al. 2008). Within the 

Catostomidae, a major subdivision (4.5% mitochondrial sequence divergence) 

exists within Utah suckers despite the lack of pronounced morphological variation 

between southwestern and northeastern clades in the Bonneville Basin and the 

ancient Snake River drainages, respectively (Mock et al. 2006). Sympatric 

populations of shortnose sucker and Klamath largescale sucker in the Klamath 

River drainage (Tranah and May 2006) and June sucker and Utah sucker in the 

Bonneville Basin (Cole et al. 2008) exhibit marked morphological divergence yet 

minimal molecular variation.  

 The SRS is known from a single holotype specimen (UMMZ 81530; Miller 

and Smith 1981) collected from the Snake River below Jackson Lake Dam in 
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1927 by the naturalist Olaus Murie and was believed to have become extinct 

shortly thereafter (Miller and Smith 1981). Snake River sucker were assumed to 

inhabit lakes in Jackson Hole, WY, occurring sympatrically with Utah sucker (NE 

clade). Given its reported status of ‘extinct’, the suckers currently existing in 

Jackson Lake, its tributaries and outflow and nearby lakes are presumed to be 

Utah sucker. Mountain sucker (Catostomus platyrhynchus) and bluehead sucker 

(Catostomus discobolus) are also native to the Snake River basin above 

Shoshone Falls, but they are easily distinguished from Utah sucker 

morphologically and their preferred habitat is smaller, higher gradient streams. 

The Snake River sucker specimen (UMMZ 81530; Miller and Smith 1981) differs 

from other Chasmistes (except those identified as hybrids) in that it has a 

subterminal mouth and papillated lips, Miller and Smith (1981) concluded that the 

specimen possessed introgressed characters from Utah sucker (similar to their 

description of current June sucker, Ch. liorus mictus, possessing introgressed 

Utah sucker characters). 

 Suckers morphologically resembling lakesuckers have been collected 

from the Snake River (2004; BC personal observation) and Jackson Lake (2004 

and 2005; BC, DC personal observations) during surveys conducted in 

association with the US Forest Service, WY Game and Fish, and/or the US 

Geological Survey (Figure 4-1). Consistent with observations of suckers in Utah 

Lake and Upper Klamath Lake, those in Jackson Lake and the adjacent Snake 

River (JL) exhibit a continuum between benthic and limnetic morphs (DC 
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personal observation). Mitochondrial DNA analysis (Cardall 2007; NADH 

dehydrogenase subunit 2 gene: ND2) has revealed that suckers spanning the 

benthic to limnetic spectrum sampled in the Snake River just upstream of 

Jackson Lake during the 2004 spawning season were members of the 

northeastern clade of Utah sucker (Mock et al. 2006), eliminating the possibility 

that the Ch. morphs in JL were transplanted June sucker, which exhibit 

southwestern clade ND2 haplotypes.  

 The objectives of this investigation were to test the following hypotheses: 

1) the suckers in Jackson Lake are another example of a lakesucker 

morphological continuum with little or no genetic structuring; 2) the SRS is not an 

extinct morph but represents one end of the extant morphological continuum, and 

3) the distinct morphological ends of the continuum represent a continuum of 

feeding strategies. To achieve this, (i) recently sampled JL suckers were 

morphologically analyzed and compared with the holotype of the presumably 

extinct SRS; (ii) molecular variation and the extent of morphologically-based 

molecular sub-structuring in JL suckers were examined via five microsatellite loci; 

(iii) the 13C and 15N isotopic signatures (δ13C and δ15N) and niche widths of JL 

suckers were determined via stable isotope analysis; and (iv) the variation in the 

morphological and stable isotopic character sets were compared for 

concordance. 
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MATERIALS AND METHODS 

Study Site 

 Jackson Lake (Figure 4-2), located in northwestern Wyoming in Grand 

Teton National Park, formed when meltwater filled the trough gouged by the 

Snake River Lobe of the Yellowstone–Absaroka glacier as it  retreated about 

9,000 years ago at the end of the Pinedale glaciation (Pierce and Good 1992). 

The boundary between the Snake River Basin’s southeastern edge and the 

Bonneville Basin is seismically active (Smith and Sbar 1974; Smith 1978), and 

multiple times during the Pleistocene (and likely earlier), the Bear River’s course 

has been shifted between the two drainages by volcanism associated with 

tectonic activity (Currey 1990; Oviatt et al. 1992; Bouchard et al. 1998). The most 

recent connection between the Snake River drainage and the Bonneville Basin 

occurred about 14,500 YBP when the drainage divide at Redrock Pass was 

topped and failed, and Lake Bonneville flooded catastrophically into the Snake 

River drainage (Currey 1990; Bright and Ore 1987; Jarrett and Malde 1987).  

 Jackson Lake is a natural moraine-dammed lake which was enlarged first 

with the construction of Jackson Lake Dam in 1911 and again in 1916 (Table 4-

1). Jackson Lake is classified as oligotrophic based on chlorophyll a 

concentrations and mesotrophic based on algal assemblages with blooms of 

nitrogen fixing cyanobacteria (and small coccoid cyanobacteria) occurring in 

summer after lake stratification (Kilham et al. 1996).  The Snake River is Jackson 

Lake’s major tributary. A unique assemblage of native and non-native fishes 
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exists in Jackson Lake, with native species including Utah sucker (northeastern 

clade), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri), redside shiner 

(Richardsonius balteatus), Utah chub (Gila atraria), speckled dace (Rhynichthys 

osculus), mottled sculpin (Cottus bairdii), Paiute sculpin (Cottus beldingii),  and 

mountain whitefish (Prosopium williamsoni). Nonnative species including lake 

trout (Salvelinus namaycush) and brown trout (Salmo trutta).  

 
Sample Collection and Sucker Field Identification 

 Samples for morphological, genetic, and stable isotopic analyses were 

collected from suckers captured during the spawning season in the Snake River 

by raft electrofishing in 2004 (Table 4-2; Figure 4-2 – downstream from location A 

to the Jackson Lake confluence). Suckers were captured by overnight gill and 

trammel netting in Jackson Lake in 2004 and 2005 (Table 4-2; Figure 4-2 – 

locations B – J).  

 Captured suckers were identified in the field as limnetic, benthic, or 

intermediate morphs based on visual classification of external characters. These 

categories follow those used to assess Utah Lake suckers (Cole et al. 2008). 

‘Limnetic morphs’ were  those with increased lip size and papillation, narrower 

lower lip lobe gap, and reduced jaw angle (Miller and Smith 1981). ‘Benthic 

morphs’ were those showing reduced lip size and papillation, wider lower lip lobe 

gaps, and steeper jaw angles than described by Sigler and Sigler (1987). 

‘Intermediate morphs’ were those not identified as limnetic or benthic morphs, but 

which showed intermediate characters. 
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Morphological Analysis 

 Digital photographic images from three perspectives (full body profile, 

head profile, and ventral head) of 45 (15 of each morph) Jackson Lake suckers in 

a Plexi-glas live well (l × w × h: 60 × 15 × 45 cm) were obtained using a Nikon 

990 digital camera following Cole et al. (2008). Values for twelve morphological 

variables were determined; nine were ratios of measured distances to standard 

length, one was a direct measurement, and two were subjective classification 

variables (Table 4-3; Figure 4-3). Lip morphology of individual suckers was 

classified subjectively on a scale from one to four: (1) planktivore – lips with no or 

few papillae and small lower lip lobes (Figure 4-1A); (2)  leans planktivore – 

slightly larger and more papillose lips; (3) leans benthivore – large lips with 

moderate papillation with papillae not extending the length of the lower lobe; and 

(4) benthivore – large, fleshy,  extensively papillated lips with papillae extending 

the length of the lower lobe (Figure 4-1B). Three subjective head profile 

classifications were used: (1) concave (Figure 4-1A); (0) straight; and (-1) convex 

(Figure 4-1B). Images were digitized via the program tpsDIG (Rohlf 2001), 

morphological landmarks were identified, and the distances (in mm, determined 

relative to 12.7 mm scale markers on the live well) between them calculated. To 

facilitate comparison to the SRS holotype specimen (Miller and Smith 1981), all 

measured lengths were divided by standard length. Jaw (maxillary) angle was 

measured from Figure 9a in Miller and Smith (1981). The gap width between 

lower lip lobes for the SRS holotype specimen was interpolated from values 
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provided in Table 1 and measurements from Figure 9a in Miller and Smith 

(1981).  

 Principal component analysis (PCA) based on the correlation matrix 

among variables was used to ordinate morphological variation in 45 Jackson 

Lake suckers and the SRS holotype. Morphological data for the SRS used in the 

PCA (Table 4-3) included values for ratio variables from Miller and Smith (1981); 

values for the two variables, jaw angle and lower lip gap ratio, derived from Miller 

and Smith (1981) for this study; and values, lip and head profile classifications, 

subjectively assigned using images from Miller and Smith (1981). A second 

morphological PCA was  onducted using values for the SRS that adjusted for 

shrinkage due to preservation (Shields and Carlson 1996; Buchheister and 

Wilson 2005). Given the comparison made in this study between measurements 

obtained via calipers on the holotype specimen after preservation in formalin and 

then ethanol for 50 years and measurements calculated from digital images, 

accounting for shrinkage seemed reasonable. Because of the skull’s bony 

composition, the shrinkage was presumed to have occurred along the spinal axis 

because of fluid loss from tissues between vertebrae. The correction for 

shrinkage (estimated at 4%; Shields and Carlson 1996; Buchheister and Wilson 

2005) increased standard length of the holotype specimen from 371 mm to 386 

mm. Predorsal, prepelvic, and preanal lengths were adjusted assuming 

shrinkage was based on their proportion of the spinal length, thus their values 

increased by 1.0214, 1.0230, and 1.0315 times, respectively. No corrections 
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were made for other variables on the SRS holotype specimen prior to analysis 

although some shrinkage undoubtedly occurred. Finally, analysis of variance 

(ANOVA) was used to test for differences among morphs (excluding the SRS 

specimen from the analysis) in the 10 measured morphological variables. 

 Gill rakers (1st arch) were removed from morphologically-identified limnetic 

(n = 2) and benthic (n = 2) gill netting mortalities for examination. Images of these 

gill rakers were captured using a Nikon 990 digital camera.   

 
Genetic Analysis 

 Fin (left pelvic) clips were collected from 58 adult suckers captured in the 

Snake River (via electrofishing in June 2004) and Jackson Lake (via gill netting in 

June  and July 2004) and preserved in 90% ethanol. Among these suckers, 55 

were subjectively identified to morph (20 Ch. morphs; 20 Ca. morphs; and 15 

intermediate morphs). Genetic data from three additional suckers that were not 

photographed (nor identified in the field to morph) were included only in analyses 

that required no a priori identification to morph.  

 DNA was extracted using a salt/chloroform protocol (Mullenbach et al. 

1989). DNA quantity and quality was assessed on 0.7% agarose gels stained 

with ethidium bromide. Five microsatellite loci (US4, US6, Dlu45, Dlu409, and 

Dlu4283 ) were amplified in these individuals following protocols described by 

Cardall et al. (2007). Microsatellite analyses were used to characterize nuclear 

divergence and diversity among the Jackson Lake / Snake River suckers. 
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 The program Tools for Population Genetic Analysis (TFPGA; Miller 1997) 

was used to estimate unbiased heterozygosity based on microsatellite 

genotypes. Allelic richness was calculated for microsatellite data using the 

program FSTAT 2.9.3.2 (Goudet 2001). The program Arlequin 3.1 (Excoffier et 

al. 2005) was used to evaluate deviations from Hardy-Weinberg (HW) equilibrium 

using an analogue of Fisher’s exact test (Guo and Thompson 1992), to assess 

linkage disequilibrium among microsatellite loci, and to conduct a genotype 

assignment test. Results of the HW and linkage disequilibrium tests were 

interpreted using Bonferroni-corrected alpha values. The assignment test used a 

log-likelihood approach to assess the probability of affiliation of individuals with 

each of the three morph categories, based on observed allele frequencies within 

each category (Paetkau et al. 2004; Waser and Strobeck 1998). Instances of HW 

disequilibrium were evaluated for heterozygote deficiencies using the program 

GenePop (Raymond and Rousset 1995). The probability of null alleles was 

assessed using Micro-Checker (van Oosterhout et al. 2004). The program 

GenAlEx (Peakall and Smouse 2006) was used to calculate the numbers and 

frequencies of private alleles by morph, to conduct a Mantel test (Mantel 1967) 

for correlation between genetic distance matrices and morph categories, and to 

perform principle coordinates analysis (PCoA) using standardized data. The 

program TFPGA was used to calculate θST (an estimator of FST (Weir and 

Cockerham 1984) and to calculate FIS among morphs.  Ninety-five percent 

confidence intervals for θST and FIS were estimated by bootstrapping 1000 times 
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over loci. Jost’s D (Jost 2008) was also calculated using the program SMOGD 

(Crawford 2010). The Bayesian clustering program STRUCTURE 2.3.1 (Pritchard 

et al. 2000) was used to search the microsatellite data for population structure; 

microsatellite profiles of 58 individuals were analyzed, including profiles of three 

individuals not identified to morph. The model was run with correlated allele 

frequencies (Falush et al. 2003) and with admixture (Pritchard et al. 2000), and 

five runs of the model were made at each presumed value (1 – 4) of K, the 

number of subpopulations. For each Markov chain Monte Carlo run, estimates of 

the probability of K were taken after 1,000,000 iterations that were preceded by a 

burn-in of 30,000 iterations. The program, STRUCTURE HARVESTER (Earl and 

vonHoldt 2012) was used to further examine the output from STRUCTURE in 

interpreting the probability estimates of K using the method of Evanno et al. 

(2005).    

 
Stable Isotopes Analysis 

 Left pelvic fin clip samples were collected from 63 adult suckers captured 

by gill and trammel netting in Jackson Lake in July 2004 and July and August 

2005. These suckers spanned the morphological continuum present in Jackson 

Lake (16 Ch. morphs, 24 C. morphs, and 23 intermediate morphs) for stable 

isotope analysis (δ13C and δ15N). Twenty-nine of these individuals were included 

in the microsatellite analysis. 

 Isotope samples were stored in 90% ethanol prior to processing and 

analysis, oven-dried at 60 °C for ~24 h to constant mass, and homogenized with 
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a mortar and pestle. Samples were analyzed at the University of California – 

Davis Stable Isotope Lab via a PDZ Europa 20–20 isotope ratio mass 

spectrometer for dual carbon and nitrogen using Pee Dee belemnite limestone 

and atmospheric nitrogen as the carbon and nitrogen standards, respectively. 

Isotopic signatures were compared among sucker morphs via ANOVA. Niche 

width (NW) was estimated for each sucker morph by calculating the convex hull 

area encompassed by the smallest polygon containing all individuals of a given 

morph within the two dimensional δ13C – δ15N bi-plot space (isotopic niche 

space), and niche overlap among morphs was estimated as the overlapping area 

of polygons (Layman et al. 2007). Area estimates were generated using the 

program ArcGIS 10 (ESRI 2011). Total ranges of δ13C [(CR = max(δ13C) – 

min(δ13C)] and δ15N [(NR = max(δ15N) – min(δ15N)] were calculated (Layman et 

al. 2007). Regression analysis was used to examine the linear relationship 

between the first Principle Component (PC1) generated from the morphological 

PCA and δ13C. Unless stated otherwise, all statistical analyses were conducted 

using the program R 3.0.1 (R Development Core Team 2013).     

 
RESULTS 

Morphological Analysis  

 The first three PCs explained 75% of the variation in the 12 morphological 

variables. PC1, which explained 35% of the variation, was heavily loaded by 

mouth, head, and eye related variables (Table 4-4) and differentiated the morphs 
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(Figure 4-4). The signs (+/–) of the loadings of these variables on PC1 relative to 

one another were consistent with limnetic morphs having wider lower lip lobe 

gaps, steeper jaw angles, smaller and less papillose lips, less concave head 

profiles, and proportionally larger eyes and heads than Catostomus and 

intermediate morphs (Table 4-4). Neither PC2 nor PC3 differentiated the morphs. 

About 30% of the variation was explained by PC2, and loadings were based on 

the magnitudes of length ratios (Table 4-4). The third PC explained about 10% of 

the variation and was heavily loaded by an assortment of variables, especially 

peduncle depth to standard length ratio. Using the unadjusted morphological 

data in PCA, the SRS specimen is a limnetic outlier in the ordination of PC1 and 

PC2 (Figure 4-4A). Using the adjusted values resulted in the SRS holotype 

clustering more tightly with limnetic morphs in PCA ordinations (Figure 4-4C). 

Ordinations (not shown) from PCA of morphological variables excluding data for 

the SRS holotype specimen exhibited very similar patterns of differentiation 

among morphs. Because gill netting is a lethal sampling technique, we were able 

to dissect and examine gill rakers from several suckers at the limnetic and 

benthic extremes. Suckers morphologically identified as limnetic and presumed 

to be planktivorous (n = 3) had gill rakers with fimbriate or dendritic distal ends 

while those identified as benthic and presumed to be benthivorous (n = 3) were 

more filamentous (Figure 4-1). The distal ends of gill rakers of intermediates (n = 

3) were intermediate between dendritic and filamentous (not shown).   
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 ANOVA results showed statistically significant differences among morphs 

(excluding the SRS holotype specimen), in 4 of the 10 objectively measured 

morphological variables: jaw angle, preanal ratio, eye diameter ratio, and lower 

lip gap ratio (Table 4-5). A 3D plot employing these four variables clearly 

differentiates the morphs, and the SRS holotype specimen groups strongly with 

the limnetic morph (Figure 4-5).  

  
Genetic Analysis 

 Although allelic richness varied among morphs and loci, the benthic morph 

displayed the greatest allelic richness (Table 4-6). The number of private alleles, 

adjusted for group size, was 10 for limnetic morphs, 11 for intermediates, and 21 

for benthic morphs, although all private alleles had frequencies less than 0.140. 

Levels of unbiased heterozygosity were similar among morphs. When all morphs 

were analyzed as a single group, two of the five microsatellite loci (Dlu45 and 

Dlu4283) showed evidence of HW disequilibrium (Table 4-6). Within limnetic 

morphs, Dlu 4283 displayed HW disequilibrium; within the intermediates, US4 

and Dlu4283 showed evidence of HW disequilibrium; and among the benthic 

morphs, Dlu45 appeared to be in HW disequilibrium (Table 4-6). All instances of 

HW disequilibrium were due to heterozygote deficiencies. Among all Jackson 

Lake suckers, null alleles are likely present at low frequencies in four of the five 

microsatellite loci (US4, Dlu45, Dlu409, and Dlu4283), including the three the 

exhibited HW disequilibrium (Table 4-6). No locus pairs exhibited linkage 

disequilibrium when the Jackson Lake suckers were analyzed as a single group.  
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 Population metrics calculated from the microsatellite profiles failed to 

reveal sub-structuring in the Jackson Lake sucker population; subdivision was 

substantially less than that present in the minimally structured Utah Lake sucker 

population (Cole et al. 2008; Table 4-7). Jost’s D (0.054) and θST (0.0059) 

suggested high levels of gene flow among morphs in Jackson Lake (Table 4-7). 

The inbreeding coefficient, FIS, for Jackson Lake suckers was low (0.134) and 

comparable to that for the Utah Lake sucker population (0.110; Table 4-7). 

Marginally significant correlation (P = 0.109) was detected between matrices of 

morph categories and microsatellite distances between Jackson Lake suckers 

(Table 4-7). No evidence of genetic sub-structuring by morphological 

classification or by location of capture was revealed by PCoA ordinations (Figure 

4-6). The first three coordinates generated via PCoA of the microsatellite data 

explained 58% of the total variance with PCo1, PCo2, and PCo3 explaining 21%, 

20%, and 17%, respectively, however, none of these Principle Coordinates 

differentiated the morphs. Bayesian model-based genetic clustering analysis 

determined that K=1 was the most probable number of sucker populations in 

Jackson Lake (Table 4-8). When the method of Evanno et al. (2005) was used 

(STRUCTURE HARVESTER), an optimum of K=2 was detected, however, all 

individuals had essentially equal probabilities of being assigned to either of the 

two populations, and individual assignments varied among runs. 

 Assignment testing using allele frequencies from a priori morph groups 

showed a low mis-assignment rate, 0.0363 overall, due to misclassification of 
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one intermediate morph and one benthic morph as limnetic morphs. These 

results, illustrated in a log-likelihood plot, indicate that despite the lack of 

pronounced genetic subdivision, accurate assignment may be possible with prior 

knowledge of subpopulation allele frequencies (Figure 4-7).  

 
Stable Isotopes Analysis 

 Single-factor (morph) ANOVA revealed that benthic morphs were 

significantly enriched in 13C relative to limnetic morphs with intermediates falling 

between, as would be expected if diet followed morphology (Figure 4-8). Linear 

regression exposed a statistically significant relationship between PC1, which 

differentiated the morphs, and δ13C (r2 = 0.257; P = 0.00826). Mean δ15N did not 

differ significantly among morphs (Figure 4-8).     

 Niche width and range of δ15N for the limnetic morph were much narrower 

than those for the benthic morph and intermediate morph, whereas the ranges of 

δ13C among morphs were similar (Figure 4-9). Taken together, these results 

suggest that the diet of the limnetic morphs encompassed prey from a narrower 

range of trophic levels than the diets of benthivores or intermediates, but none of 

the three morphs exclusively exploited a single food sub-web in Jackson Lake 

(Figure 4-9). The 27% niche overlap between limnetic and intermediate morphs 

comprised 83% of the niche width of the limnetic morph and only 29% of the 

niche width of the intermediate morph (Table 4-10; Figure 4-9). The niche widths 

of limnetic and benthic morphs displayed 22% overlap, which represented 56% 

and 27% of their respective niche widths, whereas the niche widths of benthic 
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and intermediate morphs displayed 51% overlap, which represented 78% and 

59% of their respective niche widths (Table 4-10; Figure 4-9). 

 
DISCUSSION 

Historical Context 

 Deep, cold, oligotrophic Jackson Lake is an interesting contrast to other 

lakes with lakesucker populations. It formed with the last glacial advance and 

retreat about 9,000 YPB and is younger than Utah, Upper Klamath, and Pyramid 

Lakes, which are remnants of ancient pluvial lakes. During the Pleistocene, these 

older pluvial lakes filled and emptied repeatedly with alternating wetter and dryer 

climate patterns. As the climate warmed and dried after the last glacial retreat, 

these large lakes receded, leaving smaller, somewhat saline lakes scattered 

among sub-basins. Utah Lake (Fuhriman et al. 1981; Crowl, unpublished data) 

and Upper Klamath Lake (Wood et al. 2006) are warm, shallow (mean depths ~ 

2.8 m), and hypereutrophic, with chlorophyll a concentrations more than two 

orders of magnitude greater than those in Jackson Lake. Both experience annual 

summer - autumn cyanobacterial blooms (Aphanizomenon flos-aquae; 

Microcystis aeruginosa) and have histories of extensive anthropogenic impacts. 

Pyramid Lake (105 m maximum depth) is the deepest terminal saline lake in the 

western hemisphere, and although nitrogen-limited and relatively unproductive 

(Lebo et al. 1992; Reuter et al. 1993), it is more eutrophic than Jackson Lake and 

also has a history of anthropogenic degradation and experiences summer - 
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autumn cyanobacterial blooms (Nodularia spumigena).  Jackson Lake presents 

an opportunity to study  lakesucker evolution and ecology in a more recently 

formed lake with much less anthropogenic impact. Ancestors of suckers in Utah, 

Upper Klamath, and Pyramid Lakes inhabited very large, ancient lakes that 

receded, eventually confining sucker populations to small remnant lakes, 

whereas the ancestors of the suckers in Jackson Lake invaded a newly formed 

lake within the last 9,000 years. Heterozygote exact tests for detecting 

bottlenecks, coupled with negative values for Tajima’s D detected in an earlier 

study at sites near Jackson Lake in the upper Snake River (Cardall 2007), are 

consistent with an expanding sucker population in the area following late 

Pleistocene glaciation.  

 A number of characteristics are common to all described extant species of 

Chasmistes.  First, each lakesucker population is sympatric with at least one 

species of Catostomus over all or part of its range (Miller and Smith 1981; 

Scoppettone and Vinyard 1991) and, where sympatry occurs, a morphological 

continuum exists from benthivore to planktivore, with a large proportion of 

individuals exhibiting intermediate morphology (Brussard et al. 1990; Buth et al. 

1992; Markle et al. 2005; Tranah and May 2006; Cole et al. 2008). Historical 

descriptions also describe suckers of intermediate morphology (Jordan 1891). 

Even the paleontological record includes specimens somewhat intermediate 

between limnetic and benthic forms, with some sites yielding Miocene fossils 

described as “primitive” Chasmistes (Miller and Smith 1981; Smith 1981). 
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Chasmistes fossils occur in Miocene to Pleistocene deposits in six western states 

and are nearly always accompanied by Catostomus fossils. Pliocene fossils 

imply the presence of multiple species at the Glenns Ferry Formation, ID: Ch. 

spatulifer, the most specialized zooplanktivore in the genus, fossil or recent, and 

an undescribed, less specialized form that varied in a manner not indicative of 

hybridization with Catostomus (Miller and Smith 1981). Pliocene fossils similar to 

the less specialized  Ch. spp. of the Chalk Hills and Glenns Ferry Formations 

have also been recovered from Secret Valley, CA and Honey Lake, CA (Miller 

and Smith 1981). Second, in two of the three described extant lakesucker 

populations, suckers of intermediate morphology are indistinguishable from the 

Ch. morph using molecular markers (Brussard et al. 1990; Buth et al. 1992; 

Tranah and May 2006; Cole et al. 2008). These include Upper Klamath Lake, 

where Ch. brevirostris and C. snyderii are sympatric, and  Utah Lake, where Ch. 

liorus and C. ardens are sympatric (Tranah and May 2006; Cole et al. 2008). By 

contrast, Ch. cujus in Pyramid shows no evidence of gene flow with its sympatric 

benthivore, C. tahoensis, and fish that appeared morphologically to be hybrids 

were genetically differentiable from C. tahoensis, but not from Ch. cujus 

(Brussard et al. 1990; Buth et al. 1992). Third, phylogenetic analyses using 

molecular data have failed to recovered either Chasmistes or Catostomus as 

monophyletic (Mock et al. 2006; Tranah and May 2006; Sun et al. 2007; Cole et 

al. 2008; Chen and Mayden 2012), and lakesuckers are phylogenetically closer 

to the sympatric C. spp. than to allopatric congeners (Li 1999; Mock et al. 2006; 
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Tranah and May 2006). Further, no molecular studies have revealed evidence of 

hybridization between ancient lineages (Mock et al. 2006; Tranah and May 2006; 

Cole et al. 2008), although demographic events such as bottlenecks or founder 

effects may have obscured such signals.  

 Finally, based on morphology, adult lakesuckers are presumed to be 

primarily mid-water zooplanktivores whereas adults of their sympatric C. spp. are 

presumed to prey predominantly on benthic/littoral macroinvertebrates. Billman 

(2005) confirmed via gut analysis that zooplankton comprised the vast majority of 

the diet of adult Ch. liorus in a refuge population in Red Butte Reservoir, UT. The 

stable isotope analysis of adult suckers in Utah Lake described in Chapter 3 

(Cole) also confirmed that zooplankton were the major component of the diet of 

adult Ch. liorus, and that benthic/littoral macroinvertebrates were the main prey 

source for C. ardens.  

 The sucker population in Jackson Lake shares all of the common features 

described above for lakesucker / benthic sucker populations. Benthic and 

limnetic forms are apparent, but intermediate forms are common; these forms do 

not show evidence of molecular differentiation or a history of hybridization, and 

the limnetic form has a distinct isotopic signature associated with a zooplankton 

diet.  These findings suggest that the similarities between the sucker populations 

in Jackson, Utah, Pyramid, and Upper Klamath Lakes are likely the result of 

parallel evolutionary processes. If distinct adaptive optima (benthic vs. limnetic 

habitats) exist in these lake environments, a population may diverge into benthic 



200 
 

 

and limnetic forms under the influence of natural selection, particularly if 

divergence is reinforced by reproductive isolation mechanisms (Schluter 1996, 

2001; Taylor 1999).  Under such a scenario, the degree of genetic divergence 

would be a function of time, the strength of selection, and the degree of 

reticulation.    

 
Morphological Analysis 

 Currently, a continuum of morphologies exists between benthic and 

limnetic  sucker morphs in Jackson Lake. The lone SRS specimen grouped 

strongly with limnetic morphs (body morphometrics and gill raker structure), 

particularly when using data adjusted for preservation shrinkage.  

 
Genetic Analysis 

 Similar to other lakesucker / benthic sucker populations, despite the 

marked morphological variation found in JL suckers, microsatellite analyses 

revealed little or no population sub-structuring based on morphological 

classification. No evidence of hybridization (e.g., private alleles) of ancient 

lineages was detected. Earlier mitochondrial DNA sequence analysis (Cardall 

2007) of samples collected in the Snake River upstream of Jackson Lake from 

individuals spanning the morphological spectrum confirmed that JL suckers are 

members of the northeastern clade of Utah sucker. Two caveats must be 

considered regarding the microsatellite analysis: firstly, this study examined only 

five microsatellite loci; and secondly, there was a strong likelihood of the 
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presence of null alleles at four (US4, Dlu45, Dlu409, and Dlu4283) of the five loci. 

The presence of these null alleles likely resulted in the heterozygote deficiencies 

and HW disequilibrium observed at three of the five loci (US4, Dlu45, and 

Dlu4283), although other potential contributors include population sub-

structuring, inbreeding, linkage to genes under selection, or any combination of 

these factors. The presence of null alleles can lead to overestimation of 

population structure in significantly sub-structured populations (Chapuis and 

Estoup 2007) and to reduction in the proportion of correctly assigned individuals 

in assignment tests (Carlsson 2008). However, the overall effects of null alleles in 

this study were likely minimal, given the lack of sub-structuring detected, the 

excellent performance of the genotype assignment test, and the identification via 

Bayesian-based cluster analysis of a single sucker population in Jackson Lake.  

  
Stable Isotopes Analysis 

 Benthic / littoral freshwater food webs are 13C enriched relative to 

planktonic (pelagic) food webs, and this uncoupling of carbon flows between 

benthic / littoral and planktonic food webs may be a global feature of lakes 

(France 1995). Morphological and stable isotopic (e.g., diet) character sets were 

concordant in Jackson Lake suckers. Benthic morphs, with their ventral mouths 

and large, papillose lips, were, significantly enriched in 13C (e.g., benthivorous) 

relative to oblique mouthed, small-lipped limnetic (zooplanktivorous) morphs. 

Suckers of intermediate morphology exhibited intermediate δ13C values, 
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suggesting substantial exploitation of both the benthic / littoral and planktonic 

trophic webs.  

The trophic levels of the sucker morphs were very similar in oligotrophic 

Jackson Lake, with both limnetic and benthic morphs being only slightly enriched 

in 15N (~ 0.2 ‰) relative to intermediates. However, niche width and range of 

δ15N for the limnetic morph were much narrower than for the benthic and 

intermediate morphs, suggesting that in Jackson Lake, the limnetic morh is more 

of a trophic specialist and exploits fewer trophic levels than benthic or 

intermediate morphs. Intermediate morphs exhibited the widest niche width, and 

showed considerable overlap with both the limnetic and benthic forms. In 

oligotrophic Jackson Lake, the niche width of intermediates encompassed 83% 

of the niche width of limnetic morphs and 78% of the niche width of benthic 

morphs. In hypereutrophic Utah Lake, there was less dietary overlap among 

morphs, and the niche width of intermediates encompassed 61% of the niche 

width of June sucker and 63% of the niche width of Utah sucker niche widths 

(Chapter 3). 

 
The Snake River Sucker (Casmistes muriei) 

 The presence of a lakesucker morph in Jackson Lake suggests that SRS, 

as originally described, may persist, although whether it represents a genus, or 

even a species, distinct from C. ardens remains nebulous. There are numerous 

accounts in the literature of the rediscovery of a fish species presumed to be 

extinct (Miller and Pister 1971; Taylor et al. 1988; Etnier and Starnes 1993; 
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Jenkins and Burkhead 1994). In Utah Lake, severe drought in the early 1930s led 

to extremely low water levels, culminating in a devastating winterkill in 1934-35. 

No spawning June sucker (Ch. l. liorus) were observed the following spring, and 

they were believed extinct (Tanner 1936). Re-discovered extant June suckers 

were subsequently classified as a different subspecies (Ch. l. mictus) from the 

pre-drought form due to presumed introgression from Utah sucker (Miller and 

Smith 1981), despite Jordan’s (1891) much earlier description of suckers 

morphologically intermediate between June and Utah suckers. The original 

description of the Ch. muriei holotype also includes reference to introgression 

from Utah sucker (Miller and Smith 1981). 

 
Implications, Recommendations, and Future Research   

 Persistence of the purportedly extinct Chasmistes muriei in Jackson Lake 

and the upper Snake River, along with the finding of another benthic-limnetic 

continuum involving lakesuckers and a Catostomus species, raises important 

questions about lakesucker ecology, evolution, and taxonomy.  More 

immediately, the conservation status and management of this morph should be 

actively addressed, and lethal capture techniques should be curtailed until these 

issues are more clearly understood.  Further, management programs for the 

other lakesuckers (all federally endangered) should consider the possibility that 

these forms may exist as a dynamic continuum with sympatric Catostomus 

species, and that these pairs may share both evolutionary histories and 

evolutionary futures.  In all lakesucker/Catostomus pairs, studies using larger 
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numbers of genetic loci to assess divergence, as well as studies on the genetic 

basis of morphological differences, would be informative.  
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Table 4-1. Physical and limnological characteristics of 
Jackson Lake, WY. 

         

            Jackson Lake characteristics            

      

   Age 
 

~ 9,000 y  

Surface area 
 

103.4 km2 

Watershed area 
 

2134 km2  

Maximum depth 
 

134 m 

Mean depth 
 

37.5 m 

Surface elevation 
 

2,064 m 

Water temperature 
 

< 16°C 

Chlorophyll a  
 

1.42  μg / l * 

Nutrient status 
 

Mesotrophic** 

Islands 
 

> 15 
      

* Mean of 87 observations collected from 1978 to 1998     
from various locations in Jackson Lake (NPS 2001). 
** Based on algal assemblages (Kilham et al. 1996); 
oligotrophic if based on chlorophyll a concentrations. 
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Table 4-2. Locations and dates of collection of samples for morphological, genetic, and stable isotope analyses of 
Jackson Lake suckers. Includes samples collected for mitochondrial DNA (ND2 subunit gene) analysis and  
reported in Cardall 2007.   

      

      
 
Samples collected for analysis   

Location Sampling dates Morphological 
Genetic 
(msat) 

Genetic 
(mito)* 

Stable 
Isotope 

 
     Snake River (Flagg Ranch) 21 - 22 June 2004 17 20 (3)** 10 0 

Jackson Lake 12 - 14 July 2004 21 38 0 30 

Jackson Lake 11 - 14 July 2005 6 0 0 20 

Jackson Lake 21 -22 August 2005 1 0 0 13 

      

 
Totals 45 55 (58)** 10 63 

    
    

* see Cardall 2007 
** Number in parentheses indicates the inclusion of three samples from suckers not identified to morph that were  
analyzed using the programs STRUCTURE 3.0.1, which requires no a priori classification, and Arlequin when  
analyzing (HW equilibrium and linkage disequilibrium) the Jackson Lake suckers as a single population. 

2
1

5
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Table 4-3. Morphological variables 
analyzed included 10 morphometric 
measurements (nine are ratios with 
standard length) and two subjective 
classifications. 

 
Morphological Variables Analyzed 

 Predorsal L / Standard L* 

Prepelvic L / Standard L* 

Preanal L / Standard L* 

Head L / Standard L* 

Head depth (eye) / Standard L* 

Head depth (occiput) / Standard L* 

Eye diameter / Standard L* 

Peduncle depth / Standard L* 

Lower lip gap width / Standard L** 

Jaw (maxillary) angle** 

Lip classification 

Head profile classification 

 
* Miller and Smith (1981) 
** for SRS, determined from  data and 
    images in Miller and Smith (1981) 
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Table 4-4. Proportion and cumulative proportion of variance explained by PCs 
and important variable loadings (> [0.100]) on the first five PCs resulting from 
PCA of morphological profiles of Jackson Lake suckers. (n = 45, 15 of each 
morph)   

                  

 
  Principal component   

  1 2 3 4 5 

 
     Proportion of Variance explained 0.348 0.297 0.109 0.068 0.053 

Cumulative Proportion explained 0.348 0.645 0.753 0.822 0.875 

      Morphological Variable 
  

Loadings 
  

      Predorsal L / Standard L 
 

-0.395 
 

0.257 -0.643 

Prepelvic L / Standard L -0.109 -0.441 -0.101 0.348 0.107 

Preanal L / Standard L -0.212 -0.371 -0.356 0.155 -0.169 

Head L / Standard L 0.237 -0.356 0.356 
  Head Depth (Eye) / Standard L 0.156 -0.409 0.304 -0.337 0.162 

Head Depth (Occiput) / Standard L 
 

-0.436 
 

-0.131 0.513 

Eye Diameter / Standard L 0.381 
  

-0.424 -0.361 

Peduncle Depth / Standard L 
  

-0.745 -0.428 
 Lip Gap Width / Standard L 0.445 

   
-0.164 

Jaw Angle 0.388 
 

-0.257 0.183 0.286 

Lip Classification -0.453 
  

-0.174 
 Head Profile Classification 0.395 

 

-0.127 0.474 
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Table 4-5.  Means (and standard deviations), F values, and probabilities (P) for morphological variables exhibiting 
significant differences among morphs (ANOVA with 2, 42 degrees of freedom and α = 0.05). 

      

    

 

Variable means by morph 

Morphological variable F value P Limnetic Intermediate Benthic 

Preanal L / Standard L 5.30 0.0089 0.761 (0.015) 0.769 (0.015) 0.779 (0.016) 

Eye diameter / Standard L 12.40 5.8 x 10-5 0.0305 (0.0022) 0.0277 (0.0022) 0.0269 (0.0019) 

Lower lip gap width / Standard L 59.09 6.2 x 10-13 0.0104 (0.0018) 0.00666 (0.0017) 0.00451 (0.00066) 

Jaw (maxillary) angle 26.57 3.5 x 10-8 55.73° (3.75°) 46.33° (5.63°) 44.20° (4.25°) 

2
1

8
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Table 4-6. Diversity indices for microsatellite profiles of Utah Lake suckers: sample size (N ); unbiased heterozygosity (H); 
number of alleles (AN); allelic richness (AR); number of private alleles (PA); and estimated null allele frequency (NA).  
Bold – statistically significant at the Bonferroni-adjusted α = 0.01. Bold italics – Null allele(s) likely present.  
 

  Index /     Locus       

Morph Parameter US4 US6 Dlu45 Dlu409 Dlu4283 All loci 

 
       Limnetic N 20 19 19 20 18 19.2 

 
H (P) 0.878 (0.0535)  0.969 (0.0467) 0.865 (0.0189) 0.956 (0.1810) 0.951 (0.0080) 0.9240 

 
AN 10 14 13 15 18 70 

 
AR 12.34 19.39 9.90 16.19 16.42 74.23 

 
PA 0 2 3 2 3 10 

 
NA 0.026 0.023 0.034 0.006 0.097 1** 

        Intermediate N 20 20 20 20 20 20 

 
H (P) 0.867 (0.0095) 0.915 (1.0000) 0.887 (0.2039) 0.941 (0.7661) 0.947 (0.0039) 0.9120 

 
AN 13 18 12 18 15 76 

 
AR 9.17 12.73 11.55 14.07 16.17 63.69 

 
PA 3 3 1 3 1 11 

 
NA 0.126 -0.041 0.068 -0.008 0.096 2** 

        Benthic N 15 15 15 15 15 15 

 
H (P) 0.922 (0.1384) 0.959 (0.2940) 0.890 (0.0002) 0.949 (0.0848) 0.931 (0.0545) 0.9300 

 
AN 14 22 11 18 18 83 

 
AR 13.00 18.00 12.00 18.00 15.00 76.00 

  

2
1

9
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PA 7 7 2 2 3 21 

 
NA 0.032 0.026 0.188 0.070 0.051 2** 

        All suckers N 55 54 54 55 53 54.2 

 
H 0.899 0.945 0.888 0.953 0.951 0.918 

 
AN 21 29 17 24 26 117 

 
AR 12.87 16.90 11.33 16.48 16.75 74.32 

 
PA 10 12 6 7 7 42 

  NA 0.069 0.016 0.109 0.037 0.090 4** 

* N = 58; includes three suckers of unknown morph.  ** Number of loci likely to have null alleles present. 

2
2

0
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Table 4-7. Population structure metrics for Jackson Lake (n = 55) and Utah Lake 
suckers (n = 78): Jost’s D; FST estimator, θST (and 95% CI); inbreeding 
coefficient, FIS (and 95% CI); and Mantel test generated Pearson’s correlation 
coefficient, r (and P), between distance matrices derived from morphological 
identifications and from the microsatellite data.  
 

Population   Location   

parameter Jackson Lake   Utah Lake* 

 
   Jost's D 0.054 

 
0.186 

θST (95% CI) 0.0059 (0.0004 - 0.0122) 
 

0.0199 (0.0123 - 0.0279) 

FIS (95% CI) 0.1338 (0.0773 - 0.1959) 
 

0.1102 (0.0496 - 0.1710) 

r (P) 0.028 (0.109) 
 

0.1127 (0.0001) 

        

* Utah Lake sucker population values from Cole et al. 2008 or calculated via their 
data.   
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Table 4-8. Means and ranges of likelihoods [P(D)] from 
five runs of the program STRUCTURE fitting different  
assumed numbers of subpopulations (K) for microsatellite 
profiles of Jackson Lake suckers (n = 59) without a priori 
classification of individuals to morph. Bold: highest  
posterior probability. 
 

K Mean lnP(D) Range ln P(D) 

 
  1 –1660 –1661 to –1660 

2 –1663 –1668 to –1661 
3 -1756 –1851 to –1665 
4 –2027 –2094 to –1921 
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Table 4-9. Means and 95% confidence intervals (CI) by morph  
obtained during ANOVA (2, 60 degrees of freedom) of δ13C  
(F = 12.65; P = 2.6 x 10-5) and δ15N (F = 0.57; P = 0.57) of  
Jackson Lake suckers.    
 

Morph Mean δ13C (±95% CI)  Mean δ15N (±95% CI) 

 
  Benthic -21.79 (±0.80) 7.78 (±0.32) 

Limnetic -25.46 (±1.07) 7.83 (±0.18) 
Intermediate -23.18 (±1.04) 7.61 (±0.31) 
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Table 4-10. Ranges of δ13C and δ15N, niche widths, percentage of combined niche widths that overlap area  
comprises {and percentage of morph niche width that overlap area comprises}. 
 

              

 
Range Niche Niche overlap (%) {overlap / morph niche width (%)} 

Morph (n) δ 13C (‰)  δ 15N (‰)  width Limnetic Intermediate Benthic 

   
 

   
Limnetic (16)  7.47 1.20  5.01 

 
30 {96} 24 {65} 

Intermediate (23)  8.09 1.55 15.84 30 {30} 
 

52 {60} 

Benthic (24)  8.31 2.69 11.75 24 {28} 52 {80} 
 

              

2
2

4
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Figure 4-1. Digital photographs (full profile, head profile, ventral mouth view, and 
gill rakers) of (A) limnetic morph and (B) benthic morph (Utah sucker – NE clade) 
captured in the Snake River or Jackson Lake. Gill rakers from extreme 
ecomorphotypes were obtained from gill netting mortalities.  

A 

B 



226 
 

 

Figure 4-2. Geographical setting 
of Jackson Lake, Wyoming, USA; 
the purportedly extinct Snake 
River sucker (Chasmistes muriei) 
was endemic here. Letters 
represent locations sampled in 
2004 and / or 2005. 

Jackson 

Lake 

Image from Google 

Earth 
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Eye diameter 

Jaw angle 

Lower lip gap 

Figure 4-3. Jaw 
(maxillary) angle 
and lengths used 
in calculating ratio 
variables by 
dividing by 
standard length 
(yellow). 
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Figure 4-4. Morphological PCA ordinations using scores derived from unadjusted 
values for Chasmistes muriei, (A) and (B), and from adjusted values, (C) and (D), 
plotting PC1 versus PC2, (A) and (C), and PC1 versus PC3, (B) and (D). 
(Limnetic morphs, n = 15 – black circles; intermediate morphs, n = 15 – green 
squares; benthic morphs, n = 15 – red triangles; Ch. muriei, n = 1 – yellow 
diamond).

A 

C D 
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Figure 4-5. Three dimensional plot incorporating the four morphological variables 
(Table 4-5) that ANOVA revealed to exhibit statistically significant differences 
among Jackson Lake sucker morphs with shrinkage-adjusted values for the SRS 
specimen plotted also. (limnetic morphs, n = 15 – black circles; intermediate 
morphs, n = 15 – red squares; benthic morphs, n = 15 – white triangles; and 
Chasmistes muriei, n = 1 – green diamond).                    
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Figure 4-6. Ordinations labeled by morph (A) and by capture site (B) from PCoA 
of Jackson Lake sucker microsatellite profiles plotting scores of individual 
suckers for the first three PCos. Together the PCos explained 58% of the 
variance in the microsatellite profiles. (Limnetic morphs, n = 20 – black circles, 
intermediate morphs, n = 15 – red squares, and benthic morphs, n = 20 – white 
triangles). 
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Figure 4-7.   Genotype assignment test log-likelihood plot demonstrated that with 
prior knowledge of group allele frequencies, accurate assignment of individual 
genotypes is possible (3.6% error rate). (Limnetic morphs, n = 20 – black circles, 
intermediate morphs, n = 15 – red squares, and benthic morphs, n = 20 – white 
triangles).  
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Figure 4-8. Isotopic signatures (means ± 95% confidence intervals) for 13C and 
15N for Jackson Lake suckers plotted by morph within the two dimensional δ13C – 
δ15N bi-plot space. (Limnetic morphs, n = 16 – black circle, intermediate morphs, 
n = 23 – red triangle, and benthic morphs, n = 24 – green square). 
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Figure 4-9. Niche width estimation by morph plotted within the two dimensional 
δ13C – δ15N bi-plot space (isotopic niche space) using the convex hull polygon 
area method. Overlap was estimated as the area of the intersection of polygons 
for two of the three morphs (limnetic  (n = 16), intermediate (n = 23), and benthic 
( n = 24)). 
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CHAPTER 5 

CONCLUSION 

Chapter 2 revealed that no molecular evidence (AFLPs and 

microsatellites) was found for deep genetic divergence between June sucker and 

Utah sucker in Utah Lake or for hybridization among ancient lineages. Slight 

population structuring accompanied substantial morphological variation. 

Bayesian model-based genetic clustering analyses detected two sucker 

populations in Utah Lake, however, these clusters were not strongly concordant 

with morphological groupings or between marker systems. 

 In Chapter 3, acoustic / radio telemetry in Utah Lake revealed little 

difference in movement and distribution of June sucker and Utah sucker or in 

timing of spawning runs. Stable isotopes analysis revealed that Utah sucker were 

enriched in 13C relative to June sucker as presumed respective diets, benthivory 

and zooplanktivory, would predict. Intermediate morphs were intermediate for 

δ13C and δ15N. 

 Chapter 4 showed no molecular evidence for deep genetic divergence 

between lakesucker and benthic morphs in Jackson Lake or for hybridization 

among ancient lineages. The benthic morph was significantly enriched in 13C 

relative to the lakesucker morph, consistent with presumed diets. 

Morphologically, the lone Snake River sucker holotype specimen grouped 

strongly with extant lakesucker morphs, suggesting that the status of the Snake 

River sucker be updated accordingly. 
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 The sucker populations in Utah and Jackson Lakes share similarities with 

other populations of lakesuckers and sympatric benthivores including: a 

morphological continuum existing from benthivore to planktivore with a large 

proportion of individuals exhibiting intermediate morphologies, discordant 

morphological and neutral molecular character sets with minimal molecular 

divergence accompaning extensive morphological variation, a lack of molecular 

evidence for hybridization between ancient lineages, planktivores that are 

phylogenetically closer to sympatric benthivores than to allopatric planktivores; 

and morphological and stable isotopic character (e.g., diet) sets that are 

congruent.  

 Evidence presented here confirms the persistence of suckers in Jackson 

Lake and the upper Snake River that are morphologically extremely similar to the 

lone SRS specimen, and suggest that the status of the SRS be updated 

accordingly. The presence of lakesuckers in Jackson Lake, along with similar 

findings in other Chasmistes/Catostomus species pairs, also raises questions 

about the validity of the Chasmistes genus (Chen and Mayden 2012; Smith et al. 

2013).  

 Recent lakesuckers are listed as endangered or extinct, presenting an 

interesting conservation dilemma. Should one conserve (breed and stock) a 

subset of the morphotypic variation in lakesucker complexes, focusing on the 

endangered lakesucker morph, or should one conserve both lakesucker and 

benthic morphs in these complexes, possibly maximizing evolutionary potential? 
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