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Consider the class of all densities of the forml

ANISOTROPIC, TIME-DEPENDENT SOLUTIONS

IN MAXIMALLY GAUSS-BONNET EXTENDED GRAVITY L~ RPR - Rlet by ey n (1.1)
‘ " Takayuki Kitaura and James T. Wheler in a d-dimensional spacetime. If k = d/2, then there are no factors of the vielbein and these
Utk State University Department of Physics densities become the total divergences whose integrals are proportional 1o the Euler characteristic.
k _ é -zj Lagan, 2 When 0 Sk < d/2 they are knrown as dimensionally extended Enler characteristic densities [1] or
2_ Lipschitz-Killing curvatures (2], In this case, these densities are no longer total derivatives and
T% I/ﬁﬁ@ i ’ may therefore serve as lagrangian densities for gravitatonal field theories. The most general such

- gravitational theory is composed of an arbitrary linear combination of all of the £
an arbitrary number of dimensions, we find the full exact anisotropic, fime-dependent, eory trary L

diagonal-metri¢ solutions to maximally Gauss-Bonnet ¢xtended gravity theory. This class of 3
theories, for which the lagrangian is an arbitrary linear corobination of dimensionally extended L= Eo oLy
Euler forms, is the most general gravitational theory in which the field equations contain no more

(1.2

than second derivadves of the ic. . where knyy is the integer part of (d-1)/2 and the €; are arbitrary constants. Several properties
We show that the spacetime exponentially approaches an asymptotic state of constant,

anisotropic curvature and prove three theorems concerning two generic types of singularities. The
first theorem gives conditions for the existence of Kasner-like curvature singnlarities. For these

strongly suggest the use of £ as the gravimtional lagrangian:

the metric diverges as P where Zp; = Zknn-1 and ke is the highest power of the curvamre in the 1. Lgivesthe most general theory of gravity with field equations which contain no more
lagrangian. Other critical point singularities can arise from the polynomial nanure of the theory. than second derivatives of the metric [3].

The remaining theorems demonstrate that the generic solution is extendible at ail of these other 7

critical points and that the generic critical points occur at moments of extremal volume deasiry of 2. The first order deasity, £y, is the usual Einstein lagrangian, while the lowest order

spacetime. We give an explicit coordinate transformation which produces 2 smooth extension
through the critical point, The spacetime may therefore altemately expand and contract for many
cycles before expanding forever or contracting to 2 singularity. Many particular cases are treated in
detail including several power series solutions, the generalized Kasner solution to general relativity * involving £ therefore make close contact with standard theories of gravity.
with or without cosmological constant, the perturbadve solution for quadratic string gravity, and
5-d extended gravity. .

density, Lo, gives rise 10 B cosmological constant. L arises as the order @’

correction in the low-energy expansion of string models {4, 5, 6]. Theories

1 R is the curvature 2-form, €f s the vielbein 1-form and £g _ 1 is the Levi-Civit tensor.
Skconlainskfacmsofﬁ"andenoughﬁacmofﬂievic]beinmsamte:h_'eremainingindimon
the Levi-Civita tensor. The wedge product is assumed between forms.
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3. Lis the most general parity preserving lagrangian constructible from the curvamre

two-form, the vielbein one-form, and invariant tensors in the tangent space [1].

4.  All of the densities L are free of ghosts [1,4], ic., therc are no negatve norm
eigenstates in the quantized theory. All are divergences to lowest order in

perturbation theory.

Points 1 and 2 are particularly important. This is the most general geometric theory of
gravity with 2nd-order field equations. Exact solutons for this class of theories contain all of the
following as special cases:

Einstein gravity with or without cosmological constant,

2. Einstein gravity, with or without cosmological constant, generalized to arbimrary
dimensions.

3.  Second order siring gravity, with or without cosmological constant, in arbitrary
dimensions.

These special ;:ases will be discussed in section IV.

Several solutions to this clags of theories have been studied previously. Suatic, spherically
symmetric soluions have been found by Wheeler {7] and, with kpay = 2, by Boulware and Deser
[8.9] and Wheeler [10]. Boulware and Deser also studied the stability of the two classes of

solution which arise due to the quadratic nature of the kpe = 2 case.

Cosmological solutions were first studied by Wheeler [10] and Miiller-Hoissen [11]. The

recent review of cosmological studies in extended gravity by Deruelle and Fariiia-Busto [12]

provides extensive references to further work. The Kasner case of a time-dependent diagonal

metric forms a gap in this research. Deruelle [13) has studied the Kasner-like singularities
occuring in the k = 2 case and the equations of motion for the same problem up to k = 4 were
generated on a computer by Caprasse, Demaret and Popadopoulos [4]. However, no exact

solution has been calculated.

In this work, we find the complete exact solution o the extended, generalized Kasner
problem: time-dependent anisotropic solutions are found for the maximally Gauss-Bonnet
extended gravity theory, generalized to an arbitrary finite number of dimensions, described by
egs.(1.1) and (1.2).

In section II below £ (eq.(1.2)) is varied and the resulting equations of motion are evalvated
for the case of a diagonal, ime-dependent vacuum. The full anisotropic time-dependent solution is
derived in section IFL. In section IV, we examine the partcular cases mentioned above: Einstein
gravity and quadratic string gravity, with or without cosmological constant. Next, we turn to an
analytic study of generic properties of these models, beginning in section V with a study of those
solutions which are asymprotically of constant curvature. The singularity soucture of this class of
gravity theories is considered in sections VI and VIL We first Jook in the region of the Kasner-like
singularitics (s¢¢. VI) 1o second order in pernirbation theory and show that there are important
differences from the wsual Kasner model: the initial power law expansion may have a power larger
than those allowed by the standard Kasner exponents, and during the subsequent motien this rate
may increase still further. Additional differences from standard models are treated in section VII,
where we show that the polynomial nature of the field equations leads to critical poinis. At these
critical points it is possible to find additional singularities, but we prove two theoremns showing that
the typical behavior is oscillation: the universe may experience a modest finite number of aperiodic
oscillations before uldmately expanding or contracting maximally. The final section includes a

summary of these results.

oL Ani ic_Equati { Moti

We vary the vielbein, €2, and the connection, wgb, independently. Since w,? occurs only in

the curvature 2-form and the variation of the curvature,



geb= doeb + oD, 2.1
is given by
85, FEY = D(Bawab) (2.2)
the variation of L, gives
Soly = k DBO™R® - B et —eh £y etp h 2.3)

Integration by parts together with the Bianchi identity D& =0 and the vanishing of the torsion,
De2=det + ebuy2 =T2 =0, (2.4)

then leaves the connection variation identically zero (sec [7] for further detail). The vielbein

variation, 8e.fy gives
Bely = (d-2K) Be)R® ~ Rel - etean cef .. g @2.5)
The full field equarions are
0= X & (d-2k) e K8 ... Kolek - ePepy cfg (2.6)

Next, equation (2.6) is evaluated for an anisotropic, time-dependent spacetime. In
particular, we assume the generalized Kasner form for the metric tensor. Latin indices (ab...}
refer to the orthonormal basis, while Greek indices (uv,e....) refer to the mewic coordinates, with

the exception that dx°= dt refers to the manifold.

The vielbein and resulting metric are assumed 1o be of the form

Agdt -
A]dxl Aoz Alz
o= : g = T @7
Agqdxdl Asr?
where all of the A, are functions of time only. Notice that the function Ag may be redefined
arbitrarily by redefining the time coordinate. Defining

=2 = (A 28

we use €q.(2.4) to calculate the connection 1-forms, @b, Letting Latin indices from the center of

the alphabet (i,j%,...) take values from 1 to (d-1) we find:
ofi=Arla; wi=0 (2.9)
Finally, the nonvanishing curvature two-forms, calcnlated from eq.(2.1), are given by
R = AgZ (G + 02 - Guiti) €f e 210
R = Ay (ajay) e el : 2.11)
Eq.(2.6) may now be evaluated for the given symmetry. There are two distinct cases depending
on where the ¢-index falls. When a=0 we find:

0= }E‘, o (R AgZk N z aitj.. aam elele) .. eleMed . ePegij imn,.p  (2.12)
iEhminp
Nortice that each @ in ¢q.(2.12) is paired with a comresponding diagonal 1-form. This means that
cach product of a's is such that no index is repeated Moreover, the summation gives all possible
combinations of 2k indices. We therefore define the symbols X and CE as the coefficients in the
polynomial expressions:

(X0 )R-t~ (x~0g. ) (x-1) = 3, (-1)K CK xd-K-1 (2.13)
k



(X2 )X~ 1 (R~ }(K-G.1) = % -0k ck x9-k-2 (2.14)

For example, ck may be written as the sum of all possible products of k different ¢'s:
k= Yoo k= {{iply it} 10<) <ig <o <z Skmac } (219
X
while subscripts, C.'I‘,,__ n Indicate the absence of indices m.....n from the set . Some identities

' involving the C,lfi, n arc given in appendix A. In terms of the ck €q.(2.5) with a=0 takes the

form
0 = ZexAyxc™ 2.16)
where we have defined new constants by
cx = & (-)E2k-1)(d-2K)1(2k)! (2.17)
We next tum to the case when a = m # 0 in eq.(2.6). Now there are two terms which must

be considered separaiely depending on whether the (-index falls on the curvature or the vielbein:

0 = I &@Wen[(2) T K. R . ehemoe. dog..h
odegh

+@2-1) T R Rel .. ehempe den.n) (2.18)
biidiesh

Substituting for the curvatures and replacing & with ¢y, ultimately results in

Ag-2k

0=Tc A [ 3 (dit R - wonChy + Q1) Cn]  m=12.41 19)
IAm

Eqs.(2.16) and (2.19) are the complete field equations for the problem.

T Solution of the Equati t Motion"

We wish to solve the sct of d coupled equations

0= Bo = Sochot C& 6.0

Agk daj 2%-2 2%
0=En= Ta i [3 (G of- mCin +@DCr] m=12.01 (2
=

However, since we know the fanction Ag to be arbitrary, there must be a relationship between
these equations. The required relation is provided by exploring the consequences of coordinate
invariance for the original lagrangian. The change in the meic at a fixed point, 2, is given by

Sgul(®) = guv(B) - (P =hyy +hyy (3.3}
for an infinitesimal coordinate change hy. The change in the action is therefore

0=3855

J’Z—Lau,whv,,.)

Bguv

= -J z(:’: lhu (3.4)

Thus, the divergence of the field equartion following from the metric variadon must vanish. In the

present case this condition reduces to

S Eo+C'Eg =0 (3.5)

That this vanishes independenty of the equation Eg = 0 follows immediately by noting that

0 = ZogEa= $Eo+C'Eo (3.6)

Therefore, of the d eguations (2.16) and (2.19) only d-1 are independent. The simplest complete
sct to work with is provided by the vanishing of the differences

En-E1=0 m=23,.4d1 3.7
together with
Es=0 3.8
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The difference equations (3.7) are easily found using the identitics presented in appendix A. They

are!
AgZk g . .
0=En-Er= Tox gy [g (a0 el + (@m - o)(C' - 0aCPR (3.9)
These take the simplest form if the time coordinate is chosen 5o that Ag=1 and g =0. Thent

gives the proper time for an observer at rest with respect 1o the spatial coordinates. This t will
(oxymoronically) be called the proper time coordinate. Then we find

T C%=0 (3.10)
1
Car a0 S i = buelCzbe  me2 a1 G
where the by, are constants of integration and we have introduced a new time coordinate 1. Note

that 7 equals the inverse volume density (-g¥2. Equations (3.10) and (3.11) provide a complete

solution to the problem.

‘We finish this section with some general observations concerning the solution. First, it is

casy to show that all of the ey satisfy similar polynomial equations since repeated use of eq.(A.6)

allows the replacernent
k-2
c&? = Yappcie 3.12)
=0
Eq.(3.11) then becomes
B
(om o) Doy X Com) CF2" = b 3.13)
k n=0

If we suppose that we have already solved the system of equations (3.10) and (3.11) for a(1).
then we can find all of the coefficients CB-2" as functions of 7. According to eq.(3.13), each ttm

therefore satisfies the same polynomial equation up to the substitution of a different constant of

integration on the right. This form will be suggestive in our later discussion of the singularides of

the general theory.

Eq.(3.13) might be thought usefut for finding the explicit form of solutions if cx = 0 for
many of the allowed k, since the equation may be used to replace the d-1 unknown aj with
however many of the 2k, coefficients CE2™ 56l remain in egs.(3.10) and (3.13). However,
for the cases which can be solved algebraically there appear to be simpler methods of solution.
Moreover, when ¢y # 0 for k > 3 the resulting polynomial is greater than fifth order and no explicit
algebraic solution is possible even in principle.

From eq.(3.11) it is also easy to see that if two ¢'s coincide at some fime, 71 0, then
either they are identical for all time or a certain polynomial must vanish. For, taking the difference

of their respective equations, we see that

(@mn- e T 55 CBa? = Om - ba)e (.19
If am(11) = ap(t1) then by= by, and the right side vanishes. The left-hand expression must now
vanish for all 7, requiring either om(t) = @n(%) or the vanishing of the summation.

Finally, we note that it follows immediately from the equations of motion that if am(t) isa

solution for T 2 0 then - Oy is 2 solution to the equations when 7 is replaced by -T.

TV. Particular Selutions

We now consider the special cases corresponding to Einstein gravity with nonzero
cosmological constant, pure Einstein gravity, and second-order string gravity. We begin with the
case of Einstein gravity with cosmological constant, so that cx = 0 for all k > 1. The field
equations reduce to

cg+C2=0 4.1}



(- aq) = bit i=1,..,d1 (4.2)
where ¢p and the integration constant, b; have been normalized by ¢3. Solving eq.(4.2) for &,

m>t, in terms o_f @1, we write Cl and CZ as
Cl=(d-la;+ Zht = @-Nag+bt {4.3)
2= % [(C)2-Z(@)] = %[(d-l)(d-llmltl2 +2b(d-Dayt + (B2 - Io2)12]  (4.4)
Eq.{4.1} is then immediately solved for a3, giving
;= AT i=12,..4d-1 (4.5)
with

Ailw) = [bi-hmw/x -5 (4.6)

where b and g are the mean and standard deviation, respectively, of the integration constants, by,

and where the Sonstant, 2, is proportional to the cosmological constanz:

T_1 _«\fzbmi-d.lb?? 2
b= Il‘ &m o= d-2( ) as (d-?{,:)';rz (4.7)

To find the metric components A;2 with the usual ime coordinare, t, we must integrate

In Aj= I aj(t) dt (4.8)
where
dt
el
a - Clt 4.9)

These integrations result in the expressions
b

1_{4-_3 lesch wtl a<0 {(4.10)

Va lesc @1l a>0

10

for 1 where the absolute value signs insure the positivity of 1, the phases have been chosen to place

the singularity at t = 0 and @ is given by:
wzJ@Ehac (4.11)

For the meaic we have the corresponding expressions

. 1/(d-
Ag; {tanh %li)ia'(lsinh oy @1 2<0 @1
i = . 1/¢(d- -
Ao an 20y Pi (1510 uy 1 a>0
where the power f; is defined to be
B =2 4.13)

Yoo

For vanishing cosmological constant we may recover the case of pure Einsiein gravity. Taking the

limit of 8q.(4.12) as @ —> 0, the metric reduces to the generalized Kasner solution:

AZ=r i (4.14)
with
pi =g %P 4.13)

The relations Zp; = IZp;2 = 1 are automatically satisfied by the form of ¢q.(4.15) with B; given by
eq.(4.13).

Next, we turn to the case when ¢2 # 0. Unfortunately the solution becomes more difficult
as the dimension of spacetime increasss. For this reason we will defer the full analytc discussion

to later sections where we consider the singularity structure and asymptotic properties of the

general solution. In the remainder of this section we ook at two cases of particular interest. First,
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we give a complete treatent of the d = 5 cast because it is algebraicaily tractable; then we provide

a perturbative treatment of quadratic string gravity.

When d = 5, the field equations reduce te:

cg+C2+3yCt =0 (4.16)
(az- a1 +yo3cal = bot (4.172)
(a3- apll +yozoa] = bt 4.17b)
(og- ap)[1 +yoryaa] = byt (4.17c)

where cg and by, have been normalized by ¢ and y= §C'c21_ . Eqgs.(4.17b) and {4.17c) are easily

used to eliminate a3 and o4 in favor of @y and a2:

ast =t + BT (4.182)
agt=at- !‘zs%h (4.18b)
where - 7
at=2Z 3 -l [pe + D2 byrbeant + Rosbaiet] 7 (419)
and
D=1+yma; (4.20)

When these are substituted into eqs(4.16) and (4.17a), the result may be written as two ¢cubic

equations for @y, with z-dependent coefficients. The difference between these leaves a quadratic

equation for @, with the solution:

12
a; = ;%ﬁ { 1 f1- ; +_:uzz (6Pazt-12bu ee 14 2colan?+1(ba+baloat+ 1 )] } 4.21)

where b = 2bz-b3-bs. The final cquaﬁon for a requires the substitution of this expression for ay,

its square and its cube, into the remaining cubic equation for ay:

12

—a¥ 124y 2]+ ag2[prs 2y e Pl v ea[r(ba+ bayay 1] +ay = 0 (4.22)

The substirution results in a 14% order polynomial to be solved for atz. Thus, it is impossible even
in this simple case to write & closed algebraic expression for each of the a's. It is impractical and
unimportant to list this polynomyial, which has more than 100 terms, since the main interest of these
solutions is to study the singularity structure in detail, This study is most casily accomplished by
working with the coupled @, €2 system, ie, the cubic for o2 in terms of & and the solution for
ay in terms of &3 above, in various limiting cases. In particular, we have verified that the result
above agrees with the general results to be presented in the following sections, when the

appropriate limits are aken.

We conclude this section with a brief discussion of the quadratic approximation to string
gravity, since it involves a limit somewhat different from those 1o be presentsd in sections V and

V1. For string,
-y =(@8r)¥a <<l (4.23)

where o' is the Regge slope parameter. In this limit we find those solutions which lie near to the

solutions to the Einstein case. Writing o in the form
o=kt + & (4.24)
and letting & = EA; we find that to first order in 1

a3 {3010+ Tt AT a2 A+ a2 Ar P A1 AD] 3
m

4.25
+ (ZAm? - A2)co1} iaq 4B

€1 - TLA3-a02 + 42 - A3+ (- Aqp)eot] i»1

13



Here C*(&) is the usual C* defined by ¢4.(2.13), but with & replacing o, When the cosmological
constant is nonvanishing A; depends on T and the integration of these expressions becomes

tedious. However, when ¢ = O the integrations become eesy because each ¢ has the simple form
og=AT+Y T (4.26)

for constants A; as before and ¥; << 1 following from the expressions for &. Letting 1} = Zy; we

integrate eqs.(4.8) and (4.9) to find:

q/13(1—+tan-1i') An > 0
1= 11 (4.27)
V(L - oanh-t§) An < 0
?
, where T is defined by
T=qll © (4.28)

The series expansion, eqs.(4.22) and (4.23), will hold as long as T << 1, comresponding to t>> 1.
I is simple to find the metrie components in this approximation. Letting t = AL-: we find for both
cases (4.25):
% ,
Aj=t* exp( 21—7‘?:‘2 ) (4.29)

Since the exponential factor will be unmeasurably close to one, the long time behavior is a power
law. The limiting exponent,%’i. is the same as that of the dirnensionally extended Kasner solution,

€q.(4.15). As we show in the next section, the general asymptotic behavior can be quite different |
from this. The behavior of this and other soletions near singularities, which require different

expansions, istaken up in sections VI and VIL

14

V. General Properties: Asvmototic Behavior

As we have seen above, the writing of a closed algebraic expression for each of the a's is
impossible even in the simplest case, when d = 5. Nonetheless, it is possible to obtain some
useful resvlts for general values of the coefficients in all dimensions. In this section we obrain
series soludons which hold in the asympiotic, t ~—> 2= limit. Then we murm to a sudy of the
singularity structure of the solution, proving three theorems about its generic behavior. In section
VI we study those regions which correspond to the nsual Kasner singularity, and in section VI we
explore further singularities which occur due to the polynomial nature of the original lagrangian
density.

The t =~> too limit allows @j to be expanded in negative powers of t, implying a power
series in positive powers of 1. Therefore we begin with:

ai= Y ain 1" (5.1)
=0

where A remains to be determined. For this and a subsequent power series expansion it will be
convenient to define the following functions, which are simply the first and second order

expansions of the summands in the equations of motion:

BoGaiok) = ox C™Maio) (5.2a)
Bono(aiok) = (a0 210) iy Clom (850) (5.25)
Ba(siank) = o T an () _ (5.2)

& 7x.3
Bmifaii: 2ik) = (2mo- m10) 337 21 &5 Ciim:j (i)
=

+ G 211) 55 Coom (aj) (5:24)

15



First consider the n = 0 term in eq.(5.1) for aj. The ajg are fixed by:

E Bolaiok) =0 (5.3)

%Bmo(aio:k) =0 (5.4)

At this order the ajp are deterrmined up to pultipliciry of roots; at least one must be nonzero unless
the cosmological constant ;ranishcs. One simple solution is to set amp = 2o for all m > 1, then
choose a19 to solve €q.(5.3). This solution and 2 second with a; =t # (3 = (4 exist for the d =
5 case; for a particular choice of f there is also a geomermically free solution [7]. More generally,
£q.(5.4) implies, after some algebra, that the ajp cannot all be different. Generically, at this order,

the curvature is constant and anisotropic.
At first order in 1, the coefficients & are related to the constants of integration, by, by:
}%-Bo:(an:aio:k) =0 {5.5)
% Bmi{an: 2igik) = bm (5.6)

where we have now chosen A = 1. Because of the integration constants in eq.(5.6) we can choose

d-2 of the ajp arbitrarily, with the final one determined by €q.(5.5). To this order, the a; have the

form

o= ap+ 33 1 5.7

Setting an = Eajp, the relation berween t and T is given by:

30
7= (5.8)
eaot -a)

16

confirming that T —3> 0 as agt tends to +e=, The a; approach &jp exponentially in terms of proper
time t, leading very quickly to the anisotropic, constant curvature state. The componenis of the

meLric teNSor vary as

Ai = B0t (] - a,c7800 yRT1/A1 (5.9
The exponential character of the asymptotic behavior is dictated by the constants ag = Zag, and the
individual a;p. Notice that any direction which has a0 < 0 undergoes exponendal dynamical
dimensional reduction. In a relatively shor time such a damping exponential could reduce the

extent of the corresponding direction far beyond a detectable scale even if the solution for that

direction changed to a power law expansion in a later, matter-dominated era.
Recalculating when ag vanishes, the metric components become

Aj= 8j1/a eaioﬁ'qu) (5.10)

and if the cosmological constant vanishes it is possible to choose the solution ajo = 0, giving the

asymptotically Kasner behavior found in the previous section.

Finally, observe that the power series of eq.(5.1) will break down as 1 becomes large.
This means that we will require a different approximartion in for large . This will take the solution
into the region where the curvature can diverge.

VL G LP ties: Type I Sinewlariti

The existence of singularities in extended gravity solutions is complicated by the

polynomial nature of the solutions. Here, these complications give rise to two important

17



differences from Einstein gravity. First, t = 0 is not necessarily a divergent point as it is for the
Kasner solution. We will display series solutions and provide an exact solution which demonstrate
this. Second, there exist critical point singularities. These critical points are studied in detail in

secton VIL

We begin our study of curvature singularides by looking at certain conditiens which must

. hold for curvature divergences to occur. This divides the potential singularities inmo two types:
type L consisting of those cases in which the o's diverge, and type IT encompassing those cases
for which the o's remain finite but the time derivatives, -g—;?—, diverge. Type I cases typically occur
as t—> 0, while type II cases are due to the polynomial character of the class of theories
considered and in partcular to the existence of critical points, We first examine the a-divergent
singularities in detail by looking for Kasner-like approximations. Such approximate solutions have
been snidied to lowest order by Deruelle [13]. Here we give a fuller reannent, carrying the
second-order term as well.  Then, in section VII, we go on to discuss the exisience and character
of the type II critical point singularities. These extremal points are pot found in the Kasner solution

and cannot be found from the first order expansion to extended gravity.

Type I singularities happen only if one or more of the a; diverge. We prove the following

theorem concerning the times when this can occur:

Theorem I: The curvature diverges if:

lL1—>ee

2. t—>0ast—>0.

H

Proof: First Iet 1 —> e=. Then, it is clear from eq.(3.11) that one or more of the &; must
diverge with it This case is treated in detail below, where we show that this
divergence in ¢ produces a divergence of the curvature at time t= 0.

Next, suppose that T —> 0 as t —> 0. Then in order for

g
Clt

to bold, C* must be dominated by 1 -$ for some power s > 0; the power seres
for C* will be of the form:

Cl=1-53 gm0 (6.1)
n=0

For any positive s, C! will diverge as t—> 0, and for generic solutions the
curvature scalar, R, will also diverge.

Notice that this case can only occur if the divergent part of the a's cancels
between different a's since at 7 = ( the right band side of eq.(3.13) vanishes,

There is an alternative to the two possibilities covered by the theorem. Ast—> 0, 1 may
approach some finite, nonzero number. We may always arrange T —> 1 in such a case by our

choice of the t-origin. Such cases do ocour in general. We need only let

o= Y ajp(t - 1P 6.2)
n=0

Then the difference equations may b rewritten as

(ctm - 1) ; X i (02) = byn + b(e-1) (6.3
At lowest order, we have
5 Bno(aio: K = b (6.4)

where by, is arbitrary, 50 2mo may be chosen arbitrarily for m>1. Then a;q is determined by
% Bo(ajpk) =0 (6.5)
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At the next order the constants by, are regarded as functons of the ajn:

% B (ait: #joik} = bm(2je) (6.6)

The higher order equations are then homogensous. One exact solution which leaves 1 finite at the
1-crigin occurs when all of the integration constants vanish, Then the difference equations may be

solved by taking otm= @y, with a; determined by
ZeCan) = Z (4 o (@ =0 6.7

A necessary condition for the existence of this solution in a particular theory is that cpfeyx < 0 for

some k, k'

We now tum to an examination of the singularities which occur when T —> . These

generalize the Kasner singularity. In this limit the oy may be expanded in & power series

; a= Y a1 DK 68)
n=0

1
where k=3——.

The divergent part of ¢; then goes as
ai=agt"® 6.9

This means that CK will diverge as 7 and the constant coefficients of the series are determined by

the algebraic equations. To first order we can neglect all but the maximum valve of k:
Bo(ajokmas) =0 (6.10)
Bmo(2inkma) = bm 6.11)
Notice that the choice made above for x insures that the T dependence has cancelled from

¢q.(6.11). The appearance of the arbitrary integration constants on the right-hand side of eq.(6.11)

20

means that we can take (d-2) of the (d-1) constants, amo, to be completely arbimrary, with the last
one determined by the single constraint, eq.(6.10). When t is used as the time coordinate, the

metric components take the form:

Ap=tPi 6.12)
where p; is given by
Pi= e = (e DR 613)
These exponents now satisfy the sum rule
Ipi=Zknm- 1 6.14)

This solution requires pj > 1 for some i when kny > 1. In even dimensions eg.(5.10) requires at
least one of the exponents to be negative and at least one to be posidve, while in odd dimensions

one exponent must vanish. For ke = 1 we recover the generalized Kasner solution.

That these singularities are in fact curvature singularities almost always follows, for K >

1, from the Ricci scalar:
R=2[%d + ) + O] =12 [ECai0 + (20 + Ctaiod)] (6.15)

For the pure Einstein case (kma=1), C? and the sum in parentheses each vanish separately as a
consequence of the field equations. However, for the full class of kmax > 1 Gauss-Bonnet
extended gravity theories the vanishing of R is independent of the field equations and therefore
provides a conswaint on the solutions (ie., the vanishing of the ajg-dependent terms in brackets in

¢q.(6.15)). Therefore the Riced scalar diverges for all but a zero-measure subset of solutions.

At second order, the coefficients aj, are completely determined in terms of the ajg by the

Kz and k-1 terms of the equarions of motion:
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Bo(ajp:kmax-1) + Bp1(ai1 ai0ikmax) =0 (6.16)
Bmo(aivckmax-1) + Bmi(air! aigskmax) = 0 6.17)

To this order, the &; have the form
=80T + a1 ™ (6.18)

Setting ag = Zajn and © = ¥ vlaga;| , the relation between t and 1 is given by:

ﬁaco: ot aga; > 0

= (6.19)
1]
mcoth"mt aga; < 0

The resulting metric components when aga; > 0 are

= JAn
A = Ajp (sin w)*2g (cos 1) 21 (6.20)
When apa; <0 there are two branches:
a0 . A1 a
Ajo (sinh @1)%2p (cosh wt) %21 I f—lt" > 1
i = a5 Ay o 6.21)
Ajo (cosh ©1)%80 (sinh mf) ¥ | f;l‘:" <1

In the aga; > (0 case a second branch can be found by shifting the t-origin byg . These functions

can increase faster than the original power law; for small t the first is of the general form

Aj = Ajp (Pi + MPIT2) (6.22)

It is therefore possible that the generalized, extended Kasner universe would have an inflationary

stage even though at the earliest times the expansion goes as a power law. Unfortunately, as scen )

in the discussion of the d = 5 case, it is difficult to .charactzrim the soluton at intermediate times.
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VIL G 1P ies: _Tvpe II Sineularit

In addition to the singularities described above at which the curvature becomes infinite due
10 the divergence of one or more o, there are many other singular points in the general solution.
These are critical points which follow from the polynomial natre of the lagrangian density. Atany
of these critical points & may either diverge or become discontinuous, resulting in divergence of
the curvature or inextendibility of the manifold. In this section we characterize these points, and
prove that in almost all cases neither of these pathologies actually occur.

Though our main results depend on direct examination of the original form of the soluton,
the character of the solution near the critical points is easier to intuit throngh a stady of eq.(3.13):

k-2
Pl 10mi?)= O e TH 3 com CF27 - bar=0  (.13)
=0

The polynomial nature of eqs.(3.13), with the cocfficients G2 regarded as functions of 1, give

the functions oy (1) implicidy. The solution for ¢ is the inverse function,
-1
am(T) = Pakp,,-1 (0:7) (7.1

but this inverse only exists when the first derivative of P2k, .1 with respect 1o @ is nonzero.
Conversely, the solution will break down whenever:

d

EmPkau-l(am) =0 7.2
Thus, singularities occur for any value of the time, tg, which makes &q(%o) a double root of
P2k py-1(Gm; To). Notice such an extremal point of 2 polynomial typically occurs as one lobe of

the graph of the polynomial crosses the o-axis. This either causes the simultaneous vanishing or

appearance of two toots. Betause each of the roots approaches (or departs from) the extrerum
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T

where the slope of the curve vanishes, the rate of approach to (departure from) the extremum
diverges:
do

—> oo (1.3)
dt Critieal p.

This fact will be of importance in our proof of theorem I below.

While tﬂesc arguments demonstrate the existence of and rate of approach to extremal
points in most solutions, they do not give a complete classification of those eritical points since the
coefficient functions C'ik'z'“(t) may also be singular. Neither is it possible to explicitly solve
oqs.(3.10) and (3.11), even in a given dimension. Instead, we will look at the analytic properties

of this system of equations near the branch peints.

Before proceeding to our theorems it will be illustrative to have two concrete examples of
critical points. We consider the cases of Einstein gravity with cosmological constant and the

general d = 5 solution, both discussed in section IV .

The simplest example is provided by Einstein gravity with a positive cosmological

constant. Combining egs.(4.5) and (4.6) displays a critical point when 12 =a:
i = (hi- b -9 l v
= (bl-b)‘:i(d_l)m'\}#-a (4.6"
The derivative of @ with respect to 1 is divergent when 12 = 2 Of course, the Ricci scalar

vanishes for this case, but RapegR2Ped contains the square root term. Even though the critical point

may be reached in a finite proper time, the solution simpty stops. However ail components of the

curvature 1€nsor prove to be finite at the exwemum. This suggests that the solution may be -

extendible and we will show below that it is.

For the d = 5 case, recall that the equations of motion Jead to three quadratics and & 14th

order polynomtial and could therefore have as many as 23 x 14 = 112 different critical points. We
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can see that some of these branches do indeed occur by choosing bz = b3 = by = bin egs.(4.17),
and setting cg =0 in (4.16). Then with

w=o==pf o=a 7.4)

we find the solution
a=p-33 a.5)
PRy = p3+2p-1 -0 7.6

Since 7 only occurs in the (B) part of eq.(7.6), changing T simply raises or lowers the cubic curve
for B, shifiing the roots of P. When ¥ < 0 (as in sming theory), there is a double root at the value
of 1 for which P'(B) = (-

Bo=+y- = a.n
g = HB? + 2Bo) (7.8)

A solution evolving to T from above (forward in t) will cease at 1q; evolution downwanrd from 1 <
1 must end at -2¢; and the solution with T < -Tp is bounded above in . Again, the 1 derivatives of
@ and P diverge at the critical times. The curvarure is finite throughout this evolution, but a simple
calculation shows that the Ricei scalar, R, contains a term with the singular factor. Perrbation
about the singular point shows that the singularity can be reached in a finite proper time.

In each of the two examples above, direct calculaton shows that while g—: diverges as

claimed above, %c:‘ remains finite. As a result, the curvanmre is finite at the cridcal point and it is

easy to show that the solution is extendible. In fact, the simplest way to extend the solution is 1o
take advantage of the fact that two solutions for o; merge by lerting the fime run forward along one
branch to the critical point, then backward as aj moves out the other branch, Maiching the

branches of eq.(4.5) in this way gives:
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ai(1) =

(bi- )t +—2-+12-a 1> 42
' (@ni? 7.9

(bj - b}2a-1) -mT")m-v'(zﬁ-z)i - a 0<t <1

In terms of proper time, oy(t) automatically includes both parts of eq.(7.9). A similar patching is

possible in the cubic example.

Remarkably, extendibility is 2 generic property of the critical points of the full solution.

We prove:

Theorem II: In an arbitrary number of dimensions, to all possible orders of generic Gauss-Bonnet

extension, the generic soluion given by eqs.(3.10) and (3.11) is extendible at every

type I critical point

Proof: The general form of the implicit function theoren states that given a set of n once-

differentiable equations in n + m variables, {Pi(aj; xk) =0 lij=L..mk=1...m]

satisfied at a point 2 = (ajo, xjo), there exists a unique set of differentiable

functions, {aj(xy)), defined in a neighborhood of @, provided

det %)iﬂﬁeo (7.10)

Applied 1o the equarions of motion we have d-1 equations and d variables:
Py(@it) = ZaxCX =0 (7.11)

Prnf06,%) = (otm - )Tt B2 bpt=0 (m=23..01) (112

The theoremn requires that differentiable solutions o(t) exist provided

det (1) 0. 7.13)
otj

26

Unless two or more of the a's are identical, this determinant is nonvanishing at all
but the critical points. If two or more a's do coincide in some neighborhood then
the no-crossing result from section I implies that they are the same for all 7, and
we can simply consider the reduced set of equations gotten bgP\_:Iiminaﬁng the

redundant a's. So, away from the critical points the matrix -5-1 is already of

maximal rank and solutions exist.

The point of the theorem is that the cridcal points of Py, whmggi-is only of
@

rank (d-2), arise because t no longer provides an adequate parameter for the curve
and not because the solutdon breaks down. The choice of the time coordinate
provides an additional degree of freedom allowing the continuation of the solution;
we only need the (d-1) x d dimensional matrix

9P dP;

— (1.14)

{aaj ar}

t0 have rank (d-1). Because these time derivatives are simply the integration

constants, generic solutions will retain the maximum rank.

Avoidance of the cridcal point is easily achieved by making a different
choice of time coordinate. Concretely, supposeaz; is of rank (d-2). Then there

exists a single linear dependency among the partials and we can always choose a
basis so that the dependency is restricted 1o the gradients of just two functions. Let
this basis be such that the remaining (d-3) gradients

{aﬁl} m=145 .41 (115
aa;

are orthogonal to Qz. Q_z . For some nonzero constant A and all i we have
ap daj
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5 9P2, 9P . (1.16)
ami af.r.i

Now perform a rotation berween o3 and t. Let

(+ 1) (7.17)
i= %(czl-r) 7.18)

and consider whether there still exists a linear depepdency. Since eq.(7.16) still
holds for all i = 2, the constant A tmst remain the same, However,

392, P _ (P2 oy, ()
0, aal Joy dm

= aby-By (7.19)

which only vanishes when

=B
A= (7.20)

This does not hold in general and if it did we could simply choose a different angle
of rotation. Therefore, except for double degeneracies of the Jacobian matrix
(which require nongeneric Ganss-Bonnet extensions) or degeneracies of %%‘ with
two of the other partials (which requires special choices of the integration constants
bj), the condition for the existence of solutions will be satsfied and the critical point
must be only a coordinate singularity. All components of the curvature and

curvature invariants will be finite at the critical point.

We noWw prove another result besed on the rate of approach of the o to the critical points:
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Theorem III: Generic critical peints occur at moments of extremal volume density of spacetime,

Proof: Let o;0(T) be a curve in a-7 space such that Pr(0yo, 1) = 0; ie., Gip(1)} is a soludon to

the equations of motion. Then along that curve

Ln| g @21
dt oo

Starting at & point near & critical point we expand
0o _2Pn doj 3P
dt  doy dr dt

=%Pm do 7.22)
doy dr

Now let the mam%ﬁ': project into a subspace X at the critical point. For generic

initial conditions, by, there will be some component, bem, of by, orthegonal to 5.

day .
Then as L approaches a projection, ?a! must diverge in order to keep bep
14

fixed. Therefore, for at least one value of i,'—jﬁ must diverge ai the critical point.
T

Next, consider the curvature. By theorem H, there exists a coordinate

choice for which all of the a; and their first derivatives are bounded. 1t follows that

the curvature and all curvarure invariants are also bounded. In particular
RabedRapeq = £ (@)? + () 7.23)

is bounded where the dot denotes the time derivarive with respect to the proper time
coordinate t. This means that for every value of i,

da
dt

@ =-Clt 7.24)
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is bounded even though the t-derivative is diverging for at least one valve of i.

Since 7 is nonzero in general we must have

c'=0 (7.25)

at the critical point. Therefore
S5 =00 726

We conclude that the critical point occurs at a local extremum of the spacetime

volume density.

As a consequence of this theorem we have a clear picrure of the meaning of the type I
critical points as times when the volume is maximal or minimal. It is easy to show from the
existence of such extrema that for some particular direction, the spacetime may stop expanding and
start contracting, or vice-versa. This sort of reversal does not typically happen at exactly the same
time as the exwemum, but some flucruation in the rate of expansion is a necessary consequence of
the extremum. In some of these extended gravity theories the universe may therefore go through
many bounces withont reaching any singularity. The maximum possible number of bounces

increases with dirension with the number of solutions to the ¢quation:

det (Qi) =0 (7.27)
a0t

This number is (d-1)(2kmax-2) + 1, which is of order d2. This large number of bounces could

provide substantial mixing.

It is also interesting to note rhe.l:imes at which bounces may occur. Of course in general,
any time is possible. However, in second order string gravity where the times of the bounces are
determined by, the extremely small slope parameter &, of in other unified theories where the higher
order terms have a small coupling, the bounces are likely to occur at either very early or very late

tmes.
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If we consider nongeneric solutions as well, there are three rypes of solution when the rank
of the Jacobian matrix reduces to (d-2) at a peint. Choosing a set of (d-2) of the equations Py = 0
such that their gradients span the critical subspace &, we see that their intersection will give a

smooth curve in a-space. The intersection of this curve with the (d-1) dimensional surface

determined by the remaining equation may be:

1. A setof isolated points. The merging of a pair of these points is the generic condition
covered by theorem IIL

2. Empty. In this case the intersection of the curve with the subspace must have run off 1o
inﬁnity,.ly'pim]ly giving a curvature singularity. The singularities siudied in section
V1 are of this type.

3. An entire segment of the curve. These solutions are geometrically free [7]. The metric
will contain undetermined functions.

Other possibilities arise if the fank of the Jacobian matrix fails below (d-2).

VIII. Summary

In an arbitrary number of dimensions, we have found the complete anisowropic, time-
dependent, dizagonal-metric solutions to maximally Gauss-Bonnet extended gravity theory, This
class of theories, for which the lagrangian is an arbitrary linear combination of dimensionally
extended Euler forms, is the most general gravitational lhéory in which the field equations contain

no more than second derivatives of the metric.
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Einstein gravity, it is quite narural in extended gravity as first one term in the la ian, then
We considered the asymptotic behavior of the theory and showed that the curvature for & grangt
another, dominates the time evolution.
Targe t becomes constant and anisotropic. We develop the solution in a power-serics near this limit
and find that the approach to the asymptotic region is exponential. We have treated many particular cases in detail, verifying or demonsirating the claims

above. In addition to several power series solutions we have displayed:
We have divided the singularities of the problem into two types. Type I singularitics are

characterized by divergences of the logarithmic derivatives, o, of the metric components and (i) The generalized (ic., higher dimensional) Kasner solution to general relativity.
always lead to curvatme sirigu.lari:ies. Type 1 singularities are produced by critical points in the
() The generalized Kasner solution to general relativity with nonzero cosmological

» solution due to the polynomial nature of the original class of theories.
constant.

We proved three theorems concerning the two types of singularities,
: (i) The perturbative solution for string gravity to quadratic order in the curvature.

The first theorem states that Type I curvature singularities occur whenever T =cxp (-,fCI dy

L . . . (iv) The complete solution for one branch of five dimensional extended gravity.
tends to infinity, or when 7 and t tend to zero together. Examples are given for which neither of
these conditions occurs. When ¢ diverges the Type I metric components are showm to diverge as
1Pi where £ p; = 2kax-1 and Ky 35 the highest power of the curvature in the original lagrangian.
The expansion away from the singular region typically proceeds faster than in the conresponding
Kasner or generalized Kasmer solution. There will always be at least one direction which expands

and at least one direction which contracts.

The proof of the second theorem demonstrates that almost all Type I singularities are
coordinate singularites only, and we give an explicit coordinate ransformation which produces a
smooth extension through the branch point. True type I criticall point singularides require at least
two constraints on the constants cx defining the theory or they require one constraint on the cx and

one on the integration constants, bm.

Our thind theorem shows that type II critical points occur at extreme valtes of the spacetime
volume density. The spacetime may therefore alternately expand and conract for many cycles
" before expanding forever or contracting o a singularity. While this behavior is impossible in Acknowledgement
Thanks are due to Y. Clifton and F. Edwards for helpful discussions.
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-2 k-1 k X
@2 = slaic) - +ai
Appendix A:  Identities jnvolving the C* Coefficients = =

’ 1
The symbols CX and CK are defined 1o be the coeficients in the polynomial expressions: =cj ¢} - +@aC)

=l
Tix-0) =Y, ¢k C¥(ap x0T @ ¢j ¢ -kcf a12)
k
Finally, the number of terms in any given expression is a convenicnt check on equations. Let [E]
- Hx-ep=F 0k chie) x3¥2 (2.14) & pres
wm k be the number of terms in the expression E. Then for example:
: &Nt
In general, CX is the sum of all possible products of k of the d-1 different ’s. In particular (=) =gais (A.13)
Cl=g +0g+.. + 0gy (A3) (1= (%) (A.14)
2 [EiCH = @ 1(42) (A.15)
C = g + Gy + ... + 04004 (A.4)
It is simple to derive a variety of useful relations between these coefficients. Some are:
Ck=3 a,Ck! (A.5)
1
ck= o C‘f‘l + le (no sum) (A.6)
£¢% =@knc (AT
i
T Cf =%} A8)
1
To,chl = kck (A9)
i
%" a3 &kl (A10)
I .
k- = (g~ ) Cly! (A.11)
The following sequenoé of identities used to manipulate eq.{3.2) is a little more difficult:
35
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