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ABSTRACT 

A Computer-aided Training (CAT) System for Short Track Speed Skating 

by 

Chenguang Liu, Doctor of Philosophy 

 

Utah State University, 2014 

 

Major Professor: Dr. Heng-Da Cheng 

Department: Computer Science 

Short track speed skating has become popular all over the world. The demands of 

a computer-aided training (CAT) system are booming due to this fact. However, the 

existing commercial systems for sports are highly dependent on expensive equipment and 

complicated hardware calibration.    

This dissertation presents a novel CAT system for tracking multiple skaters in 

short track skating competitions. Aiming at the challenges, we utilize global rink 

information to compensate camera motion and obtain the global spatial information of 

skaters; apply Random Forest to fuse multiple cues and predict the blobs for each of the 

skaters; and finally develop a silhouette and edge-based template matching and blob 

growing method to allocate each blob to corresponding skaters. The proposed multiple 

skaters tracking algorithm organically integrates multi-cue fusion, dynamic appearance 

modeling, machine learning, etc. to form an efficient and robust CAT system. The 

effectiveness and robustness of the proposed method are presented through experiments.  

(74 pages)  
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PUBLIC ABSTRACT 

A Computer-aided Training (CAT) System for Short Track Speed Skating 

Chenguang Liu 

 Short track speed skating was adopted by the International Skating Union in 1967, 

and upgraded to full winter Olympic sport status in 1992. Even though its history is short 

compared with long track speed skating, it became popular around the world because it is 

more intense and more entertaining for audiences. The demands of having a CAT system 

for gathering and analyzing competition data automatically is raising drastically due to its 

growing popularity all around the world.  

 There have been some commercial systems for some other sports, which are able 

to provide extrinsic feedback information to coaches and athletes. However, there is no 

commercial sports analysis system for short track speed skating yet, and the current 

commercial sports analysis systems have certain limitations including the requirement of 

operator intervention to process the video and the necessities of the restricted 

environments such as multiple cameras with complex camera settings and expensive 

peripherals.  

The proposed CAT system greatly reduces the requirement of hardware settings 

and the system cost by utilizing only monocular videos captured using a single handycam. 

Moreover, it automatically tracks multiple skaters and output accurate skater spatial 

information which provides valuable references to the coaches to improve the skaters’ 

performances in international competitions.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

Short track speed skating is a form of competitive ice speed skating. It originated 

in the speed skating events held with mass starts and has the history of nearly 50 years. 

Before it was adopted officially in international competitions, this form of speed skating 

was mainly practiced in the United States and Canada where skaters skated in pairs. In 

1967, the International Skating Union adopted short track speed skating. However, it did 

not organize international competitions until 1976. World Championships have been held 

since 1981. After several changes in the name of the competition, the event is now held 

annually as the World Short Track Speed Skating Championships. Meanwhile, short 

track speed skating was upgraded to a full Olympic sport in 1992 and has been part of the 

Winter Olympics since then. In the competitions, the events are the same for both men 

and women, and include 500 m, 1000 m, 1500 m, 3000 m, and the relay (5000 m 

(men)/3000 m (women)).  

Compared to long track speed skating, which only has pair skaters in the rink, the 

short track speed skating is more intense and, to some degree, more entertaining to 

audiences.  Due to its popularity, short track speed skating has raised attention in many 

countries including China, United States, Canada, South Korea, Japan, etc. Many funds 

are invested to training skaters in order to achieve the best performance in international 

competitions. Besides, skaters are also seeking every possibility to improve their skills 

and strategies. Moreover, the speed control and curve strategies of a skater in real 

competition provide valuable reference for his/her future training, hence a video-based 

http://en.wikipedia.org/wiki/Ice_skating
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/International_Skating_Union
http://en.wikipedia.org/wiki/World_Short_Track_Speed_Skating_Championships


2 

 

 

 

computer-aided training (CAT) system will be very helpful for skaters to analyze their 

performance in the competition and improve it in the future.  

There have been some commercial systems such as TRAKUS, SoccerMan, 

TRAKPERFORMANCE, Pfinder, etc. which provide extrinsic feedback information to 

coaches and athletes. However, the current commercial sports analysis systems have 

certain limitations. They either require operator intervention to process the video or are 

often limited by the restricted hardware environments such as the necessity of special 

camera settings with complex calibration or expensive peripherals.  

In terms of the proposed CAT system, the necessity of complicated camera 

settings and expensive peripherals are excluded since it is able to process monocular 

videos captured by a single handycam. The movement of skaters on the rink provides 

useful information for coaching or live sports. Unlike the existing sports analysis systems 

which require manual intervention or annotation, the proposed CAT system is able to 

track each of the skaters automatically and output the their speeds and trajectories 

accurately.  

The methodologies used in surveillance tasks cannot be directly applied in the 

context of short track speed skating since a lot of constraints have to be considered, e.g. 

quick dynamic events, real time analysis, complex situations of occlusions, precise 

positioning of skaters in the field, and so on. Algorithms for people tracking and object 

detection have to face difficult situations such as the overlapping of skaters wearing the 

same uniform, unpredictable trajectories, and a wide and dynamic camera view. Because 

of these reasons, the automatic short track speed skating video analysis is challenging for 

scientific studies. 
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To solve the challenges mentioned above, the author conducted researches in four 

major aspects: 1) Homography-based image transformation method is applied to 

eliminating the effect of camera motion, and the spatial information of the skaters is 

obtained according to the constructed rink panorama and is served as spatial feature for 

tracking skaters; 2) a random forest (RF) [1] classifying scheme is developed for fusing 

multiple features and updating appearance model to deal with appearance variation; 3) a 

blob growing occlusion handling mechanism is developed to classify blobs to different 

skaters in occlusion; 4) an appearance updating and likelihood voting method is proposed 

to detect the disappeared skaters. 

 

1.2 Related Works   

In this section, we will review the related works published in recent years. There 

are mainly two categories of related works that we will discuss about: the related team 

sports video analysis methodologies; and the general visual tracking methodologies 

aiming at solving challenging problems similar to short track speed skating.  

 

1.2.1 Team Sports Video Tracking and Analysis Methodologies 

In sports, the quantitative analysis of team and player activities has become an 

important aspect of coaching [2]. Accurate positional information about sports players is 

of interest to coaches to improve the performance of the team strategically, and to assist 

in the design of better training programs. Furthermore, such information can also be used 

to understand the coordination dynamics of player activities and the most influential 

constraints acting upon them. 
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Different from the general object tracking context, athletes tend to exhibit quick 

movements with many unpredictable direction changes and frequent collisions with other 

players. These characteristics of player behavior violate the assumptions of smooth 

movement which general computer tracking algorithms are typically based on.   

There have been several researchers contributing to tracking and analyzing 

competition videos in short track speed skating context. Liu et al. [3, 4] proposed a single 

skater tracking method based on Unscented Kalman Filter (UKF), and Wang et al. [5] put 

forward a single skater tracker based on two-region joint probability. The methods are 

able to deal with partial occlusion, but cannot be used to analyze competition videos of 

multiple skaters, and fail when severe occlusion happens.  

The work most similar to the proposed method is [6] which presented a multiple 

skater tracking system based on a combination of GMM and fuzzy membership. Even 

though the tracker can deal with multiple skaters tracking and partial occlusion, it has 

several drawbacks: 1) only GMM based color feature is applied to matching the 

templates initialized in the first frame without updating the appearance model of each 

skater during tracking. Therefore, the tracker is fragile to appearance variation of the 

skaters, which may cause less accurate tracking result or even failures; 2) the constructed 

rink panorama is used to calculate the global spatial information of the skaters in each 

frame, but it is not used as a feature to improve tracking performance. The rink panorama 

is only used for rendering the tracking result (similar to the references [3], [4] and [5]); 3) 

only partial occlusion is handled; 4) all of the skaters are dealt with in the same region of 

interest (ROI), therefore it fails to process the video with one or more skaters out of the 
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scene. However, complex occlusion, sometimes full occlusion, happens frequently in the 

competition, and the tracker will fail on tracking the occluded skaters.   

In addition to the tracking algorithms on short track speed skating, there have 

been a number of methods published in recent years which are developed for team sports 

video tracking and analyzing.  As soccer is one of the most popular games around the 

world, the research on various aspects of soccer video analysis has been growing in the 

recent years. The methods either uses fixed view [7-9] or utilizes grass color background 

modeling [10, 11] to obtain player blobs, and then apply constraint of smooth movement 

to solve occlusion problems. The tracking of soccer players is still facing the occlusion 

issues, and the demand of tracking accuracy is less important than short track speed 

skating due to its most popular usage for event recognition based video indexing.  

In addition, there has been some notational analysis methods used to investigate 

the activity patterns and techniques in various sports, such as rugby [12, 13], squash [14, 

15, 16], badminton [17], basketball [18, 19], volleyball [20], etc. Notational methods 

circumvent the challenges in automatic visual tracking and analyzing by human 

intervention. However, they are too time consuming and fragile to subjective factors. 

 

1.2.2 General Object Tracking Methodologies 

Visual object tracking has been a booming research area for decades, and many 

contributions have been made to solving the open problems such as camera motion 

handling, appearance modeling, template updating, occlusion handling, etc. Even though 

the methods are successful in some aspects, the problems remain open in visual object 

tracking due to their difficulties. 
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Tracking multi-object in videos captured by moving camera is a challenging task 

which has been attracting many attentions in computer vision. Choi et al. [21, 22] present 

a novel way to dynamically calibrate the camera by detecting feature points on the 

ground. By doing so, the camera motion is represented by camera parameters. Then, a 

tracking by-detection method is applied to estimating trajectories of pedestrians. Even 

though successful, it is difficult for the method to handle occlusion because the occluded 

person is difficult to be detected by object detection algorithms. Moreover, detecting 

robust features on ice is impractical. 

Reilly et al. [23] and Ali et al. [24] build global motion model according to the 

features detected in each frame, and apply accumulative frame differencing with 

background modeling to detect motion in the scene captured by UAVs. The proposed 

method adopts similar approach to detect motion of the skaters and eliminate the effect of 

the camera motion. The difference is that we also use the constructed rink panorama to 

calculate the global spatial information of the skaters in each frame, and it will be used as 

a feature to improve tracking performance. However in [3], [4] and [6], the rink 

panorama is only used for rendering the tracking result. 

In order to achieve robust tracking while subjects are changing appearance, there 

are two major approaches to adopt. On one hand, multi-cue fusion [25, 26] may be 

applied to tracking so that more information can be enrolled to improve the robustness. 

On the other hand, dynamic appearance modeling [27-29] is an important way to handle 

appearance changes. In this dissertation, we propose a new scheme of RF to fuse multiple 

features including color, silhouette and spatial information. During tracking, the 
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appearance model of each of the skaters is also updated in each frame to solve the 

appearance changing problem. 

Occlusion handling is another important issue in video-based multi-object 

tracking. Due to the fierce competition among skaters, inter-skater occlusion happens 

frequently. Unlike the existing methods [30, 31] dealing with inter-object occlusion in 

which the objects are relatively large enough to be separated into smaller parts, our 

method is facing the problem that the skaters are changing scale in a large domain.  

 

1.3 Research Scope  

In this dissertation, we built a CAT system which can automatically track the 

movements of high speed skaters competing on large-scale rink and provide spatial 

information of the skaters. However, there are several open challenges we will face:  

1) The camera is being panned rapidly in order to capture the fast moving skaters on 

the large-scale rink. 

2) Skaters being tracked are non-rigid fast moving objects. 

3) The skaters’ appearances including silhouette, color and scale changes drastically 

when they are competing on the rink. 

4) Severe occlusion happens frequently among skaters, and sometimes even among 

skaters wearing the same type of uniform.  

5) One or more skaters may be out-of-scene and reappear frequently during 

competition, and should be identified when they reappear. 
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1.3.1 Camera Motion 

 Accurate positional information is of great interest to coaches. In order to obtain 

precise positional information, the camera motion in short track speed skating video has 

to be compensated. Global flow has been widely used for compensating camera motion in 

object tracking. As is shown in Fig. 1.1, there are a set of 2D planner transformations. 

Due to the nature of projective model, it can better deal with camera rotate motion [32]. 

An example is shown in Fig. 1.2 where affine model and projective model based image 

stitching results are compared.  

 

    

(a)                                                                                      (b) 

Figure 1.1. Types of transformation (a) Basic 2D planner transformation set. (b) 

Hierarchy of 2D coordinates transformations [32]. 

  

   

                                            (a)                                                 (b) 

Fig. 1.2. Comparison between affine mosaic and projective mosaic. (a) Affine mosaic. (b) 

Projective mosaic [32]. 
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There have been a number of methods using Homography based projective model 

to build panorama of the rink [3, 4, 6]. And then, the tracked positional information of 

skater is projected to the panorama in order to render the tracking results. In these 

methods, the global positional information is not used for tracking the skaters but only for 

rendering the results. 

We utilized the camera compensation method introduced in [32] in which the 

projective transformation between consecutive frames is calculated through feature points 

detection and RANSAC homography estimation. The mosaic corresponding to camera 

motion will then be built according to the homography transformations. Then, the skater 

motion can be captured by background subtraction. 

 

1.3.2 Appearance Modeling 

Tracking high speed skaters in short track speed skating competition suffers from 

severe appearance change including color, shape, texture, scale, etc. In order to robustly 

track the skaters, appearance model updating has to be applied to dealing with the 

appearance change. In the study, we will conduct researches on finding appropriate 

features to represent a skater and developing new feature fusion method to achieve robust 

tracking of skaters. 

The apparent color of an object is influenced primarily by two physical factors: 

the spectral power distribution of the illuminant and the surface reflectance properties of 

the object. Color distributions provide an efficient feature for tracking as they are robust 

to partial occlusion, rotation and scale invariant. Moreover, color is also computationally 

efficient [33]. Edge detection is used to identify points in an image at which the image 

brightness changes sharply or more formally has discontinuities, namely the strong 
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changes in image intensities usually generated by object boundaries. A notable property 

of edge feature is that it is less sensitive to illumination variation compared to color 

feature [34, 35]. As skaters are well trained professional athletes who present standard 

gestures in competitions, silhouette of skaters provides useful information for detecting 

skaters. Besides studying the color and edge features, we will also apply silhouette 

feature to automatic skater tracking. 

Due to the severe appearance changes of skaters in short track speed skating, and 

the fact that fusing multiple features have been widely used to achieve robust tracking, 

we will study on fusing representable features. Current researches on object tracking are 

mainly using linear fusion for fusing multiple features [36-38].   

The general methodology of linear fusion is presented as follows. Given       

     as a feature vector obtained from the  th video source, and             as 

the normalized weight assigned to the   th video source, then the combined feature vector 

is calculated by using sum (Eq. 1.1) or product (Eq. 1.2) operations, which can be used 

by the classifiers to provide a high-level decision.  Linear fusion based methodologies are 

less time consuming, but a fusion system needs to determine and adjust the weights for 

the optimal accomplishment of a task.     

   ∑      

 

   

   (1.1) 

 
  ∏  

  

 

   

 (1.2) 

Despite fusing multiple features in object tracking, updating the appearance model is also 

very important to achieve robust tracking. In this dissertation, the author proposed an RF 
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and template matching based multi-cue fusion and dynamic appearance modeling method 

which combines color, position, silhouette and edge features organically. 

 

1.3.3 Occlusion Handling 

Current monocular methods can be categorized into two major classes in terms of 

dealing with occlusion problems: 1) tracking occluded objects as disappeared [39] or 

roughly merging the grouped objects [30, 40]; 2) applying a kinematic model to predict 

the trajectories of occluded objects [41-43]. The former methods are not suitable for 

accurate object tracking applications such as high speed skater tracking, while the later 

ones are fragile to abnormal object movements.  

In [44], the authors proposed a linear programming relaxation scheme for multiple 

object tracking. It explicitly models tracking interaction, such as object spatial layout 

consistency or mutual occlusion, and successfully tracks multiple persons with heavy 

mutual occlusion. In [45], the algorithm utilized the detected heads’ positions to estimate 

the depth information of objects, and then solved the occlusion problem based on the 

depth relations among objects. The above two methods are suitable for surveillance video 

tracking where the subjects are moving relatively slow and the camera is stationary. 

 However, in our application, the skaters’ positions need to be accurately tracked.  

Therefore, the occluded skaters also need to be tracked. In this dissertation, a occlusion 

relationship based blob growing method is proposed to handle severe occlusion among 

skaters. 
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Figure 1.3. The process flowchart of the proposed method. 

 

1.3.4 Overview of the Methodology 

In this section, we will briefly discuss the basic procedure of the proposed 

methodology. The proposed multi-skater tracking method can be divided into two sub-

procedures: the registration procedure and the tracking procedure. The registration is a 

procedure where homography transformation is employed to achieve three goals: 1) 

extract reference frames to generate global view of rink mosaics; 2) map each of the 

frames to the global rink mosaics so that background subtraction can be used to get the 

foreground blobs of the skaters; 3) find the transformation from the global rink mosaics 

to the rink model so that the skaters’ spatial information on the rink plane can be obtained. 
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Tracking is a procedure where RF skater predicting, template matching and blob growing 

method are performed to allocate and refine skater blob. 

The basic process of the proposed method is illustrated in Fig. 1.3. The thick 

green arrows represent data transactions, and the thin blue arrows depict the processing 

transfers. The registration outputs not only impact on the tracking procedures, but also 

play important roles in outputting the tracking results. The details of the proposed method 

will be discussed in the following sections.  

The differences between the proposed method and the method presented in STS 

[6] can be seen in Fig. 1.3. Firstly, our method utilizes the global positional information 

of skaters for tracking to increase the tracking accuracy, while STS only uses the 

constructed rink panorama for rendering the tracking results. Secondly, by applying RF, 

our method is able to combine color and positional information together and update the 

appearance model. Moreover, edge and silhouette cues are also fused into the algorithm 

using improved template matching.  Because RF and template matching are less 

complicated and are parallelizable, the proposed method is to be less time consuming and 

more accurate than STS. 

The rest of this dissertation is organized as follows: Section 2 describes the 

registration procedure. Section 3 shows the design of random forest based multi-cue 

fusion and dynamic appearance modeling algorithm. Section 4 discusses the skater blob 

correction and occlusion handling procedure. Section 5 depicts the detection of 

disappeared skaters using dynamically updated color appearance model. Section 6 

exhibits the experimental results of the proposed CAT system. 
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CHAPTER 2  

RANDOM FOREST BASED MULTI-CUE FUSING AND DYNAMIC APPEARANCE 

MODELING  

 

2.1 Rink Registration 

Rink registration plays an important role in the proposed method. The basic 

procedure and outputs of rink registration is illustrated in Fig. 2.1. The output of the 

registration procedure includes:      reference frames automatically selected from the 

video sequences; the panorama of the rink which is built by calculating the 

transformations      

                from the rth reference frame to the center 

reference frame                ; the transformations  ̂  

               from the 

ith frame to the spatially nearest reference frame   ; and the transaction  ̃ from panorama 

to rink model.   

The transactions mentioned above are all     homography matrices. In 

computer vision, homography is a relationship describing two images of the same planar 

surface according to pinhole camera model [46]. Similar to [3] and [6], we apply robust 

feature point detection on the two correlated images, and then pass the feature points to 

RANSAC [47] algorithm to estimate the homography matrix. To calculate the translation 

 ̃, we manually annotated the pair of corresponding points on the panorama and the rink 

model, respectively, and then perform RANSAC process. In this study, we adopt the 

automatic reference frame selection method in [6] and select         reference frames. 

The transformation       

  is calculated by accumulating the consecutive transformations 
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from the rth reference frame to the center reference frame. For instance,      

      
   

   
          

    

 

 

Figure 2.1. Rink registration procedure and outputs. 

 

2.2 Multiple Skaters Tracking 

Before tracking procedure starts, we apply the transformation  ̂  

  to transform all 

pixels on the original frame to the panorama image (Fig. 2.2b) based on Eq. 2.1.  

     ̂  

                         (2.1) 

where u is the new transformed pixel position of original frame pixel (x, y),  ̂  

  is the 

homography transformation from the ith frame to the spatially nearest reference frame    , 

and c is a normalization factor. 
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The ROIs of skaters are either manually annotated in the first frame or 

automatically generated according to the tracking results of the previous frames. The 

foreground blobs in each ROI are obtained by background subtraction (Fig. 2.2e).  

 

 

Figure 2.2. The flowchart of tracking. (a) Original frame. (b) The frame panorama after 

transformation. (c) The ROIs of skaters in (b). (d) The global panorama. (e) The detected 

blobs in each ROI after background subtraction. (f) The blobs predicted by RF algorithm. 

(g) Template matching results. (h) An example of blob growing. (i) The pixels (in red) to 

be used for RF training set updating. 

 

 

The RF will be trained with the training set updated in the previous frame. And 

then, we construct the testing set using the detected foreground blobs in each ROI for RF 

classification (Fig. 2.2f). Sequentially, the silhouette and edge-based template matching 

will be performed on the blobs predicted by RF (Fig. 2.2g). To assure that the detected 

blobs are allocated to each skater correctly, we perform a blob growing process with 
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respect to the status of inter-skater occlusion (Fig. 2.2h). Finally, the tracked blobs will be 

used to obtain the features for constructing the training set of RF (Fig. 2.2i). The details 

of the procedure will be discussed in the following subsections. 

 

2.3 Random Forest Classification 

2.3.1  Random Forest 

Random forest is an ensemble learning method for classification and regression. It 

constructs a multitude of decision trees at training time, and outputs the class that is the 

mode of the classes output by individual tree. More specifically, an RF is a classifier 

consisting of a collection of tree-structured classifiers {             } where the 

{  } are independent identically distributed random vectors and each tree casts a unit 

vote for the most popular class of input   [1]. 

The margin function (Eq. 2.2) which measures the extent to which the average 

number of votes at X and Y for the right class exceeds the average vote for any other class. 

The larger the margin, the more confidence the classification has. 

                                             (2.2) 

where I() is the indicator function and     is the average votes of the kth tree. The 

generalization error is as below:  

                     (2.3) 

According to theorem 1.2 in [1], when the number of trees increases, the 

generalization error will converge to                                      

   for all sequences       . Hence, RF is guaranteed to converge given enough number 

of trees.  
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By comparing with Adaboost algorithm, the advantages of using RF can be 

addressed as: 1) the accuracy of RF cannot be worse than Adaboost; 2) RF is relatively 

robust to outliers and noise; 3) RF is less time consuming than bagging or boosting 

algorithms; 4) RF can provide useful internal estimates of error, strength, correlation and 

variable importance; and 5) RF is less complicated and is parallelizable. 

 

 

Figure 2.3. The basic processing flowchart of the random forest learning and 

classification. 

 

 

Due to the state of the art performance and the desirable characteristics mentioned 

above, RF has attracted many attentions in object tracking [29, 48]. However, because of 

the drastic scale change of the objects, none of the existing algorithms dividing the 

objects to smaller parts for feature extraction is suitable for our application. In this paper, 

we develop a novel multi-cue fusion method based on RF about which we will discuss on 

two major aspects - the features of RF and how RF works. The main procedure of 

applying the RF is illustrated in Fig. 2.3. 

 

2.3.2 Feature of Random Forest 

In this section, we will discuss about the features being used in the RF. Given a 

set of training data of the mth skater at time step t:     
                  

  where      is the 
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feature vector and      is the class of the ith sample, and n is the number of samples, i.e. 

the number of pixels on the blobs being tracked at time step t. There is no doubt that      

is equal to m in our application. We will use the position and color features to train the 

RF and to predict the blobs of the corresponding skater after the foreground of the skater 

has been obtained through background modeling. Regarding to this manner, we have 

                                which is a feature vector containing five different elements. 

     and      are predicted polar coordinates of the ith sample w.r.t the origin at the upper-

left corner of the transformed panorama (Fig. 2.2b).     ,      and      are the R, G and B 

values of the ith sample, respectively. By doing so, we are fusing position and color 

features together. 

 

 
Figure 2.4. Dynamic model. The “blue” and “green” stars represent the skater rink model 

position at time step     and    , respectively. The “red” circle indicates the 

predicted rink model position at time step  . And the “red” arrow serves as reference 

direction used to calculate angle       . (a) Dynamic model in straight track. (b) Dynamic 

model in curves. 

 

 

The calculation of the location feature      and      is illustrated by Eq. 2.4 and Eq. 

2.5, respectively.  
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      √      
        

  (2.4) 

 
          (

      

      
) 

(2.5) 

where        and        are predicted x and y coordinates of the ith sample at time step t 

w.r.t the upper-left corner of the transformed panorama (Fig. 2.2b), respectively. The 

predict position is calculated by Eq. 2.6. 

                   ̃   ( ̃   
     ̃   

     )
 
 (2.6) 

where ( ̃   
     ̃   

   ) is the predicted position of the corresponding skater at time step t 

which is represented by the centroid of the blob and will be calculated by a dynamic 

model (Eq. 2.7);  ̃   is the inverse of homography transformation  ̃ ; and c is a 

normalization factor. 

 ( ̃   
      ̃   

   )  ( ̃            ̃          ) (2.7) 

          ̅                             (2.8) 

where ( ̃         ̃       ) represent the rink model position of the ith skater at time step 

   , and          are variances on   and   coordinates which will be calculated 

according to Eq. 2.8. Here  ̅      
 

 
∑       

 
    represents the average speed and        

indicates the distance between rink model positions ( ̃         ̃       )  and 

( ̃           ̃         ). The predicted direction is determined by angle        which is 

defined by Eq. 2.9.      
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 (2.9) 

where (     ) are coordinates of curve center  , and   ,     and     are point sets 

representing the points in straight track, left curve and right curve, respectively.  

 

 

Figure 2.5. The algorithm of random forest generation. 

 

2.3.3 How Random Forest Works 

Given the training set     
  constructed for the mth skater with n samples at time 

step t, the RF is constructed by training procedure. In this dissertation, the RF will be 

reconstructed in the tracking procedure at each time step according to the algorithm 

illustrated in Fig. 2.5. The number of trees of the RF is set to 200 through experiments.  

After the blobs in each ROI have been detected by background subtraction, the 

trained RF will be performed to classify the blobs. The testing data set is constructed 

similarly to the training set. Let  ̅   
     ̅     ̅        

  be the testing data set where  ̅    is 

Algorithm: Generating random forest 

Input: Training set     
 , Number of trees    

Output: Random Forest F 

 

FOR b=1,...,    

Choose bootstrap sample     
  from     

 . 

Construct the bth tree using     
  s.t. 

1) Randomly choose subset of q features s.t. q < 5 

2) Split on only chosen q subset of features. 

END 
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the feature vector of the ith testing sample at time step t;  ̅    denotes the class of the ith 

testing sample, which will be set by Eq. 2.10; and n is the number of testing samples, 

namely the number of pixels in the detected blobs. 

  ̅    {
                     

   

          

           
 (2.10) 

where      is the number of skaters; V(m) denotes the voter value of the mth skater; and 

  is the threshold indicating if the corresponding voter is reliable or not. The threshold   

is set to 50 through experiments. 

 The predicted blobs by RF may not be accurate enough to deal with occlusion 

among skaters, especially when the correlated skaters have similar appearance or even 

wearing the same uniforms. The template matching based blob correction procedure is 

applied to refine the blobs of skaters and handle the occlusion among skaters.  
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CHAPTER 3  

TEMPLATE MATCHING BASED SKATER BLOB DETECTION 

 

Each time when the new RF is constructed it utilizes the tracked blobs as the 

samples for training (Fig. 2.3). If the tracked blobs are not accurate enough, the error will 

accumulate in the subsequent RF training and predicting procedures, which is so called 

“drifting” problem in object tracking.  

In sports video analysis, many methodologies take advantage of using pose model 

of sportsman due to the fact that the poses in many sports are usually standardized. 

Similarly, the skater poses in short track speed skating are basically predictable, and 

legitimately utilizing pose information will improve the tracking performance. To 

bootstrap the problem, we propose a template matching based blob detection and 

occlusion handling method. 

 

3.1 Skater Pose Model Construction 

The basic idea of using skater pose model is: the skater’s pose, silhouette from the 

camera point of view, varies implicitly in a certain range around a position on the rink 

given the similar view angle and position of the camera. Then, we can build a map from 

location to skater pose by learning a skating video, and perform template matching to 

refine the blobs of skaters predicted by RF classification.  

To build the skater pose model, we manually annotate the position and blobs of a 

skater skating in a video of short track speed skating competition for one lap (Fig. 3.1a). 

We then extract the blobs and construct a set of 3D data. By utilizing volume smoothing 

with Gaussian filter (Fig. 3.1b), we obtain a skater pose model       |    , where P 
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is the set of positions that have been manually annotated in the training video and 

transformed to the positions in rink model. We can define the template of skater at time 

step t using                   ||   ||  where p is the skater position in rink model, 

and       is the template of the skater regarding to position p (Fig. 3.1c).  

 

 

Figure 3.1. Pose model construction and utilization. Here, p is the predicted skater 

position of rink model. (a) Skater blobs annotated manually. (b) Skater pose model 

smoothed on temporal axis. (c) The silhouette template at position p in rink model. 

 

We can then retrieve a silhouette template      of the mth skater given its 

position   in rink model. However, in order to deal with the change of view point when 

the skater’s position is different from the training sequence, we have to obtain a subset of 

templates (Eq. 3.1) around the position    and then conduct template matching. Before 

tracking procedure is finished at current time step, we can only use     ̃   
     ̃   

     to 

obtain the set of templates. 

          |         ||   ||      (3.1) 

where   is the threshold confining the scope of the region centered at position  . 

Different from the previous one, here      is a set of silhouette templates instead of one 

template w.r.t rink model position  . Without loss of generality, we have          |  
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          for the mth skater, where      is the number of templates of the skater at 

predicted position  . The threshold   is set to 50 through experiments.  

 

 

     (a)                            (b)                                 (c) 

Figure 3.2. Problems of traditional template matching based on edge and silhouette. The 

red shape represents template, and the yellow region represents target. (a) Template 

matching based only on edge.  (b) Template matching based only on silhouette. (c) 

Template matching based on both edge and silhouette. 

 

3.2 Template Matching Based on Silhouette and Edge 

We will apply template matching based on edge and silhouette, and combine the 

two matching results to find the optimally matched blobs for each skater. The reason 

behind this is: the trained skater templates are more or less different from the current 

skater pose due to the high deformability of the skater in competition. Moreover, because 

the blob size may vary among skaters, we will apply scaling to the templates while 

processing template matching. Edge-based matching only takes into account the 

boundary pixels (Fig. 3.2a) while silhouette-based matching considers only the ratio of 

overlapping pixels (Fig. 3.2b), hence both may not be able to find the optimal solution. 

However, by combining the two features, we may have better opportunity to find the 

optimal (Fig. 3.2c).                    
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(a)          (b)                         (c) 

Figure 3.3. Silhouette-based template matching. (a) Observation silhouette. (b) Template 

silhouette. (c) Silhouette matching. 

 

3.2.1 Silhouette-based Template Matching 

Given a silhouette observation    and a silhouette template   
 , we will drift the 

template on the observation, and calculate each move of the template (Fig. 3.3). We 

perform pyramid processing to lower the matching complexity. The likelihood between 

the observation and the template is proportional to the overlapping rate of the two 

silhouettes, which can be measured by Eq. 3.2. 

         
   

 

√    

   ( 
         

      

   
 

) (3.2) 

where         
   is the likelihood of matching    and   

 ;    is the standard deviation 

which is set to 0.05 through experiments; and    is the overlapping rate which is 

calculated according to Eq. 3.3. 

         
   

|     
 |

|     
 |

 (3.3) 

3.2.2 Edge-based Template Matching 

The edge template can be easily obtained by performing edge detection algorithm 

on a silhouette template. Given  ̂       
 |            is the set of edge templates 



27 

 

 

 

corresponding to the silhouette template set     , the likelihood of edge-based template 

matching (Eq. 3.4) is measured by using a revised Chamfer matching [49] algorithm.  

 

 

Figure 3.4. Occlusion problem in traditional Chamfer matching. Blue edge represents the 

observation while the red edge represents the template. (a) Chamfer matching without 

occlusion. (b) Chamfer matching with occlusion. (c) Mismatch caused by occlusion. The 

edge shown in green will generate big Chamfer matching score which leads to mismatch 

as shown in (c). 

 

 

To handle partial occlusion between skaters, we will revise the standard Chamfer 

matching which is able to deal with small occlusion but fail on severe occlusion. The 

problem is illustrated in Fig. 3.4 where severe occlusion of the observation causes 

mismatch because the occluded part in distance transform image corresponds to big 

distance score.  

We design a variant of Chamfer matching in which only the edge pixels close 

enough to the observation edge will be used to calculate the Chamfer distance. Thus, the 

green edge in Fig. 3.4 will not be employed while calculating the Chamfer distance. 

Moreover, the Chamfer distance should be scaled according to the number of pixels  on 

the template edge which are close enough to the observation edge, here we use      to 

represent the number of selected pixels of which the chamfer distances are smaller than a 
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threshold. Because the bigger      is the more confident the optimal matching is achieved, 

and the scaled Chamfer distance should be inverse proportional to     . 

Given the edge observation    which is obtained by performing edge detection 

algorithm on the silhouette observation   , the likelihood of matching the observation 

with the template is calculated using Eq. 3.4. 

         
   

 

√    

   ( 
(        

  )
 

   
 

) (3.4) 

where    is the likelihood of matching    and   
 ;    is the standard deviation which is  

set to 0.25 through experiments; and    is determined by Eq. 3.5 given the observation 

set         and template set   
     

  . 

         
   

 

| ̂ 
 |

∑    
     

|  
    |

  
   ̂ 

 

 (3.5) 

where  ̂ 
   {  

  |         
|  

    |   }  and   is the threshold (set to 5 through 

experiments) determining if the two edge pixels   
  and    are close enough. 

 

3.2.3 Combination of Edge and Silhouette 

In order to lower the computational complexity of matching, we will apply a 

pyramid processing in which the optimal location of a template is found in the top-down 

layers (Fig. 3.5). The solution searching space is greatly reduced by doing so. To 

combine the edge and silhouette features, we calculate the combined likelihood of the 

two likelihood measurements for each of the templates according to Eq.  3.6.  

          
       

     
       

   (3.6) 
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where        is the likelihood of the ith template    with the pyramid scale  ;   
  and   

  

are likelihood measurement of silhouette and edge with pyramid scale  . In pyramid 

processing, the observation and the template are scaled to      of the original size, and 

then likelihood measurements are performed based on Eq. 3.2 and Eq. 3.4. And the 

optimal position of each template corresponds to the maximum of the likelihoods.  

 

 

Figure 3.5. Pyramid processing of template matching. 

 

After template matching process, we have a set of triplets of the mth skater 

   {   
    

   ̂ 
  |          

 }  where   
 ,   

  and  ̂ 
  are template, state of the 

template (optimal position of pixels of the template on the observation) and the likelihood 

corresponding with the optimal state of the template, respectively. Based on the set    

obtained above, we propose a voting-based method to find the semi-optimal state  ̂  of 

the mth skater which is a set of pixels on the skater. Given that the dimension of the mth 

skater’s observation    is      , we create a set of       matrices 

{  
 |          

 }  where we set each matrix according to the Eq. 3.7. 

    
      {

 ̂ 
                    

 

                       
  (3.7) 
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Then, we will accumulate the matrices and get the vote map  ̂  ∑   
     

 

   
 

where pixels on the skater will have higher value (e.g. more votes), while pixels outside 

skater will have lower value (e.g. less votes). The basic procedure is illustrated in Fig. 3.6 

where pixels with different colored blobs in each matrix represent different likelihood 

(e.g. votes). The semi-optimal state of the mth skater is estimated according to Eq. 3.8.  

  ̂  {     |  ̂             ̂  } (3.8) 

where  ̂  is a set of pixels with position       in the observation of the skater. The 

threshold   is set to 0.5 through experiments, the larger   is the more pixels in  ̂  will 

be selected. 

The blob set  ̂  is as the semi-optimal because it is the optimal blob set voted by 

all the templates, but may either contain the blobs that do not belong to the object or miss 

the blobs that are part of the object due to occlusion and internal difference between the 

template and observation. In order to estimate the optimal state  ̃ , we propose a blob 

growing method to correct the blobs found according to Eq. 3.8 and handle the occlusion 

among skaters. 

 

 

Figure 3.6. Voting-based skater semi-optimal state estimation.  
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CHAPTER 4  

OCCLUSION AND SKATER REAPPEARANCE HANDLING  

 

Short track speed skating is a form of game where several players compete at very 

high speed and occlusion happens among skaters. Because only one handycam is used in 

the CAT system to capture the competition video, the complexity of setting up the system 

is greatly reduced. However, the slower skaters are sometimes out of the scene while the 

camera is panning. In this section, we will discuss about the occlusion handling based on 

blob growing and the reappeared skater capturing based on color voting. 

 

4.1 Occlusion Handling Based on Blob Growing 

4.1.1 Acquisition of Seed Blob 

As mentioned in the previous section, it is necessary to perform blob correction to 

obtain the optimal state of each skater. The basic idea of blob correction is to get the seed 

blob of a skater which is most likely to belong to the object and grow it to find the 

optimal state of a skater. Blob growing method includes two aspects which are inspecting 

the neighboring pixels and merging the pixels with similar gray level. Meanwhile, the 

occlusion will be handled in the blob growing procedure based on the occlusion 

relationship determined using the global spatial information. 

The seed blob is obtained by applying “and” operation between the semi-optimal 

states (Eq. 4.1). However, occlusion has to be considered when obtaining the seed blobs 

because the adjacent parts between two occluding skaters may affect the blob growing 

procedure. We perform a dilate operation on the correlated seed blobs to remove the 

overlapped blobs and make the seed blobs grow according to the occlusion relationship.  
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     ̂    
  (4.1) 

where the seed blobs    of the mth skater is a set of pixels belonging to the intersection 

of sets  ̂  and   
  which are the semi-optimal state and the silhouette observation of the 

mth skater, respectively.  

 

 

Figure 4.1. Occlusion model. In any case, the red skater is occluding green skater because 

it is closer to the camera. 

 

 

 Given the seed blobs    and    of two skaters who are occluding with each other, 

the spatially conflicting pixels in the seed blobs will be removed and new seed blobs will 

be generated. The procedure of finding and removing conflicting pixels in the two sets is 

described by Eq. 4.2 and Eq. 4.3. 

  ̇                     (4.2) 

  ̇                     (4.3) 

where   is a structuring element and its size is set to 5 through experiments; and   is 

dilate operator which is defined as     ⋃       given the binary image  . 
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Figure 4.2. The algorithm of blob growing. 

 

4.1.2 Occlusion Relationship 

The occlusion relationship provides useful information describing the spatial 

relationship between two objects occluding with each other. It is analyzed based on the 

idea that the object closer to the camera is more likely to occlude the others. We define a 

camera position according to the rink model (Fig. 4.1).  

Moreover, according to the process discussed in the previous section, we perform 

dilate operation on the blobs detected in template matching, and check if there is conflict 

Algorithm: Blob growing 

Input: Seed blobs  ̇               of skaters 

Output: Optimal blobs  ̃               of skaters 

  

 Initialize  ̃   ̇                

FOR  each iteration i = 1,…,       

    FOR  each skater m = 1,…,              

        Update edge pixel set   
  using  ̃ 

   ; 

        Update the 8-neighbors set   
          |       

         |  
 |  ; 

        IF    is divisible by 3 

      Check all pixels     
 ,    ̃ 

    and    ̃            ; 

  And,  ̃ 
     if |                 |    

        ELSE     

  Check all pixels     
 ,    ̃ 

    and    ̃            ; 

  And,  ̃ 
     if |                 |   ; 

        END     

        IF || ̃ 
 |  | ̃ 

   ||     

  Set finish growing flag to the mth skater; 

        END     

                END 

END 
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between the blobs of two skaters. If so, the skaters are spatially conflicting, and the one 

closer to the camera is occluding the other.   

 

4.1.3 Blob Growing 

Blob growing algorithm will be performed based on the seed blobs found in 

previous procedure to estimate the optimal state  ̃               of each skater. The 

blob growing procedure is illustrated in Fig. 4.2 where        retrieves the skater who is 

occluding the mth skater; the threshold   determines if the two pixels have similar gray 

level; and the threshold   indicates when to stop growing the blobs of a skater. The 

thresholds   and   are set to 30 and 10 through experiments, respectively. 

The boundary pixels of the seed blob are obtained first, and the 8-neighbors of 

each pixel on the boundary will be studied and the ones whose gray level is close enough 

to the center pixel will be merged into the blob set of the corresponding skater. The 

neighboring pixels belonging to the conflicting area of two occluding skaters are dealt 

with specially. If an occluded skater is under consideration, it will grow slower in the 

conflicting area than in the non-conflicting area. The boundary will then be updated, and 

the study of boundary pixel neighbors will be executed again for the next iteration. The 

procedure will be iterated until most of the boundary pixels have no more neighboring 

pixels.  

 

4.2 Skater Reappearance Handling  

When capturing the competition videos, the camera is panned quickly to follow 

the fast skaters, and the slowest skaters may be lagged too far to be captured by the 

camera. However, it is important to track the skaters when they reappeared. The 
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difficulties of tracking the reappeared skaters include: 1) a skater may disappear at one 

location and reappear at another location with different appearance; and 2) multiple 

skaters may be out of the scene and reappear at different times, therefore the algorithm 

needs to not only detect the reappeared skater, but also assign it with correct identity.   

 

 

Figure 4.3. Skater disappearance and reappearance handling state machine. 

 

In this section, we proposed a template dictionary updating and color voting-

based method to detect and identify the skater reappeared from outside of the scene. We 

employ a state machine for each skater to handle the disappearance and reappearance 

(Fig. 4.3). After the skater tracking process introduced in previous sections is executed, 

the template dictionary of each skater is updated. Then, an out-of-scene event detection 

procedure is performed to detect if a skater is out of the scene. The tracking procedure 

will be continued for the skaters still in the scene, and the out-of-scene skater will be 

registered as lost. Meanwhile, the template dictionary updating procedure of the lost 

skater will be stopped, and the reappeared skater detection process will be initiated. The 

reappeared skater identification procedure will not be conducted until a lost skater is 
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detected. The identified skater will be deregistered from the lost skater table before 

transferred back to skater tracking procedure.    

 

Figure 4.4. Online template dictionary construction of a skater. The top row represents 

the tracked skater bounding box. The second row denotes the HS 2D histogram generated 

according to the pixels of the skater in the bounding box. The third row indicates the rink 

position of the corresponding templates. 

 

4.2.1 Template Dictionary 

Due to the fact that a skater’s appearance varies greatly during competition, we 

build a template dictionary for each skater dynamically while tracking, and record the 

tracked rink position of each skater which is served as the index for the corresponding 

template dictionary. We represent the template dictionary of the  th skater with    and 

    {  |       } (4.4) 

where    indicates the hue-saturation (HS) 2D color histogram of the  th skater, and   is 

the skater position in rink image      . In this paper, the hue-saturation-value (HSV) color 

space was used to build the histogram template, without using channel V, to make the 

algorithm less sensitive to the lighting condition. 
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When tracking the skaters, the tracked blob of each skater  ̃  will be used to 

obtain the pixels on the original image which are utilized for generating the HS 2D color 

histogram. The online template dictionary construction of a skater is illustrated in Fig. 4.4. 

In the template dictionary, each template    can be retrieved by a rink position  .       

 

4.2.2 Reappeared Skater Detection and Identification 

After the tracking procedure, the out-of-scene event detection will be performed 

to determine if a skater is out of the scene by checking if the tracked skater bounding box 

lies on the boundary of the camera scene. If a skater   is detected on the boundary of the 

scene, the skater identity will be registered to a lost skater set by      ⋃   . When the 

set    is not empty, there is at least one skater out of the scene and the reappeared skater 

detection procedure will be performed to detect if a skater reappears.  

In the reappeared skater detection procedure, background subtraction is performed 

to obtain the candidate blobs. A track model is utilized to check if the candidate blob is 

on the track. If so and if the detected blob is large enough to be a skater, a color voting 

based reappeared skater identification procedure will be executed to assign correct skater 

identity to the detected blob (Eq. 4.5).  

         
      

            
       

‖   ‖  (4.5) 

where   is the estimated reappeared skater identity;    is the HS 2D histogram of the 

detected candidate skater at rink position  ;    is the skater template in the skater 

template dictionary; and      is the Bhattacharyya distance [50] of two HS 2D 

histograms, which is defined by Eq. 4.6. 
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(4.6) 

where    is the Bhattacharyya distance and the smaller the it is, the more similar the 

histograms are;   is the number of bins of each histogram. 

 Based on Eq. 4.5, we perform the reappeared skater identification. After the 

candidate blob of a skater is detected by background subtraction, the rink position of the 

blob centroid   is calculated. For each template    in dictionary    where      , the 

distance between   and   will be examined, and the template closest to   will be selected 

for color voting. Therefore, there will be only one selected voter for each lost skater 

identity   in   . The Bhattacharyya distance    between the HS 2D histograms of the 

detected reappeared skater and each of the voters will be calculated, and the one with 

smallest distance will be chosen whose dictionary index   will be used as the reappeared 

skater identity. Finally, the reappeared skater identity will be deregistered from    and the 

tracking procedure will be performed to the reappeared skater. 
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CHAPTER 5  

EXPERIMENTS AND ANALYSIS 

 

The effectiveness and robustness of the proposed methodology are proved through 

experiments. We design the experiments to prove that the algorithm works robustly; and 

to prove that it works better than state of the art methods. Two video sequences of skaters 

in competition are utilized for experiments. We apply the proposed method to tracking 

multiple skaters in the testing video sequences, and analyze the outputs including skaters’ 

trajectories, velocities, tracked blobs, etc. We also execute the existing published state of 

the art algorithms on the video sequences, and compare the tracking results with that of 

the proposed algorithm qualitatively and quantitatively. 

 

5.1 Tracking Result 

We test the proposed method on three video sequences including “Men’s 500 

meters,” “Women’s 500 meters” and “Men’s 500 meters semifinal” containing 1071 

frames, 1156 frames and 1084 frames, respectively. The “Men’s 500 meters semifinal” 

contains the scenario where two skaters skate out of the scene and reappear frequently. 

The method is executed on a desktop with Intel(R) Core(TM) I5 2.20GHz CPU and 4GB 

memory. The average processing time of the video sequences is 5.7 seconds per frame. 

However, as a comparison, STS takes 18.7 seconds per frame on average. 

The tracked blobs of skaters are presented in Fig. 5.2 and Fig. 5.3. We observe 

that the scale of skaters change drastically in the video sequences, and complicated 

occlusion happens frequently among skaters. In order to better exhibit the capability of 

the proposed method to resolve the challenges, we present the skaters in each of the 
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original frames. In Fig. 5.2, the frames 256, 337, 471, 537, 565, 643, 687, 906, etc. show 

severe occlusion among skaters, and we find that the proposed method can accurately 

track the blob of each skater even though when the skater is occluded by another skater 

wearing the same uniform. In Fig. 5.3, similar situation is exhibited in frames 81, 113, 

144, 201, 271, 373, etc. Moreover, we notice that sometimes occlusion happens among 

skaters when their scales are very small referring to frames 175, 643 and 1043 in Fig. 5.2, 

and frames 201 and 727 in Fig. 5.3. But the proposed tracker is still able to achieve 

satisfactory tracking result. 

 

 

Figure 5.1. Skater image position selection based on rink position. The red star represents 

the image position selected to calculate the corresponding rink model position. The 

orange box indicates the skater bounding box tracked in image. 

 

As mentioned previously, the trajectories of skaters convey valuable information 

to improve their strategies. We calculate skater location in rink model and generate the 

trajectory for each of the skaters. Instead of using center location of a target, we take into 

account the skater location on ice (Fig. 5.1). After a skater’s bounding box is obtained 
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through tracking, the image position   
     

 is figured out by considering the previous 

location     
     in rink model (Eq. 5.1).  

 

 

Figure 5.2. Tracking results of the video Men’s 500 meters competition. The video 

contains 1071 frames. The upper row is the tracked skater blobs with the reference of 

skaters in the original frame. The lower row represents the trajectories of each of the 

skaters. 
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where                   represents the skater bounding box in image,            is the 

coordinates of the top left corner;           indicates the dimension of the bounding box; 

and   ,     and     are point sets representing the points in straight track, left curve and 

right curve, respectively. The procedure is illustrated in Fig. 5.1. The skater rink model 

location at current time step is calculated according to Eq. 5.2.  

   
       ̃  (    

     
     

     
  )

 
 

(5.2) 

where  ̃ is translation from panorama to rink model. We see in Fig. 5.2 and Fig. 5.3 that 

the trajectories of skaters are smooth and accurate. 

Besides, we calculate the velocities of each of the skaters according to Eq. 5.3. 

     |    
       

    |    (5.3) 

where   is the frame rate of the video in frames per second;   
     is the tracked skater 

location in rink model at the current time step  ; |    
       

    | is the image distance in 

pixel; and   is a constant ratio indicating the number of pixels per meter.   

We present the calculated velocities of skaters in Fig. 5.4  where we observe 

several facts: 1) the skaters’ directions vary drastically at the beginning because they are 

trying to accelerate by quickly pushing their legs one after another. However, they still 

need to finish the first lap to reach the maximum speed; 2) they always slow down when 

they are going into the corner, and accelerate when they are going out of the corner; 3) 

the speed of a male skater is obviously greater than that of a female skater by comparing 

the skater speed in Fig. 5.4a and Fig. 5.4b. 
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Figure 5.3. Tracking results of the video Women’s 500 meters competition. The video 

contains 1156 frames. The upper row is the tracked skater blobs with the reference of 

skaters in the original frame. The lower row represents the trajectories of each of the 

skaters. 
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Moreover, we calculate the average speed of each skater and exhibit the result in 

Fig. 5.5. We notice that the skater maintaining higher average speed in competition tends 

to have better standings. Therefore, we may utilize the average speed calculated in the 

past laps and the current position of the skater to estimate the remaining time to the end 

point by “                                               .” In Fig. 5.5a, the 

predicted standings at the end of the fourth lap is “Skater 2, Skater 3, Skater 1 and Skater 

4,” while the correct standings at the end point is “Skater 2, Skater 3, Skater 4 and Skater 

1.” The error is because the skaters in Men’s video are so close to each other and their 

speeds are similar too. In Fig.5.5b, the predicted standings at the end of the fourth lap is 

“Skater 2, Skater 1, Skater 4 and Skater 3” which is identical to the standings at the end 

point. 

We also tested the reappeared skater detection and identification algorithm on the 

video “Men’s 500 meters Semifinal” where two skaters disappear and reappear 

frequently. The tracking result regarding to this manner is shown in Fig. 5.6. We see that 

the deep green skater is out of the scene in the frames 493, 543, 620, 702, 774, etc., and 

reappear in the frames 573, 808 and 1044. The blue skater is out of the scene in frame 

744 and reappears in frame 774. The proposed algorithm is able to identify the 

reappeared skaters correctly. In frame 744, both deep green skater and blue skater are out 

of the scene, and the proposed algorithm can still successfully identify the skaters when 

they reappear sequentially.   
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Figure 5.4. Velocities of tracked skaters. Velocity consists of quantity (speed) and 

direction which are represented by solid line and dashed line, respectively. (a) Skaters’ 

velocities of video “Men’s 500 meters.” (b) Skaters’ velocities in video “Women’s 500 

meters.” 
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Figure 5.5. Average speed of skaters calculated every half of a lap with predicted 

remaining time in seconds. (a) Average speed of video “Men’s 500 meters.” (b) Average 

speed of video “Women’s 500 meters.” 
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Figure 5.6. Tracking results of the video Men’s 500 meters semifinal competition. The 

video contains 1084 frames. The upper row is the tracked skater blobs with the reference 

of skaters in the original frame. The lower row represents the trajectories of each of the 

skaters. 
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5.2 Comparison 

In this section, we will compare the tracking results of the proposed algorithm 

with state of the art tracking algorithms. To the best of our knowledge, the only multiple 

skaters tracking algorithm published in recent years is STS [6]. We made a qualitative 

comparison to it with respect to the tracked blobs and the corresponding result is shown 

in Fig. 5.7. In frames 48, 153 and 211, the STS allocates large amount of pixels wrongly 

to the skater wearing the same type of uniform when the two skaters are close to each 

other. The skaters in frame 111 are close to each other, and the skaters in frame 288 are 

far from each other. However, the STS still classifies some pixels wrongly to a skater 

wearing a different uniform. As a comparison, the proposed method classifies pixels 

perfectly to each skater. 

In order to more accurately demonstrate the advantages of the proposed method, 

we adopt the evaluation methodologies introduced in [51] and quantitatively compare our 

results with STS
 
as well as recently published general purpose tracking methods. In [51], 

the authors compare many state of the art tracking methods on the same public data sets. 

Among these methods, we choose the well performed ones including ASLA [52], CSK 

[53], CXT [54], CT [55], SCM [56], Struck [57], etc.  

Location error is a widely used evaluation metric in tracking. The skater location 

is calculated according to Eq. 19, and the location error is defined as the Euclidean 

distance in pixels between the locations of the tracked skaters and the manually labeled 

ground truths. Then the average location error over all the frames of all skaters in one 

sequence is used to summarize the overall performance for that sequence. We adopt 



49 

 

 

 

precision plot as the evaluation metric which shows the percentage of frames whose 

location error is within the given threshold. 

 

 

Figure 5.7. Qualitative comparison with method STS. The first column is original frame. 

The second column is the tracked blobs of the proposed method. The third column is 

tracked blobs of STS. 
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Figure 5.8. Plots of testing sequences. The performance score for different tracker is 

shown in the legend. The left column and right column illustrate the precision and 

success plots of sequences “Men’s 500 meters” and “Women’s 500 meters,” respectively. 

 

Bounding box overlap is another evaluation metric which measures the 

performance based on the overlapping ratio between the bounding boxes of tracked 

targets and the manually annotated ground truths. The overlap score is defined as 

  
|   |

|   |
, where   and   represent the ground truth bounding box and tracked bounding 
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box, respectively;   and   denote the intersection and union of two regions, respectively; 

and | | indicates the number of pixels in region  . The success plot exhibits the ratios of 

successful frames at the thresholds varies from 0 to 1, and “successful frame” represent 

the frame of which the average overlapping score over all skaters is bigger than the 

threshold. 

The precision plots and success plots of the testing sequences are shown in Fig. 

5.8. The testing sequences “Men’s 500 meter” and “Women’s 500 meter” contain 1071 

and 1156 frames, respectively. Therefore, ratio 0.01 of frames approximately corresponds 

to 10 frames. 

In precision plots, the proposed method performs slightly better than STS when 

threshold is smaller than 5 pixels (representing 25 cm in real rink), but is significantly 

better than STS when threshold is bigger than 5 pixels. For those general purposed 

tracking methods, CSK and CT perform the best on Men’s and Women’s sequences, but 

can only achieve around 0.2 and 0.4 at error threshold 35, respectively. The average 

errors of the proposed method and STS over all frames of both sequences are 6.35 and 

7.69, while the corresponding standard deviations of the two methods are 2.54 and 3.98, 

respectively.        

In success plots, the proposed method is significantly better than STS on both 

sequences at any thresholds. Similarly to precision plots, CSK and CT are the best 

performing general purposed tracking methods. However, the success rates of them drop 

below 0.1 at overlap threshold 0.5, while STS and the proposed method have more than 

0.75 and 0.9 success rate, respectively. 
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In summary, from the aspects of precision and bounding box overlap, we found 

that the proposed method is able to track the skaters more accurately and more robustly 

than STS. The general purposed state of the art methods fail quickly on the testing 

sequences due to the challenges mentioned early in this paper.   
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CHAPTER 6  

CONCLUSION 

 

Because of its popularity, short track speed skating has been raising continuous 

attentions in many countries. A video-based computer-aided training (CAT) system is 

very helpful for skaters to analyze their performance in the competition and improve their 

strategies in the future. In response to this demand, we proposed a random forest (RF) 

based multi cue fusion multiple skaters tracking and analyzing methodology.  

The main contributions of the proposed method are: 1) global positional 

information of skaters is utilized for tracking to increase the tracking accuracy; 2) a new 

RF based color and positional information fusing and appearance updating method is 

developed; 3) an improved template matching algorithm is developed to fuse edge and 

silhouette cues; and 4) the challenging problems including object scale change, severe 

occlusion, camera motion and non-rigid object tracking are solved in the context of short 

track.     

 The proposed CAT system greatly reduces the requirement of hardware settings 

and the system cost by utilizing only monocular videos captured using a single handycam. 

Thorough experiments have been made to illustrate the effectiveness and robustness. 

Both qualitative and quantitative comparisons are made between the proposed CAT 

system and the state of the art methodologies, and the outperformance of the proposed 

method has been exhibited. The spatial information of eat skater is accurately generated, 

which is valuable for both skater training and sports broadcasting.    
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 Worked directly with Chief Scientist of efficient wireless power 

transferring pads design and simulation using JMAG 

 Designed the capacitor pre-charge circuitary 

 Put forward the state machine of the bus control system, and 

participated the high level firmware system design 

 Designed and implemented the firmware of power charging 

controller on vehicle 

 Developed GUI with C# for firmware inspection, data logging and 

function tests  

2012 - 

present 

 Research Assistant, Energy Dynamics Lab, USU Research 

Foundation  

 Worked directly with Chief Scientist of developing an Intelligent 

Occupancy System which aims at turning raw data from optical 

and/or infrared sensors into intelligent information and 

automatically controlling lights, thermostat, and air conditioner in 

order to save energy 

 Developed a real-time face tracking and head gesture estimating 

algorithm, and further implemented a face orientation driven auto 

advertising system with C++ and OpenCV on a platform of 

embedded Windows7   

 Developed a large scale gaze estimation algorithm which is able to 

produce 360 degree yaw face orientation with C++ and OpenCV 

 Designed and implemented the software of occupant detection and 

lights control with C++ on Linux, which is able to turn on, turn off, 

dim or brighten different lights in the room according to the 

occupant’s location   

 Designed and implemented a robust people counting algorithm 

based on single webcam with C++ and OpenCV 

2010 - 2012 

 Graduate Research Assistant, CVPRIP Lab, Computer Science 

Department, USU  

 Developed a fast road crack detection and classification algorithm 

using C++ and OpenCV 

 Designed and implemented automatic road crack detection software 

with MFC, C++ and OpenCV, which     

 Developed an efficient multi-cue fusion and dynamic appearance 

modeling based multiple skaters tracking algorithm with Matlab  

 Developed several efficient algorithms for human pose tracking 

using C++ and OpenCV 

2010 – 2014 
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 Graduate Research Assistant, Computer Science Department, 

Harbin Institute of Technology, China 

 Participated in the development of automatic bill sorting machine 

(CF3000) for Harbin Billsorter Co., Ltd, and developed a firmware 

for gate control module and the CAN BUS driver for different chip 

boards in the system with C   

 Managed software development (three students involved) of a 

vision system of patrolling robots for Shandong Luneng Int. ech. 

Co. ltd., conducted the system design and detailed design, and 

implemented main control module and scene matching module of 

the system with C++ and MFC 

2006 - 2009 

 Software Engineer, Embedded Software R&D Center, Neusoft 

Group Ltd. 

 Participated in the R&D of two versions of  Sony-Erricson 

multimedia cellphone 

 Worked on high level design, low level design, implementation and 

unit test of multimedia modules including movie, camera and radio 

 Took charge of the software release version control of the whole 

R&D team including software revision control, release documents 

review and submission, etc. 

 Led the multimedia testing team (four employees involved), and 

participated in test case design, grading test and stress test 

2003 - 2004 

Leadership & Activities  

 
Monitor, Harbin Institute of Technology, Harbin, China  

 Class monitor of 30+ graduate students 

 Initiated money raising in the class for Sichuan Earthquake 

(100,000 casualties) in 2008 

 Organized a Torch Relay activity of the class members for Beijing 

Olympics 

2005 - 2008 

 
Monitor, Harbin Institute of Technology, Harbin, China  

 Class monitor of 30+ undergraduate students 

 Managed the class members to design and make a large poster for a 

China National Day Poster Design Competition in Computer 

Science Department, Harbin Institute of Technology, and won the 

second 

2000 - 2003 

http://billsorter.win.mofcom.gov.cn/en/plate01/index.asp
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Computer Skills  

  Proficient: C/C++, Matlab, MFC, OpenCV, MS Visual Studio, Freescale Code 

Warrior, LaTex,  MS Office, Windows (OS) 

 Good: C#, UML, JMAG, Linux (OS) 

 Familiar: JAVA, XML, Microsoft Kinect for Windows SDK  
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