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models of response.
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1. INTRODUCTION

What happens when sunlight strikes a window pane? We all know that
some of the light is transmitted and some is reflected. Some of us may
also be aware that a tiny fraction is absorbed within the pane. Why do
these things happen? The answer to this question is not so straightforward.
Indeed, this question is the essential motivation for this monograph.

In general terms, the answer goes something like this. The electric and
magnetic fields associated with the sunlight interact with the charge in
the glass, causing the charge to accelerate. Of course, accelerating charge
produces its own light. So in addition to the sunlight, the light produced by
each bit of accelerating charge also drives all of the other bits of charge. The
sunlight thus induces a rather intricate dance of charges and fields within
the glass. The impinging sunlight and the local-charge-produced light then
interfere with each other to produce the total reflected and transmitted
fields, which we observe as the transmitted and reflected sunlight.

So why does a piece of metal react to sunlight rather differently than
does a piece of glass? It cannot be due to differences in the fundamental
charge carriers, as these are identical for each material. It could potentially
be due to the density of charge carriers, and this does have some effect,
but it is relatively minor. Rather, the differences in response between a
piece of glass and a piece of metal are largely attributable to the differences
in internal forces that also act on the charge carriers while the sunlight is
shining on the material.

Let’s say that we wish to quantitatively determine the transmitted and
reflected fields (as well as the fields inside the material) when sunlight hits
the surface. How do we go about figuring this out? There are basically two
approaches that we can use. The first is to explicitly consider the interaction
of an infinitesimal bit of charge with the sunlight and light generated by
other bits of charge to develop integral equations for the total electric and
magnetic fields at each point in space. This approach has the advantage
mimicking the above qualitative description of the physics. However, it is
somewhat cumbersome in that one must necessarily set up and then solve an
integral equation to find the fields. The more canonical method is to start
with the differential form of Maxwell’s equations and proceed from there.
In many cases one need only solve a (relatively well known) differential
equation to find the fields. This will be our approach.

No matter which approach one takes, one must deal with the motion of
the charge in the solid under the influence of (i) the macroscopic electric and
magnetic fields described by Maxwell’s equations and (ii) the microscopic,
internal forces inherent in the material of interest. That is, one must develop
(and then solve) equations of motion (either classical or quantum) that
describe the response of the charge when the system is driven by external
fields (such as those contained in sunlight). In general, these solutions lead
to the determination of material response functions, which characterize the
macroscopic response of the material to electric and magnetic fields.

Perhaps the most important of these response functions is the frequency-
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dependent dielectric function ε(ω), which relates the polarization of the
charge to the electric field. We shall spend significant time discussing various
classical equations of motion for the charge and the consequent response
ε(ω). We also look at several other important response functions, which
include the complex index of refraction N(ω), optical impedance Z(ω), and
conductivity σ(ω). Although in many cases the four response functions have
simple relationships among them, they are all important because each one
tells us something different about the interactions of the EM fields with the
solid. The index of refraction provides information on the spatial nature
of the fields, the optical impedance relates the magnetic and electric fields
in the material to each other, and the conductivity connects the current
density to the electric field.

2. BASIC FIELD EQUATIONS

In their fundamental form (written in terms of the E and B fields only)
Maxwell’s equations for the averaged electromagnetic fields in matter can
be expressed as

∇ · E =
ρ

ε0
, (1)

∇ ·B = 0, (2)

∇× E = −∂B

∂t
, (3)

and

∇×B = µ0 j + µ0ε0
∂E

∂t
. (4)

Respectively, Eqs. (1), (3), and (4) are known as Gauss’ law, Faraday’s law,
and the Ampère/Maxwell (A/M) law. Equation (2) has no special name
attached to it. Written this way the charge and current densities ρ(r)
and j(r) that appear in Gauss’ and the A/M law are due to all of the charge
that may be present.

While Eqs. (1) – (4) are the most fundamental form of the electromag-
netic field equations in matter, they are usually not particularly useful.
This is because one cannot independently specify ρ(r) and j(r). Indeed, it
doesn’t take much thought to realize that these two densities are influenced
by the fields E and B.

Four other equations are worth noting at this point. First, charge con-
servation,

∂ρ

∂t
+∇ · j = 0, (5)

is implied by Maxwell’s equations. Second, the (Lorentz) force on a particle EX 1

of charge q and velocity v is given by

F = q (E + v ×B). (6)
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And lastly, the two fundamental constants of electromagnetism [the free
space (or vacuum) permeability µ0 = 4π×10−7 T m/A and permittivity
ε0 = 8.8542×10−12 C2/(N m2)] can be used to define a two other constants,

c =
1

√
µ0ε0

= 2.9979× 108 m/s, (7)

the speed of light propagating in a free space, and

Z0 =

√
µ0

ε0
= 376.73 Ω, (8)

which is known as the impedance of free space.

3. CANONICAL FORMS OF GAUSS AND AMPÈRE/MAXWELL

3.1. Charge and Current Densities

Gauss’ law and the A/M law are commonly written in forms where contri-
butions to the charge and current densities have been divided into several
components. The assignment of particular types of charge to particular
components is (at a fundamental level) completely arbitrary. There are,
however, several conventions that are typically used in certain situations.

At the introductory-physics level the charge density is often separated
into charge that is bound to atoms or molecules in the solid and charge that
is free to move throughout the solid (such as the charge associated with
conduction electrons). In this case the total charge density is divided as
ρ = ρb + ρf .

For a dc electric field this division is quite useful. The free-charge density
ρf is associated with any current density j while the bound-charge density
ρb is associated with any polarization P of the material. However, when
one starts to think about an applied ac field (such as that due to an elec-
tromagnetic wave), the division of the charge density into bound and free
components becomes less distinct because both types of charge contribute
to the current density in the material.

At a more sophisticated level, then, the bound and free charge are not
formally differentiated (although in any specific case one is generally cog-
nizant of the existence of both types of charge). In this case the convention
is to lump the free and bound charge together in a single charge density ρp
that is used to define the polarization P of the material. If there is no other
charge around, then this is the total charge density. That is, ρ = ρp. Charge
conservation (expressed as the continuity equation) can then be used to find
the current density j.

Sometimes, though, there is some other charge density of interest, which
we denote as ρext, where ext represents external (although ρext may reside
inside the material of interest). This charge density is associated with charge
that we specify in some manner, independent of the E and B fields. In this
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case one typically writes ρ = ρp + ρext, where, again, ρp includes both the
bound and free charge of the material.

All three of these situations can be subsumed under the following general
scheme. We divide the charge density into ρp and any other charge,

ρ = ρp + ρother, (9)

keeping in mind that the free charge ρf may be associated with either ρp
or ρother, depending upon the situation. A consequence of this is that the
meanings of the polarization field P (which, again, we always associate with
ρp) and (consequently) the displacement field D (see below) depend upon
the assignment of the free charge density.

At times it is desirable to divide the charge unconventionally. For ex-
ample, as we see below when discussing the relaxation of charge density
fluctuations, it can be convenient to divide the bound charge itself so as
to include only part in ρp, with the remainder in ρother. The major lesson
to be taken away from this discussion is that a number of choices exist for
describing the charge density, and the choice that is made depends upon
the problem at hand. Caveat emptor !

Once the charge-density assignments are chosen, the current-density di-
vision is straightforward. It is divided into three components,

j = jp + jother + jM . (10)

The first two current densities are associated with ρp and ρother, respec-
tively, while the third component is related to the magnetization M of
the material

jM = ∇×M. (11)

The magnetization M is produced by intrinsic spin and/or motional degrees
of freedom associated with electrons in the solid. In the materials that
we shall discuss here the average values of the spin and orbital angular
momentum are close enough to zero that M can be neglected. We do note
that Eq. (11) implies that any magnetization M (even if it is only from
intrinsic spin) has an associated current density jM .

3.2. Gauss’ Law

To convert Gauss’ law into canonical form we start by using the densities
ρp and jp to define the polarization field P via

ρp = −∇ ·P (12)

and

jp =
∂P

∂t
. (13)

(Notice that this definition of P is explicitly consistent with ρp and jp satis-
fying the continuity equation.) We now use Eq. (12) to replace ρp in Eq. (9)
and then use that result in Eq. (1), which transforms Gauss’ law into

∇ · (ε0 E + P) = ρother. (14)
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This last equation naturally leads to the definition of the displacement
field

D = ε0 E + P, (15)

and the compact, canonical form of Gauss’ law,

∇ ·D = ρother. (16)

There is nothing new in this form of Gauss’ law that was not in the original.
All that has happened is that ρp has been tucked away in the displacement
D.

In order to solve a typical problem involving Gauss’ law the response of
the charge density to the electric field E must (at some level) be known. In
principle, this response can be obtained by solving an appropriate equation
of motion for the charge density [where qE is one of (typically) several
forces acting on the charges]. Several examples of this approach are worked
out below. However, sometimes it suffices to simply assume some general
property about the charge-density response.

The simplest assumption is to let the polarization field P [which is related
to the charge via Eqs. (12) and (13)] be proportional to the electric field E,

P = ε0χeE. (17)

Such an assumption is generically referred to as simple linear response.
In Eq. (17) the quantity χe is known as the electric susceptibility of the
material. Under this linear-response ansatz we can combine Eqs. (15) and
(17) to see that the displacement vector is also proportional to the electric
field,

D = ε0 (1 + χe) E. (18)

This last equation leads to the definition of another quantity, the (electric)
dielectric constant of the material,

ε = 1 + χe, (19)

and the rewriting of Eq. (18) as

D = ε0εE. (20)

The combination ε0ε is known as the (electric) permittivity of the ma-
terial. Because ε is the ratio of the permittivity of the material to the
permittivity of free space, it is sometime referred to as the relative per-
mittivity of the material.1

1 To make matters worse, a modern SI convention is to use the symbol ε to represent

the permittivity ε0 ε [rather than the dielectric constant (or relative permittivity)].

However, due to the rather universal (and historic) use of ε to represent the dielectric

constant, we shall stick with this convention.
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3.3. Ampère/Maxwell Law

To convert the A/M law into canonical form we first combine Eqs. (10),
(11), and (13) as

j = jother +
∂P

∂t
+∇×M (21)

and then substitute this expression for j into the A/M law [Eq. (4)], which
yields

∇×
(

B

µ0

−M

)
= jother +

∂

∂t
(ε0E + P) . (22)

This equation motivates the definition of the vector field

H =
B

µ0

−M, (23)

which, like B, is also often called the magnetic field. However, it is probably
best to simply refer to this field as the H field. With this definition the A/M
law becomes

∇×H = jother +
∂D

∂t
. (24)

As in the case of the canonical form of Gauss’ law, there is nothing new in
this form of the A/M law. All that has happened is that the current densities
jp and jM have been hidden away in the vectors D and H, respectively.

Similar to the case of Gauss’ law above, in order to solve a problem
involving the A/M law, one must be able to connect the response of the
system (in this case the current density jM hidden in the magnetization M)
to the magnetic field B. In this case simple linear response is traditionally
introduced via

M = χmH, (25)

where χm is known as the magnetic susceptibility of the material.2 With
this linear-response assumption Eq. (23) for the H field becomes

H =
B

µ0 (1 + χm)
, (26)

which leads to the definition of the relative permeability µ of the material

µ = 1 + χm. (27)

With this definition Eq. (26) can be simply expressed as

H =
B

µ0µ
, (28)

2 The astute reader will notice that the parallel with Gauss’ law and the electric field is

not quite exact. If it were, the magnetic susceptibility χm would be defined in terms

of the B field rather than the H field.
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Analogous to the electric-field case, the combination µ0 µ is known as the
(magnetic) permeability of the material. For nonmagnetic materials that
are our main interest here, the magnetic susceptibility χM is practically
zero, making µ = 1.3 Thus, in these circumstances one simply has

H =
B

µ0

. (29)

3.4. All Together Now

We now summarize our results for the canonical form of Maxwell’s equa-
tions in matter. With no assumptions regarding the response of the charge
to the fields, the equations can be written as EX 2

∇ ·D = ρother. (30)

∇ ·B = 0, (31)

∇× E = −∂B

∂t
, (32)

and

∇×H = jother +
∂D

∂t
, (33)

where D and H are given by Eqs. (15) and (23).
When simple linear response (D = ε0εE, B = µ0µH, and ε and µ both

constants) is assumed, these equations can be re-expressed in terms of the
fundamental fields E and B as

∇ · E =
ρother
ε0ε

. (34)

∇ ·B = 0, (35)

∇× E = −∂B

∂t
, (36)

and

∇×B = µ0µ jother + µ0µ ε0ε
∂E

∂t
. (37)

Notice that these equations are identical to their original fundamental form
[Eqs. (1)–(4)] but with the total charge replaced by other charge and the
constants ε0 and µ0 replaced by ε0ε and µ0µ, respectively. The beauty of
expressing Maxwell’s equations in this form is that when ρother and jother
are zero, the equations are homogeneous in the fields E and B.

3 Note that this is consistent with our earlier discussion where we pointed out that M

and (thus) jM are zero for most materials.

10



D. M. Riffe Canonical Models of Dielectric Response

4. ELECTROMAGNETIC WAVES

4.1. Constant ε and µ

One of the coolest aspects of Maxwell’s equations is that they admit
traveling wave solutions for the electric and magnetic fields. These elec-
tromagnetic (EM) waves can travel through vacuum, and when the waves
encounter a material they can continue to propagate through the material,
but their propagation is modified by the presence of the charge within ma-
terial. In the next several sections we discuss this propagation. As we shall
see as these sections are developed, the relative permittivity ε (which will
later become a function of frequency) is the key element in understanding
EM waves in most materials. The relative permeability can also be key, but
because typically µ = 1, its effects are usually not as interesting as those
due to ε.

4.1.1. Wave equation

In order to derive this wave behavior of the fields, it is useful to derive
uncoupled equations for the propagating electric and magnetic fields. We
start by assuming that (i) all free and bound charge in the material is
described by ρp and jp, and (ii) there is no external charge (so that ρother = 0
and jother = 0). Here we also assume simple linear response. That is, the
solid is described by constants ε and µ. With these assumptions the A/M
law [Eq. (37)] simplifies to

∇×B = µ0µε0ε
∂E

∂t
. (38)

Taking the curl of Eq. (36) and using Eq. (38) to replace the curl of B gives

∇×∇× E = −µ0µε0ε
∂2E

∂t2
. (39)

This equation can be simplified by noting for any vector a that ∇×∇×a =
∇ (∇ · a)−∇2a. This allows us to write

∇ (∇ · E)−∇2E = −µ0µε0ε
∂2E

∂t2
. (40)

We now appeal to Gauss’ law,

∇ · (ε0εE) = 0, (41)

which, because ε0ε is a nonzero constant, allows us to see that the electric
field is described by the standard wave equation

∇2E = µ0µε0ε
∂2E

∂t2
. (42)

An equation identical to Eq. (42) can be derived for the magnetic field. EX 3
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4.1.2. Index of refraction

Those familiar with the wave equation will immediately identify the con-
stant µ0µε0ε in Eq. (42) as 1/v2, where v is the propagation speed of
waves governed by the wave equation. And because the wave propagation
speed in vacuum is given by 1/

√
µ0ε0 = c,4 we have the result

v =
c
√
µε
. (43)

When assuming simple linear response, one is usually interested in the
case where µ = 1 and ε > 1. Then

√
µε > 1, making the wave speed v less

than the speed of light c. Furthermore, insofar as the index of refraction
n of a material is defined as the ratio c/v, we also have

n =
√
µε. (44)

For those less familiar with the properties of the wave equation we now
review some of the relevant ideas associated with the propagation of waves
described by Eq. (42). In particular, we consider the plane-wave solution

E(r, t) = E0 e
i(k·r−ω t). (45)

Here k is the wave vector, and ω is the angular frequency. This solution
is a traveling wave that propagates in the direction of the wave vector k.
Although the electric field amplitude E0 is not constrained by the wave
equation, Gauss’ law [Eq. (41)] requires E0 and k to be orthogonal. That EX 4

is, the electric field is a transverse field. Note that the wavelength λ and
period T of the wave are related to the wave vector and angular frequency
via k = 2π/λ and ω = 2π/T . 5

If we substitute the plane-wave form of the electric field [Eq. (45)] into
the wave equation, we obtain the condition that relates the frequency to
the wave vector,

ω(k) =
c
√
µε

k =
c

n
k. (46)

Any equation that relates ω to k is known as a dispersion relation. In
general, the phase velocity and group velocity are respectively obtained
from the dispersion relation via vp = ω/k and vg = dω/dk. Thus, the plane-
wave solutions are characterized by

vp = vg =
c
√
µε

=
c

n
. (47)

Notice that both of these velocities are the same as the wave speed previ-
ously identified by inspection of the wave equation. Because both vp and vg

4 This result follows from Eq. (42) with µ = ε = 1.
5 We use the convention that the magnitude of a vector quantity (such as k) is repre-

sented by the same symbol in italics (k).
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are independent of frequency, (i) all plane-wave solutions propagate at the
same speed, and (ii) localized solutions (such as a pulse) also travel at this
same speed and do not change their shape as they propagate.

Because the index of refraction modifies the wave speed, the wavelength
λ of a wave in the material is modified from its vacuum value λ0 (for a given
frequency ω). To see this we note that ω/c = 2π/λ0 allows us to re-express
Eq. (46) as 6

k =
2π

λ0
n. (48)

This equation along with k = 2π/λ gives us the relation between the wave-
length in the material and the vacuum wavelength,

λ

λ0
=

1

n
. (49)

We further note that Eq. (48) allows us to write Eq. (45) in terms of λ0 and
n as

E(r, t) = E0 e
i(2π/λ0)n k̂·re−iωt, (50)

where k̂ = k/k is the unit vector that points in the direction of k.

4.1.3. Optical impedance

In any EM wave there is not only a propagating electric field, but also an
accompanying magnetic field;7 in this section we consider this magnetic field
and its relationship to the electric field. Following tradition for describing
magnetic fields in solids, we use the H field rather than the B field, although
for simple linear response that is our current assumption, these fields are
related via B = µ0µH. Starting with the electric field given by Eq. (45)
and assuming that the accompanying H field is also a plane wave, it is not
hard to show (using Maxwell’s equations) that the H field is given by EX 5

H(r, t) = H0 e
i(k·r−ω t), (51)

where the H-field and E-field amplitudes are related via

Z H0 = k̂× E0. (52)

The constant

Z =

√
µ0µ

ε0ε
(53)

6 ω/c = 2π/λ0 is the dispersion relation for waves traveling in a vacuum. If can be

deduced from Eq. (46) with n = 1 and the definition k0 = 2π/λ0, where k0 is the

vacuum wave vector.
7 Hence the term – electromagnetic wave.
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is known as the (optical) impedance of the material.8 Equation (52) tells
us that H is orthogonal to both k and E, and from Gauss’ law we already
have that k and E are orthogonal; thus E, H, and k form an orthogonal set
of vectors. Furthermore, Eq. (52) tells us (for Z > 0) that E × H points in
the direction of k. We can thus write

Z =
E0

H0

. (54)

The ratio E0/H0 is known as the wave impedance; for the situation at
hand it is obviously equal to the impedance of the material.

It is sometimes convenient to work with the normalized impedance
of the material ζ = Z/Z0. It should be obvious that

ζ =

√
µ

ε
. (55)

We note that ζ n = µ and so for nonmagnetic (µ = 1) materials ζ = 1/n.

4.2. Frequency Dependent ε

This result that all EM waves propagate at the same speed in a given
material is an oversimplification. We know this because different frequen-
cies of light have different angles of refraction in a material such as glass.
Hence, the wave equation cannot truly describe EM wave propagation in a
material. If you carefully follow the reasoning in the last section you will
discover that the wave equation is the result of having made the simple
linear-response approximations D = ε0εE and B = µ0µH. In principle
we might have to abandon both of these approximations. However, for
nonmagnetic materials is it sufficient to only abandon the simple-response
approximation that connects D to E.

Cognizant of the fact that waves with different frequencies propagate
with different speeds, we instead start with the assumption that all fields
of interest oscillate harmonically in time, and so we write

F(r, t) = F̃(r) e−iω t, (56)

where F represents any of the fields E, D, B, or H (and consequently also
P and M). With this assumption the four equations of Maxwell can be
expressed as EX 6

∇ · D̃ = 0, (57)

∇ · B̃ = 0, (58)

∇× Ẽ = iωB̃, (59)

8 Recall that Z0 =
√
µ0/ε0 is the impedance of free space.
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and
∇× H̃ = −iωD̃. (60)

We continue to assume the homogeneous conditions ρother = 0 and jother = 0.
We refer to these last four equations as the harmonic Maxwell’s equa-
tions.

We now derive a single equation for the electric field. To do this we
introduce a slightly more sophisticated form of linear response: we assume
that the spatial parts of the D and E fields are linearly (and spatially
locally) related, but that the relationship is frequency dependent,

D̃(r) = ε0ε(ω) Ẽ(r). (61)

We maintain the simple relationship between B and H,

B̃(r) = µ0µ H̃(r). (62)

The term ε(ω) is known as the (frequency-dependent) dielectric function
of the material.9 With this new linear-response assumption Eqs. (59) and
(60) can be combined into one equation for the electric field,

∇(∇ · Ẽ)−∇2Ẽ = µ0µε0ε(ω)ω2 Ẽ. (63)

There is one more bit of simplification. In conjunction with Eq. (61), Gauss’

law [Eq. (57)] tells us ε0ε(ω)∇ · Ẽ = 0. For any actual material ε(ω) 6= 0,10

and so ∇ · Ẽ = 0. Thus, our equation for the electric field becomes

∇2Ẽ = −µ0µε0ε(ω)ω2 Ẽ. (64)

This is known as the Helmholtz equation. Perhaps not surprisingly,
an identical equation for the H field can be derived from the harmonic
Maxwell’s equations.

If we are interested in plane-wave solutions to Eq. (64), then

Ẽ(r) = E0 e
ik·r. (65)

Substituting this into Eq. (64) gives us the dispersion relation11

ω(k) =
c k√
µ ε(ω)

. (66)

9 In general ε and µ are functions of both k and ω. The dielectric function we are

now working with is the k → 0 limit of the more general function. That is, ε (ω) =

ε (k→ 0, ω). Likewise, the permeability that we are working with is the k → 0 and

ω → 0 limit of the more general function. That is, µ = µ (k→ 0, ω → 0).
10 ε(ω) 6= 0 is true for any real ω, which is our interest at present. In general, ε(ω) may

have one or more complex roots, which can correspond to damped oscillations.
11 As should be obvious, this is an implicit equation for ω(k). In general, one must first

find ε(ω), substitute it into Eq. (66), and then solve for ω(k). On the other hand, as

long as ε has no k dependence (as is assumed here), then solving for k in terms of ω is

clearly straightforward. Thus, k(ω) is the more natural function. However, it is more

common to plot ω(k) vs k when graphing a dispersion relation. Go figure.
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Because ε(ω) is generally not constant, a key result of this more general
dispersion relation is that the phase and group velocities are frequency de-
pendent. It would be difficult to overstate the importance of Eq. (66). Keep
in mind that nonmagnetic material are characterized by µ = 1. In much of
what follows we implicitly have assumed that µ = 1.

The fun part now comes in figuring out ε(ω) for a given material. In prin-
ciple one should use quantum mechanics to calculate the dielectric function.
However, semiclassical models are often sufficient. The general principle is
to find an equation of motion for the charge of interest, and relate that
motion to the polarization P, from which naturally arises ε(ω). We now
look at several semiclassical models of various types of dielectric response.

5. MODEL DIELECTRIC FUNCTIONS

5.1. Classical Harmonic Oscillator

Let’s think about an ideal crystalline insulator,12 where there is no free
charge to move about the crystal.13 The valence electrons are localized
on the atoms and/or in bonds between atoms, while the core electrons
are tightly bound to their respective nuclei. The nuclei contain charge
that (on average) balances the electronic charge. For any of this charge a
displacement away from equilibrium (typically) results in a linear restoring
force back towards equilibrium. As in any such system of coupled particles,
there exists a set of normal modes that describe the fundamental excitations
of the system.

For an insulator there are two distinct bands of frequencies associated
with normal mode excitations. At the lowest frequencies (starting at zero
up through perhaps a hundred THz or so) there will be normal modes
that primarily correspond to vibrational motion of the nuclei.14 The quan-
tized excitations of these coupled (mechanical) oscillations are known as
phonons. At frequencies above the phonon band is a gap devoid of funda-
mental excitations of the insulator. This gap typically exists up through the
ultraviolet part of the spectrum. However, at frequencies in the ultraviolet
through the x-ray region there is a set of excitations that are primarily elec-
tronic in nature. These excitations correspond to electrons being excited
from one electronic band to another electronic band, and are thus known

12 An insulator is sometimes called a dielectric. As we shall see, metals (which are

sometimes called conductors) also have a dielectric function, even though they are not

dielectrics. Physics isn’t always so logical, is it?
13 Thus ρp has contribution solely from bound charge.
14 Of course, as the nuclei vibrate the surrounding electronic charge also rearranges itself

in response. Due to the relatively low frequencies involved, the electronic response

is usually in phase with the nuclear motion. Such adiabatic response corresponds to

changes in energy levels of the electrons, but no excitation of the electrons from those

energy levels.
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as interband transitions. Although it may not be not obvious, both vi-
brational and electronic excitations can often be modeled effectively by a
collection of harmonic-oscillator modes.

Let’s now assume that an EM wave is propagating through the solid.
Whether or not the wave couples to any given normal mode of the system
depends upon two conditions. First, the symmetry of the mode must be
such that it can be excited by EM radiation. To first order this has to do
with whether or not the system has (electric) dipole moments that oscillate
when the mode is excited. Second, the wave vector k of the EM radiation
and the normal mode must match. Otherwise, coherent excitation of the
normal mode cannot take place. If the frequency of the driving field is close
to the natural frequency ω0 of the mode then we expect a large response
from the system; if these two frequencies are disparate, then the system
response will relatively small.

We can characterize the response of the system to EM radiation by the
microscopic dipole moment p induced in each unit cell of the solid. For the
time being let’s imagine that for a given k the system has just one normal
mode that couples to the EM fields. Under this condition the (effective)
equation of motion for each moment p is simply that of a driven harmonic
oscillator,15

d2p(r, t)

dt2
+ ω2

0 p(r, t) =
q2

m∗
Ẽ(r) e−iω t. (67)

The normal-mode natural frequency ω0 is obviously related to the local
forces that are trying to restore equilibrium. For simplicity we assume that
ω0 is independent of k.16 The effective mass m∗ is related to the masses
of the particles involved in the moment p and the relative displacements
of these particles.17 The charge q is the charge associated with the dipole
moment p.

We now look for a solution to Eq. (67) that is harmonic at the same
frequency as the electric field E.18 We thus write

p(r, t) = p̃(r) e−iω t. (68)

Substituting this expression into Eq. (67) gives the amplitude of the polar-
ization as

p̃(r) =
q2

m∗ (ω2
0 − ω2)

Ẽ(r). (69)

15 In Eq. (67) one should technically think of r as a discrete variable that labels the

position of the unit cell of interest.
16 In general there will be some dispersion in the system’s normal modes. However,

because the slope of ω vs k (=c) is so steep for EM radiation, a flat dispersion for the

system’s modes is an excellent first approximation.
17 For phonon normal modes m∗ is determined by the nuclear masses. For modes that

correspond to electronic excitations m∗ is close to the electron mass.
18 In principle solutions to the homogeneous equation must be included in the full solu-

tion. Without justification, we ignore the homogeneous contribution.
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To obtain the relationship between the macroscopic polarization P and
the electric field E we note that P = Ncp, where Nc is the number density
associated with the unit cells in the solid. This gives us

P̃(r) =
Nc q

2

m∗ (ω2
0 − ω2)

Ẽ(r), (70)

There are two important results contained in Eq. (70). First, we have a
concrete example of linear response, which is due to the linear equation
of motion for the dipole moment p. Second, we see that this harmonic-
oscillator model gives rise to response that is frequency-dependent. As we
shall see, this frequency dependence leads to some very interesting phenom-
ena.

Using the relationship [Eq. (15)] among D, E, and P we have

D̃(r) = ε0 Ẽ(r) + P̃(r), (71)

which results in

D̃(r) = ε0

(
1 +

Nc q
2

ε0m∗
1

ω2
0 − ω2

)
Ẽ(r). (72)

Comparing this equation with Eq. (61) we immediately identify the dielec-
tric function ε(ω) associated with excitation of a single normal mode as

ε(ω) = 1 +
ω2
p

ω2
0 − ω2

, (73)

where we have defined the plasma frequency ωp via

ω2
p =

Nc q
2

ε0m∗
. (74)

Although any solid will have more than one normal mode that couples
to a particular EM wave, let’s presently investigate the consequences of
this one-mode model by studying Eq. (73) in some detail. Later we shall
expand the dielectric function to include the possibility of multiple modes
interacting with the field.

The low and high-frequency limits of Eq. (73) are quite revealing. First,
for ω →∞ we obtain

ε(∞) = 1, (75)

the vacuum result for the dielectric function. This occurs because at very
high frequencies the charge cannot respond to the rapidly varying electric
field, and so the EM wave propagates without any notice of the material.
In the opposing limit (ω → 0) we have

ε(0) = 1 +
ω2
p

ω2
0

. (76)
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FIG. 1 Dielectric function (a) and dispersion curves (b) for ε(ω) is given by

Eq. (73). As indicated, the high-frequency and low-frequency asymptotes (dashed

lines) corresponds to ω = ck and ω = ck/
√
ε(0), respectively. Here we have set

ωp/ω0 = 2.

That is, the dielectric constant is greater than the vacuum value. This is
the result of a dc electric field being able to statically polarize the bound
charge.

Let’s now consider what happens when ω is in the vicinity of the nat-
ural frequency ω0. In (a) of Fig. 1 we plot ε(ω) as a function of ω. Due
to the denominator containing ω2

0 − ω2, the function diverges at ω = ω0,
as illustrated. This is an unphysical result of our neglect of any damping
associated with the oscillator.19 For frequencies such that ω < ω0 or ω > ωL
(where ω2

L = ω2
p + ω2

0) the dielectric function is positive. In these two fre-
quency regions EM waves freely propagate through the material. However,
for ω0 < ω < ωL the dielectric function is negative. In this frequency re-
gion EM waves do not propagate, but are exponentially damped. To see
why this is the case we can appeal to the dispersion relation, Eq. (66). As
this equation shows, if ε(ω) is negative (and µ is positive), then the wave

19 We shall rectify this a bit later.
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vector k must be imaginary, and so the spatial part of the wave (∼ eikz)
exponentially decays.

We can gain more insight into the behavior of EM waves coupled to
normal modes of the solid by further considering the dispersion relation

ω(k) =
ck√
ε(ω)

, (77)

where here (and here on out) we set µ = 1. Substituting the expression
in Eq. (73) for ε(ω) into this general form of the dispersion relation and
solving explicitly for ω(k) yields EX 7

ω2(k) =
1

2

{
ω2
p + ω2

0 + c2k2 ±
[
(ω2

p + ω2
0)2

+ (2ω2
p − 2ω2

0 + c2k2) c2k2
] 1

2

}
. (78)

In spite of this rather complicated formula, the result is fairly simple
(although quite interesting), as shown in Fig. 1(b). As illustrated, there
are two branches to the dispersion relation. The lower branch, which ap-
proaches linearity at long wavelengths (small k), corresponds to EM waves

traveling through the material with an index of refraction n ≈
√
ε(0). The

response of the system serves to reduce the speed of the propagating EM
waves, but because the frequencies are well away from the natural frequency
ω0 of the system’s normal modes, the material is only weakly involved in
the EM fields. At high frequencies this branch flattens out at the natural
frequency ω0 of the normal modes. Indeed, this part of this dispersion curve
corresponds to the normal modes the system essentially uncoupled from the
EM fields. The behavior of the upper branch is quite different from that of
the lower branch. This branch approaches linear dispersion at high frequen-
cies; this part of the branch corresponds to EM waves essentially uncoupled
from the normal modes of the system, and so the EM waves travel at nearly
c. However, at long wavelengths this branch flattens out to ω → ωL as
k → 0. Obviously, there is a strong coupling of the EM waves and the
material’s normal modes. We note for later that at ω = ωL the dielectric
function ε vanishes, as illustrated in Fig. 1(a). The parameter ωL is known
as the longitudinal frequency of the system.

Figure 1 shows there are no solutions for ω (for real values of k) in the
gap between ω0 and ωL. In this frequency region there are solutions, but
all of these solutions have wave vector k values that are purely imaginary,
indicating that propagating waves are not allowed in this range of frequen-
cies. This is analogous to the absence of extended electronic states between
the valence and conduction bands of a semiconductor.

5.2. Multiple Modes

We now expand our simple dielectric function to include the possibility
that a given EM wave couples to more that one polarization mode of the

20
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solid. In this case the dipole moment p will have contributions from all
modes involved in the response of the system. The upshot of this is that
the dielectric function [as written in Eq. (73)] expands to include a sum over
all of the involved modes,

ε(ω) = 1 +
N∑
n=0

ω2
pn

ω2
n − ω2

. (79)

Here ωn is the natural frequency associated with the normal mode (set)
labeled by n, and

ω2
pn =

Nc q
2
n

ε0m∗n
. (80)

is the plasma frequency associated with these modes.
A canonical application of this model dielectric function is the response

of a diatomic ionic crystal, such as NaCl. Such a crystal has one cation and
one anion (Na+ and Cl−, respectively, e.g.) per unit cell. This structure
results one phonon mode (for each value of k) that couples to the EM
fields. Typically the dispersion of these optic phonon modes is quite
flat. At frequencies well above the optic-phonon response are electronic
interband excitations (typically in the UV). These excitations cover a range
of frequencies and a given EM wave may couple to more than one. Thus, in
a typical ionic crystal there is one low frequency mode well separated from
a band of much higher frequency electronic modes.

Let’s now focus on the dielectric function at frequencies well below the
resonant frequencies of the interband excitations. In this case the re-
sponse of the electrons can be approximated by their zero-frequency limit∑N

n=1 ω
2
pn/ω

2
n,20 which simplifies the dielectric function to EX 8, 9

ε(ω) = ε∞ +
ω2
p0

ω2
0 − ω2

, (81)

where ε∞ is defined to be

ε∞ = 1 +
N∑
n=1

ω2
pn/ω

2
n. (82)

Comparing the dielectric function of Eq. (81) with that of the single
oscillator [Eq. (73)], we see that they are the same except that the constant
1 on the right hand side of Eq. (73) has been replaced by ε∞. Figure 2(a)
plots ε(ω) vs ω as given by Eq. (81). As shown there, ε∞ is the high-
frequency limit of Eq. (81).21

This factor of ε∞ has several important consequences, all of which are
manifest in the dispersion relation ω(k), plotted in Fig. 2(b). First, the EX 10

20 Fairly obviously, the n = 0 term represents the optic-phonon response.
21 Hence the use of the symbol ∞
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FIG. 2 Dielectric function (a) and dispersion curves (b) for ε(ω) as given by

Eq. (81). As indicated, the high-frequency and low-frequency asymptotes (dashed

lines) corresponds to ω = ck/
√
ε∞ and ω = ck/

√
ε(0), respectively. As in Fig. 1

ωp/ω0 = 2, while (consistent with Fig. 3 below) ε∞ = 9.

longitudinal frequency ωL where the dielectric function vanishes is now given
by

ω2
L =

ω2
p0

ε∞
+ ω2

0, (83)

making ωL relatively closer to ω0. Second, the large k asymptote of the
upper branch is modified to be ω = ck/

√
ε∞. Third, while the small k

asymptote of the lower branch is still given by ω = ck/
√
ε(0), this dispersion

now has a contribution from the high-frequency electronic response. This
is because ε(0) = ε∞ + ω2

p0/ω
2
0.

To examine the multiple-mode dielectric function [Eq. (79)] over all rel-
evant frequencies, in Fig. 3 we have plotted ε(ω) assuming a total of three
coupled modes. The n = 0 mode (representing the optic phonons) is well
separated from the other two (electronic interband) modes. There are two
features worth mentioning. First, consistent with the dielectric function
illustrated in Fig 2(a), in the region between the phonon and electron re-
sponses the dielectric function is quite close to ε∞. Furthermore, here the
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slope of ε(ω) is positive. As this region typically encompasses the near IR

and visible, we can infer that the index of refraction n =
√
ε(ω) increases

with ω, consistent with the behavior of transparent dielectrics (consider light
transmission through a prism). Second, at the largest frequencies shown in
Fig. 3, we observe ε(ω) to be positive, but less than 1. Hence, the phase
velocity vp = c/

√
ε is greater than c ! Light in this region can thus undergo EX 11

total external reflection from a material. This phenomenon is utilized to
make surface sensitive x-ray diffraction measurements.

5.3. Damping Included

A feature that is acutely missing from the equation of motion for p
[Eq. (67)] is any description of the forces that serve to dissipate any induced
moment. The simplest way to account for any such damping is to add in a
term that opposes the dipole-moment velocity dp/dt.22 Doing so, we obtain

d2p(r, t)

dt2
+ γ

dp(r, t)

dt
+ ω2

0 p(r, t) =
q2

m∗
Ẽ(r) e−iω t, (84)

where γ is known as the damping parameter.
Let’s now derive the dielectric function for multiple oscillators coupled to

an EM wave. If we carry out the the same steps as above for one oscillator,
we first obtain the polarization amplitude EX 12

22 From a classical physics point of view this is a drag force that is proportional to the

velocities of the oscillating charges. From a quantum point of view this dissipation

corresponds to an excitation decaying into other degrees of freedom of the solid. For

example, an optic phonon typically decays into two or three acoustic phonons.

23



D. M. Riffe Canonical Models of Dielectric Response

 

0 2 4 6 8 10 12
0

0.5

1

1.5

2

0.8 1 1.2

50

0

50

100

150

0ωω

0ωω

0ωkc

(a) 

(b) 

∞εkc

)(0εkc

∞ε

Lω

0ω

Lω0ω

( )ωε  
Re

Re

Im

Im  
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Eq. (89). In (a) and (b) the Re and Im parts of ε and k are plotted, respectively.

Parameters for ε(ω) are the same as for Fig. 2 with the addition of γ0 = 0.025ω0.

P̃(r) =
Nc q

2

m∗ (ω2
0 − ω2 − iγω)

Ẽ(r), (85)

which leads to the dielectric function

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iγω

. (86)

The obvious new feature associated with ε(ω) is that it is now a complex
function. As we shall see, this results in any electromagnetic wave being
damped as it propagates through a material.23 Under the general condition

23 Of course, in some circumstances the damping may be so small that it may be ne-

glected. Consider visible light traveling through a thin piece of glass, for example.
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that multiple modes interact with the EM fields these last two equations
become

P̃(r) =
N∑
n=0

Nc q
2
n

m∗n (ω2
n − ω2 − iγnω)

Ẽ(r) (87)

and

ε(ω) = 1 +
N∑
n=0

ω2
pn

ω2
n − ω2 − iγnω

. (88)

As above, let’s now focus on the situation of having one coupled phonon
mode far removed (in frequency) from any electronic interband excitations.
In this case the expression for the dielectric function in Eq. (88) is well
represented by

ε(ω) = ε∞ +
ω2
p0

ω2
0 − ω2 − iγ0ω

. (89)

This dielectric function and its consequential dispersion relation are plotted
in Fig. 4. For this figure the parameters are the same as in Fig. 2 with the
addition of γ0 = 0.025ω0.

Focusing specifically on the dielectric function, plotted in Fig. 4(a), we
first note that Re(ε) no longer diverges at the natural frequency ω0. Second,
we see that Im(ε) peaks very close to ω0, but away from this frequency it
becomes negligible. Those familiar with the response of a driven, damped
harmonic oscillator will recognize this (underdamped) response and know
that this peak narrows (broadens) with decreasing (increasing) γ0. Third,
Re(ε) still vanishes close to ωL. This is a result of γ0 being relatively small in
this example. Fourth, the behavior of Re(ε) is unchanged at the frequency
extremes.

The dielectric constant having a non-zero imaginary part has conse-
quences for the dispersion relation ω(k) = ck/ε(ω). For a given (real) ω, k EX 13

now has both real and imaginary parts at all frequencies, as illustrated in
Fig. 4(b). When Im(k)� Re(k), EM waves still freely propagate, but with
a decaying amplitude as they travel through the material. This happens
when ω is well below ω0 or well above ωL. However, when Im(k) & Re(k),
as is the case when ω0 < ω < ωL, the waves are strongly damped within
at least a few wavelengths. We note that this nonpropagating nature of
the solutions for ω0 < ω < ωL was already apparent before the inclusion of
damping, and so is not a consequence of its inclusion.

5.4. Free Carriers

We now turn to describing the response of charge carriers that are free to
move throughout a crystal.24 Such free carriers are present whenever an

24 We remind the reader of our present convention that ρp comprises both free charge

and bound charge in the solid.
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electronic band is partially filled. The response that we are interested in de-
scribing is due to transitions between states within the same electronic band,
and are thus know as intraband transitions. The most common types of
materials with significant numbers of free carriers are metals, semimetals,
and doped semiconductors. The charge carriers can have either negative
charge (electrons) or positive charge (holes).

The model dielectric functions discussed so far are appropriate for charge
carriers that have a well defined equilibrium positions, and so are inappro-
priate for charge that is free to move about a crystal. However, with slight
modification of our equation of motion [Eq. (84)], we can describe the re-
sponse of the free carriers. The required change is simple: all we need to do
is remove the restoring force ω2

n p(r, t) from the equation of motion for each
polarization term corresponding to a particular type of free carrier. Doing
this we have

d2p(r, t)

dt2
+ γ

dp(r, t)

dt
=

q2

m∗
Ẽ(r) e−iω t. (90)

In order to study the simplest case, let’s make the following assumptions:
(i) there is only one set of free carriers,25 (ii) there are no excitable optic
phonon modes, and (iii) all other (interband) electronic modes have natural
frequencies much greater than the plasma frequency ωp associated with the
free carriers.

With these assumptions we straightforwardly obtain EX 14

ε(ω) = ε∞ −
ω2
p

ω2

1

1 + i/(ωτ)
(91)

for frequencies far below the other electronic excitations. This dielectric
function is canonically known as the Drude dielectric function. Here ωp is
associated with the zero-frequency free-carrier mode. The parameters that
appear in the expression for ωp [Eq. (74)] now have the following meanings:
(i) Nc is the free-carrier density, (ii) q is the electron charge magnitude e,
and (iii) m∗ is the effective mass of the free carriers.26 We shall see later
that τ = 1/γ is the momentum relaxation time associated with the free
carriers. As before, ε∞ is the low-frequency contribution from interband
modes.

An unsuspecting richness lies within the Drude response given by
Eq. (91). In order to facilitate an analysis of this response, we first rewrite
the right-hand-side of Eq. (91) to make the real and imaginary parts more
obvious, EX 15

25 For example, we might be modeling a semiconductor that has electrons in the conduc-

tion band but no holes in the valence band.
26 In a metal m∗ is often (but not always) close to the free-electron mass me. In some

semiconductor bands, m∗ is significantly different from me. For example, in GaAs car-

riers in the conduction, light-hole, and heavy-hole bands have effective masses m∗/me

= 0.067, 0.082, and 0.45, respectively.
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FIG. 5 Drude dielectric function ε(ω) [Eq. (92)] and resulting dispersion curves

ω vs ck. A poor [good] conductor is illustrated in (a), (b), and (c) [(d), (e), and

(f)]. In (a), (b), (d), and (e) the Re and Im parts of ε are plotted. In (c) and (f)

the Re and Im parts of ck are shown. In contrast to previous figures, ω and ck

are scaled by ωL. The dashed lines in the dispersion-curve plots are approximate

expressions for ck in the appropriate regions. For the poor (good) conductor ωLτ

= 0.1 (100). For both conductors ε∞ = 10.
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ε(ω) = ε∞

[
1− ω2

L

ω2

1− i/(ωτ)

1 + 1/(ω2τ 2)

]
. (92)

Because for free carriers the natural frequency of oscillation ω0 is zero, the
longitudinal frequency is simply ωL = ωp/

√
ε∞. As one might surmise

from inspection of this equation, the parameters τ and ωL are the keys
to the frequency dependence of ε. In fact, the combination ωLτ allows
us to characterize three classes of conductors: ωLτ � 1 defines a good
conductor, ωLτ ∼ 1 a fair conductor, and ωLτ � 1 a poor conductor.
Examples of good conductors are abundant; most elemental metals qualify
as good conductors. Below we discuss Pb and Au in this context. Doped
semiconductors can provide examples of poor conductors, but this is by no
means universal. An interesting case is n-type GaAs. From dc-resistivity
and dielectric-constant data (Sze, 1981), one can infer that ωLτ = 0.14,
1.6, and 7.2 at carrier densities of 1014, 1016, and 1018 cm−3, respectively.27

Thus, GaAs can be a poor, fair, or good conductor, depending upon the
doping level.

Let’s consider the frequency dependence of Im(ε). As Im(ε) depends
upon τ (but not ωL), its frequency dependence is the same for all three
types of conductors. For ω � 1/τ we have

Im(ε) ≈
ω2
pτ

ω
, (93)

while for ω � 1/τ

Im(ε) ≈
ω2
p

ω3τ
. (94)

Thus, ωτ = 1 demarcates 1/ω behavior at lower frequencies from 1/ω3

behavior at higher frequencies. This response is apparent in parts (b) and
(e) of Fig. 5, which plot ε(ω) on log-log plots for examples of good and poor
conductors, respectively.

The behavior of Re(ε) is substantially more complicated, as the param-
eter ωL is also involved. For both good and poor conductors there are
three frequency regions with different behaviors. For good conductors the
regions are separated by ω = 1/τ and ω = ωL (lower and higher frequency
boundaries, respectively), while for poor conductors the regions are sepa-
rated by ω = ω2

Lτ and ω = 1/τ . Because ωL ∼ 1/τ for a fair conductor,
the middle-frequency region collapses, leaving only two regions separated
by ω ∼ 1/τ ∼ ωL.

We now discuss how Re(ε) varies with ω. For all three types of conductors
the real part of the dielectric response at high frequencies is simply

Re(ε) ≈ ε∞, (95)

which shows that the response of the bound electrons makes the major
contribution to Re(ε). This is illustrated in (a) and (d) of Fig. 5. For poor

27 Below we discuss conductivity, the inverse of resistivity.
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conductors Eq. (95) is also valid in the intermediate- and low-frequency
regimes. Thus, a poor conductor is one where Re(ε) is always dominated
by the bound electrons, as evident in Fig. 5(a) and (b). For fair conductors
the low-frequency expression for Re(ε) is

Re(ε) ≈ ε∞ − ω2
pτ

2. (96)

Both terms on the right hand side appear because ωLτ ∼ 1 is equivalent to
ε∞ ∼ ω2

pτ
2. Thus, in a fair conductor both the free and bound electron con-

tributions to Re(ε) are significant. For good conductors the corresponding
relation is

Re(ε) ≈ −ω2
pτ

2, (97)

which shows (perhaps not unexpectedly) that at low frequencies the re-
sponse of a good conductor is primarily due to the free carriers. This low-
frequency limit is indicated in Fig. 5(e). The only region not yet addressed
is the intermediate-frequency region of good conductors. Here the approxi-
mate equation is

Re(ε) ≈ −
ω2
p

ω2
. (98)

As at low frequencies, the response of the bound electrons (ε∞) does not
appear. The intermediate-frequency response of a good conductor is also
illustrated in Fig. 5(e). All of the approximate results for ε(ω) are summa-
rized in Fig. 6. EX 16

We point out a useful expression for ε(ω) for a good conductor. Fre-
quencies within or below the intermediate-frequency region are defined by
ω2 � ω2

L. With solely this condition, in Eq. (91) the bound electron re-
sponse ε∞ of Eq. (91) can be ignored compared to the free-carrier response,
and so ε(ω) simplifies to

ε(ω) ≈ −
ω2
p

ω2

1

1 + i/(ωτ)
. (99)

It is easily seen that this reduces to the good-conductor expressions at low
and intermediate frequencies in Fig. 6 in the appropriate limits of ωτ .

Approximate dispersion relations analogous to the ε(ω) expressions in
Fig. 6 are presented in Fig. 7. Specifically, this figure shows approximate EX 16–18

expressions for the wave vector ck as a function of frequency ω.
As Fig. 7 indicates, at the lowest and highest frequencies the conduc-

tor types are not distinguishable via the dispersion relations. In the low-
frequency regime this is due to Im(ε) = ω2

pτ/ω being much larger than Re(ε)
for all three conductor types. Consequently, at these smallest values of ω

ck ≈ (1 + i)

√
ω2
pωτ

2
. (100)
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Notice Re(k) = Im(k). This asymptotic limit is indicated in Fig. 5(c) and
(f). Similarly, EM waves in all three conductor types have the same ap-
proximate dispersion at high frequencies,

ck ≈
√
ε∞

(
ω + i

ω2
p

2ε∞ω2τ

)
. (101)

It is worth noting that Im(k) falls off as 1/ω2, and so in this region with
increasing ω a Drude conductor becomes more transparent. The real part
of this dispersion relation is also indicated in Fig. 5.

It is the intermediate frequency regimes that distinguish a good con-
ductor from a poor conductor, as (c) and (f) of Fig. 5 vividly illustrate.
As shown, in a poor conductor Re(ck) ≈ √ε∞ω has already taken on its
high-frequency behavior while

Im(ck) ≈
ω2
pτ

2ε∞
(102)

is frequency independent and smaller than Re(ck). Conversely, in a good
conductor

Im(ck) ≈ ωp, (103)

which is also frequency independent, dominates

Re(ck) ≈
ω2
p

2ωτ
. (104)

Although neither type of metal is transparent in this region, these difference
do impact the frequency dependence of the reflectivity (not discussed here).

5.5. Debye Polarization Response

Let’s now consider the response of a set of dipoles that have a natural
frequency of oscillation ω0 about some equilibrium (as in the above case
of optic phonons), but instead of relatively small damping, let’s assume
the damping to be highly viscous. As it turns out, if the damping is large
enough then the acceleration of the dipoles can be neglected without much
error, and the equation of motion for the dipoles [Eq. (84)] reduces to

γ
dp(r, t)

dt
+ ω2

0 p(r, t) =
q2

m∗
Ẽ(r) e−iω t. (105)

This equation of motion leads to the dielectric function

ε(ω) = ε∞ +
ω2
p

ω2
0 − iγω

. (106)

Following tradition we rewrite this last equation as EX 19

ε(ω) = ε∞ +
ε(0)− ε∞
1− iωτ

. (107)
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where ε(0) − ε∞ = ω2
p/ω

2
0, and τ = γ/ω2

0 is the relaxation time associated
with decay of this highly damped polarization. As before, ε∞ represents the
response of any other polarization modes at frequencies much higher than
the highly-damped one that is the focus of our attention. The dielectric
function given by either of these last two equations is know as the Debye
dielectric function.28

This response function was first introduced by Debye in order to de-
scribe the (low-frequency) dielectric response of polar liquids (Debye, 1929).
Specifically, Debye was interested in describing the response of the perma-
nent dipoles associated with the molecules that make up a liquid. An applied
electric field will serve to align the moments, while thermal agitation will
relax any induced dipole orientation back to some equilibrium value. One
can thus imagine how such response would map onto an overdamped har-
monic oscillator. Unfortunately, interactions between dipoles often cause
the response to be more complicated than the simple model of Debye (Cole
and Cole, 1941; Kalmykov et al., 2004). However, it can be an excellent
description when the dipoles are sufficiently dilute so that the interactions
between them are negligible (Kalmykov et al., 2004).

As with the other dielectric functions it is instructive to look at plots
of ε(ω) and the dispersion curves. As shown in Fig. 8(a), with increasing
ω the real part of ε(ω) smoothly falls off from ε(0) to ε∞, reaching the
midway point at ωτ = 1. Associated with this falloff is a broad29 peak in
the imaginary part of ε(ω).

In comparison with the Drude model, the dispersion curves [shown in
part (b) of Fig. 8] are relatively simple. With increasing ω the real part of

k indicates a smooth transition from waves propagating at vp = c/
√
ε(0) to

waves with vp = c/
√
ε∞. Concurrently, the imaginary part of k is relatively

small at the frequency extremes [where Re(ε) � Im(ε)], but for ωτ ∼ 1
there is substantial damping of the EM waves.

At the frequency extremes the dielectric function simplifies considerably.
For ω2τ 2 � 1 one obtains EX 20

Re(ε) ≈ ε(0) (108)

and
Im(ε) ≈ [ε(0)− ε∞]ωτ. (109)

In this limit the dispersion relation is well represented by

ck ≈ ω
√
ε(0) + i

ε(0)− ε∞√
ε(0)

ω2τ

2
. (110)

28 Often this dielectric function is written with +iωτ rather than −iωτ in the denom-

inator. This comes about if one assumes an harmonic time dependence eiωt rather

than e−iωt (as we have assumed). In order to match up the two conventions one must

change the sign on the imaginary part of ε(ω) associated with one of these conventions.
29 Notice the log scale on the ωτ axis.
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FIG. 8 Dielectric function (a) and dispersion curves (b) for ε(ω) as given by

Eq. (107). In (a) and (b) the Re and Im parts of ε and k are plotted, respec-

tively. In contrast to previous figures, ω and ck are scaled by 1/τ . Here we have

arbitrarily chosen ε∞ = 2 and ε(0) = 10.

For ω2τ 2 � 1 the dielectric function reduces to

Re(ε) ≈ ε∞ (111)

and

Im(ε) ≈ [ε(0)− ε∞]
1

ωτ
, (112)

while the dispersion relation becomes

ck ≈ ω
√
ε∞ + i

ε(0)− ε∞√
ε∞

τ

2
. (113)

Notice in this limit that Im(k) is independent of ω, as can be observed in
Fig. 8(b).
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5.6. Canonical Dielectric Functions

To summarize so far, we have discussed in detail examples of the dielectric
response associated with three different types of polarization that can be
induced in a solid: polarization due to (i) optic-phonon excitation, (ii) free
carriers, and (iii) orientable permanent dipoles. As a point of reference in
moving forward, here we collect the canonical dielectric functions associated
with each of these types of material response. For optic-phonons we have
the damped harmonic-oscillator dielectric function

εh(ω) = ε∞ +
ω2
p0

ω2
0 − ω2 − iγ0ω

, (114)

for free carriers the Drude dielectric function

εf (ω) = ε∞ −
ω2
p

ω2

1

1 + i/(ωτ)
, (115)

and for dipoles the Debye dielectric function

εD(ω) = ε∞ +
ε(0)− ε∞
1− iωτ

. (116)

Note that each of these dielectric functions includes the response of inter-
band excitations as the constant term ε∞. In the (strictly theoretical) limit
that such excitations are nonexistent, ε∞ can be replaced by 1.

5.7. Experimental Examples

Here we discuss the measured dielectric response of three different types
of materials as (at least approximate) examples of the dielectric functions in
Eqs. (114) – (116). We start with sodium chloride (NaCl), which provides a
beautiful example of the optic phonon response in an ionic crystal. We next
discuss lead (Pb) and gold (Au) as examples of a good Drude metal. Lastly,
we illustrate Debye polarization response with data from erbium (Er) doped
calcium fluoride (CaF2).

5.7.1. NaCl

Figure 9 plots both the dielectric function and dispersion curves of NaCl
in the vicinity of the optic phonon. The experimental data are the solid
circles (Palik, 1985). These data are compared with theoretical curves
that come from the damped harmonic-oscillator dielectric function given
by Eq. (114). The parameters in the model are ε∞ = 2.32, ωp0 = 5.7× 1013

s−1, ω0 = 3.09 × 1013 s−1 [which together imply ωL = 4.85 × 1013 s−1; see
Eq. (83)], and γ0 = 11.1× 1011 s−1. As the figure shows, this simple model
describes the overall measured response quite well. The exception occurs
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FIG. 9 Dielectric function (a) and dispersion curves (b) for sodium chloride

(NaCl). In (a) and (b) the Re and Im parts of ε and k are plotted, respec-

tively. Experimental data (filled circles) along with fit (solid lines) using damped

harmonic oscillator model are shown; see text for details.

in the vicinity of ωL, where there is appreciable deviation in the dispersion
curves, evident in part (b) of the figure. This deviation is due to the damp-
ing parameter γ0 having a strong dependence on ω in this region (Eldridge
and Staal, 1977), which is certainly not accounted for in the model.

5.7.2. Pb and Au

Nice experimental examples of the Drude model as applied to a good
metal are provided by the elements Pb and Au, illustrated in Fig. 10. Again,
the solid circles are experimental data [from (Brändli and Sievers, 1972;
Golavashkin and Motulevich, 1968) (Pb) and (Olmon et al., 2012) (Au)].
The solid lines are model fits, described in detail below.
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FIG. 10 Dielectric function and dispersion curves for Pb (a,b) and Au (c,d).

In (a,c) and (b,d) the Re and Im parts of ε and k are plotted, respectively.

Experimental data (filled circles) along with fits (solid lines) using Drude model

(plus harmonic-oscillator components at high frequencies) are shown; see text for

details.

Before discussing the low-frequency Drude-like behavior of these two met-
als, we must first address the high-frequency response, which has significant
(nonconstant) contributions from interband transitions. In Pb and Au (and
essentially all other metals), some of these transitions have resonant fre-
quencies in the vicinity of what would otherwise be the crossover to trans-
parency at ωL. Owing to the presence of these excitations, the lower end
of the transparency region is pushed to higher frequencies. We can, how-
ever, define a phenomenological ωL as the frequency where −Re(ε) = Im(ε),
as is illustrated in Fig. 10. This gives a good estimation of the frequency
below which the free carriers dominate the optical response of the metal.
For Pb and Au this phenomenological ωL is 2.5 × 1015 Hz and 3.8 × 1015

Hz, respectively. Both of these frequencies are in the visible part of the
spectrum.

For ω . ωL the data from both metals are well described by the Drude
dielectric function [Eq. (115)] with ωp = 1.20×1016 s−1 (1.29×1016 s−1) and
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(filled circles) along with fit (solid lines) using Debye mode are shown; see text

for details

τ = 3.58×10−15 s (15.0×10−15 s) for Pb (Au). We note that ωLτ equals 8.9
for Pb and 57 for Au, putting Pb just within and Au well within the good-
metal category defined by ωLτ � 1. The solid lines in Fig. 10 are calculated
using the Drude dielectric function plus some number of harmonic-oscillator
modes to describe the interband transitions. Similar to Pb and Au, many
other elemental metals display infrared dielectric functions characteristic of
a good metal (Rakić et al., 1998).

5.7.3. Er doped CaF2

For our last example, we consider the very low frequency response of
Er doped CaF2 (Jonscher, 1980). The impurity Er atoms create dipolar
complexes that response in a very Debye-like manner to an electric field.
The data shown in Fig. 11 are for a doping level of 0.01%, which results
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in an average spacing between Er atoms of 22 lattice spacing. Interactions
between the complexes should thus be minimal, a necessary requirement for
applicability of the Debye model. As Fig. 11 illustrates, except at the very
highest frequencies shown the experimental data (solid circles) are described
quite well by the Debye dielectric function [Eq. (116)] (solid lines). Notice
that the relevant frequencies are quite low; the peak in Im(ε) is at ω = 550
s−1.

6. CONDUCTIVITY

6.1. Relationship to the Dielectric Function

One of the most important properties of a material is the conductivity σ.
In general, this response function is the quantity that connects the current
density j in the material to the electric field E. The linear-response ansatz
that σ is a simple proportionality constant,

j(r, t) = σE(r, t), (117)

is known as Ohm’s law. This relationship is akin to the simple notion that
ε and µ are both constants for a given material. However, as we have seen
with regards to the dielectric function ε, the conductivity σ generally has
some frequency dependence.30

In fact, the conductivity σ(ω) is intimately related to the dielectric func-
tion ε(ω). To see this we start by defining σ(ω) via

j̃(r) = σ(ω) Ẽ(r). (118)

This equation is entirely analogous to the expression [Eq. (66)] that defines
ε(ω). As has been the case in all of our discussion so far, we treat ρP as
comprising all of the charge in the material. With this viewpoint, Eq. (13),
which relates the current density to the polarization, transforms into

j̃(r) = −iω P̃(r). (119)

If we combine Eqs. (66) and (71) we can write

P̃(r) = ε0
[
ε(ω)− 1

]
Ẽ(r). (120)

This expression allow us to eliminate the polarization P̃(r) from Eq. (119),
yielding

j̃(r) = −iω ε0
[
ε(ω)− 1

]
Ẽ(r). (121)

Comparing this equation with Eq. (118) reveals the general relationship
between the conductivity and dielectric function,

σ(ω) = −iω ε0
[
ε(ω)− 1

]
. (122)

30 Indeed, in general µ is also frequency dependent. However, we are only considering

materials with negligible response to magnetic fields.
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This result is important because it shows that the conductivity and dielectric
function are not independent quantities. Rather, they are just two different
ways of expressing the response of the charge in a material to an electric
field.

Let’s see what this implies for a Drude conductor, which has the dielectric
function given by Eq. (115). Analogous to Fig. 5 where we plot ε(ω), in
Fig. 12 we plot the conductivity σ(ω) for examples of both poor and good
conductors. Furthermore, in Fig. 13 we present approximate expressions for
the conductivity σ(ω) that are analogous to those in Fig. 6 for the dielectric
function. EX 21

The first thing to note is that in the low frequency regions (ω � ω2
Lτ for

a poor metal, ω � 1/τ for a good metal) the real part of the conductivity
dominates the imaginary part, with the result that to good approximation
the conductivity is simply given by its dc limit

σf (0) = ε0 ω
2
p τ. (123)

The subscript f has been added to σ to indicate that this response is solely
due to the free carriers. If we now use the relationship ω2

p = (Nc e
2)/(ε0m

∗),
we obtain the classic result for the Drude dc conductivity

σf (0) =
Nc e

2 τ

m∗
. (124)
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From dc transport theory the relaxation time τ can be identified as the
momentum relaxation time associated with the free carriers (Ashcroft and
Mermin, 1976).

The conductivity is a bit more interesting in the intermediate- and high-
frequency regions. For poor conductors the imaginary part of the conduc-
tivity

Im(σ) ≈ −iωε0(ε∞ − 1) (125)

dominates the real part. Notice it is negative and due only to the bound
charge characterized by ε∞. This is also the dominant contribution to Im(σ)
for fair and good conductors at high frequencies. For a good conductor at
intermediate frequencies the imaginary part also dominates the real part,
but here Im(σ) > 0 and is due to the free carriers. Notice that Re(σ) is
always > 0.

Analogous to Eq. (99) for the dielectric function of a good conductor in
the intermediate- and low-frequencies regimes, there is an analogous expres-
sion for the conductivity, EX 22

σf (ω) = ε0 ω
2
pτ

1

1− iωτ
. (126)

This is often referred to as the Drude ac conductivity. Again, the sub-
script f denotes that this conductivity is entirely from the free carriers.

To see what σ(ω) looks like for an actual metal, in Fig. 14 we plot
the conductivity of Pb obtained from the dielectric function data (solid
circles) and model (solid lines) shown in Fig. 10. Notice for ωτ � 1 (in
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this case frequencies up to ∼1014 s−1) that, as expected, the real part of
the conductivity is essentially constant and dominates the imaginary part.
Indeed, in this frequency region Re(σ) = 4.56 ×106 Ω−1m−1 corresponds
to a resistivity ρ (= 1/σ) of 21.9 × 10−8 Ω m. This is quite close to the
experimental dc resistivity of 20.6 × 10−8 Ω m (Emsley, 1993).

By comparison, if we start with the dielectric function for a pure,
crystalline insulator [Eq. (114)] or a collection of Debye dipole moments
[Eq. (116)], we end up with ε(0) equal to a finite constant. With this result
Eq. (122) tells us that σ(0) = 0, as expected for a material with no free
charge.

6.2. Free and Bound Charge Response

Our approach of lumping all material charge into ρp is rather canoni-
cal, at least within the research literature. However, another convention
is to keep the responses of the free and bound charges separate from each
other, using the dielectric function to account for the bound charge and the
conductivity to account only for the free carriers. This approach can be
found in some undergraduate textbooks; see for example (Griffiths, 2013).
In this scheme ρp and jp refer only to bound charge while ρother and jother
are set equal to the free-charge density ρf and current density jf , respec-
tively. Although this separation of charge may be impossible to distinguish
experimentally, it can certainly be maintained theoretically. In this section
we explore this alternative point of view, in part to show how it connects
to our approach above where these two types of charge are formally undif-
ferentiated.

We start by first identifying the response functions. Because the di-
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electric function is to be associated solely with the bound charge in the
material, we use εb(ω) to represent this response. The displacement field is
thus defined via

D̃ = ε0εb(ω) Ẽ. (127)

It is important to note that because the free charge is not included in the
dielectric function, the displacement field in this formulation is not the same
as our previous field D̃. This is apparent in Gauss’ law below. Likewise, we
represent the free-electron conductivity with σf (ω), which is defined via

j̃f = σf (ω) Ẽ. (128)

We now derive the Helmholtz equation for the electric field. With distinct
free and bound charge, Maxwell’s equations with harmonic time dependence
can be written in terms of the fundamental fields as EX 23

ε0 εb(ω)∇ · Ẽ = ρ̃f , (129)

∇ · B̃ = 0, (130)

∇× Ẽ = iωB̃, (131)

and
∇× B̃ = µ0

[
σf (ω)− iωε0εb(ω)

]
Ẽ. (132)

With manipulations similar to those previously carried out, the last two
equations can be combined to yield

∇(∇ · Ẽ)−∇2Ẽ = µ0

[
ω2ε0εb(ω) + iω σf (ω)

]
Ẽ. (133)

We previously showed for oscillations at a real frequency ω that ∇· Ẽ = 0;31

we can thus simplify this last equation to

∇2Ẽ = −µ0ε0

[
εb(ω) + i

σf (ω)

ε0 ω

]
ω2 Ẽ, (134)

an alternative form of the Helmholtz equation for Ẽ. Comparing this with
our original version of the wave equation [Eq. (66)], we can identify the
(complete) dielectric function as

ε(ω) = εb(ω) + i
σf (ω)

ε0 ω
. (135)

As the response functions for both free and bound electrons are generally
complex, this last equation is not always particularly enlightening.

31 Notice ∇ · Ẽ = 0 and Eq. (129) also imply ρ̃f = 0.
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However, it does have its appeal if the frequency ω is low enough that
the bound-charge response is simply the constant ε∞, simplifying Eq. (135)
to

ε(ω) = ε∞ + i
σf (ω)

ε0 ω
. (136)

As is obvious, all of the frequency response is now contained in the free-
carrier conductivity σf (ω). Indeed, if σf (ω) is taken to be the Drude ac
conductivity [Eq. (126)], then ε(ω) given by this last equation becomes
the Drude dielectric function given by Eq. (115). As we shall see below
when discussing the decay of charge fluctuations, describing any interesting
frequency-dependent response with a conductivity while leaving the high-
frequency response in the term ε∞ can be quite useful at times.

7. WAVE PROPAGATION – FURTHER CONSIDERATIONS

Now that we have examined several dielectric functions, it is appropriate
that we go back to EM wave propagation and investigate this topic in more
depth. We first concentrate on the spatial nature of an EM wave inside
a material. Certainly, we have touched on this topic in our discussion of
the dispersion relation ω(k); here we extend this discussion by introducing
the complex index of refraction N = n + iκ. As we shall see, N is pro-
portional to the wave vector k, and so n (the real part of N) controls the
wavelength while κ (the imaginary part) controls the decrease of the wave’s
amplitude along the direction of propagation. Next, we introduce the op-
tical impedance Z. This property controls the ratio of the electric field to
the magnetic field in an EM wave. Although not discussed here, the optical
impedance controls the reflectivity of EM radiation from the surface of a
solid.

Before delving into these subjects, a few background remarks are in order
regarding the exact situation being considered here. First, we assume that
the material of interest [described by ε(ω) (and µ = 1)] occupies the half
space defined by z ≥ 0, while z < 0 is filled with vacuum. Consequently,
the material-vacuum interface is infinitely sharp.32 Second, we assume that
an EM wave of frequency ω traveling in the +ẑ direction is (normally)
incident on the (z = 0) surface of the material.33 This incident wave
generates both a reflected wave (propagating through the vacuum in the
−ẑ direction) and a transmitted wave (propagating into the material in
the +ẑ direction). Our present interest is in this transmitted wave.

Furthermore, for simplicity we assume that (i) the transmitted wave is
linearly polarized and (ii) the electric field points along the x̂ direction. We

32 Any realistic interface consists of a finite-sized transition region between the two ma-

terials of interest. We shall not consider the consequences of such a transition region.
33 Just to be clear, ẑ is the unit vector pointing in the +z direction.
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can then write the electric-field part of the EM wave as

E(z, t) = x̂ E0 e
i(kz−ωt), (137)

where k and ω are related via the dispersion relation

k =
ω

c

√
ε(ω). (138)

7.1. Index of Refraction

The complex index of refraction N = n + iκ is defined in terms of
the wave vector k via

k =
ω

c
N. (139)

A comparison of this equation with Eq. (138) immediately reveals that (i)
the index of refraction is frequecy dependent (no surprise) and (ii) simply
related to the dielectric constant;

N(ω) =
√
ε(ω). (140)

Let’s see how N determines the spatial behavior of an EM wave in the
solid. Because ω/c = 2π/λ0, where λ0 is the vacuum wavelength of an EM
wave of frequency ω, we can write

k =
2π

λ0
(n+ iκ), (141)

which allows us to re-express Eq. (137) as

E(z, t) = x̂ E0 e
−(2π/λ0)κ z ei(2π/λ0)n z e−iωt. (142)

Inspection of this equation reveals that n controls the wavelength λ (inside
the material) and κ controls the exponential decay of the electric field as
the wave propagates into the solid. Indeed, writing Eq. (142) in the more
generic form

E(z, t) = x̂ E0 e
−z/δf ei(2π/λ) z e−iωt, (143)

we see that the specific relationships are

λ

λ0
=

1

n
, (144)

and
δf
λ0

=
1

2πκ
, (145)
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The parameter δf is known as the field skin depth of the material.34 The
relative importance of spatial decay vs the wavelength in the material is
obtained by taking the ratio of these last two equations,

δf
λ

=
n

2πκ
. (146)

Notice that a material with negligible κ compared to n exhibits a decay
length that is much longer that a wavelength. This approximation applies,
for example, to a typical glass in the visible region of the spectrum. The
other extreme occurs when κ � n. As we see below, this applies, for
example, to a good conductor in the intermediate frequency region.

We now look at N and related quantities for both poor and good conduc-
tors. Similar to our previous figures for the dielectric function (Fig. 5) and
conductivity (Fig. 12), in Fig. 15 we plot the frequency dependent index

of refraction N(ω) =
√
εD(ω), where the Drude dielectric function εD(ω) is

given by Eq. (115). Also in this figure the wavelength λ and skin depth δf
are plotted, where both are normalized by λL = 2πc/ωL, the vacuum wave-
length of EM radiation at the longitudinal frequency ωL. We also include
graphs of δ/λ, which gives some indication of the relative transparency of the
material. As we have also previous done for several quantities, in Fig. (16)
we indicate approximate expressions for N in the low, intermediate, and
high frequency regions of poor, fair, and good conductors. As N = ck/ω,
these expressions are trivially obtained from those for ck in Fig. 7.

There are several noteworthy observations. First, at low and high fre-
quencies poor, fair, and good conductors are indistinguishable. At low fre-
quencies n ≈ κ so that δf ≈ λ/(2π), resulting in strong attenuation of the
wave on a length scale somewhat smaller than one wavelength. At high
frequencies n ≈ √ε∞ while κ ∼ 1/ω3; this makes δf ∼ ω2, and so with
increasing frequency the conductor becomes more transparent. It is only at
intermediate frequencies that differences in behavior are found. For both
poor and good conductors the skin depth is constant in this region, and so
the absolute transparency of the material is constant. However, the ratio of
δf to λ is quite different for these two types of conductors: the ratio increases
as ω in a poor conductor but decreases as 1/ω for a good conductor. Thus,
relative to the wavelength λ, with increasing frequency a poor conductor
becomes more transparent and a good conductor less transparent. In a good
conductor this behavior produces an abrupt transparency edge at ω = ωL.
In a poor conductor the transition to transparency is more gradual. These
last observations are perhaps most apparent in the plots of δf/λ shown in
(c) and (f) of Fig. 15.

34 The field skin depth is twice as large as the intensity skin depth δI . As there is no

clear convention as to whether the term “skin depth” refers to the fields or intensity,

it is best to be explicit about which quantity is being discussed. Hence, we use the

subscripts f and I to differentiate these two quantities.
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FIG. 15 Drude index of refraction N(ω) =
√
ε(ω) and related quantities. A poor

[good] conductor is illustrated in (a), (b), and (c) [(d), (e), and (f)]. In (a) and

(d) the Re and Im parts of N are plotted. In (b) and (e) the wavelength λ and

field skin depth δf are plotted, normalized by λL = 2πc/ωL. In (c) and (f) the

ratio δf/λ is plotted. The dashed lines in (b) and (e) are labeled by approximate

expressions for δf appropriate for each frequency region. As in Figs. 5 and 12, for

the poor (good) conductor ωLτ = 0.1 (100) and ε∞ = 10.

In Fig. 17(a) we plot the index of refraction for Pb. Given our previ-
ous discussion of Pb, it is not surprising that for frequencies below ωL the
response is quite well described by a good Drude metal.

To see how the electric field E(z, t) as given by Eq. (142) varies with
distance z into the material, in Fig. 18 we plot the real part of the nor-
malized electric field E(z, t)/E0 as a function of the normalized distance
z/λ (with t = 0) for a good conductor. Examples from the three frequency
regimes are illustrated. In the low frequency region (where n ≈ κ) the field
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FIG. 16 Approximate expressions for index of refraction N(ω) of poor (ωLτ � 1),

fair (ωLτ ∼ 1), and good (ωLτ � 1) conductors in low, intermediate, and high

frequency regions.

barely oscillates before the amplitude of the field becomes negligible. In the
intermediate region (where n � κ) the electric field is even more strongly
damped; here no oscillations are observed. In contrast to these two regions,
at high frequencies (where n� κ) many oscillations in the field are observed
within the field skin depth δf . For the examples illustrated in Fig. 18, δf/λ =
0.16, 0.0028, and 16 at frequencies given by ω/ωL = 10−4, 0.8, and 1.2, re-
spectively. At ω/ωL = 1.2, the damping is still relatively important for all
but the thinnest materials. However, with increasing frequency the rela-
tive transparency becomes much stronger; for example, δf/λ = 3.2× 104 at
ω/ωL = 10.

7.2. Optical Impedance

In any EM wave there is not only a propagating electric field, but also
an accompanying magnetic field;35 in this section we consider this magnetic
field and its relationship to the electric field. Following tradition we use the
H field rather than the B field, although for nonmagnetic materials that
are our present interest, we recall that these fields are related via B = µ0H.
Starting with the electric field given by Eq. (137), it is not hard to show

35 Hence the term – electromagnetic wave.
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FIG. 17 Index of refraction N(ω) (a) and normalized optical impedance ζ(ω) (b)

of lead (Pb). Experimental data (filled circles) along with fit (solid lines) using

same Drude/harmonic-oscillator model as in Fig. 10; see text for details.

(using Maxwell’s equations) that the H field can be written a

H(z, t) = H0 ŷ e
i(kz−ωt), (147)

where the H-field and E-field amplitudes are related via

E0

H0

=

√
µ0

ε0

1√
ε(ω)

. (148)

Interestingly, the ratio Z = E0/H0 has units of resistance. For a wave

traveling in vacuum ε(ω) = 1, and so Z0 =
√
µ0/ε0 ≈ 377 Ω is known as

the impedance of free space. By extension, the right side of Eq. (141) is
known as the (optical) impedance of the material. That is,

Z(ω) =

√
µ0

ε0

1√
ε(ω)

. (149)
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FIG. 18 Normalized electric field Re(E(z, t)/E0) vs normalized distance z/λ (at

t = 0) for a good conductor (same parameters as in Fig. 15) in three different fre-

quency regions: (a) low frequencies (ω/ωL = 10−4), (b) intermediate frequencies

(ω/ωL = 0.8), (c) high frequencies (ω/ωL = 1.2). Notice different scales for z/λ.

The normalized impedance ζ(ω) is defined as the impedance Z(ω)
divided by the free-space impedance Z0, which leads to the simple relations

ζ(ω) =
1√
ε(ω)

(150)

and
E0

Z0H0

= ζ(ω). (151)

In Fig. 20 we plot the normalized optical impedance ζ(ω) for both a poor
and good conductor. Perhaps the most interesting features of these curves
are associated with the phase θ(ω) of the impedance ζ(ω), defined via

ζ(ω) = |ζ(ω)|ei θ. (152)

For both good and poor conductors θ ≈ −π/4 at low frequencies and θ ≈
0 at high frequencies. The difference between conductor types occurs at

49



D. M. Riffe Canonical Models of Dielectric Response

 

1 .10 4 1 .10 3 0.01 0.1 1 10 100
1 .10 4

1 .10 3

0.01

0.1

1

10

40

20

0

1 .10 4 1 .10 3 0.01 0.1 1 10 100
1 .10 4

1 .10 3

0.01

0.1

1

Lωω  

)(ωθ

(a) 

)(ωζ  

τωω 2
L=

Re

Im−

)(ωζ  

1=τω

(b) 

∞ε1

∞ε1

 

1 .10 4 1 .10 3 0.01 0.1 1 10
1 .10 4

1 .10 3

0.01

0.1

1

10

80

60

40

20

0

1 .10 4 1 .10 3 0.01 0.1 1 10
1 .10 4

1 .10 3

0.01

0.1

1

10

Lωω  

)(ωθ

(c) 

)(ωζ

Lωω =

Re

Im−

)(ωζ

1=τω

(d) 

∞ε1  

∞ε1  

FIG. 19 Optical impedance ζ(ω) = 1/
√
ε(ω) associated with Drude dielectric

function. A poor [good] conductor is illustrated in (a) and (b) [(c) and (d)]. In

(a) and (c) the Re and Im parts of ζ are plotted. In (b) and (d) the modulus

|ζ(ω)| and phase θ(ω) are plotted; see text for details. As in previous figures, for

the poor (good) conductor ωLτ = 0.1 (100) and ε∞ = 10

.

intermediate frequencies. As illustrated, in a poor conductor θ(ω) smoothly
transitions between its two extremes, while in a good conductor θ(ω) first
approaches −π/2 before abruptly transitioning to values close to zero.

Similar to previous figures for the other response functions, in Fig 20
we provide approximate expressions for the optical impedance of poor, fair,
and good Drude metals. As is the case with the index of refraction N(ω)
(see Fig. 16), differences in the expressions only differ in the intermediate
frequency regime.

We conclude this section by noting the graph of optical impedance for
Pb in Fig. 17(b). A comparison with the analogous graphs in Fig. 19 again
illustrates that Pb is a fine example of a good Drude metal.

8. RELAXATION OF CHARGE FLUCTUATIONS

In our discussions above we have noted several times that for harmonic
fields ∇ · Ẽ = 0, implying the important result ρ̃ = 0. In some respects this
can be viewed as an extension of the well known result ρf = 0 in a conductor
at equilibrium. However, it might certainly be the case that at some point
in time an external perturbation induces a nonequilibrium deviation in the
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charge density ρ within the solid.
Here we consider the relaxation of such nonequilibrium fluctuations in

ρ. After building up the requisite mathematical machinery, we first look
at the relaxation associated with the free-carrier charge density ρf in a
conductor. We might expect a perturbation in ρf to die away with some
characteristic relaxation time τR. Indeed, in poor conductors this is exactly
what happens. Perhaps surprisingly, in a good conductor oscillations in the
density accompany the decay. We then extend this discussion to distur-
bances in the charge density associated with a set of dipoles described by
the Debye model. As in the case of a poor conductor, these fluctuations
also exponentially die away. Lastly, we look at charge-density fluctuations
associated with optic-phonon modes in a diatomic insulator such as NaCl.
Similar to the free-charge density decay in a good conductor, oscillations
also accompany the relaxation to equilibrium.

To facilitate our study of these charge-density fluctuations, we divide
the charge as follows: ρother comprises the charge density ρi of interest (i =
f , D, or h, as appropriate; see below), while ρp comprises the (remaining)
charge density associated with high-frequency electronic response. Natu-
rally following from this division are a conductivity σi(ω) associated with
ρi and the dielectric constant ε∞ to describe the high-frequency interband
response. That is, analogous to Eq. (136), we think of the overall dielectric
responses given in Eqs. (114) – (116) as EX 24
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ε(ω) = ε∞ + i
σi(ω)

ε0 ω
, (153)

where σi is either the free-carrier Drude ac conductivity

σf (ω) = ε0 ω
2
pτ

1

1− iωτ
, (154)

the overdamped Debye-dipole conductivity

σD(ω) = −iε0 (ε(0)− ε∞)
ω

1− iωτ
, (155)

or the damped harmonic-oscillator conductivity

σh(ω) = −i ε0 ω2
p0

ω

ω2
0 − ω2 − iγ0ω

. (156)

In what follows we first construct an equation of motion for the density
ρi(t). We then solve that equation for each of the specific conductivities in
Eqs. (154) – (156).

Our equation of motion comes directly from the continuity equation for
the charge density ρi,

∂ρi
∂t

+∇ · ji = 0. (157)

Starting here, we shall (i) relate ji to the electric field E and (ii) use Gauss’
law to relate E to ρi, which will then produce our desired equation for ρi.

8.1. Local Response

Before dealing with the specifics that arise from the particular conductiv-
ities listed above, we discuss a rather generic model that has been presented
in many textbooks on electrodynamics (Ashby, 1975; Saslow and Wilkin-
son, 1971). Although this model is only correct in one limit (free carriers in
a poor conductor), its pervasiveness warrants a brief diversion from a more
appropriate description.

Let’s first consider Gauss’ law, as this is the simpler of the two rela-
tionships required to transform the continuity equation into an equation
of motion for ρi. With our division of charge densities we have only the
high-frequency-excitation bound charge associated with the polarization P.
As we are describing the response of this charge with the constant ε∞, the
displacement is given by D = ε0ε∞E, which leads to Gauss’ law [Eq. (30)]
in the form

ε0 ε∞∇ · E = ρi. (158)

A tacit assumption underlies the simple equation D = ε0ε∞E: the polar-
ization of the charge described by ε∞ is instantaneous with respect to the
electric field. As all charge carriers have inertia, D = ε0ε∞E cannot be
exact. However, in what follows we assume that the resonant frequencies of
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the excitations that give rise to ε∞ are high enough that negligible error is
introduced.

We now consider ji and E. Let’s assume for the moment that these two
quantities are also related by a simple constant,

ji = σi(0) E. (159)

That is, let’s assume that Ohm’s law is valid. If an instantaneous rela-
tionship is (at least approximately) valid, then the proportionality constant
must be the zero-frequency conductivity σi(0) (as indicated), as the relation-
ship must hold in the limit of a dc electric field. As we shall see below, this
instantaneous relationship between ji and E must usually be abandoned.
Nonetheless, let’s see where it leads.

If we now use Eq. (159) to eliminate ji in Eq. (157) and then use Eq. (158)
to eliminate ∇ · E we obtain

dρi
dt

= − σi(0)

ε0 ε∞
ρi, (160)

a simple first-order equation for ρi. This has the solution

ρf (t) = ρf (0)e−t/τR , (161)

where the relaxation time is given by

τR =
ε0 ε∞
σi(0)

. (162)

There are several problems with this result. The first arises because for
Debye dipoles or optic-phonon modes σi(0) = 0 [See Eqs. (155) and (156)].
We are thus forced to conclude that it would take infinitely long for charge
fluctuations associated with these two responses to dissipate. As we shall
see below, a nonzero equilibrium solution is possible for these two cases,
but charge-density fluctuations will at least decay to some extent in these
systems. There are also problems with Eq. (162) with regard to free carriers.
Using σf (0) = ε0ω

2
pτ , this last equation becomes

τR
τ

=
1

ω2
Lτ

2
. (163)

where ω2
L = ω2

p/ε∞. For a poor conductor (ωLτ � 1) we end up with
τR � τ , a perfectly reasonable result which (as we show below) is also valid.
However, for a good conductor (ωLτ � 1) this last result suggests that the
charge density relaxes on a time scale much faster than the fundamental
relaxation time τ of the charge carriers. This is perfect nonsense.

8.2. Nonlocal Response

To more accurately describe the decay of a fluctuation in charge density
ρi we must recognize that on some (typically very short) time scale the
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electric field influences the motion of the charge carriers into the future.
As we shall see, this time scale is set by the underlying relaxation time in
the system. Consequently, the response function that connects the current
density to the electric field is not local in time.36 A linear relationship
between ji and E that is nonlocal in time can be mathematically expressed
as

ji(r, t) =

∫ ∞
−∞

σ̆i(t− t′) E(r, t′) dt′. (164)

Causality dictates that σ̆i(t) = 0 for t < 0, and so when convenient we may
alternatively write

ji(r, t) =

∫ t

−∞
σ̆i(t− t′) E(r, t′) dt′. (165)

As we now show, the the conductivity-operator kernal σ̆i(t) and the
frequency-dependent conductivity σi(ω) are a Fourier-transform pair. To
see this we assume the current density and electric field in Eq. (164) to
oscillate harmonically at some frequency ω. Then it is not hard to show
that Eq. (164) becomes EX 25

j̃i(r) =

∫ ∞
−∞

σ̆i(t)e
iωt dt Ẽ(r). (166)

Comparing this equation with Eq. (128) (where i = f), we see

σi(ω) =

∫ ∞
−∞

σ̆i(t) e
iωt dt, (167)

which implies the inverse Fourier relation

σ̆i(t) =
1

2π

∫ ∞
−∞

σi(ω) e−iωt dt. (168)

To derive the equation of motion for ρi we proceed as before, except
this time we use Eq. (165) rather than Eq. (159). This yields an integro-
differential equation for ρi,

dρi(t)

dt
= − 1

ε0ε∞

∫ t

−∞
σ̆i(t− t′) ρi(t′) dt′. (169)

Equilibrium solutions to Eq. (169) lends some insight. Assuming a con-
stant solution ρeq, it is straightforward to reduce this equation to

0 = − 1

ε0ε∞
σi(0)ρeq. (170)

36 You might also wonder whether or not the response function should also be nonlocal

in space. Indeed, there are times when this is also the case. One example is the

anomalous skin effect in metals.
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If ρeq describes free carriers, then σi(0) 6= 0. Thus, ρeq must be zero, as
expected. On the other hand, if ρeq describes bound charge (such as that
associated with Debye dipoles or optic-phonon modes), then σi(0) = 0 and
a non-zero constant ρeq is a valid solution.

We now imagine the following scenario. Up until t = 0 the charge density
ρi is zero. At t = 0 some external disturbance causes the charge density to
take on some nonzero value ρi(0). Our goal to find out how this fluctuation
dissipates. With these conditions we can simplify Eq. (169) to

dρi(t)

dt
= − 1

ε0ε∞

∫ t

0

σ̆i(t− t′) ρi(t′) dt′. (171)

Notice that setting t = 0 in this expression implies dρi/dt(0) = 0, as long as
the kernal σ̆i(t) is a true function (rather than a distribution). In the case
where it has any distribution component (which it does for Debye dipoles
and in the limit of free carriers in a very poor conductor), dρi/dt(0) is related
to ρi(0). In either case, dρi/dt(0) is completely specified.

To gain further insight into Eq. (171) we take its Laplace transform (s
is the transform variable), which gives us EX 26 27

ρ̄i(s) =
ρi(0)

s+ 1
ε0ε∞

σ̄i(s)
. (172)

First, this expression explicitly demonstrates that the only required initial
condition for the problem is ρi(0). Furthermore, Because

σ̄i(s) =

∫ ∞
0

σ̆i(t)e
−stdt, (173)

and σ̆i(t) = 0 for t < 0, we have σ̄i(s) = σi(is) [see Eq. (167)]. Hence, if one
has an expression for σi(ω), then one need not calculate σ̆i(t) when using
the Laplace transform to find ρi(t).

8.3. Free Carriers

We now solve Eq. (171) assuming the free carriers are described by the
Drude ac conductivity σf (ω) given by Eq. (154). Taking the Fourier trans-
form of this particular σi(ω) yields the kernal EX 28, 29

σ̆f (t) = ε0 ω
2
p e
−t/τ Θ(t), (174)

where Θ(t) is the Heaviside function. Satisfyingly, the Heaviside function
ensures causality. We now substitute this expression for σ̆i(t) into Eq. (171),
which gives us

dρf (t)

dt
= −ω2

L

∫ t

0

e−(t−t
′)/τ ρf (t

′) dt′. (175)

The simplicity of the exponentially decaying kernal allows us to easily turn
Eq. (175) into a familiar differential equation. Taking a second derivative
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in time and then using Eq. (175) to eliminate the integral from the differ-
entiated equation yields EX 30

d2ρf
dt2

+
1

τ

dρf
dt

+ ω2
Lρf = 0, (176)

the harmonic-oscillator equation of motion! Notice that the damping is
governed by the (momentum) relaxation time τ of the free carriers, while
the natural frequency of oscillation is the longitudinal frequency ωL.

8.3.1. Good Conductors

A good conductor is defined by ωLτ � 1; hence, the solution to Eq. (176)
is well into the underdamped regime (ωLτ > 1/2) of a damped harmonic
oscillator. This results in the charge-density decay being most conveniently
described by

ρf (t) = e−t/(2τ)
(
A1 e

i
√
ω2
L−(1/2τ)2 t + A2 e

−i
√
ω2
L−(1/2τ)2 t

)
, (177)

where the constants A1 and A2 are determined by the initial conditions.
Because ωLτ � 1, the square root in the exponents of Eq. (177) can simply
be replaced by ωL, and so to excellent approximation

ρf (t) = e−t/(2τ)
(
A1 e

iωLt + A2 e
−iωLt

)
. (178)

From this result we see that any charge-density fluctuations decay with a
characteristic time 2τ accompanied by oscillations at the frequency ωL.

The specific solution to our problem is obtained by imposing the initial
condition of a given ρf (0) and using dρ/dt(0) = 0 (discussed above). With
these conditions the solution can be written as EX 31

ρf (t) = ρf (0) e−t/(2τ)
[
cos(ωLt) +

1

2ωLτ
sin(ωLt)

]
. (179)

Because ωLτ � 1, the cosine term dominates the sine term in this expres-
sion.

Let’s apply this result to the ideal good conductor of Fig. 5, for which
ωLτ = 100.37 Because the period of oscillation T equals 2π/ωL, we have
2τ/T = 31.8, and so we have ∼32 oscillations within a decay time of the
fluctuation.

37 It would be more desirable to use a real metal (such as Pb or Au) as an example here.

However, the typical overlap of low lying interband transitions with what would be ωL

in most metals makes the situation significantly more complicated.
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8.3.2. Poor Conductors

In contrast, the charge-density decay for a poor conductor (ωLτ � 1) is
well into the overdamped regime. In this case it is convenient to write the
solution as

ρf (t) = e−t/(2τ)
(
A1 e
√

(1/2τ)2−ω2
L t + A2 e

−
√

(1/2τ)2−ω2
L t
)
. (180)

Because ωLτ � 1, without much loss in accuracy this last expression sim-
plifies to

ρf (t) = A1 e
−t/τR + A2 e

−t/τ , (181)

where τR = 1/(ω2
Lτ). Notice that this is the same relaxation time previ-

ously obtained with the instantaneous-response model discussed above [see
Eq. (163)]. Because ωLτ � 1, τR � τ , and so the first term in Eq. (181)
decays much more slowly than the second term.

Imposing the initial conditions we obtain the solution EX 32

ρf (t) = ρf (0)
1

1− τ/τR

(
e−t/τR − τ

τR
e−t/τ

)
, (182)

This result demonstrates that the second (short lived) term has a much
smaller amplitude than the first (long lived) term. Indeed, if the ratio τ/τR
is neglected, we recover the local-response result, Eq. (161). Notice for both
poor and good conductors that ρf approaches zero at long times.

We can also obtain the local-response result via a slightly different route.
We first note σ̆(t) can be expressed as

σ̆f (t) = σf (0)
1

τ
e−t/τ Θ(t). (183)

Because for a poor metal the relevant timescale τR is much longer than 1/τ ,
then to good approximation

σ̆f (t) = σf (0) δ(t), (184)

where δ(t) is the Dirac delta function. With this kernal Eq. (171) readily
simplifies to Eq. (160), the local-response equation of motion, thus validat-
ing the Ohm’s law approximation jf = σf (0)E for a poor conductor.

It is instructive to consider this limit in the frequency domain. First,
we note that Ohm’s law corresponds to σ(ω) being independent of fre-
quency. Second, the Drude ac conductivity σf (ω) [Eq. (155)] is (essentially)
constant for frequencies up to ∼ 1/τ . Therefore, if the local-model calcu-
lated timescale for the response of the system is longer than τ , then the
conductivity is indeed constant at all relevant frequencies, and the Ohm’s
law approximation is well founded. That is, Ohm’s law is valid as long as
τR/τ & 1. As τR = 1/(ω2

Lτ) this is equivalent to ωLτ . 1. By definition,
poor conductors easily meet this condition, while good conductors do not.

As an example of a poor conductor, we consider n-type GaAs with a
free-carrier density of 1014 cm−3. For this material σf (0) = 9.5 Ω−1m−1 and
ε∞ = 13.1 (Sze, 1981), from which we obtain ωLτ = 0.14 and τ = 2.3×10−13

s. These values imply τR/τ = 54 and τR = 1.2× 10−11 s.
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8.4. Debye Response

To find the time dependence of the charge-density relaxation for a set of
Debye dipoles, we proceed as above for free carriers. We first calculate the
Fourier transform of Eq. (155), which yields EX 33, 34

σ̆D(t) =
ε0 (ε(0)− ε∞)

τ

[
δ(t)− 1

τ
e−t/τ Θ(t)

]
. (185)

Interestingly, σ̆D(t) comprises both local and nonlocal terms. Using this
expression for σ̆D(t) [= σ̆i(t)] in Eq. (171) gives us

dρD(t)

dt
= −ε(0)− ε∞

ε∞

1

τ

[
ρD(t)−

∫ t

0

1

τ
e−(t−t

′)/τ ρD(t′) dt′
]
. (186)

Taking the second time derivative and eliminating the integral in the differ-
entiated equation using Eq. (186) yields the simple differential equation EX 35

d2ρD
dt2

= −ε(0)

ε∞τ

dρD
dt

. (187)

This equation can easily be integrated twice. Doing so, and using the t = 0
relation

dρD(0)

dt
= −ε(0)− ε∞

ε∞

1

τ
ρD(0) (188)

[obtainable from Eq. (186)] gives us EX 36

ρD(t) = ρD(0)

[
τR
τ

+

(
1− τR

τ

)
e−t/τR

]
, (189)

where the relaxation time τR is given by

τR =
ε∞
ε(0)

τ. (190)

A few remarks are in order. First, because ε∞ < ε(0), τR is smaller than
the parameter τ . However, as τ is not a fundamental microscopic relaxation
time [see the discussion just after Eq. (107)], this result is not problematic
in a manner similar to that for the local-model result applied to a good
conductor. Second, for t → ∞ the charge density does not vanish, but
rather decays to [ε∞/ε(0)] ρD(0). Admittedly, this exact value is a curious
result, but it is consistent with our previous observation that for a system
with zero dc conductivity a constant nonzero charge density is a solution to
Eq. (169).

8.5. Optic Phonons

For our third example of charge-density relaxation, we look at the re-
sponse associated with optic phonons. As in our previous two cases, we
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start with the Fourier transform of the appropriate frequency dependent
conductivity [σh(ω), see Eq. (156)], which is EX 37, 38

σ̆h(t) = ε0ω
2
p0 e
−γ0t/2

[
cos(ω1t)−

γ0
2ω1

sin(ω1t)

]
Θ(t). (191)

Here ω1 =
√
ω2
0 − γ20/4.38 Substituting this expression for σ̆h(t) into the

general equation for the charge-density time dependence [Eq. (171)] we ob-
tain

dρh(t)

dt
= −

ω2
p0

ε∞

∫ t

0

e−γ0(t−t
′)/2

[
cos(ω1(t− t′))−

γ0
2ω1

sin(ω1(t− t′))
]
ρh(t

′) dt′.

(192)
Although its derivation is a bit more complicated than in the previous two
examples, a differential equation equivalent to Eq. (192) can be obtained,
this time by taking two time derivatives (and utilizing a bit of algebra),
which results in EX 39

d3ρh
dt3

+ γ0
d2ρh
dt2

+ ω2
L

dρh
dt

= 0, (193)

yet another harmonic-oscillator equation of motion! On this occasion it
describes the motion of dρh/dt. Notice that, as in the case of free-charge-
density relaxation in a conductor, the natural oscillation frequency is the

longitudinal frequency ωL =
√
ω2
p0/ε∞ + ω2

0 [see Eq. (83].39 Integrating

Eq. (193) and using the initial conditions dρh/dt(0) = 0 and d2ρh/dt
2(0) =

−(ω2
p/ε∞)ρh(0) [obtainable from Eq. (192)] results in EX 40

ρh(t) = ρh(0)

{
ω2
0

ω2
L

+

[
1− ω2

0

ω2
L

]
e−γ0t/2

[
cos(ω̄1t) +

γ0
2ω̄1

sin(ω̄1t)

]}
, (194)

where ω̄1 =
√
ω2
L − γ20/4. Because in most cases we are interested in the

significantly underdamped case, ω̄1 ≈ ωL.
As in the case of ρD(t) for Debye response [Eq. (189)], the solution for

ρh(t) does not decay to zero. Instead, as evident from Eq. (194), the charge

density decays to (ω0/ωL)2ρh(0). Because ωL/ω0 =
√
ε(0)/ε∞ (see EX 8),

the long-time solution in both cases can be expressed as [ε∞/ε(0)]ρi(0),
where i = D or h, as appropriate.

38 We remind the reader that optic phonon response is generally underdamped, so that

ω1 is real. If the damping is small enough, then ω1 ≈ ω0, the phonon mode’s natural

frequency of oscillation.
39 For free carriers ω0 = 0.
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9. EXERCISES

9.1. Basics of Maxwell’s Equations

1. Show that charge conservation [Eq. (5)] is implied by the basic field
equations for E and B.

2. Show that Eqs. (30) - (33) imply that the charge associated with ρother
is conserved.

3. Derive the wave equation for the magnetic field B that is analogous
to Eq. (42) for the electric field E.

4. Consider the plane wave given by Eq. (45). Show that E0 is orthogonal
to the wave vector k.

5. Assume that the electric field in a solid with simple linear response is
described by the plane wave E(r, t) = E0 e

i(k·r−ω t) [Eq. (45)]. Now as-
sume that the magnetic field the has the form H(r, t) = H0 e

i(k′·r−ω′ t).
Show that Maxwell’s equations imply (i) k′ = k and ω′ = ω [giving
the field as expressed in Eq. (51)] and (ii) the H-field amplitude is
related to the E-field amplitude via Eqs. (52) and (53).

6. Show that Eqs. (57) – (60) follow from the assumptions of (i) ρother = 0
and jother = 0 and (ii) harmonic fields.

9.2. Model Dielectric Functions / Dispersion Relations

9.2.1. Harmonic Oscillator

7. Starting with the generic dispersion relation [Eq. (??)] and the di-
electric function ε(ω) given by Eq. (73), derive the specific dispersion
relation given by Eq. (78).

8. Beginning with Eq. (81), show that ωL/ω0 =
√
ε(0)/ε∞. This is

known as the Lyndane-Sachs-Teller (LST) relation.

9. Show that the dielectric function in the vicinity of an (undamped)
optic phonon [Eq. (81)] can be written in the form

ε(ω) = ε∞
ω2
L − ω2

ω2
0 − ω2

, (195)

This form clearly shows that ωL is a zero and ω0 a pole of ε(ω).

10. Show that the dielectric function given by Eq. (81) leads to a dis-
persion relation equivalent to that given by Eq. (78), but with
(ck)2 → (ck)2/ε∞ and ω2

p → ω2
p/ε∞. (Hint: you need not derive

the dispersion relation.)
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11. For the multiple-oscillator model [Eq. (79)] the phase velocity vp =
ω/k is greater than c at high frequencies. Show that in this same
frequency region the group velocity vg = dω/dk is less than c.

12. Starting with the damped harmonic oscillator equation of motion for
the dipole moment p [Eq. (84)], derive Eq. (85) for the polarization

P̃ and Eq. (86) for the dielectric function ε(ω).

13. The dispersion curves for harmonic-oscillator response [Fig. 4(b)] and
a good conductor [Fig. 5(d)] show for ω very close to ωL that Re(k) =
Im(k). Find the conditions under which this occurs.

9.2.2. Drude Free Carriers

14. Starting with the equation of motion for the polarization associated
with free carriers [Eq. (90)], derive Eq. (91) for the dielectric function
ε(ω).

15. Show that the two expressions for the Drude dielectric function,
Eqs. (91) and (92), are equivalent.

16. In the appropriate limits derive the simplified results for ε(ω) and ck
shown in Figs. 6 and 7.

17. The (complex) index of refraction N is related to the dielectric func-

tion via N =
√
ε(ω). Starting with the Drude dielectric function

[Eq. (92)], find approximate expressions for the real and imaginary
part of N in the regions illustrated in Fig. 7.

18. The (complex) index of refraction N is related to k and ω via N =
ck/ω. Starting with this and the expressions in Fig. 7, again find n̂
in the regions illustrated in Fig. 7, thus verifying your answers to the
previous exercise.

9.2.3. Debye Response

19. Starting with the equation of motion for the polarization associated
with Debye dipoles [Eq. (105)], derive Eq. (107) for the dielectric
function ε(ω).

20. In the appropriate limits, derive the approximate expressions
[Eqs. (108) – (112)] for the dielectric function and dispersion relation
for Debye dipoles.
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9.3. Conductivity

21. Starting with the Drude dielectric function [Eq. (115)], derive all of the
approximate expressions for the (total) conductivity found in Fig. 13.

22. The Drude free-carrier conductivity σf (ω) can be obtained by starting
with the following (averaged) equation of motion for a free carrier,

dv

dt
+

1

τ
v =

q

m∗
Ẽe−iωt. (196)

(a) Clearly identify each symbol and the origin of each term in this
equation.

(b) Assuming the velocity v oscillates harmonically at at the same
frequency ω as the electric field E, show that

ṽ =
q τ

m∗
1

1− iωτ
Ẽ (197)

(c) Given that the current density is related to the carrier velocity

via j̃ = Nc q ṽ, shown that this leads to the Drude conductivity σf (ω)
given by Eq. (126).

23. Show that the harmonic Maxwell’s equations in the form of Eqs. (129)
– (132) follow from the definitions given by Eqs. (127) and (128).

24. Given Eq. (153), derive the conductivities in Eqs. (154) – (156) start-
ing with the appropriate dielectric functions.

9.4. Charge Relaxation

25. Show that Eq. (166) follows from Eq. (164) under the assumption of
harmonic time dependence to the fields.

26. Laplace transform Eq. (171), and thence verify Eq. (172).

27. Charge density decay ρi(t) via Laplace transform.

In the text each integro-differential equation for ρi(t) [i = f (free car-
riers), D (Debye response), and h (optic phonons)] is transformed into
a familiar differential equation, and the solution for ρi(t) is then deter-
mined. Alternatively, ρi(t) can be found using the Laplace transform
ρ̄i(s), the general form of which is given by Eq. (172). In this exercise
we find ρi(t) for all three models using this approach.

(a) For all three models first find σ̄i(s). This can be done quite simply
starting with the appropriate expressions for σi(ω), given in Eqs. (154)
– (156).
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(b) Next use each σ̄i(s) to find appropriate expressions for ρ̄i(s) for
all three models.

(c) Lastly, inverse transform each ρ̄i(s) to find the corresponding ρi(t),
as expressed in Eqs. (177) and (180) (good and poor conductors),
Eq. (189) (Debye response), and Eq. (194) (optic phonons). (Hint: in
each case ρ̄i(s) can be written as a sum of terms of the form b/(s+a),
which has the inverse transform b e−at.)

9.4.1. Free Carriers

28. Starting with the Drude free-carrier conductivity σf (ω) [Eq. (154)],
calculate its inverse Fourier transform and thence obtain σ̆f (t) as given
by Eq. (174). (Hint: while there are various way to calculate the
Fourier transform, perhaps the most straightforward is to continue
the integral into the lower or upper complex plane (depending upon
whether t is positive or negative), and then use the residue theorem.)

29. Time dependence of the free-carrier current density jf (t).

(a) If the Drude free-carrier conductivity kernal [Eq. (174)] is used
in the (nonlocal) expression for the current density ji(t) [Eq. (165)],
then we end up with

jf (t) =

∫ t

−∞
ε0ω

2
p e
−(t−t′)/τ E(t′) dt′, (198)

where we have suppressed the position variable r. Show that this is
equivalent to the first-order differential equation

jf + τ
djf
dt

= σf (0)E (199)

for jf . Under what condition does this last equation reduce to Ohm’s
law?

(b) We now assume that (somehow) a constant electric field E0 can
be turned on infinitely fast. That is, we let E(t) = E0 Θ(t). Using
this form for the electric field, calculate the integral on the right side
of Eq. (198) and show that the current density can be expressed as

jf (t) = σf (0) E0

(
1− e−t/τ

)
Θ(t). (200)

Notice that under such idealized circumstances the relaxation time
τ sets the time scale for establishing the stead-state current density
σf (0) E0.

(c) Show that Eq. (200) is a solution to Eq. (199) when E(t) = E0 Θ(t).
Pay particular attention to the point t = 0.
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30. Show how the integro-differential equation for the free-carrier charge
density ρf (t) [Eq. (175)] leads to the harmonic-oscillator equation of
motion for ρf (t) [Eq. (176)].

31. Starting with the general solution [Eq. (177)] to the harmonic-
oscillator equation for the free-carrier charge density ρf (t) [Eq. (176)],
derive the specific solution for ρf (t) for good conductors given by
[Eq. (179)].

32. Starting with the general solution [Eq. (180)] to the harmonic-
oscillator equation for the free-carrier charge density ρf (t) [Eq. (176)],
derive the specific solution for ρf (t) for poor conductors given by
[Eq. (182)].

9.4.2. Debye Response

33. Starting with the Debye-dipole conductivity σD(ω) [Eq. (155)], calcu-
late its inverse Fourier transform and thence obtain σ̆D(t) as given by
Eq. (185). (Hint 1: see hint associated with EX 28. Hint 2: the Dirac
Delta function is lurking about; make its presence explicit.)

34. Time dependence of the Debye-dipole current density jD(t).

(a) If the Debye conductivity kernal [Eq. (185)] is used in the (non-
local) expression for the current density [Eq. (164)], then we end up
with

jD(t) = C
∫ ∞
−∞

[
δ(t− t′)− 1

τ
e−(t−t

′)/τ Θ(t− t′)
]

E(t′) dt′, (201)

where we have suppressed the position variable r. Identify the con-
stant C.

(b) Show that Eq. (201) is equivalent to the first-order differential
equation

djD
dt

+
1

τ
jD = C

dE

dt
(202)

for jD.

(c) Assume that a constant electric field E0 can be turned on infinitely
fast. That is, assume E(t) = E0 Θ(t). (In contrast to the free-carrier
response considered in EX 29, here this approximation is not so far
fetched, as the response time of Debye dipoles is quite slow in some
systems.) Using this electric field calculate the integral on the right
side of Eq. (201) and show that the current density can be expressed
as

jD(t) = CE0 e
−t/τΘ(t). (203)
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It this current density continuous? When is jD(t) a maximum? What
is the steady state value of jD(t)?

(d) Show that Eq. (203) is a solution to Eq. (202) when E(t) =
E0 Θ(t). Pay particular attention to the point t = 0.

35. Show how the integro-differential equation for the Debye-response
charge density ρD(t) [Eq. (186)] leads to the differential equation of
motion for ρD(t) [Eq. (187)].

36. Integrate Eq. (187) for the Debye-dipole density two times and then,
using the initial condition expressed in Eq. (188), obtain the solution
for ρD(t) given by Eq. (189).

9.4.3. Optic Phonons

37. Starting with the optic-phonon conductivity σh(ω) [Eq. (156)], calcu-
late its inverse Fourier transform and thence obtain σ̆h(t) as given by
Eq. (191). (Hint: see hint associated with EX 28.)

38. Time dependence of the optic-phonon current density jh(t).

(a) If the optic-phonon conductivity kernal [Eq. (191)] is used in the
(nonlocal) expression for the current density [Eq. (165)], then we end
up with

jh(t) = ε0ω
2
p0

∫ t

−∞
e−γ0(t−t

′)/2

[
cos(ω1(t−t′))−

γ0
2ω1

sin(ω1(t−t′))
]
E(t′)dt′,

(204)

where we have suppressed the position variable r.

(b) Show that Eq. (204) is equivalent to the first-order differential
equation

d2jh
dt2

+ γ0
djh
dt

+ ω2
0 jD = ε0ω

2
p0

dE

dt
(205)

for jh.

(c) Assume that a constant electric field E0 can be turned on infinitely
fast. That is, assume E(t) = E0 Θ(t). Using this electric field calculate
the integral on the right side of Eq. (204) and show that the current
density can be expressed as

jh(t) =
ε0ω

2
p0

ω1

E0 e
−γ0t/2 sin(ω1t) Θ(t). (206)

Is this current density continuous? What is the steady state value of
jh(t)?

(d) Show that Eq. (206) is a solution to Eq. (205) when E(t) =
E0 Θ(t). Pay particular attention to the point t = 0.
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39. Show how the integro-differential equation for the optic-phonon charge
density ρh(t) [Eq. (192)] leads to the harmonic-oscillator equation of
motion for dρh/dt [Eq. (193)].

40. Find the general solution to Eq. (193) for the optic-phonon density
and then, using the initial conditions given just prior to Eq. (194),
obtain the solution for ρh(t) given by Eq. (194).
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