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The steering law can be found by finding a solution to equation 7.13

û =± λ

|λ|
(7.16)

2µ =± V |λ| (7.17)

The appropriate sign can be chosen based on equation 7.14. For the minimum time problem(
φ = tf , ψ [~r (tf )]

)
equation 7.14 indicates that the Hamiltonian must be negative at

the final time. Thus, the negative sign in the above equations is the appropriate sign.

Despite Zermelo posing the problem for aircraft traveling through winds in three di-

mensions, the problem is more frequently presented as a boat traveling through a field of

currents in two dimensions. This is often referred to as the Zermelo boat problem. First,

the solution to this problem for an arbitrary flow field will be shown. Afterwards, more

specialized problems will be examined.

The general problem is

minimize
θ(t)

φ = tf + Γϕ [tf , x (tf ) , y (tf )] (7.18)

subject to ẋ = wx (x, y) + V cos [θ (t)] (7.19)

ẏ = wy (x, y) + V sin [θ (t)] (7.20)

x0 = x (t0) (7.21)

y0 = y (t0) (7.22)

0 = ψ [tf , x (tf ) , y (tf )] (7.23)

where Γ ≥ 0 is a weighting factor, w is the flow field (current) as a function of position, and

V ≥ 0 is the boat’s speed relative to the water. The problem is to select θ (t) in order to

minimize φ subject to the boundary conditions. The necessary conditions for the problem

can be found using the calculus of variations. The Hamiltonian is given by

H = λx [wx + V cos (θ)] + λy [wy + V sin (θ)] (7.24)
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Since the Hamiltonian is not an explicit function of time it is known to be constant with

respect to time along optimal trajectories.

The necessary conditions for an optimal solution can now be found by appropriate

differentiation of the Hamiltonian. First the Euler-Lagrange equations are found

λ̇x = −∂H
∂x

=− λx
∂wx
∂x
− λy

∂wy
∂y

(7.25)

λ̇y = −∂H
∂y

=− λx
∂wx
∂y
− λy

∂wy
∂y

(7.26)

The necessary conditions for the optimal control, θ, are

0 =
∂H

∂θ
= V [−λx sin (θ) + λy cos (θ)] (7.27)

and this expression quickly reduces to the following steering law.

tan (θ) =
λy
λx

(7.28)

Finally, the transversality constraints are given by

0 =

[
∂φ

∂tf
+ νT

∂ψ

∂tf

]
t=tf

+H (tf ) (7.29)

0 =

[
∂φ

∂x (tf )
+ νT

∂ψ

∂x (tf )

]
t=tf

− λx (tf ) (7.30)

0 =

[
∂φ

∂y (tf )
+ νT

∂ψ

∂y (tf )

]
t=tf

− λy (tf ) (7.31)

where ν is a vector containing constant Lagrangian multipliers associated with the terminal

constraint vector ψ.
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The original version of Zermelo’s problem minimized only the final time, subject to a

terminal constraint.

mimimize
θ(t)

φ = tf (7.32)

subject to ẋ = wx (x, y) + V cos [θ (t)] (7.33)

ẏ = wy (x, y) + V sin [θ (t)] (7.34)

x (t0) = x0 (7.35)

y (t0) = y0 (7.36)

x (tf ) = xf (7.37)

y (tf ) = yf (7.38)

The necessary conditions for this problem are the same as the previous problem with Γ = 0.

Given that the Hamiltonian is a constant along an optimal trajectory, the transversality

condition connected with the final time reduces to

H = −1 (7.39)

By solving equations 7.24, 7.28 and 7.39 expressions can be found for the Lagrange

multipliers

λx =
− cos (θ)

V + wx cos (θ) + wy sin (θ)
(7.40)

λy =
− sin (θ)

V + wx cos (θ) + wy sin (θ)
(7.41)

These equations can be used to develop a steering law. First, time differentiate equation

7.28 with respect to time and substitute equations 7.25-7.26 and 7.40-7.41 into the resulting

expression yields a steering law.

θ̇ =
∂wy
∂x

sin2 (θ) +

(
∂wx
∂x
− ∂wy

∂y

)
cos (θ) sin (θ)− ∂wx

∂y
cos2 (θ) (7.42)
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This is the steering law first shown by Zermelo. The boundary conditions may now be

satisfied by selecting an appropriate value for θ (t0) and tf , such that the terminal boundary

conditions are met. For simple flow fields, an analytic solution to this boundary value

problem can be developed.2

7.3.2 Linearly Varying Flow Field

The most famous example of the Zermelo boat problem, is where the flow field is known

to vary linearly in only one direction

wx =py (7.43)

wy =0 (7.44)

In this situation the differential equations of motion reduce to

ẋ =py + V cos (θ) (7.45)

ẏ =V sin (θ) (7.46)

together with the steering law given by

θ̇ = −p cos2 (θ) (7.47)

The value of θ0 = θ (t0) can be found by direct integration of these three differential equa-

tions. This process is facilitated by changing the independent variable from t to θ, using

equation 7.47

dt =
dθ

−p cos2 (θ)
(7.48)

2Another interesting example relates to Snell’s law from optics. If the flow field is only a function of the
y-axis component (wx (y) , wy (y)) this problem reduces to an analog of Snell’s law [141] from optics

constant =
cos θ

V + wx (y) cos (θ) + wy (y) sin (θ)



110

which is amenable to direct integration

tgo = tf − t =
1

p
[tan (θ)− tan (θf )] (7.49)

or

tan (θ) = tan (θf ) + ptgo (7.50)

where θf = θ (tf ) and θ = θ (t). This is a linear tangent steering law, which is the same

structural form found in space guidance applications. This same change of variables can

be used to directly integrate the equations of motion. Begin by directly integrating y with

respect to θ

f1 (θ, θf ) =
V

p

[
1

cos (θf )
− 1

cos (θ)

]
+ yf − y = 0 (7.51)

This result can be used to integrate x with respect to θ

f2 (θ, θf ) = yf [tan (θf )− tan (θ)]+
V

2p

tan (θ)

cos (θ)
− 2

tan (θ)

cos (θf )
+

tan (θf )

cos (θf )
− ln

∣∣∣∣∣∣
tan (θf ) + 1

cos(θf)

tan (θ) + 1
cos(θ)

∣∣∣∣∣∣


+ xf − x = 0 (7.52)

For given values of x and y, equations 7.51 and 7.52 can be solved to find θ and θf . The

solution to the boundary value problem is completed, by finding tgo using equation 7.49.

The solution to these equations 7.51 and 7.52 must be found using numerical methods.

A simple Newton-Raphson root finding technique works very well for this purpose, if a good

initial guess is provided. The partials needed to execute a Newton-Raphson routine are

∂f1

∂θ
=− V

p

tan (θ)

cos (θ)
(7.53)

∂f1

∂θf
=
V

p

tan (θf )

cos (θf )
(7.54)

∂f2

∂θ
=− yf

1

cos2 (θ)
+

V

p cos (θ)

[
tan2 (θ)− 1

cos (θ) cos (θf )

]
(7.55)

∂f2

∂θf
=yf

1

cos2 (θf )
+

V

p cos (θf )

[
1

cos2 (θf )
− tan (θ) tan (θf )

]
(7.56)
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The form of the optimal control law can be verified by examining the necessary condi-

tions provided by Euler-Lagrange equations

λ̇x =0 (7.57)

λ̇y =− pλx (7.58)

These differential equations can be easily solved

λx =const. (7.59)

λy =λyf + (tf − t)λxp (7.60)

These expressions are substituted into equation 7.28 revealing the same linear tangent steer-

ing law found in equation 7.50

tan (θ) =
λyf
λx︸︷︷︸

tan
(
θf

)
+ (tf − t)︸ ︷︷ ︸

tgo

p (7.61)

Table 7.1 and figures 7.1 and 7.2 show some examples of solutions to this boundary

value problem.

Another version of the Zermelo boat problem is the case where tf is fixed, and a function

of the terminal state is to be extremelized.

minimize
θ(t)

φ = ϕ [x (tf ) , y (tf )] (7.62)

subject to ẋ = wx (x, y) + V cos [θ (t)] (7.63)

ẏ = wy (x, y) + V sin [θ (t)] (7.64)

x0 = x (t0) (7.65)

y0 = y (t0) (7.66)

0 = ψ [x (tf ) , y (tf )] (7.67)
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Table 7.1: Example solutions to Zermelo’s boat problem in linearly varying current. A-D are
numeric solutions, and E is an analytic solution that can be used to check coded equations
for accuracy. Trajectories associated with columns A-D are shown in figure 7.1.

A B C D E
V = 1m

s 1m
s 1m

s 1m
s 1m

s
p = 0.011

s 0.011
s 0.011

s 0.011
s

1
100

1
s

x = 0m 250m 500m 600m 0m

xf = 500m 500m 500m 500m 100
(

1 + 1√
2

+
√

6− 1
2 ln 2−

√
3

1+
√

2

)
m

≈ 525.5762m
y = 100m 100m 100m 100m 100m

yf = 50m 50m 50m 50m 100
(√

2− 1
)
m

≈ 41.4214m
θ = 43.9400◦ 14.7553◦ −127.2954◦ −123.2751◦ 45◦

θf = −58.0318◦ −49.3190◦ −150.3755◦ 139.1191◦ −60◦

tgo = 256.5983 s 142.6764 s 74.4265 s 238.9444 s 100
(
1 +
√

3
)
s

≈ 273.2051 s

0 100 200 300 400 500 600
0

50

100

150

x [m ]

y
[
m
]

A
B
C
D

Fig. 7.1: Trajectories for example solutions to Zermelo’s boat problem in linearly varying
current. These trajectories correspond with the indicated columns of table 7.1.
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Fig. 7.2: Control trajectories for example solutions to Zermelo’s boat problem in linearly
varying current. These controls correspond with the indicated columns of table 7.1.

This problem has the same Euler-Lagrange equations as the last problem, but the transver-

sality conditions used to find the final time are not applicable. The remaining transversality

conditions are

0 =

[
∂φ

∂x (tf )
+ νT

∂ψ

∂x (tf )

]
t=tf

− λx (tf ) (7.68)

0 =

[
∂φ

∂y (tf )
+ νT

∂ψ

∂y (tf )

]
t=tf

− λy (tf ) (7.69)
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This version of the Zermelo boat problem can also be solved for the case of the linear

flow field. For example, consider the following maximization problem

maximize
θ(t)

φ = x (tf ) (7.70)

subject to ẋ = py + V cos [θ (t)] (7.71)

ẏ = V sin [θ (t)] (7.72)

x0 = x (t0) (7.73)

y0 = y (t0) (7.74)

0 = y (tf ) (7.75)

Conveniently, the solution to this problem shares many common necessary conditions with

the minimum time problem solved earlier. Equations 7.47-7.52 are valid for this problem

also, but must be applied in a slightly different manner. For this problem, equations 7.49

and 7.51 must be solved to find θ and θf .

7.3.3 Constant Flow Field

Another popular version of the Zermelo problem [112] is the case where the flow field

is taken to be a constant. As before, it is assumed that the reference frame is chosen such

that the x-axis is aligned with the direction of the flow and tf is free.

minimize
θ(t)

φ = tf + Γϕ [tf , x (tf ) , y (tf )] (7.76)

subject to ẋ = Vp + V cos [θ (t)] (7.77)

ẏ = V sin [θ (t)] (7.78)

x0 = x (t0) (7.79)

y0 = y (t0) (7.80)

0 = ψ [tf , x (tf ) , y (tf )] (7.81)
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The Hamiltonian for this problem is

H = λx [Vp + V cos (θ)] + λyV sin (θ) (7.82)

The Euler-Lagrange equations are

λ̇x = −∂H
∂x

=0 (7.83)

λ̇y = −∂H
∂y

=0 (7.84)

0 =
∂H

∂θ
=− λxV sin (θ) + λyV cos (θ) (7.85)

These equations imply that the control is constant

tan (θ) =
λx
λy

= const. (7.86)

This constant control can be used to directly integrate the dynamics

xf = [Vp + V cos (θ)]

tgo︷ ︸︸ ︷
(tf − t) +x (t) (7.87)

yf = [V sin (θ)]

tgo︷ ︸︸ ︷
(tf − t) +y (t) (7.88)

This system of equations can be used to solve directly for tgo and θ. Although not needed for

the solution, the transversality conditions are found by taking the same partials as before.

0 =

[
∂φ

∂tf
+ νT

∂ψ

∂tf

]
t=tf

+H (tf ) (7.89)

0 =

[
∂φ

∂x (tf )
+ νT

∂ψ

∂x (tf )

]
t=tf

− λx (tf ) (7.90)

0 =

[
∂φ

∂y (tf )
+ νT

∂ψ

∂y (tf )

]
t=tf

− λy (tf ) (7.91)

Due to the simplicity of these equations , the resulting boundary value problem is

typically comparatively easy to solve. In the worst case scenario, the solution can be found
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Table 7.2: Example solutions to Zermelo’s boat problem in constant current. A, B, and
D are numeric solutions. C and E are analytic solution that can be used to check coded
equations for accuracy. Boundary conditions associated with columns A-D are the same as
the corresponding columns shown in figure 7.1.

A B C D E
V = 1m

s 1m
s 1m

s 1m
s 1m

s
Vp = 0.5m

s 0.5m
s

1
2

m
s 0.5m

s
1
2

m
s

x = 0m 250m 500m 600m 25
(
18−

√
2
)
m

≈ 414.6447m
xf = 500m 500m 500m 500m 500m
y = 100m 100m 100m 100m 100m
yf = 50m 50m 50m 50m 50m
θ = −8.5623◦ −16.9373◦ −120◦ −166.3559◦ −45◦

tgo = 335.8287 s 171.6297 s 100/
√

3 s
≈ 57.7350 s

211.9633 s 50
√

2 s
≈ 70.7107 s

by a numerical search for θ on the interval [0, 2π). Table 7.2 shows the solutions for many

of the same boundary conditions examined earlier for the linearly varying flow field.

7.4 Statistical GN&C Analysis

To facilitate the study of GNC systems it is useful to select a baseline problem for

study. For this work, the specific problem selected is related to problem A from table 7.1.

Consider a river whose bank is defined by the x-axis with a linear flow field flowing in the

direction of the x-axis. The nominal starting position, problem parameters, deterministic

optimal solution, and desired terminal condition, are taken from case A in table 7.1. Now

however, the cost function is given by

J =
1

2
[x (tf )− xf ]T Sf [x (tf )− xf ] +

1

2

ˆ tf

t0

εu2dt (7.92)

where ε is a small number
(
1× 10−3

)
, and

Sf =


2 0 0

0 2 0

0 0 0

 (7.93)
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For this problem, the true initial position is dispersed with a bivariate normal distribution

 x

y

 ∼ N

 0

100

 m,

 102 0

0 102

 m2

 (7.94)

The gradient of the flow field is also taken to be an unknown parameter given by

p ∼ N
(

0.01
1

s
, 0.0012 1

s2

)
(7.95)

The true system dynamics are give by


ẋ

ẏ

ṗ


︸ ︷︷ ︸

ẋ

=


py + V cos (θ)

V sin (θ)

0


︸ ︷︷ ︸

f(x,θ)

+w (7.96)

where w is a zero-mean Guassian white noise process

w = N

0, diag
([

12 12 02

])
m2

s2︸ ︷︷ ︸
Q

 (7.97)

The navigation system on the boat receives a single line of sight measurement to a

beacon located at the origin. This angle measurement is shown in figure 7.3 and is given by

α = − cos−1

[
y√

x2 + y2

]
+ ν (7.98)

where the negative sign resolves the quadrant ambiguity. The noise ν is given by

ν = N

0, 0.0152︸ ︷︷ ︸
R

radians

 (7.99)

For this problem, the measurements are continuous. A Kalman-Bucy filter [18, 23, 82,

142,143] is employed to continually estimate the current position and the flow field gradient.
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Lighthouse

Target

Boat

Fig. 7.3: Geometry of the Zermelo boat problem.

The linearized dynamics for this filter are given by


δ ˙̂x

δ ˙̂y

δ ˙̂p


︸ ︷︷ ︸

˙̂x

=


0 p̄ ȳ

0 0 0

0 0 0


︸ ︷︷ ︸

F


δx̂

δŷ

δp̂


︸ ︷︷ ︸

x̂

+


−V sin

(
θ̄
)

V cos
(
θ̄
)

0


︸ ︷︷ ︸

G

δθ + K [α− α̂] (7.100)

The filter covariance is propagated by

Ṗ = FP + PFT + Q−KRKT (7.101)

with the Kalman gain

K = PHTR−1 (7.102)

The required measurement partials are given by

H =
∂φ

∂x
=

[
−y

x2+y2
x

x2+y2 0

]
(7.103)
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where this partial is evaluated along the nominal.

The feedback controller gain is found by integrating the Riccati equation

Ṡ = −FTS− SF + εCTC (7.104)

backwards from the final value of Sf . Recall that ε is the small weighting factor introduced

into the cost function. The feedback gains are given by

C =
1

ε
GTS (7.105)

Case A from table 7.1 and the parameters listed above were used to generate a solution

using classical quadratic synthesis and stochastic quadratic synthesis. Since the problem

is formulated with the steering angle as the control, the fuel use is directly controlled by

selection of the final time. For the given case, the deterministic minimum final time is

already known to be 256.5983 seconds. This minimum time (fuel) case provides the nominal

trajectory for the classical quadratic synthesis problem, and serves as a baseline against

which the solutions from stochastic quadratic synthesis are compared. Several cases of

stochastic quadratic synthesis are considered. In each case, the fuel available (final time)

is a percentage increase (0.25%, 0.5%, 1%, 2%, 3%, 4%, 5% , 10%, 25%) over the classical

case. Each case was considered for two levels of sensor noise. The first level of sensor

noise
(
R = (0.015 rad)2

)
represents a nominal sensor, and the second level of sensor noise(

R = (0.075 rad)2
)
represents a poor sensor.

The solutions to the stochastic quadratic synthesis problem were found using gradient

descent techniques. This minimization process required significant manual effort, as the

gradient descent techniques are prone to converge to various local minima, and the solutions

are quite sensitive to the parameters used in the optimization process and the required

numeric integration. Some of this sensitivity is attributable to the boundary layers found

in equations 7.101 and 7.104. These boundary layers are responsible for creating the strong

transient responses at both ends of the trajectory.
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Fig. 7.4: Control for the example case of the Zermelo boat problem.

Figures 7.4 and 7.5 show the control and the state trajectory solutions respectively.

There was not a distinguishable difference between the nominal control and nominal trajec-

tory for different sensor noise levels. Thus, these figures only show the shared nominal values

for each final time. These figures do show that the nominal control and nominal trajectory

are sensitive to changes in the final time. With only a small increase in the final time,

significant changes occur in the control while the associated changes to the state trajectory

are less dramatic.

The changes in trajectory and control result in significant changes to the variance of

the final state. This is shown in table 7.3 and figure 7.6. Note that only a small increase in

fuel used results in an significant decrease in the variance of the final state! While continued

addition of fuel provides further tightening of the terminal dispersions, the gains are modest

when compared to the initial gains.

It should be emphasized that the data in figure 7.6 and table 7.3 strongly support the

thesis of this work. These results clearly show that the probability of mission success can be

significantly increased by consumption of all available fuel. The Pareto optimal front shown
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Fig. 7.5: Control for the example case of the Zermelo boat problem.

Table 7.3: Breakdown of variance of the terminal state.

E
[
(x (tf )− xf )T (x (tf )− xf )

]
(%chng.)

tf R = (0.015 rad)2 R = (0.075 rad)2

Classic tmin 256.5983 314.0241 (–) 592.5981 (–)

Stochastic

tmin + 0.25% 257.2398 179.5820(-42.8%) 494.9273(-16.5%)
tmin + 0.5% 257.8813 136.0867(-56.7%) 443.8088 (-25.1%)
tmin + 1% 259.8813 97.1672 (-69.1%) 390.3054 (-34.1%)
tmin + 2% 261.7303 67.5590 (-78.5%) 345.0623 (-41.8%)
tmin + 3% 264.2962 54.0300 (-82.8%) 322.0920 (-45.6%)
tmin + 4% 266.8622 45.6507 (-85.5%) 305.9061 (-48.4%)
tmin + 5% 269.4282 39.7961 (-87.3%) 294.0033 (-50.4%)
tmin + 10% 282.2581 26.0478 (-91.7%) 256.0682 (-56.8%)
tmin + 25% 320.7479 13.9445 (-95.6%) 194.7098 (-67.1%)
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Fig. 7.6: Pareto optimal front for mission success guidance applied to the Zermelo boat
problem.

in figure 7.6 shows the dependence of the final dispersion with respect to the fuel available

for consumption. Providing such information to mission planners allows them to understand

the significant reductions in dispersions that can be achieved for a modest penalty in fuel

consumption.

Although outside the scope of this thesis, it is probable that an effect similar to the

one observed in the example in section 6.2.1 may also exist here. That is, by permitting

additional fuel use, the control may be able to reduce the expectation of total fuel used. This

is due to the fact that the large dispersions from the classical quadratic synthesis approach

will be unacceptable, and additional maneuvers will need to be executed to reduce these

dispersions. It is quite probable that the fuel needed to execute these “clean-up” maneuvers

is greater than the additional fuel that would be expended executing the original maneuver

with fuel-limited mission success.

Given the dramatic results, some insight may be gained by examining the filter error

covariance and the true trajectory dispersions. The sum of the position elements of the error

covariance is shown in figure 7.7 and 7.8. The significant improvement in the estimation error
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Fig. 7.7: Position estimator error covariance for R = (0.015 rad)2.

for fuel-limited mission success guidance is clearly visible. The element of the estimation

error covariance corresponding to p is shown in figures 7.9 and 7.10. Examination of these

plots shows that much of the reduction in state estimation error is tied to improved estimates

of p. This behavior mirrors what was observed in the example from section 6.2.1. Mission

success guidance uses some of the additional fuel to learn about the dynamics of the system.

The improved dynamic model then allows for much better informed feedback control for the

remainder of the maneuver.

The drastic change between figures 7.9 and 7.10 is purely a function of measurement

quality, and is indicative of the value of an accurate sensor. The small estimation error

shown in figure 7.9 shows how an accurate sensor allows an improved estimate of p is hugely

benificial. The improvements shown in figure 7.9 show that the sensor works with the control

law to produce a better state estimate. Similarly, the poor quality of the sensor used to

produce the results shown in figure 7.10 shows that the sensor quality places limits on the

reduction of dispersions provided by the control law.
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Fig. 7.8: Position estimator error covariance for R = (0.075 rad)2.

0 50 100 150 200 250 300 350
10

−9

10
−8

10
−7

10
−6

t [ s ]

E
3
3

Tm i n

Tm i n+ 0 .25%

Tm i n+ 1%

Tm i n+ 5%

Tm i n+ 10%

Tm i n+ 25%

Fig. 7.9: Parameter estimator error covariance for R = (0.015 rad)2.
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Fig. 7.10: Parameter estimator error covariance for R = (0.075 rad)2.

Figure 7.11 shows the feedback gains. Note that the feedback gains are a function of

the nominal control and nominal trajectory. The feedback gains are not an explicit function

of R. Since the nominal trajectory is effectively the same for both values of R examined

here, the feedback gains are also the same for both values of R. Note that the control gains

for p is much more sensitive that the control gains for the position states. The dominance of

p in computing the feedback control aids in understanding the importance of having a good

estimate of p. In fact, the feedback gains indicate that position feedback is only important

in the last moments (boundary layer) before the terminal time.

The estimator gains are shown in figures 7.12 and 7.13. These gains show that the

estimator focuses on learning about p (directly) during the initial portion of the maneuver.

The time when the estimation gains corresponding to p are largest is the same time that the

feedback gains corresponding to p are largest. Later during the maneuver the the estimator

gains for p become much smaller, and the estimator gains little new information regarding

p.
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Fig. 7.11: Feedback gains for the Zermelo Boat Problem.

For the Zermelo boat problem, the estimation gains are a function of the nominal

trajectory, and not an explicit function of control. Since the nominal trajectories are not

drastically different from each other, the estimation gains are also relatively similar. Mean-

while, the feedback gains are an explicit function of the nominal trajectory and the control.

This helps to explain the large control gain discrepancy between the stochastic and classical

solutions. The large initial control gains for p couple with the initial estimation gains for p

to point the estimator’s initial focus toward obtaining an accurate estimate of p. These large

initial gains on control insure that any estimation error in p is present in the control, which

in turn will manifest itself in the measurement. While this same feedback loop is present in

the classical solution, the stochastic solution greatly accentuates the behavior resulting in

improved estimates of p.

This is somewhat analogous to the driver of a car rapidly swerving off course for a

moment, or briefly exercising the brakes to learn about road conditions. Presuming this

deviation in control is brief, it does not have a overly large impact on the nominal trajectory

of the vehicle. However, the driver uses this opportunity to learn about the road conditions,
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Fig. 7.12: Estimator gains for R = (0.015 rad)2.

and the response of the car. Later, the driver will use the information gained during the

initial experiment to make better informed decisions regarding steering and braking. Sim-

ilarly, in the Zermelo boat problem, the large initial excursions from fuel optimal steering

allow the estimator to learn about the flow rate in the river, without a drastic change to the

nominal mission. Later this improved information allows the feedback controller to produce

better informed control.

Figures 7.14 and 7.15 show the true position state dispersion and the estimator state

dispersions. Note that some stochastic cases allow the true dispersions to grow larger during

the maneuver, but rapidly shrink these dispersions near the end of the maneuver. Comparing

figures 7.14 and 7.15 against figures 7.7 and 7.8 shows that the even when the true dispersion

is larger, the estimator has a better estimate of the dispersed state. Thus as the terminal

time approaches control may be applied in a more precise way to remove the true state

dispersions.
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Fig. 7.13: Estimator gains for R = (0.075 rad)2.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

t [ s ]

X
1
1
+

X
2
2

Tm i n

Tm i n+ 0 .25%

Tm i n+ 1%

Tm i n+ 5%

Tm i n+ 10%

Tm i n+ 25%

Fig. 7.14: True state dispersion covariance for R = (0.015 rad)2.
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Fig. 7.15: True state dispersion covariance for R = (0.075 rad)2.

7.5 Summary

A guidance scheme that maximizes mission success subject to a fuel constraint has been

proposed and demonstrated. The guidance law is formulated in terms of a control based

on a steering command. Such a formulation allow for the total fuel use to be limited by

imposing a limit on the terminal time. Stochastic quadratic synthesis can then by applied

to produce a solution to the problem. The solution consists of a nominal control, and an

associated nominal trajectory. In the linear region surrounding this nominal trajectory the

Kalman gain provides the optimal estimator. A linear feedback law is provided by solving

the Riccati equation associated with the quadratic cost terminal controller.

This scheme is demonstrated by applying it to a Zermelo boat problem with linearly

varying current. This showed that the variance of the terminal state can be dramatically

reduced by allowing for the consumption of only a small amount of extra fuel. A Pareto

optimal curve was constructed to show the relationship between the fuel available for use

and the achievable terminal dispersion, i.e., the probability of mission success.
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Chapter 8

Conclusion

The work in this dissertation is focused on developing and demonstrating a new guidance

paradigm. This involved questioning the goal of guidance, examining its interaction with

other subsystems, considering stochastic effects, and ultimately proposing a new framework

for guidance system design. This new approach to guidance was demonstrated using the

Zermelo boat problem as an illustrative example. This research has several novel aspects:

• Extension of stochastic quadratic synthesis techniques to account for control corrupted

by an additive gaussian quite noise process.

• A mechanism for using a steering angle control to bound fuel use for stochastic prob-

lems was presented. This formulation permits fuel consumption to be tied directly to

the final time. Furthermore, this approach also allows for the implementation of the

guidance law via linear state feedback and gain scheduling.

• These techniques were used to create an approach to guidance which minimizes dis-

persions, subject to a fuel limit. By minimizing dispersions, this guidance approach

maximizes the probability of mission success.

• Mission success guidance was used to solve a Zermeo boat type problem. It was demon-

strated that a dramatic reduction in dispersions is possible for a minimal increase in

fuel budgeted for the maneuver. Further improvement is possible when additional fuel

is available. This information can be used to create a Pareto optimal front relating

fuel consumption to mission success.

This document is intended to develop and demonstrate this concept. To this end, the ex-

ample problems were chosen with an emphasis on simplicity. The use of simple problems

is advantageous as it allows clearer insight into the characteristics of the approach used to

solve the problem. Now that mission success guidance has been developed and demonstrated
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on the simple Zermelo problem, a logical next step would be to solve other more sophisti-

cated problems using the same technique. Examples of potential problems include: accent

guidance, angles only spacecraft rendezvous, and pinpoint guidance for powered planetary

descent. The suite of missions available for this analysis might be increased by expanding

the technique to include discrete impulsive maneuvers and discrete measurements.

Before these techniques can be desirable for more widespread use, it is important to

find a better method for finding numerical solutions to the stochastic quadratic synthesis

problem. Finding many of the solutions in this work proved to be a difficult and tempera-

mental task. Even solving the simplest problem proved nearly impossible to automate, and

required substantial manual input. It may be fruitful to solve many of these problems by

using direct methods, or higher order indirect methods.

Additional study is needed to fully understand the interactions of the systems involved.

This work suggests the current GN&C design approach of segregating the design does not

properly account for the interaction of the guidance and navigation systems. The currently

accepted approach to GN&C design is based on the certainty and equivalence principle,

but violates some of the fundamental assumptions of the principle. Here it is shown how

a unified design can provide improved statistical performance. Additional study may find

similar results by questioning the other assumptions inherent in the use of the certainty and

equivalence principle. For example, the effect of reduced order estimators might be studied

to determine an appropriate set of filter states.

It is hoped that mission success guidance will be used in the future to solve even more

sophisticated problems, and ultimately will prove useful to engineers who design closed loop

GN&C systems for spacecraft.
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Taylor Approximations, Displacements, Differentials, and Variations

In order to clearly approach the approximations of functions and functionals, it is useful

to clearly distinguish the difference between displacements, differentials, and variations [112,

117–119]. Clear distinction of these ideas has great practical import in developing the

necessary conditions for the calculus of variations. Briefly stated, a displacement (denoted

by ∆) is a total (including terms of all orders) change in a variable. The differential (denoted

by d) is the familiar differential from calculus, meaning an infinitesimal change in a variable.

Meanwhile, the variation (denoted by δ) is the variation from the calculus of variations and

denotes only the change in indicated variable independent of other effects. It will be seen

that for certain problems these quantities are equivalent, and in other cases they are quite

distinct.

Functions

Consider a vector valued function y = f (x). Use a Taylor series to express a displace-

ment of the independent variable, ∆y, in terms of a displacement, ∆x, from a nominal

point, x̄
ȳk+∆yk︷ ︸︸ ︷

fk (x̄ + ∆x)−
ȳk︷ ︸︸ ︷

fk (x̄)︸ ︷︷ ︸
∆yk

=
∂fk
∂x

∆x +
1

2!
∆xT

∂2fk
∂xT∂x

∆x + . . . (1)

The subscripts denote that this equation applies to each element of y. This is done to allow

for the use of linear algebra notation rather than using summations over various indexes,

Einstein notation. For this work, the small displacement, ∆x, is considered to be a constant

∆x = dx +
1

2!
d2x︸︷︷︸

0

+
1

3!
d3x︸︷︷︸

0

. . . (2)

That is, the displacement the independent variable is composed only of a first order part.

The Taylor series for the displacement in the dependent variable now becomes

∆yj =
∂fk
∂x

dx︸ ︷︷ ︸
dyk

+
1

2!
dxT

∂2fk
∂xT∂x

dx︸ ︷︷ ︸
d2yk

+ . . . (3)
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Thus, the displacement of the independent variable is composed of higher order terms. These

terms (excluding the inverse of the factorial) are the differentials of y.

Algebraic Equations

Consider the algebraic equation

ψ (x,y) = 0 (4)

where x is the independent variable (∆x = dx), and y is the independent variable. The

Taylor series is taken about x̄ and ȳ.

0 =

0︷ ︸︸ ︷
ψk (x̄ + ∆x, ȳ + ∆y)−

0︷ ︸︸ ︷
ψk (x̄, ȳ) =

dψk
dx

∆x +
dψk
dy

∆y

+
1

2!

(
∆xT

d2ψk
dxTdx

∆x + ∆yT
d2ψk
dyTdx

∆x + ∆xT
d2ψk
dxTdy

∆y + ∆yT
d2ψk
dyTdy

∆y

)
+ . . . (5)

Now substitute in ∆y = dy+ 1
2!d

2y+ . . . and ∆x = dx Higher order terms are also discarded

0 =
dψk
dx

dx +
dψk
dy

dy︸ ︷︷ ︸
dψk=0

+
1

2!

[ dxT dyT
] d2ψk

dxT dx
d2ψk
dxT dy

d2ψk
dyT dx

d2ψk
dyT dy


 dx

dy

+
dψk
dy

d2y


︸ ︷︷ ︸

d2ψk=0

+ . . .

(6)

Each element of the expansion is claimed to be zero by simply neglecting the higher

order terms. This can be proved by induction. The first order term is found to be zero by

neglecting all higher order terms. Once the first term is known to be zero, the second order

term is found to be zero by repeating the process. These expressions can now be used to

find dy and d2y.

Differential Equations

Consider a nominal solution, x̄, and an nearby solution, x, to the differential equation

ẋ = f (x, t). Where these two solutions are related by

x (t+ ∆t) = x̄ (t) + ∆x (7)
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Fig. 1: The geometry of time correlated and non-time correlated displacements.

or

∆x = x (t+ ∆t)− x̄ (t) (8)

= x (t+ ∆t) + x (t)− x (t)︸ ︷︷ ︸
0

−x̄ (t) (9)

= x (t)− x̄ (t)︸ ︷︷ ︸
∆̃x

+x (t+ ∆t)− x (t) (10)

where the time correlated displacement is given by ∆̃x. The relations in this figure are

shown in figure 1. A Taylor expansion of x (t+ ∆t) is taken about the time t

∆x = ∆̃x + x (t) + ẋ∆t+
1

2!
ẍ (∆t)2 + . . .− x (t) (11)

= ∆̃x + ẋ∆t+
1

2!
ẍ (∆t)2 + . . . (12)
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A Taylor series of f can be used to develop and expression for the dynamics of ẋ

ẋk (t) = ˙̄xk (t) + ∆̃ẋk = fk (x (t) , t) (13)

= fk

(
x̄ + ∆̃x, t

)
(14)

= fk (x̄, t)︸ ︷︷ ︸
˙̄xk(t)

+
∂fk
∂x

∆̃x +
1

2!
∆̃xT

∂2fk
∂xT∂x

∆̃x + . . . (15)

This can now be used for ẋ in the last equation

∆x = ∆̃x +

(
˙̄x (t) +

∂f

∂x
∆̃x + . . .

)
∆t+

1

2!

(
¨̄x (t) + . . .

)
(∆t)2 + . . . (16)

Into this expression substitute the differential expansions for the dependent and independent

variables.

dx +
1

2!
d2x + . . .︸ ︷︷ ︸

∆x

= δx +
1

2!
δ2x + . . .︸ ︷︷ ︸

∆̃x

+

 ˙̄x (t) +
∂f

∂x

(
δx +

1

2!
δ2x + . . .

)
︸ ︷︷ ︸

∆̃x

+ . . .


(
dt+

1

2!
d2t+ . . .

)
︸ ︷︷ ︸

∆t

+
1

2!
¨̄x

dt+
1

2!
d2t+ . . .︸ ︷︷ ︸
∆t


2

+ . . . (17)

The first order terms from this equation give the desired relation between a differential and

a variation

dx = δx + ˙̄xdt (18)

the second order terms gives

d2x = δ2x + ˙̄xd2t+
∂f

∂x
δx + ẍdt2 (19)

Since x (t) could be any differentiable function of time, a general relationship between the

variation and the differential is established.

d (·) = δ (·) + ˙̄(·) dt (20)
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A Taylor expansion is used to develop and expression for δẋ

∆̃ẋi =
∂f i
∂x

∆̃x +
1

2!
∆̃xT

∂2f i
∂xT∂x

∆̃x + . . . (21)

Substitute in the differential expansions for the dependent and independent variables.

δẋi +
1

2!
δ2ẋi + . . .︸ ︷︷ ︸

∆̃ẋi

=
∂f i
∂x

δx +
1

2!
δ2x + . . .︸ ︷︷ ︸

∆̃x

+
1

2!

(
δxT +

1

2!
δ2xT + . . .

)
︸ ︷︷ ︸

∆̃xT

∂2f i
∂xT∂x

(
δx +

1

2!
δ2x + . . .

)
︸ ︷︷ ︸

∆̃x

+ . . .

(22)

Truncated to first order to get an expression for the variational dynamics.

δẋi =
∂f i
∂x

δx (23)

Differential of an Integral

Consider the the integral

I =

ˆ tf

ti

f (x, τ) dτ (24)

A displacement can be written as

∆I =

ˆ tf+∆tf

ti+∆ti

f (x, τ) dτ −
ˆ tf

ti

f (x̄, τ) dτ (25)

this can also be written as

∆I =

ˆ ti

ti+∆ti

f (x, τ) dτ +

ˆ tf

ti

[f (x, τ)− f (x̄, τ)] dτ +

ˆ tf+∆tf

tf

f (x, τ) dτ (26)
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Consider the first integral, and use a Taylor series to expand the integrand about ti.

ˆ ti

ti+∆ti

f (x, τ) dτ =

ˆ ti

ti+∆ti

[
f (xi, ti) + ḟ i (τ − ti) + . . .

]
dτ (27)

= −f (xi, ti) ∆ti −
1

2!
ḟ i∆t

2
i − . . . (28)

= −
[
f (x̄ (ti) , ti) +

∂f

∂x
∆̃xi + . . .

]
∆ti −

1

2!

[
ḟ (x̄ (ti) , ti) + . . .

]
∆t2i − . . .

(29)

= −f (x̄ (ti) , ti) ∆ti −
∂f

∂x
∆̃xi∆ti −

1

2!
ḟ (x̄ (ti) , ti) ∆t2i − . . . (30)

where a Taylor series is used to expand f about x̄ (ti). Replace the displacements with the

appropriate series representations

ˆ ti

ti+∆ti

f (x, τ) dτ = −f (x̄ (ti) , ti)

∆ti︷ ︸︸ ︷(
dti +

1

2!
d2ti + . . .

)
−∂f
∂x

∆̃xi︷ ︸︸ ︷(
δxi +

1

2!
δ2xi + . . .

) ∆ti︷ ︸︸ ︷(
dti +

1

2!
d2ti + . . .

)

− 1

2!
ḟ (x̄ (ti) , ti)


∆ti︷ ︸︸ ︷

dti +
1

2!
d2ti + . . .


2

− . . . (31)

The first and second order terms can be written as

ˆ ti

ti+∆ti

f (x, τ) dτ = −f (x̄ (ti) , ti) dti−
1

2!

[
f (x̄ (ti) , ti) d

2ti + 2
∂f

∂x
δxidti + ḟ (x̄ (ti) , ti) dt

2
i

]
−. . .

(32)

The same approach can be used to develop an expression for the third integral term

ˆ tf+∆tf

tf

f (x, τ) dτ = f (x̄ (tf ) , tf ) dtf+
1

2!

[
f (x̄ (tf ) , tf ) d2tf + 2

∂f

∂x
δxfdtf − ḟ (x̄ (tf ) , tf ) dt2f

]
−. . .

(33)
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Now consider the second integral. Use a Taylor series to expand the integrand about x̄

ˆ tf

ti

[fk (x, τ)− fk (x̄, τ)] dτ =

ˆ tf

ti

[
fk (x̄, τ) +

∂fk
∂x

∆̃x +
1

2!
∆̃xT

∂fk
∂xT∂x

∆̃x + . . .− fk (x̄, τ)

]
dτ

(34)

=

ˆ tf

ti

[
∂fk
∂x

∆̃x +
1

2!
∆̃xT

∂2fk
∂xT∂x

∆̃x + . . .

]
dτ (35)

Using the expansion of ∆̃x this can be written as

ˆ tf

ti

[fk (x, τ)− fk (x̄, τ)] dτ =

ˆ tf

ti

∂fk∂x

∆̃x︷ ︸︸ ︷(
δx +

1

2!
δ2x + . . .

)

+
1

2!

∆̃xT︷ ︸︸ ︷(
δxT +

1

2!
δ2xT + . . .

)
∂2fk
∂xT∂x

∆̃x︷ ︸︸ ︷(
δx +

1

2!
δ2x + . . .

)
+ . . .

 dτ (36)

Gathering the second order terms

ˆ tf

ti

[fk (x, τ)− fk (x̄, τ)] dτ =

ˆ tf

ti

[
∂fk
∂x

δx +
1

2!

(
∂fk
∂x

δ2x + δxT
∂2fk
∂xT∂x

δx

)
+ . . .

]
︸ ︷︷ ︸

δf

dτ

(37)

The expressions for each of the three integrals can now be combined

∆I =

dI︷ ︸︸ ︷
[f (x̄, τ) dτ ]

dtf
dti

+

ˆ tf

ti

[
∂fk
∂x

δx

]
dτ

+
1

2!

([
f (x̄, τ) d2τ + 2

∂f

∂x
δxdτ − ḟ (x̄, τ) dτ2

]dtf
dti

+

ˆ tf

ti

[
∂fk
∂x

δ2x + δxT
∂2fk
∂xT∂x

δx

]
dτ

)
︸ ︷︷ ︸

d2I

+ . . .

(38)
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The first and second differentials for an integral are then

dI = [f (x̄, τ) dτ ]
dtf
dti

+

ˆ tf

ti

[
∂fk
∂x

δx

]
dτ (39)

d2I =

[
f (x̄, τ) d2τ + 2

∂f

∂x
δxdτ − ḟ (x̄, τ) dτ2

]dtf
dti

+

ˆ tf

ti

[
∂fk
∂x

δ2x + δxT
∂2fk
∂xT∂x

δx

]
dτ

(40)
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This includes responsibility for the development of the guidance flight software for all exoat-
mospheric phases of flight. Also, I actively participates in the development and testing of
flash LIDAR and associated image processing software for use during rendezvous, proximity,
and docking operations.

Graduate Research Assistant, Mechanical and Aerospace Engineering, Logan, Utah,
May 2007–July 2013

My duties included conducting general guidance, navigation, control, and flight me-
chanics research. I developed guidance targeting and navigation algorithms for an on-orbit
inspection spacecraft. I also developed and performed analysis of on-board guidance and
targeting for contingency operations or the Orion spacecraft. Particular emphasis was given
to performing analysis using linear covariance techniques.

Graduate Co-Op, GN&C Autonomous Flight Systems Branch, NASA Johnson Space Cen-
ter, Houston, TX. Jan 2012–May 2012

I generated a best estimate trajectory for the STORRM DTO flown on STS-134. Iden-
tified several anomalous behaviors of the STORRM VNS. I developed a new approach for
the design of retro-reflector target patterns. I also, created a novel pose estimation scheme
using total least squares to process flash lidar data.

Summer Intern, GN&C Autonomous Flight Systems Branch, NASA Johnson Space Cen-
ter, Houston, TX. June 2011–July 2011

I worked on generating a best estimate trajectory for the STORRM DTO flown on
STS-134. Primary focus was placed on developing a Kalman smoothing tool and associated
support software. These tools were developed with the goal of processing the data gathered
by a flash lidar instrument during rendezvous and proximity operations with the ISS.

Research Affiliate, GN&C Section, Jet Propultion Laboratory, Pasadena, CA. Jan 2010–
Dec 2010

I executed a cross validation of a JPL institutional navigational analysis tool with the
USU linear covariance tool. Also developed a concept for accounting for the dispersive effects
caused by the interaction of the guidance and navigations systems for the JPL tool.
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GN&C Lead for USU Chimaera Rocket Project, Mechanical and Aerospace Engi-
neering, Logan, Utah, Sept 2007–June 2009

As part of NASA’s University Student Launch Initiative Competition, I lead the Chi-
maera team from USU in designing a closed loop guidance navigation and control system,
which would precisely control apogee of the rocket by asymptotically dissipating surplus
energy. This design included hardware selection, integration, software and simulation devel-
opment, and the underlying theoretical work. The system earned the award “best payload”
by the competition judges in 2008 and 2009, and was cited as the principle reason the Chi-
maera team won the competition in 2008 and 2009. Subsequent team victories relied heavily
on this work.

Summer Intern, GN&C Section, Jet Propultion Laboratory, Pasadena, CA. June 2008–
Aug 2008 and June 2009–Aug 2009

As part of a summer internship I conducted a parametric trade study which evaluated
radiometric tracking baseline performance for the lunar orbit. In addition I developed a
linear mapping of delivery error to variance in fuel use.

AWARDS

2005 Utah Governor’s Scholar, Presidential Scholarship at Utah State University, NASA
Rocky Mountain Space Grant Fellow, 2012 NASA Outstanding Co-Op Award

RELEVANT COURSES

Spacecraft Navigation (Geller), Optimal Spacecraft Guidance (Geller), Advanced Astrody-
namics (Geller), Stochastic Estimation with Aerospace Applications (Geller), Compress-
ible Fluid Flow (Whitmore), Propultion (Whitmore), Linear Multivariable Control (Chen),
Spacecraft Attitude Control (Fullmer), Nonlinear Control (Fullmer), Complex Optimization
(Gunther), Math Methods for Signals and Systems (Moon).


