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ABSTRACT

Assessing Changes in Waterfowl Population and Community Dynamics

by

Beth E. Ross, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. David Koons
Department: Wildland Resources

Studying long-term ecological studies allows for a better understanding of processes

driving populations and communities, and this understanding can be used to improve con-

servation efforts. These studies can describe how changes in the environment have led to

current states of populations and communities, and indicate if the current state or trend

falls within expectations based on past dynamics. Studies of long-term datasets also help

ecologists predict how populations may shift with climate, water, or land-use change and de-

termine necessary management action to maintain sustainable populations and community

interactions. Serving as a “test of time,” long-term monitoring can provide insight into the

influence of predation, intra- or interspecific competition, and other interactions on system

dynamics. Studies need to explicitly include these drivers and sources of autocorrelation in

data (e.g., spatial autocorrelation) to obtain unbiased estimates of ecological processes for

guiding management. Fortunately, new statistical analyses for ecological applications are

available that help ecologists make full use of the information present in long-term studies

while properly accounting for sampling error and autocorrelation.

In this study, I use advanced statistical methods to analyze a long-term dataset, the

Waterfowl Breeding Population and Habitat Survey, and address questions about waterfowl

population and community dynamics. In Chapter 2, I use multi-state occupancy models

to determine how the presence of lesser and greater scaup (Aythya affinis and A. marila)
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has changed on their breeding grounds in North America since 1955. In Chapter 3, I use

a Bayesian hierarchical model to determine the drivers of the breeding scaup population

in the Northwest Territories of Canada. Lastly, in Chapter 4 I incorporate more waterfowl

species into the hierarchical model from Chapter 3 to determine the drivers of the pochard

duck community, along with the role of species interactions. My results indicate that the

occupancy of scaup has decreased in the boreal forest of Canada and increased in the prairie

parklands. Additionally, scaup in the Northwest Territories are largely influenced by den-

sity dependence and snow cover extent. Finally, the pochard community in the Northwest

Territories is regulated more by environmental drivers than intra- or interspecific interac-

tions. These results indicate that management of the species through hunting regulations

likely deserves further study, as scaup likely exhibit some sort of compensation in response

to hunting.

(111 pages)
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PUBLIC ABSTRACT

Assessing Changes in Waterfowl Population and Community Dynamics

by

Beth E. Ross

Studying long-term ecological studies can help ecologists understand what causes pop-

ulations and communities of wildlife to change. Understanding these causes can help guide

conservation efforts. Additionally, results from long-term datasets allow ecologists to pre-

dict how populations may shift with global change. Ecologists can then determine necessary

management action to maintain sustainable populations in the future. However, there can

be a large amount of “noise” in a long-term dataset. If ecologists fail to account for this

noise, they may make incorrect management decisions. For example, samples taken in two

nearby locations will likely be more similar than samples taken from two distant locations.

Closely related data points such as this can cause mistakes in the analysis that lead to flawed

decisions. Fortunately, new statistical analyses for ecologists are able to make full use of

the information present in long-term studies while properly accounting for these biases.

In this study, I use advanced statistical methods to analyze a long-term dataset, the

Waterfowl Breeding Population and Habitat Survey. This aerial survey counts the number of

ducks in upper North America each summer, and I will use it to answer questions about duck

populations and communities. In Chapter 2, I estimate how the population of lesser and

greater scaup (Aythya affinis and A. marila) has changed since 1955. These species are of

interest because their population is thought to be declining. I conclude that the proportion

of breeding scaup has remained the same, which means that some other portion of their

migration cycle is the cause of the decline. In Chapter 3, I compare environmental effects

on scaup in the Northwest Territories of Canada to see which might be the most important.

My results indicate that the average annual snow cover, summer drought conditions, and

density dependence have the most influence on the population in this location. Lastly, in
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Chapter 4 I include more species of ducks in my analysis to determine how they might be

affected by changes in the environment. These results imply that the pochard community

is affected the most by the environmental conditions in the NWT rather than interactions,

such as competition, among members of the community.
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CHAPTER 1

INTRODUCTION

Studies of long-term ecological studies allow for a better understanding of processes

driving populations and communities, and by doing so, can be used to improve conserva-

tion efforts (du Toit 2010). These studies can describe how changes in the environment

have led to current states of populations and communities, and indicate if the current state

or trend falls within expectations based on past dynamics (Lovett et al. 2010). Long-term

datasets can also allow ecologists to predict how populations may shift with climate change

and determine necessary management action to maintain sustainable populations and com-

munity interactions. Serving as a “test of time,” long-term monitoring can provide insight

into the influence of predation (Colchero et al. 2009), intra- or interspecific competition

(Viljugrein et al. 2005, Péron and Koons 2012), and other interactions on system dy-

namics, and how these processes might be affected by climate, water, and land-use change.

Studies need to explicitly include drivers like these and various sources of autocorrelation

in data (e.g., spatial autocorrelation, Beguin et al. 2012) to obtain unbiased estimates of

ecological processes (Auer and Martin 2013, Viljugrein et al. 2005) for guiding manage-

ment in the right direction. Fortunately, new statistical analyses for ecological applications

are able to make full use of the information present in long-term studies while properly

accounting for sampling error and autocorrelation.

In this study, I use advanced statistical methods to analyze a long-term dataset, the Wa-

terfowl Breeding Population and Habitat Survey (BPOP), and address questions about wa-

terfowl population and community dynamics. Several studies have used the BPOP dataset

to address questions regarding density dependence (Sæther et al. 2008, Murray et al.

2010), or the effects of climate on waterfowl population (Drever et al. 2012), and commu-

nity dynamics (Bethke and Nudds 1995). However, I am unaware of any study that has

addressed the relative effect of all of these drivers simultaneously.

The BPOP survey is especially useful for understanding the drivers causing the spatio-

temporal changes in the abundance of scaup (lesser and greater scaup combined, Aythya
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affinis and A. marila). Scaup abundance in North America has declined to levels that

are ∼33% below the North American Waterfowl Management Plan goal (Zimpfer et al.

2013), but greater scientific information is needed before sound management actions can

be implemented. There is not a consensus on the underlying mechanisms that may have

caused the decline (Austin et al. 2006), which appears to be greatest in the western bo-

real forest of Canada (Ross et al. 2012). Global change and increased drought (Sorenson

et al. 1998) could be partly causing this decline through a decrease in wetland abun-

dance and quality. In fact, some of these changes may already be occurring; Drever et al.

(2012) found that decreasing snow cover extent in the boreal forest is negatively correlated

with regional population growth rates in scaup, presumably through bottom-up impacts on

wetland availability and quality for breeding scaup.

A leading hypothesis for the underlying cause of scaup decline is decreased food avail-

ability during spring migration, thus scaup are arriving on the breeding grounds in poor

body condition (i.e., the Spring Condition Hypothesis; Austin et al. 2000, Anteau and

Afton 2004). Long-term declines have been observed in body condition and nutrient re-

serves during spring migration, which could have a significant impact on reproductive effort

and success (Anteau and Afton 2004). Moreover, Anteau and Afton (2008) found a long-

term decline in consumption of their preferred food (Amphipod spp.) in the upper Midwest.

Recent studies in the boreal forest, however, suggest that scaup in 2003 and 2004 had a

similar body condition relative to historically collected scaup (DeVink et al. 2008a). Scaup

on the Great Lakes and other migratory stopover locations are also known to contain high

levels of toxins, particularly selenium (Anteau et al. 2007). However, DeVink et al. (2008b)

and others (Fox et al. 2005, Matz and Rocque 2007) concluded that selenium and mer-

cury levels are low in boreal scaup, and not likely responsible for the population decline

in this important breeding region. Conflicting findings and a variety of other explanations

(e.g., change in North American climate, altered trophic interactions, and anthropogenic

developments in the boreal forest) illustrate the complicated nature of the decline in scaup

abundance. Several factors are likely impacting scaup, and perhaps no single hypothesized
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cause can explain the decline entirely, presenting the need for a thorough analysis that can

address several hypotheses simultaneously.

A hierarchical model is one statistical method able to simultaneously quantify potential

factors related to the decline of scaup. Hierarchical models have recently received a great

deal of attention in ecology (Royle 2008), as have a unique type of hierarchical model called

an occupancy model (MacKenzie et al. 2002). Both of these methods allow ecologists to

incorporate hypotheses about population or community drivers while accounting for poten-

tial biases in long-term datasets (MacKenzie et al. 2003, Kery et al. 2009). Occupancy

models estimate the probability of presence in a given area conditional on the probability

of detecting presence at a site if it occurs (MacKenzie et al. 2002). A benefit of occupancy

studies is that they only require presence and absence data, which can be easier to collect

than information about abundance.

Here, I use the BPOP survey to better understand the drivers of the decline of scaup

on their breeding grounds. In Chapter 2, I use multistate occupancy models (Nichols et al.

2007) to determine how scaup presence and pairing for breeding have changed since 1955.

I then incorporate estimates of pairing probability as a measure of breeding propensity,

defined as the probability a sexually mature adult will breed in a given year, in population

models to determine how changes in scaup breeding propensity might be impacting their

population dynamics. By comparing to spatio-temporal trends in abundance from my M.S.

thesis in Statistics (Ross et al. 2012), I assess if changes in breeding propensity could

have possibly driven the decline of the scaup population, or if other factors must have been

more instrumental. If female scaup are in poor body condition when they arrive on the

breeding grounds, they may delay or forgo breeding, both of which would appear as a drop

in breeding propensity in the survey data.

In Chapter 3, I use a Bayesian hierarchical model to estimate specific drivers of scaup

abundance in the Northwest Territories (NWT) of Canada, an important breeding area

(Chapter 2, Ross et al. 2012). When applied to long-term datasets, hierarchical models

can greatly increase our knowledge about ecological processes affecting abundance, species
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richness, and other metrics of interest. Additionally, hierarchical models separate sampling

and process variation and can incorporate random effects (Royle 2008). My hypothesized

drivers of scaup in the NWT were density dependence, climate, and predator abundance,

which may also affect scaup elsewhere (Sæther et al. 2008, Drever et al. 2012, Beauchamp

et al. 1996).

In Chapter 4, I expand on the hierarchical model in Chapter 3 to address drivers of

diving duck community dynamics in the NWT, of which scaup are included. I incorporate

snow cover extent and total fox abundance, as in Chapter 3, but also include parameters

to address how species covary in a community. This approach allows me to gain insight

into the potential importance of waterfowl species interactions while explicitly accounting

for environmental effects in the fixed-effect terms of the model. This study may be the

first to incorporate a dynamic model with an effect for species autocorrelation while also

accounting for observation error. However, other studies have addressed species interactions

separately in the fixed terms (Adler and HilleRisLambers 2008). Including more waterfowl

species in the model from Chapter 3 allows me to determine if the same factors driving

scaup populations affect the diving duck community at large, or if scaup are a special case

in the community, and declining because of factors only affecting them.
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CHAPTER 2

SCAUP OCCUPANCY PATTERNS

2.1 Introduction

To better understand the drivers of population dynamics, it is important to first under-

stand how survival and reproduction in local spatial regions contribute to metapopulation

dynamics (Runge et al. 2006). Decreases in survival and reproduction can indicate ecologi-

cal “sinks” (Pulliam 1988), and sensitivity analysis of these parameters can provide insight

into the best management actions available to reverse population declines (Caswell and

Takada 2004). Making use of long-term datasets, especially those maintained over broad

spatial extents, allows ecologists to better understand how the demography of a species has

changed through time relative to habitat changes.

Worldwide, there are now a variety of long-term index surveys of avian abundance

that provide a wealth of information for demographic research. For example, the North

American Waterfowl Breeding Population and Habitat Survey (BPOP) provides a rich

source of demographic data on 10 focal duck species dating back to 1955, and covers a large

portion of each species’ breeding range (Zimpfer et al. 2013). Since 1978 the continental

scaup (lesser scaup, Aythya affinis, and greater scaup, A. marila, collectively) population

has declined to levels that are ∼33% below the North American Waterfowl Management

Plan goal (Zimpfer et al. 2013). This decline has sparked concern amongst hunters,

management agencies, and conservation groups alike (Afton and Anderson 2001). The

greatest decline in abundance of scaup appears to be occurring in the western boreal forest

(Ross et al. 2012), where populations may have depressed rates of reproductive success

(Martin et al. 2009), survival, or both (Afton and Anderson 2001, Walker and Lindberg

2005, Hobson et al. 2009). However, the specific vital-rate processes responsible for the

decline are not known (Koons et al. 2006).

Three main hypotheses have been proposed for the scaup decline: 1) the Spring Condi-

tion Hypothesis concurrent with 2) an increased uptake of toxins during spring migration,
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and 3) other factors such as climate change affecting wetland availability and quality. The

Spring Condition Hypothesis states that scaup are experiencing decreased food availability

during spring migration, thus arriving on the breeding grounds in poor body condition (i.e.,

the Spring Condition Hypothesis; Austin et al. 2000, Anteau and Afton 2004). Studies

tracking body condition and nutrient reserves throughout the scaup migration have ob-

served a long-term decline in both body condition and nutrient reserves that could have a

significant impact on reproductive effort and success (Anteau and Afton 2004). Moreover,

Anteau and Afton (2008) found a long-term decline in consumption of their preferred food

(Order Amphipoda) in the upper Midwest. Recent studies in the boreal forest, however,

suggest that scaup in 2003 and 2004 had a similar body condition relative to historically

collected scaup (DeVink et al. 2008a). Scaup on the great lakes and other migratory

stopover locations are also known to contain high levels of toxins, particularly selenium

(Anteau et al. 2007). However, DeVink et al. (2008b) and others (Fox et al. 2005, Matz

and Rocque 2007) concluded that selenium and mercury levels are low in boreal scaup,

and not likely responsible for the population decline in this important breeding region.

Conflicting findings and a variety of other explanations (e.g., change in North American

climate, altered trophic interactions, and anthropogenic developments in the boreal forest)

illustrate the complicated nature of the decline in scaup abundance. Several factors are

likely impacting scaup, and perhaps no single hypothesized cause can explain the decline

entirely.

While studies making use of multistate capture-mark-recapture models have been used

for decades (Arnason 1973), developments of multistate occupancy models are relatively

new (Nichols et al. 2007, MacKenzie et al. 2009). Without requiring unique knowledge of

the individuals, multistate occupancy models focus on a given site’s state of occupancy by

an organism; such as species presence and successful reproduction, species presence without

successful reproduction, or species absence (Nichols et al. 2007). Across both sites and

surveys, one can estimate the proportion of sites in a particular occupancy state, which can

be quite useful for guiding cost-efficient conservation and management plans at a landscape
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scale. Accounting for the probability of detecting a species at a site is also a key component

of these models, reducing bias and underestimation of occupancy rates (Nichols et al. 2007).

Moreover, careful thought about the states considered could provide insight into underlying

vital-rate drivers of population dynamics. Because occupancy models are relatively new and

are still undergoing development, few studies have quantitatively determined how occupancy

rates affect the dynamics of population abundance. As the two are closely related and of

great importance to conservation and management, further research is needed in this area

of occupancy modeling.

The BPOP assesses more than total abundance; it also monitors whether birds are

observed in groups, as breeding pairs, or not observed at all along a survey segment (i.e.,

multiple states of occupancy among segments). By using the spatial hierarchy of the BPS

survey, these data could be analyzed using recent multistate occupancy models to gain

insight into spatial differences and temporal changes in “pairing propensity,” the probability

scaup will form a pair bond, while concurrently accounting for an observer’s ability to detect

scaup and properly classify the state variable. Such analyses could at least clarify whether

changes in pairing and breeding propensity, the probability a female will breed, could be

responsible for regional declines in scaup abundance. Previous work in Alaska has indicated

that breeding propensity of female lesser scaup is low, which could be contributing to their

decline (Martin et al. 2009). If changes in pairing or breeding propensity are responsible for

the decline, researchers could focus on elucidating the mechanistic links between migratory

habitat, food availability, scaup body condition, and demography. If not, then it would

be warranted to focus greater attention on drivers related to other demographic pathways

(e.g., predation on nests and breeding females, harvest during the non-breeding season, and

other hypotheses).

Using long-term BPS data in a multistate occupancy framework, my objectives were

to: 1) estimate probabilities of site occupancy and detection for breeding pairs relative to

non-breeding groups on the breeding grounds, 2) quantify temporal changes in site-specific

occupancy of the North American scaup population, and 3) determine the implications of



8

such changes on the dynamics of both spatial distribution and population growth.

2.2 Methods

2.2.1 Study Area and Survey Methods

I utilized data collected by the US Fish and Wildlife Service (USFWS) and Canadian

Wildlife Service (CWS) during the North American Waterfowl Breeding Population and

Habitat Survey (BPOP, Smith 1995). The BPOP has been flown every May and June

since 1955 in the Traditional Survey Area (TSA), which encompasses the north-central

United States, central and western Canada, and a large portion of Alaska (Fig. 2.1). This

region is thought to represent the primary breeding grounds for a large proportion of North

American waterfowl, including scaup. Moreover, the TSA consists of strata divided by

similar habitats and duck densities (Smith 1995). Within each stratum pilots flew multiple

transects, each comprised of 28.8 km strip-segments. The number of segments sampled in a

transect ranged from 1 to 35, and varied through time. For my analysis, I treated the survey

transect as the site (analogous to the individual in traditional capture-recapture analysis)

and the segment as the basal sampling unit representing an encounter occasion. Because

the majority of transects contained 12 or fewer segments, I broke the few long transects with

greater than 12 segments into 2 or 3 ‘sites’, resulting in 427 total sites with 636 encounter

occasions from 1955 to 2007. Dividing transects allowed me to reduce the number of non-

surveyed or missing encounter occasions on short transects. This was a reasonable method

because many transects are flown immediately adjacent to the last segment of the previous

transect. The TSA encompassed several different habitat types (e.g., boreal forest, prairie

parkland, and tundra). These broad regions are divided into 9 smaller crew areas for ground

surveys based on geographical and political boundaries.

Throughout the survey, pilots counted the number of paired, single, and grouped ducks

of each species to the left of the plane; accompanying biologists recorded the same infor-

mation on the right side; the pooled counts by pilots and observer were used to assess

occupancy state of the segment. I was interested in the delineation of scaup recorded in
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mixed-sex groups (non-breeding or not yet paired) as opposed to breeding pairs; I did not

utilize data regarding single drakes due to the skewed sex ratio in scaup (Afton and An-

derson 2001). Fixed-wing aerial surveys such as this may yield biased estimates of näıve

occupancy state (Green et al. 2008), and the probability of detecting ducks likely varied

with observer and other factors (Koneff et al. 2008), which highlights the importance of

accounting for heterogeneity in detection probability across the broad range of habitats

encompassed throughout the TSA.

2.2.2 Model Descriptions

I developed a multistate model to estimate variation in scaup occupancy across space

and through time (Nichols et al. 2007), but did not formally account for transition rates

between alternative occupancy states over time (i.e., I did not utilize the robust design

model because data were insufficient). For all models, I considered three observable states

of scaup occupancy at a segment: unoccupied (0), occupied but not paired (i.e., grouped

birds: 1), and occupied with paired scaup (2). The models consisted of 5 parameters:

occupancy of a site by scaup, regardless of breeding state (ψ1), occupancy of a site by

pairs, given the transect is occupied (ψ2), scaup detection probabilities for sites with (p2)

or without pairs (p1), and the probability that evidence of pairing is found, given that a

pair occurs at a site and is detected (δ). If a survey occurs in four segments, one example of

an encounter history may be hi=(1,0,2,1), where non-paired scaup are detected in the first

segment, no scaup are detected in the second, paired scaup are detected in the third, and

non-paired scaup are detected in the last segment. The probability of this encounter history

is then specified as Pr(hi) = ψ1
i (1 − δi,1)p2i,1(1 − p2i,2)ψ2

i p
2
i,3δi,3p

2
i,4(1 − δi,4). The likelihood

for all encounter histories, h , over all transects, S, is:

(1) L(ψ1, ψ2,p1,p2, δ|h) ≈
S∏
i=1

Pr(hi)

I developed a suite of models within the multistate framework using time (represented as

either annual or decadal variation, as well as a model based on a change point at 1974
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when the method for recording groups changed Boomer and Johnson 2007), and crew

area as covariates for the parameters just described (Table 2.1). I then used maximum

likelihood to estimate model parameters (Nichols et al. 2007). Models with different

covariates for detection probability were examined first, while holding occupancy parameters

constant. Once the best covariates were selected for detection probabilities, I included these

covariates in models to evaluate the best covariate structure for occupancy probabilities.

The multistate occupancy framework is based on a conditional binomial model, where the

probability of pairing (state 2) is conditional on the transect being occupied by scaup, and I

assume that spatial sampling of segments without replacement adequately fits the binomial

model (addressed in Discussion).

I compared models using Akaike’s Information Criterion adjusted for sample size (AICc;

Akaike 1973; Tables 2.1 and 3.1). Models were implemented in the RMark package (Laake

2008) within R (R Core Team 2013).

2.2.3 Impact of Changes in Pairing Propensity on Population Dynamics

The conditional probability that paired scaup occupy a site, ψ2, essentially represents

a site-level pairing propensity, or the probability that a given site contains pairs of scaup.

While it is possible that some paired scaup do not breed (Martin et al. 2009), the site-

level pairing propensity is likely closely tied to the probability that an individual will breed

(Afton 1984). For the following population model, I assume that scaup identified as paired

will eventually breed. To heuristically address how changes in breeding propensity affect

population dynamics, I parameterized the location and time-specific estimates of ψ2 from

the best multistate occupancy model as breeding probabilities (bp) in region-specific pop-

ulation models developed by Koons et al. (2006); a meta-analysis of demographic research

studies. Koons et al. (2006) developed a population model for scaup based on survival and

fecundity estimates from research in both the boreal forest as well as the prairie parklands,

but based on different data than the BPOP survey. By incorporating estimates of breed-

ing propensity from my occupancy analysis, I can determine how estimated changes have

impacted population growth. The steps of going from a single ψ2 value to stage-specific
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breeding probabilities were calculated as:

(2) bp1(t,i) =
ψ2(t,i)

n1 + bpratio× n2

(3) bp2+(t,i) = bp1(t,i) × bpratio

where t represents time, i represents crew area, n1 is the age-1 component of the projected

stage distribution at time t (see below), n2 is the age-2+ component of the projected stage

distribution at time t, and bpratio is a constant based on estimates in Koons et al. (2006)

that depicts the likelihood of breeding for females of age 2 or older relative to age-1 birds.

I projected population dynamics for a given crew area using the respective boreal

forest or prairie parkland population models from Koons et al. (2006), which are based on

a two-stage matrix model for female scaup:

(4) Ak
t =

 F1,t F2+,t

P1 P2+



(5) nt+1 = Ak
tnt

where k represents the region in which a crew area resides, t represents year, and F and P

represent fertility and survival probabilities, respectively. Numerical subscripts on F and P

represent stage classes (age-1 and age-2+ females). Additionally, fertility for a given stage

s is given by:

(6) Fs = 0.5× bps ×BS × (CSs ×NS + (1−NS)×RPs × CSs ×NS)×DS × JS

where bps is the breeding propensity of females in stage s (see above); BS is the breeding-

season survival for both age-1 and age-2+ females; CSs is the estimate of clutch size of
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females in stage s; NS is the nest success; RPs expresses the renesting probability for

females in stage s; DS is survival of the ducklings; and JS represents survival of juvenile

scaup from fledging until the first birthday. All other estimates for the fertility parameters

are taken from Koons et al. (2006). Population projection was initiated from the modeled

stable stage distribution (Koons et al. 2006), but modified by crew area and time-specific

estimates of ψ2. While ψ2 was used to calculate stage-specific breeding probabilities for

each crew area and time step, all other vital rates were held constant according to the levels

reported in Koons et al. (2006). The projection modeling is thus more akin to sensitivity

analysis, in that it assesses the effect of breeding propensity on population growth rate,

given observed spatio-temporal variation in ψ2, while holding all other vital rates constant.

The results could nevertheless be used to see if changes in breeding propensity could have

been responsible for observed changes in the abundance of breeding pairs over time and

across space (Ross et al. 2012).

2.3 Results

2.3.1 Parameter Estimation

My results from AICc model selection indicate that one model far out-performed all

others (Table 2.1), and it contained an interaction between year and crew area for occu-

pancy of scaup, ψ1, and condition occupancy of paired scaup, ψ2. Additionally, the model

indicated p1 was different before 1974 compared to after 1974, p2 varied by decade, and δ

varied by crew area (Table 2.1; Appendix, Table 6.1). I constrained parameter estimates

for crew areas 1 and 2 to be similar due to convergence issues with models for separate es-

timates (point estimates obtained from the model with a full year by crew area interaction

indicated that occupancy estimates for crew areas 1 and 2 were nevertheless biologically

similar).

My top model indicated that the estimate of p1 was significantly higher before 1974,

though the detection probability was low for both periods (0.064 before 1974 and 0.038 after

1974). Estimates of p2 were highest during the first decade of the study, and ranged from
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0.511 to 0.59 throughout the duration of the study (Appendix, Fig. 6.1). Regardless of state,

site occupancy by scaup (ψ1) decreased in crew areas 3 and 9, but increased or remained

relatively constant in all other crew areas (Fig. 2.2). The conditional site-occupancy of

paired scaup (ψ2) decreased in 4 crew areas, increased in 2, and remained stable in 2 (Fig.

2.3). Crew area 8 in the eastern prairies experienced a relatively large increase in occupancy

by paired scaup (from approximately 0.5 to 0.9), while the largest decreases were in crew

area 9 in the eastern portion of the TSA boreal region (from approximately 0.96 to 0.75) and

crew area 7 in the prairie parkland region (from approximately 0.82 to 0.63) . Crew area

1 had the highest estimate of δ at 0.95 and crew area 9 had the lowest at 0.72 (Appendix,

Table 6.2).

2.3.2 Impact of Changes in Pairing Propensity on Population Dynamics

Overall, changes in projection of the relative population growth rate reflected changes

in estimates of ψ2. The temporal changes in ψ2 for each crew area resulted in large and

small changes in relative population growth rates in both the prairie parkland and boreal

forest regions. Of particular note was the dramatic projected increase in growth in crew

area 8 within the prairie parkland (increase of 0.18 since 1955); crew area 3 in the boreal

forest region exhibited an increase in modeled growth rate as well (increase of 0.03 since

1955; Fig. 2.4). The largest decrease in both ψ2 and relative λ was in crew area 7 (decrease

of 0.10 since 1955; Fig. 2.3) with crew areas 5, 6, and 9 also showing a decrease (decrease

of 0.035, 0.035 and 0.06, respectively).

2.4 Discussion

I found that occupancy rates of scaup (ψ1) in all prairie-parkland crew areas increased

since 1955; indicating that scaup have expanded their use of this eco-region. In contrast,

rates of occupancy have recently decreased in the central and eastern boreal forest regions

of the TSA (Fig. 2.2); suggesting that recent population decline has simultaneously resulted

in range contraction, especially in crew areas 3 and 9 (Fig. 2.2). While the boreal forest was

nearly completely occupied for the greater part of the study, the highest levels of transect
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occupancy are now in the prairie parkland region, perhaps driven by underlying differences

in the birth-death balance.

Additionally, it appears that the occupancy of paired scaup has changed throughout

their range in different ways, and my results for the conditional occupancy of pairs were

more spatially heterogeneous than those for the simple presence of scaup. There was a large

decrease in ψ2 in the Western U.S. prairies (i.e., crew area 7), but large increases in the

Eastern U.S. prairies (crew area 8). The decrease in ψ2 in crew area 7 coincides with an

increase in ψ1, indicating that the scaup occupying this area are now primarily not paired.

Scaup may have shifted their breeding areas to the east as the western prairies became

drier, and the eastern prairies saw an increase in precipitation, as well as an expansion of

land enrolled in the Conservation Reserve Program (Reynolds et al. 2006). Indeed, it

appears that nesting scaup have increased in the Dakota prairies (Stephens et al. 2005),

and that population counts have increased as well. In the Canadian prairie-parklands, ψ2

has decreased slightly; however, the negative impact on modeled population growth (Fig.

2.3) is not large enough to explain the magnitude of observed population declines in the

parkland region (Fig. 2.5). Thus, rather than low reproductive effort, poor reproductive

success and female breeding season survival may have been more responsible for localized

decline within the parklands (Koons and Rotella 2003).

At the eastern edge of the boreal TSA, however, the precipitous drop in ψ2 preceded

the drop in ψ1, indicating that reduced breeding propensity in this region may have driven

local population decline and reduced use of the region. Yet, throughout the northern and

northwestern boreal forest, ψ2 has either increased or remained stable near 100%, thus

suggesting that breeding propensity has not been a causal factor of significant population

decline found in other studies (Ross et al. 2012, Fig. 2.6). Using stable isotopes, Hobson

et al. (2009) found that northern boreal habitats produce fewer scaup offspring per adult

than southern prairie-parkland habitats. By comparing these results to the current study,

it is likely that demographic factors other than breeding propensity, such as lower nesting

success, duckling survival or female breeding season survival (Brook and Clark 2005), are
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responsible for the low productivity of scaup in boreal Canada, thus leading to the decline

in the population (Ross et al. 2012). The contribution of scaup pairing and breeding

propensity to changes in projected population growth display a spatially heterogeneous

signature. Changes in breeding propensity may have contributed greatly to both increases

(crew area 8) and decreases (crew areas 7 and 9; Fig. 2.3) in population growth at the edge

of the breeding range, but did not likely cause population decline within the important core

breeding areas (parkland and boreal Canada) or in crew area 7 (Fig. 2.5).

Although my occupancy results illustrate the population-level implications of potential

changes in scaup breeding propensity, or lack thereof, they may also be indicative of changes

in migratory patterns, breeding phenology, or decisions of individuals that once bred at the

edge of the range to disperse towards the core. Commensurate with temporal changes in the

availability of preferred foods (Anteau and Afton 2006, 2008), scaup may have been forced

to delay their spring migratory and breeding phenology since the 1950s in order to meet

energetic demands. If scaup are migrating and breeding later, the surveys of the southern

crew areas may be capturing birds that are now staging rather than breeding at the surveyed

location (Naugle et al. 2000). Such a shift has been suggested by the Spring Condition

Hypothesis, which states that female scaup are acquiring fewer nutrients during northward

migration, thus arriving on the breeding grounds later and in poorer body condition (Anteau

and Afton 2004). The BPOP survey design limits my ability to differentiate between true

changes in breeding propensity as opposed to changes in phenology. Nevertheless, a shift

in breeding phenology could be equally detrimental to the population. Birds breeding

at a later date would have less time to raise a successful brood (Dawson et al. 2000),

and surviving ducklings would have less time to acquire the necessary resources needed to

migrate southward in the fall. For example, young hatching later would miss the main

flux of invertebrates they rely on for food, causing further limitations in their development

(i.e., the mismatch hypothesis; Visser et al. 1998, Drever and Clark 2007). However, if

scaup are migrating later as suggested by the Spring Condition Hypothesis, then I would

expect an increase in ψ2 in southern locations, which was observed, but I would also expect
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a mirrored decrease at the most northern latitudes, which I did not find. Thus, it is more

likely that ψ2 measures breeding propensity rather than changes in migratory and pairing

phenology.

The multistate occupancy methodology lends itself nicely to a wide variety of data,

such as occupancy of a particular territory (Nichols et al. 2007, MacKenzie et al. 2009),

differing intensities of amphibian calls (MacKenzie et al. 2009), or types of indirect sign

left by wildlife (Wilson et al. 2010). To my knowledge, my study is the first to use

BPOP data to address questions regarding state-specific habitat occupancy of a waterfowl

species. Although I was primarily interested in occupancy dynamics of scaup, the methods

used here can easily be used to help gain insight into declines and range contractions of

other waterfowl species (e.g., northern pintails; Miller and Duncan 1999), and help explain

changes in breeding-season habitat use of waterfowl populations. The BPOP could also be

combined with the 4-square mile pair surveys in the Dakotas or the historical brood surveys

to address more detailed occupancy questions (Cowardin et al. 1995). Use of 2-species

occupancy models could additionally illustrate any potential competition occurring between

waterfowl species on the breeding grounds (MacKenzie et al. 2004).

The occupancy modeling framework used in this study assumes that transects are

closed to changes in the state of occupancy during the survey period. Due to the large

geographic area covered in the BPOP survey, this assumption may have been violated,

especially given that surveys are conducted while scaup could still be migrating to their

northern breeding grounds (Naugle et al. 2000). Additional surveys timed to better

coincide with the scaup migration could prove useful for obtaining further information

about the reproductive ecology of scaup and other late-nesting species.

In addition to closure assumptions, the BPOP sampling design violates an important

sampling distribution assumption of occupancy models. Because the segments are flown

systematically in one direction down a transect, and not selected randomly from the total

area of the survey, my encounter occasions (segments) were sampled without replacement.

Outcomes of sampling without replacement generally follow a hypergeometric distribution.
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Occupancy models, however, are based on binomial distributions for encounter occasions

that are sampled with replacement (MacKenzie et al. 2003). Consequently, substituting

replications across space (without replacement) for replications over time (with replace-

ment) can produce inherent bias in occupancy estimates (Kendall and White 2009). Yet,

probability theory states that with a large sample space, and a small probability of selecting

any particular outcome, the hypergeometric distribution approximates the binomial (Rice

2007). Given the large area encompassed by the TSA region (roughly 3.4 million km2)

and the small total area of the flown segments (roughly 22000 km2 in a given year), the

probability of scaup selecting a given segment is approximately 0.006. Given this small

probability, my estimates should have little if any bias from sampling spatially without re-

placement because the sampling outcomes are expected to closely approximate a binomial

distribution.

By utilizing BPOP data within a recently developed occupancy modeling framework, I

found strong evidence for a spatio-temporal shift in scaup occurrence (Fig. 2.2). Moreover,

by integrating spatio-temporal changes in pairing propensity (ψ2; Fig. 2.3) into population

models (as breeding propensity), I was able to heuristically investigate the role spatially

heterogeneous breeding propensity may have played in regional population change. When

combined with other studies and datasets (e.g., Hobson et al. 2009), it seems that breeding

propensity is not the causal mechanism of population decline within core scaup breeding

areas (parkland and boreal Canada, Ross et al. 2012), but it is still difficult to make such

a judgment in other locales. However, Ross et al. (2012) concluded that these particular

areas were the only areas exhibiting significant population decreases or increases (Figs. 2.5

& 2.6). Additionally, Koons et al. (2006) determined that breeding propensity had a low

elasticity, therefore, relatively large changes in this parameter cause only a small change in

population dynamics. The benefit of my multi-tiered modeling approach is that I was able to

use existing datasets and the comparative method to gain insight into the likely, and unlikely,

factors most responsible for changes in scaup population dynamics. Hopefully, connecting

multiple modeling techniques such as this will help streamline future research efforts as we
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work toward the common goal of understanding and managing declining populations.

Future work with occupancy models and the BPOP could involve several different

outlets. The incorporation of broad-scale climatic indices, such as the Palmer Drought

Severity Index, Pacific Decadal Oscillation, as well as snow cover extent, and predation

could prove useful in describing population changes (see Chapter 3). Additionally, recently

developed models for occupancy might also be of use. For example, the incorporation of a

Markovian detection process into the model would likely be useful in controlling for spatial

autocorrelation among segments on transects (Hines et al. 2010). Also, new Bayesian

hierarchical models developed for single sampling occasions (Dail and Madsen 2013) may

prove useful for the BPOP data, as these data have no sampling replicates due to the

design of the survey. Occupancy models that explicitly incorporate changes in habitat in

parallel with changes in occupancy (Breininger et al. 2009) could also be useful in areas of

the prairie parklands, where changes in pond count and habitat enrollment programs (e.g.,

CRP) could be modeled at the same time as changes in occupancy.
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Table 2.1. Top-ranked models based on differences in AICc (∆AICc). Crew area and
year or decade were used as covariates in the models. A parameter with no covariates is
indicated by (.), and the number of parameters in a given model is indicated by ‘No. Par.’

Model No. Par AICc ∆AICc

ψ(year× crew area), δ(crew area), p1(1974), p2(decade) 49 162551 0
ψ(crew area, 1&2 separate), δ(crew area), p1(1974), p2(decade) 35 162811 259.4
ψ(decade), δ(crew area), p1(1974), p2(decade) 29 164970 2418.7
ψ(year), δ(crew area), p1(1974), p2(decade) 21 164985 2433.2
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Crew Area 1
Crew Area 2
Crew Area 3
Crew Area 4
Crew Area 5
Crew Area 6
Crew Area 7
Crew Area 8
Crew Area 9

Fig. 2.1. Traditional Study Area for the North American Waterfowl Breeding Population
and Habitat Survey with crew areas. Crew Areas 1-3 and 9 are in the boreal forest habitat,
while the rest are considered prairie parklands.
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Fig. 2.2. Occupancy estimate of scaup (ψ1) for each crew area in the Traditional Survey
Area of the North American Waterfowl Breeding Population and Habitat Survey. Occu-
pancy estimates are given for 1955-2007 for boreal forest (A) and prairie parkland (B)
habitats.
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Fig. 2.3. Conditional occupancy of paired scaup (ψ2) in the boreal forest (A) and prairie
parkland (B) regions of the Traditional Survey Area of the North American Waterfowl
Breeding Population and Habitat Survey. Occupancy estimates are given for 1955-2007.
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Fig. 2.4. Changes in the relative population growth rate since 1955 using the boreal forest
(A) and prairie parkland (B) population models and the spatio-temporal estimates of ψ2 as
breeding propensities.

Fig. 2.5. Changes in counted breeding pair abundance since 1957. Negative numbers
indicate pairs lost and positive numbers indicate pairs gained. Note that not all differences
are estimated to be statistically different from zero. Figure recreated from (Ross et al.
2012)
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Fig. 2.6. Increases and decreases in the abundance of breeding pairs since 1957. High-
lighted areas show a 95% chance of a population increase (red) or decrease (blue) in the
area since 1957. Figure recreated from (Ross et al. 2012)
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CHAPTER 3

DRIVERS OF SCAUP POPULATION DYNAMICS

3.1 Introduction

Climate change is occurring more rapidly than during past global warming cycles

(Rahmstorf et al. 2007), and worst-case scenarios predict a loss of biodiversity that would

constitute the sixth major extinction (Bellard et al. 2012). Yet few studies address how

climate change will alter species interactions (e.g., competition, predation), and shift re-

sulting population dynamics (Rockwell et al. 2011, Zarnetske et al. 2012). Without

fully understanding how climate affects populations in parallel with species interactions

and other population drivers, effective management and conservation in the era of global

climate change will be difficult (Hulme 2005).

In addition to direct effects on populations, e.g. through thermoregulatory effects on

demography, climate can indirectly affect populations via changes to food web dynamics

(Russell and Ruffino 2012) through predator-prey interactions (Wilmers et al. 2007) or

resource availability (McCaffery et al. 2012). Moreover, changes in climate can intensify

mechanisms related to density dependence (e.g., intraspecific competition, disease transmis-

sion, prey switching, etc., Lima and Berryman 2006). While work on small mammals (Lima

et al. 2002) and ungulates (Forchhammer et al. 2002) has highlighted the interaction of

density dependence, climate, and predation, many studies on population dynamics fail to in-

corporate multiple drivers into population models. Rarely are density dependence, climate,

and trophic interactions examined simultaneously, which can lead to spurious conclusions

about the regulators of population dynamics (Viljugrein et al. 2005).

In this chapter, I use a long-term, broad-scale dataset of scaup (lesser, Aythya affi-

nis, and greater scaup, Aythya marila, combined during surveys because of their similar

appearance) abundance to evaluate the influence of climate variables, indices of predator

abundance, and density dependence on scaup population dynamics in the western boreal

forest of Canada, the core of their breeding range. Scaup in North America have declined to
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levels that are ∼34% below the North American Waterfowl Management Plan goal (Zimpfer

et al. 2013), and the most precipitous declines have occurred in their preferred western bo-

real forest habitat in Canada (Ross et al. 2012). Although there is not a consensus on the

underlying mechanisms causing the population decline (Austin et al. 2006), climate seems

to be playing an important role (Drever et al. 2012), but an understanding of how climate,

predation, and density dependence interact to drive population dynamics is lacking.

I propose, and test, several possible drivers of the scaup decline in their core breeding

range. Climate change, for example, could directly affect waterfowl populations through

a decrease in wetland abundance and quality via increased drought (Fig. 3.1; Sorenson

et al. 1998). In fact, some of these changes may already be occurring. Decreasing winter

snow cover duration on the boreal breeding grounds is related to reduced regional scaup

population growth rates, presumably through impacts on summer wetland availability and

quality for breeding scaup (Drever et al. 2012). In addition to direct effects on wetland

habitat and associated food resources, climate could also indirectly alter predation on scaup

through changes in alternative prey (Fig. 3.1). If predators preferentially feed on alternative

prey species (e.g., small mammals) rather than a focal species (e.g., scaup), climate change

can result in indirect effects on the focal species through changes in the alternative prey and a

shared predator response to those resources (e.g., apparent competition; Oliver et al. 2009).

For example, if predators experience increased survival and fecundity from an abundance of

small mammals in year t, scaup would be negatively impacted through increased predation

in year t+1. In such cases, I might expect lagged temporal effects of climate on a focal

species as it can take time for numerical and functional responses to percolate through a

food web (Walker et al. 2013).

In addition to indirect interactions and apparent competition, predators could also

directly affect waterfowl through predation. Through direct interactions with the predator

community, an increased predator abundance should negatively affect the abundance of

a focal prey species via increased prey mortality, but handling time and prey switching

can mitigate the intensity of such effects (van Leeuwen et al. 2013). Both climate and



26

predation can thus change the density of a focal population through a number of non-

mutually exclusive trophic interactions. In turn, these effects should adjust the strength

and ability to detect the presence of density dependence (Turchin 2003, Viljugrein et al.

2005).

Given the precipitous decline of the once abundant North American scaup population,

and the evidence that climate may be playing a role in this decline (Drever et al. 2012), my

objective was to simultaneously address how density dependence, climate, and predators all

affect scaup population dynamics at the core of their breeding range. To better elucidate the

factors that may be influencing the dynamics of this declining species, I used a state-space

modeling approach that controls for observation error (de Valpine and Hastings 2002),

the latter of which can lead to erroneous conclusions about the role of density dependence

and environmental variation in regulating population dynamics (Freckleton et al. 2006).

By simultaneously considering climate variables and other potential drivers of population

dynamics, and using a rigorous estimation framework, future research and management

can be based on more robust science for guiding conservation and policy decisions aimed

at mitigating and reversing the deleterious response of scaup, and other species, to global

climate change.

3.2 Methods

3.2.1 Survey Methods

Every year since 1955, the U.S. Fish and Wildlife Service and Canadian Wildlife Service

conduct the North American Waterfowl Breeding Population and Habitat Survey (BPOP),

which provides a rich source of demographic data for > 10 duck species, including scaup.

The BPOP includes over 3.3 million square kilometers in the north-central United States,

much of western Canada, and Alaska; purposefully covering a large portion of each species’

breeding range (Fig. 3.2, Zimpfer et al. 2013). Surveys are conducted every May through

June using aerial transects (Smith 1995), and flown at 145-170 km per hour at an altitude

of 30-50 m. Multiple 28.8 km segments are combined to form strata, the main spatial unit
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of the survey defined by ecozones and political boundaries. Observers survey 200 m on

each side of the segment and record by species the number of lone drakes, flocked drakes

(2 or more), pairs, mixed sex groups (3 or more), but not lone hens. My focus was on the

delineation of scaup recorded as breeding pairs, rather than total scaup abundance, because

pairs best represent the breeding potential of the population. I did not use data regarding

single drakes because the skewed sex ratio in scaup means that males are not limiting in

the population (Afton and Anderson 2001). I chose the Northwest Territories region of

Canada (NWT) because of the substantial declines in regional scaup abundance (Afton and

Anderson 2001, Ross et al. 2012) and the nature of available data regarding predators.

Pelt harvest in this territory is conducted more for subsistence trapping, and the trends

of furbearer harvest are likely more reflective of true furbearer demography than in other

territories and states where trapping has become a hobby.

3.2.2 Model for Population Dynamics

My statistical model for the scaup population in the NWT is motivated by Gompertz

density dependence (Turchin 2003, Dennis et al. 2006). Under discrete-time Gompertz

growth, the population at time t (yt) is defined mathematically as

(7) yt = λyθt−1

where λ is the population growth rate, yt−1 is the population at the previous time period,

and θ represents density dependence in the system. Taking the log of both sides and

incorporating a term for stochasticity (ε) yields

(8) log(yt) = zt = αzt−1 + r + εt

where r = log(λ), the intrinsic rate of population growth from low density and α is the

effect of dependence on the log of population size at time t− 1 (zt−1).

My basal unit of data was the total number of scaup pairs yi,j,t, summed for each
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segment i, in stratum j, in year t. The BPOP scaup data are overdispersed and contain a

disproportionately high number of zeros along with a high variance relative to the mean (Ver

Hoef and Boveng 2007, Ross et al. 2012). Thus, I considered two potential data models

for statistical estimation of population dynamics, a model where yi,j,t ∼ NegBinom(µj,t, φ),

and a zero-inflated negative binomial model where

yi,j,t ∼

 0, with probability ψ

NegBinom(µj,t, φ), with probability (1− ψ)
(9)

for segments i = 1,. . . ,nj in stratum j = 1,. . . ,m during observation period t = 1,. . . ,T

(e.g., years 1957-2012). The µj,t parameter is related to the average number of counted

pairs across segments in stratum j and year t, and φ is an overdispersion parameter. The

parameters related to the observation error, ψ and φ, account for random under- and over-

counting but do not account for any systematic bias in the counts.

Using µj,t from the data model (Eq. 9), the process model was specified as

(10) zj,t = log(µj,t) = αzj,t−1 + β0,j + xj,t
′β + εj,t

where α is the degree of density dependence (as in Eq. 8), the β0,j parameters are stratum-

specific growth rates (analogous to r from Eq. 8) adjusted by β, the vector of parameters to

be estimated for xj,t, the vector of potentially time-varying and spatially-explicit covariates.

A population then exhibits density dependence for values of α < 1. The β parameters thus

directly add to or subtract from the population growth rate in each stratum, β0,j , when

covariate values differ from 0. Unstructured, spatial, or temporal stochasticity was modeled

with random effects ε.

To estimate the multiple processes that could have affected scaup population dynamics

in the NWT during a > 50 year time span, and to formalize my hypotheses about the

underlying mechanisms affecting scaup population dynamics, I arranged covariates into

three groups: 1) density dependence, 2) climate, and 3) predation. Models were then

compared using the negative mean of the log of conditional predictive ordinate (CPO)
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values (Held et al. 2010), ranking the models by their predictive ability using a form

of leave-one-out cross-validation. I then combined variables from the best models of each

group to simultaneously quantify effects of density dependence, climate, and predation.

Density-Dependent Effects

I chose the Gompertz form of density dependence because it performs well in studies

of waterfowl population dynamics (Sæther et al. 2008) and other species (Dennis et al.

2006, Knape and de Valpine 2012; Eq. 7), and because it is difficult to statistically identify

alternative models for density dependence from one another (Dennis and Taper 1994). In

addition, the estimated intensity of density dependence can be biased when studies fail to

separate sampling and process error, leading to incorrect conclusions about the role of den-

sity dependence in a system (Freckleton et al. 2006). I therefore used hierarchical models

to separate sampling and process error and reduce bias in the estimation of key focal param-

eters, such as density dependence and other drivers of population performance (de Valpine

and Hastings 2002, Knape and de Valpine 2012). I estimated density dependence using

the entire duration of the study from 1957-2012 in order to gain insight into the strength

of density dependence in the absence of covariates. I also used this same time period to

determine which random effects to include in the process model (i.e., spatial, temporal,

or unstructured error) and which data model to use for further models (i.e., the negative

binomial or zero-inflated negative binomial).

Climate Effects

Scaup arrive on the breeding grounds and nest later than many other waterfowl species

(Austin et al. 1998). Because of this unique life-history characteristic, they may be espe-

cially sensitive to environmental changes. To examine how climate impacts scaup population

dynamics in the NWT, I considered an array of climate variables that could affect environ-

mental conditions for scaup on their breeding grounds. These included broad-scale climate

circulation indices as well as more fine scale variables. Each chosen climate variable had

previously been shown to affect the population dynamics of avian species (Papineau 2001,
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Drever et al. 2012, Smith and Gaston 2012). Because of differences in data availability,

I quantified the effects of climate for two time periods: 1967-2010, the time period when

snow extent data were available, and 1958-2010, the time period when all other climate vari-

ables were available. Unless otherwise stated, each covariate was averaged over the current

“scaup year,” from the beginning of June in year t-1 to the end of May in year t (because

the BPOP survey in the NWT tends to occur in early June each year). I chose this time

frame to incorporate effects of environmental conditions and trophic mismatches (Drever

et al. 2012) on duckling survival from year t-1 to year t when populations are counted. I

also considered lag-1 effects for climate variables on the breeding grounds because climate

during June t-2 to May t-1 can affect primary productivity and the abundance of alter-

nate prey (e.g., microtine rodents for foxes Elmhagen et al. 2000 or fish for mink Zschille

et al. 2014), potentially eliciting a numerical response in predators that could in turn affect

waterfowl nest success and offpsring survival in the following year (Walker et al. 2013).

In addition to the broad-scale Arctic Oscillation (AO) and Pacific Decadal Oscillation

(PDO) circulation indices that could influence overall wetland dynamics and food resources

in the NWT (Papineau 2001, Morrison and Hik 2007, Smith and Gaston 2012), I also

considered more fine-scale climate variables to gain deeper insight into spatio-temporal

processes. Palmer Drought Severity Index (PDSI) data were available in a 2.5 degree grid

over the study area (Dai et al. 2004). The center of each stratum was calculated, and

the grid value that corresponded to this center was used as an estimate for the stratum.

Rather than calculate PDSI for the entire scaup year, I used specific time periods related

to the time of breeding as the covariate. I calculated PDSI for the following three seasons:

the early (the month of May just before t-1 and June of year t-1 ), late (July and August

of year t-1 ), and total breeding season (the month of May just before t-1 through August

of year t-1 ). The response of scaup to PDSI during the breeding season would then affect

surveyed abundance in year t. The lag-1 effects of PDSI were calculated in the same fashion

but relative to year t-2, which could capture complex trophic interactions among PDSI,

alternative prey, and predators that eventually affect scaup.
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The spring melt of winter snowpack may have a greater effect on wetland dynamics

than other forms of precipitation, and decreased snow cover duration has a negative impact

on scaup abundance (Drever et al. 2012). Snow cover extent duration was averaged over

the current scaup year, from June of year t-1 to May of year t. Data on snow cover extent

were in a grid-based format (Robinson and Frei 2000), and aligned in the same manner

as the PDSI data. The measure of snow cover extent in the current scaup year would

primarily affect surveyed abundance at time t in stratum j primarily through settling and

habitat-selection decisions (e.g., through wetland and icepack conditions upon arrival to

the breeding grounds). The lagged effect would be indicative of impacts on demography

in the previous breeding season that in turn affect surveyed abundance at time t. Thus,

to capture any impacts snow extent might have on complex trophic interactions that take

time to percolate through the food web to scaup, I also considered lag-2 effects.

I chose the climatic indices above for their relationship to high latitudes and boreal

forest habitat. Changes in climate along migratory routes could have a direct impact on

migratory phenology, and because the BPOP survey is not designed for the scaup life cycle,

such processes could in turn affect the abundance of scaup counted on the breeding grounds

(i.e., through an availability bias; Austin et al. 2002). To account for such processes to the

best of my abilities, I used the El Niño Southern Oscillation (ENSO) and the abundance of

ponds in the prairies in the current scaup year as covariates because each might affect the

availability of habitat and food resources during scaup migration northward to the NWT

(Naugle et al. 2000, Stenseth et al. 2003); yet I note that changes in migratory phenology

could also be affected by other variables that are difficult to measure at broad scales.

Predator Effects

I also evaluated the relationship between scaup population dynamics and indices of

predator abundance: red fox, Vulpes vulpes, total fox (red and arctic fox, Vulpes lagopus),

and mink, Neovison vison, which are known to prey heavily on scaup nests, ducklings (Talent

et al. 1983, Pietz et al. 2003) and reproductive females (Afton 1984, Koons and Rotella

2003). An index to predator abundance for each species, or group of species, was developed
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based on furbearer data from Statistics Canada for 1958-2012. The number of furbearer

pelts harvested was reported collectively for the Northwest and Nunavut territories until

1999 (when the territories divided). To estimate the proportion of fox pelts harvested in

the boundaries of the current NWT alone until 1999, I calculated the average proportion

of pelts harvested from each territory using data available from 2000-2006. The proportion

of fox pelts harvested from the NWT during 2000-2006 was applied to past data to obtain

estimates of the fox pelts harvested in the NWT from 1970-1999. Since nearly all mink

(> 90%) were collected within the current NWT border, and not Nunavut, no proportional

adjustment was made for the mink data and the collective counts were used.

Because furbearer harvest could be influenced by socio-economic factors related to fur

trapping, I first used the price per pelt adjusted for inflation and the lag-1 adjusted price per

pelt as predictor variables in a linear regression model for furbearer abundance. Quadratic

parameterizations of the predictor variables were also considered, accounting for non-linear

responses to changes in fur harvest, and all models were fit using maximum likelihood. The

best model for socio-economic drivers of annual pelt numbers was selected using Akaike’s

Information Criterion adjusted for sample size (AICc; Akaike 1973). The standardized

residuals from the best model for each predator species were then used as a covariate in the

process model for scaup population dynamics for 1958-2012 (Eq. 10).

Model Implementation

I considered additive and plausible interactive models with the variables that performed

best in the preceding topical analyses. Typically, the state-space model above (Eqs. 9 and

10), with or without covariates, would be fit using Markov Chain Monte Carlo estimation of

posterior distributions, usually using a combined Gibbs sampler and Metropolis-Hastings al-

gorithm after solving for the full-conditional distributions where closed-form solutions exist

(Banerjee et al. 2004). Instead, I used integrated nested Laplace approximation (INLA) to

approximate the marginal posterior distributions of the parameters of interest (Rue et al.

2009, Ruiz-Cárdenas et al. 2012). By making use of latent Gaussian models, INLA is

capable of approximating the posterior distribution with high accuracy at a much faster
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computational rate than Markov Chain Monte Carlo estimation of posterior distributions

of the parameters (Rue et al. 2009). I implemented INLA using the R package (INLA;

Rue et al. 2009, R Core Team 2013) and provide annotated code pertaining to my models

(Appendix). Priors were set using default values and distributions in the INLA package

(Rue et al. 2009, Ruiz-Cárdenas et al. 2012). Additional background on a related model

and implementation can be found in previous work (Ross et al. 2012).

3.3 Results

Density-Dependent Effects

The strength of density dependence was significant (95% credible intervals for α were

< 1) when implemented in a model without covariates for climate or predator abundance.

I then considered density dependence in further models (referred to as the null model) with

climate or predator covariates (or later both) because the effect of density dependence can

change in the presence of environmental variability and resource limitation (Viljugrein et al.

2005). A process model with an unstructured random effect was the only form of random

effect that converged for all models and was used in subsequent models with climate and

predator covariates along with a negative binomial data model (-mean(log(CPO)) of 5.045

vs. a zero-inflated model, 5.051).

Climate Effects

When I compared climate-effect models for 1967-2010 (when snow extent data were

available) using the -mean(log(CPO)), a model with snow cover extent with both an imme-

diate and a lag-2 effect ranked better than models with other effects of snow extent, as well

as models with AO, PDO, and PDSI covariates, though a model with lag-1 July-August

PDSI ranked second best (Appendix, Table 6.3). The lowest -mean(log(CPO)) indicates

that snow cover extent in the winter and spring immediately preceding surveyed abundance

at time t along with a delayed effect from time t-2 are better at predicting scaup popula-

tion dynamics than other covariates. When eliminating snow extent from the analysis and
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expanding the time frame to 1958-2010, a model with a lag-1 and current effect of July to

August PDSI ranked best (Appendix, Table 6.4), indicating that drought severity during

the late breeding season better predicts changes in scaup population dynamics than other

climate covariates available during the 1958-2010 time period. The models with climate

and habitat covariates hypothesized to influence scaup population dynamics in the NWT

through changes in migratory phenology (ENSO and pond counts) were not well supported

in either analysis (i.e., they performed worse than models with more localized climate on

the breeding grounds).

Predator Effects

The best socio-economic model from the set of furbearer regressions included a linear

effect for the price of pelts in the previous year for red fox and total fox, and quadratic effect

of price of pelts in the current year for mink (Appendix, Tables 6.5, 6.6, & 6.7). Residuals

from these models were z-standardized and used as covariates in the process model for scaup

population dynamics (Appendix, Fig. 6.2).

In the group of models for predator index effects on scaup population dynamics, total

fox abundance (with a quadratic effect) had the best ability to predict scaup population

dynamics in the NWT relative to other predator abundance indices. All other models for

predator index effects on scaup population dynamics performed worse than the null model

with just density dependence (Appendix, Table 6.8).

Combined Effects

For both time periods (1958-2010 and 1967-2010), models with covariates related to

local climate (July-August PDSI + lag-1 July-August PDSI, or snow cover + lag-2 snow

cover extent, respectively) were retained in the best-ranking model among those allowing for

various combinations of the density-dependence, climate, and predator variables that per-

formed best in the preceding analyses. For the 1958-2010 time period, interactions between

a quadratic effect of total fox abundance and the immediate and lagged effects of July-

August PDSI were additionally supported (Tables 3.1). Of particular note, the interactive
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effect for lag-1 July-August PDSI by total fox abundance was positive and statistically sig-

nificant (i.e., 95% CI did not overlap 0; Table 3.2). During times of drought (i.e., negative

values of lag-1 July-August PDSI), the index for total fox is concave down, with the highest

predicted abundance of scaup pairs at intermediate levels of total fox abundance (Fig. 3.3).

With wetter conditions, and positive values of lag-1 July-August PDSI, the effect of total

fox abundance switches to concave up, and predicted scaup abundance is greatest at either

high or low levels of total fox abundance. Overall, the largest predicted values of scaup

pair abundance are in years with wet conditions and high total fox abundance (Fig. 3.3),

though the majority of observed conditions occur in mid-ranges of fox abundance and values

of lag-1 July-August PDSI.

A much simpler model with only the lag-2 and immediate effect of snow cover extent

performed best for 1967-2010 (Table 3.2). An increase of snow cover in the winter and

spring immediately preceding scaup abundance surveys at time t resulted in statistical and

biologically significant reductions in scaup population abundance in a given stratum at

the time of survey (Table 3.4, Fig. 6.1). Alternatively, snow cover extent in winter and

spring two years prior did not have a statistically significant effect on scaup population

dynamics in year t. All estimates of the intrinsic growth rate for each stratum from the top

models (β0,j , Eq. 10) were less than 0, indicating a decreasing population in each stratum

at covariate levels of 0 (Tables 3.2 & 3.4). When considered simultaneously with climate

and/or predator effects, density dependence (α < 1) was present during both time periods

(Tables 3.2 & 3.4).

3.4 Discussion

Several studies have evaluated the effects of predation (Sargeant et al. 1984, Beauchamp

et al. 1996) and abiotic drivers (Drever et al. 2012, Almaraz et al. 2012) on waterfowl

population dynamics, yet none that I am aware of have simultaneously evaluated predation

and climatic effects and how they may interact. I show that breeding pair dynamics of

scaup in the Northwest Territories were correlated significantly with climatic variables, and

my results suggest that the effects of predation shift with climatic intensity (i.e., drought),
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though this interaction was poorly estimated for 1967-2010.

For the years when snow data were available, snow cover from the winter and spring

prior and two years prior to the beginning of the breeding season in May of year t were the

most important climatic variables. The importance of snow cover seems to primarily relate

to the immediate effects of snow cover, which likely affect settling decisions of scaup as they

arrive in the NWT, and less through trophic cascades related to alternative prey. While not

statistically significant, the lag-2 effect was also included in the top model from the climate

analysis, indicating that the lag-2 effect of snow cover may be important relative only to

more immediate effects. While my results indicate a negative associate with increased

average snow cover extent, other studies have shown a positive relationship with total snow

cover extent (Drever et al. 2012), though the analysis framework differed between studies.

Still, other results from my study also indicate a negative response to drought indicies,

consistent with the findings from Drever et al. (2012).

The intensity of drought in the NWT was also important for scaup population dy-

namics, and additionally supported my hypothesis that trophic interactions affect scaup

population dynamics. The best ranking climate variable during the 1957-2010 time pe-

riod (for which snow data were not available) was the July-August PDSI and lag-1 effect.

The effect of July-August PDSI suggests that scaup demography responds most strongly

to changes in water availability during the late breeding season, likely through mechanisms

affecting predation on ducklings and food resources that could affect both duckling and

juvenile survival (Dawson et al. 2000, Walker and Lindberg 2005). Although not the vital

rates with the greatest potential to affect population growth, changes in scaup duckling

and juvenile survival can have important impacts on population dynamics (Koons et al.

2006). Additionally, the interaction of the lag-1 effect of July-August PDSI with total fox

abundance suggests impacts of July-August PDSI on alternate prey for foxes, and related

numerical response by foxes might eventually affect scaup population dynamics as well. Al-

though not conclusive, my findings suggest that future studies of the effects of interactions

between climate, predators, and alternative prey on scaup are needed.
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The southern (ENSO) climate oscillation index was a poor predictor of scaup dynam-

ics in the Northwest Territories, as were fluctuations in pond counts in the PPR. Some re-

searchers have hypothesized that scaup may have changed their timing of migration (Austin

et al. 2002), which could be related to variation in temperature on their early-spring stag-

ing areas (Naugle et al. 2000). The lack of an ENSO effect on counts of scaup pairs in

the Northwest Territories suggests that such changes have not occurred, or are not related

to the ENSO averaged over the scaup year. In addition, changes in wetland numbers in

the PPR driven by drought, drainage, or tiling that creates deeper wetlands (which in turn

support fish that compete with scaup for food resources) could affect forage availability in

this important staging area for scaup migrating northward to the boreal forest (Anteau and

Afton 2006, 2008). The Spring Condition Hypothesis (Afton and Anderson 2001, Anteau

and Afton 2004, 2008) proposes that scaup may be migrating later because of a) insufficient

food resources on the critical prairie pothole region staging area, or b) the need to regain

body condition during staging because of insufficient food resources and body condition in

more southern locales, in turn resulting in fewer scaup arriving on the breeding grounds

in time to be counted (Anteau and Afton 2006). If this process is occurring, variation

in the PPR wetland numbers does not appear to be a good surrogate for identifying such

cross-seasonal effects on scaup pairs in the boreal forest. I found no evidence for an effect

of PPR pond conditions on scaup abundance further north in the NWT.

Other long-term, large-scale studies of population dynamics in waterfowl species (Vilju-

grein et al. 2005, Sæther et al. 2008, Murray et al. 2010) found marginal support for

density dependence in some diving duck populations, including scaup. My results indicated

that density dependence is an important driver of scaup pair abundance, at least in the

NWT. An important aspect of my study was the reduction in bias by separately estimating

sampling and process error (Freckleton et al. 2006). Previous analyses I conducted that

did not properly account for this bias through state-space modeling yielded results that

suggested density dependence was not an important driver of scaup population dynamics

in the NWT (results not shown), highlighting the importance of this state-space model-
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ing approach. While I did not explicitly test interactions between climatic variables and

density dependence, the strength and significance of density dependence did not change

with the inclusion of climate and predation effects, and was a significant driver of popu-

lation dynamics with or without other covariates. Density dependence could be affecting

the population through competition for resources throughout their migratory cycle, density-

dependent predation of nests, increases in disease transmission (Lima and Berryman 2006),

or a combination of factors that requires further research targeted at identifying density-

dependent mechanisms.

There are several ways that my results can be used to help guide management actions.

For example, determining the relative influence of predation and climate on population

dynamics can fundamentally change directives of management actions taken to influence

a population most efficiently (e.g., predator control during drought, habitat management,

or broader-scale policies directed at mitigating the impacts of climate change). Moreover,

the effect of local density dependence on the breeding grounds indicates the potential for

compensatory effects of harvest, though the mechanism for any such compensation is still

unknown (e.g., mortality compensation, reproductive compensation). These processes are

of high management concern (Austin et al. 2006) and deserve additional study using

modern quantitative methods that can take advantage of available data.

In conclusion, changes in abundance of breeding scaup in the NWT seems to be most

greatly tied to density dependence, climate, and to some extent predator abundance, specifi-

cally an interaction between predators and climate for some time periods. Scaup population

dynamics do not seem to be driven by potential changes in migratory phenology, as climate

and pond conditions in the south do not seem to be as important as snow cover and drought

in the north. Although exploration of other variables that could be affecting migratory phe-

nology, and the potentially related effects on surveyed counts, deserve further study. My

results highlight the benefits of comparing multiple environmental and intrinsic population

drivers when studying species of management and conservation concern to best elucidate

how future changes in climate may affect populations through both direct and indirect
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pathways. Although the results might not yet be clear enough to guide on-the-ground

management actions, my findings build upon the work of Drever et al. (2012) and provide

insight into where future research on scaup population dynamics should be conducted.
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Table 3.1. Comparison of models from the combined analysis of scaup pair abun-
dance in the Northwest Territories from 1958-2010. Covariates from the top model
within each group are abbreviated as “fox” for the predator group (a model with to-
tal fox + (total fox)2) and “PDSI” for the climatic group (a model with an effect of
PDSIJuly−August + PDSIJuly−August,lag−1). “Null” indicates a model with no covariates,
but all models contain an unstructured random effect and Gompertz form of density de-
pendence in the process model. Models are ranked by the negative mean of the log of the
CPO values.

Model -mean(log(CPO))

Fox × PDSI 5.0317
PDSI 5.0424
Null 5.0460
Fox + PDSI 5.0463
Fox 5.0511
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Table 3.2. Parameter estimates from the top model shown in Table 1 for the combined
analysis of scaup pair abundance in the Northwest Territories during 1958-2010, including
mean, standard deviation (SD) and 95% credible intervals (0.025 quantile and 0.975 quan-
tile). The β0,j parameters represent the stratum-specific (jth) growth rates, ‘Fox’ represent
the beta estimates for the linear or quadratic index of total fox abundance, ‘PDSIJuly−Aug’
represents the beta estimate for July-August PDSI, ‘PDSIJuly−Aug,lag−1’ represents the beta
estimate for the lag-1 July-August PDSI, and α represents the strength of density depen-
dence.

Parameter Mean SD 0.025 quantile 0.975 quantile

β0,13 -0.4792 0.18 -0.7863 -0.1404
β0,14 -0.6938 0.26 -1.1258 -0.2097
β0,15 -0.4598 0.18 -0.7607 -0.1298
β0,16 -0.4510 0.18 -0.7501 -0.1222
β0,17 -0.5908 0.22 -0.9505 -0.1905
β0,18 -0.4904 0.19 -0.8095 -0.137
PDSIJuly−Aug 0.0136 0.01 -0.0117 0.0389
PDSIJuly−Aug,lag−1 -0.0312 0.01 -0.0587 -0.0037
Fox -0.0064 0.02 -0.0403 0.0288
Fox2 -0.0027 0.01 -0.0212 0.0162
PDSIJuly−Aug × fox2 -0.0019 0.0056 -0.0128 0.009
PDSIJuly−Aug,lag−1 × fox2 0.0150 0.007 0.0013 0.0286
PDSIJuly−Aug × fox -0.0088 0.012 -0.0324 0.0148
PDSIJuly−Aug,lag−1 × fox -0.0050 0.0157 -0.0359 0.0258
α 0.8931 0.043 0.8099 0.9761

Table 3.3. Comparison of models from the combined analysis of scaup pair abundance in
the Northwest Territories from 1967-2010. Covariates from the top model within each group
are abbreviated as “Fox” for the predator group (a model with total fox + (total fox)2) and
“Snow” for the climatic group (a model with an immediate and lag-2 effect of snow cover
extent). “Null” indicates a model with no covariates, but all models contain an unstructured
random effect and Gompertz form of density dependence in the process model. Models are
ranked by the negative mean of the log of the CPO values.

Model -mean(log(CPO))

Snow 5.0066
Fox + Snow 5.0166
Null 5.0247
Fox × Snow 5.0195
Fox 5.0387
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Table 3.4. Parameter estimates from the top model in the combined analysis of scaup pair
abundance in the Northwest Territories during 1967-2010, shown in Table 3, including mean,
standard deviation (SD) and 95% credible intervals (0.025 quantile and 0.975 quantile). The
β0,j parameters represent the stratum-specific (jth) growth rates, ‘Snowlag−2’ represents the
beta estimates for snow cover extent in the winter and spring preceding scaup abundance
surveys at time t-2 and its effect on scaup population growth between t-1 and t, ‘Snow’
represents the beta estimates for snow in the winter and spring preceding scaup abundance
surveys at time t, and α represents the strength of density dependence.

Parameter Mean SD 0.025 quantile 0.975 quantile

β0,13 -0.6877 0.2128 -1.0548 -0.3081
β0,14 -0.943 0.3019 -1.4601 -0.4038
β0,15 -0.833 0.2316 -1.2399 -0.4154
β0,16 -0.7508 0.2155 -1.1223 -0.366
β0,17 -0.8924 0.262 -1.3372 -0.4263
β0,18 -0.7815 0.2294 -1.1762 -0.3725
Snowlag−2 0.0294 0.0346 -0.0386 0.0972
Snow -0.1124 0.0346 -0.1805 -0.0445
α 0.83 0.05 0.73 0.93
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Fig. 3.1. Proposed direct and indirect drivers affecting scaup on their breeding grounds.
Dotted arrows and circles indicate hypothesized indirect mechanisms influencing population
drivers incorporated into the model, solid arrows indicate direct effects, and dashed arrows
indicate interactions between effects.
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Fig. 3.2. Traditional study area for the North American Waterfowl Breeding Population
and Habitat Survey. Area for the Northwest Territories portion of the study shown in black
and includes strata 13 through 18, covering ∼ 713, 000 km2 .
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Fig. 3.4. The predicted effect of snow cover from winter to spring prior to sampling in
year t on annual scaup pairs in the NWT in stratum 13 with 95% upper and lower credible
intervals.
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CHAPTER 4

WATERFOWL COMMUNITY DYNAMICS IN THE NORTHWEST TERRITORIES

4.1 Introduction

A major question in community ecology is whether the interactions among species

sharing a similar trophic niche are more important in regulating community dynamics than

shared environmental drivers (Houlahan et al. 2007). When species exhibit similar re-

sponses to environmental variables, the relationships among species abundances in a com-

munity can exhibit positive covariation, or synchrony (Houlahan et al. 2007), which might

also be influenced by facilitation or mutualism. Alternatively, competition for resources

causes species to negatively covary. The difficulty of determining if a community is regu-

lated by competition, compensation (e.g., filling of a niche following independent effects of

the environment on another species), or concordant dynamics is that the mechanisms are

often intertwined. If species are closely related, environmental factors will likely impact

them in similar ways. Yet, related species will likely also compete for resources within a

shared niche space (Pimm 1994).

Understanding community drivers is important for determining the relative effects of

internal regulation of the community through species interactions compared to extrinsic

factors (Adler and HilleRisLambers 2008, Adler et al. 2009). When species in a commu-

nity respond similarly to dominant environmental factors, competitive interactions can be

masked (Ripa and Ives 2007, Rocha et al. 2011). Accounting for shared environmental

correlation among species is thus necessary to avoid spurious conclusions about interactions

(Ripa and Ives 2007). Failing to incorporate important environmental drivers into models

can also yield misleading information about how many species are interacting in a commu-

nity (Abbott et al. 2009). While estimating the covariance among species in a community

is important for learning about how species interact, it is also critical to consider how en-

vironmental factors might be influencing, or even dominate, these interactions (Ripa and

Ives 2007).
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Environmental variables influence species interactions in various ways. Changes in cli-

mate can impact habitat or food availability for several different species simultaneously

causing either competition when resources are limiting or concordance when they are not

(Hunter and Price 1992, Hansen et al. 2013). Additionally, shifts in climate can cause

cascading changes in habitat structure, resulting in decreased reproductive success across a

community (Auer and Martin 2013). Environmental changes have the potential to exert a

greater influence on species composition than species interactions (Adler and HilleRisLam-

bers 2008, Almaraz et al. 2012), and can change the structure of community dynamics

(e.g., Péron and Koons 2013).

Climate change can also cause shifts in species interactions, causing restructuring of

the community through changes in trophic interactions such as predation (Gilman et al.

2010, Harley 2011). Additionally, predation can cause apparent competition between two

prey species when an increase in one prey species causes a numerical response of predator

abundance, thus resulting in higher predation pressure on the other species (Holt and Law-

ton 1994, Chaneton and Bonsall 2000, Iles et al. 2013). While climatic effects can cause

changes in community dynamics, it can often be difficult to determine if predation effects

are stronger drivers than climate, or horizontal competitive effects (Hunter and Price 1992).

In order to best determine the drivers of community dynamics, there is a need for a method

that allows the explicit incorporation of top-down and bottom-up effects on community

dynamics while simultaneously accounting for additional sources of temporal covariation

among species (e.g., environmental concordance or compensation) in observational data to

avoid biased inference.

Relative to the rich study of population dynamics, only a few studies have addressed

questions related to the community dynamics of waterfowl (e.g., Bethke 1993, Almaraz

et al. 2012, Péron and Koons 2012). To my knowledge, no study to date has simultane-

ously quantified the extent of bottom-up and top-down effects on waterfowl community dy-

namics while also investigating interactions among species (but see Péron and Koons (2012)

for a two species case). The waterfowl community of the Northwest Territories (NWT) of
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Canada is an ideal system for quantifying community dynamics because environmental vari-

ables (Brook and Clark 2005, Drever et al. 2012) and the influence of density dependence

(Viljugrein et al. 2005, Sæther et al. 2008) have already been shown to affect the popula-

tion dynamics of co-occurring species present in the region. Additionally, the interactions of

related species in other regions is predicted to shift under various climate change scenarios

(Péron and Koons 2013), indicating the importance of environmental variables in waterfowl

dynamics. Bethke and Nudds (1993) concluded that duck species richness increases with

increasing environmental variability, and that duck population dynamics are more related

to habitat and resource heterogeneity than competition. While climatic effects can directly

change the community dynamics of similar species that share resources, it can often be

difficult to determine if such effects are stronger drivers than trophic interactions such as

predation, which can also be altered through changes in climate conditions (Walker et al.

2013). With climate change predicted to increase the frequency of extreme demographic

events (Drake 2005), it is possible that the dynamics and composition of the waterfowl

community in the NWT and elsewhere will change. Understanding how potential drivers

have influenced waterfowl community dynamics in the past could thus help predict how

climate change might affect community dynamics in the future (Péron and Koons 2013).

In this chapter, I use long-term, broad-scale datasets of predator demographics, cli-

mate (which influences resource supply, and potentially alternative prey for predators as

well), and waterfowl abundance within a hierarchical modeling framework. The goal of

this chapter is to quantify the relative importance of top-down, bottom-up, and intra- and

interspecific interactions in the pochard duck community of the NWT. Based on previous

research (Drever et al. 2012) and the importance of climate in other waterfowl populations

(Almaraz et al. 2012), I hypothesize that decreased snowpack will negatively affect the

pochard community through a decrease in small mammals that are the primary prey for

many predators (indirect top-down effects), or through a decrease in aquatic habitat avail-

ability and associated nest-site and food resources (direct bottom-up effects). Apparent

competition may also be acting in this system through predators responding positively to
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increases in primary prey (microtines) and subsequently causing an increase in predation

pressure on waterfowl (Brook and Clark 2005). Additionally, I hypothesize that indices of

focal predator abundance (fox [Vulpes vulpes and Vulpes lagopus] ) negatively affect pochard

abundances (direct top-down effect), but that the impact of snow extent will be stronger

because of its potential to simultaneously influence bottom-up and top-down drivers of wa-

terfowl dynamics. As some waterfowl species in this community have shown strong density

dependence (Viljugrein et al. 2005, ?), and other waterfowl communities seem to be more

driven by environmental effects than interspecific interactions (Almaraz et al. 2012), I

predict that climate and predation, along with intraspecific density dependence, will have

stronger impacts on community dynamics than interspecific interactions among waterfowl

species.

4.2 Methods

4.2.1 Survey Methods

Every May and June since 1955, the U.S. Fish and Wildlife Service and Canadian

Wildlife Service have conducted the North American Waterfowl Breeding Population and

Habitat Survey (BPOP), which provides a rich source of demographic data on more than 10

focal duck species (Smith 1995). The BPOP includes over 3.3 million square kilometers in

the north-central United States, much of western Canada, and Alaska, purposefully covering

a large portion of each species’ breeding range (Zimpfer et al. 2013). Strip-segments are

flown at 145-170 km per hour at an altitude of 30-50 m and multiple 28.8 km segments are

flown in each survey stratum. Ground crews then survey subsections of the total survey

area, and from the comparison of the two counts, the total abundance for a stratum is

estimated (Smith 1995).

The focus for this project was to determine the primary drivers of waterfowl community

dynamics in the NWT of Canada (NWT; strata 13-18, covering ∼ 713, 000 km2), a key

area for waterfowl breeding where reliable indices of predator abundance are also available

(Chapter 3). An initial assessment of the data indicated that breeding pairs for three species
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of diving ducks were sufficiently present in the NWT to include in the analysis: canvasback

(Aythya valisineria), ringed-neck duck (Aythya collaris), and combined lesser and greater

scaup species (Aythya affinis and Aythya marila; which are indistinguishable from the air).

My basal unit of data was then the sum of the population estimates in the 6 NWT strata,

yi,t, observed for species i, in year t.

4.2.2 Environmental Drivers of Community Dynamics

I incorporated environmental covariates into the process model to determine the rel-

ative effects of climate (snow cover extent), and predation pressure (an index developed

based on furbearer harvest data) on waterfowl community dynamics in the NWT. Density-

independent covariates such as these can moderate the rate of population growth from low

density (ri specified in the Gompertz model below, Colchero et al. 2009, Rotella et al.

2009).

Snow cover extent is an important driver of some species’ population dynamics in the

NWT (Chapter 3, Drever et al. 2012); perhaps because the spring melt of winter snowpack

may have a greater effect on wetland dynamics than other forms of precipitation. Snow

cover extent data were obtained online (Robinson and Frei 2000), and the average snow

cover extent for the NWT was calculated for a “waterfowl year,” from June of year t-1 to

May of year t.

Alternatively, changes in snowpack could affect rodent communities in the boreal forest,

as decreased snowpack dampens the population cycles and eliminates population ‘booms’

often exhibited by these species (Kausrud et al. 2008, Ims et al. 2008). Thus, a decrease in

snow cover extent could cause apparent competition between small mammals and waterfowl

via shared predators. If meso-predators are forced to switch from their primary food source,

such as small mammals, due to limited availability (Ims et al. 2008), they may be more

likely to pursue waterfowl nests, incubating females, and ducklings when available. For

example, Brook and Clark (2005) found a positive correlation between microtine abundance

and lesser scaup productivity, suggesting prey-switching by predators to duck nests and

ducklings in years of low microtine abundance.



52

To address the effects of predation on the abundance of breeding waterfowl, covariates

for a relative predator index in the NWT were used. I evaluated the response of waterfowl

pair numbers to indices for total fox (red Vulpes vulpes and arctic fox, Vulpes lagopus),

which are known to prey heavily upon waterfowl nests, ducklings (Talent et al. 1983,

Pietz et al. 2003) and reproductive females (Brook and Clark 2005) in this territory and

elsewhere (Afton 1984, Sargeant et al. 1984, Koons and Rotella 2003, Zschille et al. 2014).

Furthermore, the relative abundance of total foxes in the NWT was previously shown to

have a greater impact on the most abundant breeding ducks (scaup) in the region than

other predators (e.g., mink; Chapter 3). From 1970 to 1999, the number of furbearer pelts

harvested was not reported separately for the current Northwest and Nunavut territories

(previously one large territory). In order to estimate the proportion of fox pelts harvested

in the boundaries of the current NWT alone (that overlaps with the waterfowl TSA), I

calculated the average proportion of pelts harvested from each territory using data available

from 2000-2006. The proportion of fox pelts harvested from the NWT during 2000-2006

was then applied to past data to obtain estimates of the fox pelts harvested in the NWT

from 1970-1999.

To develop covariates for the hierarchical model, but before examining effects on wa-

terfowl, furbearer data from Statistics Canada was first used as the response variable in

linear regression models with the following predictive variables: price per pelt adjusted for

inflation and the lag-1 adjusted price per pelt. Models based on quadratic parameteriza-

tions of the predictor variables were also used. Relative to other furbearer species, the

harvest of fox fluctuates the least relative to price, further removing socio-economic factors

unrelated to predator abundance in the area. Models with univariate and additive effects of

these variables were developed, and the best model was selected using Akaike’s Information

Criterion adjusted for sample size (AICc; Akaike 1973). The standardized residuals from

the best model for each predator species were then used as a covariate in the hierarchical

model.
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4.2.3 Hierarchical Model Description

I used a Gompertz form of density dependence to describe the influences of inter- and

intraspecific interactions among species in the NWT waterfowl community, as this form of

density dependence describes waterfowl population dynamics (Sæther et al. 2008, Almaraz

et al. 2012) and other species interactions (Mutshinda et al. 2011). The NWT BPOP

esimates of abundance, yi,t, for waterfowl species i at time t were modeled as

(11) log(yi,t) = zi,t + ηi,t

where zi,t is the log abundance at time t (t = 1, . . . , T ) for species i (i = 1, . . . , ns) and ηi,t

denotes modeled sampling errors for species i.

Using my observation model (Eq. 11), I described the waterfowl community dynamics

as

(12) zi,t = zi,t−1 + ri(1 +
I∑
j=1

αj,izj,t−1/ki) + βi,snowXsnow + βi,foxXfox + εi,t

where ri is the intrinsic growth rate from low density for species i, ki is the carrying capacity,

βi,snow and βi,fox are the coefficients for the effect of snow cover extent and total fox (red

and arctic fox) on species i, and εt ∼ MNV(0,Σt) is the random effect for the combined

effects of demographic stochasticity and environmental factors (i.e., latent variables not

included in eqn. 2) for observation periods t = 1,. . . ,T (i.e., years 1967-2010). Interspecific

interactions between species j and i are described through the αj,i, with αj,i/ki expressing

the per capita effect of species j on i for all the species in the community (Almaraz et al.

2012). Intraspecific density dependence is then estimated when i = j via the size of the

population relative to its carrying capacity on the log scale.

The covariance matrix Σt can be further decomposed into environmental and demo-

graphic components such that
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(13) Σt = C + Dt

where C represents the effects of latent environmental factors not incorporated into Eq. 2

and Dt = diag(δ2i /exp {zi,t−1}) where δ2i /zi,t−1 denotes the latent population level demo-

graphic stochasticity affecting the dynamics of species i from time t-1 to t. Additionally,

the off-diagonals of C describe covariation between species i and j in response to environ-

mental factors not captured by the fixed effects in the model, while the diagonals of C

describe intraspecific responses to latent environmental stochasticity. The environmental

components of the model can be further decomposed to include the two observable envi-

ronmental variables, snow cover extent and total fox abundance, to determine the relative

contributions of these variables to the overall effects of environmental variation on each

species. In this instance then, Ei, the total environmental variance affecting species i is

Ei = βsnow,i + βfox,i + Ci,i.

I used stochastic search variable selection to test whether the interspecific effect, αj,i,

of duck species j on i should be included in the model, for which the indicator variable

γi,j ∼ Bern(pi,j), and αj,i was included in the model when γi,j = 1 and not included

when γi,j = 0. I specified the conditional prior on αj,i as a mixture of two Gaussians,

αj,i|γi,j ∼ (1− γi,j)×N(0, c1) + γi,j ×N(0, c2) with the constant c1 = 0.01 and c2 = 1. The

other priors were specified as ηi,t ∼ U(0, 10), ri ∼ N(0.3, 5), kcanvasback ∼ N(7, 140)I(0,∞),

kring ∼ N(10, 140)I(0,∞), kscaup ∼ N(15, 140)I(0,∞) where I is an indicator function that

truncates the distribution, β ∼ N(0, 100), C ∼ Inverse Wishart(I,ns), where I is an ns×ns

identity matrix, and δi ∼ U(0, 10). Note that prior parameterizations were specified for

dynamics on the log scale. I then implemented the MCMC runs for the above models using

the R (v. 3.0.1, R Core Team 2013) package R2WinBUGS (Sturtz et al. 2005) to call

WinBUGS (Spiegelhalter et al. 2003) with the following settings: number of chains = 3;

number of iterations = 300,000; and burn-in period = 100,000.
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4.3 Results

The model with the lowest AICc from the furbearer regression models was a model

with a linear effect for the price of pelts in the previous year for total fox (see Appendix

2 for model comparisons), as well as a factor for the implementation of CITES. Residuals

from these models were z-standardized and used as covariates in the process model (Eq.

12).

The mean of the posterior distribution of canvasbacks in the NWT did not change

significantly between 1968 and 2010 (Fig. 4.1), but the dynamics did fluctuate greatly.

Of note, canvasbacks decreased during the first 10 years of the study, increased to their

original abundance after 20 years, but there has been no notable trend in NWT canvasback

abundance since the 1980s. Abundance of ring-necked ducks in the NWT, on the other hand,

increased throughout the study period, beginning with approximately 50,000 individuals in

1967 and reaching a high of 237,000 by 2010. By the late 1990s, the abundance of ring-necked

ducks had reached recorded highs at the time, but their abundance decreased during the

early 2000s, followed by another increase from 2002 onward. Estimates of scaup abundance

in the NWT decreased from the 1980s until the late 2000s. Estimated abundance did

increase between 2008 and 2010 but abundance remains far below levels in the 1970s that

are used to set NAWMP population objectives (Fig. 4.1). Scaup were nevertheless more

abundant than canvasback or ring-necked ducks throughout the study period in the NWT.

There were no significant effects of interspecific interactions, i.e., all estimated 95%

Bayesian credible intervals (CI) for the αj,i that model the effect of species j on i included

0 (Table 4.1). Furthermore, the latent environmental covariation between species i and

j was not significant for any two species (Table 4.2). While the mean covariation was

estimated to be negative between each pair of species (possible community compensation),

the 95% CIs for all of these covariances included 0.

The intraspecific interaction of density dependence did not explain much variation in

the dynamics of scaup or ring-necked ducks, but did contribute more greatly to variation

in canvasback population dynamics (Fig. 4.4). In addition, canvasbacks had the highest
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intrinsic growth rate (2.1), followed by ring-necked ducks (1.1) and scaup (0.3), though the

95% CIs overlapped 0 for both ring-necked ducks and scaup (Fig. 4.2). It is moreover

important to note that species-specific rates of population growth can be moderated by

environmental covariates and stochasticity (see below). The carrying capacity was highest

for scaup (13.3), followed by ring-necked ducks (9.0), and canvasbacks (4.1) on the log(yi,t×

1000) scale. Estimates of scaled carrying capacities were nevertheless imprecise for all

species (Fig. 4.2).

For each species, the estimated biological effects of total fox abundance on population

dynamics was close to null and the estimated 95% CIs widely overlapped 0. Lack of bi-

ological and statistical effects were also found for the snow cover extent covariate. There

was some indication of a negative effect of snow cover (-0.17) on canvasback population

dynamics, but this estimate was also imprecise (95% CI again overlapped 0). While the

modeled covariates had little effect on population and community dynamics, latent envi-

ronmental factors explained the largest proportion of variance in the dynamics of all three

species (Fig. 4.4). When decomposing the total environmental variance, snow cover ex-

tent explained slightly more variation than total fox abundance in canvasbacks, but both

variables contributed roughly the same small amount to variance in ring-necked ducks and

scaup (Fig. 4.5). There was no significant difference between the proportion of variance

explained by extrinsic environmental and intraspecific effects (density dependence) for can-

vasbacks, but environmental effects explained significantly more variance than intraspecific

interactions in ring-necked ducks and scaup (Fig. 4.4). As noted above, interspecific com-

petition explained little variance (< 0.01) in the population dynamics of each sympatric

species (Fig. 4.4).

4.4 Discussion

Several studies have rigorously assessed how North American waterfowl species are

affected by the environment (Drever et al. 2012) and density dependence (Sæther et al.

2008, Murray et al. 2010), but none of these studies additionally accounted for how species

interactions may influence population and community dynamics. By using hierarchical
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modeling to account for process and sampling variance, I was able to assess the proportion

of process variance related to various drivers of community and population dynamics, and

ultimately quantify how synchrony, compensation, and competition may affect the pochard

duck community in the NWT relative to environmental covariates related to measurable

bottom-up and top-down variables that may affect duck population dynamics. My results

indicate that species interactions have little impact on the variability of pochard population

dynamics relative to environmental variability and intraspecific competition. Interspecific

competition contributes relatively little to the proportion of variance in wintering European

waterfowl species as well, which are more so affected by local climatic changes (Almaraz

et al. 2012).

The lack of interspecific competition and synchrony (positive environmental covariation

that is not attributable to direct interactions) among the ducks in this study could be due

to differences in evolved bill morphology, as canvasbacks, lesser and greater scaup, and

ring-necked ducks all have distinct bill morphologies (Lagerquist and Ankney 1989). Thus,

despite considerable overlap in prey at certain times of the year (Perry et al. 2007), artifacts

of past competition among species may have led to distinct feeding niches and relatively

little competition among pochard species in the NWT today. Pochards also have unique

nest-site selection strategies, which may also limit interspecific competition (Krasowski and

Nudds 1986). In addition to not having strong interspecific competition, the diving ducks

in the NWT also did not exhibit synchrony, indicating that each species might be uniquely

affected by environmental factors.

In addition to the lack of direct interspecific community interactions, my results indi-

cated no significant relationship of snow and total fox abundance with the NWT pochards

once other processes were accounted for. Perhaps snow cover extent and total fox abundance

are not the primary drivers of population and community dynamics in the NWT. Other

studies (Drever et al. 2012) have concluded otherwise about snow cover extent for a subset

of the species included here, though Drever et al. (2012) focused on the chronology of when

snow cover extent dropped below a certain threshold in the spring and how that affected
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waterfowl population dynamics. Additionally, the model from this chapter did not include

covariates for lag effects of snow, other climatic variables (i.e., Palmer Drought Severity

Index), or interactions between climate and predation, which might partially be the cause

for the discrepancy between results from this chapter and Chapter 3. In particular, scaup

may be unique in this community model and not influenced by the same factors that affect

the rest of the diving ducks in the region. Scaup had the greatest correlation between pre-

dicted abundance and observed estimates, indicating not only a good model fit, but also

that the model described their population dynamics better than other species. My results

do nevertheless indicate that the decline in the scaup population is likely not related to

competition between scaup and other diving ducks in the NWT.

While the two environmental covariates included in the model did not have signifi-

cant effects on population dynamics, the latent environmental effects did explain a large

proportion of population variation for all species. Scaup and ring-necked ducks were most

responsive to environmental effects, though snow cover extent and total fox abundance only

explained a relatively small (< 20%) proportion of the environmental variation. Lag year

effects of climatic variables, and perhaps local environmental factors (Almaraz et al. 2012),

might be contributing more to this latent variation. For example, scaup are affected by the

lag effect of Palmer Drought Severity Index from July to August, which interacts with

predator abundance, and may also affect other pochards in the NWT. Quadratic effects of

these covariates might also affect pochards in the NWT, but will require additional study

to fully explore the potential effects of measurable environmental covariates on the NWT

pochard community dynamics.

Intraspecific interactions, or density dependence, contributed relatively little to the

variation in scaup and ring-necked duck population dynamics, but did explain nearly 40%

of the variation in canvasback population dynamics, even though canvasbacks had the small-

est population abundance on average. Canvasbacks had a smaller carrying capacity, and

may thus experience stronger intraspecific competition for limited quality territories, food,

or both. Additionally, canvasbacks exhibit density dependence across the entire study area
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(Murray et al. 2010) and in the prairie areas of Cananda and the US (Viljugrein et al.

2005). Scaup and ring-necked duck did not seem to be greatly influenced by density depen-

dence, but I previously found that scaup do nevertheless exhibit weak density dependence

over the whole study area (Chapter 3, see also Murray et al. 2010), which may be at-

tributable to their large carrying capacity.

My analysis built upon on previous comparative waterfowl population dynamics studies

(Sæther et al. 2008, Murray et al. 2010) by incorporating environmental covariates as well

as latent structures of density dependence and interspecific interactions. For the pochards

in the NWT, it does not seem that the community dynamics as a whole are largely driven

by interspecific interactions or respond in similar ways to environmental factors. In contem-

porary time, pochard community dynamics in the NWT may be largely neutral in relation

to the factors considered in my model, and could be persisting in equilibrium with resource

levels (Nudds 1983). If anything, there was a slight indication of compensatory dynamics

that was not statistically precise, but may deserve further study. My work highlights the

importance of latent environmental effects that need to be further explored, and to some

extent density dependence, in the NWT pochard community.

Future research should consider possible environmental effects on pochards in the NWT

that were not considered in my model, as environmental stochasticity accounted for a large

proportion of variability in every species, but a better understanding of what latent en-

vironmental factors are driving pochard populations would aid in management actions.

Additionally, it does not seem that trapping indicies of combined red and arctic fox abun-

dance in the NWT are having much impact on pochard community dynamics. Waterfowl

species interactions do not seem to greatly affect population dynamics either, so changes in

management actions directed at one species will likely not affect other pochard species in

the NWT. At the same time, management actions aimed at enhancing populations of all

waterfowl species might be difficult as there were not strong signals of synchrony. Density

dependence will likely limit population growth of each species independently, and decreased

abundance of one species (e.g., scaup) may simply be compensated for by an increase in
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abundance of the species with the closest niche characteristics (e.g., ring-necked duck).
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Table 4.1. Relative influence of waterfowl species j (rows) on species i (columns; αj,i)
with Bayesian 95% credible intervals in brackets. ‘Ring’ stands for ring-necked duck.

Canvasback Ring Scaup

Canvasback - -0.03[-0.42,0.22] 0.09[-0.16,0.76]
Ring 0.03[-0.56,1.11] - 0.20[-0.22,1.47]

Scaup 0.06[-0.66,1.14] 0.06[-0.66,1.25] -

Table 4.2. Latent environmental covariance between species j and i (C) with Bayesian
95% credible intervals in brackets. ‘Ring’ stands for ring-necked duck.

Canvasback Ring Scaup

Canvasback - -0.60[-4.52,3.11] -0.97[-5.40,3.07]
Ring - - -0.15[-4.46,3.70]

Scaup - - -
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CHAPTER 5

CONCLUSIONS

The results from my dissertation highlight the importance of climate and, in some

cases, density dependence in driving the population and community dynamics of waterfowl

in the Northwest Territories (NWT). These drivers are likely impacting scaup nest success

or survival of young or breeding females because results from Chapter 2 indicate that scaup

are still attempting to breed regularly. As in other studies (Drever et al. 2012), snow

cover extent was important in describing population changes in scaup in the single-species

model. Perhaps reduction in snow cover has impacted food availability during the breeding

season, resulting in either a mismatch of available food (e.g., Amphipods spp. spawning

at a different time) or a reduction in total food for ducklings. Altered carrying capacity

and density dependence may also be exacerbating competition for either nest sites or food

availability among young. Results from Chapter 4 seem to imply that scaup may have

different drivers than the rest of the community.

Assuming that density dependence is operating in the system to some extent, this im-

plies that some population-level compensation will result from waterfowl harvest (Lebreton

2005). As the management of North American waterfowl populations is largely implemented

through harvest regulations, compensatory mechanisms for population growth deserve fur-

ther study (e.g., via mortality, reproduction, or both).

In addition to implications for harvest regulations, this research also indicates ways

in which managers might alter habitat to increase the abundance of breeding waterfowl.

While it would prove difficult to replicate years of high snow cover extent, managers might

need to consider managing for resilience across the landscape, or protecting the wetlands of

highest quality for scaup and other waterfowl species.

Future work could build on this research in several ways. Broadly, analyses of long-term

datasets would benefit from the inclusion of random effects that account for autocorrelation,

as random effects can account for variation in parameter estimates, reducing the possibility

of erroneous statistical inference (Kramer and Donninger 1987). Additionally, studies need
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to continue to include fixed effects for relevant ecological processes, as they provide better

insights into the drivers of the population or community, while also reducing uncertainty.

Improvements could also be made to long-term monitoring efforts by including adaptive

monitoring designs, as these designs reduce both error in parameter estimates and costs,

subsequently providing more funds for additional sampling in sites of great biological impor-

tance but associated with statistical uncertainty about the underlying dynamics (Hooten

et al. 2009).

Future work on the BPOP dataset would benefit from integrated modeling approaches

(e.g., Péron and Koons 2012), as these models allow for the incorporation of other datasets

(e.g., banding data) to simultaneously estimate all vital rates of the population. Addi-

tionally, simulation studies could be developed to assess the accuracy of the BPOP survey

(Nuno et al. 2013). Simulations would be especially useful for assessing how scaup mi-

gration has potentially shifted over the last decade, as some research implies it may have

(Austin et al. 2002). A simulation study could include comparisons between a model based

on a shift in scaup migration timing and a model without any shift in scaup migration and

use goodness-of-fit testing to see which best aligned with the data.

Lastly, future research on scaup would benefit from more on-the-ground research fo-

cused in areas of the NWT to determine how the drivers found in Chapter 3 might be

affecting scaup vital rates and resulting population dynamics. Alternately, research focused

on the prairie parkland region where scaup breeding pairs are increasing (Ross et al. 2012)

would be useful for determining if these same factors are causing population increases, or if

different drivers are acting in this region. Work on other stages of the scaup migration cycle,

such as survival estimates from wintering and migratory grounds, could also be helpful in

assessing how all of these factors are impacting scaup across seasons.
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Table 6.1. Estimates of β parameters (with associated standard errors and confidence
intervals) from the top occupancy model.

Parameter β SE LCI UCI

ψ1: Intercept 20.226 3.919 12.545 27.907

ψ1: year -0.471 0.091 -0.65 -0.293

ψ1: Crew Areas 1&2 -8.792 21.306 -50.551 32.968

ψ1: Crew Area 3 -6.371 5.935 -18.004 5.261

ψ1: Crew Area 4 -14.069 4.31 -22.516 -5.622

ψ1: Crew Area 5 -18.267 3.935 -25.979 -10.555

ψ1: Crew Area 6 -18.345 3.93 -26.047 -10.643

ψ1: Crew Area 7 -22.031 3.977 -29.827 -14.236

ψ1: Crew Area 8 -19.75 3.943 -27.478 -12.023

ψ1: Year Crew Areas 1&2 0.465 0.529 -0.571 1.501

ψ1: Year Crew Area 3 0.256 0.128 0.005 0.508

ψ1: Year Crew Area 4 0.463 0.101 0.265 0.661

ψ1: Year Crew Area 5 0.573 0.098 0.38 0.765

ψ1: Year Crew Area 6 0.512 0.093 0.33 0.695

ψ1: Year Crew Area 7 0.669 0.107 0.46 0.879

ψ1: Year Crew Area 8 0.546 0.094 0.362 0.731

ψ2: Intercept 3.076 0.616 1.868 4.284

ψ2: Year -0.038 0.021 -0.079 0.003

ψ2: Crew Areas 1&2 5.341 1.504 2.392 8.289

ψ2: Crew Area 3 -1 0.703 -2.378 0.378

ψ2: Crew Area 4 2.518 1.216 0.134 4.901

ψ2: Crew Area 5 0.415 0.796 -1.144 1.975

ψ2: Crew Area 6 0.1 0.809 -1.487 1.687

ψ2: Crew Area 7 -1.531 0.712 -2.927 -0.135
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Table 6.1. (Continued)

Parameter β SE LCI UCI

ψ2: Crew Area 8 -2.986 0.67 -4.299 -1.674

ψ2: Year × Crew Areas 1&2 -0.032 0.038 -0.107 0.042

ψ2: Year × Crew Area 3 0.125 0.033 0.06 0.19

ψ2: Year × Crew Area 4 0.009 0.032 -0.054 0.071

ψ2: Year × Crew Area 5 0.013 0.024 -0.035 0.061

ψ2: Year × Crew Area 6 0.018 0.024 -0.03 0.066

ψ2: Year × Crew Area 7 0.019 0.023 -0.026 0.063

ψ2: Year × Crew Area 8 0.074 0.022 0.03 0.118

p1: Intercept -3.226 0.102 -3.426 -3.026

p1: Before 1974 0.537 0.172 0.2 0.873

p2: Intercept 0.228 0.024 0.181 0.274

p2: Decade 1 0.14 0.03 0.08 0.199

p2: Decade 2 -0.049 0.029 -0.106 0.008

p2: Decade 3 0.072 0.029 0.016 0.128

p2: Decade 4 -0.182 0.028 -0.237 -0.127

p2: Decade 5 -0.097 0.028 -0.152 -0.042

δ: Intercept 0.965 0.074 0.821 1.11

δ: Crew Area 1 2.072 0.088 1.9 2.244

δ: Crew Area 2 1.644 0.084 1.48 1.808

δ: Crew Area 3 0.692 0.081 0.534 0.851

δ: Crew Area 4 1.818 0.089 1.645 1.992

δ: Crew Area 5 1.186 0.087 1.016 1.356

δ: Crew Area 6 1.14 0.089 0.965 1.315

δ: Crew Area 7 0.835 0.097 0.644 1.026

δ: Crew Area 8 0.708 0.089 0.534 0.883
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Table 6.1. (Continued)

Parameter β SE LCI UCI

Table 6.2. Estimates of δ from the top occupancy model.

Crew Area δ

1 0.954
2 0.931
3 0.840
4 0.942
5 0.896
6 0.891
7 0.858
8 0.842
9 0.724
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Fig. 6.1. Estimates of p2 from the top occupancy model.
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R code for INLA and related analysis in Chapter 3

Analysis conducted using R version 3.0

The process model for the code described below is:

(14) zj,t = αzj,t−1 + β0,j + xj,t
′β + εj,t

where xj,t is a covariate for snow cover extent.

## Data manipulation for state-space model

ss.data <- read.csv("ss_model_inla.csv",header=TRUE)

n=length(unique(ss.data$stratum)) #number of study sites

k=length(unique(ss.data$year)) #number of years

y=matrix(as.vector(ss.data$y),nrow=6,ncol=43) #matrix of counts

nd <- n*k

Y <- matrix(NA, nd*2-n, 2)

Y[1:nd , 1] <- as.vector(t(y))

Y[1:(nd-n) + nd , 2] <- 0

id1 <- (1:nd)[-((1:n)*k)]

id2 <- (1:nd)[-c(1,((1:(n-1))*k)+1)]

ix1 <- c(1:nd, id2) ## indices for x1_t

ix1b <- c(rep(NA,nd), id1) # indices for x1_{t-1}

wx1b <- c(rep(1,nd), rep(-1,nd-n)) ## weights for x1_{t-1}

iw22 <- c(rep(NA,nd),id2) ## indices for w_t

#st.1-st.6 are strata-specific growth rates

st.1=c(rep(NA,nd),rep(1,(k-1)),

rep(0,(nd-6-(k-1))))
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st.2=c(rep(NA,nd),rep(0,(k-1)),rep(1,(k-1)),

rep(0,(nd-6-((k-1)*2))))

st.3=c(rep(NA,nd),rep(0,((k-1)*2)),rep(1,(k-1)),

rep(0,(nd-6-((k-1)*3))))

st.4=c(rep(NA,nd),rep(0,((k-1)*3)),rep(1,(k-1)),

rep(0,(nd-6-((k-1)*4))))

st.5=c(rep(NA,nd),rep(0,((k-1)*4)),rep(1,(k-1)),

rep(0,(nd-6-((k-1)*5))))

st.6=c(rep(NA,nd),rep(0,((k-1)*5)),rep(1,(k-1)),

rep(0,(nd-6-((k-1)*6))))

snow.idx <- matrix(ss.data$stand.snow[7:258],6,42)

snow <- c(rep(NA,nd),c(snow.idx[1,],snow.idx[2,],

snow.idx[3,], snow.idx[4,],snow.idx[5,],

snow.idx[6,]))

dat.snow=list(Y=Y, ix1=ix1,ix1b=ix1b,wx1b=wx1b,iw22=iw22,

snow=snow,st.1=st.1,st.2=st.2,st.3=st.3,st.4=st.4,

st.5=st.5,st.6=st.6)

I then specify the model for the state-space model and call the inla() funciton

library(INLA)

formula.snow <- Y ~ f(iw22,model="iid") +

f(ix1, model="iid",initial=-10, fixed=TRUE) +

f(ix1b, wx1b, copy="ix1",fixed=FALSE) + st.1 +

st.2 + st.3 + st.4 + st.5 + st.6 + snow -1

r.snow <- inla(formula.snow, data = dat.snow,
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family = c("nbinomial","gaussian"),

control.family = list(list(link="log"),

list(initial=10, fixed=T)),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(r.snow)
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Table 6.3. Comparison of models (using the -mean(log(CPO)) with various climatic co-
variates affecting scaup pair abundance in the Northwest Territories from 1967-2010. Models
include covariates for snow cover extent (Snow), Arctic Oscillation (AO), Pacific Decadal
Oscillation (PDO), number of ponds in the prairie parkland region (Pond), and El Niño
Southern Oscillation (ENSO) for both a year ranging from June of year t-1 to May of year t,
as well as the lag-1 year (lag-1 ). Palmer Drought Severity Index (PDSI) was also included
for various seasons in the year t-1 leading up to year t. All models include an unstructured
random effect and latent density dependence, and ‘Null’ indicates a model with no climate
covariates.

Model -mean(log(CPO))

Snow + Snowlag−2 5.0066
PDSIJuly−Aug,lag−1 5.0082
Snow 5.0093
Snow + Snowlag−1 + Snowlag−2 5.0119
PDSIMay−Aug,lag−1 5.0107
Snow + Snowlag−1 5.0126
PDSIMay−July,lag−1 5.0173
PDOlag−1 5.0174
Pond 5.0191
PDO 5.0203
PDSIMay−July 5.0215
PDSIMay−Aug 5.0239
ENSO 5.0243
Null 5.0247
Snowlag−1 5.0250
Snowlag−1 + Snowlag−2 5.0284
Snowlag−2 5.0342
AO 5.0319
AOlag−1 5.0337
PDSIJuly−Aug + PDSIJuly−Aug,lag−1 5.1262
PDSIMay−Aug + PDSIMay−Aug,lag−1 5.1301
PDSIJuly−Aug 5.1309
PDO + PDOlag−1 5.1333
PDSIMay−July + PDSIMay−July,lag−1 5.133
AO + AOlag−1 5.3159
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Table 6.4. Comparison of models (using the -mean(log(CPO)) with various climatic co-
variates affecting scaup pair abundance in the Northwest Territories from 1958-2010. Models
include covariates for Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), number
of ponds in the prairie parkland region (Pond), and El Niño Southern Oscillation (ENSO)
for both a year ranging from June of year t-1 to May of year t, as well as the lag-1 year
(lag-1 ). Palmer Drought Severity Index (PDSI) was also included for various seasons in
the year t-1 leading up to year t. All models include an unstructured random effect latent
density dependence, and ‘Null’ indicates a model with no climate covariates.

Model -mean(log(CPO))

PDSIJuly−Aug + PDSIJuly−Aug,lag−1 5.0424
PDSIMay−Aug,lag−1 5.0431
PDSIJuly−Aug,lag−1 5.0432
Pond 5.0447
PDSIMay−July,lag−1 5.0450
PDSIMay−July 5.0459
PDSIMay−Aug + PDSIMay−Aug,lag−1 5.0462
Null 5.0463
PDSIMay−Aug 5.0464
ENSO 5.0475
PDSIJuly−Aug 5.0478
PDO 5.0481
PDSIMay−July + PDSIMay−July,lag−1 5.0497
PDOlag−1 5.0500
AO 5.0505
PDO + PDOlag−1 5.0510
AO + AOlag−1 5.2991
AOlag−1 5.3180

Table 6.5. Comparison of models from the red fox predator analysis of scaup pair abun-
dance in the Northwest Territories from 1957-2011. Covariates are abbreviated as ‘price’
for the inflation adjusted price of pelts in that year and ‘lag price’ for the inflation adjusted
price of pelts in the previous year. ‘Null’ indicates a model with only an intercept, while
‘df’ indicates the degrees of freedom for the model.

Model df AICc ∆AICc

lag price 3 805.72 0
price 3 815.65 9.93
price + price2 4 817.26 11.54
lag price + lag price2 3 817.81 12.09
null 2 856.67 50.95
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Table 6.6. Comparison of models from the total fox (red and arctic fox) predator analysis
of scaup pair abundance in the Northwest Territories from 1957-2011. Covariates are ab-
breviated as ‘price’ for the inflation adjusted price of pelts in that year and ‘lag price’ for
the inflation adjusted price of pelts in the previous year. ‘Null’ indicates a model with no
covariates, while ‘df’ indicates the degrees of freedom for the model.

Model df AICc ∆AICc

lag price 3 1125.24 0
lag price + lag price2 3 1127.04 2.12
price 3 1143.92 18.67
price + price2 3 1145.41 20.50
null 2 1172.08 46.60

Table 6.7. Comparison of models for the socio-economic effects on mink trapping harvest
in the Northwest Territories from 1957-2011. Covariates are abbreviated as ‘price’ for the
inflation adjusted price of pelts in that year and ‘lag price’ for the inflation adjusted price
of pelts in the previous year. ‘Null’ indicates a model with only an intercept, while ‘df’
indicates the degrees of freedom for the model.

Model df AICc ∆AICc

price + price2 4 993.47 0
lag price + lag price2 4 997.54 4.07
price 3 998.86 5.39
lag price 3 1005.09 11.62
null 2 1036.6 43.14

Table 6.8. Comparison of models (using the -mean(log(CPO)) with various predator
covariates affecting scaup population dynamics in the Northwest Territories from 1958-
2012. Models include covariates for pelt harvest of mink, red fox, and total fox (red and
arctic fox combined) from year t-1, as well as quadratic terms corrected for pelt price for
each. All models include an unstructured random effect and latent density dependence, and
‘Null’ indicates no predator covariates.

Model -mean(log(CPO))

Total fox + (total fox)2 5.0529
Null 5.0532
Red fox 5.0545
Total fox 5.0546
Mink 5.0558
Red fox + (red fox)2 5.0571
Mink + (mink)2 5.0580
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Fig. 6.2. Residuals from the top models for predator abundance through time from 1958-
2012.
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