
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2014

Physically Based Preconditioning Techniques Applied to the First Physically Based Preconditioning Techniques Applied to the First

Order Particle Transport and to Fluid Transport in Porous Media Order Particle Transport and to Fluid Transport in Porous Media

Michael Rigley
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Applied Statistics Commons

Recommended Citation Recommended Citation
Rigley, Michael, "Physically Based Preconditioning Techniques Applied to the First Order Particle
Transport and to Fluid Transport in Porous Media" (2014). All Graduate Theses and Dissertations. 2160.
https://digitalcommons.usu.edu/etd/2160

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.usu.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/2160?utm_source=digitalcommons.usu.edu%2Fetd%2F2160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PHYSICALLY BASED PRECONDITIONING TECHNIQUES APPLIED TO THE FIRST ORDER

 PARTICLE TRANSPORT AND TO FLUID TRANSPORT IN POROUS MEDIA

by

Michael Rigley

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Mathematical Sciences

Approved:

______________________________ ______________________________
Dr. Joseph Koebbe Dr. Jim Powell
Major Professor Committee Member

______________________________ _______________________________
Dr. Brynja Kohler Dr. Nghiem Nguyen
Committee Member Committee member

______________________________ _______________________________
Dr. Eric Held Dr. Mark R. McLellan
Committee Member Vice President for Research and
 Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014

ii

ABSTRACT

Physically Based Preconditioning Techniques Applied to the First Order Particle

Transport and to Fluid Transport in Porous Media

by

Michael Clay Rigley, Doctor of Philosophy

Utah State University, 2013

Major Professor: Dr. Joseph V. Koebbe

Department: Mathematics and Statistics

Physically based preconditioning is applied to linear systems resulting from solving

the first order formulation of the particle transport equation and from solving the

homogenized form of the simple flow equation for porous media flows. The first order

formulation of the particle transport equation is solved two ways. The first uses a least

squares finite element method resulting in a symmetric positive definite linear system

which is solved by a preconditioned conjugate gradient method. The second uses a

discontinuous finite element method resulting in a non-symmetric linear system which is

solved by a preconditioned biconjugate gradient stabilized method. The flow equation is

solved using a mixed finite element method. Specifically four levels of improvement are

applied: homogenization of the porous media domain, a projection method for the mixed

finite element method which simplifies the linear system, physically based

preconditioning, and implementation of the linear solver in parallel on graphic processing

units. The conjugate gradient linear solver for the least squares finite element method is

iii

also applied in parallel on graphics processing units. The physically based preconditioner

is shown to perform well in each case, in relation to speed-ups gained and as compared

with several algebraic preconditioners.

(151 pages)

Key Words: Preconditioning, Particle Transport, Fluid Transport

iv

PUBLIC ABSTRACT

Solving linear systems is at the heart of many scientific applications from the Pre-

Algebra's student solving for x and y for basic geometry problems to the computational

scientist solving billions of equations with billions of variables for weather forecasting,

modeling fusion reactions, or web search algorithms. In this study we look at improving

the efficiency of solving large linear systems that result from two applications. The first

includes linear systems that result from solving differential equations for the movement

of atomic particles in particle emitting, void, and absorbing regions. The second includes

solving linear systems that result from solving differential equations for the flux of fluid

in porous media. In both cases we employ methods of improving the linear solvers, called

preconditioning, to improve the efficiency of the linear solvers. In both cases the

preconditioning significantly improves the efficiency of the linear solver. These methods

are also tested in parallel on graphic processing units using CUDA.

v

ACKNOWLEDGMENTS

This work was funded in part by a National Physical Science Consortium Fellowship

sponsored by Sandia National Laboratories and by a graduate student stipend by Utah

State University.

I would like to express my sincere appreciation to my advisor, Dr. Joseph V. Koebbe,

for his guidance and insight throughout my program of study and during the presentation

of this thesis. Additionally I would like to thank him for his willingness to take me on as

a student two years into my program of study after I had decided to change the direction

of my research after serving an internship at Sandia National Laboratories.

I would also like to thank my committee members for their suggestions and

criticisms.

I would also like to thank my mentor at Sandia National Laboratories, Dr. Clifton

Drumm, for the opportunity to work at Sandia and for his continuing collaboration.

Last, but definitely not least, I would like to thank my wife, Kimberly, for her

continual support throughout my studies, research, and internships.

MICHAEL CLAY RIGLEY

vi

CONTENTS

 Page

ABSTRACT .. ii

PUBLIC ABSTRACT .. iv

ACKNOWLEDGMENTS ... v

LIST OF TABLES ... viii

LIST OF FIGURES ... x

LIST OF ALGORITHMS ... xii

1 INTRODUCTION.. 1

2 PHYSCIALLY BASED PRECONDITIONING FOR THE FIRST ORDER

 PARTICLE TRANSPORT IN VOID AND HIGH SCATTERING REGIONS 8

 2.1 First and Second Order Transport ... 10

 2.2 FEM .. 14

 2.3 FEM First Order Implementation ... 18

 2.3.1 LSFEM .. 20

 2.3.2 DFEM ... 23

 2.3.2.1 Upwind Differencing ... 24

 2.4 Linear System from FEM ... 25

 2.4.1 Iterative and Direct Methods .. 27

 2.4.1.1 Direct Methods... 28

 2.4.1.2 Note on Machine Precision and Computational Cost 32

 2.4.1.3 Iterative Methods ... 33

 2.4.2 Development of CG/BICGSTAB Methods .. 36

 2.4.2.1 CG Method... 36

 2.4.2.2 BICGSTAB Method .. 42

 2.4.3 Preconditioning and Iterative Methods ... 43

 2.4.3.1 Preconditioned CG/BICGSTAB .. 45

 2.4.3.2 Description of Physically Based Preconditioner.................... 48

 2.5 Numerical Results and Discussion.. 49

 2.5.1 1D Source Void Problem - Reed Problem .. 50

 2.5.2 2D Square Source Void Problem .. 58

 2.5.3 Scattering Ratio ... 63

 2.6 Conclusions and Future Work .. 64

3 PHYSCIALLY BASED PRECONDITIONING FOR THE MIXED FINITE

 ELEMENT METHOD APPLIED TO A HOMOGENIZED FORM OF THE

 FLOW EQUATION IN POROUS MEDIA ... 67

vii

 3.1 Fluid Flow in Porous Media ... 71

 3.2 MFEM Approximation ... 72

 3.2.1 Homogenization .. 73

 3.2.1.1 Homogenization Implementation... 75

 3.2.2 Projected Mixed Finite Element Method .. 78

 3.2.2.1 Projection ... 80

 3.2.3 Physically Based Preconditioner... 84

 3.2.4 Parallel Implementation on GPU .. 86

 3.3 Numerical Results and Discussion.. 86

 3.3.1 Homogenized Domain .. 87

 3.3.2 Quarter 5-Spot Source-Sink Problem ... 88

 3.3.3 Single Phase Flow Problem .. 92

 3.3.4 1D Flux Varied Transmissivity Problem .. 93

 3.4 Conclusions and Future Work .. 96

4 PRECONDITIONING FOR FINITE ELEMENT METHODS APPLIED TO

 FIRST ORDER PARTICLE TRANSPORT AND TO FLUID TRANSPORT

 IN POROUS MEDIA IMPLEMENTED IN PARALLEL ON GPUS 98
 4.1 GPU Computing..102

 4.2 Preconditioned Conjugate Gradient Method in CUDA102

 4.3 Source Void LSFEM First Order Particle Transport Results104

 4.4 Projected MFEM Source Sink Fluid Transport Results107

 4.5 Conclusions and Future Work ..111

5 CONCLUSION ..113

REFERENCES ...114

APPENDICES ..122

APPENDIX A - CUDA TUTORIAL ..123

 A.1 Installing CUDA in Windows ...123

 A.2 Running the LSFEM on CUDA ..124

APPENDIX B - USERS MANUALS ..128

 B.1 Users Manuals for Particle Transport Code ..128

 B.1.1 1D LSFEM Toolbox ...128

 B.1.2 1D DFEM Toolbox ...130

 B.1.3 2D LSFEM Toolbox ...132

 B.1.4 2D DFEM Toolbox ...134

 B.2 Users Manuals for Fluid Transport Code..136

 B.2.1 2D and 3D MFEM Toolboxes ..136

VITA..137

viii

LIST OF TABLES

Table Page

 2.1 Cross Section Data for Reed Problem .. 51

 2.2 Results of CG Method on the LSFEM for Reed Problem 53

 2.3 Results of PCG Method on the LSFEM for Reed Problem 53

 2.4 Results of BICGSTAB on the DFEM for Reed Problem 54

 2.5 Results of PBICGSTAB on the DFEM for Reed Problem 54

 2.6 Comparison of Preconditioners on the LSFEM for Reed Problem 57

 2.7 Comparison of Preconditioners on the DFEM for Reed Problem 57

 2.8 Cross Section Data for Square Source Void Problem 59

 2.9 Results of Preconditioning on the LSFEM for Square Source Void Problem .. 61

 2.10 Results of Preconditioning on the DFEM for the

 Square Source Void Problem .. 61

 2.11 Comparison of Preconditioners on LSFEM for Square Source Void Problem 62

 2.12 Comparison of Preconditioners on DFEM for Square Source Void Problem .. 62

 2.13 Comparison of Preconditioners for LSFEM with varying Scattering Values .. 63

 3.1 Results of Preconditioning on MFEM 2D Source Sink Problem 90

 3.2 Results of Preconditioning on MFEM 3D Source Sink Problem 91

 3.3 Results of Preconditioning on MFEM 2D Single Phase Flow Problem 93

 3.4 Results of Preconditioning on MFEM 3D Single Phase Flow Problem 94

 3.5 Results of Preconditioning on MFEM 2D Varied Transmissivity Test 95

 4.1 Parallel Results of Preconditioning on the LSFEM for Reed Problem106

ix

 4.2 Parallel Results of Preonditioning on the LSFEM for

 Square Source Void Problem ..106

 4.3 Comparison of Parallel and Serial Results for LSFEM on Reed Problem107

 4.4 Comparison of Parallel and Serial Results for LSFEM on

 Square Source Problem ...107

 4.5 Parallel Results of Preconditioning on the MFEM 2D Source Sink Problem ..109

 4.6 Parallel Results of Preconditioning on the MFEM 3D Source Sink Problem ..109

 4.7 Comparison of Parallel and Serial for MFEM 2D Source Sink Problem110

 4.8 Comparison of Parallel and Serial for MFEM 3D Source Sink Problem110

x

LIST OF FIGURES

Figure Page

 2.1 Continuous Basis Functions .. 16

 2.2 Discontinuous Basis Functions ... 19

 2.3 Critical Role of Linear Systems in Science .. 26

 2.4 Depiction of Iterative Solution Method [37] .. 34

 2.5 Example of Steepest Descent Method [40] ... 39

 2.6 Example of Optimal Steepest Descent .. 40

 2.7 Example of Skewed Steepest Descent .. 40

 2.8 Example of Matrix Preconditioning for Particle Transport 48

 2.9 Geometry of Reed Problem .. 50

 2.10 Scalar Flux for the LS Method on the Reed Problem with m = 16, n = 800 52

 2.11 Scalar Flux for the DFEM on the Reed Problem with m = 16, n = 80 52

 2.12 Scalar Flux for the DFEM Without Preconditioning

 on the Reed Problem with n = 240, m = 8 and 32 ... 55

 2.13 Geometry of Square Source Void Problem .. 58

 2.14 Scalar Flux for the Square Source Void Problem Using the LSFEM 59

 2.15 Scalar Flux for the Square Source Void Problem Using DFEM 60

 2.16 Resulting Flux Along Line x = 5.625 for Square Source Void Problem 60

 2.17 Flux Along Line x = 5.625 for Several Scattering (σs) Values 64

 3.1 Depiction of Porous Media ... 71

 3.2 Example of Periodic Two Phase Flow Structure .. 74

xi

 3.3 Linear Example of Two Phase Flow Structure ... 75

 3.4 Example of Matrix Preconditioning for Fluid Transport 85

 3.5 Diagram of Repeated Pattern for Homogenized Problem 87

 3.6 Resulting Pressure for MFEM Source Sink Problem with m = n = 33 89

 3.7 Resulting Pressure for MFEM Singe Phase Flow Problem with m = n = 33 ... 92

 4.1 Resulting Flux for the Reed Problem Using

 the Continuous LSFEM in CUDA with m = 16, n = 1600104

 4.2 Resulting Flux for the Square Source Void Problem Using

 the Continuous LSFEM in CUDA for S10 ...105

 4.3 Resulting Pressure for MFEM Source Sink

 Problem in CUDA with m = n = 45 ..108

 A.1 Screen Shot of Results of CUDA Conjugate Gradient Method124

 A.2 Screen Shot of Results of LSFEM in CUDA ...126

xii

LIST OF ALGORITHMS

Algorithm

 Page

 2.1 Conjugate Gradient Method .. 41

 2.2 Biconjugate Gradient Stabilized Method .. 42

 2.3 Preconditioned Conjugate Gradient Method .. 46

 2.4 Preconditioned Biconjugate Gradient Stabilized Method 47

CHAPTER 1

INTRODUCTION

Linear systems are an essential part of nearly all numerical techniques for solving

differential equations and differential equations are an essential part of nearly all

scientific applications. Efficiently solving linear systems thus becomes an essential part

of nearly all scientific applications. Many methods have been developed for solving

linear systems from a basic algebra student's substitution techniques for solving a set of

two equations with two variables for basic geometry to a scientist's parallel algebraic

multigrid techniques for solving a set of several million equations with several million

variables for computation fluid dynamics using graphics processing units [1]. All these

methods revolve around the first equation explored by a beginning linear algebra student:

 Ax = b (1.1)

where A is an n x n real square matrix, and x and b are n x 1 vectors. Many linear system

solution methods use a technique called preconditioning.

Preconditioning or rather preconditioning a linear system refers to various methods of

making it easier to solve the above equation. This can generally be represented by pre-

multiplying the above equation with a matrix M such that the system

 MAx = Mb (1.2)

is easier to solve than the original system. If such preconditioning can be done efficiently

and well, it can greatly speed up the methods for solving the linear system which greatly

speeds up the differential equation solvers for scientific applications. The most common

2

preconditioners are algebraic in nature. Algebraic preconditioners depend solely upon the

matrix A and its basic structure. For instance, consider the following decomposition of

the matrix A:

 A = D + L + U (1.3)

where D is the diagonal of A, L is the lower triangular part of A, and U is the upper

triangular part of A. Several methods are derived from this decomposition including the

Jacobi method, the Gauss-Seidel method, and Successive Over-Relaxation (SSOR) [2].

These and other methods are explained in more detail in Chapter 2. In this research, we

look at improving, by physically based preconditioning, the efficiency of the linear

system solution methods for two particular applications, first order particle transport and

fluid flow in porous media.

This research began during a summer internship at Sandia National Laboratories to

seek improvements on the electron-photon transport code SCEPTRE [3]. Particle

transport, sometimes called radiation transport, neutron transport, photon transport, etc.,

models represent the interactions of small atomic particles (neutrons, photons, etc.) to

determine the overall effect on various materials. Many codes, including SCEPTRE, had

been written from the second order formulation of the Boltzmann transport equation [1]

[4] [5] [6]. In this study we looked at solution methods for the first order formulation of

the transport equation.

The first order formulation of the transport equation has been studied previously

including [7] and [8]. In [8], a discontinuous finite element method is used to solve the

transport equation. In [7], a least squares continuous finite element method is used. In this

study we use two methods for solving the first order formulation including a

3

discontinuous finite element method similar to that in [7] and the least squares method

from [8]. We extend the results of these methods by adding physically based

preconditioning to the linear system solvers.

The linear solvers used for these systems include the conjugate gradient and

biconjugate gradient stabilized methods. These are two common iterative methods that

are search algorithms. They start with an initial guess vector x0 and seek to improve that

guess by searching in particular directions that are determined by the linear system matrix

A. The conjugate gradient method is for symmetric positive definite matrices and the

biconjugate gradient stabilized method is for any invertible matrix.

The physically based preconditioner is applied to each of these linear solvers with

good improvements in efficiency in each case. The term physically based preconditioner

used here refers to the fact that the preconditioners used in this study are based on the

physical nature or physics of the problem being studied. In the case of particle transport,

the linear system structure has a block structure due to the various angles that a particle

may scatter when encountering a given point in a material. The preconditioner for the

linear systems from the finite element methods for the first order transport equation is

derived from the equation itself. More specifically, the preconditioner used is the system

matrix that would be obtained if there were no scattering present. For each of the specific

problems studied, the physically based preconditioner is compared with several algebraic

preconditioners including some of those mentioned earlier like the Jacobi method and

successive over-relaxation.

The second major section of this research entailed seeking improvements in

efficiency for in modeling fluid flow in porous media. In [9], solutions were explored

4

using the mixed finite element method on the simple flow equation. For simple flows

where the speed or transmissivity of the flow is determined solely by the coordinate

directional flows, mixed finite element methods result in a simplified linear system

structure. This structure is explained in more detail in Chapter 3. Examples of porous

media flows include water flowing through a sponge, heat diffusing through asphalt, or

extracting oil from underground reservoirs. In each case, the pores, or pockets within the

material allow a different level of fluid flow than the material surrounding the pores. This

dual speed or dual transmissivity flow results in a flow equation that, when solved using

the mixed finite element method, has a large full linear system that does not lend itself

directly to the simplified linear system structure of the mixed finite element method.

In this research we look at four levels of improvement for fluid flows in porous

media. The first two have been explored previously which include homogenization and a

projection method for the mixed finite element method applied to the flow equation. In

[10], the method of homogenization is applied to the simple flow equation in a porous

media domain. Put simply, the method of homogenization is a way of simplifying or

averaging a porous media structure into a simpler homogenized structure. For example,

we can consider a porous medium where the transmissivity in the main surrounding

material is ten and the transmissivity in the pores is one. Depending on the amount of

surrounding material compared to the amount of pore material, the approximate averaged

or simplified transmissivity obtained by homogenization could range anywhere between

one and ten. As seen in [10], this average is often related to harmonic, geometric, and

arithmetic means. This homogenization allows the initial flow equation to be solved on a

much coarser scale greatly reducing the computational time. However, the resulting

5

transmissivity does not depend solely on the flow in the coordinate directions so that the

simplified matrix structure of [9] cannot be used directly.

In [11] the simplified linear system structure of the mixed finite element from [9] was

extended using a projection method to address flow equations that result from

homogenization of porous media flows where the transmissivity is not determined solely

by the flow in the coordinate directions. In this research we extend the results of [11] in

two ways. First, we improve the efficiency of the projection method by adding physically

based preconditioning to the conjugate gradient linear solver of [11], and secondly we

solve the linear system and apply the preconditioning in parallel using graphics

processing units.

The physically based preconditioner for the projected homogenized flow equation is

based on the transmissivity. The transmissivity for the projection method is broken up

into its diagonal and off-diagonal components and the off-diagonal component is

projected onto the diagonal component resulting in a simplified matrix structure similar

to that in [9], but which structure is still a full matrix. The physically based

preconditioner is the solution obtained using only the diagonal component of the

transmissivity. This preconditioner is applied for several flow problems and for varying

levels of off-diagonal transmissivity. In each case the preconditioner improves the

efficiency of the linear solver for the projected method applied to the homogenized flow

problem. This preconditioner is also compared with several algebraic preconditioner

including some of those mentioned above.

The fourth level of improvement on solving the flow problem, and the third and final

section of this research was applying the linear solver for the projected mixed finite

6

element method for the homogenized flow equation in parallel on graphics processing

units using CUDA. Scientific computing on graphics processing units (GPUs) is a

relatively new field. Graphics cards were originally created and driven by the video game

industry as 2D display accelerators offering hardware assisted bitmap operations [12].

Over time, the benefit of GPUs was noticed and utilized in scientific applications

including medical imaging, computational fluid dynamics, and environmental science

[12]. GPUs have recently been utilized for both particle and fluid transport problems,

[13] [14] [15] [16], as well as general preconditioning methods for linear solvers, [17]

[18]. In this work we apply the conjugate gradient linear solvers of the particle and fluid

transport problems together with their preconditioners on GPUs using CUDA. The

physically based preconditioners perform well in parallel and, as above, are compared

with several algebraic preconditioners.

In summary, two major fields of study are studied here, first order formulations of

particle transport and fluid transport in porous media. Each is extended by using

physically based preconditioning to improve the efficiency of the linear solvers. These

solvers are also run on GPUs using CUDA where the physically based preconditioner

also performs well. The remainder of the paper will be organized as follows. Chapter 2

will introduce the first area of research, particle transport, and show some of the

implementation details of the finite element method, specifically the least squares and

discontinuous finite element methods. Some background will also be given for linear

system solvers including direct and iterative solvers and the formulation of the conjugate

gradient and biconjugate gradient stabilized methods. The chapter will conclude with

results of the physically based preconditioner on one and two dimensional problems.

7

Chapter 3 will introduce the second area of research, fluid flow in porous media and give

greater details on the four levels of improvement for the mixed finite element method

applied to the flow equation mentioned above: homogenization, the projection method,

physically based preconditioning, and implementation of the linear solver in parallel on

GPUs. The fourth level of improvement will be explored in more detail independently in

Chapter 4 where some background will be given in GPU computing and the

implementation of the linear solver in CUDA. Chapter 2 through 4 will each contain

discussion, conclusions, and possible future work and a summary conclusion will be

given in Chapter 5 followed by the appendices which will give a brief tutorial for

implementing the linear solvers and physically based preconditioners in CUDA and users

manuals for the codes discussed in this paper.

8

CHAPTER 2

PHYSCIALLY BASED PRECONDITIONING FOR THE FIRST ORDER

PARTICLE TRANSPORT IN VOID AND HIGH SCATTERING REGIONS

This research began as part of two internships in the Science of Extreme

Environments Research Institute (SEERI) at Sandia National Laboratories (SNL). In the

Radiation Effects Department one of their research and development projects is the code

Sandia Coupled Electron-Photon Transport for Radiation Effects (SCEPTRE). SCEPTRE

employs several second-order formulations of the Boltzmann transport equation

including the even-odd parity flux (EOPF) equations and the self-adjoint angular flux

(SAAF) equations. Discrete-ordinates and finite element methods are applied to the

second order formulations of the transport equation and yield a linear, sparse, block-

matrix system that is symmetric positive definite. These and further physical and

mathematical explanations of the SCEPTRE code can be found in [3].

The first internship was focused on decreasing the run time of the conjugate gradient

linear system solver for the finite element method of the Boltzmann transport equation

within SCEPTRE by preconditioning the linear system resulting from the finite element

method [19]. SCEPTRE utilizes the parallel linear solver package TRILINOS as well as a

multi-level algebraic preconditioning package ML. Details on TRILINOS and ML can be

found in [20] and [21]. As an intern, I tested the various parameters within the standard

preconditioners of ML to precondition the linear system within the conjugate gradient

linear solver of SCEPTRE. Full details of these tests can be found in [19].

9

The second internship, and the continued PhD research, was focused on developing

new finite element methods and preconditioners for linear solvers for the first order

transport equation [22]. Second order formulations of the Boltzmann transport equation,

like those used within SCEPTRE are popular because they produce symmetric positive

definite linear systems of equations which are amiable to powerful solution techniques

such as the conjugate gradient method and can be readily solved on massively parallel

systems using existing codes like TRILINOS [3]. The EOPF and SAAF can be found in

multiple papers (see [4], [5], and [6] for examples). One downside to the second order

methods is that they break down in regions with voids (i.e. vacuums). There have been

several methods devised to overcome this problem, one of which is described in [23]

where gradually decreasing values of the scattering cross-section were used to approach

the solution in the void regions. In this research, we instead are looking to make

improvements on first order methods which do not break down in voids.

Finite element methods applied to the first order equation generally result in non-

symmetric and non-positive definite systems. This adds to the memory and computation

needed to solve the linear systems. Because of this, preconditioning techniques were

developed and applied to finite element solution methods of the first order transport

equation. Results of this study are shown below.

We will first give a brief introduction into first and second order particle transport as

well as a brief introduction to solving differential equations with finite element methods

and look at the implementation of two methods for solving the first order transport

equation, specifically a least squares finite element method (LSFEM) and a discontinuous

finite element method (DFEM). Other methods that were tried will also be discussed. We

10

will then give a brief introduction into solving linear systems resulting from finite

element methods including direct and iterative methods and then look specifically at the

iterative methods used in conjunction with the LSFEM and DFEM which are the

conjugate gradient (CG) method and bi-conjugate gradient stabilized (BICGSTAB)

methods respectively. We will then discuss general methods of preconditioning linear

systems and look at the preconditioned CG and BICGSTAB methods and follow that up

with a description of the physically based preconditioner used for the LSFEM and DFEM

methods.

We will then look at numerical results of the preconditioning on the LSFEM and

DFEM, specifically looking at the overall speedup of applying the physically based

preconditioner. We will also look at comparisons with algebraic (sometimes called

blackbox) preconditioners and compare the preconditioned CG and BICGSTAB methods

with direct methods. We will then summarize the results.

2.1 First and Second Order Transport

Radiation transport codes are used to evaluate the effects of radiation from various

sources on materials and systems. The basic physics of radiation transport involve

interactions between small particles like photons, electrons, neutrons, etc. There are many

different types of particle interactions. These will not be discussed in depth here but

descriptions of these interactions can be found in [3]. Here we will state more generally

two types of interactions, absorption and scattering. When a particle interacts with a

given material, that particle can be absorbed (i.e. lose its energy/momentum) into the

11

material or it can scatter off the material and have further interactions until it is absorbed

or leaves the system.

Materials have various properties that can make them range from impervious to

transparent to particle interactions. A simple example is light, which can travel through

glass and other optically thin materials, but cannot penetrate a wall or other optically

thick materials. While traveling through the glass, the particles have little interaction with

the glass, whereas, when the particles hit the wall, they are either absorbed or scattered.

Materials are often classified by their cross-sections, generally denoted by σ = σ(r,E),

where r is the position within a given material, which could be one, two, or three

dimensional, and E is the energy at that position. The cross-section σ is the probability of

a particle undergoing an interaction per unit path length of travel within the material [3].

In other words, the larger σ is, the less likely a particle will pass through a material, like

light hitting a wall. In a vacuum, σ is zero. The total cross-section of a material is denoted

σt = σs + σa, where σs is the probability of a given interaction being a scattering

interaction, and σa is the probability of a given interaction being an absorption

interaction.

Once a given material has been classified by its cross-section, the distribution of

particles can be determined by the Boltzmann transport equation [3] [24]. The Boltzmann

transport equation is a mathematical statement of particle balance over a differential

volume [3]. The time-independent first order form is given as

,,****,,**,,,,,,
)1,0(

ErQddEErErErEr
D B

st (2.1)

where ψ(r,E,Ω) is the angular flux of particles as position r, with energy E and traveling

in unit direction Ω, σt is the total cross-section or probability of interaction per unit path

12

length at position r and energy E, σs is the differential scattering cross-section and gives

the probability per unit path length that particles at position r with energy E* in the unit

direction Ω* scatter into dE about E and into a cone of direction dΩ about Ω, D is the

given energy spectrum and δB(0,1) is the boundary of the unit ball.

The appropriate boundary conditions are usually given by specifying the incoming

flux at an external boundary:

 ,,, EEr bb for 0 bn (2.2)

where rb is a position on the boundary and nb is the outward normal to the boundary. Two

of the most common boundary conditions are reflective and vacuum

 Reflective: ',,,, ErEr bb for 0 bn (2.3)

 Vacuum: 0,, Erb for 0 bn (2.4)

where Ω' is the adjoint or reflective directions to Ω. In one dimension, Ω' = - Ω. The

vacuum condition simply states that no particles are entering the system. Other boundary

conditions are also commonly used and a good discussion of boundary conditions can be

found in [25].

Equation (2.1) is the first order time independent form of the Boltzmann transport

equation. Examples of a time dependent form can be found in [26] and [27]. There are

certain computational difficulties that arise from using the first order formulation of the

transport equation. The streaming term in Equation (2.1), ,, Er , makes the

equation non-symmetric and non-positive definite, so when applying a finite element

method to the equation, the resulting linear system is also non-symmetric and non-

positive definite. Lack of symmetry requires a greater storage load for a solver since only

half of a symmetric matrix need be stored, and this coupled with non-positive definite

13

rules out many of the most efficient linear solvers. For example, Cholesky factorizations,

one of the fastest direct linear solvers, and conjugate gradient methods, an efficient

iterative solver, both require that a matrix be symmetric and positive definite. There are

many solvers that exist for non-symmetric and non-positive definite matrices like the

biconjugate gradient method (BICG), generalized minimum residual method (GMRES),

and direct LU factorizations, but all of these methods require more memory and more

computational time than their counterparts for symmetric and positive definite matrices.

Because of this, the transport equation has often been solved from a second order

formulation of the equation.

There are several second order formulations. Two of the more well-known are the

Self-Adjoint Angular Flux Formulation (SAAF), and the Even and Odd Parity

Formulation (EOPF). These formulations lead to linear systems that have symmetric

positive definite matrices from the finite element method and therefore are easily solved

by efficient solvers such as the Cholesky factorization and the conjugate gradient method.

However, there are drawbacks to these solvers as well. Both the SAAF and the EOPF

include terms with the inverse cross-section 1/σt. Thus, these methods break down in

regions with voids when the cross-section is zero. There are several techniques used to

get around this problem. One is discussed in [23] where the EOPF is solved at decreasing

levels of the total crossection (eg σt = 0.1, σt = 0.01, σt = 0.001). Rather than looking for

methods around the problem of voids for second order problems, this project continues

the research being done to speed up the process of solving the first order equation

directly, the formulation of which does not break down in voids.

14

As mentioned above, the first order formulation leads to matrices that are non-

symmetric which require more computations to solve linear systems. Because of this

preconditioning is applied to the first order solution methods to speed up the linear

system solver. Below we will go through two such solution methods, the least squares

finite element method (LSFEM) and the discontinuous finite element method (DFEM)

together with the physical based preconditioner used to speed up the linear system solver

of each method. Before doing so, we will first give a brief introduction to using finite

element methods to solve differential equations.

2.2 FEM

 There are two main computational methods for solving differential equations, finite

difference methods and finite element methods. Both computational methods start by

discretizing the domain of the problem. For example, consider the simple differential

equation

 f
dx

ud

2

2

 in Ω = [0,1] (2.5)

1

0

1

0

xu

xu
u (2.6)

where Ω is a given region, δΩ is the boundary of the region, u is a function of x, and f is

some given function of x. To solve this equation by either finite element or finite

difference methods, we would first discretize the domain

 0 = x0 < x1 < ... < xn = 1 (2.7)

for some finite positive integer n. For simplicity, assume that the distance between each

point is Δx. At this point finite difference methods would proceed by discretizing the

15

differential operator within the differential equation to form a system of approximate

equations

i

iii f
x

uuu

2

11 2
 (2.8)

for each index i between 1 and n - 1. We thus have n - 1 unknowns, u1 through un - 1, with

n - 1 equations (recall that u(x0) = u0 and u(xn) = u1 are known) and can thus solve the

following linear system to obtain an approximate solution.

2

11

2

01

1

1

22

2

2

22

/

/

21
00

1
00

1

00
12

xuf

xuf

u

u

xx

x

x

xx

nn

 (2.9)

Like many linear systems resulting from discretization of differential equations, the

above system has a symmetric positive definitive matrix.

Finite element methods also start with a discretization of the domain, Equation (2.7).

However, rather than disretize the differential operator at each point to form a system of

linear equations, the function itself is "discretized." More specifically, the solution of the

differential equation is approximated by a set of simpler functions. These simpler

functions are often called basis functions or test functions. One common test function is a

piecewise linear function, sometimes called a hat function or Chapeau basis function, see

Figure 2.1.

16

Figure 2.1. Continuous Basis Functions

These functions are of the form

otherwise

xxx
xx

xx

xxx
xx

xx

x ii

ii

i

ii

ii

i

i

0

,

,

)(1

1

1

1

1

 (2.10)

Assigning each basis function, ϕi(x), a different coefficient we can form a piecewise

linear approximation of the solution to the differential equation, Equation (2.5).

)()(
0

xuxu i

n

i

i

 (2.11)

Thus if we can find the values of the coefficients, u1, u2, ... , un - 1, then we have an

approximation to the solution. The finite element method proceeds by applying a

Galerkin method. We will not explain the full details of the Galerkin method here. These

details can be found in [28]. We will outline the basic process. To find the solution, each

side of Equation (2.5) is multiplied by a test function (ie basis function) and integrated

over the domain of the problem.

 fvdxvdx
dx

ud
2

2

 (2.12)

17

Then applying integration by parts to the left side of the equation, we have

 fvdxdx
dx

dv

dx

du
v

dx

du
nx

x0

 (2.13)

A solution obtained in this manner is generally called a weak solution to the differential

equation. If we now insert the approximation, Equation (2.11), into this equation, we

have another system of linear equations

 dxfdx
dx

d
xu

dx

d
iii

n

i

i '''

0

)((2.14)

Note that each of the test functions, ϕi' (x) is zero at the boundaries, i' between 1 and n

- 1, so we can drop the first term of Equation (2.13). We thus have n - 1 equations, one

for each of the basis functions, ϕ1 to ϕn - 1, and can solve the system for the n - 1 unknown

coefficients. If we once again assume that the partition of the domain has a constant

width, Δx, between points, then we have the following linear system resulting from the

finite element method. Note that each of the entries on the right hand side of the linear

system must still be integrated. These integrals are generally completed using basic

numerical integration techniques like the Trapezoid Rule or Simpson Method which can

be found in any Calculus textbook.

 dxf

dxf

u

u

xx

x

x

xx

n
n

1

1

1

1

22

2

2

22

21
00

1
00

1

00
12

 (2.15)

There are pros and cons to using either the finite difference or the finite element

methods. Both are approximations and require certain constraints in order to obtain an

18

accurate solution. In general, the finite difference method is easier to implement. Note

that no integration is needed to arrive at the associated linear system. The function only

needs to be evaluated at the partition points in the domain, whereas the finite element

method may require a numerical integration of the right hand side. Although the finite

element method is generally more difficult to implement, it is generally considered the

more robust of the two methods. This is because of the flexibility in the choice of basis

functions. Above we used piecewise linear basis functions, but these can be replaced by

quadratic or other basis functions to achieve a greater level of accuracy.

Particle transport problems have been solved using both methods (see [29] and [23]

for examples). As mentioned above, SCEPTRE at Sandia uses finite element methods to

solve second order forms of the Boltzmann transport equation. This particular research

applied finite element methods to a first order form of the transport equation, focusing

primarily on the linear system resulting from the finite element method. An introduction

to solving linear systems resulting from differential equations will be given later, but now

we will go through the implementation of the finite element methods applied to the first

order transport equation.

2.3 FEM First Order Implementation

There were two main approaches of the finite element method applied to the first

order transport equation, a least squares finite element method (LSFEM), and a

discontinuous finite element method (DFEM). These methods differ by their choice of

basis functions applied within the finite element method. The LSFEM applies test

functions that are in the form of the transport operator itself. This approach when applied

19

through the finite element method produces a linear system that is symmetric positive

definite which can be solved using fast linear solution techniques like the conjugate

gradient method. The DFEM applies test functions where solutions are allowed to be

discontinuous at the boundaries of the partitions of the domain.

Figure 2.2. Discontinuous Basis Functions.

This is the same as taking each of the hat functions shown in Figure 2.1 and splitting each

of them into two separate functions, see Figure 2.2. This method results in a matrix that is

not symmetric so the system must be solved by less efficient linear system solution

methods.

One other solution method was also tried using a mixed finite element method. This

method has been applied in the past to the second order form of the transport equation

(see [30]), and it was applied here to the first order form of the equation. The mixed finite

element method is explained in more detail in Chapter 3, but the basic idea is that the

solution to the transport equation, ψ, is assumed to be in a different approximation space

from that of the velocity, . This method was not pursued as far as the LSFEM and the

DFEM. The linear solver run time did initially look to be faster than that of the LSFEM

and DFEM, but fluctuations in the solutions seemed to indicate that the solution was not

20

as stable as the other methods which would have required using a much smaller step size

to achieve similar accuracy. More work to obtain further explanations and better results

could be done on this in the future. For this research, the focus was instead placed on

increasing the performance of the linear system solvers of the LSFEM and DFEM.

We will start by going through the details of the finite element method for the

LSFEM and DFEM applied to the first order form of the transport equation. We will first

look at the LSFEM, then the DFEM, and then look at a description of the physical based

preconditioner for each method.

2.3.1 LSFEM

We start with the first order transport equation. We will go through the details in two

spatial dimensions. The results for three spatial dimensions are similar. We will use the

single energy group form of the equation.

 Qd
B

s
t ')',(

4
),(

)1,0(

rr

 (2.16)

We use this form because we are particularly interested in the performance of the

preconditioning of the linear system and for multiple energy groups, the equation would

be solved at each discrete level separately. This equation is first discretized in angle to

obtain

 m

M

m

mmsmtmm Q
1

''')(r for m = 1,…,M (2.17)

where the scalar weights, ωm, m = 1, 2, ..., are determined by the angular quadrature.

Gauss-Legendre quadrature is used for the one dimensional case and symmetric level sets

21

are used for two dimensions. In two dimensions, if we define Ωm = <μm
x
, μm

y
>, Equation

(2.16) can be written in vector form as

 QWI st

 (2.18)

where each of the terms are defined as follows

 ,

11

yx
y

M

y

x

M

x

 (2.19)

 ,

1

1

M

M

W

 (2.20)

M

1

 (2.21)

Q

Q

Q

 (2.22)

For this method piecewise linear basis functions were used that are defined to be 1 at a

given node and zero at all other nodes. An example of the basis functions are shown in

Figure 2.1, and in 2-Dimensions the Cartesian product is

)()(),(yxyxu jiij (2.23)

with

otherwise

xxx
xx

xx

xxx
xx

xx

x ii

ii

i

ii

ii

i

i

0

,

,

)(1

1

1

1

1

 (2.24)

22

The angular flux is then approximated as a linear combination of the basis functions. The

resulting equation then becomes

 QyxuWI
y x

N

j

N

i

ijijst

 1 1

),((2.25)

where the flux vector is defined as

ij

M

ij

ij

1

 (2.26)

To determine the flux coefficients we proceed with the finite element method by

multiplying Equation (2.25) by a set of test functions and integrating over the domain.

For the LS method, the set of test functions is given by the transport operator applied to

the basis functions. In vector form we have

),(),('''

''

' yxueWIyx jimst

ji

m

 (2.27)

where me

 is the unit vector of all zeros with a 1 in the mth position. This method was

originally presented in [7] and [31]. Pre-multiplying the vector Equation (2.25) by the

given test function and integrating over the domain we have a system of linear equations

given by

A

T

jimst

N

j

N

i A

ijijst

T

jimst

dAQyxueWI

dAyxuWIyxueWI
y x

),(

),(),(

'''

1 1

'''

 (2.28)

23

2.3.2 DFEM

The steps for the DFEM are similar. We will cover the basic development of the

method. Further details of the method can be found in [8]. The basis functions in

Equations (2.23) and (2.24) are modified according to the discontinuous scheme. In this

case the functions are discontinuous at the nodes, so for each of the given elements we

have a left and right function in the x-direction and a left and right function in the y-

direction. See Figure 2.2 above. The result is

)()(),(yxyxu l

j

l

i

ll

ij (2.29)

)()(),(yxyxu r

j

l

i

lr

ij (2.30)

)()(),(yxyxu l

j

r

i

rl

ij (2.31)

)()(),(yxyxu r

j

r

i

rr

ij (2.32)

with

otherwise

xxx
xx

xx

x ii

ii

i
l

i

0

,
)(1

1
 (2.33)

and

otherwise

xxx
xx

xx

x ii

ii

i
r

i

0

,
)(1

1
 (2.34)

The set of test functions used to create the linear system are simply the basis functions

themselves.

),(),('''

''

' yxueyx jim

ji

m

 (2.35)

The linear system of equations then becomes

24

 A

T

jim

N

j

N

i A

ijijst

T

jim dAQyxuedAyxuWIyxue
y x

),(),(),('''

1 1

''' (2.36)

2.3.2.1 Upwind Differencing

When integrating the first order term of the DFEM linear system, Equation (2.36),

upwind differencing is used. More details on upwind differencing can be found in [32].

We will explain the implementation details here. From Equation (2.36), integration by

parts is performed on

 the first order term creating a difference term and moving the derivative to the test

function. That is

A

ij

ij

mji

y

m

x

m

x

iiyjj

ij

m

y

m

y

jj
x

ii

ij

m

x

m

A

ij

ij

m

y

m

x

mji

A

ijij

T

jim

dAyxuyxu
yx

dxxxyydyyyxx

dAyxu
yx

yxudAyxuyxue

),(),(

)()()()()()()()(

),(),(),(),(

'''''

''''''''

''''''''

 (2.37)

For upwind differencing we have the following calculations for the difference terms in x.

0

0)()(
)()(

'

,

'

'

,1

'1'

,1

''

''' x

m

ji

m

x

m

ji

m
x

r

i

l

i

ji

m

x

m

x

l

i

l

i

ij

m

x

m
for

forxx
xx

 (2.38)

0

0)()(
)()(

'

,

'

'

,1

'1'

,1

''

''' x

m

ji

m

x

m

ji

m
x

l

i

r

i

ji

m

x

m

x

r

i

r

i

ij

m

x

m
for

forxx
xx

 (2.39)

 0)()('''
x

r

i

l

i

ij

m

x

m xx (2.40)

 0)()('''
x

l

i

r

i

ij

m

x

m xx (2.41)

25

Basically, if the calculation is on the left or right, then the value is taken from the upwind

direction. The difference terms in y are similar. Plugging these difference results into

Equation (2.37) we can then solve Equation (2.37) as part of the linear system (2.36).

Now that we have the linear systems obtained from each finite element method, we

will discuss the linear system solution techniques used to solve each linear system. We

will first give a brief introduction for solving linear systems via direct and iterative

methods. We will look at the specific iterative methods used in conjunction with the

LSFEM and the DFEM, the conjugate gradient method and bi-conjugate gradient

stabilized methods respectively. We will then give a brief introduction of preconditioning

linear systems with a discussion of common preconditioners and then describe the

physical based preconditioner used for each of these methods.

2.4 Linear System from FEM

Linear systems have been studied for some time now. They can be found from the

beginning mathematician's pre-algebra book all the way up to the seasoned

mathematician's high performance computing software. A relatively short list could

include electrical networks, geometric linear programming, graph theory, games of

strategy, forest management, fractals for data compression, genetics, harvesting of animal

population, a least squares model for human hearing, and image processing [33]. Many

techniques have been developed for solving linear systems from simple Jacobi iterations

to more complex algebraic multi-grid solvers.

26

Solving linear systems is an essential part of many applications throughout the

sciences. Indeed, nearly all computations for modeling in the scientific community

eventually result in solving linear systems (see Figure 2.3).

Figure 2.3. Critical Role of Linear Systems in Science

This is mainly because many mathematical models are represented by differential

equations. Many differential equations cannot be solved directly through analysis and can

only be approximated computationally. Common methods for solving differential

equations include finite difference and finite element methods. Both of these methods

result in solving linear systems. As problem size and complexity increase, the size and

complexity of the resulting linear systems also increases. The linear system is commonly

termed a bottle-neck in terms of computational time of the solution process. Solving

linear systems is thus a crucial part of efficiently solving differential equations for any

application.

27

In this paper we are looking at two specific applications, particle transport and fluid

transport. Particle transport is part of a wide variety of applications. A short list of the

applications might include extreme environments for fusion research, long term effects of

solar rays on satellites, and radiation in medicine like chemotherapy. Due to the small

size of the particles, like protons, neutrons, and electrons, the computational domains for

the models associated with particle transport often must be extremely refined for accurate

results. In terms of linear systems, this means that the size of the linear system can be

quite large.

Because of this, the use of traditional solution methods like Gaussian Elimination for

linear systems is impractical. Instead iterative methods like the conjugate gradient

method are used. We will first give a brief background of direct and iterative methods for

solving linear systems. We will then look specifically at the iterative methods used in

conjunction with the LSFEM and DFEM. The remainder of this section will describe

preconditioning the linear systems for the iterative methods of the LSFEM and DFEM.

This will include a brief introduction into preconditioning, some common

preconditioners, and a description of the physical-based preconditioner used for the

LSFEM and DFEM.

2.4.1 Iterative and Direct Methods

As portrayed in Figure 2.3, much of the modeling and calculations in science

eventually end up in solving a linear system which generally results from a finite element

or difference method for differential equations. Because of this, there have been many

methods developed for solving linear systems, especially those that result from solving

28

differential equations. There are two general types of methods for solving linear systems,

direct methods and iterative methods. We will briefly explain each type and derive some

of the iterative methods used for the linear systems generated from the finite element

methods above.

2.4.1.1 Direct Methods

Direct methods, as the name implies, go straight to the solution. In other words, they are

algorithms that have a definite beginning and a definite end and generally after passing

through the algorithm once, you obtain an approximate solution. One characterization of

direct methods is that an approximate solution is obtained after a finite number of

computations. Iterative methods produce a sequence of approximations of the linear

system that may or may not converge. The most common direct method for solving linear

systems is Gaussian Elimination. Most, if not all other direct methods are generally some

variation of Gaussian Elimination.

Given a matrix A in R
nxn

, and a linear system Ax = b, where x and b are in R
n
,

Gaussian Elimination can be simply described as adding and subtracting equations within

the linear system to obtain a solution to the linear system. This generally results in a

linear system where the system matrix has zeros in the lower triangular half of the matrix.

We will not explain here all the details of Gaussian Eliminations. These details can be

found an any linear algebra book, for instance [2] [33] [34] [35]. We will show the idea

of Gaussian Elimination using a simple example from pre-algebra. Consider the system

below.

4510

75

yx

yx
 (2.42)

29

which in matrix form is

4

7

510

15

y

x
 (2.43)

Applying the methods learned in pre-algebra we can add and subtract different factors of

the equations to obtain a solution.

4510

107

752

yx

y

yx

 (2.44)

 or

10

7

70

15

4

7

510

15

y

x

y

x
 (2.45)

At this point we can easily solve for y and then by substituting we can also find x.

In general, we start with a linear system Ax = b. Then, like in Equation (2.45), we

seek to obtain a matrix in what is called an upper-triangular form, that is in the form

where all the values in the lower half of the matrix below the diagonal are zero. This can

be done, step by step, by pre-multiplying the linear system by a set of matrices that, like

in pre-algebra, add and subtract different factors of the given equations. For the operation

described in Equation (2.45) above, we have

 70

15

510

15

12

01
 (2.46)

 and

 10

7

70

15

4

7

12

01

510

15

12

01

y

x

y

x
 (2.47)

In this case, only one matrix is needed and is denoted

30

12

01
1M (2.48)

Once the linear system is in the upper-triangular form, it can be simply solved by

factoring the final equation in the linear system and back substituting. For the example

above we have

7/10

5/)7(

y

yx
 (2.49)

The example shown here is very simple, but the basic principles for larger systems are the

same. Step by step we find matrices that reduce the system matrix until we reach an

upper-triangular matrix. At this point we back-substitute to obtain the solution of the

system.

Once the basics of Gaussian Elimination are understood, it is easy to explain many of

its variants. These variants differ by the way that the matrix is transformed to upper-

triangular form, or in other words, by the way that the values below the diagonal are

zeroed out. Examples include Givens Rotations, Householder Transformations, Row

Reduction with or without pivoting, LU Factorizations, and Cholesky Decompositions.

LU Factorizations can be described as the end result of Gaussian Elimination. If we take

the inverse of the product of the set of matrices used to create the upper triangular matrix,

like in the example above, we can decompose the original system matrix A into the

product of a lower triangular and upper-triangular matrix. For the simple system above

we have

 ,
12

01
1

1

 ML (2.50)

31

 ,
70

15

U (2.51)

4

7

70

15

12

01

4

7

510

15

y

x

y

x
 (2.52)

 or

 LUx = b (2.53)

The LU decomposition is especially useful if the same linear system is solved

multiple times for different right-hand sides b. This is often the case for differential

equations as the right-hand side is generally determined by a forcing function which can

change from problem to problem whereas the differential operator, represented by A

remains the same. In each case, to solve the linear system, one need only perform a

forward substitution along with the back substitution mentioned before. Forward

substitution uses the same idea as the back substitution, just from the top down instead of

the bottom up like in Equation (2.49).

Givens Rotations, Householder Transformations, Row Reduction with or without

pivoting, and Cholesky Decompositions are all different ways of forming the LU

decomposition. Givens rotations are based on the trigonometric identity cos
2
(x) + sin

2
(x)

= 1. They are what could be termed a fine-tuned elimination technique, because each

rotation zeroes out only one element. This is great if there are only a few non-zero

elements below the diagonal of a matrix, but gets computationally tedious for matrices

with a large number of non-zero elements.

The Householder transformation zeroes out an entire column at a time and, while it is

more efficient than Givens Rotations for matrices with a lot of non-zero elements, it still

32

is not as efficient as other methods. It is, however, rich in theoretical aspects of linear

algebra and is used, among other things, in computing rank updates.

The Cholesky Decomposition is the fastest of the methods mentioned so far. It comes

with restrictions, however, and can only be applied to matrices that are symmetric

positive definite. A matrix is symmetric if it is symmetric about its diagonal, that is if

A(i,j) = A(j,i) for all i and j or more simply A
T
 = A. A matrix is positive definite if for any

vector x, the product x
T
Ax is strictly greater than zero. If these two conditions are met,

then the Cholesky Decomposition decomposes the matrix A into the form A = G
T
G where

G is an upper triangular matrix. This is often called the square root of a matrix, which is a

good analogy since only positive numbers have square roots. So with matrices, only

symmetric positive definite matrices have Cholesky Decompositions.

As mentioned earlier, Cholesky Decompositions are the fastest of the direct methods.

It is also the most stable. The restrictions on the Cholesky Decomposition often align

well with solving differential equations since finite difference methods and finite element

methods applied to elliptic differential equations result in symmetric positive definite

matrices. This is not always the case, however, in which case Gaussian Elimination must

be used instead.

2.4.1.2 Note on Machine Precision and Computational Cost

Earlier, it was mentioned that direct methods "generally" produce an approximate

solution after a finite number of calculations. Some clarification is needed. Problems

today have gotten very large requiring a lot of memory and a lot of computation. All of

this is done on computers. Computers have limits to the precision of numbers that they

33

can store. For instance, the solution for y above, 10/7, in decimal form is an infinite

decimal, 1.42857142857.... A computer cannot store an infinite number of digits, so

numbers like this get rounded to some finite precision like 10
-16

. This number is generally

called the machine precision. Thus computer computations are only accurate up to

machine precision. For linear systems like the one above, this is not an issue. The

resulting value for x will still be very accurate. But for larger systems with millions,

billions, or trillions of computations, the approximations of the computer can eventually

result in large round-off errors. Because of this, direct methods can fail; that is they may

arrive at a solution that is inaccurate relative to the exact solution of the linear system.

Sec 2.4.1.3 Iterative Methods

Due to the size and complexity of many problems studied today, linear systems are

often solved using iterative methods. Iterative methods are used in place of direct

methods like Gaussian elimination to reduce the computational cost and memory needed

for large systems. Iterative methods start with an initial guess x0 in R
n
 to the solution of a

linear system and, iteration by iteration, produce a sequence of approximations based on

application of the matrix A (see Figure 2.4).

These methods stop or converge when some measure of error or tolerance is reached.

This tolerance is generally based on the norm of the residual vector r = b - Ax. Iterative

methods used in this paper include the conjugate gradient method and the biconjugate

gradient stabilized method. We will discuss these two methods in detail later, but first we

will introduce some of the more common iterative methods.

34

Figure 2.4. Depiction of Iterative Solution Method [36]

 Several of the basic iterative methods can be classified by the general matrix splitting

 ULDA (2.54)

where A is the system matrix, D is the main diagonal of the matrix, and L and U are the

lower and upper triangular parts of the matrix respectively. With this general structure we

can form several of the basic iterative methods.

 Jacobi: kk xULbDx

1

1 (2.55)

 Gauss Seidel: kk UxbLDx

1

1 (2.56)

 Successive Over Relaxation: GS

kkk xxx)1(1 (2.57)

where xk
GS

 is the kth iterate of the Gauss-Seidel method. The equations shown are the

general algebraic form of these iterative method. More efficient data structures can be

used when applying these equations than in storing the different matrix parts directly.

Other iterative methods include generalized minimum residual method (GMRES),

where, as the name implies, the solution is found by minimizing the norm of the residual

35

vector. Other minimization methods are found in the conjugate gradient and bi-conjugate

gradient methods. These will be discussed in detail later. One relatively newer method is

the multigrid method.

Multigrid methods solve the linear system of equations at different grid sizes or

levels. In the simple differential equation above, Equations (2.5) and (2.6) with the

partition, Equation (2.7), you could imagine forming the linear system with n = 64 steps.

You could also cut this in half to n = 32 steps or even n = 16 steps. As you might expect,

the smaller step sizes produce less accurate approximations. However, the finer step

solutions often are more susceptible to high frequency oscillations. Multigrid methods

utilize benefits from both coarse and fine grid approximations by reducing both the low

frequency and high frequency errors simultaneously. This is done by interpolating and

extrapolating the approximations from lower to higher levels (step sizes) and higher to

lower levels respectively. At each level a smoother (ie iterative solution method) is

applied for several iterations.

Multigrid methods were explored in relation to this study. Indeed, the multigrid

preconditioning package ML was applied to the codes within SCEPTRE to see what

improvement could be made (see [19]). However, these methods were not used when

developing the finite element methods for the first order transport equation. Multigrid

methods can be complex involving multiple parameters, smoothers, and level strategies

and the time to explore all of these possibilities was not feasible for these studies.

However, based on results found in [2], multigrid methods seem to be the fastest solution

method when implemented correctly and this could be a good area to look at in the future

for solving the linear systems related to the LSFEM and DFEM. We will now look more

36

closely at the iterative methods used for the LSFEM and DFEM. We will then look at the

preconditoning strategies for each method.

Sec 2.4.2 Development of CG/BICGSTAB Methods

For the LSFEM and the DFEM there were two iterative methods used, the conjugate

gradient (CG) method and the biconjugate gradient stabilized (BICGSTAB) method. We

will go through the derivation of the CG method and mention a few highlights concerning

the BICGSTAB method.

2.4.2.1 CG Method

The CG method is an iterative method for solving linear systems. A complete

derivation of the conjugate gradient method can be found in [35, pages 490-3,520-8] and

[34, pages 196-203]. A less complete, but very clear method is given in [2, pages 472-

474] which we will present and discuss here. Put simply it is a vector calculus problem.

We consider a quadratic vector function ϕ(x).

 bxAxxx TT
2

1
)((2.58)

where x and b are vectors in R
n
, and A ϵ R

nxn
 is a symmetric positive definite matrix. A

matrix A is symmetric if A
T
 = A or more precisely, A(i,j) = A(j,i) for all i and j. A matrix A

is positive definite if x
T
Ax > 0 for all x in R

nxn
. Taking the derivative of this function with

respect to the vector x we have

 bAxx)((2.59)

Setting this equal to 0 we have the linear system Ax = b. A good reference for

differencing vector equations can be found in [37] and [38]. Thus the minimum of the

37

quadratic equation above is attained when Ax = b. This means that the solution to the

linear system can be found by minimizing or, in other words, finding a minimum to the

quadratic equation. So we can apply optimization methods to find the solution to the

linear system. As mentioned above, iterative methods start with an initial guess and then

seek to improve upon that guess. So for now, assume that we have some initial guess x0,

and we have the following general equation for the next guess

 kkkk sxx 1 (2.60)

where xk is the current approximation, xk + 1 is the updated approximation, αk is the search

parameter, and sk is the search direction. The CG method is a way of finding, at each

iteration k, some optimal search direction sk and some optimal search parameter αk. The

term optimal here is loosely applied. In reality there are many ways of minimizing the

function ϕ(x). This is because there are different ways of determining the search direction.

In general, the search direction is related to the residual. We will discuss this more later.

For now, we will show how to find the optimal search parameter αk given a the previous

approximation xk and the search direction sk. The optimal search parameter is found by

taking the derivative of ϕ(xk + 1) with respect to αk.

 kkk

k

T

kk

k

T

kk

k

srs
d

d
bAxx

d

d
xx

d

d
11111)()(

 (2.61)

This is combined with the following equation showing that the new residual can be

written in terms of the previous residual and search direction

 kkkkkkkk AsrsxAbAxbr 11 (2.62)

Setting Equation (2.61) equal to zero and applying the substitution, Equation (2.62), we

arrive at the following value for the optimal search parameter

38

k

T

k

k

T

k

k
Ass

sr
 (2.63)

Thus, the optimal search parameter is a ratio involving the given residual and the given

search direction. This leads back to the question of how to find the optimal search

direction. As stated earlier, there are several ways of going about this.

It should be noted that part of the derivation of Equation (2.63) above showed an

important intermediate result, specifically that the gradient of the quadratic function ϕ

with respect to x is the negative residual vector.

 rAxbx)((2.64)

Stated in other words, the direction of steepest descent of the value of the function is the

residual direction. More precisely, the residual direction is only the steepest direction at

that point and that if the value of the function follows just a short distance along that

direction, the value may soon increase rather than decrease or at least that direction may

no longer be the steepest direction. If the residual vector is always used as the search

direction, then using the calculations above, we get the Method of Steepest Descent.

This idea has a very simple analogy. Picture yourself hiking down a mountain into a

valley along a trail, and suppose that at some point you stop and try to figure out the

fastest path to the bottom of the valley. You may try to find the steepest (probably not the

safest) path in any given direction, but you'll notice that it only remains the steepest

direction for a short distance before some other direction becomes the steepest.

In other words, if you always follow the steepest path, travel a short distance, and

follow the steepest path again, and repeat this process, you will likely find yourself zig-

zagging back and forth down the hill. This behavior was shown in Figure 2.4.

39

 Figure 2.5. Example of Steepest Descent Method [39]

The CG method is a modification of the steepest descent method. Instead of using the

residual as the search direction at every step, a modified form of the residual is used. We

will first look at the idea of the modification before describing it explicitly. In terms of

mountaineering, the modification can be described in the following words. Instead of

always looking for the steepest path down the valley at any given point, we look for the

most direct path to the bottom of the valley. If you had a perfectly circular valley or if

you are standing on a sheer cliff, then the most direct path and the steepest path will be

the same (see Figure 2.6).

Otherwise, the most direct path will likely be a slight modification of the steepest

path (see Figure 2.7). In other words, the conjugate gradient method takes the whole

mountain into consideration when determining the most direct course to the bottom of the

valley rather than just the current point within the valley. In terms of matrix algebra, this

means that the CG method takes the matrix A within the linear equation Ax = b into

consideration when determining the optimal search direction. One effect of this is that

40

Figure 2.6. Example of Optimal Steepest Descent

Figure 2.7. Example of Skewed Steepest Descent

future search directions are chosen in a way so as to not travel in the same direction

multiple times, one of the drawbacks of the Steepest Descent Method. Specifically new

x0

x1 x2

x0

x1

41

search directions are chosen so that they are A-conjugate with all previous search

directions. Two vectors, u and v, are A-conjugate if

 u
T
Av = 0 (2.65)

If we use the initial residual r0 = b - Ax0, and choose future directions so that they are

A-conjugate with previous directions, a three term recurrence results [34]. In other words,

only the previous two residuals are needed to make the search direction orthogonal to all

the previous directions. In terms of the CG method, this adds two more equations.

k

T

k

k

T

k

k
rr

rr 11

1

 (2.66)

 kkkk srs 111 (2.67)

All of this can be combined together to form the CG Algorithm for solving the linear

system Ax = b.

 Conjugate Gradient Method - See Heath [2], Page 473

 A is a matrix in R
n x n

. r, b, x, and s are vectors in R
n
. α, tol and β are scalars.

 Algorithm 2.1 Conjugate Gradient Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 s0 = r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
rk/sk

T
Ask search parameter

 xk + 1 = xk + αksk

 rk + 1 = rk - αkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = rk + 1
T
rk + 1/rk

T
rk conjugate parameter

 sk + 1 = rk + 1 + βk + 1sk

 end

Basically, the algorithm starts with a linear system Ax = b, and an initial guess x0, and

runs until some tolerance is reached, generally some measure of the residual as shown

above. As mentioned earlier, this algorithm only works for symmetric positive definite

42

matrices. Luckily many of the linear systems resulting from solving differential equations

are symmetric positive definite. For well conditioned matrices, the CG method will

converge in at most n steps, where n is the size of the matrix. Generally it will converge

much faster than this.

The majority of the computational time for the algorithm comes with the matrix

multiplication Ask. It should be noted that this multiplication only needs to be performed

once per iteration. The rest of the algorithm is made up of scalar and vector operations.

2.4.2.2 BICGSTAB Method

The bi-conjugate gradient stabilized (BICGSTAB) method is derived from the bi-

conjugate gradient method (BICG). More specifically it is derived from the conjugate

gradient squared (CGS) method. The details of the derivations of these methods will not

be given here, but can be found in [34] [40]. Suffice it to say that these methods are

similar to the CG method except that they do not require the linear system to be

symmetric or positive definite. They do require the matrix to be invertible. They are

based on similar conjugacy conditions as those mentioned for the CG method.

Given a linear system Ax = b, where we now only require A to be invertible, we have

the BICGSTAB algrithm.

 Biconjugate Gradient Stabilized Method - See Saad [34]

 A is a matrix in R
n x n

. r, b, x, and s are vectors in R
n
, α, Ω tol and β are scalars.

 Algorithm A.2 Bi-Conjugate Gradient Stabilized Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 p0 = r0 initial search direction

 for k = 0,1,2,...

43

 αk = rk
T
r0/pk

T
A

T
r0 search parameter

 sk = rk - 1 - αkApk additional search direction

 Ωk = sk
T
A

T
sk/(sk

T
A

T
Ask) additional search parameter

 xk + 1 = xk + αkpk + Ωksk

 rk + 1 = sk - ΩkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = (rk + 1
T
r0/rk

T
r0)*(αk/Ωk) conjugate parameter

 pk + 1 = rk + 1 + βk + 1(pk - ΩkApk)

 end

There are a few things to be noted here. First note that only two Matrix multiplications

need be done at each iteration, Apk and Ask. The multiplication by the transpose of A need

not be performed since sk
T
A

T
 = (Ask)

T
 and pk

T
A

T
 = (Apk)

T
. Similar to the CG algorithm, the

algorithm stops once some tolerance is reached, generally some measure of the residual

vector. The algorithms are very similar and the small differences in BICGSTAB are based

on the fact that the matrix A is not symmetric.

Both the CG method and the BICGSTAB method are used in conjunction with the

LSFEM and DFEM. The linear systems resulting from the LSFEM and the DFEM are

solved by the CG and BICGSTAB methods respectively.

Sec 2.4.3 Preconditioning and Iterative Methods

Preconditioning linear systems has been studied for some time now and many

preconditioning techniques have been created from simple Jacobi iterations to more

complex algebraic multi-grid solvers. Preconditioning is related to the condition number

of a matrix. Given a matrix A in R
n x n

 and some norm ||.|| (generally the 2-norm), the

condition number is defined as

 1)(AAAcond (2.68)

44

If the matrix A is not invertible then the condition number is defined to be ∞. The lower

the condition number (ie the closer it is to one), the more the matrix resembles the

identity matrix and the easier the linear system is to solve. Consider the linear system

 bAx , where A is in R
n x n

, x and b are in R
n
 (2.69)

The preconditioner M in R
n x n

 of a linear system is generally a simpler form of A.

Preconditioning can be thought of as applying M
 -1

 to each side of the original system

(2.67).

 bMAxM 11 (2.70)

An effective preconditioner will create a system that is easier to solve than the original

system.

Preconditioners are often applied to iterative methods in order to speed up, and in

some cases even obtain, convergence. The choice of the preconditioner comes down to

the trade-off between number of iterations and cost per iteration. A preconditioner can

significantly reduce the number of iterations, but will also increase the amount of

computation at each iteration. Some common preconditioners are diagonal (also called

Jacobi), block diagonal, Succesive Over Relaxation, Incomplete LU Factorizations,

polynomial, and multigrid [2]. These preconditioners could be called algebraic

preconditioners because they depend only upon the matrix itself, not upon the problem

from which the matrix resulted. These are often called black box preconditioners because

they don't require any inputs other than the matrix itself. In other cases, preconditioners

are created from the original problem from which the linear system resulted. These are

called physically based preconditioners. Often preconditioners include some combination

of both algebraic methods and physically based methods.

45

Examples of using both black box and physical based preconditioners are plentiful. In

[19], black box preconditioners were used to optimize solution methods of second order

formulations of the transport equation and in [41] a physical based preconditioner was

used for the same second order formulations, which physical based preconditioner will be

discussed in more detail later. There are pros and cons of each method. Black box

preconditioners are nice because they are generally very easy, the one exception being

multigrid preconditioners. It generally comes down to a few simple choices of parameters

based on the preconditioner used. Physical based preconditioners are nice because most

problems result in a particular matrix structure and this structure, when known, can be

utilized to make the preconditioner more efficient. In general, a combination of both

preconditioners can be used. In fact, there is no reason why the preconditioned system

cannot be preconditioned itself and so on, and this is commonly done.

In this paper, a physical based preconditioner is created for the LSFEM and DFEM

and is applied both by a direct method and by an incomplete LU factorization. Tests on

their relative performance are done below in the results section. We will first present the

preconditioned form of the algorithms.

Sec 2.4.3.1 Preconditioned CG/BICGSTAB

To solve the linear systems, Equations (2.28) and (2.36), two iterative methods were

used. The LSFEM results in a linear system whose system matrix is symmetric positive

definite (spd) to which the preconditioned conjugate gradient method is applied. The

preconditioned CG method is very similar to the original CG method.

46

 Preconditioned Conjugate Gradient Method - See Heath [2], Pate 474

 A and M are a matrices in R
n x n

. r, b, x, and s are vectors in R
n
, α, tol and β are

 scalars.

 Algorithm 2.3 Preconditioned Conjugate Gradient Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 s0 = M
-1

r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
M

-1
rk/sk

T
Ask search parameter

 xk + 1 = xk + αksk

 rk + 1 = rk - αkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = rk + 1
T
M

-1
rk + 1/rk

T
M

-1
rk conjugate parameter

 sk + 1 = M
-1

rk + 1 + βk + 1sk

 end

Note that the only difference is that the inner products of the residual vectors are replaced

by preconditioned inner products. As mentioned above, the effect of the preconditioning

is to take the system matrix into consideration when looking for the minimum solution.

Since A and M are linear transformations, preconditioning can also be explained as taking

the original solution space like the one in Figure 2.7 and transform the solution space

itself to be more circular like that in Figure 2.6, thus making it easier for the CG method

to arrive at the solution. It should be noted that the equation that we are actually solving

here is the preconditioned equation of the form

 L
-1

AL
-T

Lx = L
-1

b (2.71)

which is equivalent to Ax = b where M = LL
T
. The reason for this is to retain a positive

definite system matrix so that the CG method can be applied. The algorithm formed by

applying the CG method to Equation (2.71) can be rearranged to form Algorithm 2.1 [2].

The actual derivation of the preconditioned method can be found in [34] or [35].

47

This preconditioning is only effective (ie accurate and faster) if the preconditioner M

is much easier to work with than A. Specifically it is only effective if the general system

Mx = r is easier to solve (ie faster) than Ax = b and if M is still a good approximation of

A.

The DFEM results in a linear system that is not symmetric to which a preconditioned

biconjugate gradient stabilized method is applied.

 Preconditioned Biconjugate Gradient Stabilized Method - See Saad [34]

 A ≈ K = K1K2 are in R
n x n

. r, b, x, p and s are in R
n
, α, Ω, tol and β are scalars.

 Algorithm 2.4 Preconditioned Bi-Conjugate Gradient Stabilized Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 p0 = r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
r0/pk

T
K

-T
A

T
r0 search parameter

 sk = rk - 1 - αkAK
-1

pk additional search direction

 Ωk = sk
T
K

-T
A

T
K1

-T
K1

-1
sk/(sk

T
K

-T
A

T
K1

-T
K1

-1
AK

-1
sk) addtl srch par

 xk + 1 = xk + αkK
-1

pk + ΩkK
-1

sk

 rk + 1 = sk - ΩkAK
-1

sk

 if || rk + 1|| < tol, stop

 βk + 1 = (rk + 1
T
r0/rk

T
r0)*(αk/Ωk) conjugate parameter

 pk + 1 = rk + 1 + βk + 1(pk - ΩkAK
-1

pk)

 end

This formulation of the preconditioned BICGSTAB method is a little more flexible than

the preconditioned CG method. This flexibility results from the matrix being non-

symmetric. This method can accommodate a preconditioner of the form M = K1K2. This

is very useful since the preconditioner is often decomposed into two factors like in an

incomplete LU decomposition. In many cases, we can choose K2 = I in which case we

can replace all the K's in the above algorithm with M.

48

Sec 2.4.3.2 Description of Physically Based Preconditioner

Equations (2.28) and (2.36) above each result in a linear system Ax = b, where A is in

R
n x n

 for some size n based on the finite element methods. x and b are vectors in R
n
. The

preconditioner that will be applied to each system is the uncollided-flux solution to the

transport equation, Equation (2.16). In other words the transport equation is solved with

σs set equal to 0.

 Qt),(r (2.72)

This results in a much sparser system matrix M and the original linear system is modified

using this matrix

 M
-1

Ax = M
-1

b (2.73)

The benefit of this preconditioning is in part shown in Figure 2.8 below. In this figure, a

representation of the system matrix A is shown for a one dimensional problem with 16

directions and 80 spatial nodes. The original matrix A, when scattering is included, is

block diagonal or block tri-diagonal. When the scattering is removed, for the one-

dimensional problem, most of the blocks become empty and only the diagonal and two

off-diagonals remain.

Figure 2.8. Example of Matrix Preconditioning for Particle Transport

49

We can thus see the dramatic effect that a preconditioner can have on the condition of

a linear system. Since the preconditioner has significantly fewer non-zeros than the

original matrix it is also much easier to solve. When applied within iterative methods like

the conjugate gradient and biconjugate gradient method, it adds relatively few

computations to each iteration, but significantly reduces the number of total iterations

needed for convergence.

2.5 Numerical Results and Discussion

We will now look at the results from using the physically based preconditioner

described above. Two of the causes of computational difficulty or ill-conditioned

systems in particle transport problems are voids, when the total cross-section σt is zero,

and high scattering regions, when σs is very close to σt and problems with these

characteristics were chosen for analyzing the preconditioning methods. Methods with

both of these characteristics can be termed source-void problems. Each of the two finite

element methods, the LSFEM and DFEM, were tested on a one dimensional source-void

problem and a two dimensional source-void problem. The geometries for the problems

and the results are given below.

The tests were done in MATLAB using MATLAB sparse matrix structure in

conjugate gradient (CG) and stabilized biconjugate gradient methods (BICGSTAB). The

two algorithms stop or converge when the tolerance or squared residual norm is 10
-9

. Run

times for all of the results were calculated using Matlab's tic and toc functions. CG and

BICGSTAB methods for compressed sparse row (CSR) storage were written and tested

as well, but writing the algorithms with Matlab storage allows an easier comparison

50

between the physical based and black box preconditioners so the results when using CSR

storage are not shown here. The methods were compared against Matlab's built-in direct

solver and several blackbox preconditioners including Matlab's built in incomplete

Cholesky and incomplete LU factorizations. The final test looked at the performance of

each of the preconditioners for the LSFEM problem as the scattering cross-section σs is

increased from 0 to σt.

We will first look at the one dimensional problem and then the two dimensional

problem. After looking at the general performance of the physical based preconditioner,

we will then compare it with several Matlab blackbox preconditioners. These tests will

then be followed by discussion and conclusions.

2.5.1 1D Source Void Problem - Reed Problem [29]

The first problem is a one dimensional source void problem given by Reed in [29].

The geometry is given in Figure 2.4 below and cross-section data given in Table 2.1. The

problem contains five regions: a source, an absorber, a void, a source with scattering, and

an absorber with scattering. The boundary conditions are assumed to be reflective on the

left and vacuum on the right.

R1 R2 R3

x

0 2 5 3

R
ef

le
ct

iv
e

V
ac

u
u
m

Figure 2.9. Geometry of Reed Problem

R4 R5

6 8

51

Table 2.1. Cross Section Data for Reed Problem

Region Q σt σs

1 50 50 0

2 0 5 0

3 0 0 0

4 1 1 0.9

5 0 1 0.9

Both the LSFEM and DFEM perform well on this problem, but the precision needed to

obtain accuracy in the void region for the LSFEM is much greater than the precision

needed for the DFEM. As seen in Figure 2.10, even with the number of steps set at N =

800 the LS method is still linearly increasing over the void region rather than remaining

constant, whereas the discontinuous method (see Figure 2.11) achieves similar if not

greater accuracy with the number of steps set at N = 80. The problem itself is

discontinuous by nature of the discontinuous interaction cross-section σt, so the better

accuracy of the DFEM is to expected.

It should be noted that due to the choice of basis functions in Equations (2.29-2.32),

the size of the matrix for the discontinuous method is 4*M*N where the size of the matrix

for the LS method is only M*N. Furthermore, the DFEM matrix is not symmetric which

also increases the storage. However, for the one dimensional source-void problem, the

accuracy of the DFEM in the void region reduces the step size enough to make the

DFEM comparable if not superior to the LS method.

52

The benefit of the uncollided-flux preconditioner on each method can be readily seen.

The results are shown in Tables 2.2 & 2.3 and Tables 2.4 and 2.5. The results of the

conjugate gradient (CG) method for the LSFEM in Table 2.2 are compared with the

results of the preconditioned CG method for the LSFEM in Table 2.3. In this case we are

Figure 2.11. Scalar Flux for the DFEM on the

Reed Problem with m = 16, n = 80

DFEM Scalar Flux for Problem 2.5.1

Figure 2.10. Scalar Flux for the LS Method on

the Reed Problem with m = 16, n = 800

LS Scalar Flux for Problem 2.5.1

53

using the physical based (PB) preconditioner applied in an incomplete Cholesky

factorization (IC) fashion. In this case the run time is improved greatly‒over a 100 times.

Table 2.2. Results of CG Method on the LSFEM for Reed Problem

CG Method
Mesh Size (n-spatial, m-direction)

n = 800 n = 1600 n = 2400

m = 8 1.25 s, 170 it. 3.98 s, 10396 it. 8.99 s, 15583 it.

m = 16 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

m = 32 29.0 s, 13871 it. 115.0 s, 27979 it. 319 s, 43112 it.

Table 2.3. Results of PCG Method on the LSFEM for Reed Problem

PCG Method - PB IC

Mesh Size (n-spatial, m-direction)

n = 800 n = 1600 n = 2400

m = 8 0.00880 s, 20 it. 0.0175 s, 21 it. 0.0270 s, 21 it.

m = 16 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

m = 32 0.0714 s, 24 it. 0.146 s, 25 it. 0.259 s, 26 it.

The DFEM BICGSTAB method results in Table 2.4 are compared with the

preconditioned BICGSTAB method results in Table 2.5. Here the results are not only

better in terms of time, in some cases still over 100 times as fast, but also in terms of

convergence. Recall that the matrix in this case in not symmetric which is why the

BICGSTAB method is used instead of the CG method. In two of the cases in Table 2.4

the BICGSTAB method does not converge. This is because parameters within the

BICGSTAB algorithm get too small according to machine precision and result in division

54

by zero. As can be seen in Figure 2.12 a and b, the reason for this is due mainly to the

void region in the problem. Here the physical based precondtioner is applied in an

incomplete LU factorization (ILU) fashion.

Table 2.4. Results of BICGSTAB on the DFEM for Reed Problem

BICGSTAB

Method

Mesh Size (n-spatial, m-direction)

n = 80 n = 160 n = 240

m = 8 0.0444 s, 433 it. 0.251 s, 1112 it. DNC

m = 16 0.149 s, 558 it. 0.639 s, 1460 it. 1.46 s, 2487 it.

m = 32 0.561 s, 939 it. 3.38 s, 3153 it. DNC

Table 2.5. Results of PBICGSTAB on the DFEM for Reed Problem

PBICGSTAB

Method - ILU

Mesh Size (n-spatial, m-direction)

n = 80 n = 160 n = 240

m = 8 0.00148 s, 5 it. 0.00388 s, 6 it. 0.00426 s, 6 it.

m = 16 0.00439 s, 6 it. 0.00545 s, 5 it. 0.00785 s, 6 it.

m = 32 0.00681 s, 6 it. 0.0104 s, 5 it. 0.0184, 6 it.

55

The mesh sizes were chosen for this research so that they can still be run on a single

machine. The matrix sizes, therefore, were still small enough to compare with direct

methods, which can often be faster than iterative methods for smaller mesh sizes,

especially optimized commercial methods like those in Matlab. In Table 2.6, the physical

based (PB) preconditioner is applied in two fashions, a direct Cholesky factorization

fashion and an incomplete Cholesky (IC) factorization fashion. The direct and black box

Figure 2.12 a and b. Scalar Flux for the DFEM

Without Preconditioning on the Reed Problem

with n = 240, m = 8 and 32

DFEM Scalar Flux for Problem 2.5.1

a.

b.

56

preconditioners include Jacobi iterations, successive over-relaxation (SSOR), Matlab's

direct Cholesky (DC) factorization, and Matlab's incomplete Cholesky (IC) factorization.

As seen in Table 2.6, the direct Cholesky (DC) outperforms the unpreconditioned CG

method and Jacobi and SSOR preconditioning. This is not surprising and would be

expected to change for larger mesh sizes when memory becomes more of factor. The

physical based (PB) preconditioners still outperform the direct cholesky and are eclipsed

only by Matlab's Incomplete Cholesky preconditioner. The incomplete Cholesky

preconditioner is the incomplete Cholesky factorization of the original system matrix A

whereas the physical based incomplete Cholesky is the incomplete Cholesky factorization

on the preconditioner M. One other interesting note is that the number of iterations for the

physical based incomplete Cholesky factorization and the physical based direct Cholesky,

where the inner preconditioned solution is obtained through a direct Cholesky

factorization, both decrease in terms of numbers of iterations rather than increase as the

step size increases. This may be because the physical based preconditioner is affected

more by the increase in angles (m) than in the increase in steps (n), and increasing the

steps relative to the angles improves the effectiveness of the physical based

preconditioner.

The results in Table 2.7 are similar to Table 2.6 with a few notable exceptions. Here

SSOR is not applied within the BICGSTAB method because SSOR is only for symmetric

matrices. Here the Physical Based incomplete LU factorization actually outperforms

Matlab's incomplete LU factorization for some cases in terms of run time. This

improvement is more readily seen in the two dimensional problem below. Also, it is

interesting to note that the Jacobi preconditioner actually causes the original BICGSTAB

57

Table 2.6. Comparison of Preconditioners on the LSFEM for Reed Problem

PCG Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

None - CG 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

Jacobi (Diagonal) 1.77 s, 2287 it. 6.95 s, 4443 it. 15.9 s, 6688 it.

SSOR 1.20 s, 780 it. 4.66 s, 1529 it. 10.6 s, 2306 it.

None - DC 0.0474 s 0.0987 s 0.146 s

PB - DC 0.0301 s, 21 it. 0.0507 s, 20 it. 0.0729 s, 19 it.

PB - IC 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

IC 0.0123 s, 8 it. 0.0283 s, 9 it. 0.0485 s, 9 it.

 Table 2.7. Comparison of Preconditioners on the DFEM for Reed Problem

PCG Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 80 m = 16, n = 160 m = 16, n = 240

None - BICGSTAB 0.149 s, 558 it. 0.639 s, 1460 it. 1.46 s, 2487 it.

Jacobi (Diagonal) 0.0983 s, 263 it. DNC DNC

None - DLU 0.0102 s 0.0173 s 0.0284 s

Physical Based -

DLU

0.00501 s, 5 it 0.00626 s, 5 it. 0.00689 s, 5 it.

Physical Based - ILU 0.00439 s, 6 it. 0.00545 s, 5 it. 0.00785 s, 6 it.

ILU 0.00424 s, 4 it. 0.00566 s, 4 it. 0.00712 s, 4 it.

58

method not to converge. Slight changes to the original system can be the difference

between converging and not converging. One reason for non convergence is when the

matrix has large complex eigenpairs and that may be the case here [42].

In both the LSFEM and DFEM cases, the physical based preconditioner performs

well in reducing the run time for solving the linear systems association with the first

order formulation of the transport equation and are comparable to current black box

preconditioners. In the two dimensional problems we will see even greater

improvements.

2.5.2 Square Source Void Problem

The two methods were also tested on the square source void problem of Watanabe

and Maynard in [23] [41] [43]. The geometry is given in Figure 2.13 below and cross-

section data given in Table 2.8. The problem contains three regions: a source, a void, and

Reg 1

Reg 2

Reg 3

x

y

5

5

1.25

1.25 10

10

Reflective

R
ef

le
ct

iv
e

Vacuum

V
ac

u
u
m

Figure 2.13. Geometry of Square Source Void Problem

59

an absorber. The boundary conditions are assumed to be reflective on the left and lower

boundaries and vacuum on the top and right boundaries.

Table 2.8. Cross Section Data for Square Source Void Problem

Region Q σt σs

1 6.4 0.2 0.19

2 0 0 0

3 0 0.2 0.19

Figures 2.14 and 2.15 show the results of each method as a two dimensional plane

and Figure 2.16 shows the results along x = 5.625. As before, the size of the matrix for

the discontinuous method is 4*M*N where the size of the matrix for the LS method is

only M*N.

Figure 2.14. Scalar Flux for the Square Source

Void Problem Using the LSFEM

LS Scalar Flux for Problem 2.5.2

60

The two dimensional problem is only tested with respect to changes in the number of

angles and not in step size. This is to accommodate the memory restrictions on using a

single machine. The tests are performed at three different angular quadratures called

symmetric level sets which determine a certain number of angles around the unit circle.

Figure 2.16. Resulting Flux Along Line

x = 5.625 for Square Source Void Problem

Scalar Flux along x = 5.625 for Problem 2.5.2

* DFEM

o LS

Figure 2.15. Scalar Flux for the Square Source

Void Problem Using DFEM

DFEM Scalar Flux for Problem 2.5.2

61

Tables 2.9 and 2.10 show the comparison between the CG and BICGSTAB methods

with the physical based preconditioners, the physical based incomplete Cholesky for the

CG method and the incomplete LU for the BICGSTAB method. The improvement in run

time in each case is not as dramatic as with the one dimensional problem, but we still see

improvements of about 5 to 20 times.

Table 2.9. Results of Preconditioning on the LSFEM for Square Source Void Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

PCG - PB IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

Table 2.10. Results of Preconditioning on the DFEM for the

Square Source Void Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

BICGSTAB 5.16 s, 280 it. 11.3 s, 291 it. 24.3 s, 319 it.

PBICGSTAB - PB IC 0.382 s, 17 it. 0.682 s, 15 it. 1.28 s, 15 it.

Tables 2.11 and 2.12 show the comparison of the physical based preconditioner with

the other black box and direct preconditioners. In these cases the physical based

preconditioners actually outperform Matlab's incomplete LU factorizations. It is also

interesting to note that the direct Cholesky factorization and LU factorization outperform

the incomplete factorizations. This may be due to the two dimensional problem having a

62

more complex structure than the one dimensional problem making the incomplete

factorization less effective.

Table 2.11. Comparison of Preconditioners on LSFEM for Square Source Void Problem

PCG Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

None - CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

Jacobi (Diagonal) 1.43 s, 286 it. 3.45 s, 305 it. 6.56 s, 319 it.

SSOR 1.22 s, 113 it. 2.85 s, 125 it. 5.68 s, 134 it.

None - DC 0.994 s 2.44 s 5.17 s

IC 0.995 s, 96 it. 2.10 s, 99 it. 4.08 s, 103 it.

Physical Based - IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

Physical Based - DC 0.143 s, 16 it. 0.281 s, 17 it. 0.491 s, 17 it.

Table 2.12. Comparison of Preconditioners on DFEM for Square Source Void Problem

PCG Method

Mesh Size (n-spatial, m-direction)

S8 S10 S12

None - BICGSTAB 5.16 s, 280 it. 11.3 s, 291 it. 24.3 s, 319 it.

Jacobi (Diagonal) 4.04 s, 200 it. 8.18 s, 198 it. 15.8 s, 197 it.

None - DLU 3.60 s 10.9 s 23.3 s

Physical Based - DLU 0.980 s, 5 it. 1.55 s, 5 it. 2.32 s, 5 it.

ILU 0.677 s, 14 it. 1.33 s, 13 it. 2.49 s, 4 it.

Physical Based - ILU 0.382 s, 17 it. 0.682 s, 15 it. 1.28 s, 15 it.

63

2.5.3 Scattering Ratio

The final problem is to test the effectiveness of the preconditioners as the degree of

scattering is increased. This problem will have the same geometric structure as the square

source void problem with the slight difference that we will allow the scattering cross-

section σs value to vary between 0 and 0.19 within Region 1 and Region 3. These results

are only tested for the LSFEM at the S8 angular quadrature. The results are shown in

Table 2.13. Figure 2.17 shows the scalar flux along the line x = 5.625 for three of the

scattering cross-sections.

Table 2.13. Comparison of Preconditioners for LSFEM with varying Scattering Values

PCG Method

16x16 Mesh, S8

σs = 0.01 σs = 0.05 σs = 0.1 σs = 0.15 σs = 0.19

None - CG 2.11 s, 456 it. 2.16 s, 466 it. 2.15 s, 475 it. 2.27 s, 493 it. 2.28 s, 511 it.

Jacobi (Diagonal) 1.25 s, 257 it. 1.33 s, 262 it. 1.30 s, 267 it. 1.32 s, 278 it. 1.43 s, 286 it.

SSOR 1.09 s, 102 it. 1.10 s, 104 it. 1.12 s, 106 it. 1.13 s, 107 it. 1.22 s, 113 it.

None - DC 0.910 s 0.848 s 0.844 s 0.899 s 0.994 s

IC 0.882 s, 81 it. 0.885 s, 82 it. 0.872 s, 84 it. 0.944 s, 88 it. 0.995 s, 96 it.

Physical Based - IC 0.454 s, 87 it. 0.481 s, 89 it. 0.478 s, 91 it. 0.479 s, 93 it. 0.491 s, 98 it.

Physical Based - DC

0.0463 s, 257

it.

0.070 s, 7 it. 0.0978 s, 10 it. 0.116 s, 13 it. 0.143 s, 16 it.

The main thing of interest here is the performance of the preconditioner as the

scattering ratio increases. All of the preconditioners vary with respect to the scattering

64

ratio, some more dramatically than others. The main preconditioner of interest is the

physical based direct cholesky preconditioner which varies from 45 times improvement

to only a 15 times improvement. The incomplete cholesky preconditioner varies from 2.4

times improvement to a 2.3 times improvement. These are not exhaustive results and

should not be treated as such, but it seems that the physically based direct Cholesky is

much more affected by the change in scattering ratio than the other preconditioners.

2.6 Conclusions and Future Work

As can be seen in the results, dramatic improvements can be made on the run times

for linear systems that result from finite element approximations of the first order

formulation of the transport equation. The physically based preconditioner originally

proposed in [41] on the second order formulation has been shown to be effective on the

first order formulation of the transport equation as well. Some of these results were

presented in [44] as well. The physically based preconditioner was shown to be more

Figure 2.17. Flux Along Line x = 5.625 for

Several Scattering (σs) Values

Scalar Flux along x = 5.625 for Problem 2.5.2

o σs = 0.01

o σs = 0.1

o σs = 0.19

65

effected by changes in the scattering ration than other preconditioners, but still showed

much improvement to the other preconditioners.

This project was not an exhaustive result of all preconditioners, linear solution

methods, or even differential equation solution methods and further results can be done in

each area. Other finite element methods that were tried were a discontinuous least squares

finite element method (DLSFEM) and a mixed finite element method (MFEM). The

DLSFEM broke down in voids and alternative methods for improvement were out of the

scope of this work so it was dropped in favor of the DFEM and LSFEM. The MFEM as

mentioned above showed less stability compared to the DFEM and LSFEM and was

similarly dropped. Both of these methods could be explored further especially the

LSFEM and the physical based preconditioner could be coupled with the MFEM on

second order formulation of the transport problem as well.

Other linear solution methods that could be compared are generalized minimum

residual methods and more especially multigrid methods, which, although complex, have

been shown to be the fastest linear solvers [2]. As seen above there are also many ways of

implementing the preconditioners which could be explored further. Further work could

also be done on larger parallel computing architectures to see the results of each method

there. This will be explored in some detail in chapter 4, but only as it relates to parallel

computing on graphics cards using CUDA.

In summary, the physical based preconditioning proved effective on first order

formulations of the transport equation and further studies could be done to determine

better differential equation solution methods, linear system solution methods, or

66

preconditioners and preconditioner methods. In the next chapter we will see the results of

a physically based preconditioner on fluid transport problem.

67

CHAPTER 3

PHYSCIALLY BASED PRECONDITIONING FOR THE MIXED FINITE

ELEMENT METHOD APPLIED TO A HOMOGENIZED FORM OF THE FLOW

EQUATION IN POROUS MEDIA

The second major section of this research study was based on preconditioning the

linear systems resulting from mixed finite element methods (MFEMs) applied to a flow

equation for porous media. This was a continuation of previous research conducted by

Koebbe in [11]. In [11] a modification of the MFEM was used to increase the efficiency

of the conjugate gradient (CG) method for the linear system resulting from the MFEM for

homogenized forms of the flow equation. To further increase the efficiency of the CG

solver, in this study a physically based preconditioner was applied to the linear solver.

The mixed finite element method has been studied for some time and was originally

proposed in [45]. Consider the simple flow equation

 qhT)((3.1)

in one and two dimensions, where T is a matrix in R
2 x 2

 or R
3 x 3

, h is a scalar function of

two or three variables, and q is a scalar function of two or three variables. The basic idea

of the method is to split the above second order equation into a system of two first order

equations given by

 hTv (3.2)

 qv (3.3)

where v is a vector in R
2
 or R

3
. The term mixed comes from the determination of the basis

functions within the finite element method. The basis functions for the velocity are often

68

chosen to be a higher order than the order of the basis functions for the head or pressure

variable; for examples, see [9], [11], [45], and [46].

So, in other words we divide the original equation into a two equations related to the

velocity and apply the finite element method to both simultaneously. This allows for the

velocity v and the head or pressure variable h to be solved simultaneously. This makes it

possible to solve for the velocity more accurately [11]. However, this also greatly

increases the size of the linear system resulting from the finite element method which can

decrease efficiency. In some cases this greater size can be simply reduced to a smaller

size, but in other cases requires more effort. We will discuss a couple cases below.

In [9] various aspects of the MFEM were studied for the case when the transmissivity

tensor T is a diagonal matrix of the form

),(yxIT (3.4)

where I is the identity matrix and ω is a function of two variables. In [9] is also included

an analytic solution of the flow equation for the identity transmissivity. The analytic

solution was used to test the validity of the mixed finite element codes written for this

study. When a diagonal transmissivity is used the linear system resulting from the MFEM

has a structure that is easily simplified to reduce the size of the system. This is shown

below in Equation (3.57). This is not true, however, for the case when T is a full matrix.

When T is a full matrix, solving the above equation becomes much more difficult.

The resulting linear system becomes a full system like in Equation (3.32) and is not as

easily reduced to a simpler system like in Equation (3.57). However, there are still some

things that can be done to simplify the system, but first we will consider what cases might

include a full transmissivity tensor.

69

For many problems the transmissivity is diagonal where only the transmissivity in the

coordinate directions is specified and the correlated transmissivities are zero (for

example, see [10]). One case where we encounter full transmissivity tensors is with

porous media. Various methods have been used for modeling fluid flow within porous

media. Examples of continuous and discontinuous methods can be found in [47] and [48]

respectively. Examples of porous media include water or oil in underground reservoirs.

These "reservoirs" are actually water or oil mixed with other sediments, and wells or

pumps extract the water or oil from the other sediments. Porous media problems are often

associated with the method of homogenization, see [10], [49], and [50]. Homogenization

could be called an averaging procedure for the transmissivity of porous media. For many

problems, like the example in Equation (3.4), the transmissivity is variable with respect to

the domain. Homogenization is a method of averaging the variable transmissivity to a

single constant transmissivity, greatly simplifying the problem. Thus the method of

homogenization creates a new problem whose solution approximates the solution of the

original problem. The accuracy of the approximation depends on the problem itself. This

particular study does not deal with the accuracy of homogenization, but it has been

shown to work well for media with a periodic porosity structure; see [10], [49], [51].

Some details on the homogenization procedure will be given below. Further details can

be found in [49], [50], [10], and [51].

Sometimes when using homogenization in porous media problems, a flow equation

that contains only diagonal transmissivity tensors can result in a full tensor. The fluid

flow problem studied in [11], which this research continues, is such a problem. In [11] a

modification of the mixed finite element method in [9] is used to simplify the case when

70

the transmissivity matrix is full. This is a projection method and details are given below

in Section 3.4. The study of this paper was to take the linear system resulting from the

modified mixed finite element method applied to the homogenized flow equation and see

the effects of physically based preconditioning on the conjugate gradient method for the

linear system. This began by developing mixed finite element codes in two and three

dimensions. Linear solvers and preconditioners were then written to solve the resulting

linear system. An explanation of the codes can be found in the appendix. Codes were also

written for homogenization of the porous media, but they are not shown here. Details can

be found in [52]. A linear solver was also written for parallel processing on graphics

processing units using CUDA. Details of this are given in Chapter 4.

To summarize, there are four levels of improvement used to increase the efficiency of

solving the flow problem, Equation (3.1), using the mixed finite element method. The

first and second have been done previously which are the homogenization of the

transmissivity tensor and the projection method to modify the mixed finite element

method. Two more levels of improvement are applied here, preconditioning of the linear

system resulting from the mixed finite element method and preconditioning of the

conjugate gradient solver in parallel in CUDA.

The remainder of the chapter is organized as follows. There will first be a brief

background on fluid flow in porous media. This will be followed by the background and

implementation of each of the four methods of improvement. This will be followed by

numerical results and discussion. Three problems will be studied. The first will be a

source sink problem, sometimes called the quarter five spot problem; see [53] and [54]

for examples. The second will be a one dimensional flow problem, and the third will be a

71

varied transmissivity problem. Good improvement on the efficiency of the CG solver for

the physically based preconditioner are seen in each case. The physically based

preconditioner is also compared with other black box preconditioners. The results will be

followed by the conclusion and possible future work.

3.1 Fluid Flow in Porous Media

It is common in engineering and scientific problems to have to deal with materials

formed from multiple constituents [49]. One example is modeling oil extraction from

underground reservoirs [50]. In general, when modeling fluid flow, one would hope for

the simplest case, where the fluid is contained in a single open space of normal size (ie

cubic, spherical, etc.), and that the only thing within the open space is the fluid being

extracted. Then the corresponding model of flow would be an exercise of basic calculus.

However, within these reservoirs, the fluid is generally contained in regions of varying

porosity or permeability (ie the ability of the oil to flow freely). So in some places, the

fluid will flow relatively freely and in others flow relatively slowly. An example of such

a structure is given in Figure 3.1.

II

Figure 3.1. Depiction of Porous Media

II
II

II

I

I

72

These changes in transmissivity generally occur on a very small scale compared with

the entire reservoir. To model the fluid flow accurately, these changes need to be

accounted for. Another important factor is that the region where the fluid is actually

being extracted is small compared to the size of the actual reservoir; for example the pipe

water gets pumped through from an underground reservoir is relatively small compared

to the size of the reservoir itself. This difference in scale coupled with the small scale of

the changes in permeability can require the computational grid of a numerical method to

be very fine over a large region, which greatly increases the complexity of the problem.

Because of this it becomes very important to find ways to improve the efficiency of

methods for solving flow problems in porous media. We will look at four ways of

improving that efficiency.

3. 2 MFEM Approximation

We will start by looking at the flow equation and then show some of the details of the

implementation of each of the improvements: homogenization, projection of the mixed

finite element method, physcially based preconditioning, and parallel computing. The

simple flow equation is given by

 qhT)((3.5)

in two and three dimensions, where T is a matrix in R
2 x 2

 or R
3 x 3

, h is a scalar function of

two or three variables, and q is a scalar function of two or three variables. For these

problems we will assume that T is periodic on a small scale ε. The boundary condition for

this problem will be as follows.

 0 h (3.6)

73

where υ is the unit normal vector.

3.2.1 Homogenization

The method of homogenization has become a classical method in a variety of fields

including asymptotic analysis, composite media theory, wave propagation, effective

media theory, bulk property theory, and others [49] [55]. The method goes by various

names, the most general of which is perhaps the method of multiple scales, or more

specifically the method of two scales. The theory for composite media has been studied

extensively for more than 100 years, with, as Milton puts it “an explosion of ideas in the

last four decades” [55]. The literature on homogenization is quite extensive. A good

summary can be found in [51].

As explained above the method of homogenization is a sort of averaging procedure. A

common calculus problem is to compute the work needed to pump a certain volume of

water a certain height out of its container. This problem reduces to a simple integral. One

of the assumptions of the problem is that the water is in a homogeneous state (i.e. the

water isn't mixed with anything else). If we were to say that the water is mixed into sand,

then the problem becomes much more complicated. By throwing rocks, debris, geological

layers, and so on the problem gets pretty complex pretty quickly. One thing to note,

however, in the water and sand example is that, if the sand is pretty homogeneous as

well, then it would probably be safe to assume that the water and sand mixture is

relatively homogeneous, which means that the water would flow through the sand at the

same rate regardless of where the water is in the sand. In terms of Equation 1 this means

that although the transmissivity T will change by adding sand to the water, the

74

transmissivity will nevertheless remain relatively constant throughout the domain. This is

the idea behind homogenization.

In other words, it takes into account the small scale permeabilities over the entire

reservoir, but also allows for a coarser computational grid, thus decreasing the number of

computations. It does this by averaging the permeability over the entire region. A couple

simple examples are shown in Figures 3.2 and 3.3 as found in [10] and [50] respectively.

The transmissivity tensors in each region of Figure 3.2 as well as the corresponding

homogenized tensor are given by

52.60

052.6

10

01
,

100

010
HIII TTT (3.7)

Figure 3.2 Example of Periodic Two Phase Flow Structure

The transmissivity tensors in each region of Figure 3.3 as well as the corresponding

homogenized tensor are given by

81.10

05.5

10

01
,

100

010
HIII TTT (3.8)

I

II

75

Figure 3.3 Linear Example of Two Phase Flow Structure

The term averaging is used loosely above. However it is related but not limited to the

standard averages like the arithmetic, geometric, or harmonic averages. Note that 5.5 is

the arithemetic average of the TI value and the TII value in Figure 3.3 and that 1.81 is the

harmonic average.

 Using this averaging technique produces a permeability that is either constant over the

computational domain of the problem or at least one that does not change as rapidly that

can be computed on a coarser scale. For the problems above, since the the two original

tranmissivities given were constant, then the homogenized transmissivity is also constant,

but this is not always the case. The generalized procedure for computing the

homogenized tensor is outlined below.

3.2.1.1 Homogenization Implementation

Much of the analysis presented here can also be found in [10] and [50]. We will first

go through the method of multiple scales and find equations for the function h on the first

order. Next, we will find the homogenized or average equation. We will then go over the

intermediate step of finding the homogenized coefficient that goes into the homogenized

equation.

We start with the coupled velocity form of the flow equation

II I

76

 hTv (3.2)

 qv (3.3)

We then proceed with the method of multiple scales.

 T = T(y), T(y + ε) = T(y) for some period ε (3.9)

 h = h(x,y), h = h0 + εh1 + … (3.10)

 v = v(x,y), v = v0 + εv1 + … (3.11)

 yxx

1
' (3.12)

where x = x’ and y = x’/ε, where x’ is the variable of the original equation (i.e. h = h(x’)).

With these assumptions we have the following equations at the first and second orders

ε
–1

:

 00 hT y (3.13)

 00 vy (3.14)

ε
0
:

 100 hhTv yx (3.15)

 qvv yx 10 (3.16)

At the first order, the Equations (3.13) and (3.14) imply that h0 = h0(x), v0 = v0(x) so long

as T is positive definite. We further assume that h1 = hxuy)(, where

Tywywy])()([)(21 . This seems intuitive since the expansion on h can be compared

to a Taylor Series expansion. With the first assumption Equation (3.15) becomes

 02102100 hwwIThwwhTv xyyxyyx (3.17)

Equation (3.14) then implies that

77

2

0
22

1

0
11

02100

x

h
wTTe

x

h
wTTe

hwwITv

yyy

xyyyy

 (3.18)

where e1 and e2 are the column vectors of the 2x2 identity matrix. Assuming that

T

xh]00[0 we have the following equations

11 TewT yyy (3.19)

22 TewT yyy (3.20)

Equations (3.19) and (3.20) are referred to as the local problem since they are solved

on the small scale or in the fast variable y. Once w1 and w2 are found, we return to

Equation (3.17). If we assume that the second term in the expansion of the velocity is

periodic (ie v1 is periodic in the fast scale y) and integrate each side of Equation (3.16)

over the fast variable y we have

 0

hTq xx (3.21)

 dYwwIT
Y

T
Y

yy 21

1
 (3.22)

 dYq
Y

q
Y

1#

 (3.23)

For our experiments, the function q is assumed to be constant over the fast variable so

that q
#
 = q, but in general, if q does depend on the fast variable then this integral can be

estimated numerically as well. Equation (3.21) can then be solved using a standard finite

element method to find a first order solution. Specifically a mixed finite element method

is used.

78

3.2.2 Projected Mixed Finite Element Method

The specific model problem for the fluid transport code is the homogenized simple

flow Equation (3.21). For sake of simplicity we will revert back the original form of

Equation (3.5) and assume that it has already been through the homogenization process.

 qhT (3.5)

where h is the head or pressure variable, T is a transmissivity tensor, and q is the product

of the storativity or porosity times the change in pressure with respect to time. The

boundary conditon is the same as in (3.6). There are computational difficulties associated

with this problem as well. One difficulty that arises is when the transmissivity T is a full

matrix. In this case, the linear system matrix resulting from the mixed finite element

method is full as well, greatly increasing the computational difficulty. This problem was

originally addressed in [11] where a projection method was devised to speed up the linear

solver to obtain a solution. In this work, we extend the work of [11] and apply

preconditioning to the projected form of the full transmissivity tensor case. We will first

go through the implementation of the mixed finite element method and the projection

method. We will then give more detail on the diagonal transmissivity preconditioner and

look at the results of the preconditioning.

We start with the velocity form of the flow Equations (3.2) and (3.3)

 hTv (3.2)

 qv (3.3)

The mixed finite element method proceeds in a similar fashion to standard finite element

methods. The pressure variable h will be assumed to be a linear combination of piecewise

79

constant basis functions and the velocity variable v will be assumed to be a linear

combination of piecewise linear basis functions. Specifically

j i

jiij

j i

ji

y

ijji

x

ij

yxhh

eyxveyxvv

)()(

)()()()(21

 (3.24)

where ϕ is defined as

otherwise

xxx
xx

xx

xxx
xx

xx

x ii

ii

i

ii

ii

i

i

0

,

,

)(1

1

1

1

1

 (3.25)

 and χ is defined as

otherwise

xxx
x

ii

i
0

],[1
)(

1
 (3.26)

The finite element method then proceeds in a usual way according to a Galerkin method.

A test function from each of the two function spaces is multiplied by each equation

above, and each equation is then integrated over the domain.

 01

A

dAuhuvT (3.27)

AA

qwdAwdAv (3.28)

After integration by parts and applying the boundary condition n · v = 0 where n is the

outward unit normal vector we have

 01

A

dAuhuvT (3.29)

80

AA

qwdAwdAv (3.30)

which in its discretized form gives the linear system

Aj i A

ji

y

ijji

x

ij

j i A

jiijji

y

ijji

x

ij

qwdAwdAeyxveyxv

dAuyxhueyxveyxvT

21

21

1

)()()()(

0)()()()()()(

 (3.31)

The linear system has the following matrix form.

h

y

x

y

x

yyyx

xyxx

r

r

r

h

v

v

DNN

NMM

NMM

21

2

1

 (3.32)

where Mxx and Myy are symmetric tridiagonal matrices representing the transmissivity in

each coordinate direction, Mxy and Myx are sparse matrices representing the transmissivity

in the off-coordinate directions, N1 and N2 represent differencing matrices, D contains the

time-dependent information as well as any intitial conditions on the pressure, v
x
 and v

y
 are

the vector forms of the velocity, h is now the vector form of the pressure, and rx, ry, rh are

the right hand sides for the velocity and pressure respectively and contain the boundary

information. This form is symmetric and positive definite lending itself to efficient

iterative solvers like the conjugate gradient method. If the transmissivity tensor T is a full

matrix, then the matrix above will be full as well. This form of the equation is further

modified using a projection method.

3.2.2.1 Projection

The projection method, the second level of improvement, which can also be found in

[11], starts with the velocity form of the flow Equation (3.2) and (3.3)

81

 hTv (3.2)

 qv (3.3)

We separate the diagonal velocity from the off-diagonal velocity according to the

transmissivity tensor and rewrite Equations (3.2) and (3.3). In two dimensions we have

 nd TTT (3.33)

 hTv dd (3.34)

 qhTv nd (3.35)

where the off-diagonal term in Equation (3.35) can be rewritten in terms of the diagonal

velocity as follows.

 d

yx

xy

yx

xy

n Kv

x

h
T

y

h
T

y

h
x

h

T

T
hT

0

0
 (3.36)

where

0

0

xx

yx

yy

xy

T

T

T

T

K (3.37)

and thus Equation (35) becomes

 qKvv dd (3.38)

Proceeding with the Galerkin Method, similar to Equation (3.38) we would have

AA

dd qwdAwdAKvv (3.39)

82

We note here that the second term Kvd is not in the same trial functions space as vd [11].

For this reason, a projection of Kvd onto the same trial function space as vd is done. We

thus end up with a coupled system of three equations. In the variational form we have

 01

A

d dAuhuvT (3.40)

AA

d qwdAwdAFv (3.41)

A

d

A

dAKvdAF (3.42)

where u and µ are test functions from the velocity trial space and w is a test function from

the head or pressure trial space. This system can also be discretized similar to Equation

(3.31) above. The resulting linear system in three dimensions has the form

0

0

0

0000

0000

0000

00000

00000

00000

321321

3

2

1

h

z

y

x

z

y

x

z

y

x

zzzyzx

yyyzyx

xxxzxy

TTTTTT

zz

yy

xx

r

r

r

r

f

f

f

h

v

v

v

ABB

ABB

ABB

NNNDNNN

NM

NM

NM

 (3.43)

where Axx, Ayy, and Azz represent velocities in the coordinate directions and the B matrices

represent the projection between the original velocity space and the velocity space of Kvd.

The A's have the same structure as the diagonal velocity M matrices, the B's have the

same structure as the off-diagonal transmissivity matricies, and the f 's represent velocity

trial functions for the projection equation.

Looking at the bottom three block equations we have

83

 zxzxxyxyxxx vBAvBAf
11

 (3.44)

 zyzyyxyxyyy vBAvBAf
11

 (3.45)

 yzyzzxzxzzz vBAvBAf
11

 (3.46)

Applying these to the linear system (3.43) we can rewrite the system in a reduced form.

h

z

y

x

z

y

x

yzyy

T

xzxx

TT

zyzz

T

xyxx

TT

zxzz

T

yxyy

TT

zz

yy

xx

r

r

r

r

h

v

v

v

DBANBANNBANBANNBANBANN

NM

NM

NM

1

2

1

13

1

3

1

12

1

3

1

21

3

2

1

00

00

00

 (3.47)

Block row-reducing this can be further simplified to the form

R

r

r

r

h

v

v

v

A

NM

NM

NM

z

y

x

z

y

x

zz

yy

xx

000

00

00

00

3

2

1

 (3.48)

where

 3

11

2

1

13

2

11

3

1

121

11

3

1

21

NMBANBANN

NMBANBANNNMBANBANNDA

zzyzyy

T

xzxx

TT

yyzyzz

T

xyxx

TT

xxzxzz

T

yxyy

TT

 (3.49)

 zzzyzyy

T

xzxx

TT

yyyzyzz

T

xyxx

TT

xxxzxzz

T

yxyy

TT

h

rMBANBANN

rMBANBANNrMBANBANNrR

11

2

1

13

11

3

1

12

11

3

1

21

 (3.50)

So the reduced system

 Ah = R (3.51)

can be solved for the head variable h and then vx, vy, and vz can be found by

 hNrMv xxxx 1

1 (3.52)

 hNrMv yyyy 2

1 (3.53)

 hNrMv zzzz 3

1 (3.54)

84

Thus, the projection method used above takes the original linear system, assuming the

mesh sizes for vx, vy, and vz are equal, and reduces it by almost a factor of four. The

resulting matrix is still symmetric positive definite and the conjugate gradient method can

still be applied. We will not here go over the conjugate gradient method or iterative

solvers, but instead refer to that section in Chapter 2 for further information.

3.2.3 Physically Based Preconditioner

The third step in improving the efficiency of solving the flow equation is

preconditioning the linear system within the conjugate gradient solver. For the algorithm

and explanation of the preconditioned conjugate gradient method, see Chapter 2. The

preconditioner that will be applied to system (51) is the diagonal transmissivity solution

to the simple flow Equation (3.1). In other words the simple flow equation is solved with

T being a diagonal matrix T = Td. This results in a much sparser linear system

h

z

y

x

z

y

x

TTT

zz

yy

xx

r

r

r

r

h

v

v

v

DNNN

NM

NM

NM

321

3

2

1

00

00

00

 (3.55)

 which can be similarly reduced to the system

R

r

r

r

h

v

v

v

M

NM

NM

NM

z

y

x

z

y

x

zz

yy

xx

000

00

00

00

3

2

1

 (3.56)

where

 3

1

32

1

21

1

1 NMNNMNNMNDM zz

T

yy

T

xx

T
 (3.57)

85

This system matrix M is much simpler and more sparse than the original system matrix

(3.49) and the original linear system is modified using this matrix

 M
-1

Ax = M
-1

b (3.58)

The benefit of this preconditioning is in part shown in Figure 3.4 below. In this figure, a

representation of the system matrix A is shown for a two dimensional problem with 32

spatial elements in each coordinate direction. The original matrix A, with a full

transmissivity tensor, is a full matrix. With only the diagonal components of the

transmissivity tensor, the resulting matrix M is block sparse with each of the off-diagonal

blocks being diagonal. For a larger representation with larger blocks the sparsity would

be much more dramatic than in the figure below.

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

A

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

M

000

000

000

000

000

000

000

000

 cond(A) = 45,010 cond(M
 -1

A) = 132

Figure 3.4. Example of Matrix Preconditioning for Fluid Transport

We can again see the dramatic effect that a preconditioner can have on the condition

of a linear system. Since the preconditioner has significantly fewer non-zeros than the

original matrix it requires much fewer computations to compute its inverse than the

inverse of A. When applied within iterative methods like the preconditioned conjugate

gradient, it adds relatively few computations to each iteration, but significantly reduces

86

the number of total iterations needed for convergence. In the results this physically based

preconditioner is compared against other common preconditioners.

3.2.4 Parallel Implementation on GPU

The fourth level of improvement in efficiency of solving the simple flow equation is

implementing the solution in parallel on graphics processing units using CUDA. The full

details of using CUDA and the results from applying the linear solver in parallel are

given in Chapter 4.

3.3 Numerical Results and Discussion

We will now look at the results from using the physically based preconditioner on

three problems. The first two problems use a homogenized tensor which is explained in

Section 3.7.1. The third lets the off-diagonal terms of the transmissivity tensor vary to see

the effects of increasing the order of the corresponding off-block-diagonal elements on

the preconditioner. The first two problems include a two and three dimensional source-

sink problem, sometimes called the quarter 5 spot problem, and a two and three

dimensional single phase flow problem. The third is the same as the second except that

the transmissivity tensor is varied to see the effect on the preconditioner. The results are

given below.

The tests were done in MATLAB using the built in sparse matrix structure within a

preconditioned conjugate gradient method (PCG). The algorithm stops or converges

when the tolerance (the squared residual norm) is 10
-9

. Run times for all of the results

were calculated using Matlab's tic and toc functions. The initial guess was set to be a

87

vector of all ones for the source-sink problem and set to zero for the other problems. CG

methods were written with compressed sparse row (CSR) storage in Matlab and in C++.

Only results using the standard Matlab storage are shown here to more easily compare the

various preconditioners. The physically based preconditioner was tested against several

built in and standard preconditioners similar to the preconditioners in Chapter 2 including

incomplete Cholesky factorizations, successive over relaxation, and others. When the

flow equation consists of a full tensor, the resulting matrix A as found in Equation (3.49)

is a full matrix, so sparse storage is only used for the preconditioners and standard storage

is used for the matrix A. We will first look at the source-sink problem with a

homogenized domain, then at the single phase flow problem followed by the random

transmissivity problem.

3.3.1 Homogenized Domain

In [11] a problem is presented where the permeability tensor is assumed to be

periodic throughout the domain. This periodic pattern is shown below.

Figure 3.5. Diagram of Repeated Pattern for Homogenized Problem

 In this case, given the two permeability tensors

I

II

88

0.100.0

0.00.10
,

0.10.0

0.00.1
III TT (3.59),(3.60)

and applying the method of homogenization we obtain the following full homogenized

tensor

89.108.0

08.049.1
HT (3.61)

This is the transmissivity used for the source-sink problem and the single phase flow

problem.

3.3.2 Quarter 5-Spot Source-Sink Test Problem

The first problem is a two and three dimensional source sink problem given by

Koebbe [11], and Wheeler and Ewing [9]. The right-hand side q of the simple flow

Equation (3.1) is assumed to be a sum of dirac delta functions

),(),()1,1()0,0(yxyxq (3.62)

The boundary condition is as explained above where the dot product of the velocity with

the normal vector is assumed to be zero. In the case where T = I, an analytic solution can

be found and is given in [9] in two dimensions as

1 2/)(cos2/)2(cosh2/)(cos2/)2(cosh

2/)(cos2/)2(cosh2/)(cos2/)2(cosh
log1

2/)(cos2/)(cosh

2/)(cos2/)(cosh
log

2

1

n

n

yxnyxyxnyx

yxnyxyxnyx

yxyx

yxyx
h

(3.63)

This solution was used to test the validity of the mixed finite element method. In Figure 3.6

the pressure is shown for the source-sink problem with the homogenized tensor and Tables

3.1 and 3.2 show the results of the preconditioning. The black box preconditioners tested

89

include successive over relaxation (SSOR), Jacobi (Diagonal), a block diagonal incomplete

Cholesky (IC) factorization, an M-block incomplete Cholesky factorization, and an M-block

direct cholesky factorization. The M-block preconditioners use a simplified block structure of

the matrix A. Black box preconditioners are based solely on the matrix itself not on the

problem that they are derived from, but the general block structure can be generally found by

doing a couple simple searches on the matrix. The M-block here is a block diagonal with

several off-diagonals. They are called M-block because they have the same matrix structure

as the diagonal transmissivity preconditioner M, but the values are still taken from the

original matix A. The physically based preconditioners include an incomplete cholesky

factorization on the preconditioner M and a direct Cholsky factorization on the

preconditioner M.

The size of the resulting linear system is m*n for two dimension and m*n*o for three

dimensions, where m, n, and o are the number of steps in the x, y, and z directions

respectively. As mentioned above, for the full tensor case, Equation (3.61), the system

Figure 3.6. Resulting Pressure for MFEM Source

Sink Problem with m = n = 33

MFEM Pressure for Source Sink

Problem 3.3.2

90

matrix is a full matrix. The mesh sizes were chosen for this research so that they can still

be run on a single machine. The matrix sizes, therefore, were still small enough to

Table 3.1. Results of Preconditioning on MFEM 2D Source Sink Problem

PCG Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

SSOR 1.12 s, 119 it. 6.85 s, 172 it. 25.9 s, 225 it.

Jacobi (Diagonal) 0.894 s, 386 it. 5.51 s, 565 it. 21.4 s, 741 it.

None - CG 0.897 s, 396 it. 5.36 s, 575 it. 21.2 s, 752 it.

Block Diag - IC 0.745 s, 288 it. 4.35 s, 419 it. 16.7 s, 550 it.

None - DC 0.278 s 2.12 s 9.44 s

M-Block - IC 0.268 s, 100 it. 1.68 s, 145 it. 6.28 s, 191 it.

Physically Based - IC 0.266 s, 100 it. 1.64 s, 145 it. 5.89 s, 191 it.

M-Block - DC 0.128 s, 4 it. 0.609 s, 4 it. 1.49 s, 4 it.

Physically Based - DC 0.103 s, 3 it. 0.385 s, 3 it. 1.47 s, 3 it.

compare with direct methods, which can often be faster than iterative methods for smaller

mesh sizes, especially optimized commercial methods like those in Matlab. Generally

iterative methods are used solely for sparse matrices, and, as seen above, the direct

Cholesky factorization performs better than the CG method and some of the

preconditioners, but, even though the matrix is full, some of the preconditioners,

including the physcially based preconditioners still outperform the direct method. An

alternate storage system for the matrix A can also be used which adds a few more

calculations to each iteration of the CG method, but significantly reduces the amount

91

Table 3.2. Results of Preconditioning on MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in

y,o-spatial in z)

m = 10, n = 10, o = 10 m=20,n=20,o=20

Jacobi (Diagonal) DNC DNC

None - CG 0.132 s, 275 it. 18.1 s, 510 it.

None - DC 0.0338 s 9.78 s

Block Diag - IC 0.0558 s, 101 it. 5.17 s, 150 it.

SSOR 0.0512 s, 43 it. 4.47 s, 86 it.

Physically Based - IC 0.0210 s, 33 it. 2.86 s, 77 it.

M-Block Diag - IC 0.0225 s, 33 it. 2.77 s, 72 it.

Physically Based - DC 0.0209 s, 33 it. 2.67 s, 77 it.

M-Block - DC 0.0634 s, 7 it. 2.50 s, 72 it.

of storage needed for the matrix. This method was tested as well with similar results, but

the results are not shown here because the standard storage allows an easier comparison

for the preconditioners. Such a storage scheme would show its greatest benefit on much

large systems, which were not studied here.

The M-block and physically based diagonal transmissivity preconditioners perform

the best for the homogenized source sink problem with about 4-12 times the speed up of

the stand alone CG method. The direct Cholesky (DC) preconditioners perform better

than the incomplete Cholesky. It should be noted, however, that the direct Cholesky also

has a larger upfront cost which isn't included in the calculations here. Only the time to go

92

through the CG iterations, not any upfront cost is shown. So the direct Cholesky would

be better for problems that get repeated multiple times for multiple right hand sides and

the incomplete Cholesky would likely perform better for problems with fewer repetitions

of the same domain. The Jacobi or diagonal preconditioner, similar to the results in

Chapter 2, actually causes the system not to converge in some cases.

3.3.3 Single Phase FlowProblem

The preconditioners were also tested on a 1D flux problem where the right hand side

is set to zero, but there is assumed to be a unit velocity at the boundaries in one of the

coordinate directions. The resulting pressure is shown in Figure 3.7 and the results for the

two dimensional and three dimensional problems are shown in Tables 3.3 and 3.4.

Figure 3.7. Resulting Pressure for MFEM Singe

Phase Flow Problem with m = n = 33

Pressure for Single Phase Flow Problem

93

Table 3.3. Results of Preconditioning on MFEM 2D Single Phase Flow Problem

Method

Mesh Size (m-spatial, n-spatial)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

SSOR 0.601 s, 64 it. 3.68 s, 92 it. 13.8 s, 119 it.

None - CG 0.433 s, 190 it. 2.64 s, 276 it. 9.82 s, 341 it.

Jacobi (Diagonal) 0.475 s, 201 it. 2.92 s, 294 it. 11.0 s, 387 it.

None - DC 0.231 s 1.40 s 6.50 s

Block Diag - IC 0.351 s, 140 it. 2.04 s, 193 it. 7.51 s, 252 it.

M-Block - IC 0.221 s, 81 it. 1.35 s, 116 it. 4.72 s, 150 it.

Physically Based - IC 0.221 s, 81 it. 1.30 s, 116 it. 4.77 s, 150 it.

M-Block - DC 0.229 s, 81 it. 1.29 s, 116 it. 4.78 s, 150 it.

Physically Based - DC 0.224 s, 81 it. 1.29 s, 116 it. 4.73 s, 150 it.

Here as well the physically based and M-block preconditioners perform the best with

about 2-8 times the speed up of the stand alone CG method.

3.3.4 1D Flux Varied Transmissivity Problem

The final problem is the same as the previous problem except that the transmissivity

tensor diagonal is set and the magnitude of the off-diagonal term is varied to see the

effect on the preconditioner. For example, we have

10

10

HT (3.63)

94

 Table 3.4. Results of Preconditioning on MFEM 3D Single Phase Flow Problem

Method

Mesh Size

(m-spatial in x, n-spatial in y,o-spatial in z)

m = 10, n = 10, o = 10 m=20,n=20,o=20

Jacobi (Diagonal) 0.312 s, 597 it. DNC

None - CG 0.125 s, 213 it. 11.6 s, 325 it.

None - DC 0.0331 s 12.2 s

Block Diag - IC 0.0378 s, 66 it. 3.52 s, 96 it.

SSOR 0.0485 s, 35 it. 2.45 s, 45 it.

Physically Based - IC 0.0158 s, 24 it. 1.51 s, 41 it.

M-Block Diag - IC 0.0181 s, 25 it. 1.54 s, 41 it.

Physically Based - DC 0.0158s, 24 it. 1.55 s, 41 it.

M-Block - DC 0.0166 s, 25 it. 1.59 s, 41 it.

for different values of α ranging from zero to ten. The results for the two dimensional

problem is shown in Table 3.5. Here we are only testing the physically based incomplete

Cholesky preconditioner against the stand alone CG method and showing the change in

ratio of speed up in time and number of iterations.

Here we also see the improvement from using the preconditioner. As expected, for

initial smaller values of alpha with magnitude only sightly greater than zero, the

preconditioning performs better than for values closer to the diagonal value of ten.

95

Table 3.5. Results of Preconditioning on MFEM 2D Varied Transmissivity Test

Value of Alpha

Run Times and Iterations for m = 65, n = 65

CG PB IC Ratios

-1 2.94 s, 306 it. 1.57 s, 138 it. 1.87, 2.22

-2 3.08 s, 317 it. 1.62 s, 145 it. 1.90, 2.19

-3 3.24 s, 332 it. 1.71 s, 153 it. 1.89, 2.17

-4 3.31 s, 341 it. 1.76 s, 159 it. 1.88, 2.14

-5 3.35 s, 345 it. 1.93 s, 172 it. 1.74, 2.01

-6 3.60 s, 374 it. 2.13 s, 186 it. 1.69, 2.01

-7 3.77 s, 395 it. 2.35 s, 210 it. 1.60, 1.88

-8 4.37 s, 455 it. 2.61 s, 238 it. 1.67, 1.91

-9 5.60 s, 557 it. 3.37 s, 309 it. 1.66, 1.80

-9.9 9.22 s, 929 it. 6.27 s, 576 it. 1.47, 1.61

-9.99 10.7 s, 1084 it. 7.78 s, 695 it. 1.38, 1.56

This is due to the fact that for small values of α, A is still block diagonally dominant

making M, which is sparse block diagonally dominant, a good approximation of A. As

alpha increases, the off-diagonal blocks gain more significance and M becomes a weaker

approximation of A. Even for values close to 10, however, the preconditioner still offers

close to one and a half times the speed up.

96

3.4 Conclusions and Future Work

As can be seen in the results, improvements can be made on the run times for linear

systems that result from the mixed finite element approximations of the flow equation in

porous mediums. Three levels of improvement were presented including homogenization

of the porous medium domain, a projection method for flow equations with full

transmissivity tensors, and preconditioning of the linear system resulting from the

projection method. A fourth improvement, parallelization, will be discussed in Chapter 4.

The physically based preconditioner has been shown to be effective in reducing the run

time and number of iterations for the preconditioned CG method. The physically based

preconditioner also is comparable if not better than several standard preconditioners. The

physically based preconditioner was shown to be affected by changes in the diagonal

dominance of the transmissivity tensor, but still showed improvement on the CG method

for less diagonally dominant matrices.

This project was not an exhaustive result of all preconditioners or linear solution

methods and further results can be done in each area. Other linear solution methods that

could be compared are generalized minimum residual methods and more especially

multigrid methods, which, although complex, have been shown to be the fastest linear

solvers [55]. As seen above there are also many ways of implementing the

preconditioners which could be explored further. Further work could also be done on

larger parallel computing architectures to see the results of each method there. This will

be explored in some detail in chapter 4, but only as it relates to parallel computing on

graphics cards using CUDA.

97

In summary, the physical based preconditioning proved effective on improving the

CG linear solver of the mixed finite element formulations of the flow equation with full

transmissivity tensors and further studies could be done to determine better linear system

solution methods or preconditioners and preconditioner methods. In the next chapter we

will see the results of a physically based preconditioner on a parallel architecture in

CUDA.

98

CHAPTER 4

PRECONDITIONING FOR FINITE ELEMENT METHODS APPLIED TO FIRST

ORDER PARTICLE TRANSPORT AND TO FLUID TRANSPORT IN POROUS

MEDIA IMPLEMENTED IN PARALLEL ON GPUS

Four levels of improvement were used to increase the efficiency of solving the flow

problem in porous media, Equation (3.1), using the mixed finite element method. The

first and second have been done previously which are the homogenization of the

transmissivity tensor and the projection method to modify the mixed finite element

method. Two more levels of improvement are applied here, preconditioning of the linear

system resulting from the mixed finite element method and preconditioning of the

conjugate gradient solver in parallel in CUDA. The preconditioning of the linear system

was shown in Chapter 3 and the algorithms for the linear solvers were shown in Chapter

2. In this chapter, we will be showing the final level of improvement, implementing the

preconditioned conjugate gradient linear solver and the physically based preconditioner

for the fluid transport problem in CUDA and comparing it with algebraic preconditioners.

We will also show the results of using the physically based un-collided flux

preconditioner for conjugate gradient linear solver of the least squares finite element

method (LSFEM) of the particle transport problem in CUDA compared with algebraic

preconditioners.

These conjugate gradient methods were run on a relatively new software language,

CUDA (Compute Unified Device Architecture), developed by NVIDIA for processing on

graphics processing units (GPU's). There are currently several languages for processing

99

on GPU's which also include OpenCL and OpenGL. The experiments for this project

were run on an NVIDIA GEFORCE 610M graphics processing unit so CUDA was

chosen since CUDA was designed specifically to run on NVIDIA graphics processing

units.

CUDA, and scientific computations on GPU's, are relatively new. GPU's provide

inexpensive, generally available, massively parallel computing hardware [56]. CUDA

with other languages have made it easier to utilize this hardware. Any computer with a

monitor has a GPU. It is just a matter of how many individual compute units are

available. In addition, any number of GPUs can be added via USB connections to a

computer. So programs in CUDA are widely accessible at little or no extra cost to

execute them. When talking about GPUs two natural question arise. The first is whether

or not GPU computing is competitive with or better than single core computers, multi-

core computers or traditional parallel machines. In recent results, GPU computing has

been shown to surpass multi-core computations on a number of applications [56]. The

second question is whether certain algorithms that run well in serial also run well in

parallel on GPUs.

Of particular interest to this research is how these questions are answered for GPU

computing applied particle or fluid transport applications. A number of studies have been

done to show the utility of GPU computing for particle transport problems. One very

natural application was utilizing GPU computing for Monte Carlo methods applied to

particle transport problems. Monte Carlo methods are derived from the probabilities

associated with the cross sections of the materials through which particles may be

traveling. In other words, one at a time, particles are tracked as they travel through or get

100

absorbed by a material. When a particle interacts with a material at a given point, a

probability is used to determine the type of interaction (i.e. absorbtion, scattering, no

interaction, etc.) and the angle of scattering if any. In order to develop an accurate

assessment of the general transport of particles through a material, a large number of

single particle simulations must be run. These single particle simulations can be done

independently, making Monte Carlo simulations inherently parallel problems. In [13],

[57], and [58] CUDA was used as part of Monte Carlo particle transport applications.

They each show good speed-ups when working with GPU's.

Some work has also been done with deterministic solution methods like the finite

element methods in this paper. Papers [14] and [59], and [60] show results of GPU

computing on deterministic applications including a discrete ordinates method, a method

of characterisitcs, and a source-iteration method. Studies have also been done that utilize

both the cpu and the GPU. Such a hybrid method for a deterministic transport code is

shown in [60]. All of these studies report good speedups when using GPU computing.

GPU computing has also been explored in the realm of fluid flow in porous media. In

[15] a homogenization method for heterogeneous media was applied using CUDA. Work

on multiple GPUs was done in [16] for a natural porous media problem and in [61] a

hybrid CPU-GPU method was used for a two-phase porous media problem. Each of these

also show good speed-ups when using GPU computing.

GPU computing is also used more generally to improve iterative methods for linear

systems including the conjugate gradient method. In [62] an overview study is done on

GPU computing for the preconditioned conjugate gradient method. Their conclusion was

summarized: "Based on the experimental results...we observe that, when used as general

101

purpose many-core processors, current GPUs provide a much lower performance

advantage for irregular (sparse) computations than they can for more regular (dense)

computations...however, when used carefully, GPUs can still be beneficial as co-

processors to CPUs to speed-up complex computations." In other words, GPU computing

has its limits, and while it has proven to be generally faster than single core and some

multi-core computers, it is still slower than traditional multi-core computing clusters for

some problems.

In [17] and [18], preconditioned iterative methods are run in parallel on GPUs

including algebraic preconditioners. In [17] an SSOR type preconditioner is used and in

[18] a sparse approximate inverse preconditioners is used based on the singular values of

the linear system matrix. Hybrid methods including cpu and GPU computations were

applied in [63] and [64] where the conjugate gradient method was applied on multiple

GPU platforms. In [65], a bi-conjugate gradient method for a finite difference

approximation was also tested in CUDA on GPUs.

In this work we extend the use of GPU computing to the least squares finite element

method (LSFEM) applied to the first order particle transport equation of Chapter 2 and

the projected mixed finite element method (MFEM) applied to the homogenized fluid

transport equation of Chapter 3, seeking to answer the second question of whether the

physcially based preconditioners are effective when run in parallel. Specifically we show

results of running the conjugate gradient linear solver in CUDA on the GPU for each

problem and the results of using the physically based preconditioners of each problem in

CUDA on the GPU. For both problems, the physically based preconditioners perform

well on the GPU giving speed-ups from about 2 to 50 times.

102

We will first give a brief background on processing with GPUs and some details on

the implementation of the preconditioned conjugate gradient method in CUDA for the

particle and fluid transport problems. We will then look at the results of running the

preconditioned conjugate gradient method for the particle and fluid transport problems,

specifically comparing the physcially based preconditioner with algebraic

preconditioners.

4.1 GPU Computing

GPU computing started out as a way to speedup computer graphics applications,

largely for graphics in video games. It has grown to a wide variety of applications

including medical imaging, computational fluid dynamics, environmental science [12]

[66]. GPUs started out as 2D display accelerators offering hardware assisted bitmap

operations. In 1992, OpenGL, a computing language for graphics cards, was introduced

[12]. The video game industry continued to drive this new area and eventually NVIDIA

and others added new capabilities to the GPU hardware as well as adding to the software

with new software languages like CUDA and OpenCL. As seen above in [60] and [61],

this area has extended to hybrid CPU-GPU hardware architectures and computing

libraries to run on them.

4.2 Preconditioned Conjugate Gradient Method in CUDA

The preconditioned conjugate gradient methods for the least squares finite element

method for first order particle transport and for the projected mixed finite element

method for fluid transport in porous media were applied in CUDA using the CUDA

103

Toolkit, specifically the CUDA Basic Linear Algebra Subprograms (CUBLAS) library

and the CUSPARSE library [12]. These CUDA libraries include several examples of

linear algebra algorithms and iterative solvers. The toolkit and libraries for CUDA can be

found on NVIDIA's website. For this work, the conjugate gradient method example

within the CUDA SDK was modified to run with the sparse and full matrices of the

particle transport and fluid transport problems.

The existing compressed sparse row (CSR) format within the example was used for

the sparse matrices of the fluid and particle transport problems. The CSR format was

modified to the full matrix format of CUBLAS for the projected mixed finite element

method for the fluid transport problem and the functions for matrix multiplication in

CUBLAS and CUSPARSE were changed accordingly. The existing incomplete Cholesky

preconditioner format was used for each of the preconditioners. General input and output

C++ libraries as well as some standard code was also added for determining the run times

of the codes and checking the results.

For both the particle and fluid transport problems the matrices and vectors were

generated from the Matlab codes mentioned in Chapters 2 and 3 and, together with their

preconditioners, were transferred and run on the parallel form of the preconditioned

conjugate gradient method example within the CUDA SDK. The tolerance was set to be

the same as before, 10
-9

 and the initial guess set to be a vector of all zeros. More details

on the implementation of the preconditioned conjugate gradient method can be found in

the Appendix. The specific problems tested include the least squares finite element

method (LSFEM) for first order particle transport in one and two dimensions and the

104

projected mixed finite element method for the homogenized fluid transport source sink

problem. These are the problems that use the preconditioned conjugate gradient method.

4.3 Source Void LSFEM First Order Particle Transport Results

We will first look at the one dimensional Reed Problem 2.6.1 and then at the square

source void problem 2.6.2 using the LSFEM. Recall that these particle transport problems

are source void problems. The initial conditions and geometries can be found in Sections

2.5.1 and 2.5.2 respectively. The solvers include the stand alone conjugate gradient

method (CG-None), the physically based incomplete Cholesky (PB IC) CG method, the

algebraic M-Block (i.e. preconditioner derived from original matrix A with same

structure as the physically based preconditioner M, see Section 2.4.3.2) CG method, and

the incomplete Cholesky method from the original CUDA CG example. The results for

each are shown in Figures 4.1 and 4.2 and in Tables 4.1 and 4.2 respectively.

Figure 4.1. Resulting Flux for the Reed Problem

Using the Continuous LSFEM in CUDA with m

= 16, n = 1600

LS Scalar Flux for Problem 2.5.1 in CUDA

105

As can be seen in Tables 4.1 and 4.2, the physically based preconditioner for the one

and two dimensional problems work well in parallel on the GPU as well. For the one

dimensional problem the speedups range from fifty to over one hundred times. For the

two dimensional problem speedups range from about four to five times. For the one

dimensional problem, the physically based incomplete Cholesky (PB IC) preconditioner

was compared with two algebraic preconditioners, the standard incomplete Cholesky (IC)

and the M-Block incomplete Cholesky. The M-Block, as mentioned in Chapter 3, is a

simplified version of the original system matrix A with the same structure as the

preconditioner M. In this parallel CUDA case, the physically based preconditioner

performs better than the standard Incomplete Cholesky and about equal to the M-Block

preconditioner. For the two dimensional problem, the physically based preconditioner

was only compared to the M-Block preconditioner due to memory constraints for the

standard incomplete Cholesky preconditioner.

Figure 4.2. Resulting Flux for the Square Source

Void Problem Using LSFEM in CUDA for S10

LS Scalar Flux for Problem 2.5.2 in CUDA

106

Table 4.1. Parallel Results of Preconditioning on the LSFEM for Reed Problem

Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

Cuda - CG - None 5.54 s, 8133 it. 20.0 s, 17194 it. 41.4 s, 25777 it.

Cuda - IC 0.169 s, 8 it. 0.420 s, 10 it. 0.754 s, 12 it.

Cuda - M-Block IC 0.109 s, 23 it. 0.203 s, 23 it. 0.327 s, 25 it.

Cuda - PB IC 0.109 s, 24 it. 0.209 s, 24 it. 0.310 s, 24 it.

Table 4.2. Parallel Results of Preonditioning on the LSFEM for Square Source Void

Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

Cuda - CG 1.58 s, 543 it. 3.92 s, 612 it. 7.94 s, 670 it.

Cuda - PB IC 0.438 s, 101 it. 0.874 s, 106 it. 1.53 s, 107 it.

Cuda - M-Block IC 0.462 s, 101 it. 0.858 s, 103 it. 1.51 s, 106 it.

In Tables 4.3 and 4.4, we compare the parallel version of the CG method and the

physically based preconditioner with the original serial version. In general the serial

version performs better on the one dimensional problem except for the two larger mesh

sizes for the standalone CG method. This is not unexpected due to the simple nature of

the one dimensional problem. For the two dimensional problem, the parallel version of

the CG method and the physically based preconditioner generally perform better than the

serial version, with about one and a half times speedup for the standalone CG method and

107

just slightly over one times speedup for the physically based incomplete Cholesky

preconditioner.

Table 4.3. Comparison of Parallel and Serial Results for LSFEM on Reed Problem

Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

Cuda - CG - None 5.54 s, 8133 it. 20.0 s, 17194 it. 41.4 s, 25777 it.

Cuda - PB IC 0.109 s, 24 it. 0.209 s, 24 it. 0.310 s, 24 it.

None - CG 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

PB - IC 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

Table 4.4. Comparison of Parallel and Serial Results for LSFEM on

Square Source Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

Cuda - CG 1.58 s, 543 it. 3.92 s, 612 it. 7.94 s, 670 it.

Cuda - PB IC 0.438 s, 101 it. 0.874 s, 106 it. 1.53 s, 107 it.

CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

PCG - PB IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

4.4 Projected MFEM Source Sink Fluid Transport Results

Here we will first look at the results of the two dimensional source sink problem of

Section 3.7.2 and then at the three dimensional source sink problem. Recall that this is the

108

projected mixed finite element method solution on the homogenized particle transport

problem. The solvers include the stand alone conjugate gradient method (CG-None), the

physically based incomplete Cholesky (PB IC) CG method, the algebraic M-Block CG

method, and the block diagonal incomplete Cholesky method. The results for the two

dimensional problem are shown in Figure 4.3 and Table 4.5 and the results for the three

dimensional problem are shown in Table 4.6.

The physically based preconditioner performs well providing about two times

speedup for the two dimensional problem and about five to eight times speedup for the

three dimensional problem. As seen in Table 4.5 and 4.6, the physically based

preconditioner was compared against two algebraic preconditioners, the M-Block

incomplete Cholesky and the block diagonal incomplete Cholesky. The physically based

preconditioner performs the best. It is about equal to the M-Block incomplete Cholesky

for two of the mesh sizes, but converges when the M-Block does not for the largest mesh

size. It is unclear exactly why the M-Block did not converge for the largest mesh size, but

Figure 4.3. Resulting Pressure for MFEM Source

Sink Problem in CUDA with m = n = 45

MFEM Pressure for 2D Source Sink

Problem in CUDA

109

as mentioned in Chapter 2, iterative solvers like the conjugate gradient method can

stagnate depending on the mesh size and machine precision. For the three dimensional

problem, the physically based preconditioner performs about equal to the M-Block

preconditioner, with the M-Block perhaps slightly better.

Table 4.5. Parallel Results of Preconditioning on the MFEM 2D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

CUDA - CG - None 0.564 s, 238 it. 3.33 s, 346 it. 12.8 s, 452 it.

CUDA - BD IC 0.679 s, 174 it. 2.94 s, 253 it. 10.3 s, 332 it.

CUDA - M-Block IC 0.344 s, 83 it. 1.50 s, 128 it. DNC

CUDA - PB IC 0.343 s, 83 it. 1.56 s, 128 it. 5.16 s, 157 it.

Table 4.6. Parallel Results of Preconditioning on the MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 10, n = 10, o = 10 m = 20, n = 20, o = 20

CUDA - CG - None 0.203 s, 309 it. 15.8 s, 672 it.

CUDA - BD IC 0.140 s, 99 it. 4.03 s, 160 it.

CUDA - PB IC 0.047 s, 33 it. 1.99 s, 77 it.

CUDA - M-Block IC 0.047 s, 33 it. 1.87 s, 72 it.

In Tables 4.7 and 4.8, the parallel version of the CG method and the physically based

preconditioner are compared with the serial versions. For the two dimensional problem,

the parallel versions generally perform better than the serial versions with up to about

110

twice the speedup. For the three dimensional problem, the serial version performs slightly

better than the parallel version for the smaller mesh size and the parallel version

performs slightly better for the larger mesh size. This trend would be expected to

continue for larger mesh sizes that couldn't be tested due to memory constraints.

Table 4.7. Comparison of Parallel and Serial for MFEM 2D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

CUDA - CG - None 0.564 s, 238 it. 3.33 s, 346 it. 12.8 s, 452 it.

CUDA - PB IC 0.343 s, 83 it. 1.56 s, 128 it. 5.16 s, 157 it.

None - CG 0.897 s, 396 it. 5.36 s, 575 it. 21.2 s, 752 it.

Physically Based - IC 0.266 s, 100 it. 1.64 s, 145 it. 5.89 s, 191 it.

Table 4.8. Comparison of Parallel and Serial for MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 10, n = 10, o = 10 m = 20, n = 20, o = 20

CUDA - CG - None 0.203 s, 309 it. 15.8 s, 672 it.

CUDA - PB IC 0.047 s, 33 it. 1.99 s, 77 it.

None - CG 0.132 s, 275 it. 18.1 s, 510 it.

Physically Based - IC 0.0210 s, 33 it. 2.86 s, 77 it.

111

4.5 Conclusions and Future Work

In Chapter 3 we discussed four levels of improvement for mixed finite element

method applied to the porous media fluid transport problem: a homogenization method, a

projection of the mixed finite element method, a physically based preconditioner, and a

parallel implementation of the linear solver on GPUs using CUDA. The first three

improvements were shown in detail in Chapter 3. Here we showed the fourth level of

improvement, the implementation of the linear solver on GPUs using CUDA.

Specifically, we modified the preconditioned conjugate gradient method example within

the CUDA SDK to run the CG method and preconditioned CG with the inputs from the

projected mixed finite element method for the homogenized porous media fluid transport

problem.

 The physically based preconditioner was shown to be effective in the parallel

CUDA GPU linear solver providing about five to eight times the speedup to the

standalone CG solver. The parallel code also generally performed better than the serial

version of Chapter 3 with slightly better run times. The parallel preconditioned conjugate

method was also used on the least squares finite element method applied to the first order

particle transport problem. The physically based un-collided flux preconditioner also

showed good speedup compared with the standalone CG method, and the parallel code

showed some improvement on the serial version of Chapter 2, especially on the two

dimensional code.

 Further study could be done to fully optimize the parallel CUDA linear solver as

well as a study of the biconjugate gradient method for the non-symmetric discontinuous

finite element method. The main focus here was on the effectiveness of the

112

preconditioner in parallel, but other codes were written in Matlab and C++ that save

memory by not saving the full linear system matrix, but instead only storing the operation

of the matrix. These operations were tested as part of the study of Chapter 3, but results

were not included. A parallel version of the matrix operation could also be written and

tested within the CUDA framework. More complex domains for the original problems

could also be studied as well as the optimal platform for the first order particle and

porous media fluid transport problems utilizing multi-gpu and hybrid cpu-gpu.

 In summary, the physically based preconditioners of the fluid and particle

transport problems were shown to be effective in parallel computations on GPUs using

CUDA, and the parallel CUDA codes were shown to be slightly better than the serial

codes on the CPU. Further studies could be done as to the optimal platform (multi-gpu,

hybrid gpu-cpu, multicore cpu, etc.) and memory storage for running the preconditioned

conjugate gradient method in parallel.

113

CHAPTER 5

CONCLUSION

Physically based preconditioning was used to improve the efficiency of the linear

solvers for two applications, first order particle transport and fluid transport in porous

media. This preconditioning was also tested in parallel on GPUs using CUDA. In all

cases the physically based preconditioner performed well, in terms of speed-up gained

and as compared with several algebraic precondtioners. We also reviewed first order

formulations of the neutron transport equation, an alternative to second order

formulations, and two finite element implementations for the first order formulation to

which the physically based un-collided flux precondtioner was applied. To the mixed

finite element method for the simple flow equation for porous media flows, four levels of

improvement were applied: the method of homogenization, a projection method,

physically based preconditioning, and parallel implementation on GPUs. In summary, we

extended the results of the LSFEM of [7] and the DFEM of [8] to include physically

based preconditioning and implementation on GPUs. We also extended the results of [2]

and [11] to include physically based preconditioning and parallel implementation on

GPUs. Future work could include applying the mixed finite element method to the first

order particle transport equation, testing other linear solvers on these problems, especially

multigrid solvers, implementing these methods on more complex hybrid cpu-gpu

architectures like those in [16] [61] [63] and [64], or in more fully optimizing the code

through different storage schemes and algorithms that do not require storage of the linear

system matrix.

114

REFERENCES

1. R. Strzodka, J. Cohen, and S. Posey. "GPU-Accelerated Algebraic Multigrid for Applied

CFD," Procedia Engineering, 61, pp. 381-387 (2013).

2. M. T. Heath. Scientific Computing: An Introductory Survey, Second Edition, McGraw-Hill

Companies, Inc. (2002).

3. J. L Liscum-Powell, W. J. Bohnoff, C. R. Drumm, and W. C. Fan. "CEPTRE/Nevada

Physics Guide Version 1.0," Sandia Report SAND2007-7409, Sandia National Laboratories

(2007).

4. J. E. Morel et al. "Spatial discretizations for self-adjoint forms of the radiative transfer

equations," Journal of Computational Physics, 214 (1), pp. 12-40 (2006).

5. L. Cao and H. Wu. "A spherical harmonics--Finite element discretization of the self-adjoint

angular flux neutron transport equation," Nuclear Engineering and Design, 237 (23), pp.

2232-2239 (2007).

6. M. L. Adams and E. W. Larsen. “Fast Iterative Methods for Discrete-Ordinates Particle

Transport Calculations,” Progress in Nuclear Energy, 40 (1), pp.3-159 (2002).

7. C. Drumm and W. Fan, "Least Squares Finite Element Algorithms in the SCEPTRE

Radiation Transport Code," International Conference on Mathematics and Compuational

Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ,

Brazil, May 8-12, on CD-ROM, Latin American Section (LAS) / American Nuclear Society

(ANS) ISBN 978-85-6368-00-2 (2011).

115

8. T. Manteuffel, S. McCormick, J. Morel, S. Oliveira, and G. Yang, "A Fast Multigrid

Algorithm for Isotropic Transport Problems I: Pure Scattering," SIAM J. Sci. Comput., 16(3),

pp.601-635 (1995).

9. R. E. Ewing and M. F. Wheeler, Computational Aspects of Mixed Finite Element Methods,

North-Holland, Amsterdam (1983).

10. G. Amaziane, A. Bourgeat, and J. Koebbe. "Numerical Simulation and Homogenization of

Two-Phase Flow in Heterogeneous Porous Media," Transport in Porous Media, 6, pp. 519-

547 (1991).

11. J. Koebbe, “A Computationally Efficient Modification of Mixed Finite Element Methods for

Flow Problems with Full Transmissivity Tensors,” Numerical Methods for Partial

Differential Equations, 9, pp.339-355 (1993).

12. CUDA C PROGRAMMING GUIDE, NVIDIA Corporation, 2007-2013.

13. X. Jia, et al. "Development of a GPU-based Monte Carlo dose calculation code for coupled

electron-photon transport," Phys. Med. Biol., 55 (11), pp. 3077-3086 (2010).

14. C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong. "GPU accelerated simulations of

3D deterministic particle transport using discrete ordinates method," Journal of

Computational Physics, 230 (15), pp. 6010-6022 (2011).

15. B. Quintela, D. Caldas, M. Farange, and M. Lobosco. "Multiscale Modeling of

Heterogeneous Media Applying AEH to 3D Bodies," Computational Science and its

Applications - ICCSA 2012, Lecture Notes in Computer Science, 7333, pp. 675-690 (2012).

16. S. Ovaysi and M. Piri. "Multi-GPU acceleration of direct pore-scale modeling of fluid flow

in natural porous media," Computer Physics Communications, 183 (9), pp. 1890-1898

(2012).

116

17. R. Helfenstein, J. Koko. "Parallel preconditioned conjugate gradient algorithm on GPU,"

Journal of Computational and Applied Mathematics, 236 (15), pp. 3584-3590 (2012).

18. M. Grote, and T. Huckle. "Parallel Preconditioning with Sparse Approximate Inverses,"

SIAM J. Sci. Comput., 18 (3), 838-853 (1997).

19. M. Rigley and C. Drumm. "Matrix Preconditioning for Photon Transport Equations,"

Technical Report, Sandia National Laboratories, SAND2011-6529 P (2011).

20. M. A. Heroux and J. M. Willenbring. "Trilinos Users Guide," Technical Report, SAND2003-

2952, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,

California 94550 (2003).

21. M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. "ML 5.0 smoothed

aggregation user's guide, Technical Report SAND2006-2649, Sandia National Laboratories

(2006).

22. M. Rigley and C. Drumm. "Matrix Preconditioning For Neutron Transport Equations,"

Technical Report, Sandia National Laboratories, SAND2012-7676 P (2012).

23. R. T. Ackroyd and N. S. Riyait, "Iteration and Extrapolation Methods for the Approximate

Solution of the Even-Parity Transport Equation for Systems With Voids," Ann. nucl. Energy,

16 (1), pp.1-32 (1989).

24. E. E. Lewis and W. F. Miller, Jr. Computational Methods of Neutron Transport, American

Nuclear Society, La Grange Park, Illinois (1993).

25. T. A. Brunner. "Forms of Approximate Radiation Transport," Sandia Report, SAND2002-

1778, Sandia National Laboratories (2002).

26. W. L. Morgan. "ELENDIF: A time-dependent Boltzmann solver for partially ionized

plasmas," Computer Physics Communications, 58 (1-2), pp. 127-152 (1990).

117

27. A. J. H. McGaughey and M. Kaviany. "Quantitative validation of the Boltzmann transport

equation phonon thermal conductivity model under the single-mode relaxation time

approximation," Physical Review B, 69, pp. 094303 (2004).

28. M. S. Gockenbach. Understanding and Implementing the Finite Element Method, Society for

Industrial and Applied Mathematicians (2006).

29. W. Reed, "New Difference Schemes for the Neutron Transport Equation," Nucl. Sci. Eng., 46

(2), pp.309-314 (1971).

30. C. J. Gesh and M. L. Adams, "Even- and Odd-Parity Finite Element Solutions to Thick

Diffusive Problems in Cartesian Geometry," Advanced Methods in Radiation Transport,

M&C 99, Madrid, Spain (1999).

31. T. M. Austin and T. A. Manteuffel. "A Least-Squares Finite Element Method for the Linear

Boltzmann Equation with Anisotropic Scattering," SIAM J. Numer. Anal., 44 (2), pp. 540-

560, Society for Industrial and Applied Mathematicians (2006).

32. M.E. Cantekin and J.J. Westerink, “Non-diffusive N + 2 Degree Petrov-Galerkin Methods

for Two-Dimensional Transient Transport Computations,” International Journal for

Numerical Methods in Engineering, 30, pp.397-418 (1990).

33. H. Anton and C. Rorres. Elementary Linear Algebra: Applications Version, Eight Edition,

John Wiley & Sons, Inc. (1973).

34. Saad, Yousef. Iterative Methods for Sparse Linear Systems. Yousef Saad (2000).

35. G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, The John Hopkins

University Press (1996).

36. Picture Reference, Figure 2.4, http://hep.physics.indiana.edu/~hgevans/p410-

p609/material/06_fit/func_min.html.

118

37. R. Moore. Vector and Matrix Differentiation, Ed. Ross Moore and Nikos Drakos, Macquarie

University, Sydney, 1 Feb. 2002. Web. 22 Aug. (2011).

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html

38. T. K. Moon and W. C. Sterling. Mathematical Methods and Algorithms for Signal

Processing, Prentice Hall (2000).

39. Picture Reference, Figure 2.5. http://www.dreamstime.com/stock-photography-mountain-

trail-switzerland-alps-image6166482.

40. H. A. Van Der Vorst. "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for

the solution of non-symmetric linear systems," SIAM Journal on Scientific and Statistical

Computing, 12, pp. 631-644 (1992).

41. C. Drumm and W. Fan. "Uncollided-Flux Preconditioning of the Conjugate Gradients

Solution of the Transport Equation," Nuclear Mathematical and Computational Sciences: A

Century in Review, A Century Anew, Gatlinburg, Tennessee, April 6-11, 2003, on CD-ROM,

American Nuclear Society, LaGrange Park, IL (2003).

42. G. L. G. Sleijpen and D. R. Fokkema. "BiCGstab(/) for linear equations involving

unsymmetric matrices with complex spectrum," Electronic Transactions on Numerical

Analysis, 1, pp. 11-32 (1993).

43. Y. Watanabe and C.W. Maynard. “The discrete cones method in two dimensional neutron

transport computations,” University of Wisconsin, Report UWFDM-574 (1984).

44. M. Rigley, J. Koebbe, and C. Drumm, "Uncollided-flux Preconditioning for the First Order

Transport Equation," International Conference on Mathematics and Computational Methods

Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9,

2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013).

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html
http://www.dreamstime.com/stock-photography-mountain-trail-switzerland-alps-image6166482
http://www.dreamstime.com/stock-photography-mountain-trail-switzerland-alps-image6166482

119

45. P.A. Raviart and J.M. Thomas. "Mixed finite element methods for second-order elliptic

problems," Lecture Notes in Mathematics, 606, Springer-Verlag, New York (1977).

46. F. Brezzi, J. Douglas, Jr., and L.D. Marini. "Two Families of Mixed Finite Elements for

Second Order Elliptic Problems," Numerische Mathematik, 47, pp. 17-235, Springer-Verlag

(1985).

47. T.F. Russell and M.F. Wheeler. "Finite Element and Finite Difference Methods for

Continuous Flows in Porous Media," The Mathematics of Reservoir Simulation, the Society

for Industrial and Applied Mathematicians (1983).

48. P. Colella, P. Concus, and J. Sethian. "Some Numerical Methods for Discontinuous Flows in

Porous Media," The Mathematics of Reservoir Simulation, the Society for Industrial and

Applied Mathematicians (1983).

49. M. H. Holmes. Introduction to Perturbation Methods, Beijing : Springer-Verlag, (1999).

ISBN 7-5062-2682-0.

50. L. L. Watkins. Using Wavelets as a Computational and Theoretical Tool for

Homogenization, Logan, UT : Utah State University (2005).

51. U. Hornung. "Homogenization and Porous Media," Interdisciplinary Applied Mathematics 6

(1997).

52. M. Rigley. "Homogenization for Porous Media," A technical report written in partial

fulfillment of PhD Degree, Utah State University (2012).

53. C. Chen and E. Meiburg. "Miscible porous media displacements in the quarter five-spot

configuration. Part 1. The homogeneous case," J. Fluid Mech, 371, pp. 233-268, Cambridge

University Press (1998).

120

54. C.W. Brand, U. Stanford, J.E. Heinemann, U. L. Mining, and K. Aziz. "The Grid Orientation

Effect in Reservoir Simulation," SPE Symposium on Reservoir Simulation, 17-20 February,

Anaheim, California (1991).

55. G. W. Milton. The Theory of Composites, Cambridge, UK: Cambridge University Press

(2002).

56. R. Farber. CUDA Application Design and Development, Morgan Kaufmann (2011). ISBN-

13: 978-0-12-388426-8.

57. A. Badal and A. Badano. "Accelerating Monte Carlo simulations of photon transport in

voxelized geometry using a massively parallel graphics processing unit," Med. Phys., 36, pp.

4878 (2009).

58. F. A. van Heerden. "A Coarse Grained Particle Transport Solver Designed Specifically for

Graphics Processing Units," Transport Theory and Statistical Physics, 41 (1) (2012).

59. Z. Zhang and Q. Kan Wang. "Accelerating a three-dimensional MOC calculation using GPU

with CUDA and two-level GCMFD method," Annals of Nuclear Energy, Elsevier, 62, pp.

445-451 (2013).

60. C. Gong, J. Liu, H. Chen, J. Xie, and Z. Gong. "Accelerating the Sweep3D for a Graphic

Processor Unit," Journal of Information Processing Systems, 7 (1), pp. 63-74 (2011).

61. M. Trapeznikova, B. Chetverushkin, N. Churbanova and D. Morozov. "Two-Phase Porous

Media Flow Simulation on Hybrid Cluster," Large-Scale Scientific Computing, Lecture

Notes in Computer Science, 7116, pp. 646-653 (2012).

62. L. Ruipeng and Y. Saad. "GPU-Accelerated Preconditioned Iterative Linear Solvers,"

Technical Report, Department of Computer Science & Engineering; University of

Minnesota, USA (2010).

121

63. M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. "A Parallel Preconditioned Conjugate

Gradient Solver for the Poisson Problem on a Multi-GPU Platform," Parallel, Distributed and

Network-Based Processing (PDP), 2010 18th Euromicro International Conference, 17-19

Feb., pp. 583-592 (2010).

64. A. Cevahir, A. Nukada, and S. Matsuoka. "Fast Conjugate Gradients with Multiple GPUs,"

Computational Science - ICCS 2009, Lecture Notes in Computer Science, 5544, pp. 893-903

(2009).

65. G. Grawanis, C. Filelis-Papadopoulos, K. Giannoutakis. "Solving finite difference linear

systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate

Gradient type Methods," The Journal of Supercomputing, 61 (3), pp 590-604 (2012).

66. J. Sanders, E. Kandrot. CUDA BY EXAMPLE: An Introduction to General-Purpose GPU

Programming, NVIDIA Corporation (2011).

122

APPENDICES

123

APPENDIX A - CUDA TUTORIAL

Tutorial for Running Codes in CUDA

A.1 Installing CUDA in Windows

Directions for installing CUDA can be found on NVIDIA's website at

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/

Additional helpful directions for using CUDA within a Visual C++ framework can be

found at

http://julip.co/2009/09/how-to-install-and-configure-cuda-on-windows/

Once CUDA and Visual C++ are installed on your computer, you can find the

preconditioned conjugate gradient method under the following folder

C:\ProgramData\NVIDIA\ Corporation\CUDA\Samples\...

v5.0\7_CUDALibraries\conjugateGradientPrecond

Open this solution or project in Visual C++. The file that comes up should be main.cpp.

This file contains code for running a conjugate gradient and preconditioned conjugate

gradient method for a matrix made up of the Laplacian Operator with and incomplete LU

factorization as the preconditioner. Run the code by typing ctrl + F5 to see the output. It

should look like the figure below. Much of the code contained in the main.cpp file is for

setting up the linear system to be run on the GPU and need not be changed to run the two

iterative methods on a different linear system.

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/
http://julip.co/2009/09/how-to-install-and-configure-cuda-on-windows/

124

Figure A.1 Screen Shot of Results of CUDA Conjugate Gradient Method

A.2 Running the LSFEM on CUDA

Several things need to be changed from the original file to accommodate the LSFEM

linear system. First, add additional header files for inputting and outputting matrices and

vectors to and from text files and for checking the run time. More specifically, add the

following to the list of include statements at the top of the file main.cpp.

 // includes, additions

 #include <iostream>

 #include <fstream>

 #include <time.h>

 using namespace std;

The function void genLaplace will not be used for the new linear system and can be

deleted if desired. The second and main change to the code is replacing the existing linear

system with a linear system of your own. The code is setup for compressed sparse row

format (CSR) and the matrix that you input should be in the same format. If so, then you

can use the current variables given in the code and leave the code for transferring

125

memory to the GPU alone. Otherwise, additional changes will have to be made. More

specifically, lines 183-198 in main.cpp can be replaced by your linear system. Modify the

size of the system, number of nonzeros, row pointers, column indeces, nonzero matrix

values, initial guess values, and right hand side values according to your linear system.

Below is the code that can be used to replace the lines above to create the LSFEM linear

system.

 /* Create My Own Matrix */

 M = N = 640;

 nz = 6908;

 I = (int *)malloc(sizeof(int)*(N+1)); // csr row pointers for

 matrix A

 float *Itest;

 Itest = (float *)malloc(sizeof(float)*(N+1));

 J = (int *)malloc(sizeof(int)*nz); // csr column indices for

 matrix A

 float *Jtest;

 Jtest = (float *)malloc(sizeof(float)*nz);

 val = (float *)malloc(sizeof(float)*nz); // csr values for

 matrix A

 x = (float *)malloc(sizeof(float)*N);

 rhs = (float *)malloc(sizeof(float)*N);

 for (int i = 0; i < N; i++)

 {

 rhs[i] = 0.0; // Initialize RHS

 x[i] = 0.0; // Initial approximation of solution

 }

 // Test Additions

 ifstream ffin1;

 ffin1.open("Aval.txt");

 for(int ii=0;ii<nz;ii++)

 {

 ffin1 >> val[ii];

 }

 ffin1.close();

 ifstream ffin2;

 ffin2.open("Acol.txt");

 for(int ii=0;ii<nz;ii++)

 {

 ffin2 >> Jtest[ii];

 J[ii] = int(Jtest[ii])-1;

 }

 ffin2.close();

 ifstream ffin3;

 ffin3.open("Arptr.txt");

 for(int ii=0;ii<N+1;ii++)

 {

126

 ffin3 >> Itest[ii];

 I[ii] = int(Itest[ii])-1;

 }

 ffin3.close();

 ifstream ffin4;

 ffin4.open("rhs.txt");

 for(int ii=0;ii<N;ii++)

 {

 ffin4 >> rhs[ii];

 }

 ffin4.close();

Note that the size of the linear system M, and the number of nonzeros are input

manually into the code. For this case, the maximum number of iterations should be at

least 3000. Also note that the values for the matrix values, row pointers, column indices,

and right hand side values need to be saved to files Aval.txt, Arptr.txt, Acol.txt, and

rhs.txt respectively and stored in the given folder. The size of matrix and number of

nonzeros above are for the case when the number of scattering directions is 8 and the

number of steps is 80. Once the above modifications are made, the conjugate gradient

algorithm should run and give the following output.

Figure A.2 Screen Shot of Results of LSFEM in CUDA

127

This completes the tutorial. From here, simple modifications explained above can be

made for different linear systems. To change the preconditioner like in the results of

Chapter 4, modifications need to be made to the transferring of data to the graphics

processing unit. Some of those changes are not too difficult, but will not be discussed

within this tutorial.

128

APPENDIX B - USERS MANUALS

B.1 Users Manuals for Particle Transport Codes

B.1.1 Function Explanations for the 1D Continuous LS Finite Element Toolbox

List of Scripts

reedproblemsetup – This is a script that sets up the parameters for the problem

 given in [3].

NT1DSimulation – This script runs the solver for the 1D equation.

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

List of Functions

cootwostand – This is an extra function included if you want to convert a matrix from

 COO to standard format.

LegGaussquad – This function runs Gauss Legendre quadrature and gives the directions

 and weights for the scattering integral. For this version the weights add up to 2.

matvec_csr – This function performs matrix vector multiplication for a matrix in CSR

 format and a vector in standard format.

NT_1D_FEMls – This function takes the input parameters from the setup scripts and

 creates the linear system matrix.

NT_1D_FEMls_precM – This function creates the preconditioned matrix. It gives the

 same result as NT_1D_FEM_coo with sigma_s set to zero, but written simpler.

129

preccg_csr – This function runs a preconditioned conjugate gradient algorithm in CSR

 format. See [7] for details.

For an example on how to run the code, look at script NT1DSimulation.

130

B.1.2 Function Explanations for the 1D Discontinuous Finite Element Toolbox

List of Scripts

reedproblemsetup – This is a script that sets up the parameters for the

 problem given in [3].

clifproblemsetup – This is a simpler problem set up that was used to test the code.

NT1DSimulation – This script runs the solver for the 1D equation.

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

List of Functions

biconjgradstab – This function runs the biconjugate gradient stabilized iterative solver.

 See Saad’s book on iterative solvers.

blockLU_precM – This function finds the LU decomposition of the preconditioning

 matrix.

cootwostand – This is an extra function included if you want to convert a matrix from

 COO to standard format.

LegGaussquad – This function runs Gauss Legendre quadrature and gives the directions

 and weights for the scattering integral. For this version the weights add up to 2.

LUsolve_precM – This function solves the linear system for the preconditioner given the

 preconditioner in LU form.

matvec_csr – This function performs matrix vector multiplication for a matrix in CSR

 format and a vector in standard format.

131

NT_1D_FEM_coo – This function takes the input parameters from the setup scripts and

 creates the linear system matrix.

NT_1D_FEM_coo_precM – This function creates the preconditioned matrix. It gives the

 same result as NT_1D_FEM_coo with sigma_s set to zero, but written simpler.

precbiconj – This function is a preconditioned stabilized biconjugate gradient iterative

 solver modified from the one found on Wikipedia.

For an example on how to run the code, look at script NT1DSimulation.

132

B.1.3 Function Explanations for the 2D Continuous LS Finite Element Toolbox

List of Scripts

bc_riyait - Applies the boundary conditions for the square source void problem

bc_riyait_norhs - A simplified form of bc_riyait

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

NT2DSimulation_5_5 - The main script to run the code including setting up the matrix,

 solving the linear system, and graphing the results

List of Functions

matsparstocsr - A function that takes a Matlab sparse matrix A and outputs the vectors

 representing the nonzero values, row pointers, and column indeces in CSR format

NT_2D_LS - A function that takes in the problem parameters and computes components

 of the linear system. The linear system is assembled inside of

NT2DSimulation_5_5 to help achieve the largest possible matrix given the current

 Matlab memory limits

NT_2D_LS - A modification of NT_2D_LS to break up the work of NT_2D_LS and

 assist in avoiding the Matlab memory limit

List of Pre-computed Objects

s8quad - quadrature weight as directions for the S
8
 level-symmetric set

s10quad - quadrature weight as directions for the S
10

 level-symmetric set

133

s12quad - quadrature weight as directions for the S
12

 level-symmetric set

LS_nx16_ny16_s8 - Linear System elements for the 16 x 16 case with S
8
 level-symmetric

 set

LS_nx16_ny16_s10 - Linear System elements for the 16 x 16 case with S
10

 level-

 symmetric set

LS_nx16_ny16_s12 - Linear System elements for the 16 x 16 case with S
12

 level-

 symmetric set

134

B.1.4 Function Explanations for the 2D Discontinuous Finite Element Toolbox

List of Scripts

NT2DSimulation_5_5 - The main script to run the code including setting up the matrix,

 solving the linear system, and graphing the results

The following are scripts that are repeated throughout NT_2D_DFEM for the various

parts of the linear system matrix. They are divided by the terms in Equation (27) above.

first_order_mux_neg

first_order_mux_neg_rbc

first_order_mux_pos

first_order_muy_neg

first_order_muy_neg_rbc

first_order_muy_pos

 rhs_script

zero_order_nonscat

zero_order_scat

List of Functions

NT_2D_DFEM - Function that takes the problem parameters and creates the linear

 system

NT_2D_DFEM_# - Simplified form of NT_2D_DFEM to split up the work and speedup

 the process

135

List of Data Objects

s8quad - quadrature weight as directions for the S
8
 level-symmetric set

s10quad - quadrature weight as directions for the S
10

 level-symmetric set

s12quad - quadrature weight as directions for the S
12

 level-symmetric set

DFEM_nx16_ny16_s8 - Linear System elements for the 16 x 16 case with S
8
 level-

 symmetric set

DFEM_nx16_ny16_s10 - Linear System elements for the 16 x 16 case with S
10

 level-

 symmetric set

DFEM_nx16_ny16_s12 - Linear System elements for the 16 x 16 case with S
12

 level-

 symmetric set

136

B.2 Users Manuals for Fluid Transport Codes

B.2.1 Function Explanations for the 2D and 3D MFEM Toolboxes

List of Scripts

MFEMSimulation - Main script for setting up the problem, building the linear system,

 solving it and graphing the result

homogExample - same as MFEMSimulation except that it's specified for problem 3.2.1

 above

homogalphatest - same as homogExample except that it's modified to run the alpha test in

 3.2.3

onedflowExample - same as MFEMSimulation except that it's specified to run the one

 dimensional flow problem 3.2.2

List of Functions

MFEM_Full - Creates the components of the linear system (80) above

MFEM_Full_flow - same as MFEM_Full but with modified boundary condition for the

 one dimensional flow problem 3.2.2

precCG - preconditioned conjugate gradient algorithm

solveCG - conjugate gradient algorithm

137

VITA

Michael Rigley

PhD Student, Department of Mathematics and Statistics, Utah State University
Email: michael.rigley@aggiemail.usu.edu • Phone: (801) 388-9909

Academic Preparation

Brigham Young

University
Mathematics
Russian

 B.S.—3.77 GPA,

2007

Utah State University Applied Mathematics,
Interdisciplinary

 M.S.—3.92 GPA,

2009
 PhD—3.94 GPA,

2013

Professional Experience

Technical Intern, Sandia National Laboratories-SEERI 2 years
Research Assistant, Utah State University – Modeling Fluid Flow in Mountain Lakes 1 year

Research Fellow, National Physical Science Consortium 2 years

Graduate Instructor, Department of Mathematics and Statistics 5 years

Current Research

 Finite Element Method Solvers for First Order Particle Transport Equations (1 year)

 For the second summer as an intern and continued as part of PhD research three codes are

 written for the first order particle transport equation including a least squares finite

 element method, a discontinuous finite element method, and a mixed finite elment

 method. These codes are written in one and two dimensions. Uncollided-flux

 preconditioners are used in conjunction with the linear solvers of each method. Iterative

 linear solvers are also written for these methods.

 Codes written in MATLAB

 Preconditioning Mixed Finite Element Methods for Flow Equations in Porous Media (1

 year)

 Solutions of second order flow equations with diagonal permeability tensors are used as

 preconditioners for solutions of flow equations with full permeability tensors within a

 mixed finite element method. The method also incorporates the method of

 homogenization on the permeability tensors over the domain.

 Codes written in C++, MATLAB

 GPU Finite Element Solvers for Transport Equations (1 year)

 Several of the above transport codes will be written in OpenCL or CUDA to run on

 GPU's.

 Codes written in C++, OpenCL, CUDA

Previous Research

 Matrix Preconditioning for Photon Transport Equations (1 year)

 For the first summer as a technical intern at Sandia National Laboratories-Science of

 Extreme Environment Research Institute a multilevel preconditioning package, ML,

 developed by the Trilinos group, was used to speed up the linear solver within

 SCEPTRE, a radiation transport code also developed at Sandia. Specifically various

138

 smoothers were tried within ML to speed up the conjugate gradient method within the

 SCEPTRE code. Chebyshev polynomials were found to work well on the given problem.

 Codes developed in C++

 Finite Element Solvers for Computational Homogenization in Porous Media (1 year)

 As part of a comprehensive examination, finite element solvers were written for second

 order fluid transport equations in one, two and three dimensions. The assumption of

 periodicity on the homogenized problem allows for a unique matrix storage structure that

 is easily applicable to iterative solvers.

 Codes written in MATLAB

 Factor Analysis Approximations in Dimension Reduction for Face Recognition Software

 (1 year)

 Centroid approximations were used as approximations to the singular value

 decomposition within face recognition software.

 Software was developed in MATLAB

 Using Image Processing in Determining Wildlife Populations (1 year)

 As part of a student team, an unsupervised object detection algorithm was developed to

 calculate wildlife populations from aerial images.

 Algorithm developed in MATLAB

Software Experience

 MATLAB (5 years)

 C++, OpenCL, CUDA (1 year)

 Java (1 year)

Publications

 M. Rigley, Intermediate Complexity Biological Modeling Framework for Mountain

 Lakes Based on Physical Structure, Masters Thesis, Utah State University, Fall 2009.

 M. Rigley, Matrix Preconditioning for Photon Transport Equations, technical report,

 SAND 2011-6529 P , Summer 2011.

 M. Rigley, Matrix Preconditioning for Neutron Transport Equations, technical report,

 SAND 2012-7676 P, Summer 2012.

 D. Sunderland, M. Garlick, M. Rigley, M. Scott, and K. Keepers, Efficient Assay

 Algorithm for PCR Primers, technical report, USU, April 2008.

 M. Rigley, C. Drumm, J. Koebbe, Uncollided-Flux Preconditioning for the First Order

 Transport Equation, Mathematics & Computation May 2013, Sun Valley Idaho.

 Preconditioners and Mixed Finite Element Methods for Fluid Flow in Porous Media,

 dissertation topic, to be completed Spring 2013.

Presentations

 Matrix Preconditioning for Photon Transport Equations (Poster), Sandia SIP Poster

 Event, August 2011, SAND number unknown.

 Transport Equations: Preconditioning Discontinuous FEM’s, SAND 2012-6203P, SEERI

 (Science of Extreme Environments Research Institute) End of Summer Presentations,

 August 2012.

 Numerical Techniques in Modeling Fluid Flow Through Porous Media, Intermountain

 Graduate Research Symposium, April 2012.

 Intermediate Complexity Biological Modeling Framework for Mountain Lakes Bases on

 Physical Structure, Intermountain Graduate Research Symposium, March 2010.

139

 Show Your True Eigenface: A Workshop on Image Processing, Sponsored by

 MSPDAWG – USU’s Mathematics and Statistics Professional Development and

 Working Group, with funding from the Park City Mathematics Institute and Utah State

 University, May 2011.

Awards/Appointments

 Research Fellow, National Physical Science Consortium (2011-2013)

 Image Processing Summer School, Park City Math Institute (2009)

 Teaching Above and Beyond the Call of Duty, Math Department Award (2009)

	Physically Based Preconditioning Techniques Applied to the First Order Particle Transport and to Fluid Transport in Porous Media
	Recommended Citation

	tmp.1399661038.pdf.tFy0p

