
40

Figure 2.6. Example of Optimal Steepest Descent

Figure 2.7. Example of Skewed Steepest Descent

future search directions are chosen in a way so as to not travel in the same direction

multiple times, one of the drawbacks of the Steepest Descent Method. Specifically new

x0

x1 x2

x0

x1

41

search directions are chosen so that they are A-conjugate with all previous search

directions. Two vectors, u and v, are A-conjugate if

 u
T
Av = 0 (2.65)

If we use the initial residual r0 = b - Ax0, and choose future directions so that they are

A-conjugate with previous directions, a three term recurrence results [34]. In other words,

only the previous two residuals are needed to make the search direction orthogonal to all

the previous directions. In terms of the CG method, this adds two more equations.

k

T

k

k

T

k

k
rr

rr 11

1



  (2.66)

 kkkk srs 111    (2.67)

All of this can be combined together to form the CG Algorithm for solving the linear

system Ax = b.

 Conjugate Gradient Method - See Heath [2], Page 473

 A is a matrix in R
n x n

. r, b, x, and s are vectors in R
n
. α, tol and β are scalars.

 Algorithm 2.1 Conjugate Gradient Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 s0 = r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
rk/sk

T
Ask search parameter

 xk + 1 = xk + αksk

 rk + 1 = rk - αkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = rk + 1
T
rk + 1/rk

T
rk conjugate parameter

 sk + 1 = rk + 1 + βk + 1sk

 end

Basically, the algorithm starts with a linear system Ax = b, and an initial guess x0, and

runs until some tolerance is reached, generally some measure of the residual as shown

above. As mentioned earlier, this algorithm only works for symmetric positive definite

42

matrices. Luckily many of the linear systems resulting from solving differential equations

are symmetric positive definite. For well conditioned matrices, the CG method will

converge in at most n steps, where n is the size of the matrix. Generally it will converge

much faster than this.

The majority of the computational time for the algorithm comes with the matrix

multiplication Ask. It should be noted that this multiplication only needs to be performed

once per iteration. The rest of the algorithm is made up of scalar and vector operations.

2.4.2.2 BICGSTAB Method

The bi-conjugate gradient stabilized (BICGSTAB) method is derived from the bi-

conjugate gradient method (BICG). More specifically it is derived from the conjugate

gradient squared (CGS) method. The details of the derivations of these methods will not

be given here, but can be found in [34] [40]. Suffice it to say that these methods are

similar to the CG method except that they do not require the linear system to be

symmetric or positive definite. They do require the matrix to be invertible. They are

based on similar conjugacy conditions as those mentioned for the CG method.

Given a linear system Ax = b, where we now only require A to be invertible, we have

the BICGSTAB algrithm.

 Biconjugate Gradient Stabilized Method - See Saad [34]

 A is a matrix in R
n x n

. r, b, x, and s are vectors in R
n
, α, Ω tol and β are scalars.

 Algorithm A.2 Bi-Conjugate Gradient Stabilized Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 p0 = r0 initial search direction

 for k = 0,1,2,...

43

 αk = rk
T
r0/pk

T
A

T
r0 search parameter

 sk = rk - 1 - αkApk additional search direction

 Ωk = sk
T
A

T
sk/(sk

T
A

T
Ask) additional search parameter

 xk + 1 = xk + αkpk + Ωksk

 rk + 1 = sk - ΩkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = (rk + 1
T
r0/rk

T
r0)*(αk/Ωk) conjugate parameter

 pk + 1 = rk + 1 + βk + 1(pk - ΩkApk)

 end

There are a few things to be noted here. First note that only two Matrix multiplications

need be done at each iteration, Apk and Ask. The multiplication by the transpose of A need

not be performed since sk
T
A

T
 = (Ask)

T
 and pk

T
A

T
 = (Apk)

T
. Similar to the CG algorithm, the

algorithm stops once some tolerance is reached, generally some measure of the residual

vector. The algorithms are very similar and the small differences in BICGSTAB are based

on the fact that the matrix A is not symmetric.

Both the CG method and the BICGSTAB method are used in conjunction with the

LSFEM and DFEM. The linear systems resulting from the LSFEM and the DFEM are

solved by the CG and BICGSTAB methods respectively.

Sec 2.4.3 Preconditioning and Iterative Methods

Preconditioning linear systems has been studied for some time now and many

preconditioning techniques have been created from simple Jacobi iterations to more

complex algebraic multi-grid solvers. Preconditioning is related to the condition number

of a matrix. Given a matrix A in R
n x n

 and some norm ||.|| (generally the 2-norm), the

condition number is defined as

 1)( AAAcond (2.68)

44

If the matrix A is not invertible then the condition number is defined to be ∞. The lower

the condition number (ie the closer it is to one), the more the matrix resembles the

identity matrix and the easier the linear system is to solve. Consider the linear system

 bAx  , where A is in R
n x n

, x and b are in R
n
 (2.69)

The preconditioner M in R
n x n

 of a linear system is generally a simpler form of A.

Preconditioning can be thought of as applying M
 -1

 to each side of the original system

(2.67).

 bMAxM 11   (2.70)

An effective preconditioner will create a system that is easier to solve than the original

system.

Preconditioners are often applied to iterative methods in order to speed up, and in

some cases even obtain, convergence. The choice of the preconditioner comes down to

the trade-off between number of iterations and cost per iteration. A preconditioner can

significantly reduce the number of iterations, but will also increase the amount of

computation at each iteration. Some common preconditioners are diagonal (also called

Jacobi), block diagonal, Succesive Over Relaxation, Incomplete LU Factorizations,

polynomial, and multigrid [2]. These preconditioners could be called algebraic

preconditioners because they depend only upon the matrix itself, not upon the problem

from which the matrix resulted. These are often called black box preconditioners because

they don't require any inputs other than the matrix itself. In other cases, preconditioners

are created from the original problem from which the linear system resulted. These are

called physically based preconditioners. Often preconditioners include some combination

of both algebraic methods and physically based methods.

45

Examples of using both black box and physical based preconditioners are plentiful. In

[19], black box preconditioners were used to optimize solution methods of second order

formulations of the transport equation and in [41] a physical based preconditioner was

used for the same second order formulations, which physical based preconditioner will be

discussed in more detail later. There are pros and cons of each method. Black box

preconditioners are nice because they are generally very easy, the one exception being

multigrid preconditioners. It generally comes down to a few simple choices of parameters

based on the preconditioner used. Physical based preconditioners are nice because most

problems result in a particular matrix structure and this structure, when known, can be

utilized to make the preconditioner more efficient. In general, a combination of both

preconditioners can be used. In fact, there is no reason why the preconditioned system

cannot be preconditioned itself and so on, and this is commonly done.

In this paper, a physical based preconditioner is created for the LSFEM and DFEM

and is applied both by a direct method and by an incomplete LU factorization. Tests on

their relative performance are done below in the results section. We will first present the

preconditioned form of the algorithms.

Sec 2.4.3.1 Preconditioned CG/BICGSTAB

To solve the linear systems, Equations (2.28) and (2.36), two iterative methods were

used. The LSFEM results in a linear system whose system matrix is symmetric positive

definite (spd) to which the preconditioned conjugate gradient method is applied. The

preconditioned CG method is very similar to the original CG method.

46

 Preconditioned Conjugate Gradient Method - See Heath [2], Pate 474

 A and M are a matrices in R
n x n

. r, b, x, and s are vectors in R
n
, α, tol and β are

 scalars.

 Algorithm 2.3 Preconditioned Conjugate Gradient Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 s0 = M
-1

r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
M

-1
rk/sk

T
Ask search parameter

 xk + 1 = xk + αksk

 rk + 1 = rk - αkAsk

 if || rk + 1|| < tol, stop

 βk + 1 = rk + 1
T
M

-1
rk + 1/rk

T
M

-1
rk conjugate parameter

 sk + 1 = M
-1

rk + 1 + βk + 1sk

 end

Note that the only difference is that the inner products of the residual vectors are replaced

by preconditioned inner products. As mentioned above, the effect of the preconditioning

is to take the system matrix into consideration when looking for the minimum solution.

Since A and M are linear transformations, preconditioning can also be explained as taking

the original solution space like the one in Figure 2.7 and transform the solution space

itself to be more circular like that in Figure 2.6, thus making it easier for the CG method

to arrive at the solution. It should be noted that the equation that we are actually solving

here is the preconditioned equation of the form

 L
-1

AL
-T

Lx = L
-1

b (2.71)

which is equivalent to Ax = b where M = LL
T
. The reason for this is to retain a positive

definite system matrix so that the CG method can be applied. The algorithm formed by

applying the CG method to Equation (2.71) can be rearranged to form Algorithm 2.1 [2].

The actual derivation of the preconditioned method can be found in [34] or [35].

47

This preconditioning is only effective (ie accurate and faster) if the preconditioner M

is much easier to work with than A. Specifically it is only effective if the general system

Mx = r is easier to solve (ie faster) than Ax = b and if M is still a good approximation of

A.

The DFEM results in a linear system that is not symmetric to which a preconditioned

biconjugate gradient stabilized method is applied.

 Preconditioned Biconjugate Gradient Stabilized Method - See Saad [34]

 A ≈ K = K1K2 are in R
n x n

. r, b, x, p and s are in R
n
, α, Ω, tol and β are scalars.

 Algorithm 2.4 Preconditioned Bi-Conjugate Gradient Stabilized Method

 x0 initial guess

 r0 = b - Ax0 initial residual

 p0 = r0 initial search direction

 for k = 0,1,2,...

 αk = rk
T
r0/pk

T
K

-T
A

T
r0 search parameter

 sk = rk - 1 - αkAK
-1

pk additional search direction

 Ωk = sk
T
K

-T
A

T
K1

-T
K1

-1
sk/(sk

T
K

-T
A

T
K1

-T
K1

-1
AK

-1
sk) addtl srch par

 xk + 1 = xk + αkK
-1

pk + ΩkK
-1

sk

 rk + 1 = sk - ΩkAK
-1

sk

 if || rk + 1|| < tol, stop

 βk + 1 = (rk + 1
T
r0/rk

T
r0)*(αk/Ωk) conjugate parameter

 pk + 1 = rk + 1 + βk + 1(pk - ΩkAK
-1

pk)

 end

This formulation of the preconditioned BICGSTAB method is a little more flexible than

the preconditioned CG method. This flexibility results from the matrix being non-

symmetric. This method can accommodate a preconditioner of the form M = K1K2. This

is very useful since the preconditioner is often decomposed into two factors like in an

incomplete LU decomposition. In many cases, we can choose K2 = I in which case we

can replace all the K's in the above algorithm with M.

48

Sec 2.4.3.2 Description of Physically Based Preconditioner

Equations (2.28) and (2.36) above each result in a linear system Ax = b, where A is in

R
n x n

 for some size n based on the finite element methods. x and b are vectors in R
n
. The

preconditioner that will be applied to each system is the uncollided-flux solution to the

transport equation, Equation (2.16). In other words the transport equation is solved with

σs set equal to 0.

 Qt ),(r (2.72)

This results in a much sparser system matrix M and the original linear system is modified

using this matrix

 M
-1

Ax = M
-1

b (2.73)

The benefit of this preconditioning is in part shown in Figure 2.8 below. In this figure, a

representation of the system matrix A is shown for a one dimensional problem with 16

directions and 80 spatial nodes. The original matrix A, when scattering is included, is

block diagonal or block tri-diagonal. When the scattering is removed, for the one-

dimensional problem, most of the blocks become empty and only the diagonal and two

off-diagonals remain.

Figure 2.8. Example of Matrix Preconditioning for Particle Transport

49

We can thus see the dramatic effect that a preconditioner can have on the condition of

a linear system. Since the preconditioner has significantly fewer non-zeros than the

original matrix it is also much easier to solve. When applied within iterative methods like

the conjugate gradient and biconjugate gradient method, it adds relatively few

computations to each iteration, but significantly reduces the number of total iterations

needed for convergence.

2.5 Numerical Results and Discussion

We will now look at the results from using the physically based preconditioner

described above. Two of the causes of computational difficulty or ill-conditioned

systems in particle transport problems are voids, when the total cross-section σt is zero,

and high scattering regions, when σs is very close to σt and problems with these

characteristics were chosen for analyzing the preconditioning methods. Methods with

both of these characteristics can be termed source-void problems. Each of the two finite

element methods, the LSFEM and DFEM, were tested on a one dimensional source-void

problem and a two dimensional source-void problem. The geometries for the problems

and the results are given below.

The tests were done in MATLAB using MATLAB sparse matrix structure in

conjugate gradient (CG) and stabilized biconjugate gradient methods (BICGSTAB). The

two algorithms stop or converge when the tolerance or squared residual norm is 10
-9

. Run

times for all of the results were calculated using Matlab's tic and toc functions. CG and

BICGSTAB methods for compressed sparse row (CSR) storage were written and tested

as well, but writing the algorithms with Matlab storage allows an easier comparison

50

between the physical based and black box preconditioners so the results when using CSR

storage are not shown here. The methods were compared against Matlab's built-in direct

solver and several blackbox preconditioners including Matlab's built in incomplete

Cholesky and incomplete LU factorizations. The final test looked at the performance of

each of the preconditioners for the LSFEM problem as the scattering cross-section σs is

increased from 0 to σt.

We will first look at the one dimensional problem and then the two dimensional

problem. After looking at the general performance of the physical based preconditioner,

we will then compare it with several Matlab blackbox preconditioners. These tests will

then be followed by discussion and conclusions.

2.5.1 1D Source Void Problem - Reed Problem [29]

The first problem is a one dimensional source void problem given by Reed in [29].

The geometry is given in Figure 2.4 below and cross-section data given in Table 2.1. The

problem contains five regions: a source, an absorber, a void, a source with scattering, and

an absorber with scattering. The boundary conditions are assumed to be reflective on the

left and vacuum on the right.

R1 R2 R3

x

0 2 5 3

R
ef

le
ct

iv
e

V
ac

u
u
m

Figure 2.9. Geometry of Reed Problem

R4 R5

6 8

51

Table 2.1. Cross Section Data for Reed Problem

Region Q σt σs

1 50 50 0

2 0 5 0

3 0 0 0

4 1 1 0.9

5 0 1 0.9

Both the LSFEM and DFEM perform well on this problem, but the precision needed to

obtain accuracy in the void region for the LSFEM is much greater than the precision

needed for the DFEM. As seen in Figure 2.10, even with the number of steps set at N =

800 the LS method is still linearly increasing over the void region rather than remaining

constant, whereas the discontinuous method (see Figure 2.11) achieves similar if not

greater accuracy with the number of steps set at N = 80. The problem itself is

discontinuous by nature of the discontinuous interaction cross-section σt, so the better

accuracy of the DFEM is to expected.

It should be noted that due to the choice of basis functions in Equations (2.29-2.32),

the size of the matrix for the discontinuous method is 4*M*N where the size of the matrix

for the LS method is only M*N. Furthermore, the DFEM matrix is not symmetric which

also increases the storage. However, for the one dimensional source-void problem, the

accuracy of the DFEM in the void region reduces the step size enough to make the

DFEM comparable if not superior to the LS method.

52

The benefit of the uncollided-flux preconditioner on each method can be readily seen.

The results are shown in Tables 2.2 & 2.3 and Tables 2.4 and 2.5. The results of the

conjugate gradient (CG) method for the LSFEM in Table 2.2 are compared with the

results of the preconditioned CG method for the LSFEM in Table 2.3. In this case we are

Figure 2.11. Scalar Flux for the DFEM on the

Reed Problem with m = 16, n = 80

DFEM Scalar Flux for Problem 2.5.1

Figure 2.10. Scalar Flux for the LS Method on

the Reed Problem with m = 16, n = 800

LS Scalar Flux for Problem 2.5.1

53

using the physical based (PB) preconditioner applied in an incomplete Cholesky

factorization (IC) fashion. In this case the run time is improved greatly‒over a 100 times.

Table 2.2. Results of CG Method on the LSFEM for Reed Problem

CG Method
Mesh Size (n-spatial, m-direction)

n = 800 n = 1600 n = 2400

m = 8 1.25 s, 170 it. 3.98 s, 10396 it. 8.99 s, 15583 it.

m = 16 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

m = 32 29.0 s, 13871 it. 115.0 s, 27979 it. 319 s, 43112 it.

Table 2.3. Results of PCG Method on the LSFEM for Reed Problem

PCG Method - PB IC

Mesh Size (n-spatial, m-direction)

n = 800 n = 1600 n = 2400

m = 8 0.00880 s, 20 it. 0.0175 s, 21 it. 0.0270 s, 21 it.

m = 16 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

m = 32 0.0714 s, 24 it. 0.146 s, 25 it. 0.259 s, 26 it.

The DFEM BICGSTAB method results in Table 2.4 are compared with the

preconditioned BICGSTAB method results in Table 2.5. Here the results are not only

better in terms of time, in some cases still over 100 times as fast, but also in terms of

convergence. Recall that the matrix in this case in not symmetric which is why the

BICGSTAB method is used instead of the CG method. In two of the cases in Table 2.4

the BICGSTAB method does not converge. This is because parameters within the

BICGSTAB algorithm get too small according to machine precision and result in division

54

by zero. As can be seen in Figure 2.12 a and b, the reason for this is due mainly to the

void region in the problem. Here the physical based precondtioner is applied in an

incomplete LU factorization (ILU) fashion.

Table 2.4. Results of BICGSTAB on the DFEM for Reed Problem

BICGSTAB

Method

Mesh Size (n-spatial, m-direction)

n = 80 n = 160 n = 240

m = 8 0.0444 s, 433 it. 0.251 s, 1112 it. DNC

m = 16 0.149 s, 558 it. 0.639 s, 1460 it. 1.46 s, 2487 it.

m = 32 0.561 s, 939 it. 3.38 s, 3153 it. DNC

Table 2.5. Results of PBICGSTAB on the DFEM for Reed Problem

PBICGSTAB

Method - ILU

Mesh Size (n-spatial, m-direction)

n = 80 n = 160 n = 240

m = 8 0.00148 s, 5 it. 0.00388 s, 6 it. 0.00426 s, 6 it.

m = 16 0.00439 s, 6 it. 0.00545 s, 5 it. 0.00785 s, 6 it.

m = 32 0.00681 s, 6 it. 0.0104 s, 5 it. 0.0184, 6 it.

55

The mesh sizes were chosen for this research so that they can still be run on a single

machine. The matrix sizes, therefore, were still small enough to compare with direct

methods, which can often be faster than iterative methods for smaller mesh sizes,

especially optimized commercial methods like those in Matlab. In Table 2.6, the physical

based (PB) preconditioner is applied in two fashions, a direct Cholesky factorization

fashion and an incomplete Cholesky (IC) factorization fashion. The direct and black box

Figure 2.12 a and b. Scalar Flux for the DFEM

Without Preconditioning on the Reed Problem

with n = 240, m = 8 and 32

DFEM Scalar Flux for Problem 2.5.1

a.

b.

56

preconditioners include Jacobi iterations, successive over-relaxation (SSOR), Matlab's

direct Cholesky (DC) factorization, and Matlab's incomplete Cholesky (IC) factorization.

As seen in Table 2.6, the direct Cholesky (DC) outperforms the unpreconditioned CG

method and Jacobi and SSOR preconditioning. This is not surprising and would be

expected to change for larger mesh sizes when memory becomes more of factor. The

physical based (PB) preconditioners still outperform the direct cholesky and are eclipsed

only by Matlab's Incomplete Cholesky preconditioner. The incomplete Cholesky

preconditioner is the incomplete Cholesky factorization of the original system matrix A

whereas the physical based incomplete Cholesky is the incomplete Cholesky factorization

on the preconditioner M. One other interesting note is that the number of iterations for the

physical based incomplete Cholesky factorization and the physical based direct Cholesky,

where the inner preconditioned solution is obtained through a direct Cholesky

factorization, both decrease in terms of numbers of iterations rather than increase as the

step size increases. This may be because the physical based preconditioner is affected

more by the increase in angles (m) than in the increase in steps (n), and increasing the

steps relative to the angles improves the effectiveness of the physical based

preconditioner.

The results in Table 2.7 are similar to Table 2.6 with a few notable exceptions. Here

SSOR is not applied within the BICGSTAB method because SSOR is only for symmetric

matrices. Here the Physical Based incomplete LU factorization actually outperforms

Matlab's incomplete LU factorization for some cases in terms of run time. This

improvement is more readily seen in the two dimensional problem below. Also, it is

interesting to note that the Jacobi preconditioner actually causes the original BICGSTAB

57

Table 2.6. Comparison of Preconditioners on the LSFEM for Reed Problem

PCG Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

None - CG 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

Jacobi (Diagonal) 1.77 s, 2287 it. 6.95 s, 4443 it. 15.9 s, 6688 it.

SSOR 1.20 s, 780 it. 4.66 s, 1529 it. 10.6 s, 2306 it.

None - DC 0.0474 s 0.0987 s 0.146 s

PB - DC 0.0301 s, 21 it. 0.0507 s, 20 it. 0.0729 s, 19 it.

PB - IC 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

IC 0.0123 s, 8 it. 0.0283 s, 9 it. 0.0485 s, 9 it.

 Table 2.7. Comparison of Preconditioners on the DFEM for Reed Problem

PCG Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 80 m = 16, n = 160 m = 16, n = 240

None - BICGSTAB 0.149 s, 558 it. 0.639 s, 1460 it. 1.46 s, 2487 it.

Jacobi (Diagonal) 0.0983 s, 263 it. DNC DNC

None - DLU 0.0102 s 0.0173 s 0.0284 s

Physical Based -

DLU

0.00501 s, 5 it 0.00626 s, 5 it. 0.00689 s, 5 it.

Physical Based - ILU 0.00439 s, 6 it. 0.00545 s, 5 it. 0.00785 s, 6 it.

ILU 0.00424 s, 4 it. 0.00566 s, 4 it. 0.00712 s, 4 it.

58

method not to converge. Slight changes to the original system can be the difference

between converging and not converging. One reason for non convergence is when the

matrix has large complex eigenpairs and that may be the case here [42].

In both the LSFEM and DFEM cases, the physical based preconditioner performs

well in reducing the run time for solving the linear systems association with the first

order formulation of the transport equation and are comparable to current black box

preconditioners. In the two dimensional problems we will see even greater

improvements.

2.5.2 Square Source Void Problem

The two methods were also tested on the square source void problem of Watanabe

and Maynard in [23] [41] [43]. The geometry is given in Figure 2.13 below and cross-

section data given in Table 2.8. The problem contains three regions: a source, a void, and

Reg 1

Reg 2

Reg 3

x

y

5

5

1.25

1.25 10

10

Reflective

R
ef

le
ct

iv
e

Vacuum

V
ac

u
u
m

Figure 2.13. Geometry of Square Source Void Problem

59

an absorber. The boundary conditions are assumed to be reflective on the left and lower

boundaries and vacuum on the top and right boundaries.

Table 2.8. Cross Section Data for Square Source Void Problem

Region Q σt σs

1 6.4 0.2 0.19

2 0 0 0

3 0 0.2 0.19

Figures 2.14 and 2.15 show the results of each method as a two dimensional plane

and Figure 2.16 shows the results along x = 5.625. As before, the size of the matrix for

the discontinuous method is 4*M*N where the size of the matrix for the LS method is

only M*N.

Figure 2.14. Scalar Flux for the Square Source

Void Problem Using the LSFEM

LS Scalar Flux for Problem 2.5.2

60

The two dimensional problem is only tested with respect to changes in the number of

angles and not in step size. This is to accommodate the memory restrictions on using a

single machine. The tests are performed at three different angular quadratures called

symmetric level sets which determine a certain number of angles around the unit circle.

Figure 2.16. Resulting Flux Along Line

x = 5.625 for Square Source Void Problem

Scalar Flux along x = 5.625 for Problem 2.5.2

* DFEM

o LS

Figure 2.15. Scalar Flux for the Square Source

Void Problem Using DFEM

DFEM Scalar Flux for Problem 2.5.2

61

Tables 2.9 and 2.10 show the comparison between the CG and BICGSTAB methods

with the physical based preconditioners, the physical based incomplete Cholesky for the

CG method and the incomplete LU for the BICGSTAB method. The improvement in run

time in each case is not as dramatic as with the one dimensional problem, but we still see

improvements of about 5 to 20 times.

Table 2.9. Results of Preconditioning on the LSFEM for Square Source Void Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

PCG - PB IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

Table 2.10. Results of Preconditioning on the DFEM for the

Square Source Void Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

BICGSTAB 5.16 s, 280 it. 11.3 s, 291 it. 24.3 s, 319 it.

PBICGSTAB - PB IC 0.382 s, 17 it. 0.682 s, 15 it. 1.28 s, 15 it.

Tables 2.11 and 2.12 show the comparison of the physical based preconditioner with

the other black box and direct preconditioners. In these cases the physical based

preconditioners actually outperform Matlab's incomplete LU factorizations. It is also

interesting to note that the direct Cholesky factorization and LU factorization outperform

the incomplete factorizations. This may be due to the two dimensional problem having a

62

more complex structure than the one dimensional problem making the incomplete

factorization less effective.

Table 2.11. Comparison of Preconditioners on LSFEM for Square Source Void Problem

PCG Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

None - CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

Jacobi (Diagonal) 1.43 s, 286 it. 3.45 s, 305 it. 6.56 s, 319 it.

SSOR 1.22 s, 113 it. 2.85 s, 125 it. 5.68 s, 134 it.

None - DC 0.994 s 2.44 s 5.17 s

IC 0.995 s, 96 it. 2.10 s, 99 it. 4.08 s, 103 it.

Physical Based - IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

Physical Based - DC 0.143 s, 16 it. 0.281 s, 17 it. 0.491 s, 17 it.

Table 2.12. Comparison of Preconditioners on DFEM for Square Source Void Problem

PCG Method

Mesh Size (n-spatial, m-direction)

S8 S10 S12

None - BICGSTAB 5.16 s, 280 it. 11.3 s, 291 it. 24.3 s, 319 it.

Jacobi (Diagonal) 4.04 s, 200 it. 8.18 s, 198 it. 15.8 s, 197 it.

None - DLU 3.60 s 10.9 s 23.3 s

Physical Based - DLU 0.980 s, 5 it. 1.55 s, 5 it. 2.32 s, 5 it.

ILU 0.677 s, 14 it. 1.33 s, 13 it. 2.49 s, 4 it.

Physical Based - ILU 0.382 s, 17 it. 0.682 s, 15 it. 1.28 s, 15 it.

63

2.5.3 Scattering Ratio

The final problem is to test the effectiveness of the preconditioners as the degree of

scattering is increased. This problem will have the same geometric structure as the square

source void problem with the slight difference that we will allow the scattering cross-

section σs value to vary between 0 and 0.19 within Region 1 and Region 3. These results

are only tested for the LSFEM at the S8 angular quadrature. The results are shown in

Table 2.13. Figure 2.17 shows the scalar flux along the line x = 5.625 for three of the

scattering cross-sections.

Table 2.13. Comparison of Preconditioners for LSFEM with varying Scattering Values

PCG Method

16x16 Mesh, S8

σs = 0.01 σs = 0.05 σs = 0.1 σs = 0.15 σs = 0.19

None - CG 2.11 s, 456 it. 2.16 s, 466 it. 2.15 s, 475 it. 2.27 s, 493 it. 2.28 s, 511 it.

Jacobi (Diagonal) 1.25 s, 257 it. 1.33 s, 262 it. 1.30 s, 267 it. 1.32 s, 278 it. 1.43 s, 286 it.

SSOR 1.09 s, 102 it. 1.10 s, 104 it. 1.12 s, 106 it. 1.13 s, 107 it. 1.22 s, 113 it.

None - DC 0.910 s 0.848 s 0.844 s 0.899 s 0.994 s

IC 0.882 s, 81 it. 0.885 s, 82 it. 0.872 s, 84 it. 0.944 s, 88 it. 0.995 s, 96 it.

Physical Based - IC 0.454 s, 87 it. 0.481 s, 89 it. 0.478 s, 91 it. 0.479 s, 93 it. 0.491 s, 98 it.

Physical Based - DC

0.0463 s, 257

it.

0.070 s, 7 it. 0.0978 s, 10 it. 0.116 s, 13 it. 0.143 s, 16 it.

The main thing of interest here is the performance of the preconditioner as the

scattering ratio increases. All of the preconditioners vary with respect to the scattering

64

ratio, some more dramatically than others. The main preconditioner of interest is the

physical based direct cholesky preconditioner which varies from 45 times improvement

to only a 15 times improvement. The incomplete cholesky preconditioner varies from 2.4

times improvement to a 2.3 times improvement. These are not exhaustive results and

should not be treated as such, but it seems that the physically based direct Cholesky is

much more affected by the change in scattering ratio than the other preconditioners.

2.6 Conclusions and Future Work

As can be seen in the results, dramatic improvements can be made on the run times

for linear systems that result from finite element approximations of the first order

formulation of the transport equation. The physically based preconditioner originally

proposed in [41] on the second order formulation has been shown to be effective on the

first order formulation of the transport equation as well. Some of these results were

presented in [44] as well. The physically based preconditioner was shown to be more

Figure 2.17. Flux Along Line x = 5.625 for

Several Scattering (σs) Values

Scalar Flux along x = 5.625 for Problem 2.5.2

o σs = 0.01

o σs = 0.1

o σs = 0.19

65

effected by changes in the scattering ration than other preconditioners, but still showed

much improvement to the other preconditioners.

This project was not an exhaustive result of all preconditioners, linear solution

methods, or even differential equation solution methods and further results can be done in

each area. Other finite element methods that were tried were a discontinuous least squares

finite element method (DLSFEM) and a mixed finite element method (MFEM). The

DLSFEM broke down in voids and alternative methods for improvement were out of the

scope of this work so it was dropped in favor of the DFEM and LSFEM. The MFEM as

mentioned above showed less stability compared to the DFEM and LSFEM and was

similarly dropped. Both of these methods could be explored further especially the

LSFEM and the physical based preconditioner could be coupled with the MFEM on

second order formulation of the transport problem as well.

Other linear solution methods that could be compared are generalized minimum

residual methods and more especially multigrid methods, which, although complex, have

been shown to be the fastest linear solvers [2]. As seen above there are also many ways of

implementing the preconditioners which could be explored further. Further work could

also be done on larger parallel computing architectures to see the results of each method

there. This will be explored in some detail in chapter 4, but only as it relates to parallel

computing on graphics cards using CUDA.

In summary, the physical based preconditioning proved effective on first order

formulations of the transport equation and further studies could be done to determine

better differential equation solution methods, linear system solution methods, or

66

preconditioners and preconditioner methods. In the next chapter we will see the results of

a physically based preconditioner on fluid transport problem.

67

CHAPTER 3

PHYSCIALLY BASED PRECONDITIONING FOR THE MIXED FINITE

ELEMENT METHOD APPLIED TO A HOMOGENIZED FORM OF THE FLOW

EQUATION IN POROUS MEDIA

The second major section of this research study was based on preconditioning the

linear systems resulting from mixed finite element methods (MFEMs) applied to a flow

equation for porous media. This was a continuation of previous research conducted by

Koebbe in [11]. In [11] a modification of the MFEM was used to increase the efficiency

of the conjugate gradient (CG) method for the linear system resulting from the MFEM for

homogenized forms of the flow equation. To further increase the efficiency of the CG

solver, in this study a physically based preconditioner was applied to the linear solver.

The mixed finite element method has been studied for some time and was originally

proposed in [45]. Consider the simple flow equation

 qhT )((3.1)

in one and two dimensions, where T is a matrix in R
2 x 2

 or R
3 x 3

, h is a scalar function of

two or three variables, and q is a scalar function of two or three variables. The basic idea

of the method is to split the above second order equation into a system of two first order

equations given by

 hTv  (3.2)

 qv  (3.3)

where v is a vector in R
2
 or R

3
. The term mixed comes from the determination of the basis

functions within the finite element method. The basis functions for the velocity are often

68

chosen to be a higher order than the order of the basis functions for the head or pressure

variable; for examples, see [9], [11], [45], and [46].

So, in other words we divide the original equation into a two equations related to the

velocity and apply the finite element method to both simultaneously. This allows for the

velocity v and the head or pressure variable h to be solved simultaneously. This makes it

possible to solve for the velocity more accurately [11]. However, this also greatly

increases the size of the linear system resulting from the finite element method which can

decrease efficiency. In some cases this greater size can be simply reduced to a smaller

size, but in other cases requires more effort. We will discuss a couple cases below.

In [9] various aspects of the MFEM were studied for the case when the transmissivity

tensor T is a diagonal matrix of the form

),(yxIT  (3.4)

where I is the identity matrix and ω is a function of two variables. In [9] is also included

an analytic solution of the flow equation for the identity transmissivity. The analytic

solution was used to test the validity of the mixed finite element codes written for this

study. When a diagonal transmissivity is used the linear system resulting from the MFEM

has a structure that is easily simplified to reduce the size of the system. This is shown

below in Equation (3.57). This is not true, however, for the case when T is a full matrix.

When T is a full matrix, solving the above equation becomes much more difficult.

The resulting linear system becomes a full system like in Equation (3.32) and is not as

easily reduced to a simpler system like in Equation (3.57). However, there are still some

things that can be done to simplify the system, but first we will consider what cases might

include a full transmissivity tensor.

69

For many problems the transmissivity is diagonal where only the transmissivity in the

coordinate directions is specified and the correlated transmissivities are zero (for

example, see [10]). One case where we encounter full transmissivity tensors is with

porous media. Various methods have been used for modeling fluid flow within porous

media. Examples of continuous and discontinuous methods can be found in [47] and [48]

respectively. Examples of porous media include water or oil in underground reservoirs.

These "reservoirs" are actually water or oil mixed with other sediments, and wells or

pumps extract the water or oil from the other sediments. Porous media problems are often

associated with the method of homogenization, see [10], [49], and [50]. Homogenization

could be called an averaging procedure for the transmissivity of porous media. For many

problems, like the example in Equation (3.4), the transmissivity is variable with respect to

the domain. Homogenization is a method of averaging the variable transmissivity to a

single constant transmissivity, greatly simplifying the problem. Thus the method of

homogenization creates a new problem whose solution approximates the solution of the

original problem. The accuracy of the approximation depends on the problem itself. This

particular study does not deal with the accuracy of homogenization, but it has been

shown to work well for media with a periodic porosity structure; see [10], [49], [51].

Some details on the homogenization procedure will be given below. Further details can

be found in [49], [50], [10], and [51].

Sometimes when using homogenization in porous media problems, a flow equation

that contains only diagonal transmissivity tensors can result in a full tensor. The fluid

flow problem studied in [11], which this research continues, is such a problem. In [11] a

modification of the mixed finite element method in [9] is used to simplify the case when

70

the transmissivity matrix is full. This is a projection method and details are given below

in Section 3.4. The study of this paper was to take the linear system resulting from the

modified mixed finite element method applied to the homogenized flow equation and see

the effects of physically based preconditioning on the conjugate gradient method for the

linear system. This began by developing mixed finite element codes in two and three

dimensions. Linear solvers and preconditioners were then written to solve the resulting

linear system. An explanation of the codes can be found in the appendix. Codes were also

written for homogenization of the porous media, but they are not shown here. Details can

be found in [52]. A linear solver was also written for parallel processing on graphics

processing units using CUDA. Details of this are given in Chapter 4.

To summarize, there are four levels of improvement used to increase the efficiency of

solving the flow problem, Equation (3.1), using the mixed finite element method. The

first and second have been done previously which are the homogenization of the

transmissivity tensor and the projection method to modify the mixed finite element

method. Two more levels of improvement are applied here, preconditioning of the linear

system resulting from the mixed finite element method and preconditioning of the

conjugate gradient solver in parallel in CUDA.

The remainder of the chapter is organized as follows. There will first be a brief

background on fluid flow in porous media. This will be followed by the background and

implementation of each of the four methods of improvement. This will be followed by

numerical results and discussion. Three problems will be studied. The first will be a

source sink problem, sometimes called the quarter five spot problem; see [53] and [54]

for examples. The second will be a one dimensional flow problem, and the third will be a

71

varied transmissivity problem. Good improvement on the efficiency of the CG solver for

the physically based preconditioner are seen in each case. The physically based

preconditioner is also compared with other black box preconditioners. The results will be

followed by the conclusion and possible future work.

3.1 Fluid Flow in Porous Media

It is common in engineering and scientific problems to have to deal with materials

formed from multiple constituents [49]. One example is modeling oil extraction from

underground reservoirs [50]. In general, when modeling fluid flow, one would hope for

the simplest case, where the fluid is contained in a single open space of normal size (ie

cubic, spherical, etc.), and that the only thing within the open space is the fluid being

extracted. Then the corresponding model of flow would be an exercise of basic calculus.

However, within these reservoirs, the fluid is generally contained in regions of varying

porosity or permeability (ie the ability of the oil to flow freely). So in some places, the

fluid will flow relatively freely and in others flow relatively slowly. An example of such

a structure is given in Figure 3.1.

II

Figure 3.1. Depiction of Porous Media

II
II

II

I

I

72

These changes in transmissivity generally occur on a very small scale compared with

the entire reservoir. To model the fluid flow accurately, these changes need to be

accounted for. Another important factor is that the region where the fluid is actually

being extracted is small compared to the size of the actual reservoir; for example the pipe

water gets pumped through from an underground reservoir is relatively small compared

to the size of the reservoir itself. This difference in scale coupled with the small scale of

the changes in permeability can require the computational grid of a numerical method to

be very fine over a large region, which greatly increases the complexity of the problem.

Because of this it becomes very important to find ways to improve the efficiency of

methods for solving flow problems in porous media. We will look at four ways of

improving that efficiency.

3. 2 MFEM Approximation

We will start by looking at the flow equation and then show some of the details of the

implementation of each of the improvements: homogenization, projection of the mixed

finite element method, physcially based preconditioning, and parallel computing. The

simple flow equation is given by

 qhT )((3.5)

in two and three dimensions, where T is a matrix in R
2 x 2

 or R
3 x 3

, h is a scalar function of

two or three variables, and q is a scalar function of two or three variables. For these

problems we will assume that T is periodic on a small scale ε. The boundary condition for

this problem will be as follows.

 0 h (3.6)

73

where υ is the unit normal vector.

3.2.1 Homogenization

The method of homogenization has become a classical method in a variety of fields

including asymptotic analysis, composite media theory, wave propagation, effective

media theory, bulk property theory, and others [49] [55]. The method goes by various

names, the most general of which is perhaps the method of multiple scales, or more

specifically the method of two scales. The theory for composite media has been studied

extensively for more than 100 years, with, as Milton puts it “an explosion of ideas in the

last four decades” [55]. The literature on homogenization is quite extensive. A good

summary can be found in [51].

As explained above the method of homogenization is a sort of averaging procedure. A

common calculus problem is to compute the work needed to pump a certain volume of

water a certain height out of its container. This problem reduces to a simple integral. One

of the assumptions of the problem is that the water is in a homogeneous state (i.e. the

water isn't mixed with anything else). If we were to say that the water is mixed into sand,

then the problem becomes much more complicated. By throwing rocks, debris, geological

layers, and so on the problem gets pretty complex pretty quickly. One thing to note,

however, in the water and sand example is that, if the sand is pretty homogeneous as

well, then it would probably be safe to assume that the water and sand mixture is

relatively homogeneous, which means that the water would flow through the sand at the

same rate regardless of where the water is in the sand. In terms of Equation 1 this means

that although the transmissivity T will change by adding sand to the water, the

74

transmissivity will nevertheless remain relatively constant throughout the domain. This is

the idea behind homogenization.

In other words, it takes into account the small scale permeabilities over the entire

reservoir, but also allows for a coarser computational grid, thus decreasing the number of

computations. It does this by averaging the permeability over the entire region. A couple

simple examples are shown in Figures 3.2 and 3.3 as found in [10] and [50] respectively.

The transmissivity tensors in each region of Figure 3.2 as well as the corresponding

homogenized tensor are given by

 



























52.60

052.6

10

01
,

100

010
HIII TTT (3.7)

Figure 3.2 Example of Periodic Two Phase Flow Structure

The transmissivity tensors in each region of Figure 3.3 as well as the corresponding

homogenized tensor are given by

 



























81.10

05.5

10

01
,

100

010
HIII TTT (3.8)

I

II

75

Figure 3.3 Linear Example of Two Phase Flow Structure

The term averaging is used loosely above. However it is related but not limited to the

standard averages like the arithmetic, geometric, or harmonic averages. Note that 5.5 is

the arithemetic average of the TI value and the TII value in Figure 3.3 and that 1.81 is the

harmonic average.

 Using this averaging technique produces a permeability that is either constant over the

computational domain of the problem or at least one that does not change as rapidly that

can be computed on a coarser scale. For the problems above, since the the two original

tranmissivities given were constant, then the homogenized transmissivity is also constant,

but this is not always the case. The generalized procedure for computing the

homogenized tensor is outlined below.

3.2.1.1 Homogenization Implementation

Much of the analysis presented here can also be found in [10] and [50]. We will first

go through the method of multiple scales and find equations for the function h on the first

order. Next, we will find the homogenized or average equation. We will then go over the

intermediate step of finding the homogenized coefficient that goes into the homogenized

equation.

We start with the coupled velocity form of the flow equation

II I

76

 hTv  (3.2)

 qv  (3.3)

We then proceed with the method of multiple scales.

 T = T(y), T(y + ε) = T(y) for some period ε (3.9)

 h = h(x,y), h = h0 + εh1 + … (3.10)

 v = v(x,y), v = v0 + εv1 + … (3.11)

 yxx 


1
' (3.12)

where x = x’ and y = x’/ε, where x’ is the variable of the original equation (i.e. h = h(x’)).

With these assumptions we have the following equations at the first and second orders

ε
–1

:

 00 hT y (3.13)

 00  vy (3.14)

ε
0
:

  100 hhTv yx  (3.15)

   qvv yx  10 (3.16)

At the first order, the Equations (3.13) and (3.14) imply that h0 = h0(x), v0 = v0(x) so long

as T is positive definite. We further assume that h1 = hxuy )( , where

Tywywy])()([)(21 . This seems intuitive since the expansion on h can be compared

to a Taylor Series expansion. With the first assumption Equation (3.15) becomes

       02102100 hwwIThwwhTv xyyxyyx  (3.17)

Equation (3.14) then implies that

77

  

    




















2

0
22

1

0
11

02100

x

h
wTTe

x

h
wTTe

hwwITv

yyy

xyyyy

 (3.18)

where e1 and e2 are the column vectors of the 2x2 identity matrix. Assuming that

T

xh]00[0  we have the following equations

  
11 TewT yyy  (3.19)

  
22 TewT yyy  (3.20)

Equations (3.19) and (3.20) are referred to as the local problem since they are solved

on the small scale or in the fast variable y. Once w1 and w2 are found, we return to

Equation (3.17). If we assume that the second term in the expansion of the velocity is

periodic (ie v1 is periodic in the fast scale y) and integrate each side of Equation (3.16)

over the fast variable y we have

  0

hTq xx  (3.21)

   dYwwIT
Y

T
Y

yy  21

1
 (3.22)

 dYq
Y

q
Y


1#

 (3.23)

For our experiments, the function q is assumed to be constant over the fast variable so

that q
#
 = q, but in general, if q does depend on the fast variable then this integral can be

estimated numerically as well. Equation (3.21) can then be solved using a standard finite

element method to find a first order solution. Specifically a mixed finite element method

is used.

78

3.2.2 Projected Mixed Finite Element Method

The specific model problem for the fluid transport code is the homogenized simple

flow Equation (3.21). For sake of simplicity we will revert back the original form of

Equation (3.5) and assume that it has already been through the homogenization process.

   qhT  (3.5)

where h is the head or pressure variable, T is a transmissivity tensor, and q is the product

of the storativity or porosity times the change in pressure with respect to time. The

boundary conditon is the same as in (3.6). There are computational difficulties associated

with this problem as well. One difficulty that arises is when the transmissivity T is a full

matrix. In this case, the linear system matrix resulting from the mixed finite element

method is full as well, greatly increasing the computational difficulty. This problem was

originally addressed in [11] where a projection method was devised to speed up the linear

solver to obtain a solution. In this work, we extend the work of [11] and apply

preconditioning to the projected form of the full transmissivity tensor case. We will first

go through the implementation of the mixed finite element method and the projection

method. We will then give more detail on the diagonal transmissivity preconditioner and

look at the results of the preconditioning.

We start with the velocity form of the flow Equations (3.2) and (3.3)

 hTv  (3.2)

 qv  (3.3)

The mixed finite element method proceeds in a similar fashion to standard finite element

methods. The pressure variable h will be assumed to be a linear combination of piecewise

79

constant basis functions and the velocity variable v will be assumed to be a linear

combination of piecewise linear basis functions. Specifically

 









j i

jiij

j i

ji

y

ijji

x

ij

yxhh

eyxveyxvv

)()(

)()()()(21






 (3.24)

where ϕ is defined as

 

 

























 









otherwise

xxx
xx

xx

xxx
xx

xx

x ii

ii

i

ii

ii

i

i

0

,

,

)(1

1

1

1

1

 (3.25)

 and χ is defined as



 




otherwise

xxx
x

ii

i
0

],[1
)(

1
 (3.26)

The finite element method then proceeds in a usual way according to a Galerkin method.

A test function from each of the two function spaces is multiplied by each equation

above, and each equation is then integrated over the domain.

    01 


A

dAuhuvT (3.27)

    
AA

qwdAwdAv (3.28)

After integration by parts and applying the boundary condition n · v = 0 where n is the

outward unit normal vector we have

    01 


A

dAuhuvT (3.29)

80

    
AA

qwdAwdAv (3.30)

which in its discretized form gives the linear system

   

   







Aj i A

ji

y

ijji

x

ij

j i A

jiijji

y

ijji

x

ij

qwdAwdAeyxveyxv

dAuyxhueyxveyxvT

21

21

1

)()()()(

0)()()()()()(









 (3.31)

The linear system has the following matrix form.



















































h

y

x

y

x

yyyx

xyxx

r

r

r

h

v

v

DNN

NMM

NMM

21

2

1

 (3.32)

where Mxx and Myy are symmetric tridiagonal matrices representing the transmissivity in

each coordinate direction, Mxy and Myx are sparse matrices representing the transmissivity

in the off-coordinate directions, N1 and N2 represent differencing matrices, D contains the

time-dependent information as well as any intitial conditions on the pressure, v
x
 and v

y
 are

the vector forms of the velocity, h is now the vector form of the pressure, and rx, ry, rh are

the right hand sides for the velocity and pressure respectively and contain the boundary

information. This form is symmetric and positive definite lending itself to efficient

iterative solvers like the conjugate gradient method. If the transmissivity tensor T is a full

matrix, then the matrix above will be full as well. This form of the equation is further

modified using a projection method.

3.2.2.1 Projection

The projection method, the second level of improvement, which can also be found in

[11], starts with the velocity form of the flow Equation (3.2) and (3.3)

81

 hTv  (3.2)

 qv  (3.3)

We separate the diagonal velocity from the off-diagonal velocity according to the

transmissivity tensor and rewrite Equations (3.2) and (3.3). In two dimensions we have

 nd TTT  (3.33)

 hTv dd  (3.34)

   qhTv nd  (3.35)

where the off-diagonal term in Equation (3.35) can be rewritten in terms of the diagonal

velocity as follows.

   d

yx

xy

yx

xy

n Kv

x

h
T

y

h
T

y

h
x

h

T

T
hT 





































































0

0
 (3.36)

where





















0

0

xx

yx

yy

xy

T

T

T

T

K (3.37)

and thus Equation (35) becomes

   qKvv dd  (3.38)

Proceeding with the Galerkin Method, similar to Equation (3.38) we would have

     
AA

dd qwdAwdAKvv (3.39)

82

We note here that the second term Kvd is not in the same trial functions space as vd [11].

For this reason, a projection of Kvd onto the same trial function space as vd is done. We

thus end up with a coupled system of three equations. In the variational form we have

    01 


A

d dAuhuvT (3.40)

    
AA

d qwdAwdAFv (3.41)

      
A

d

A

dAKvdAF  (3.42)

where u and µ are test functions from the velocity trial space and w is a test function from

the head or pressure trial space. This system can also be discretized similar to Equation

(3.31) above. The resulting linear system in three dimensions has the form





























































































0

0

0

0000

0000

0000

00000

00000

00000

321321

3

2

1

h

z

y

x

z

y

x

z

y

x

zzzyzx

yyyzyx

xxxzxy

TTTTTT

zz

yy

xx

r

r

r

r

f

f

f

h

v

v

v

ABB

ABB

ABB

NNNDNNN

NM

NM

NM

 (3.43)

where Axx, Ayy, and Azz represent velocities in the coordinate directions and the B matrices

represent the projection between the original velocity space and the velocity space of Kvd.

The A's have the same structure as the diagonal velocity M matrices, the B's have the

same structure as the off-diagonal transmissivity matricies, and the f 's represent velocity

trial functions for the projection equation.

Looking at the bottom three block equations we have

83

 zxzxxyxyxxx vBAvBAf
11 

 (3.44)

 zyzyyxyxyyy vBAvBAf
11 

 (3.45)

 yzyzzxzxzzz vBAvBAf
11 

 (3.46)

Applying these to the linear system (3.43) we can rewrite the system in a reduced form.






























































h

z

y

x

z

y

x

yzyy

T

xzxx

TT

zyzz

T

xyxx

TT

zxzz

T

yxyy

TT

zz

yy

xx

r

r

r

r

h

v

v

v

DBANBANNBANBANNBANBANN

NM

NM

NM

1

2

1

13

1

3

1

12

1

3

1

21

3

2

1

00

00

00

 (3.47)

Block row-reducing this can be further simplified to the form

























































R

r

r

r

h

v

v

v

A

NM

NM

NM

z

y

x

z

y

x

zz

yy

xx

000

00

00

00

3

2

1

 (3.48)

where

   
  3

11

2

1

13

2

11

3

1

121

11

3

1

21

NMBANBANN

NMBANBANNNMBANBANNDA

zzyzyy

T

xzxx

TT

yyzyzz

T

xyxx

TT

xxzxzz

T

yxyy

TT









 (3.49)

   
  zzzyzyy

T

xzxx

TT

yyyzyzz

T

xyxx

TT

xxxzxzz

T

yxyy

TT

h

rMBANBANN

rMBANBANNrMBANBANNrR

11

2

1

13

11

3

1

12

11

3

1

21








 (3.50)

So the reduced system

 Ah = R (3.51)

can be solved for the head variable h and then vx, vy, and vz can be found by

  hNrMv xxxx 1

1   (3.52)

  hNrMv yyyy 2

1   (3.53)

  hNrMv zzzz 3

1   (3.54)

84

Thus, the projection method used above takes the original linear system, assuming the

mesh sizes for vx, vy, and vz are equal, and reduces it by almost a factor of four. The

resulting matrix is still symmetric positive definite and the conjugate gradient method can

still be applied. We will not here go over the conjugate gradient method or iterative

solvers, but instead refer to that section in Chapter 2 for further information.

3.2.3 Physically Based Preconditioner

The third step in improving the efficiency of solving the flow equation is

preconditioning the linear system within the conjugate gradient solver. For the algorithm

and explanation of the preconditioned conjugate gradient method, see Chapter 2. The

preconditioner that will be applied to system (51) is the diagonal transmissivity solution

to the simple flow Equation (3.1). In other words the simple flow equation is solved with

T being a diagonal matrix T = Td. This results in a much sparser linear system

























































h

z

y

x

z

y

x

TTT

zz

yy

xx

r

r

r

r

h

v

v

v

DNNN

NM

NM

NM

321

3

2

1

00

00

00

 (3.55)

 which can be similarly reduced to the system

























































R

r

r

r

h

v

v

v

M

NM

NM

NM

z

y

x

z

y

x

zz

yy

xx

000

00

00

00

3

2

1

 (3.56)

where

 3

1

32

1

21

1

1 NMNNMNNMNDM zz

T

yy

T

xx

T 
 (3.57)

85

This system matrix M is much simpler and more sparse than the original system matrix

(3.49) and the original linear system is modified using this matrix

 M
-1

Ax = M
-1

b (3.58)

The benefit of this preconditioning is in part shown in Figure 3.4 below. In this figure, a

representation of the system matrix A is shown for a two dimensional problem with 32

spatial elements in each coordinate direction. The original matrix A, with a full

transmissivity tensor, is a full matrix. With only the diagonal components of the

transmissivity tensor, the resulting matrix M is block sparse with each of the off-diagonal

blocks being diagonal. For a larger representation with larger blocks the sparsity would

be much more dramatic than in the figure below.



































xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

A



































xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

M

000

000

000

000

000

000

000

000

 cond(A) = 45,010 cond(M
 -1

A) = 132

Figure 3.4. Example of Matrix Preconditioning for Fluid Transport

We can again see the dramatic effect that a preconditioner can have on the condition

of a linear system. Since the preconditioner has significantly fewer non-zeros than the

original matrix it requires much fewer computations to compute its inverse than the

inverse of A. When applied within iterative methods like the preconditioned conjugate

gradient, it adds relatively few computations to each iteration, but significantly reduces

86

the number of total iterations needed for convergence. In the results this physically based

preconditioner is compared against other common preconditioners.

3.2.4 Parallel Implementation on GPU

The fourth level of improvement in efficiency of solving the simple flow equation is

implementing the solution in parallel on graphics processing units using CUDA. The full

details of using CUDA and the results from applying the linear solver in parallel are

given in Chapter 4.

3.3 Numerical Results and Discussion

We will now look at the results from using the physically based preconditioner on

three problems. The first two problems use a homogenized tensor which is explained in

Section 3.7.1. The third lets the off-diagonal terms of the transmissivity tensor vary to see

the effects of increasing the order of the corresponding off-block-diagonal elements on

the preconditioner. The first two problems include a two and three dimensional source-

sink problem, sometimes called the quarter 5 spot problem, and a two and three

dimensional single phase flow problem. The third is the same as the second except that

the transmissivity tensor is varied to see the effect on the preconditioner. The results are

given below.

The tests were done in MATLAB using the built in sparse matrix structure within a

preconditioned conjugate gradient method (PCG). The algorithm stops or converges

when the tolerance (the squared residual norm) is 10
-9

. Run times for all of the results

were calculated using Matlab's tic and toc functions. The initial guess was set to be a

87

vector of all ones for the source-sink problem and set to zero for the other problems. CG

methods were written with compressed sparse row (CSR) storage in Matlab and in C++.

Only results using the standard Matlab storage are shown here to more easily compare the

various preconditioners. The physically based preconditioner was tested against several

built in and standard preconditioners similar to the preconditioners in Chapter 2 including

incomplete Cholesky factorizations, successive over relaxation, and others. When the

flow equation consists of a full tensor, the resulting matrix A as found in Equation (3.49)

is a full matrix, so sparse storage is only used for the preconditioners and standard storage

is used for the matrix A. We will first look at the source-sink problem with a

homogenized domain, then at the single phase flow problem followed by the random

transmissivity problem.

3.3.1 Homogenized Domain

In [11] a problem is presented where the permeability tensor is assumed to be

periodic throughout the domain. This periodic pattern is shown below.

Figure 3.5. Diagram of Repeated Pattern for Homogenized Problem

 In this case, given the two permeability tensors

I

II

88

 


















0.100.0

0.00.10
,

0.10.0

0.00.1
III TT (3.59),(3.60)

and applying the method of homogenization we obtain the following full homogenized

tensor

 













89.108.0

08.049.1
HT (3.61)

This is the transmissivity used for the source-sink problem and the single phase flow

problem.

3.3.2 Quarter 5-Spot Source-Sink Test Problem

The first problem is a two and three dimensional source sink problem given by

Koebbe [11], and Wheeler and Ewing [9]. The right-hand side q of the simple flow

Equation (3.1) is assumed to be a sum of dirac delta functions

),(),()1,1()0,0(yxyxq   (3.62)

The boundary condition is as explained above where the dot product of the velocity with

the normal vector is assumed to be zero. In the case where T = I, an analytic solution can

be found and is given in [9] in two dimensions as

   
   

 
         
         







































1 2/)(cos2/)2(cosh2/)(cos2/)2(cosh

2/)(cos2/)2(cosh2/)(cos2/)2(cosh
log1

2/)(cos2/)(cosh

2/)(cos2/)(cosh
log

2

1

n

n

yxnyxyxnyx

yxnyxyxnyx

yxyx

yxyx
h











(3.63)

This solution was used to test the validity of the mixed finite element method. In Figure 3.6

the pressure is shown for the source-sink problem with the homogenized tensor and Tables

3.1 and 3.2 show the results of the preconditioning. The black box preconditioners tested

89

include successive over relaxation (SSOR), Jacobi (Diagonal), a block diagonal incomplete

Cholesky (IC) factorization, an M-block incomplete Cholesky factorization, and an M-block

direct cholesky factorization. The M-block preconditioners use a simplified block structure of

the matrix A. Black box preconditioners are based solely on the matrix itself not on the

problem that they are derived from, but the general block structure can be generally found by

doing a couple simple searches on the matrix. The M-block here is a block diagonal with

several off-diagonals. They are called M-block because they have the same matrix structure

as the diagonal transmissivity preconditioner M, but the values are still taken from the

original matix A. The physically based preconditioners include an incomplete cholesky

factorization on the preconditioner M and a direct Cholsky factorization on the

preconditioner M.

The size of the resulting linear system is m*n for two dimension and m*n*o for three

dimensions, where m, n, and o are the number of steps in the x, y, and z directions

respectively. As mentioned above, for the full tensor case, Equation (3.61), the system

Figure 3.6. Resulting Pressure for MFEM Source

Sink Problem with m = n = 33

MFEM Pressure for Source Sink

Problem 3.3.2

90

matrix is a full matrix. The mesh sizes were chosen for this research so that they can still

be run on a single machine. The matrix sizes, therefore, were still small enough to

Table 3.1. Results of Preconditioning on MFEM 2D Source Sink Problem

PCG Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

SSOR 1.12 s, 119 it. 6.85 s, 172 it. 25.9 s, 225 it.

Jacobi (Diagonal) 0.894 s, 386 it. 5.51 s, 565 it. 21.4 s, 741 it.

None - CG 0.897 s, 396 it. 5.36 s, 575 it. 21.2 s, 752 it.

Block Diag - IC 0.745 s, 288 it. 4.35 s, 419 it. 16.7 s, 550 it.

None - DC 0.278 s 2.12 s 9.44 s

M-Block - IC 0.268 s, 100 it. 1.68 s, 145 it. 6.28 s, 191 it.

Physically Based - IC 0.266 s, 100 it. 1.64 s, 145 it. 5.89 s, 191 it.

M-Block - DC 0.128 s, 4 it. 0.609 s, 4 it. 1.49 s, 4 it.

Physically Based - DC 0.103 s, 3 it. 0.385 s, 3 it. 1.47 s, 3 it.

compare with direct methods, which can often be faster than iterative methods for smaller

mesh sizes, especially optimized commercial methods like those in Matlab. Generally

iterative methods are used solely for sparse matrices, and, as seen above, the direct

Cholesky factorization performs better than the CG method and some of the

preconditioners, but, even though the matrix is full, some of the preconditioners,

including the physcially based preconditioners still outperform the direct method. An

alternate storage system for the matrix A can also be used which adds a few more

calculations to each iteration of the CG method, but significantly reduces the amount

91

Table 3.2. Results of Preconditioning on MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in

y,o-spatial in z)

m = 10, n = 10, o = 10 m=20,n=20,o=20

Jacobi (Diagonal) DNC DNC

None - CG 0.132 s, 275 it. 18.1 s, 510 it.

None - DC 0.0338 s 9.78 s

Block Diag - IC 0.0558 s, 101 it. 5.17 s, 150 it.

SSOR 0.0512 s, 43 it. 4.47 s, 86 it.

Physically Based - IC 0.0210 s, 33 it. 2.86 s, 77 it.

M-Block Diag - IC 0.0225 s, 33 it. 2.77 s, 72 it.

Physically Based - DC 0.0209 s, 33 it. 2.67 s, 77 it.

M-Block - DC 0.0634 s, 7 it. 2.50 s, 72 it.

of storage needed for the matrix. This method was tested as well with similar results, but

the results are not shown here because the standard storage allows an easier comparison

for the preconditioners. Such a storage scheme would show its greatest benefit on much

large systems, which were not studied here.

The M-block and physically based diagonal transmissivity preconditioners perform

the best for the homogenized source sink problem with about 4-12 times the speed up of

the stand alone CG method. The direct Cholesky (DC) preconditioners perform better

than the incomplete Cholesky. It should be noted, however, that the direct Cholesky also

has a larger upfront cost which isn't included in the calculations here. Only the time to go

92

through the CG iterations, not any upfront cost is shown. So the direct Cholesky would

be better for problems that get repeated multiple times for multiple right hand sides and

the incomplete Cholesky would likely perform better for problems with fewer repetitions

of the same domain. The Jacobi or diagonal preconditioner, similar to the results in

Chapter 2, actually causes the system not to converge in some cases.

3.3.3 Single Phase FlowProblem

The preconditioners were also tested on a 1D flux problem where the right hand side

is set to zero, but there is assumed to be a unit velocity at the boundaries in one of the

coordinate directions. The resulting pressure is shown in Figure 3.7 and the results for the

two dimensional and three dimensional problems are shown in Tables 3.3 and 3.4.

Figure 3.7. Resulting Pressure for MFEM Singe

Phase Flow Problem with m = n = 33

Pressure for Single Phase Flow Problem

93

Table 3.3. Results of Preconditioning on MFEM 2D Single Phase Flow Problem

Method

Mesh Size (m-spatial, n-spatial)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

SSOR 0.601 s, 64 it. 3.68 s, 92 it. 13.8 s, 119 it.

None - CG 0.433 s, 190 it. 2.64 s, 276 it. 9.82 s, 341 it.

Jacobi (Diagonal) 0.475 s, 201 it. 2.92 s, 294 it. 11.0 s, 387 it.

None - DC 0.231 s 1.40 s 6.50 s

Block Diag - IC 0.351 s, 140 it. 2.04 s, 193 it. 7.51 s, 252 it.

M-Block - IC 0.221 s, 81 it. 1.35 s, 116 it. 4.72 s, 150 it.

Physically Based - IC 0.221 s, 81 it. 1.30 s, 116 it. 4.77 s, 150 it.

M-Block - DC 0.229 s, 81 it. 1.29 s, 116 it. 4.78 s, 150 it.

Physically Based - DC 0.224 s, 81 it. 1.29 s, 116 it. 4.73 s, 150 it.

Here as well the physically based and M-block preconditioners perform the best with

about 2-8 times the speed up of the stand alone CG method.

3.3.4 1D Flux Varied Transmissivity Problem

The final problem is the same as the previous problem except that the transmissivity

tensor diagonal is set and the magnitude of the off-diagonal term is varied to see the

effect on the preconditioner. For example, we have

 









10

10




HT (3.63)

94

 Table 3.4. Results of Preconditioning on MFEM 3D Single Phase Flow Problem

Method

Mesh Size

(m-spatial in x, n-spatial in y,o-spatial in z)

m = 10, n = 10, o = 10 m=20,n=20,o=20

Jacobi (Diagonal) 0.312 s, 597 it. DNC

None - CG 0.125 s, 213 it. 11.6 s, 325 it.

None - DC 0.0331 s 12.2 s

Block Diag - IC 0.0378 s, 66 it. 3.52 s, 96 it.

SSOR 0.0485 s, 35 it. 2.45 s, 45 it.

Physically Based - IC 0.0158 s, 24 it. 1.51 s, 41 it.

M-Block Diag - IC 0.0181 s, 25 it. 1.54 s, 41 it.

Physically Based - DC 0.0158s, 24 it. 1.55 s, 41 it.

M-Block - DC 0.0166 s, 25 it. 1.59 s, 41 it.

for different values of α ranging from zero to ten. The results for the two dimensional

problem is shown in Table 3.5. Here we are only testing the physically based incomplete

Cholesky preconditioner against the stand alone CG method and showing the change in

ratio of speed up in time and number of iterations.

Here we also see the improvement from using the preconditioner. As expected, for

initial smaller values of alpha with magnitude only sightly greater than zero, the

preconditioning performs better than for values closer to the diagonal value of ten.

95

Table 3.5. Results of Preconditioning on MFEM 2D Varied Transmissivity Test

Value of Alpha

Run Times and Iterations for m = 65, n = 65

CG PB IC Ratios

-1 2.94 s, 306 it. 1.57 s, 138 it. 1.87, 2.22

-2 3.08 s, 317 it. 1.62 s, 145 it. 1.90, 2.19

-3 3.24 s, 332 it. 1.71 s, 153 it. 1.89, 2.17

-4 3.31 s, 341 it. 1.76 s, 159 it. 1.88, 2.14

-5 3.35 s, 345 it. 1.93 s, 172 it. 1.74, 2.01

-6 3.60 s, 374 it. 2.13 s, 186 it. 1.69, 2.01

-7 3.77 s, 395 it. 2.35 s, 210 it. 1.60, 1.88

-8 4.37 s, 455 it. 2.61 s, 238 it. 1.67, 1.91

-9 5.60 s, 557 it. 3.37 s, 309 it. 1.66, 1.80

-9.9 9.22 s, 929 it. 6.27 s, 576 it. 1.47, 1.61

-9.99 10.7 s, 1084 it. 7.78 s, 695 it. 1.38, 1.56

This is due to the fact that for small values of α, A is still block diagonally dominant

making M, which is sparse block diagonally dominant, a good approximation of A. As

alpha increases, the off-diagonal blocks gain more significance and M becomes a weaker

approximation of A. Even for values close to 10, however, the preconditioner still offers

close to one and a half times the speed up.

96

3.4 Conclusions and Future Work

As can be seen in the results, improvements can be made on the run times for linear

systems that result from the mixed finite element approximations of the flow equation in

porous mediums. Three levels of improvement were presented including homogenization

of the porous medium domain, a projection method for flow equations with full

transmissivity tensors, and preconditioning of the linear system resulting from the

projection method. A fourth improvement, parallelization, will be discussed in Chapter 4.

The physically based preconditioner has been shown to be effective in reducing the run

time and number of iterations for the preconditioned CG method. The physically based

preconditioner also is comparable if not better than several standard preconditioners. The

physically based preconditioner was shown to be affected by changes in the diagonal

dominance of the transmissivity tensor, but still showed improvement on the CG method

for less diagonally dominant matrices.

This project was not an exhaustive result of all preconditioners or linear solution

methods and further results can be done in each area. Other linear solution methods that

could be compared are generalized minimum residual methods and more especially

multigrid methods, which, although complex, have been shown to be the fastest linear

solvers [55]. As seen above there are also many ways of implementing the

preconditioners which could be explored further. Further work could also be done on

larger parallel computing architectures to see the results of each method there. This will

be explored in some detail in chapter 4, but only as it relates to parallel computing on

graphics cards using CUDA.

97

In summary, the physical based preconditioning proved effective on improving the

CG linear solver of the mixed finite element formulations of the flow equation with full

transmissivity tensors and further studies could be done to determine better linear system

solution methods or preconditioners and preconditioner methods. In the next chapter we

will see the results of a physically based preconditioner on a parallel architecture in

CUDA.

98

CHAPTER 4

PRECONDITIONING FOR FINITE ELEMENT METHODS APPLIED TO FIRST

ORDER PARTICLE TRANSPORT AND TO FLUID TRANSPORT IN POROUS

MEDIA IMPLEMENTED IN PARALLEL ON GPUS

Four levels of improvement were used to increase the efficiency of solving the flow

problem in porous media, Equation (3.1), using the mixed finite element method. The

first and second have been done previously which are the homogenization of the

transmissivity tensor and the projection method to modify the mixed finite element

method. Two more levels of improvement are applied here, preconditioning of the linear

system resulting from the mixed finite element method and preconditioning of the

conjugate gradient solver in parallel in CUDA. The preconditioning of the linear system

was shown in Chapter 3 and the algorithms for the linear solvers were shown in Chapter

2. In this chapter, we will be showing the final level of improvement, implementing the

preconditioned conjugate gradient linear solver and the physically based preconditioner

for the fluid transport problem in CUDA and comparing it with algebraic preconditioners.

We will also show the results of using the physically based un-collided flux

preconditioner for conjugate gradient linear solver of the least squares finite element

method (LSFEM) of the particle transport problem in CUDA compared with algebraic

preconditioners.

These conjugate gradient methods were run on a relatively new software language,

CUDA (Compute Unified Device Architecture), developed by NVIDIA for processing on

graphics processing units (GPU's). There are currently several languages for processing

99

on GPU's which also include OpenCL and OpenGL. The experiments for this project

were run on an NVIDIA GEFORCE 610M graphics processing unit so CUDA was

chosen since CUDA was designed specifically to run on NVIDIA graphics processing

units.

CUDA, and scientific computations on GPU's, are relatively new. GPU's provide

inexpensive, generally available, massively parallel computing hardware [56]. CUDA

with other languages have made it easier to utilize this hardware. Any computer with a

monitor has a GPU. It is just a matter of how many individual compute units are

available. In addition, any number of GPUs can be added via USB connections to a

computer. So programs in CUDA are widely accessible at little or no extra cost to

execute them. When talking about GPUs two natural question arise. The first is whether

or not GPU computing is competitive with or better than single core computers, multi-

core computers or traditional parallel machines. In recent results, GPU computing has

been shown to surpass multi-core computations on a number of applications [56]. The

second question is whether certain algorithms that run well in serial also run well in

parallel on GPUs.

Of particular interest to this research is how these questions are answered for GPU

computing applied particle or fluid transport applications. A number of studies have been

done to show the utility of GPU computing for particle transport problems. One very

natural application was utilizing GPU computing for Monte Carlo methods applied to

particle transport problems. Monte Carlo methods are derived from the probabilities

associated with the cross sections of the materials through which particles may be

traveling. In other words, one at a time, particles are tracked as they travel through or get

100

absorbed by a material. When a particle interacts with a material at a given point, a

probability is used to determine the type of interaction (i.e. absorbtion, scattering, no

interaction, etc.) and the angle of scattering if any. In order to develop an accurate

assessment of the general transport of particles through a material, a large number of

single particle simulations must be run. These single particle simulations can be done

independently, making Monte Carlo simulations inherently parallel problems. In [13],

[57], and [58] CUDA was used as part of Monte Carlo particle transport applications.

They each show good speed-ups when working with GPU's.

Some work has also been done with deterministic solution methods like the finite

element methods in this paper. Papers [14] and [59], and [60] show results of GPU

computing on deterministic applications including a discrete ordinates method, a method

of characterisitcs, and a source-iteration method. Studies have also been done that utilize

both the cpu and the GPU. Such a hybrid method for a deterministic transport code is

shown in [60]. All of these studies report good speedups when using GPU computing.

GPU computing has also been explored in the realm of fluid flow in porous media. In

[15] a homogenization method for heterogeneous media was applied using CUDA. Work

on multiple GPUs was done in [16] for a natural porous media problem and in [61] a

hybrid CPU-GPU method was used for a two-phase porous media problem. Each of these

also show good speed-ups when using GPU computing.

GPU computing is also used more generally to improve iterative methods for linear

systems including the conjugate gradient method. In [62] an overview study is done on

GPU computing for the preconditioned conjugate gradient method. Their conclusion was

summarized: "Based on the experimental results...we observe that, when used as general

101

purpose many-core processors, current GPUs provide a much lower performance

advantage for irregular (sparse) computations than they can for more regular (dense)

computations...however, when used carefully, GPUs can still be beneficial as co-

processors to CPUs to speed-up complex computations." In other words, GPU computing

has its limits, and while it has proven to be generally faster than single core and some

multi-core computers, it is still slower than traditional multi-core computing clusters for

some problems.

In [17] and [18], preconditioned iterative methods are run in parallel on GPUs

including algebraic preconditioners. In [17] an SSOR type preconditioner is used and in

[18] a sparse approximate inverse preconditioners is used based on the singular values of

the linear system matrix. Hybrid methods including cpu and GPU computations were

applied in [63] and [64] where the conjugate gradient method was applied on multiple

GPU platforms. In [65], a bi-conjugate gradient method for a finite difference

approximation was also tested in CUDA on GPUs.

In this work we extend the use of GPU computing to the least squares finite element

method (LSFEM) applied to the first order particle transport equation of Chapter 2 and

the projected mixed finite element method (MFEM) applied to the homogenized fluid

transport equation of Chapter 3, seeking to answer the second question of whether the

physcially based preconditioners are effective when run in parallel. Specifically we show

results of running the conjugate gradient linear solver in CUDA on the GPU for each

problem and the results of using the physically based preconditioners of each problem in

CUDA on the GPU. For both problems, the physically based preconditioners perform

well on the GPU giving speed-ups from about 2 to 50 times.

102

We will first give a brief background on processing with GPUs and some details on

the implementation of the preconditioned conjugate gradient method in CUDA for the

particle and fluid transport problems. We will then look at the results of running the

preconditioned conjugate gradient method for the particle and fluid transport problems,

specifically comparing the physcially based preconditioner with algebraic

preconditioners.

4.1 GPU Computing

GPU computing started out as a way to speedup computer graphics applications,

largely for graphics in video games. It has grown to a wide variety of applications

including medical imaging, computational fluid dynamics, environmental science [12]

[66]. GPUs started out as 2D display accelerators offering hardware assisted bitmap

operations. In 1992, OpenGL, a computing language for graphics cards, was introduced

[12]. The video game industry continued to drive this new area and eventually NVIDIA

and others added new capabilities to the GPU hardware as well as adding to the software

with new software languages like CUDA and OpenCL. As seen above in [60] and [61],

this area has extended to hybrid CPU-GPU hardware architectures and computing

libraries to run on them.

4.2 Preconditioned Conjugate Gradient Method in CUDA

The preconditioned conjugate gradient methods for the least squares finite element

method for first order particle transport and for the projected mixed finite element

method for fluid transport in porous media were applied in CUDA using the CUDA

103

Toolkit, specifically the CUDA Basic Linear Algebra Subprograms (CUBLAS) library

and the CUSPARSE library [12]. These CUDA libraries include several examples of

linear algebra algorithms and iterative solvers. The toolkit and libraries for CUDA can be

found on NVIDIA's website. For this work, the conjugate gradient method example

within the CUDA SDK was modified to run with the sparse and full matrices of the

particle transport and fluid transport problems.

The existing compressed sparse row (CSR) format within the example was used for

the sparse matrices of the fluid and particle transport problems. The CSR format was

modified to the full matrix format of CUBLAS for the projected mixed finite element

method for the fluid transport problem and the functions for matrix multiplication in

CUBLAS and CUSPARSE were changed accordingly. The existing incomplete Cholesky

preconditioner format was used for each of the preconditioners. General input and output

C++ libraries as well as some standard code was also added for determining the run times

of the codes and checking the results.

For both the particle and fluid transport problems the matrices and vectors were

generated from the Matlab codes mentioned in Chapters 2 and 3 and, together with their

preconditioners, were transferred and run on the parallel form of the preconditioned

conjugate gradient method example within the CUDA SDK. The tolerance was set to be

the same as before, 10
-9

 and the initial guess set to be a vector of all zeros. More details

on the implementation of the preconditioned conjugate gradient method can be found in

the Appendix. The specific problems tested include the least squares finite element

method (LSFEM) for first order particle transport in one and two dimensions and the

104

projected mixed finite element method for the homogenized fluid transport source sink

problem. These are the problems that use the preconditioned conjugate gradient method.

4.3 Source Void LSFEM First Order Particle Transport Results

We will first look at the one dimensional Reed Problem 2.6.1 and then at the square

source void problem 2.6.2 using the LSFEM. Recall that these particle transport problems

are source void problems. The initial conditions and geometries can be found in Sections

2.5.1 and 2.5.2 respectively. The solvers include the stand alone conjugate gradient

method (CG-None), the physically based incomplete Cholesky (PB IC) CG method, the

algebraic M-Block (i.e. preconditioner derived from original matrix A with same

structure as the physically based preconditioner M, see Section 2.4.3.2) CG method, and

the incomplete Cholesky method from the original CUDA CG example. The results for

each are shown in Figures 4.1 and 4.2 and in Tables 4.1 and 4.2 respectively.

Figure 4.1. Resulting Flux for the Reed Problem

Using the Continuous LSFEM in CUDA with m

= 16, n = 1600

LS Scalar Flux for Problem 2.5.1 in CUDA

105

As can be seen in Tables 4.1 and 4.2, the physically based preconditioner for the one

and two dimensional problems work well in parallel on the GPU as well. For the one

dimensional problem the speedups range from fifty to over one hundred times. For the

two dimensional problem speedups range from about four to five times. For the one

dimensional problem, the physically based incomplete Cholesky (PB IC) preconditioner

was compared with two algebraic preconditioners, the standard incomplete Cholesky (IC)

and the M-Block incomplete Cholesky. The M-Block, as mentioned in Chapter 3, is a

simplified version of the original system matrix A with the same structure as the

preconditioner M. In this parallel CUDA case, the physically based preconditioner

performs better than the standard Incomplete Cholesky and about equal to the M-Block

preconditioner. For the two dimensional problem, the physically based preconditioner

was only compared to the M-Block preconditioner due to memory constraints for the

standard incomplete Cholesky preconditioner.

Figure 4.2. Resulting Flux for the Square Source

Void Problem Using LSFEM in CUDA for S10

LS Scalar Flux for Problem 2.5.2 in CUDA

106

Table 4.1. Parallel Results of Preconditioning on the LSFEM for Reed Problem

Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

Cuda - CG - None 5.54 s, 8133 it. 20.0 s, 17194 it. 41.4 s, 25777 it.

Cuda - IC 0.169 s, 8 it. 0.420 s, 10 it. 0.754 s, 12 it.

Cuda - M-Block IC 0.109 s, 23 it. 0.203 s, 23 it. 0.327 s, 25 it.

Cuda - PB IC 0.109 s, 24 it. 0.209 s, 24 it. 0.310 s, 24 it.

Table 4.2. Parallel Results of Preonditioning on the LSFEM for Square Source Void

Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

Cuda - CG 1.58 s, 543 it. 3.92 s, 612 it. 7.94 s, 670 it.

Cuda - PB IC 0.438 s, 101 it. 0.874 s, 106 it. 1.53 s, 107 it.

Cuda - M-Block IC 0.462 s, 101 it. 0.858 s, 103 it. 1.51 s, 106 it.

In Tables 4.3 and 4.4, we compare the parallel version of the CG method and the

physically based preconditioner with the original serial version. In general the serial

version performs better on the one dimensional problem except for the two larger mesh

sizes for the standalone CG method. This is not unexpected due to the simple nature of

the one dimensional problem. For the two dimensional problem, the parallel version of

the CG method and the physically based preconditioner generally perform better than the

serial version, with about one and a half times speedup for the standalone CG method and

107

just slightly over one times speedup for the physically based incomplete Cholesky

preconditioner.

Table 4.3. Comparison of Parallel and Serial Results for LSFEM on Reed Problem

Method

Mesh Size (n-spatial, m-direction)

m = 16, n = 800 m = 16, n = 1600 m = 16, n = 2400

Cuda - CG - None 5.54 s, 8133 it. 20.0 s, 17194 it. 41.4 s, 25777 it.

Cuda - PB IC 0.109 s, 24 it. 0.209 s, 24 it. 0.310 s, 24 it.

None - CG 4.811 s, 8106 it. 20.64 s, 17171 it. 45.67 s, 25763 it.

PB - IC 0.0227 s, 23 it. 0.0469 s, 22 it. 0.0790 s, 22 it.

Table 4.4. Comparison of Parallel and Serial Results for LSFEM on

Square Source Problem

Method

Angular Quadratures for 16x16 Mesh

S8 S10 S12

Cuda - CG 1.58 s, 543 it. 3.92 s, 612 it. 7.94 s, 670 it.

Cuda - PB IC 0.438 s, 101 it. 0.874 s, 106 it. 1.53 s, 107 it.

CG 2.28 s, 511 it. 5.53 s, 586 it. 11.5 s, 648 it.

PCG - PB IC 0.491 s, 98 it. 1.06 s, 104 it. 2.02 s, 106 it.

4.4 Projected MFEM Source Sink Fluid Transport Results

Here we will first look at the results of the two dimensional source sink problem of

Section 3.7.2 and then at the three dimensional source sink problem. Recall that this is the

108

projected mixed finite element method solution on the homogenized particle transport

problem. The solvers include the stand alone conjugate gradient method (CG-None), the

physically based incomplete Cholesky (PB IC) CG method, the algebraic M-Block CG

method, and the block diagonal incomplete Cholesky method. The results for the two

dimensional problem are shown in Figure 4.3 and Table 4.5 and the results for the three

dimensional problem are shown in Table 4.6.

The physically based preconditioner performs well providing about two times

speedup for the two dimensional problem and about five to eight times speedup for the

three dimensional problem. As seen in Table 4.5 and 4.6, the physically based

preconditioner was compared against two algebraic preconditioners, the M-Block

incomplete Cholesky and the block diagonal incomplete Cholesky. The physically based

preconditioner performs the best. It is about equal to the M-Block incomplete Cholesky

for two of the mesh sizes, but converges when the M-Block does not for the largest mesh

size. It is unclear exactly why the M-Block did not converge for the largest mesh size, but

Figure 4.3. Resulting Pressure for MFEM Source

Sink Problem in CUDA with m = n = 45

MFEM Pressure for 2D Source Sink

Problem in CUDA

109

as mentioned in Chapter 2, iterative solvers like the conjugate gradient method can

stagnate depending on the mesh size and machine precision. For the three dimensional

problem, the physically based preconditioner performs about equal to the M-Block

preconditioner, with the M-Block perhaps slightly better.

Table 4.5. Parallel Results of Preconditioning on the MFEM 2D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

CUDA - CG - None 0.564 s, 238 it. 3.33 s, 346 it. 12.8 s, 452 it.

CUDA - BD IC 0.679 s, 174 it. 2.94 s, 253 it. 10.3 s, 332 it.

CUDA - M-Block IC 0.344 s, 83 it. 1.50 s, 128 it. DNC

CUDA - PB IC 0.343 s, 83 it. 1.56 s, 128 it. 5.16 s, 157 it.

Table 4.6. Parallel Results of Preconditioning on the MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 10, n = 10, o = 10 m = 20, n = 20, o = 20

CUDA - CG - None 0.203 s, 309 it. 15.8 s, 672 it.

CUDA - BD IC 0.140 s, 99 it. 4.03 s, 160 it.

CUDA - PB IC 0.047 s, 33 it. 1.99 s, 77 it.

CUDA - M-Block IC 0.047 s, 33 it. 1.87 s, 72 it.

In Tables 4.7 and 4.8, the parallel version of the CG method and the physically based

preconditioner are compared with the serial versions. For the two dimensional problem,

the parallel versions generally perform better than the serial versions with up to about

110

twice the speedup. For the three dimensional problem, the serial version performs slightly

better than the parallel version for the smaller mesh size and the parallel version

performs slightly better for the larger mesh size. This trend would be expected to

continue for larger mesh sizes that couldn't be tested due to memory constraints.

Table 4.7. Comparison of Parallel and Serial for MFEM 2D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 45, n = 45 m = 65, n = 65 m = 85, n = 85

CUDA - CG - None 0.564 s, 238 it. 3.33 s, 346 it. 12.8 s, 452 it.

CUDA - PB IC 0.343 s, 83 it. 1.56 s, 128 it. 5.16 s, 157 it.

None - CG 0.897 s, 396 it. 5.36 s, 575 it. 21.2 s, 752 it.

Physically Based - IC 0.266 s, 100 it. 1.64 s, 145 it. 5.89 s, 191 it.

Table 4.8. Comparison of Parallel and Serial for MFEM 3D Source Sink Problem

Method

Mesh Size (m-spatial in x, n-spatial in y)

m = 10, n = 10, o = 10 m = 20, n = 20, o = 20

CUDA - CG - None 0.203 s, 309 it. 15.8 s, 672 it.

CUDA - PB IC 0.047 s, 33 it. 1.99 s, 77 it.

None - CG 0.132 s, 275 it. 18.1 s, 510 it.

Physically Based - IC 0.0210 s, 33 it. 2.86 s, 77 it.

111

4.5 Conclusions and Future Work

In Chapter 3 we discussed four levels of improvement for mixed finite element

method applied to the porous media fluid transport problem: a homogenization method, a

projection of the mixed finite element method, a physically based preconditioner, and a

parallel implementation of the linear solver on GPUs using CUDA. The first three

improvements were shown in detail in Chapter 3. Here we showed the fourth level of

improvement, the implementation of the linear solver on GPUs using CUDA.

Specifically, we modified the preconditioned conjugate gradient method example within

the CUDA SDK to run the CG method and preconditioned CG with the inputs from the

projected mixed finite element method for the homogenized porous media fluid transport

problem.

 The physically based preconditioner was shown to be effective in the parallel

CUDA GPU linear solver providing about five to eight times the speedup to the

standalone CG solver. The parallel code also generally performed better than the serial

version of Chapter 3 with slightly better run times. The parallel preconditioned conjugate

method was also used on the least squares finite element method applied to the first order

particle transport problem. The physically based un-collided flux preconditioner also

showed good speedup compared with the standalone CG method, and the parallel code

showed some improvement on the serial version of Chapter 2, especially on the two

dimensional code.

 Further study could be done to fully optimize the parallel CUDA linear solver as

well as a study of the biconjugate gradient method for the non-symmetric discontinuous

finite element method. The main focus here was on the effectiveness of the

112

preconditioner in parallel, but other codes were written in Matlab and C++ that save

memory by not saving the full linear system matrix, but instead only storing the operation

of the matrix. These operations were tested as part of the study of Chapter 3, but results

were not included. A parallel version of the matrix operation could also be written and

tested within the CUDA framework. More complex domains for the original problems

could also be studied as well as the optimal platform for the first order particle and

porous media fluid transport problems utilizing multi-gpu and hybrid cpu-gpu.

 In summary, the physically based preconditioners of the fluid and particle

transport problems were shown to be effective in parallel computations on GPUs using

CUDA, and the parallel CUDA codes were shown to be slightly better than the serial

codes on the CPU. Further studies could be done as to the optimal platform (multi-gpu,

hybrid gpu-cpu, multicore cpu, etc.) and memory storage for running the preconditioned

conjugate gradient method in parallel.

113

CHAPTER 5

CONCLUSION

Physically based preconditioning was used to improve the efficiency of the linear

solvers for two applications, first order particle transport and fluid transport in porous

media. This preconditioning was also tested in parallel on GPUs using CUDA. In all

cases the physically based preconditioner performed well, in terms of speed-up gained

and as compared with several algebraic precondtioners. We also reviewed first order

formulations of the neutron transport equation, an alternative to second order

formulations, and two finite element implementations for the first order formulation to

which the physically based un-collided flux precondtioner was applied. To the mixed

finite element method for the simple flow equation for porous media flows, four levels of

improvement were applied: the method of homogenization, a projection method,

physically based preconditioning, and parallel implementation on GPUs. In summary, we

extended the results of the LSFEM of [7] and the DFEM of [8] to include physically

based preconditioning and implementation on GPUs. We also extended the results of [2]

and [11] to include physically based preconditioning and parallel implementation on

GPUs. Future work could include applying the mixed finite element method to the first

order particle transport equation, testing other linear solvers on these problems, especially

multigrid solvers, implementing these methods on more complex hybrid cpu-gpu

architectures like those in [16] [61] [63] and [64], or in more fully optimizing the code

through different storage schemes and algorithms that do not require storage of the linear

system matrix.

114

REFERENCES

1. R. Strzodka, J. Cohen, and S. Posey. "GPU-Accelerated Algebraic Multigrid for Applied

CFD," Procedia Engineering, 61, pp. 381-387 (2013).

2. M. T. Heath. Scientific Computing: An Introductory Survey, Second Edition, McGraw-Hill

Companies, Inc. (2002).

3. J. L Liscum-Powell, W. J. Bohnoff, C. R. Drumm, and W. C. Fan. "CEPTRE/Nevada

Physics Guide Version 1.0," Sandia Report SAND2007-7409, Sandia National Laboratories

(2007).

4. J. E. Morel et al. "Spatial discretizations for self-adjoint forms of the radiative transfer

equations," Journal of Computational Physics, 214 (1), pp. 12-40 (2006).

5. L. Cao and H. Wu. "A spherical harmonics--Finite element discretization of the self-adjoint

angular flux neutron transport equation," Nuclear Engineering and Design, 237 (23), pp.

2232-2239 (2007).

6. M. L. Adams and E. W. Larsen. “Fast Iterative Methods for Discrete-Ordinates Particle

Transport Calculations,” Progress in Nuclear Energy, 40 (1), pp.3-159 (2002).

7. C. Drumm and W. Fan, "Least Squares Finite Element Algorithms in the SCEPTRE

Radiation Transport Code," International Conference on Mathematics and Compuational

Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ,

Brazil, May 8-12, on CD-ROM, Latin American Section (LAS) / American Nuclear Society

(ANS) ISBN 978-85-6368-00-2 (2011).

115

8. T. Manteuffel, S. McCormick, J. Morel, S. Oliveira, and G. Yang, "A Fast Multigrid

Algorithm for Isotropic Transport Problems I: Pure Scattering," SIAM J. Sci. Comput., 16(3),

pp.601-635 (1995).

9. R. E. Ewing and M. F. Wheeler, Computational Aspects of Mixed Finite Element Methods,

North-Holland, Amsterdam (1983).

10. G. Amaziane, A. Bourgeat, and J. Koebbe. "Numerical Simulation and Homogenization of

Two-Phase Flow in Heterogeneous Porous Media," Transport in Porous Media, 6, pp. 519-

547 (1991).

11. J. Koebbe, “A Computationally Efficient Modification of Mixed Finite Element Methods for

Flow Problems with Full Transmissivity Tensors,” Numerical Methods for Partial

Differential Equations, 9, pp.339-355 (1993).

12. CUDA C PROGRAMMING GUIDE, NVIDIA Corporation, 2007-2013.

13. X. Jia, et al. "Development of a GPU-based Monte Carlo dose calculation code for coupled

electron-photon transport," Phys. Med. Biol., 55 (11), pp. 3077-3086 (2010).

14. C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong. "GPU accelerated simulations of

3D deterministic particle transport using discrete ordinates method," Journal of

Computational Physics, 230 (15), pp. 6010-6022 (2011).

15. B. Quintela, D. Caldas, M. Farange, and M. Lobosco. "Multiscale Modeling of

Heterogeneous Media Applying AEH to 3D Bodies," Computational Science and its

Applications - ICCSA 2012, Lecture Notes in Computer Science, 7333, pp. 675-690 (2012).

16. S. Ovaysi and M. Piri. "Multi-GPU acceleration of direct pore-scale modeling of fluid flow

in natural porous media," Computer Physics Communications, 183 (9), pp. 1890-1898

(2012).

116

17. R. Helfenstein, J. Koko. "Parallel preconditioned conjugate gradient algorithm on GPU,"

Journal of Computational and Applied Mathematics, 236 (15), pp. 3584-3590 (2012).

18. M. Grote, and T. Huckle. "Parallel Preconditioning with Sparse Approximate Inverses,"

SIAM J. Sci. Comput., 18 (3), 838-853 (1997).

19. M. Rigley and C. Drumm. "Matrix Preconditioning for Photon Transport Equations,"

Technical Report, Sandia National Laboratories, SAND2011-6529 P (2011).

20. M. A. Heroux and J. M. Willenbring. "Trilinos Users Guide," Technical Report, SAND2003-

2952, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,

California 94550 (2003).

21. M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. "ML 5.0 smoothed

aggregation user's guide, Technical Report SAND2006-2649, Sandia National Laboratories

(2006).

22. M. Rigley and C. Drumm. "Matrix Preconditioning For Neutron Transport Equations,"

Technical Report, Sandia National Laboratories, SAND2012-7676 P (2012).

23. R. T. Ackroyd and N. S. Riyait, "Iteration and Extrapolation Methods for the Approximate

Solution of the Even-Parity Transport Equation for Systems With Voids," Ann. nucl. Energy,

16 (1), pp.1-32 (1989).

24. E. E. Lewis and W. F. Miller, Jr. Computational Methods of Neutron Transport, American

Nuclear Society, La Grange Park, Illinois (1993).

25. T. A. Brunner. "Forms of Approximate Radiation Transport," Sandia Report, SAND2002-

1778, Sandia National Laboratories (2002).

26. W. L. Morgan. "ELENDIF: A time-dependent Boltzmann solver for partially ionized

plasmas," Computer Physics Communications, 58 (1-2), pp. 127-152 (1990).

117

27. A. J. H. McGaughey and M. Kaviany. "Quantitative validation of the Boltzmann transport

equation phonon thermal conductivity model under the single-mode relaxation time

approximation," Physical Review B, 69, pp. 094303 (2004).

28. M. S. Gockenbach. Understanding and Implementing the Finite Element Method, Society for

Industrial and Applied Mathematicians (2006).

29. W. Reed, "New Difference Schemes for the Neutron Transport Equation," Nucl. Sci. Eng., 46

(2), pp.309-314 (1971).

30. C. J. Gesh and M. L. Adams, "Even- and Odd-Parity Finite Element Solutions to Thick

Diffusive Problems in Cartesian Geometry," Advanced Methods in Radiation Transport,

M&C 99, Madrid, Spain (1999).

31. T. M. Austin and T. A. Manteuffel. "A Least-Squares Finite Element Method for the Linear

Boltzmann Equation with Anisotropic Scattering," SIAM J. Numer. Anal., 44 (2), pp. 540-

560, Society for Industrial and Applied Mathematicians (2006).

32. M.E. Cantekin and J.J. Westerink, “Non-diffusive N + 2 Degree Petrov-Galerkin Methods

for Two-Dimensional Transient Transport Computations,” International Journal for

Numerical Methods in Engineering, 30, pp.397-418 (1990).

33. H. Anton and C. Rorres. Elementary Linear Algebra: Applications Version, Eight Edition,

John Wiley & Sons, Inc. (1973).

34. Saad, Yousef. Iterative Methods for Sparse Linear Systems. Yousef Saad (2000).

35. G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, The John Hopkins

University Press (1996).

36. Picture Reference, Figure 2.4, http://hep.physics.indiana.edu/~hgevans/p410-

p609/material/06_fit/func_min.html.

118

37. R. Moore. Vector and Matrix Differentiation, Ed. Ross Moore and Nikos Drakos, Macquarie

University, Sydney, 1 Feb. 2002. Web. 22 Aug. (2011).

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html

38. T. K. Moon and W. C. Sterling. Mathematical Methods and Algorithms for Signal

Processing, Prentice Hall (2000).

39. Picture Reference, Figure 2.5. http://www.dreamstime.com/stock-photography-mountain-

trail-switzerland-alps-image6166482.

40. H. A. Van Der Vorst. "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for

the solution of non-symmetric linear systems," SIAM Journal on Scientific and Statistical

Computing, 12, pp. 631-644 (1992).

41. C. Drumm and W. Fan. "Uncollided-Flux Preconditioning of the Conjugate Gradients

Solution of the Transport Equation," Nuclear Mathematical and Computational Sciences: A

Century in Review, A Century Anew, Gatlinburg, Tennessee, April 6-11, 2003, on CD-ROM,

American Nuclear Society, LaGrange Park, IL (2003).

42. G. L. G. Sleijpen and D. R. Fokkema. "BiCGstab(/) for linear equations involving

unsymmetric matrices with complex spectrum," Electronic Transactions on Numerical

Analysis, 1, pp. 11-32 (1993).

43. Y. Watanabe and C.W. Maynard. “The discrete cones method in two dimensional neutron

transport computations,” University of Wisconsin, Report UWFDM-574 (1984).

44. M. Rigley, J. Koebbe, and C. Drumm, "Uncollided-flux Preconditioning for the First Order

Transport Equation," International Conference on Mathematics and Computational Methods

Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9,

2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013).

http://fourier.eng.hmc.edu/e161/lectures/algebra/node7.html
http://www.dreamstime.com/stock-photography-mountain-trail-switzerland-alps-image6166482
http://www.dreamstime.com/stock-photography-mountain-trail-switzerland-alps-image6166482

119

45. P.A. Raviart and J.M. Thomas. "Mixed finite element methods for second-order elliptic

problems," Lecture Notes in Mathematics, 606, Springer-Verlag, New York (1977).

46. F. Brezzi, J. Douglas, Jr., and L.D. Marini. "Two Families of Mixed Finite Elements for

Second Order Elliptic Problems," Numerische Mathematik, 47, pp. 17-235, Springer-Verlag

(1985).

47. T.F. Russell and M.F. Wheeler. "Finite Element and Finite Difference Methods for

Continuous Flows in Porous Media," The Mathematics of Reservoir Simulation, the Society

for Industrial and Applied Mathematicians (1983).

48. P. Colella, P. Concus, and J. Sethian. "Some Numerical Methods for Discontinuous Flows in

Porous Media," The Mathematics of Reservoir Simulation, the Society for Industrial and

Applied Mathematicians (1983).

49. M. H. Holmes. Introduction to Perturbation Methods, Beijing : Springer-Verlag, (1999).

ISBN 7-5062-2682-0.

50. L. L. Watkins. Using Wavelets as a Computational and Theoretical Tool for

Homogenization, Logan, UT : Utah State University (2005).

51. U. Hornung. "Homogenization and Porous Media," Interdisciplinary Applied Mathematics 6

(1997).

52. M. Rigley. "Homogenization for Porous Media," A technical report written in partial

fulfillment of PhD Degree, Utah State University (2012).

53. C. Chen and E. Meiburg. "Miscible porous media displacements in the quarter five-spot

configuration. Part 1. The homogeneous case," J. Fluid Mech, 371, pp. 233-268, Cambridge

University Press (1998).

120

54. C.W. Brand, U. Stanford, J.E. Heinemann, U. L. Mining, and K. Aziz. "The Grid Orientation

Effect in Reservoir Simulation," SPE Symposium on Reservoir Simulation, 17-20 February,

Anaheim, California (1991).

55. G. W. Milton. The Theory of Composites, Cambridge, UK: Cambridge University Press

(2002).

56. R. Farber. CUDA Application Design and Development, Morgan Kaufmann (2011). ISBN-

13: 978-0-12-388426-8.

57. A. Badal and A. Badano. "Accelerating Monte Carlo simulations of photon transport in

voxelized geometry using a massively parallel graphics processing unit," Med. Phys., 36, pp.

4878 (2009).

58. F. A. van Heerden. "A Coarse Grained Particle Transport Solver Designed Specifically for

Graphics Processing Units," Transport Theory and Statistical Physics, 41 (1) (2012).

59. Z. Zhang and Q. Kan Wang. "Accelerating a three-dimensional MOC calculation using GPU

with CUDA and two-level GCMFD method," Annals of Nuclear Energy, Elsevier, 62, pp.

445-451 (2013).

60. C. Gong, J. Liu, H. Chen, J. Xie, and Z. Gong. "Accelerating the Sweep3D for a Graphic

Processor Unit," Journal of Information Processing Systems, 7 (1), pp. 63-74 (2011).

61. M. Trapeznikova, B. Chetverushkin, N. Churbanova and D. Morozov. "Two-Phase Porous

Media Flow Simulation on Hybrid Cluster," Large-Scale Scientific Computing, Lecture

Notes in Computer Science, 7116, pp. 646-653 (2012).

62. L. Ruipeng and Y. Saad. "GPU-Accelerated Preconditioned Iterative Linear Solvers,"

Technical Report, Department of Computer Science & Engineering; University of

Minnesota, USA (2010).

121

63. M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. "A Parallel Preconditioned Conjugate

Gradient Solver for the Poisson Problem on a Multi-GPU Platform," Parallel, Distributed and

Network-Based Processing (PDP), 2010 18th Euromicro International Conference, 17-19

Feb., pp. 583-592 (2010).

64. A. Cevahir, A. Nukada, and S. Matsuoka. "Fast Conjugate Gradients with Multiple GPUs,"

Computational Science - ICCS 2009, Lecture Notes in Computer Science, 5544, pp. 893-903

(2009).

65. G. Grawanis, C. Filelis-Papadopoulos, K. Giannoutakis. "Solving finite difference linear

systems on GPUs: CUDA based Parallel Explicit Preconditioned Biconjugate Conjugate

Gradient type Methods," The Journal of Supercomputing, 61 (3), pp 590-604 (2012).

66. J. Sanders, E. Kandrot. CUDA BY EXAMPLE: An Introduction to General-Purpose GPU

Programming, NVIDIA Corporation (2011).

122

APPENDICES

123

APPENDIX A - CUDA TUTORIAL

Tutorial for Running Codes in CUDA

A.1 Installing CUDA in Windows

Directions for installing CUDA can be found on NVIDIA's website at

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/

Additional helpful directions for using CUDA within a Visual C++ framework can be

found at

http://julip.co/2009/09/how-to-install-and-configure-cuda-on-windows/

Once CUDA and Visual C++ are installed on your computer, you can find the

preconditioned conjugate gradient method under the following folder

C:\ProgramData\NVIDIA\ Corporation\CUDA\Samples\...

v5.0\7_CUDALibraries\conjugateGradientPrecond

Open this solution or project in Visual C++. The file that comes up should be main.cpp.

This file contains code for running a conjugate gradient and preconditioned conjugate

gradient method for a matrix made up of the Laplacian Operator with and incomplete LU

factorization as the preconditioner. Run the code by typing ctrl + F5 to see the output. It

should look like the figure below. Much of the code contained in the main.cpp file is for

setting up the linear system to be run on the GPU and need not be changed to run the two

iterative methods on a different linear system.

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-microsoft-windows/
http://julip.co/2009/09/how-to-install-and-configure-cuda-on-windows/

124

Figure A.1 Screen Shot of Results of CUDA Conjugate Gradient Method

A.2 Running the LSFEM on CUDA

Several things need to be changed from the original file to accommodate the LSFEM

linear system. First, add additional header files for inputting and outputting matrices and

vectors to and from text files and for checking the run time. More specifically, add the

following to the list of include statements at the top of the file main.cpp.

 // includes, additions

 #include <iostream>

 #include <fstream>

 #include <time.h>

 using namespace std;

The function void genLaplace will not be used for the new linear system and can be

deleted if desired. The second and main change to the code is replacing the existing linear

system with a linear system of your own. The code is setup for compressed sparse row

format (CSR) and the matrix that you input should be in the same format. If so, then you

can use the current variables given in the code and leave the code for transferring

125

memory to the GPU alone. Otherwise, additional changes will have to be made. More

specifically, lines 183-198 in main.cpp can be replaced by your linear system. Modify the

size of the system, number of nonzeros, row pointers, column indeces, nonzero matrix

values, initial guess values, and right hand side values according to your linear system.

Below is the code that can be used to replace the lines above to create the LSFEM linear

system.

 /* Create My Own Matrix */

 M = N = 640;

 nz = 6908;

 I = (int *)malloc(sizeof(int)*(N+1)); // csr row pointers for

 matrix A

 float *Itest;

 Itest = (float *)malloc(sizeof(float)*(N+1));

 J = (int *)malloc(sizeof(int)*nz); // csr column indices for

 matrix A

 float *Jtest;

 Jtest = (float *)malloc(sizeof(float)*nz);

 val = (float *)malloc(sizeof(float)*nz); // csr values for

 matrix A

 x = (float *)malloc(sizeof(float)*N);

 rhs = (float *)malloc(sizeof(float)*N);

 for (int i = 0; i < N; i++)

 {

 rhs[i] = 0.0; // Initialize RHS

 x[i] = 0.0; // Initial approximation of solution

 }

 // Test Additions

 ifstream ffin1;

 ffin1.open("Aval.txt");

 for(int ii=0;ii<nz;ii++)

 {

 ffin1 >> val[ii];

 }

 ffin1.close();

 ifstream ffin2;

 ffin2.open("Acol.txt");

 for(int ii=0;ii<nz;ii++)

 {

 ffin2 >> Jtest[ii];

 J[ii] = int(Jtest[ii])-1;

 }

 ffin2.close();

 ifstream ffin3;

 ffin3.open("Arptr.txt");

 for(int ii=0;ii<N+1;ii++)

 {

126

 ffin3 >> Itest[ii];

 I[ii] = int(Itest[ii])-1;

 }

 ffin3.close();

 ifstream ffin4;

 ffin4.open("rhs.txt");

 for(int ii=0;ii<N;ii++)

 {

 ffin4 >> rhs[ii];

 }

 ffin4.close();

Note that the size of the linear system M, and the number of nonzeros are input

manually into the code. For this case, the maximum number of iterations should be at

least 3000. Also note that the values for the matrix values, row pointers, column indices,

and right hand side values need to be saved to files Aval.txt, Arptr.txt, Acol.txt, and

rhs.txt respectively and stored in the given folder. The size of matrix and number of

nonzeros above are for the case when the number of scattering directions is 8 and the

number of steps is 80. Once the above modifications are made, the conjugate gradient

algorithm should run and give the following output.

Figure A.2 Screen Shot of Results of LSFEM in CUDA

127

This completes the tutorial. From here, simple modifications explained above can be

made for different linear systems. To change the preconditioner like in the results of

Chapter 4, modifications need to be made to the transferring of data to the graphics

processing unit. Some of those changes are not too difficult, but will not be discussed

within this tutorial.

128

APPENDIX B - USERS MANUALS

B.1 Users Manuals for Particle Transport Codes

B.1.1 Function Explanations for the 1D Continuous LS Finite Element Toolbox

List of Scripts

reedproblemsetup – This is a script that sets up the parameters for the problem

 given in [3].

NT1DSimulation – This script runs the solver for the 1D equation.

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

List of Functions

cootwostand – This is an extra function included if you want to convert a matrix from

 COO to standard format.

LegGaussquad – This function runs Gauss Legendre quadrature and gives the directions

 and weights for the scattering integral. For this version the weights add up to 2.

matvec_csr – This function performs matrix vector multiplication for a matrix in CSR

 format and a vector in standard format.

NT_1D_FEMls – This function takes the input parameters from the setup scripts and

 creates the linear system matrix.

NT_1D_FEMls_precM – This function creates the preconditioned matrix. It gives the

 same result as NT_1D_FEM_coo with sigma_s set to zero, but written simpler.

129

preccg_csr – This function runs a preconditioned conjugate gradient algorithm in CSR

 format. See [7] for details.

For an example on how to run the code, look at script NT1DSimulation.

130

B.1.2 Function Explanations for the 1D Discontinuous Finite Element Toolbox

List of Scripts

reedproblemsetup – This is a script that sets up the parameters for the

 problem given in [3].

clifproblemsetup – This is a simpler problem set up that was used to test the code.

NT1DSimulation – This script runs the solver for the 1D equation.

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

List of Functions

biconjgradstab – This function runs the biconjugate gradient stabilized iterative solver.

 See Saad’s book on iterative solvers.

blockLU_precM – This function finds the LU decomposition of the preconditioning

 matrix.

cootwostand – This is an extra function included if you want to convert a matrix from

 COO to standard format.

LegGaussquad – This function runs Gauss Legendre quadrature and gives the directions

 and weights for the scattering integral. For this version the weights add up to 2.

LUsolve_precM – This function solves the linear system for the preconditioner given the

 preconditioner in LU form.

matvec_csr – This function performs matrix vector multiplication for a matrix in CSR

 format and a vector in standard format.

131

NT_1D_FEM_coo – This function takes the input parameters from the setup scripts and

 creates the linear system matrix.

NT_1D_FEM_coo_precM – This function creates the preconditioned matrix. It gives the

 same result as NT_1D_FEM_coo with sigma_s set to zero, but written simpler.

precbiconj – This function is a preconditioned stabilized biconjugate gradient iterative

 solver modified from the one found on Wikipedia.

For an example on how to run the code, look at script NT1DSimulation.

132

B.1.3 Function Explanations for the 2D Continuous LS Finite Element Toolbox

List of Scripts

bc_riyait - Applies the boundary conditions for the square source void problem

bc_riyait_norhs - A simplified form of bc_riyait

createfileforc - This script runs a few lines that convert the matlab matrices and rhs to text

 files to be run in the proper CUDA folder

NT2DSimulation_5_5 - The main script to run the code including setting up the matrix,

 solving the linear system, and graphing the results

List of Functions

matsparstocsr - A function that takes a Matlab sparse matrix A and outputs the vectors

 representing the nonzero values, row pointers, and column indeces in CSR format

NT_2D_LS - A function that takes in the problem parameters and computes components

 of the linear system. The linear system is assembled inside of

NT2DSimulation_5_5 to help achieve the largest possible matrix given the current

 Matlab memory limits

NT_2D_LS - A modification of NT_2D_LS to break up the work of NT_2D_LS and

 assist in avoiding the Matlab memory limit

List of Pre-computed Objects

s8quad - quadrature weight as directions for the S
8
 level-symmetric set

s10quad - quadrature weight as directions for the S
10

 level-symmetric set

133

s12quad - quadrature weight as directions for the S
12

 level-symmetric set

LS_nx16_ny16_s8 - Linear System elements for the 16 x 16 case with S
8
 level-symmetric

 set

LS_nx16_ny16_s10 - Linear System elements for the 16 x 16 case with S
10

 level-

 symmetric set

LS_nx16_ny16_s12 - Linear System elements for the 16 x 16 case with S
12

 level-

 symmetric set

134

B.1.4 Function Explanations for the 2D Discontinuous Finite Element Toolbox

List of Scripts

NT2DSimulation_5_5 - The main script to run the code including setting up the matrix,

 solving the linear system, and graphing the results

The following are scripts that are repeated throughout NT_2D_DFEM for the various

parts of the linear system matrix. They are divided by the terms in Equation (27) above.

first_order_mux_neg

first_order_mux_neg_rbc

first_order_mux_pos

first_order_muy_neg

first_order_muy_neg_rbc

first_order_muy_pos

 rhs_script

zero_order_nonscat

zero_order_scat

List of Functions

NT_2D_DFEM - Function that takes the problem parameters and creates the linear

 system

NT_2D_DFEM_# - Simplified form of NT_2D_DFEM to split up the work and speedup

 the process

135

List of Data Objects

s8quad - quadrature weight as directions for the S
8
 level-symmetric set

s10quad - quadrature weight as directions for the S
10

 level-symmetric set

s12quad - quadrature weight as directions for the S
12

 level-symmetric set

DFEM_nx16_ny16_s8 - Linear System elements for the 16 x 16 case with S
8
 level-

 symmetric set

DFEM_nx16_ny16_s10 - Linear System elements for the 16 x 16 case with S
10

 level-

 symmetric set

DFEM_nx16_ny16_s12 - Linear System elements for the 16 x 16 case with S
12

 level-

 symmetric set

136

B.2 Users Manuals for Fluid Transport Codes

B.2.1 Function Explanations for the 2D and 3D MFEM Toolboxes

List of Scripts

MFEMSimulation - Main script for setting up the problem, building the linear system,

 solving it and graphing the result

homogExample - same as MFEMSimulation except that it's specified for problem 3.2.1

 above

homogalphatest - same as homogExample except that it's modified to run the alpha test in

 3.2.3

onedflowExample - same as MFEMSimulation except that it's specified to run the one

 dimensional flow problem 3.2.2

List of Functions

MFEM_Full - Creates the components of the linear system (80) above

MFEM_Full_flow - same as MFEM_Full but with modified boundary condition for the

 one dimensional flow problem 3.2.2

precCG - preconditioned conjugate gradient algorithm

solveCG - conjugate gradient algorithm

137

VITA

Michael Rigley

PhD Student, Department of Mathematics and Statistics, Utah State University
Email: michael.rigley@aggiemail.usu.edu • Phone: (801) 388-9909

Academic Preparation

Brigham Young

University
Mathematics
Russian

 B.S.—3.77 GPA,

2007

Utah State University Applied Mathematics,
Interdisciplinary

 M.S.—3.92 GPA,

2009
 PhD—3.94 GPA,

2013

Professional Experience

Technical Intern, Sandia National Laboratories-SEERI 2 years
Research Assistant, Utah State University – Modeling Fluid Flow in Mountain Lakes 1 year

Research Fellow, National Physical Science Consortium 2 years

Graduate Instructor, Department of Mathematics and Statistics 5 years

Current Research

 Finite Element Method Solvers for First Order Particle Transport Equations (1 year)

 For the second summer as an intern and continued as part of PhD research three codes are

 written for the first order particle transport equation including a least squares finite

 element method, a discontinuous finite element method, and a mixed finite elment

 method. These codes are written in one and two dimensions. Uncollided-flux

 preconditioners are used in conjunction with the linear solvers of each method. Iterative

 linear solvers are also written for these methods.

 Codes written in MATLAB

 Preconditioning Mixed Finite Element Methods for Flow Equations in Porous Media (1

 year)

 Solutions of second order flow equations with diagonal permeability tensors are used as

 preconditioners for solutions of flow equations with full permeability tensors within a

 mixed finite element method. The method also incorporates the method of

 homogenization on the permeability tensors over the domain.

 Codes written in C++, MATLAB

 GPU Finite Element Solvers for Transport Equations (1 year)

 Several of the above transport codes will be written in OpenCL or CUDA to run on

 GPU's.

 Codes written in C++, OpenCL, CUDA

Previous Research

 Matrix Preconditioning for Photon Transport Equations (1 year)

 For the first summer as a technical intern at Sandia National Laboratories-Science of

 Extreme Environment Research Institute a multilevel preconditioning package, ML,

 developed by the Trilinos group, was used to speed up the linear solver within

 SCEPTRE, a radiation transport code also developed at Sandia. Specifically various

138

 smoothers were tried within ML to speed up the conjugate gradient method within the

 SCEPTRE code. Chebyshev polynomials were found to work well on the given problem.

 Codes developed in C++

 Finite Element Solvers for Computational Homogenization in Porous Media (1 year)

 As part of a comprehensive examination, finite element solvers were written for second

 order fluid transport equations in one, two and three dimensions. The assumption of

 periodicity on the homogenized problem allows for a unique matrix storage structure that

 is easily applicable to iterative solvers.

 Codes written in MATLAB

 Factor Analysis Approximations in Dimension Reduction for Face Recognition Software

 (1 year)

 Centroid approximations were used as approximations to the singular value

 decomposition within face recognition software.

 Software was developed in MATLAB

 Using Image Processing in Determining Wildlife Populations (1 year)

 As part of a student team, an unsupervised object detection algorithm was developed to

 calculate wildlife populations from aerial images.

 Algorithm developed in MATLAB

Software Experience

 MATLAB (5 years)

 C++, OpenCL, CUDA (1 year)

 Java (1 year)

Publications

 M. Rigley, Intermediate Complexity Biological Modeling Framework for Mountain

 Lakes Based on Physical Structure, Masters Thesis, Utah State University, Fall 2009.

 M. Rigley, Matrix Preconditioning for Photon Transport Equations, technical report,

 SAND 2011-6529 P , Summer 2011.

 M. Rigley, Matrix Preconditioning for Neutron Transport Equations, technical report,

 SAND 2012-7676 P, Summer 2012.

 D. Sunderland, M. Garlick, M. Rigley, M. Scott, and K. Keepers, Efficient Assay

 Algorithm for PCR Primers, technical report, USU, April 2008.

 M. Rigley, C. Drumm, J. Koebbe, Uncollided-Flux Preconditioning for the First Order

 Transport Equation, Mathematics & Computation May 2013, Sun Valley Idaho.

 Preconditioners and Mixed Finite Element Methods for Fluid Flow in Porous Media,

 dissertation topic, to be completed Spring 2013.

Presentations

 Matrix Preconditioning for Photon Transport Equations (Poster), Sandia SIP Poster

 Event, August 2011, SAND number unknown.

 Transport Equations: Preconditioning Discontinuous FEM’s, SAND 2012-6203P, SEERI

 (Science of Extreme Environments Research Institute) End of Summer Presentations,

 August 2012.

 Numerical Techniques in Modeling Fluid Flow Through Porous Media, Intermountain

 Graduate Research Symposium, April 2012.

 Intermediate Complexity Biological Modeling Framework for Mountain Lakes Bases on

 Physical Structure, Intermountain Graduate Research Symposium, March 2010.

139

 Show Your True Eigenface: A Workshop on Image Processing, Sponsored by

 MSPDAWG – USU’s Mathematics and Statistics Professional Development and

 Working Group, with funding from the Park City Mathematics Institute and Utah State

 University, May 2011.

Awards/Appointments

 Research Fellow, National Physical Science Consortium (2011-2013)

 Image Processing Summer School, Park City Math Institute (2009)

 Teaching Above and Beyond the Call of Duty, Math Department Award (2009)

