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Figure 3.2: Example organizational structure.

Figure 3.3: Task passing mechanism.

tasks and management computations. Since finishing a task requires cooperation between

multiple agents, a task-passing mechanism allocates tasks to different neighbors. Based on

its relationship with a neighbor, agentx prefers to allocate tasks first to its subordinates,

then to peers and finally to its acquaintances. Figure 3.3 demonstrates this task passing

mechanism.

When an agent is consistently looking for another agent with a specific skill, it is

motivated to reorganize to form a direct relationship with an agent providing that service.

This process is called adaptation. This process seeks to improve the profit of the system.
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Agents can adapt locally, though based on local adaptation by the agents, the method leads

to the benefit of the organization as a whole. The adaptation process consists of two main

parts, named meta-reasoning and reorganization. Meta-reasoning determines which agents

should be selected among an agent’s neighbors, and reorganization evaluates and changes

the organizational link with selected agents. This adaptation process aims to promote the

relation type of helpful agents (based on history) and demote the relationship of agents who

have shown less collaborative contribution in the neighborhood. Meta-Reasoning evaluates

neighbors using the Satisfaction Measure. Each agent is satisfied with a relation when

the corresponding agent is able to service most of the agent’s requests; the stronger the

neighborhood in terms of servicing requests, the more satisfied the agent is, as shown in

Equation 3.2.

satisfaction =

∑t−1
i=t−h numProvidedRequests∑t−1

i=t−h numRequsts
(3.2)

When an agent accepts a subtask request, it means that it has the potential to accom-

plish that subtask. In this equation, i stands for iteration and t indicates current iteration.

Variable h is in the range of [1, t − 1] and shows the amount of history that should be

considered. In this approach, agentx ranks its neighbors based on the satisfaction measure.

Then it selects some of its least satisfactory subordinates and peers along with some strong

acquaintances for the reorganization process.

Reorganization enables an agent to change its relations with some of its neighbors,

which are identified in the Meta-Reasoning step. For each agenty in this list, agentx takes

the best action among possible actions based on the current relationship and a measure

computed from evaluation functions. Figure 3.4 demonstrates possible actions for two

agents based on their current relation.

However, creating a new relation brings an amount of load to the system; it gives the

system the opportunity to earn utility via this new relation. In the case of removing a

relation, the system gets rid of the load of that relation while not earning utility any more.

Evaluation functions estimate the amount of utility and load associated with changing
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Figure 3.4: Diagram of possible actions.

a current relation Rc (between agentx and agenty) to new relation Rn. Loads consist of

management load, communication load and load of changing the relation, and are estimated

based on history. Utility is estimated based on past experiences with the type of relation

Rn and the effectiveness (in term of earned utility) of agenty. For example, if agentx wants

to make a peer relation with agenty, it calculates the average earned utility of its peers so

far, along with the average utility earned from agenty. This means that the experience of

agentx with that type of relation (Rn) and the history of functionality of agenty affect the

decision [30].

3.4.3 Recommendation-Based Trust

Consider the case in which agentx needs to build trust in agentz. To evaluate the

amount of trust to extend, agentx needs to use experiences. A requestor agent seeks bids

from possible provider agents, and contracts with a selected agent to complete a task. This

experience between the requestor and the selected agent allows the requestor to evaluate

the selected agent based on how well it accomplishes its promise. Experiences that are

related can be direct or from third parties. Although direct experience has a stronger effect

on the process of building trust, agentx may want to take into account the experiences

provided by third parties. Recommendations of other agents help agentx to have better
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judgment in building trust about agentz. Suppose that in agentx’s direct experience with

agentz, agentz was late or could not accomplish the given promise. Therefore, the bad

experience of agentx affects its trust in agentz. But when agentx considers third-party

recommendations of agentz, the effect of bad experience is adjusted. In addition, having

other members’ opinions helps agentx judge agentz from different points of view. The

number of recommendations agentx needs to build trust in agentz depends on the risk

behavior of agentx. Risk-averse agents need more recommendations and more positive

recommendations than risk-seeking ones. Recommenders are picked from among categories

below:

• agents that most recently interacted with agentz

• superiors of agentz

• agents that have the most interaction with agentz

Then, agentx combines the experiences for determine the amount of trust for agentz.

3.4.4 Adaptive Risk

In our model, risk is a number in the range of [0, 2], where 0 represents a fully risk-averse

agent, 1 represents a risk-neutral agent, and 2 represents a risk-seeking agent. This allows

a continuum of risk behavior rather than categorizing agents into only three options. This

risk measure affects all the decisions each agent makes. Each agent gets a Risk Random

Initial Value (RRIV ) as its risk measure in the initialization phase. RRIV is in the range

of [0, 2]. We use a random initial value for risk to have agents with various risk behaviors

in the model. Each agent has the opportunity to update its risk behavior based on its

experiences (history) and current resources. The measure of earned utility and measure of

loss are factors which agentx considers in updating its risk measure.
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• Measure of Earned: This measure is calculated from Equation 3.3. and shows a

percentage of earned utility.

MeasureofEarned = (
SumEarnedUtility

SumPossibleUtility
) (3.3)

The possible utility is the sum of all utility of the tasks accepted by agentx. SE is

considered a percentage of earned utility. Generally, agents with high earnings have

a good social standing and a higher acceptability of risk.

• Measure of Loss: This measure is calculated from Equation 3.4. The possible utility is

the sum of all the tasks offered to agentx. Both Lost and Possible utility are based on

accepted tasks by agentx. Measure of Loss is considered a percentage of lost utility.

Normally, agents who lose a lot try to be more cautious.

MeasureofLoss = (
SumLostUtility

SumPossibleUtility
) (3.4)

3.4.5 Reprioritization Algorithm using Agent’s Strategy

Each agent can only accept one request per time-step. Therefore, agents store requests

in a waiting queue. To estimate the expected finish time of the requested task, agentx needs

to prioritize its queue and find the estimated time based on the anticipated task’s place in

the queue. Factors which affect prioritization include:

• Deadline (D): Passing the deadline results in getting zero reward and wasting ex-

pended resources.

• Utility (U): Expected utility of completing the task (incentive for doing the task).

• Strength of Relationship (SR): Strength of relationship with requestor. An agent

could give higher priority to requests from superiors or from additional relationships

that an agent wants to encourage (such as a peer or subordinate that is deemed

valuable).
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For special taski, agents use (D (deadline), U (utility), SR (strength of relationship))

to specify priority for the task based on Equation 3.5.

MeasureOfPriority = α1 ×D + α2 × U + α3 × SR (3.5)

Each agent has a different weighting scheme (α1, α2, α3). We call this triplet the

strategy of agent, which specifies the order of importance of each factor. Some agents may

pay more attention to gaining utility than other factors. Some may worry about deadline

(keeping their promises). Other agents focus mainly on satisfying their superiors to keep

their relationship strong. We try various combinations of behaviors to see what is more

profitable. Furthermore, agent strategy can evolve. The update policy is based on copying

the strategy of one of the successful agents in their neighborhood. Various factors influence

the measure of success which is utilized.

3.4.6 Decision-Making Algorithm

In task passing, agentx can pass the task to different levels of neighbors including

subordinates, peers, superiors and acquaintances. In each level of neighbors, there may

be agents who claim they can help (volunteer to do the task). Volunteers provide their

suitability with three estimations, which include their best case, average case and worst case

time estimation of accomplishing the task. To find the optimal agent among volunteers,

agentx needs to consider factors like trust of volunteers, their estimation of finishing time,

and its own risk measure. The main application of trust is identifying who to interact with.

The risk measure and the volunteers’ estimated times provide the context of the decision

which agentx is going to make. Decision making involves these steps:

1. Agentx sends request for estimation of task completion to its subordinates

• Subordinates who are capable of doing the task reply to agentx, with their best,

average and worst case estimation time of doing the task along with the prob-

abilities of finishing the task in the estimated time. (The approach of making

estimations is explained later of the current section).
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• Agentx removes from consideration subordinates whose responses are dominated

by other agents.

• Agentx updates trust value for the remaining subordinates based on the approach

explained in 3.4.3.

• Agentx uses trust to evaluate their responses (to what extent agentx can accept

their promises).

• Agentx maps the estimated times to utility. This mapping is based on Equa-

tion 3.1. Equation 3.1 simply says that an agent can get the whole defined utility

of the task if it finishes it before a certain time. After that, the amount of utility

the agent can earn decreases by passing time. Therefore, the different estimated

times can be mapped to different utilities.

• Agentx finds the optimal agent based on Expected Utility Theory (details are

explained later in the current section), which uses the agents’ answers (converted

to utility) and agentx’s risk measure to pick the best option.

2. If there is no capable subordinate, agentx goes through the same steps as above for

finding the optimal peer.

3. If there is no capable peer, agentx passes the task to one of its superiors. Then the

superior is in charge of finding capable agent.

4. If agentx’s superiors fail to find suitable agent, agentx tries to assign the task to the

first volunteer acquaintance.

5. If agentx cannot find a capable agent after all of the following steps, it adds the task

on the back of its queue.

Estimation Approach of Agents

For the estimations, each agent utilizes the reprioritization algorithm to find the antic-

ipated place of the task in its queue. The anticipated place of the task in queue requires the

agent to evaluate the amount of time the preceding tasks in the queue need. Furthermore,
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there are always barriers to reach that time. Agents may finish tasks slower than what

they anticipated due to unforeseen circumstances, such as another task with higher priority

arriving and moving the current task down the agent’s queue. Utilizing the occurrence his-

tory of these events and anticipated place of the requested task, each agent (queried agent)

gives three estimations along with the probability of those estimations occurring. In all of

the equations, the number of tasks in the queue is considered as n.

• Best case denotes the case where neither the preceding tasks in queue, nor the re-

quested task are delayed. Equation 3.6 shows the best case time and probability

estimations.

T (BestCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration

P (BestCase) = (1 − p(lateness))n
(3.6)

• Average case estimation allows half of the tasks to be delayed, while the other half is

not delayed.

T (AverageCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+
n

2
× T (lateness)

P (AverageCase) = Cn
n
2
× (p(lateness)

n
2 (1 − p(lateness))

n
2 )

(3.7)

• Worst case represents the case where all tasks, including the requested task, are

delayed by these barriers.

T (WorstCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+ n× T (lateness)

P (WorstCase) = 1 − P (BestCase) − P (AverageCase)

(3.8)

Expected Utility Theory

Agents use expected utility theory to help make decisions under uncertainty [9,16–18,

20,26]. This theory is a way to balance risk versus reward using a mathematical formula. In

a case of having multiple choices, this theory allows agents to calculate the expected utility

of each case and select the one with the highest expected utility. Risk measure affects the
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way agents interpret the amount of utility [9,17,20]. Risk-seeking agents have an optimistic

attitude toward the reward, while risk-averse agents are pessimistic and undervalue the

actual reward of tasks. However, risk neutral agents are objective and see the actual reward

of an action. In our model, we have a range of [0, 2] for these three categories of agents

where [0, 1] represents risk-averse agents, 1 stands for risk-neutral agents and [1, 2] depicts

risk-seeking agents. In our model, an agent’s interpretation of utility (IU) is calculated with

Equation 3.9.

IU = RewardRiskMeasure (3.9)

When agentx wants to chose the optimal volunteer, it utilizes its risk measure and interprets

the utility of each volunteer’s estimations (best, average and worst case answers). Then

based on Equation 3.10, agentx evaluates different choices and selects the agent with the

highest expected utility according to the expected utility theory. In Equation 3.10, IU

stands for Interpretation of utility, P stands for probability and E(C) shows the expected

utility of each choice.

E(c) = IUBest × PBest + IUAverage × PAverage + IUWorst × PAverage (3.10)

3.5 Experiments and Results

3.5.1 Experiment Settings

To investigate the efficiency of our model in different situations, we introduced three

scenarios, each imposing different levels of workload to the system. We compute the total

capacity of the system as the maximum amount of work the system can accomplish when

using the full capacity of all agents. Using this computed capacity, we define the low

workload as 80% of the system capacity; and average and high workload as 100% and 120%

of the system capacity respectively. For each scenario, we repeat 100 simulations of system,

each performing for 1000 iterations. The results are averaged over the number of runs.
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3.5.2 Profit Comparison

We evaluate the effectiveness of proposed model based on the performance of the or-

ganization measured as the system profit. System profit for each iteration is computed as

the summation of the profits of all individual agents. We use Equation 3.11 to calculate

the profit of agents per iteration using the amount of earned utility and the total cost of

that iteration. Each agent can calculate its earned utility based on completed tasks using

Equation 3.1.

Profit = UtilityEarned− TotalCost (3.11)

TotalCost = ReorganizationCost+ CommunicationCost (3.12)

As Equation 3.12 shows, the total cost in the system includes reorganization cost and

communication cost. Reorganization cost is used for evaluating and management of rela-

tionships. The process of assigning a task to the agents and trust building requires sending

and receiving messages to/from the other agents. Therefore, these processes also require

inter-agent communication, which adds some cost to the total cost of the organization.

Our first experiment compares the profit of the system using two approaches. The

trust-based approach uses the decision making algorithm explained in 3.4.6. The no trust

approach utilizes the task delegation approach depicted in Figure 3.3. Both of the methods

respect the hierarchy of the agent organization for delegating tasks; they delegate the tasks

in the following order: subordinates, peers, superiors, and finally acquaintances. Figure 3.5

shows the percentage of possible profit of the system under different workloads.

As it can be seen, in all the three scenarios, trust-based approach increases the system

profit. In the low workload, the profit of the model in both approaches is higher than the

two other scenarios. The reason is that agents are not as busy as the other workloads;

so the failure rate of tasks is low. In this workload, the system has the least failed task

percentage and highest task completion rate compared to other workloads. In the high

workload scenario, the profit ratio (computed as percent of possible profit) of the system

in both approaches is the worst in comparison with other approaches because the amount

of workload is beyond the capability of agents. Figures 3.6, 3.7, and 3.8 show the queue
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Figure 3.5: Profit comparison under three different workloads.

length of the system under the three workloads along with their standard deviation. Less

standard deviation indicates even distribution of tasks among agents. In trust-based de-
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Figure 3.6: Queue length and standard deviation of trust-based and no-trust approaches in
low workload.

cision making, volunteers for doing a task need to make estimation about finishing time

of the proposed task. Since estimations are computed based on the queue length (details

explained in 3.4.6), estimated time of agents with longer queue is higher than those with

shorter queue. Therefore, busy agents (agents with longer queue) have less chance of win-

ning the competition, and this fact results in even distribution of tasks among agents. It is

clear to say that higher workload results in a longer queue length.
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Figure 3.7: Queue length and standard deviation of trust-based and no-trust approaches in
medium workload.
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Figure 3.8: Queue length and standard deviation of trust-based and no-trust approaches in
high workload.

3.5.3 Failed Task Comparison

Task failure minimization is one of the aims of using trust in evaluating cooperative

peers and selecting the best one for a particular task. A smaller task failure percentage

effectively increases the amount of earned utility of agents and better performance of the

system. In this experiment, we measure the accumulated task failure of the system under the

three workload scenarios. Figure 3.9 shows the behavior of the system in this experiment.
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Figure 3.9: Comparison of task failure rate of trust-based and no-trust approaches in dif-
ferent workloads.
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As it can be seen, the rate of task failure increases by raising the workload. For the high

workload, we have a highest rate of task failure in both trust-based and no-trust approaches.

As mentioned before, the reason is that the amount of workload is beyond the capability of

agents. In other situations, there is a gap between trust-based and no-trust approaches. In

all situations, trust-based approach helps in reducing the amount of task failure.

3.5.4 Contribution of various risk categories of agents

In this experiment, we study the contribution of agents in the whole profit of the

system. Increasing profit requires earning more utility, and utility directly depends on task

completion rate. The aim of this experiment is to see which risk category of agents is

more successful in winning the competition of task delegation. Since our agents have a risk

measure in the range of [0, 2], we divide agents based on their risk measure of each iteration

in three intervals [0, 0.66], [0.67, 1.32], and [1.33, 2]. The agents in the first interval is called

risk averse category of agents, the agents in the second interval are risk neutral agents, and

finally the rest are risk seeking agents. Figure 3.10 shows the contribution of the agents

under three workload of the system. Since in this model agents’ risk measure is adaptive,

agents’ contribution is categorized based on their momentary risk measure. For example in

iteration 400, the red dot shows the contribution of all of the agents which their current (at

the moment) risk measure is categorized in the neutral range. We have the same setting

for risk seeking and risk neutral agents.

As it can be seen from the results of these experiments (Figure 3.10), risk neutral

agents have a higher contribution in the whole profit of the system. It proves the idea that

being too risk seeking or too risk averse is not as successful as being moderate. Moderate

agents are more successful in getting tasks and have higher contribution in the profit of the

system. Depending on the situation, each type of agent can have slightly more contribution.

For example in low workload and high workload, risk averse agents have a slightly higher

contribution, but in medium workload it seems both category of agents have almost equal

contribution.



53

Figure 3.10: Contribution of risk seeking, risk neutral, and risk averse agents under different
workloads.

3.5.5 Risk Changing Behavior

Risk measure affects agents’ decision making based on expected utility theory explained
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in 3.4.6. Adaptive risk is a proposed concept which lets the agents to update their risk

behavior based on their past experiences. Normally agents who have been successful in the

past have wider tolerance of risk and in contrast agent who lost a lot trying to be more

cautious. This adaptive behavior lets the agents to evaluate their decisions history and try

to make better decisions.

In this experiment we divide agents to three categories based on their initial risk mea-

sure. First interval is [0, 0.66] which indicates risk averse agents. Second interval is [0.66,

1.32] and agents in this interval are risk neutrals. The rest of the agents (in [1.32, 2] inter-

val) are risk seeking agents. For each category of agents, we aim to see how agents change

their risk measure over time for one simulation run utilizing change bars. Basically, change

bar in iteration = t represents the amount of change in risk measure of the corresponding

category of agents in interval [t − 1, t]. For example change bars in Figure 3.11, show the

risk changing behavior of the agents which has been labeled as risk seeking initially over

time. We have the same story for Figure 3.12 and Figure 3.13.

Figure 3.11: Risk changing behavior of risk seeking agents.
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Figure 3.12: Risk changing behavior of risk neutral agents.

Figure 3.13: Risk changing behavior of risk averse agents.

Results show that agents which have been initially labeled as risk seeking, have higher

accumulation of change bars toward decreasing risk measure, while for the agents initially

labeled as risk averse is reverse. We can conclude that agents who started to be risk

seeking intend to decrease their risk measure more often, while agent who started to be

risk averse are more willing to increase their risk measure. For the agents initially labeled

as risk neutral, we have almost equal accumulation of change bars in both sides. This
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shows that although neutral agents experience change in their risk measure, they mostly

stay in the neutral range. In the previous experiment 3.5.4, we saw that moderate agents

(agents with the risk measure in the range of [0.66, 1.32]) had more contribution in the

profit of the system. On the other hand previous experiment showed moderate agents are

more successful than others in winning the competition of getting the tasks. Therefore,

it is obvious to see that agents tended to change their risk behavior toward being more

moderate.

3.5.6 Effect of Adaptive Risk

Risk directly affects decision making as explained in 3.4.6. Adaptive risk lets the agents

change their risk behavior. Successful agents have wider risk tolerance, and agents who fail

frequently need to be more cautious. Since functionality of agents is not constant over time,

agents change their risk to help them make proper decisions. Agents are updating their

risk measure based on the approach explained in 3.4.4. In order to see the effectiveness of

adaptive risk, we tested our model under two different situations. The first situation gives

the agents the opportunity of updating their risk behavior in each iteration. In the second

scenario, agents have the fixed level of risk in whole experiment. In each of the experiments,

we test the framework under three different workloads (high, medium, and low). Figure 3.14

summarizes the results of the experiments. Results demonstrate the usefulness of adaptive

risk in reducing task failure, better task completion rate and higher profit.
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Figure 3.14: Effect of adaptive risk in reducing task failure, better task completion rate and
higher profit.

3.6 Conclusion and Future Work

In this research, we proposed a decision making approach which gives the agents the

opportunity of evaluating their cooperation peers utilizing recommendation-based trust and

adaptive risk in a self adaptive society. The self-adaptive policy allowed the agents to

evaluate the effectiveness of their neighbors based on the history and promote or demote

the relationship with them in order to keep the most useful cooperative neighbors around

themselves. Each agent builds trust about another agent using the recommendation of

agents who had experience with the target. The experiences are direct and from third

parties for having a variation of opinions in order to build more accurate trust estimation.

Since perception of trust is not similar for all agents, context of the decision must be taken

into account. Uncertainty as one of the main contextual factors plays an important role

in decision making. In this model we proposed adaptive risk concept. This concept firstly
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gives the agents a range of risk behavior rather than dividing them in three categories as

risk seeking, risk neutral and risk averse. Secondly it gives the agents the opportunity

of updating their risk measures based on their resources and experiences. For satisfying

heterogeneity in the society, agents have different attitude toward reprioritizing their work

queue called agent’s strategy. This strategy mainly defines the agent’s preferences over

factors like earning utility, obligating to the tasks’ deadline and respecting the strength of

the relation with the requestor of agents. Besides reprioritization strategy of agents are

adaptive. Each agent has the opportunity of copying the strategy of successful agents in

its neighborhood. We tested our proposed method under three different workloads of the

system: low, average, and high workloads. Average refers to the workload which is equal to

the capacity of the system (total capability of agents). High workload is beyond the agents’

capability, and low workload is less than system’s capacity. In all the experiment, trust-

based decision making approach shows higher profit, less task failure, higher completion

rate of tasks, and even distribution of tasks among agents.

Possible future work includes using various reliability mechanisms to check the accuracy

of provided information for recommendation-based trust. There are many sources of false

data like correlated evidence and biased/extreme agents. Correlated evidence happens when

multiple agents have a single experience and use that in making opinion about trustee.

The receiver may consider them as different experiences, but actually they are the all the

same. A possible solution is the clustering of agents which are somehow related to each

other. Therefore two agents from one cluster probably share a common opinion about an

experience. Biased agents are another main source of false data. Normally when there is a

high chance of false data, there would be a big variance between provided opinions. There

are some suggested approaches for handling these situations like building reliability factor of

recommenders and gathering more and recent opinions. More opinions help on reducing the

variance of data. Recent data seems to be more accurate than old data especially in dynamic

societies. Agents should not rely on the recommendations which are basically reflect old

experiences. Another possible future work invloves giving incentive for recommenders to
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have mutual benefit between trustor and recommender. This mechanism increases the

incentive of recommenders to cooperate in order to get reward and can reduce the possibility

of biased or extreme opinions because of involving recommenders in delegation mechanism.
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CHAPTER 4

CONCLUSIONS

The first part of this research deals with implementing self-adaptation in agent or-

ganization. We demonstrate a robust, decentralized approach for structural adaptation in

problem solving agent organizations. Our adaptation method is based on the agents forging

and dissolving relations with other agents. Agents use the history of past iterations as a

measure of evaluation. We proposed a new method of adaptation which is called Selective-

Adaptation. This method consists of two main parts which are meta-reasoning and reor-

ganization. In the meta-reasoning, agents at each iteration select some of their neighbors

for reorganization based on different approaches namely 1) Fixed Approach, 2) Need-Based

Approach, 3) Performance-Based Approach, or 4) Satisfaction-Based Approach. After se-

lecting neighbors, each agent evaluates all of the possible actions and tries to promote or

demote the type of relationship between itself and the target agent. Since one of the pur-

poses of self-adaptation is to improve robustness against failure, we test our model with

two types of shocks to see the effectiveness of our self-adaptive system under unexpected

circumstances. This method can successfully handle unexpected shocks to the system.

Possible future work include restricting agents’ resources like memory and network

bandwidth. Agents should have a limited amount of memory which is used for keeping in-

formation about others. In addition, we use network bandwidth for our communication pur-

poses but we did not limit it. Another possible future work is changing this abstract model’s

task domain to real world problems like path finding or environment exploration. Dealing

with real world problems needs agents with more realistic skills. Testing the adaptability

and problem solving capability of this model under mentioned circumstances is considered

as an ideal future work of this model.

In the second part of the research, we proposed a decision making approach which
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gives the agents the opportunity of evaluating their cooperation peers utilizing recommen-

dation based trust and adaptive risk in a self adaptive society. Self adaptive society let the

agents to evaluate the effectiveness of their neighbors based on the history and promote

or demote relationship with them in order to keep the most useful cooperative neighbors

around themselves. Each agent builds trust about another agent using the recommendation

of agents who had experience with the target. The experiences are direct and from third

parties for having a variation of opinions in order to build more accurate trust estimation.

Since perception of trust is not similar for all agents, context of the decision must be taken

into account. Uncertainty as one of the main contextual factors plays an important role in

decision making. In this model, we proposed adaptive risk concept. This concept firstly

gives the agents a range of risk behavior rather than dividing them in three categories as

risk seeking, risk neutral and risk averse. Secondly it gives the agents the opportunity

of updating their risk measures based on their resources and experiences. For satisfying

heterogeneity in the society, agents have different attitude toward reprioritizing their work

queue called agent’s strategy. This strategy mainly defines the agent’s preferences over

factors like earning utility, obligating to the tasks’ deadline and respecting the strength of

the relation with the requestor of agents. Besides strategy of agents are adaptive. Each

agent has the opportunity of copying the strategy of successful agents in its neighborhood.

We tested our proposed method under three different workloads of the system: low,

average, and high workloads. Average refers to the workload which is equal to the capacity

of the system (total capability of agents). High workload is beyond the agents’ capability,

and low workload is less than system’s capacity. In all the experiment, trust based decision

making approach shows higher profit, less task failure, higher completion rate of tasks, and

even distribution of tasks among agents.

Another possible future work is using various reliability mechanisms to check the accu-

racy of provided information for recommendation-based trust. There are many sources of

false data like correlated evidence and biased/extreme agents. Correlated evidence happens

when multiple agents have a single experience and use that in making opinion about trustee.
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The receiver may consider them as different experiences, but actually they are the all the

same. A possible solution is the clustering of agents which are somehow related to each

other. Therefore two agents from one cluster probably share a common opinion about an

experience. Biased agents are another main source of false data. Normally when there is a

high chance of false data, there would be a big variance between provided opinions. There

are some suggested approaches for handling these situations like building reliability factor

of recommenders and gathering more and recent opinions. More opinions help on reducing

the variance of data. Recent data seems to be more accurate than old data especially in

dynamic societies. Agents should not confide on the recommendations which are basically

reflect old experiences. Another possible future work is giving incentive for recommenders

to have mutual benefit between trustor and recommender. This mechanism increases the

incentive of recommender to cooperate in order to get reward. Considering mutual benefit

can reduce the possibility of biased or extreme opinions because it involves recommenders

in delegation mechanism.
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